diff --git a/dev/api/index.html b/dev/api/index.html index 02231381..4e82a2cd 100644 --- a/dev/api/index.html +++ b/dev/api/index.html @@ -1,5 +1,469 @@ -API · AbstractMCMC

API

AbstractMCMC defines an interface for sampling Markov chains.

Model

AbstractMCMC.LogDensityModelType
LogDensityModel <: AbstractMCMC.AbstractModel

Wrapper around something that implements the LogDensityProblem.jl interface.

Note that this does not implement the LogDensityProblems.jl interface itself, but it simply useful for indicating to the sample and other AbstractMCMC methods that the wrapped object implements the LogDensityProblems.jl interface.

Fields

  • logdensity: The object that implements the LogDensityProblems.jl interface.
source

Sampler

AbstractMCMC.AbstractSamplerType
AbstractSampler

The AbstractSampler type is intended to be inherited from when implementing a custom sampler. Any persistent state information should be saved in a subtype of AbstractSampler.

When defining a new sampler, you should also overload the function transition_type, which tells the sample function what type of parameter it should expect to receive.

source

Sampling a single chain

StatsBase.sampleMethod
sample(
+API · AbstractMCMC
+
+
+
+
+
+

API

AbstractMCMC defines an interface for sampling Markov chains.

Model

AbstractMCMC.LogDensityModelType
LogDensityModel <: AbstractMCMC.AbstractModel

Wrapper around something that implements the LogDensityProblem.jl interface.

Note that this does not implement the LogDensityProblems.jl interface itself, but it simply useful for indicating to the sample and other AbstractMCMC methods that the wrapped object implements the LogDensityProblems.jl interface.

Fields

  • logdensity: The object that implements the LogDensityProblems.jl interface.
source

Sampler

AbstractMCMC.AbstractSamplerType
AbstractSampler

The AbstractSampler type is intended to be inherited from when implementing a custom sampler. Any persistent state information should be saved in a subtype of AbstractSampler.

When defining a new sampler, you should also overload the function transition_type, which tells the sample function what type of parameter it should expect to receive.

source

Sampling a single chain

StatsBase.sampleMethod
sample(
     rng::Random.AbatractRNG=Random.default_rng(),
     model::AbstractModel,
     sampler::AbstractSampler,
@@ -72,3 +536,4 @@
     nchains::Integer;
     kwargs...,
 )

Wrap the logdensity function in a LogDensityModel, and call sample with the resulting model instead of logdensity.

The logdensity function has to support the LogDensityProblems.jl interface.

source

Two algorithms are provided for parallel sampling with multiple threads and multiple processes, and one allows for the user to sample multiple chains in serial (no parallelization):

Common keyword arguments

Common keyword arguments for regular and parallel sampling are:

  • progress (default: AbstractMCMC.PROGRESS[] which is true initially): toggles progress logging
  • chain_type (default: Any): determines the type of the returned chain
  • callback (default: nothing): if callback !== nothing, then callback(rng, model, sampler, sample, state, iteration) is called after every sampling step, where sample is the most recent sample of the Markov chain and state and iteration are the current state and iteration of the sampler
  • discard_initial (default: 0): number of initial samples that are discarded
  • thinning (default: 1): factor by which to thin samples.
  • initial_state (default: nothing): if initial_state !== nothing, the first call to AbstractMCMC.step is passed initial_state as the state argument.
Info

The common keyword arguments progress, chain_type, and callback are not supported by the iterator AbstractMCMC.steps and the transducer AbstractMCMC.Sample.

There is no "official" way for providing initial parameter values yet. However, multiple packages such as EllipticalSliceSampling.jl and AdvancedMH.jl support an initial_params keyword argument for setting the initial values when sampling a single chain. To ensure that sampling multiple chains "just works" when sampling of a single chain is implemented, we decided to support initial_params in the default implementations of the ensemble methods:

  • initial_params (default: nothing): if initial_params isa AbstractArray, then the ith element of initial_params is used as initial parameters of the ith chain. If one wants to use the same initial parameters x for every chain, one can specify e.g. initial_params = FillArrays.Fill(x, N).

Progress logging can be enabled and disabled globally with AbstractMCMC.setprogress!(progress).

AbstractMCMC.setprogress!Function
setprogress!(progress::Bool; silent::Bool=false)

Enable progress logging globally if progress is true, and disable it otherwise. Optionally disable informational message if silent is true.

source

Chains

The chain_type keyword argument allows to set the type of the returned chain. A common choice is to return chains of type Chains from MCMCChains.jl.

AbstractMCMC defines the abstract type AbstractChains for Markov chains.

AbstractMCMC.AbstractChainsType
AbstractChains

AbstractChains is an abstract type for an object that stores parameter samples generated through a MCMC process.

source

For chains of this type, AbstractMCMC defines the following two methods.

