-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcurve.go
361 lines (319 loc) · 10.7 KB
/
curve.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
package main
import (
"crypto/rand"
"errors"
"math/big"
)
type Point struct {
X *big.Int
Y *big.Int
Z *big.Int
}
type Curve struct {
P *big.Int
A *big.Int
B *big.Int
}
var ZERO *big.Int = big.NewInt(0)
var ONE *big.Int = big.NewInt(1)
func (P *Point) IsAtInfinity() bool {
return (P.X.Cmp(ZERO) == 0 &&
P.Y.Cmp(ONE) == 0 &&
P.Z.Cmp(ZERO) == 0)
}
// We need to do this ourselves because stdlib crypto/elliptic only has support for a = -3, but we need to support a = 1
func (curve *Curve) AddPoints(P, Q Point) (R Point) {
R.X = new(big.Int)
R.Y = new(big.Int)
R.Z = new(big.Int)
if P.IsAtInfinity() {
R.X.Set(Q.X)
R.Y.Set(Q.Y)
R.Z.Set(Q.Z)
return R
} else if Q.IsAtInfinity() {
R.X.Set(P.X)
R.Y.Set(P.Y)
R.Z.Set(P.Z)
return R
}
X1, Y1, Z1 := P.X, P.Y, P.Z
X2, Y2, Z2 := Q.X, Q.Y, Q.Z
U1 := new(big.Int).Mul(Z2, Z2)
U1.Mul(U1, X1).Mod(U1, curve.P)
U2 := new(big.Int).Mul(Z1, Z1)
U2.Mul(U2, X2).Mod(U2, curve.P)
S1 := new(big.Int).Mul(Z2, Z2)
S1.Mul(S1, Z2).Mul(S1, Y1).Mod(S1, curve.P)
S2 := new(big.Int).Mul(Z1, Z1)
S2.Mul(S2, Z1).Mul(S2, Y2).Mod(S2, curve.P)
if U1.Cmp(U2) == 0 {
if S1.Cmp(S2) != 0 {
R.X.SetInt64(0)
R.Y.SetInt64(1)
R.Z.SetInt64(0)
return R
}
// point doubling
if Y1.Cmp(ZERO) == 0 {
R.X.SetInt64(0)
R.Y.SetInt64(1)
R.Z.SetInt64(0)
return R
}
// S = 4*X*Y²
S := new(big.Int).Set(X1)
S.Mul(S, Y1).Mul(S, Y1).Lsh(S, 2)
S.Mod(S, curve.P)
// M = 3*X² + a*Z⁴
M := big.NewInt(3)
M.Mul(M, X1).Mul(M, X1)
aZ4 := new(big.Int).Set(Z1)
aZ4.Mul(aZ4, aZ4).Mul(aZ4, aZ4)
aZ4.Mul(aZ4, curve.A)
aZ4.Mod(aZ4, curve.P)
M.Add(M, aZ4).Mod(M, curve.P)
// X' = M² - 2S
R.X.Lsh(S, 1)
R.X.Sub(new(big.Int).Mul(M, M), R.X)
R.X.Mod(R.X, curve.P)
// Y' = M*(S - X') - 8*Y⁴
R.Y.Sub(S, R.X).Mul(R.Y, M)
EightY4 := new(big.Int).Set(Y1)
EightY4.Mul(EightY4, EightY4).Mul(EightY4, EightY4)
EightY4.Lsh(EightY4, 3)
R.Y.Sub(R.Y, EightY4)
R.Y.Mod(R.Y, curve.P)
// Z' = 2*Y*Z
R.Z.Mul(Z1, Y1).Lsh(R.Z, 1)
R.Z.Mod(R.Z, curve.P)
return R
} else {
// point addition
H := new(big.Int).Sub(U2, U1)
H.Mod(H, curve.P)
Rr := new(big.Int).Sub(S2, S1)
Rr.Mod(Rr, curve.P)
// X3 = R² - H³ - 2*U1*H²
R2 := new(big.Int).Mul(Rr, Rr)
H2 := new(big.Int).Mul(H, H)
U1H2 := new(big.Int).Mul(U1, H2)
H3 := new(big.Int).Mul(H2, H)
TwoU1H2 := new(big.Int).Set(U1H2)
TwoU1H2.Lsh(TwoU1H2, 1)
R.X.Sub(R2, H3)
R.X.Sub(R.X, TwoU1H2)
R.X.Mod(R.X, curve.P)
// Y3 = R*(U1*H² - X3) - S1*H³
S1H3 := new(big.Int).Mul(S1, H3)
R.Y.Sub(U1H2, R.X).Mul(R.Y, Rr).Sub(R.Y, S1H3)
R.Y.Mod(R.Y, curve.P)
// Z3 = H*Z1*Z2
R.Z.Mul(Z2, Z1).Mul(R.Z, H)
R.Z.Mod(R.Z, curve.P)
return R
}
}
