-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
382 lines (344 loc) · 16 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="description"
content="Multi-Task Interactive Robot Fleet Learning with Visual World Models">
<meta name="keywords" content="Multi-Task Interactive Robot Fleet Learning">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Multi-Task Interactive Robot Fleet Learning with Visual World Models</title>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-PYVRSFMDRL"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-PYVRSFMDRL');
</script>
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
rel="stylesheet">
<link rel="stylesheet" href="./static/css/bulma.min.css">
<link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="./static/css/bulma-slider.min.css">
<link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
<link rel="stylesheet"
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="./static/css/index.css">
<link rel="icon" href="">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script defer src="./static/js/fontawesome.all.min.js"></script>
<script src="./static/js/bulma-carousel.min.js"></script>
<script src="./static/js/bulma-slider.min.js"></script>
<script src="./static/js/index.js"></script>
</head>
<body>
<nav class="navbar" role="navigation" aria-label="main navigation">
<div class="navbar-brand">
<a role="button" class="navbar-burger" aria-label="menu" aria-expanded="false">
<span aria-hidden="true"></span>
<span aria-hidden="true"></span>
<span aria-hidden="true"></span>
</a>
</div>
</nav>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title">Multi-Task Interactive Robot Fleet Learning with Visual World Models</h1>
<div class="is-size-5 publication-authors">
<span class="author-block" style="font-size: 25px;"><a href="https://huihanl.github.io/">Huihan Liu</a>, <a href="https://www.linkedin.com/in/yu-zhang-b004a9290/?trk=contact-info">Yu Zhang</a>, <a href="https://www.linkedin.com/in/vaarij-betala/">Vaarij Betala</a>, <a href="https://www.linkedin.com/in/evan-zhang-81a9a9269/">Evan Zhang</a>, <a href="https://www.linkedin.com/in/jamesshuangliu/">James Liu</a>, <a href="https://www.linkedin.com/in/ding-crystal/">Crystal Ding</a>, <a href="https://yukezhu.me/">Yuke Zhu</a></span>
</div>
<br>
<div class="is-size-5 publication-authors">
<span class="author-block" style="font-size: 25px;">The University of Texas at Austin</span>
</div>
<br>
<div class="is-size-5 publication-authors">
<span class="author-block" style="color: #fa694e; font-size: 25px;">8th Conference on Robot Learning (CoRL 2024)</span>
</div>
<div class="column has-text-centered">
<div class="publication-links">
<!-- PDF Link. -->
<span class="link-block">
<a href="https://arxiv.org/abs/2410.22689"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Arxiv</span>
</a>
</span>
<span class="link-block">
<a href="https://arxiv.org/pdf/2410.22689"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Paper</span>
</a>
</span>
</div>
</div>
</div>
</div>
</div>
</section>
<section class="hero teaser">
<div class="container is-max-desktop">
<div class="hero-body">
<div class="publication-video">
<video muted autoplay controls width="100%">
<source src="videos/demo.mp4" type="video/mp4">
</video>
</div>
</div>
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<!-- Abstract. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
Recent advancements in large-scale multi-task robot learning offer the potential for deploying robot fleets in household and industrial settings, enabling them to perform diverse tasks across various environments. However, AI-enabled robots often face challenges with generalization and robustness when exposed to real-world variability and uncertainty. We introduce Sirius-Fleet, a multi-task interactive robot fleet learning framework to address these challenges. Sirius-Fleet monitors robot performance during deployment and involves humans to correct the robot's actions when necessary. We employ a visual world model to predict the outcomes of future actions and build anomaly predictors to predict whether they will likely result in anomalies. As the robot autonomy improves, the anomaly predictors automatically adapt their prediction criteria, leading to fewer requests for human intervention and gradually reducing human workload over time. Evaluations on large-scale benchmarks demonstrate Sirius-Fleet's effectiveness in improving multi-task policy performance and monitoring accuracy. We demonstrate Sirius-Fleet's performance in both RoboCasa in simulation and Mutex in the real world, two diverse, large-scale multi-task benchmarks.
</p>
<br>
<br>
</div>
</div>
</div>
<!--/ Abstract. -->
<!-- Overview. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Overview</h2>
<div class="content has-text-justified">
<p>
We introduce Sirius-Fleet, a multi-task interactive robot fleet learning framework. The framework consists of two stages: 1) Visual World Model Training and Inference, where we pre-train a visual world model on diverse datasets to predict future latent embeddings from past video frames, and 2) Multi-Task Interactive Fleet Learning, where the pre-trained model is used to supervise multi-task robot fleet deployment. During deployment, anomaly predictors monitor task performance in real time, involving humans for control when necessary. The policy and anomaly predictors are continuously fine-tuned with deployment data, enabling improved task performance over time.
</p>
</div>
<div class="publication-video">
<video muted autoplay controls width="100%">
<source src="videos/teaser_video.mp4" type="video/mp4">
</video>
</div>
<br>
<br>
</div>
</div>
<!--/ Overview. -->
<!-- Overview. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Visual World Model</h2>
<div class="content has-text-justified">
<p>
A key challenge in runtime monitoring is to effectively predict future task scenarios, as this allows the system to preempt potential failures before they occur. We develop a visual world model trained on diverse robot trajectories performing a large variety of tasks, which enables the prediction of future task outcomes and helps prevent potential failures.
The visual world model is trained by reconstructing image frames from input observations, which allows it to capture fine-grained visual details necessary for precise manipulation. The visual world model comprises a UNet-based encoder and decoder combined with a cVAE- and Transformer-based prediction model. This architecture allows the world model to predict future embeddings from the current state.