AbstractMCMC.chainscatFunction
chainscat(c::AbstractChains...)

Concatenate multiple chains.

By default, the chains are concatenated along the third dimension by calling cat(c...; dims=3).

source
AbstractMCMC.chainsstackFunction
chainsstack(c::AbstractVector)

Stack chains in c.

By default, the vector of chains is returned unmodified. If eltype(c) <: AbstractChains, then reduce(chainscat, c) is called.

source
+ diff --git a/dev/design/index.html b/dev/design/index.html index 1d20dc97..f8f67dd5 100644 --- a/dev/design/index.html +++ b/dev/design/index.html @@ -1,5 +1,469 @@ -Design · AbstractMCMC

Design

This page explains the default implementations and design choices of AbstractMCMC. It is not intended for users but for developers that want to implement the AbstractMCMC interface for Markov chain Monte Carlo sampling. The user-facing API is explained in API.

Overview

AbstractMCMC provides a default implementation of the user-facing interface described in API. You can completely neglect these and define your own implementation of the interface. However, as described below, in most use cases the default implementation allows you to obtain support of parallel sampling, progress logging, callbacks, iterators, and transducers for free by just defining the sampling step of your inference algorithm, drastically reducing the amount of code you have to write. In general, the docstrings of the functions described below might be helpful if you intend to make use of the default implementations.

Basic structure

The simplified structure for regular sampling (the actual implementation contains some additional error checks and support for progress logging and callbacks) is

StatsBase.sample(
+Design · AbstractMCMC
+
+
+
+
+
+

Design

This page explains the default implementations and design choices of AbstractMCMC. It is not intended for users but for developers that want to implement the AbstractMCMC interface for Markov chain Monte Carlo sampling. The user-facing API is explained in API.

Overview

AbstractMCMC provides a default implementation of the user-facing interface described in API. You can completely neglect these and define your own implementation of the interface. However, as described below, in most use cases the default implementation allows you to obtain support of parallel sampling, progress logging, callbacks, iterators, and transducers for free by just defining the sampling step of your inference algorithm, drastically reducing the amount of code you have to write. In general, the docstrings of the functions described below might be helpful if you intend to make use of the default implementations.

Basic structure

The simplified structure for regular sampling (the actual implementation contains some additional error checks and support for progress logging and callbacks) is

StatsBase.sample(
     rng::Random.AbstractRNG,
     model::AbstractMCMC.AbstractModel,
     sampler::AbstractMCMC.AbstractSampler,
@@ -25,3 +489,4 @@
 
     return AbstractMCMC.bundle_samples(samples, model, sampler, state, chain_type; kwargs...)
 end

All other default implementations make use of the same structure and in particular call the same methods.

Sampling step

The only method for which no default implementation is provided (and hence which downstream packages have to implement) is AbstractMCMC.step. It defines the sampling step of the inference method.

AbstractMCMC.stepFunction
step(rng, model, sampler[, state; kwargs...])

Return a 2-tuple of the next sample and the next state of the MCMC sampler for model.

Samples describe the results of a single step of the sampler. As an example, a sample might include a vector of parameters sampled from a prior distribution.

When sampling using sample, every step call after the first has access to the current state of the sampler.

source

Collecting samples

Note

This section does not apply to the iterator and transducer interface.

After the initial sample is obtained, the default implementations for regular and parallel sampling (not for the iterator and the transducer since it is not needed there) create a container for all samples (the initial one and all subsequent samples) using AbstractMCMC.samples.

AbstractMCMC.samplesFunction
samples(sample, model, sampler[, N; kwargs...])

Generate a container for the samples of the MCMC sampler for the model, whose first sample is sample.

The method can be called with and without a predefined number N of samples.

source

In each step, the sample is saved in the container by AbstractMCMC.save!!. The notation !! follows the convention of the package BangBang.jl which is used in the default implementation of AbstractMCMC.save!!. It indicates that the sample is pushed to the container but a "widening" fallback is used if the container type does not allow to save the sample. Therefore AbstractMCMC.save!! always has to return the container.

AbstractMCMC.save!!Function
save!!(samples, sample, iteration, model, sampler[, N; kwargs...])

Save the sample of the MCMC sampler at the current iteration in the container of samples.

The function can be called with and without a predefined number N of samples. By default, AbstractMCMC uses push!! from the Julia package BangBang to append to the container, and widen its type if needed.

source

For most use cases the default implementation of AbstractMCMC.samples and AbstractMCMC.save!! should work out of the box and hence need not to be overloaded in downstream code.

Creating chains

Note

This section does not apply to the iterator and transducer interface.

At the end of the sampling procedure for regular and paralle sampling we transform the collection of samples to the desired output type by calling AbstractMCMC.bundle_samples.

