-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSemantics.thy
173 lines (142 loc) · 8.15 KB
/
Semantics.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
theory Semantics
imports Atomics
begin
chapter \<open>Small Step Semantics\<close>
text \<open>
Define the small step semantics for the While language, with weak memory model behaviours.
Also introduces a notion of configuration, that couples programs and memory states,
with transitions for the program and the environment.
\<close>
type_synonym ('a,'b) config = "('a,'b) com \<times> 'b"
text \<open>
To simplify the identification of reordered instructions, we instrument the semantics with
bookkeeping data structures to track how the reordering relation has been applied.
\<close>
datatype ('a,'b) log =
Reorder "('a,'b) basic" "('a,'b) wmm" "('a,'b) com" |
Scope
type_synonym ('a,'b) bookkeeping = "('a,'b) log list"
locale semantics =
fixes exists_act :: "'a"
fixes exists_state :: "'b::state"
context semantics
begin
text \<open>Extend a reordering relation recursively over a program\<close>
fun reorder_com :: "('a,'b) basic \<Rightarrow> ('a,'b) com \<Rightarrow> ('a,'b) wmm \<Rightarrow> ('a,'b) basic \<Rightarrow> bool"
("_ < _ <\<^sub>_ _" [100,0,0,100] 100)
where
"\<alpha>' < Nil <\<^sub>c \<alpha> = (\<alpha>' = \<alpha>)" |
"\<alpha>' < Basic \<beta> <\<^sub>w \<alpha> = (w \<alpha>' \<beta> \<alpha>)" |
"\<alpha>' < c\<^sub>1 ;\<^sub>w c\<^sub>2 <\<^sub>c \<alpha> = (\<exists>\<alpha>\<^sub>n. \<alpha>' < c\<^sub>1 <\<^sub>c \<alpha>\<^sub>n \<and> \<alpha>\<^sub>n < c\<^sub>2 <\<^sub>c \<alpha>)" |
"_ < _ <\<^sub>c _ = False"
section \<open>Program Transition Definitions\<close>
text \<open>Small step semantics for a local execution step\<close>
inductive lexecute :: "('a,'b) com \<Rightarrow> ('a,'b) basic \<Rightarrow> ('a,'b) bookkeeping \<Rightarrow> ('a,'b) com \<Rightarrow> bool"
("_ \<mapsto>[_,_] _" [71,0,0,71] 70)
where
act[intro]: "Basic \<alpha> \<mapsto>[\<alpha>,[]] Nil" |
ino[intro]: "c\<^sub>1 \<mapsto>[\<alpha>',r] c\<^sub>1' \<Longrightarrow> c\<^sub>1 ;\<^sub>w c\<^sub>2 \<mapsto>[\<alpha>',r] c\<^sub>1' ;\<^sub>w c\<^sub>2" |
ooo[intro]: "c\<^sub>1 \<mapsto>[\<alpha>',r] c\<^sub>1' \<Longrightarrow> \<alpha>'' < c\<^sub>2 <\<^sub>w \<alpha>' \<Longrightarrow> c\<^sub>2 ;\<^sub>w c\<^sub>1 \<mapsto>[\<alpha>'',(Reorder \<alpha>' w c\<^sub>2) # r] c\<^sub>2 ;\<^sub>w c\<^sub>1'" |
cap[intro]: "c \<mapsto>[\<alpha>',r] c' \<Longrightarrow> Capture s c \<mapsto>[popbasic s s' \<alpha>',Scope#r] Capture s' c'"
inductive_cases lexecuteE[elim]: "c \<mapsto>[\<alpha>',p] c'"
text \<open>Small step semantics for a global execution step\<close>
inductive gexecute :: "('a,'b) com \<Rightarrow> 'b rel \<Rightarrow> ('a,'b) com \<Rightarrow> bool"