</p>
</div>
<div class="publication-video">
<video muted autoplay controls width="100%">
<source src="videos/architecture.mp4" type="video/mp4">
</video>
</div>
<br>
<br>
</div>
</div>
<!--/ Overview. -->
<!-- Overview. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Anomaly Predictors</h2>
<div class="content has-text-justified">
<p>
The learned embeddings from the world model are then shared across downstream anomaly prediction tasks. We train two distinct types of anomaly predictors: one for failure detection and one for out-of-distribution (OOD) detection. The two predictors complement each other in practice: failure prediction detects failures similar to those identified by humans previously, and OOD detection captures cases when the robot is in novel, unfamiliar scenarios.
</p>
</div>
<div class="publication-video">
<video muted autoplay controls width="100%">
<source src="videos/failure_predictors.mp4" type="video/mp4">
</video>
</div>
<br>
<br>
</div>
</div>
<!--/ Overview. -->
<!-- Overview. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Multi-Task Policy</h2>
<div class="content has-text-justified">
<p>
The multi-task policy is a Transformer that processes images, proprioceptive data, and task language embeddings. It uses a Gaussian Mixture Model (GMM) to output robot actions.
</p>
</div>
<div class="publication-video">
<video muted autoplay controls width="100%">
<source src="videos/policy.mp4" type="video/mp4">
</video>
</div>
<br>
<br>
</div>
</div>
<!--/ Overview. -->
<!-- Overview. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Experiments</h2>
<div class="content has-text-justified">
<p>
We evaluate policy learning and runtime monitoring using 12 tasks from the RoboCasa benchmark in simulation and 10 tasks from the Mutex benchmark in real-world environments.
</p>
</div>
<div class="item">
<!-- Your image here -->
<img src="videos/task-vis-real-and-robot.png" alt=""/>
<h2 class="subtitle has-text-centered">
</h2>
</div>
<br>
<br>
<div class="content has-text-justified">
<p>
Sirius-Fleet continues to improve on the following three metrics over deployment:
<!-- Bullet points -->
<ul>
<li>Combined Policy Performance</li>
<li>Autonomous Policy Performance</li>
<li>Return of Human Effort (RoHE)</li>
</ul>
</p>
</div>
<div class="item">
<!-- Your image here -->
<img src="videos/result_plots.png" alt=""/>
<h2 class="subtitle has-text-centered">
</h2>
</div>
<br>
<br>
<div class="content has-text-justified">
<p>
Sirius-Fleet surpassed the baselines in both combined policy performance and RoHE.
</p>
</div>
<div class="item">
<!-- Your image here -->
<img src="videos/baseline_comp.png" alt="" style="width: 70%;">
<h2 class="subtitle has-text-centered">
</h2>
</div>
<br>
<br>
</div>
</div>
<!--/ Overview. -->
<!-- Overview. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-size-4">Comparison of Failure vs. OOD Predictions</h2>
<div class="content has-text-justified">
<p>
The Failure and OOD predictions complement each other in predicting anomalies.
</p>
</div>
<div class="publication-video">
<video muted autoplay controls width="90%" margin-bottom="0px" margin-top="0px">
<source src="videos/examples/traj1_failure.mp4" type="video/mp4">
</video>
</div>
<div class="publication-video">
<video muted autoplay controls width="90%" margin-bottom="0px" margin-top="0px">
<source src="videos/examples/traj1_ood.mp4" type="video/mp4">
</video>
</div>
<div class="publication-video">
<video muted autoplay controls width="90%" margin-bottom="0px" margin-top="0px">
<source src="videos/examples/traj2_failure.mp4" type="video/mp4">
</video>
</div>
<div class="publication-video">
<video muted autoplay controls width="90%" margin-bottom="0px" margin-top="0px">
<source src="videos/examples/traj2_ood.mp4" type="video/mp4">
</video>
</div>
<br>
<br>
</div>
</div>
<!--/ Overview. -->
<!-- Overview. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-size-4">Importance of Predicting Future Outcomes</h2>
<div class="content has-text-justified">
<p>
It is important to predict <em>future</em> outcomes before the catastrophic errors happen.
</p>
</div>
<div class="publication-video">
<video muted autoplay controls width="90%" margin-bottom="0px" margin-top="0px">
<source src="videos/examples/imp_traj1.mp4" type="video/mp4">
</video>
</div>
<div class="publication-video">
<video muted autoplay controls width="90%" margin-bottom="0px" margin-top="0px">
<source src="videos/examples/imp_traj2.mp4" type="video/mp4">
</video>
</div>
<br>
<br>
</div>
</div>
<!-- Overview. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-size-4">Limitation: When Robot + Human Policy Fails</h2>
<div class="content has-text-justified">
<p>
What are the failure modes under the >95% combined policy success rate? We show where our system fails with the runtime monitoring system.
</p>
</div>
<div class="publication-video">
<video muted autoplay controls width="90%" margin-bottom="0px" margin-top="0px" >
<source src="videos/examples/lim_1.mp4" type="video/mp4">
</video>
</div>
<div class="publication-video">
<video muted autoplay controls width="90%" margin-bottom="0px" margin-top="0px">
<source src="videos/examples/lim_2.mp4" type="video/mp4">
</video>
</div>
<div class="publication-video">
<video muted autoplay controls width="90%" margin-bottom="0px" margin-top="0px">
<source src="videos/examples/lim_3.mp4" type="video/mp4">
</video>
</div>
<br>
<br>
</div>
</div>
</div>
</section>
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title">BibTeX</h2>
<pre><code>@inproceedings{liumulti,
title={Multi-Task Interactive Robot Fleet Learning with Visual World Models},
author={Liu, Huihan and Zhang, Yu and Betala, Vaarij and Zhang, Evan and Liu, James and Ding, Crystal and Zhu, Yuke},
booktitle={8th Annual Conference on Robot Learning}
}</code></pre>
</div>
</section>
</body>
</html>