AbstractMCMC.bundle_samplesFunction
bundle_samples(samples, model, sampler, state, chain_type[; kwargs...])

Bundle all samples that were sampled from the model with the given sampler in a chain.

The final state of the sampler can be included in the chain. The type of the chain can be specified with the chain_type argument.

By default, this method returns samples.

source

The default implementation should be fine in most use cases, but downstream packages could, e.g., save the final state of the sampler as well if they overload AbstractMCMC.bundle_samples.

+ diff --git a/dev/index.html b/dev/index.html index 6e6e2b91..c96a1010 100644 --- a/dev/index.html +++ b/dev/index.html @@ -1,2 +1,467 @@ -Home · AbstractMCMC

AbstractMCMC.jl

Abstract types and interfaces for Markov chain Monte Carlo methods.

AbstractMCMC defines an interface for sampling and combining Markov chains. It comes with a default sampling algorithm that provides support of progress bars, parallel sampling (multithreaded and multicore), and user-provided callbacks out of the box. Typically developers only have to define the sampling step of their inference method in an iterator-like fashion to make use of this functionality. Additionally, the package defines an iterator and a transducer for sampling Markov chains based on the interface.

+Home · AbstractMCMC + + + + + +

AbstractMCMC.jl

Abstract types and interfaces for Markov chain Monte Carlo methods.

AbstractMCMC defines an interface for sampling and combining Markov chains. It comes with a default sampling algorithm that provides support of progress bars, parallel sampling (multithreaded and multicore), and user-provided callbacks out of the box. Typically developers only have to define the sampling step of their inference method in an iterator-like fashion to make use of this functionality. Additionally, the package defines an iterator and a transducer for sampling Markov chains based on the interface.

+ diff --git a/index.html b/index.html index 1a6cc116..83aa121b 100644 --- a/index.html +++ b/index.html @@ -1,2 +1,3 @@ + diff --git a/previews/PR117/api/index.html b/previews/PR117/api/index.html index 6d1d858c..3e60542b 100644 --- a/previews/PR117/api/index.html +++ b/previews/PR117/api/index.html @@ -1,5 +1,469 @@ -API · AbstractMCMC

API

AbstractMCMC defines an interface for sampling Markov chains.

Model

AbstractMCMC.LogDensityModelType
LogDensityModel <: AbstractMCMC.AbstractModel

Wrapper around something that implements the LogDensityProblem.jl interface.

Note that this does not implement the LogDensityProblems.jl interface itself, but it simply useful for indicating to the sample and other AbstractMCMC methods that the wrapped object implements the LogDensityProblems.jl interface.

Fields

  • logdensity: The object that implements the LogDensityProblems.jl interface.
source

Sampler

AbstractMCMC.AbstractSamplerType
AbstractSampler

The AbstractSampler type is intended to be inherited from when implementing a custom sampler. Any persistent state information should be saved in a subtype of AbstractSampler.

When defining a new sampler, you should also overload the function transition_type, which tells the sample function what type of parameter it should expect to receive.

source

Sampling a single chain

StatsBase.sampleMethod
sample(
+API · AbstractMCMC
+
+
+
+
+
+

API

AbstractMCMC defines an interface for sampling Markov chains.

Model

AbstractMCMC.LogDensityModelType
LogDensityModel <: AbstractMCMC.AbstractModel

Wrapper around something that implements the LogDensityProblem.jl interface.

Note that this does not implement the LogDensityProblems.jl interface itself, but it simply useful for indicating to the sample and other AbstractMCMC methods that the wrapped object implements the LogDensityProblems.jl interface.

Fields

  • logdensity: The object that implements the LogDensityProblems.jl interface.
source

Sampler

AbstractMCMC.AbstractSamplerType
AbstractSampler

The AbstractSampler type is intended to be inherited from when implementing a custom sampler. Any persistent state information should be saved in a subtype of AbstractSampler.

When defining a new sampler, you should also overload the function transition_type, which tells the sample function what type of parameter it should expect to receive.

source

Sampling a single chain

StatsBase.sampleMethod
sample(
     rng::Random.AbatractRNG=Random.default_rng(),
     model::AbstractModel,
     sampler::AbstractSampler,
@@ -72,3 +536,4 @@
     nchains::Integer;
     kwargs...,
 )

Wrap the logdensity function in a LogDensityModel, and call sample with the resulting model instead of logdensity.