("_ \<mapsto>[_] _" [71,0,71] 70)
where
thr[intro]: "c \<mapsto>[\<alpha>',r] c' \<Longrightarrow> Thread c \<mapsto>[beh \<alpha>'] Thread c'" |
par1[intro]: "c\<^sub>1 \<mapsto>[g] c\<^sub>1' \<Longrightarrow> c\<^sub>1 || c\<^sub>2 \<mapsto>[g] c\<^sub>1' || c\<^sub>2" |
par2[intro]: "c\<^sub>2 \<mapsto>[g] c\<^sub>2' \<Longrightarrow> c\<^sub>1 || c\<^sub>2 \<mapsto>[g] c\<^sub>1 || c\<^sub>2'"
inductive_cases gexecuteE[elim]: "c \<mapsto>[g] c'"
text \<open>Small step semantics for a silent step\<close>
inductive silent :: "('a,'b) com \<Rightarrow> ('a,'b) com \<Rightarrow> bool"
("_ \<leadsto> _" [71,71] 70)
where
seq1[intro]: "c\<^sub>1 \<leadsto> c\<^sub>1' \<Longrightarrow> c\<^sub>1 ;\<^sub>w c\<^sub>2 \<leadsto> c\<^sub>1' ;\<^sub>w c\<^sub>2" |
seq2[intro]: "c\<^sub>2 \<leadsto> c\<^sub>2' \<Longrightarrow> c\<^sub>1 ;\<^sub>w c\<^sub>2 \<leadsto> c\<^sub>1 ;\<^sub>w c\<^sub>2'" |
seqE1[intro]: "Nil ;\<^sub>w c\<^sub>1 \<leadsto> c\<^sub>1" |
seqE2[intro]: "c\<^sub>1 ;\<^sub>w Nil \<leadsto> c\<^sub>1" |
pick[intro]: "Choice S \<leadsto> S l" |
loop1[intro]: "c*\<^sub>w \<leadsto> Nil" |
loop2[intro]: "c*\<^sub>w \<leadsto> c ;\<^sub>w c*\<^sub>w" |
par1[intro]: "c\<^sub>1 \<leadsto> c\<^sub>1' \<Longrightarrow> c\<^sub>1 || c\<^sub>2 \<leadsto> c\<^sub>1' || c\<^sub>2" |
par2[intro]: "c\<^sub>2 \<leadsto> c\<^sub>2' \<Longrightarrow> c\<^sub>1 || c\<^sub>2 \<leadsto> c\<^sub>1 || c\<^sub>2'" |
parE1[intro]: "Nil || c \<leadsto> c" |
parE2[intro]: "c || Nil \<leadsto> c" |
thr[intro]: "c \<leadsto> c' \<Longrightarrow> Thread c \<leadsto> Thread c'" |
thrE[intro]: "Thread Nil \<leadsto> Nil" |
capE[intro]: "Capture k Nil \<leadsto> Nil" |
capS[intro]: "c \<leadsto> c' \<Longrightarrow> Capture k c \<leadsto> Capture k c'"
inductive_cases silentE[elim]: "c\<^sub>1 \<leadsto> c\<^sub>1'"
text \<open>A local execution step implies the program has changed\<close>
lemma execute_neq:
assumes "c \<mapsto>[\<alpha>'',r] c'"
shows "c \<noteq> c'"
using assms by (induct) auto
lemma [simp]:
"c \<mapsto>[\<alpha>'',r] c = False"
using execute_neq by blast
text \<open>A global execution step implies the program has changed\<close>
lemma gexecute_neq:
assumes "c \<mapsto>[g] c'"
shows "c \<noteq> c'"
using assms by (induct) auto
lemma [simp]:
"c \<mapsto>[g] c = False"
using gexecute_neq by blast
text \<open>An execution step will not introduce parallelism\<close>
lemma local_execute:
"c \<mapsto>[\<alpha>'',r] c' \<Longrightarrow> local c \<Longrightarrow> local c'"
by (induct rule: lexecute.induct) (auto)
text \<open>A silent step will not introduce parallelism\<close>
lemma local_silent:
"c \<leadsto> c' \<Longrightarrow> local c \<Longrightarrow> local c'"
