-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
133 lines (109 loc) · 3.68 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
"""
train.py allows you to train the model in model.py(in this examply, UNet), and test it off
of the validation dataset specified in utils.py.
You can save your trained model with checkpoints, and load in previously trained models
by setting LOAD_MODEL to either True (use the checkpoint) or False(retrain the model).
"""
import torch
import albumentations as A
from albumentations.pytorch import ToTensorV2
from tqdm import tqdm
import torch.nn as nn
import torch.optim as optim
from model import UNET
from utils import (
load_checkpoint,
save_checkpoint,
get_loaders,
# check_accuracy,
save_predictions_as_imgs,
)
# Hyperparameters etc.
LEARNING_RATE = 1e-4
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
BATCH_SIZE = 16
NUM_EPOCHS = 30
NUM_WORKERS = 2
IMAGE_HEIGHT = 90
IMAGE_WIDTH = 160
PIN_MEMORY = True
LOAD_MODEL = False
def train_fn(loader, model, optimizer, loss_fn, scaler):
"""train_fn trains the model in model.py with the specified loader, model
optimizer, loss function, and scaler value
"""
loop = tqdm(loader)
for batch_idx, (data, targets) in enumerate(loop):
data = data.to(device=DEVICE)
targets = targets.float().unsqueeze(1).to(device=DEVICE)
targets = targets[:, :, :, :, 0]/255
# forward
with torch.cuda.amp.autocast():
predictions = model(data)
loss = loss_fn(predictions, targets)
# backward
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
# update tqdm loop
loop.set_postfix(loss=loss.item())
def main():
"""
main executes the program, starting off by defining transformations needed for the datasets,
and calling functions to train and test the model
"""
train_transform = A.Compose(
[
A.Resize(height=IMAGE_HEIGHT, width=IMAGE_WIDTH),
A.Rotate(limit=35, p=1.0),
A.HorizontalFlip(p=0.5),
A.VerticalFlip(p=0.1),
A.Normalize(
mean=[0.0, 0.0, 0.0],
std=[1.0, 1.0, 1.0],
max_pixel_value=255.0,
),
ToTensorV2(),
],
)
val_transforms = A.Compose(
[
A.Resize(height=IMAGE_HEIGHT, width=IMAGE_WIDTH),
A.Normalize(
mean=[0.0, 0.0, 0.0],
std=[1.0, 1.0, 1.0],
max_pixel_value=255.0,
),
ToTensorV2(),
],
)
model = UNET(in_channels=3, out_channels=1).to(DEVICE)
loss_fn = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)
train_loader, val_loader = get_loaders(
BATCH_SIZE,
train_transform,
val_transforms,
)
if LOAD_MODEL:
load_checkpoint(torch.load("my_checkpoint.pth.tar"), model)
# check_accuracy(val_loader, model, device=DEVICE)
scaler = torch.cuda.amp.GradScaler()
for epoch in range(NUM_EPOCHS):
if LOAD_MODEL is not True:
train_fn(train_loader, model, optimizer, loss_fn, scaler)
# save model
checkpoint = {
"state_dict": model.state_dict(),
"optimizer":optimizer.state_dict(),
}
save_checkpoint(checkpoint)
# check accuracy
# check_accuracy(val_loader, model, device=DEVICE)
# print some examples to a folder
save_predictions_as_imgs(
val_loader, model, folder="saved_images/", device=DEVICE
)
if __name__ == "__main__":
main()