func (curve *Curve) ScalarMult(k *big.Int, P Point) (Point) {
Q := Point{new(big.Int).Set(P.X), new(big.Int).Set(P.Y), new(big.Int).Set(P.Z)}
R := Point{big.NewInt(0), big.NewInt(1), big.NewInt(0)}
e := new(big.Int).Set(k)
for ; e.Cmp(ZERO) != 0; e.Rsh(e, 1) {
if e.Bit(0) == 1 {
R = curve.AddPoints(R, Q)
}
Q = curve.AddPoints(Q, Q)
}
return R
}
func (curve *Curve) Affinize(P *Point) (*Point) {
if P.IsAtInfinity() { // would otherwise cause div by zero
return P
}
iz := new(big.Int).ModInverse(P.Z, curve.P)
iz2 := new(big.Int).Mul(iz, iz)
P.X.Mul(P.X, iz2).Mod(P.X, curve.P)
iz.Mul(iz, iz2)
P.Y.Mul(P.Y, iz).Mod(P.Y, curve.P)
P.Z.SetInt64(1)
return P
}
func ceildiv(a, b int) int {
return (a + b - 1) / b
}
func generateBINK(binkId uint32) (bink BINK, err error) {
// This uses the sizes used for Windows Server 2003. For XP, set lq = 56, lp = 384, hashbits = 28
// \item Fix $\ell _q$. This must actually be one bigger than the result because of how the scalar derivation works for 20020420 product key validation (bitcpycap32 for lq bits may otherwise yield a number that exceeds lq).
lq := 63
// \item Fix $\ell _p$ such that $\ell _p > \ell _q$.
lp := 512
// hashbits := 31
var q *big.Int
var a, b, c, d *big.Int
for {
// \item Choose a random $\frac{\ell _q+1}{2}$-bit integer $a$ and make it odd.
var abBitLen int
if lq % 2 == 0 {
abBitLen = ceildiv(lq + 1, 2)
} else {
abBitLen = ceildiv(lq - 1, 2)
}
abMax := big.NewInt(1)
abMax.Lsh(abMax, uint(abBitLen + 1)).Sub(abMax, ONE)
for {
a, err = rand.Int(rand.Reader, abMax)
if err != nil {
return bink, err
}
if a.BitLen() == abBitLen {
break
}
vPrintf("bad a len (%d != %d with max %x)\n", a.BitLen(), abBitLen, abMax)
}
a.SetBit(a, 0, 1)
// \item Choose a random $\frac{\ell _q+1}{2}$-bit integer $b$ and make it even.
for {
b, err = rand.Int(rand.Reader, abMax)
if err != nil {
return bink, err
}
if b.BitLen() == abBitLen {
break
}
vPrintf("bad b len (%d != %d with max %x)\n", b.BitLen(), abBitLen, abMax)
}
b.SetBit(b, 0, 0)
// \item Set $q=a^2 + b^2$.
q = new(big.Int).Add(new(big.Int).Mul(a, a), new(big.Int).Mul(b, b))
// \item If the bit length of $q$ is not $\ell _q$, return to step~3.
if q.BitLen() == lq {
// \item If $q$ is not prime, return to step~3.
// M-R test iterations taken from FIPS 186-4 section C.3 table C.1; we're significantly below p and q values for normal DSA though
if q.ProbablyPrime(40) {
break
}
vPrintf("q not prime\n")
}
vPrintf("bad q len (%d != %d)\n", q.BitLen(), lq)
}
vPrintf("q = %d\n", q)
var p *big.Int
var n *big.Int // order of the curve
for {
// \item Choose a random $(\frac{\ell _p - \ell _q}{2}+1$)-bit integer $c$ and make it a multiple of four, e.g. by clearing the bottom two~bits.