by (induct rule: silent.induct) (auto simp add: local_execute)
section \<open>Transition Definitions\<close>
text \<open>These transitions are over configurations of (program,state)\<close>
text \<open>Environment Transition\<close>
abbreviation env_tran :: "('a,'b) config \<Rightarrow> ('a,'b) config \<Rightarrow> bool" ("_ -e\<rightarrow> _" [81,81] 80)
where "s -e\<rightarrow> s' \<equiv> fst s = fst s'"
text \<open>Program Execution Transition\<close>
abbreviation exec_tran :: "('a,'b) config \<Rightarrow> ('a,'b) config \<Rightarrow> bool" ("_ -\<alpha>\<rightarrow> _" [81,81] 80)
where "s -\<alpha>\<rightarrow> s' \<equiv> \<exists>g. fst s \<mapsto>[g] (fst s') \<and> (snd s,snd s') \<in> g"
text \<open>Program Silent Transition\<close>
abbreviation sil_tran :: "('a,'b) config \<Rightarrow> ('a,'b) config \<Rightarrow> bool" ("_ -s\<rightarrow> _" [81,81] 80)
where "s -s\<rightarrow> s' \<equiv> fst s \<leadsto> fst s' \<and> snd s = snd s'"
text \<open>Program Transition\<close>
abbreviation com_tran :: "('a,'b) config \<Rightarrow> ('a,'b) config \<Rightarrow> bool" ("_ -c\<rightarrow> _" [81,81] 80)
where "s -c\<rightarrow> s' \<equiv> s -\<alpha>\<rightarrow> s' \<or> s -s\<rightarrow> s'"
text \<open>Collect of all possible transitions\<close>
inductive_set transitions :: "('a,'b) config list set"
where
one[intro]: "[s] \<in> transitions" |
env[intro]: "s -e\<rightarrow> s' \<Longrightarrow> s'#t \<in> transitions \<Longrightarrow> s#s'#t \<in> transitions" |
prg[intro]: "s -\<alpha>\<rightarrow> s' \<Longrightarrow> s'#t \<in> transitions \<Longrightarrow> s#s'#t \<in> transitions" |
sil[intro]: "s -s\<rightarrow> s' \<Longrightarrow> s'#t \<in> transitions \<Longrightarrow> s#s'#t \<in> transitions"
inductive_cases transitionsE[elim]: "t \<in> transitions"
section \<open>Observable atomics\<close>
inductive obs_trace
where
"obs_trace [] c" |
"c \<leadsto> c' \<Longrightarrow> obs_trace t c' \<Longrightarrow> obs_trace t c" |
"c \<mapsto>[\<alpha>,r] c' \<Longrightarrow> obs_trace t c' \<Longrightarrow> obs_trace (\<alpha>#t) c"
definition obs
where "obs c \<equiv> {\<alpha>. \<exists>t. \<alpha> \<in> set t \<and> obs_trace t c}"
lemma obs_exec:
assumes "c \<mapsto>[\<alpha>',r] c'"
shows "obs c \<supseteq> obs c'"
unfolding obs_def using assms obs_trace.intros(3)
by (smt (verit, best) Collect_mono set_subset_Cons subsetD)
lemma obs_sil:
assumes "c \<leadsto> c'"
shows "obs c \<supseteq> obs c'"
unfolding obs_def using assms obs_trace.intros(2) by auto
lemma obs_act:
assumes "c \<mapsto>[\<alpha>',r] c'"
shows "\<alpha>' \<in> obs c"
using assms unfolding obs_def
by clarsimp (meson list.set_intros(1) obs_trace.intros(1,3))
lemma obs_nil [simp]:
"obs Nil = {}"
by (auto simp: obs_def elim: obs_trace.cases)
end
end