From 9fc1b09e8563adace030e9e8c292740287c49985 Mon Sep 17 00:00:00 2001 From: Adrienne Stilp Date: Tue, 19 Mar 2024 15:17:29 -0700 Subject: [PATCH] Add a helper function to calculate and filter pchisq values This function sets all p-values calculated with pchisq that are less than the Machine xmin value to the xmin value. --- R/utils.R | 7 +++++++ tests/testthat/test_utils.R | 39 ++++++++++++++++++++++--------------- 2 files changed, 30 insertions(+), 16 deletions(-) diff --git a/R/utils.R b/R/utils.R index f10baa0..c9c1f92 100644 --- a/R/utils.R +++ b/R/utils.R @@ -352,3 +352,10 @@ setMethod(".annotateAssoc", put.attr.gdsn(geno.node, "sample.order") closefn.gds(gds) } + +.pchisq_filter_extreme <- function(...) { + # Note: stat is the squared test statistic. + pval = pchisq(...) + pval[pval < .Machine$double.xmin] = .Machine$double.xmin + return(pval) +} diff --git a/tests/testthat/test_utils.R b/tests/testthat/test_utils.R index bc11e77..df977d7 100644 --- a/tests/testthat/test_utils.R +++ b/tests/testthat/test_utils.R @@ -128,12 +128,12 @@ test_that("MAC - sex chrs", { sample.id <- seqGetData(gds, "sample.id") df <- data.frame(sample.id, sex="M", stringsAsFactors=FALSE) svd <- SeqVarData(gds, sampleData=AnnotatedDataFrame(df)) - + freq <- alleleFrequency(svd) geno <- refDosage(svd) chk <- .alleleFreq(svd, geno, male.diploid=FALSE) expect_equal(chk$freq, freq) - + mac <- minorAlleleCount(svd) expect_equal(chk$MAC, round(mac)) seqClose(gds) @@ -145,24 +145,24 @@ test_that("meanImpute", { m <- 1000 set.seed(123) geno <- matrix(rbinom(n*m, size = 2, prob = 0.1), nrow = n, ncol = m) - + miss <- sample(n*m, size = 0.1*n*m, replace = FALSE) geno[miss] <- NA - + freq <- 0.5*colMeans(geno, na.rm = TRUE) - + # original function x <- .meanImputeFn(geno, freq) - + # new function with matrix y <- .meanImpute(geno, freq) expect_equal(x, y) - + # new function with Matrix (one block) Geno <- Matrix(geno) y <- .meanImpute(Geno, freq) expect_equivalent(x, as.matrix(y)) - + # new function with Matrix (multiple blocks) #n*m/2^25 # 3 blocks if m=100000 y <- .meanImpute(Geno, freq, maxelem = 4e5) @@ -182,32 +182,32 @@ test_that("prepGenoBlock", { n1 <- colSums(geno == 1, na.rm=TRUE) n2 <- colSums(geno == 2, na.rm=TRUE) mono <- (n0 == n | n1 == n | n2 == n) - + vi <- data.frame(a=1:m) x <- list(var.info=vi, geno=geno, chr=rep("1",m)) - + g <- .prepGenoBlock(x) expect_equal(vi[!mono,,drop=FALSE], g$var.info) expect_equal(colSums(!is.na(geno[,!mono])), g$n.obs) expect_equal(0.5*colMeans(geno[,!mono], na.rm=TRUE), g$freq$freq) expect_equal(geno[,!mono], g$geno) expect_true(is.null(g$weight)) - + g2 <- .prepGenoBlock(x, AF.max = 0.1) inc <- g$freq$freq <= 0.1 expect_equal(g2$freq, g$freq[inc,]) expect_equal(g2$geno, g$geno[,inc]) - + gr <- .prepGenoBlock(x, geno.coding="recessive") rec.mono <- n2 == 0 | n2 == n expect_equal(colSums(gr$geno == 1, na.rm=TRUE), n2[!rec.mono]) expect_equal(names(gr$freq), c("freq", "MAC", "n.hom.eff")) - + gd <- .prepGenoBlock(x, geno.coding="dominant") dom.mono <- n0 == 0 | n0 == n expect_equal(colSums(gd$geno != 0, na.rm=TRUE), (n1+n2)[!dom.mono]) expect_equal(names(gd$freq), c("freq", "MAC", "n.any.eff")) - + x$weight <- c(rep(1,900), rep(0,100)) gw <- .prepGenoBlock(x) expect_equal(gw$weight, x$weight[!mono & as.logical(x$weight)]) @@ -223,13 +223,13 @@ test_that("prepGenoBlock - male haploid", { sex <- sample(c("M", "F"), n, replace=TRUE) vi <- data.frame(a=1:m) x <- list(var.info=vi, geno=geno, chr=rep("X",m)) - + male <- sex == "M" female <- sex == "F" nm1 <- colSums(geno[male,] == 1) nm2 <- colSums(geno[male,] == 2) nf2 <- colSums(geno[female,] == 2) - + gd <- .prepGenoBlock(x, geno.coding="recessive", male.diploid=TRUE, sex=sex) expect_equal(colSums(gd$geno[male,]), nm2) expect_equal(colSums(gd$geno[female,]), nf2) @@ -237,3 +237,10 @@ test_that("prepGenoBlock - male haploid", { expect_equal(colSums(gh$geno[male,]), nm1 + nm2) expect_equal(colSums(gh$geno[female,]), nf2) }) + +test_that(".pchisq_filter_extreme", { + stat <- c(0.1, 0.5, 1, 10) + expect_equal(.pchisq_filter_extreme(stat^2, lower.tail=FALSE, df=1), pchisq(stat^2, lower.tail=FALSE, df=1)) + # Extreme p-value + expect_equal(.pchisq_filter_extreme(100^2, lower.tail=FALSE, df=1), .Machine$double.xmin) +})