The logdensity function has to support the LogDensityProblems.jl interface.

source

Two algorithms are provided for parallel sampling with multiple threads and multiple processes, and one allows for the user to sample multiple chains in serial (no parallelization):

Common keyword arguments

Common keyword arguments for regular and parallel sampling are:

  • progress (default: AbstractMCMC.PROGRESS[] which is true initially): toggles progress logging
  • chain_type (default: Any): determines the type of the returned chain
  • callback (default: nothing): if callback !== nothing, then callback(rng, model, sampler, sample, iteration) is called after every sampling step, where sample is the most recent sample of the Markov chain and iteration is the current iteration
  • num_warmup (default: 0): number of "warm-up" steps to take before the first "regular" step, i.e. number of times to call AbstractMCMC.step_warmup before the first call to AbstractMCMC.step.
  • discard_initial (default: num_warmup): number of initial samples that are discarded. Note that if discard_initial < num_warmup, warm-up samples will also be included in the resulting samples.
  • thinning (default: 1): factor by which to thin samples.
  • initial_state (default: nothing): if initial_state !== nothing, the first call to AbstractMCMC.step is passed initial_state as the state argument.
Info

The common keyword arguments progress, chain_type, and callback are not supported by the iterator AbstractMCMC.steps and the transducer AbstractMCMC.Sample.

There is no "official" way for providing initial parameter values yet. However, multiple packages such as EllipticalSliceSampling.jl and AdvancedMH.jl support an initial_params keyword argument for setting the initial values when sampling a single chain. To ensure that sampling multiple chains "just works" when sampling of a single chain is implemented, we decided to support initial_params in the default implementations of the ensemble methods:

  • initial_params (default: nothing): if initial_params isa AbstractArray, then the ith element of initial_params is used as initial parameters of the ith chain. If one wants to use the same initial parameters x for every chain, one can specify e.g. initial_params = FillArrays.Fill(x, N).

Progress logging can be enabled and disabled globally with AbstractMCMC.setprogress!(progress).

Chains

The chain_type keyword argument allows to set the type of the returned chain. A common choice is to return chains of type Chains from MCMCChains.jl.

AbstractMCMC defines the abstract type AbstractChains for Markov chains.

AbstractMCMC.AbstractChainsType
AbstractChains

AbstractChains is an abstract type for an object that stores parameter samples generated through a MCMC process.

source

For chains of this type, AbstractMCMC defines the following two methods.

AbstractMCMC.chainscatFunction
chainscat(c::AbstractChains...)

Concatenate multiple chains.

By default, the chains are concatenated along the third dimension by calling cat(c...; dims=3).

source
AbstractMCMC.chainsstackFunction
chainsstack(c::AbstractVector)

Stack chains in c.

By default, the vector of chains is returned unmodified. If eltype(c) <: AbstractChains, then reduce(chainscat, c) is called.

source
+ diff --git a/previews/PR117/design/index.html b/previews/PR117/design/index.html index 6336ba0b..938bddad 100644 --- a/previews/PR117/design/index.html +++ b/previews/PR117/design/index.html @@ -1,5 +1,469 @@ -Design · AbstractMCMC

Design

This page explains the default implementations and design choices of AbstractMCMC. It is not intended for users but for developers that want to implement the AbstractMCMC interface for Markov chain Monte Carlo sampling. The user-facing API is explained in API.

Overview

AbstractMCMC provides a default implementation of the user-facing interface described in API. You can completely neglect these and define your own implementation of the interface. However, as described below, in most use cases the default implementation allows you to obtain support of parallel sampling, progress logging, callbacks, iterators, and transducers for free by just defining the sampling step of your inference algorithm, drastically reducing the amount of code you have to write. In general, the docstrings of the functions described below might be helpful if you intend to make use of the default implementations.

Basic structure

The simplified structure for regular sampling (the actual implementation contains some additional error checks and support for progress logging and callbacks) is

StatsBase.sample(
+Design · AbstractMCMC
+
+
+
+
+
+

Design

This page explains the default implementations and design choices of AbstractMCMC. It is not intended for users but for developers that want to implement the AbstractMCMC interface for Markov chain Monte Carlo sampling. The user-facing API is explained in API.

Overview

AbstractMCMC provides a default implementation of the user-facing interface described in API. You can completely neglect these and define your own implementation of the interface. However, as described below, in most use cases the default implementation allows you to obtain support of parallel sampling, progress logging, callbacks, iterators, and transducers for free by just defining the sampling step of your inference algorithm, drastically reducing the amount of code you have to write. In general, the docstrings of the functions described below might be helpful if you intend to make use of the default implementations.

Basic structure

The simplified structure for regular sampling (the actual implementation contains some additional error checks and support for progress logging and callbacks) is

StatsBase.sample(
     rng::Random.AbstractRNG,
     model::AbstractMCMC.AbstractModel,
     sampler::AbstractMCMC.AbstractSampler,
@@ -25,3 +489,4 @@
 
     return AbstractMCMC.bundle_samples(samples, model, sampler, state, chain_type; kwargs...)
 end

All other default implementations make use of the same structure and in particular call the same methods.

Sampling step

The only method for which no default implementation is provided (and hence which downstream packages have to implement) is AbstractMCMC.step. It defines the sampling step of the inference method.