cdBitLen := ((lp - lq) + 2 - 1) / 2
cdMax := big.NewInt(1)
cdMax.Lsh(cdMax, uint(cdBitLen))
for {
c, err = rand.Int(rand.Reader, cdMax)
if err != nil {
return bink, err
}
if c.BitLen() == cdBitLen {
break
}
}
c.SetBit(c, 0, 0)
c.SetBit(c, 1, 0)
// \item Choose a random $(\frac{\ell _p - \ell _q}{2}+1)$-bit integer $d$ and make it a multiple of four.
for {
d, err = rand.Int(rand.Reader, cdMax)
if err != nil {
return bink, err
}
if d.BitLen() == cdBitLen {
break
}
}
d.SetBit(d, 0, 0)
d.SetBit(d, 1, 0)
// \item $\alpha=ac+bd+1$
ac := new(big.Int).Mul(a, c)
bd := new(big.Int).Mul(b, d)
alpha := new(big.Int).Add(ac, bd)
alpha.Add(alpha, big.NewInt(1))
// \item $\beta=|ad-bc|$
ad := new(big.Int).Mul(a, d)
bc := new(big.Int).Mul(b, c)
beta := new(big.Int).Sub(ad, bc)
beta = beta.Abs(beta)
// \item $p=\alpha^2+\beta^2$
p = new(big.Int).Add(new(big.Int).Mul(alpha, alpha), new(big.Int).Mul(beta, beta))
// \item If the bit length of $p$ is not $\ell _p$, return to step~8.
if p.BitLen() == lp {
// \item If $p$ is not prime, return to step~8.
if p.ProbablyPrime(40) {
n = new(big.Int).Add(p, big.NewInt(1))
n.Sub(n, new(big.Int).Mul(big.NewInt(2), alpha))
break
}
}
}
// E(GF(p)): y^2 = x^3 + x [curve params a = 1, b = 0]
// #E(GF(p)): n = p + 1 - 2\alpha
vPrintf("Curve E defined by y^2 = x^3 + x over GF(%d)\n", p)
vPrintf("#E = %d\n", n)
// We now have the order of the curve and the prime order q of a base point B.
// First find a generator point G of order n, which is any point for which [n]G == 0.
var curve *Curve = &Curve{p, big.NewInt(1), new(big.Int)}
var G Point
for {
// To find a random point, first try random x-coordinates < p and see if it is a square residues modulo p. If so, then (x_cand, sqrt(y_cand)) is a valid point.
x, err := rand.Int(rand.Reader, p)
if err != nil {
return bink, err
}
yy := new(big.Int).Mul(x, x)
yy.Mul(yy, x)
yy.Add(yy, x)
y := yy.ModSqrt(yy, p)
if y == nil {
continue
}
// Given a valid point (x, y), try scalar multiplication with n. If the result is the point at infinity, we know it's a generator.
G.X = x
G.Y = y
G.Z = big.NewInt(1)
nG := curve.ScalarMult(n, G)
if nG.IsAtInfinity() {
break
}
}
// The point B will be a generator point of the subgroup of the group generated by G. Because the order of a subgroup always evenly divides the order of the entire group, we can compute n/q and multiply G by that, leaving us with a point of order q.
h := new(big.Int).Div(n, q)
B := curve.ScalarMult(h, G)
curve.Affinize(&B)
X := curve.ScalarMult(q, B)
if !X.IsAtInfinity() {
return bink, errors.New("order of B is not q")
}
// Now pick a random scalar k such that 0 < k < q, get K = [k]B and output key pair (k, K).
k, err := rand.Int(rand.Reader, q)
if err != nil {
return bink, err
}
K := curve.ScalarMult(k, B)
curve.Affinize(&K)
bink.BasePointOrder = q
bink.SecretKey = k
bink.ResourceId = binkId
bink.Version = 20020420
bink.CurveParamWords = uint32(p.BitLen() / 32)
if bink.Version == 20020420 {
bink.OffsetToCurveParams = 9
bink.PKHashBits = 31
bink.PKScalarBits = uint32(lq - 1) // Take care when *generating* keys that ceil(log2(y)) <= PKScalarBits because q > PKScalarBits.
bink.AuthValueBits = 10
bink.PIDBits = 20
} else {
bink.OffsetToCurveParams = 7
bink.PKHashBits = 28
bink.PKScalarBits = uint32(lq - 1)
}
bink.Size = 4 * bink.OffsetToCurveParams + 7 * 4 * bink.CurveParamWords
// Checksum is only generated and written on serialization
bink.Curve = *curve
bink.B = B
bink.K = K
return bink, nil
}