diff --git a/src/objectives/elbo/scoregradelbo.jl b/src/objectives/elbo/scoregradelbo.jl index 7c358515..f95d4cd4 100644 --- a/src/objectives/elbo/scoregradelbo.jl +++ b/src/objectives/elbo/scoregradelbo.jl @@ -14,29 +14,15 @@ Evidence lower-bound objective computed with score function gradients. \\end{aligned} ``` -To reduce the variance of the gradient estimator, we use a baseline computed from a running average of the previous ELBO values and subtract it from the objective. - -```math -\\mathbb{E}_{z \\sim q_{\\lambda}}\\left[ - \\nabla_{\\lambda} \\log q_{\\lambda}(z) \\left(\\pi\\left(z\\right) - \\beta\\right) -\\right] -``` - # Arguments - `n_samples::Int`: Number of Monte Carlo samples used to estimate the ELBO. -# Keyword Arguments -- `entropy`: The estimator for the entropy term. (Type `<: AbstractEntropyEstimator`; Default: `FullMonteCarloEntropy()`) -- `baseline_window_size::Int`: The window size to use to compute the baseline. (Default: `10`) - # Requirements - The variational approximation ``q_{\\lambda}`` implements `rand` and `logpdf`. - `logpdf(q, x)` must be differentiable with respect to `q` by the selected AD backend. - The target distribution and the variational approximation have the same support. - -Depending on the options, additional requirements on ``q_{\\lambda}`` may apply. """ -struct ScoreGradELBO{EntropyEst<:AbstractEntropyEstimator} <: AbstractVariationalObjective +struct ScoreGradELBO <: AbstractVariationalObjective n_samples::Int end