AbstractMCMC.stepFunction
step(rng, model, sampler[, state; kwargs...])

Return a 2-tuple of the next sample and the next state of the MCMC sampler for model.

Samples describe the results of a single step of the sampler. As an example, a sample might include a vector of parameters sampled from a prior distribution.

When sampling using sample, every step call after the first has access to the current state of the sampler.

source

If one also has some special handling of the warmup-stage of sampling, then this can be specified by overloading

AbstractMCMC.step_warmupFunction
step_warmup(rng, model, sampler[, state; kwargs...])

Return a 2-tuple of the next sample and the next state of the MCMC sampler for model.

When sampling using sample, this takes the place of AbstractMCMC.step in the first num_warmup number of iterations, as specified by the num_warmup keyword to sample. This is useful if the sampler has an initial "warmup"-stage that is different from the standard iteration.

By default, this simply calls AbstractMCMC.step.

source

which will be used for the first num_warmup iterations, as specified as a keyword argument to AbstractMCMC.sample. Note that this is optional; by default it simply calls AbstractMCMC.step from above.

Collecting samples

Note

This section does not apply to the iterator and transducer interface.

After the initial sample is obtained, the default implementations for regular and parallel sampling (not for the iterator and the transducer since it is not needed there) create a container for all samples (the initial one and all subsequent samples) using AbstractMCMC.samples.

AbstractMCMC.samplesFunction
samples(sample, model, sampler[, N; kwargs...])

Generate a container for the samples of the MCMC sampler for the model, whose first sample is sample.

The method can be called with and without a predefined number N of samples.

source

In each step, the sample is saved in the container by AbstractMCMC.save!!. The notation !! follows the convention of the package BangBang.jl which is used in the default implementation of AbstractMCMC.save!!. It indicates that the sample is pushed to the container but a "widening" fallback is used if the container type does not allow to save the sample. Therefore AbstractMCMC.save!! always has to return the container.

AbstractMCMC.save!!Function
save!!(samples, sample, iteration, model, sampler[, N; kwargs...])

Save the sample of the MCMC sampler at the current iteration in the container of samples.

The function can be called with and without a predefined number N of samples. By default, AbstractMCMC uses push!! from the Julia package BangBang to append to the container, and widen its type if needed.

source

For most use cases the default implementation of AbstractMCMC.samples and AbstractMCMC.save!! should work out of the box and hence need not to be overloaded in downstream code.

Creating chains

Note

This section does not apply to the iterator and transducer interface.

At the end of the sampling procedure for regular and paralle sampling we transform the collection of samples to the desired output type by calling AbstractMCMC.bundle_samples.

AbstractMCMC.bundle_samplesFunction
bundle_samples(samples, model, sampler, state, chain_type[; kwargs...])

Bundle all samples that were sampled from the model with the given sampler in a chain.

The final state of the sampler can be included in the chain. The type of the chain can be specified with the chain_type argument.

By default, this method returns samples.

source

The default implementation should be fine in most use cases, but downstream packages could, e.g., save the final state of the sampler as well if they overload AbstractMCMC.bundle_samples.

+ diff --git a/previews/PR117/index.html b/previews/PR117/index.html index 1deb3115..1e6772e8 100644 --- a/previews/PR117/index.html +++ b/previews/PR117/index.html @@ -1,2 +1,467 @@ -Home · AbstractMCMC

AbstractMCMC.jl

Abstract types and interfaces for Markov chain Monte Carlo methods.

AbstractMCMC defines an interface for sampling and combining Markov chains. It comes with a default sampling algorithm that provides support of progress bars, parallel sampling (multithreaded and multicore), and user-provided callbacks out of the box. Typically developers only have to define the sampling step of their inference method in an iterator-like fashion to make use of this functionality. Additionally, the package defines an iterator and a transducer for sampling Markov chains based on the interface.

+Home · AbstractMCMC + + + + + +

AbstractMCMC.jl

Abstract types and interfaces for Markov chain Monte Carlo methods.

AbstractMCMC defines an interface for sampling and combining Markov chains. It comes with a default sampling algorithm that provides support of progress bars, parallel sampling (multithreaded and multicore), and user-provided callbacks out of the box. Typically developers only have to define the sampling step of their inference method in an iterator-like fashion to make use of this functionality. Additionally, the package defines an iterator and a transducer for sampling Markov chains based on the interface.

+ diff --git a/previews/PR120/api/index.html b/previews/PR120/api/index.html index 628fa55c..dda64ed4 100644 --- a/previews/PR120/api/index.html +++ b/previews/PR120/api/index.html @@ -1,5 +1,469 @@ -API · AbstractMCMC

API

AbstractMCMC defines an interface for sampling Markov chains.

Model

AbstractMCMC.LogDensityModelType
LogDensityModel <: AbstractMCMC.AbstractModel

Wrapper around something that implements the LogDensityProblem.jl interface.

Note that this does not implement the LogDensityProblems.jl interface itself, but it simply useful for indicating to the sample and other AbstractMCMC methods that the wrapped object implements the LogDensityProblems.jl interface.

Fields

  • logdensity: The object that implements the LogDensityProblems.jl interface.
source

Sampler

AbstractMCMC.AbstractSamplerType
AbstractSampler

The AbstractSampler type is intended to be inherited from when implementing a custom sampler. Any persistent state information should be saved in a subtype of AbstractSampler.

When defining a new sampler, you should also overload the function transition_type, which tells the sample function what type of parameter it should expect to receive.

source

Sampling a single chain

StatsBase.sampleMethod
sample(
+API · AbstractMCMC
+
+
+
+
+
+

API

AbstractMCMC defines an interface for sampling Markov chains.

Model

AbstractMCMC.LogDensityModelType
LogDensityModel <: AbstractMCMC.AbstractModel

Wrapper around something that implements the LogDensityProblem.jl interface.

Note that this does not implement the LogDensityProblems.jl interface itself, but it simply useful for indicating to the sample and other AbstractMCMC methods that the wrapped object implements the LogDensityProblems.jl interface.

Fields

  • logdensity: The object that implements the LogDensityProblems.jl interface.
source

Sampler

AbstractMCMC.AbstractSamplerType
AbstractSampler

The AbstractSampler type is intended to be inherited from when implementing a custom sampler. Any persistent state information should be saved in a subtype of AbstractSampler.

When defining a new sampler, you should also overload the function transition_type, which tells the sample function what type of parameter it should expect to receive.

source

Sampling a single chain

StatsBase.sampleMethod
sample(
     rng::Random.AbatractRNG=Random.default_rng(),
     model::AbstractModel,
     sampler::AbstractSampler,
@@ -72,3 +536,4 @@
     nchains::Integer;
     kwargs...,
 )

Wrap the logdensity function in a LogDensityModel, and call sample with the resulting model instead of logdensity.

The logdensity function has to support the LogDensityProblems.jl interface.

source

Two algorithms are provided for parallel sampling with multiple threads and multiple processes, and one allows for the user to sample multiple chains in serial (no parallelization):

Common keyword arguments

Common keyword arguments for regular and parallel sampling are:

  • progress (default: AbstractMCMC.PROGRESS[] which is true initially): toggles progress logging
  • chain_type (default: Any): determines the type of the returned chain
  • callback (default: nothing): if callback !== nothing, then callback(rng, model, sampler, sample, iteration) is called after every sampling step, where sample is the most recent sample of the Markov chain and iteration is the current iteration
  • discard_initial (default: 0): number of initial samples that are discarded
  • thinning (default: 1): factor by which to thin samples.
Info

The common keyword arguments progress, chain_type, and callback are not supported by the iterator AbstractMCMC.steps and the transducer AbstractMCMC.Sample.

There is no "official" way for providing initial parameter values yet. However, multiple packages such as EllipticalSliceSampling.jl and AdvancedMH.jl support an init_params keyword argument for setting the initial values when sampling a single chain. To ensure that sampling multiple chains "just works" when sampling of a single chain is implemented, we decided to support init_params in the default implementations of the ensemble methods:

  • init_params (default: nothing): if set to init_params !== nothing, then the ith element of init_params is used as initial parameters of the ith chain. If one wants to use the same initial parameters x for every chain, one can specify e.g. init_params = Iterators.repeated(x) or init_params = FillArrays.Fill(x, N).

Progress logging can be enabled and disabled globally with AbstractMCMC.setprogress!(progress).

Chains

The chain_type keyword argument allows to set the type of the returned chain. A common choice is to return chains of type Chains from MCMCChains.jl.

AbstractMCMC defines the abstract type AbstractChains for Markov chains.

AbstractMCMC.AbstractChainsType
AbstractChains

AbstractChains is an abstract type for an object that stores parameter samples generated through a MCMC process.

source

For chains of this type, AbstractMCMC defines the following two methods.

AbstractMCMC.chainscatFunction
chainscat(c::AbstractChains...)

Concatenate multiple chains.

By default, the chains are concatenated along the third dimension by calling cat(c...; dims=3).

source
AbstractMCMC.chainsstackFunction
chainsstack(c::AbstractVector)

Stack chains in c.

By default, the vector of chains is returned unmodified. If eltype(c) <: AbstractChains, then reduce(chainscat, c) is called.

source
+ diff --git a/previews/PR120/design/index.html b/previews/PR120/design/index.html index 16ba8773..d2c324e5 100644 --- a/previews/PR120/design/index.html +++ b/previews/PR120/design/index.html @@ -1,5 +1,469 @@ -Design · AbstractMCMC

Design

This page explains the default implementations and design choices of AbstractMCMC. It is not intended for users but for developers that want to implement the AbstractMCMC interface for Markov chain Monte Carlo sampling. The user-facing API is explained in API.

Overview

AbstractMCMC provides a default implementation of the user-facing interface described in API. You can completely neglect these and define your own implementation of the interface. However, as described below, in most use cases the default implementation allows you to obtain support of parallel sampling, progress logging, callbacks, iterators, and transducers for free by just defining the sampling step of your inference algorithm, drastically reducing the amount of code you have to write. In general, the docstrings of the functions described below might be helpful if you intend to make use of the default implementations.

Basic structure

The simplified structure for regular sampling (the actual implementation contains some additional error checks and support for progress logging and callbacks) is

StatsBase.sample(
+Design · AbstractMCMC
+
+
+
+
+
+

Design

This page explains the default implementations and design choices of AbstractMCMC. It is not intended for users but for developers that want to implement the AbstractMCMC interface for Markov chain Monte Carlo sampling. The user-facing API is explained in API.

Overview

AbstractMCMC provides a default implementation of the user-facing interface described in API. You can completely neglect these and define your own implementation of the interface. However, as described below, in most use cases the default implementation allows you to obtain support of parallel sampling, progress logging, callbacks, iterators, and transducers for free by just defining the sampling step of your inference algorithm, drastically reducing the amount of code you have to write. In general, the docstrings of the functions described below might be helpful if you intend to make use of the default implementations.

Basic structure

The simplified structure for regular sampling (the actual implementation contains some additional error checks and support for progress logging and callbacks) is

StatsBase.sample(
     rng::Random.AbstractRNG,
     model::AbstractMCMC.AbstractModel,
     sampler::AbstractMCMC.AbstractSampler,
@@ -25,3 +489,4 @@
 
     return AbstractMCMC.bundle_samples(samples, model, sampler, state, chain_type; kwargs...)
 end

All other default implementations make use of the same structure and in particular call the same methods.

Sampling step

The only method for which no default implementation is provided (and hence which downstream packages have to implement) is AbstractMCMC.step. It defines the sampling step of the inference method.

AbstractMCMC.stepFunction
step(rng, model, sampler[, state; kwargs...])

Return a 2-tuple of the next sample and the next state of the MCMC sampler for model.

Samples describe the results of a single step of the sampler. As an example, a sample might include a vector of parameters sampled from a prior distribution.

When sampling using sample, every step call after the first has access to the current state of the sampler.

source

Collecting samples

Note

This section does not apply to the iterator and transducer interface.

After the initial sample is obtained, the default implementations for regular and parallel sampling (not for the iterator and the transducer since it is not needed there) create a container for all samples (the initial one and all subsequent samples) using AbstractMCMC.samples.

AbstractMCMC.samplesFunction
samples(sample, model, sampler[, N; kwargs...])

Generate a container for the samples of the MCMC sampler for the model, whose first sample is sample.

The method can be called with and without a predefined number N of samples.

source

In each step, the sample is saved in the container by AbstractMCMC.save!!. The notation !! follows the convention of the package BangBang.jl which is used in the default implementation of AbstractMCMC.save!!. It indicates that the sample is pushed to the container but a "widening" fallback is used if the container type does not allow to save the sample. Therefore AbstractMCMC.save!! always has to return the container.

AbstractMCMC.save!!Function
save!!(samples, sample, iteration, model, sampler[, N; kwargs...])

Save the sample of the MCMC sampler at the current iteration in the container of samples.

The function can be called with and without a predefined number N of samples. By default, AbstractMCMC uses push!! from the Julia package BangBang to append to the container, and widen its type if needed.

source

For most use cases the default implementation of AbstractMCMC.samples and AbstractMCMC.save!! should work out of the box and hence need not to be overloaded in downstream code.

Creating chains

Note

This section does not apply to the iterator and transducer interface.

At the end of the sampling procedure for regular and paralle sampling we transform the collection of samples to the desired output type by calling AbstractMCMC.bundle_samples.

AbstractMCMC.bundle_samplesFunction
bundle_samples(samples, model, sampler, state, chain_type[; kwargs...])

Bundle all samples that were sampled from the model with the given sampler in a chain.

The final state of the sampler can be included in the chain. The type of the chain can be specified with the chain_type argument.

By default, this method returns samples.

source

The default implementation should be fine in most use cases, but downstream packages could, e.g., save the final state of the sampler as well if they overload AbstractMCMC.bundle_samples.

+ diff --git a/previews/PR120/index.html b/previews/PR120/index.html index 259f3bb6..ca1078c1 100644 --- a/previews/PR120/index.html +++ b/previews/PR120/index.html @@ -1,2 +1,467 @@ -Home · AbstractMCMC

AbstractMCMC.jl

Abstract types and interfaces for Markov chain Monte Carlo methods.

AbstractMCMC defines an interface for sampling and combining Markov chains. It comes with a default sampling algorithm that provides support of progress bars, parallel sampling (multithreaded and multicore), and user-provided callbacks out of the box. Typically developers only have to define the sampling step of their inference method in an iterator-like fashion to make use of this functionality. Additionally, the package defines an iterator and a transducer for sampling Markov chains based on the interface.

+Home · AbstractMCMC + + + + + +

AbstractMCMC.jl

Abstract types and interfaces for Markov chain Monte Carlo methods.

AbstractMCMC defines an interface for sampling and combining Markov chains. It comes with a default sampling algorithm that provides support of progress bars, parallel sampling (multithreaded and multicore), and user-provided callbacks out of the box. Typically developers only have to define the sampling step of their inference method in an iterator-like fashion to make use of this functionality. Additionally, the package defines an iterator and a transducer for sampling Markov chains based on the interface.

+ diff --git a/previews/PR120/search/index.html b/previews/PR120/search/index.html index 719cfded..52919329 100644 --- a/previews/PR120/search/index.html +++ b/previews/PR120/search/index.html @@ -1,2 +1,467 @@ -Search · AbstractMCMC

Loading search...

    +Search · AbstractMCMC + + + + + +

    Loading search...

      + diff --git a/previews/PR124/api/index.html b/previews/PR124/api/index.html index ce3b5fb3..e634a483 100644 --- a/previews/PR124/api/index.html +++ b/previews/PR124/api/index.html @@ -1,5 +1,469 @@ -API · AbstractMCMC

      API

      AbstractMCMC defines an interface for sampling Markov chains.

      Model

      AbstractMCMC.LogDensityModelType
      LogDensityModel <: AbstractMCMC.AbstractModel

      Wrapper around something that implements the LogDensityProblem.jl interface.

      Note that this does not implement the LogDensityProblems.jl interface itself, but it simply useful for indicating to the sample and other AbstractMCMC methods that the wrapped object implements the LogDensityProblems.jl interface.

      Fields

      • logdensity: The object that implements the LogDensityProblems.jl interface.
      source

      Sampler

      AbstractMCMC.AbstractSamplerType
      AbstractSampler

      The AbstractSampler type is intended to be inherited from when implementing a custom sampler. Any persistent state information should be saved in a subtype of AbstractSampler.

      When defining a new sampler, you should also overload the function transition_type, which tells the sample function what type of parameter it should expect to receive.

      source

      Sampling a single chain

      StatsBase.sampleMethod
      sample(
      +API · AbstractMCMC
      +
      +
      +
      +
      +
      +

      API

      AbstractMCMC defines an interface for sampling Markov chains.

      Model

      AbstractMCMC.LogDensityModelType
      LogDensityModel <: AbstractMCMC.AbstractModel

      Wrapper around something that implements the LogDensityProblem.jl interface.

      Note that this does not implement the LogDensityProblems.jl interface itself, but it simply useful for indicating to the sample and other AbstractMCMC methods that the wrapped object implements the LogDensityProblems.jl interface.

      Fields

      • logdensity: The object that implements the LogDensityProblems.jl interface.
      source

      Sampler

      AbstractMCMC.AbstractSamplerType
      AbstractSampler

      The AbstractSampler type is intended to be inherited from when implementing a custom sampler. Any persistent state information should be saved in a subtype of AbstractSampler.

      When defining a new sampler, you should also overload the function transition_type, which tells the sample function what type of parameter it should expect to receive.

      source

      Sampling a single chain

      StatsBase.sampleMethod
      sample(
           rng::Random.AbatractRNG=Random.default_rng(),
           model::AbstractModel,
           sampler::AbstractSampler,
      @@ -72,3 +536,4 @@
           nchains::Integer;
           kwargs...,
       )

      Wrap the logdensity function in a LogDensityModel, and call sample with the resulting model instead of logdensity.

      The logdensity function has to support the LogDensityProblems.jl interface.

      source

      Two algorithms are provided for parallel sampling with multiple threads and multiple processes, and one allows for the user to sample multiple chains in serial (no parallelization):

      Common keyword arguments

      Common keyword arguments for regular and parallel sampling are:

      • progress (default: AbstractMCMC.PROGRESS[] which is true initially): toggles progress logging
      • chain_type (default: Any): determines the type of the returned chain
      • callback (default: nothing): if callback !== nothing, then callback(rng, model, sampler, sample, iteration) is called after every sampling step, where sample is the most recent sample of the Markov chain and iteration is the current iteration
      • discard_initial (default: 0): number of initial samples that are discarded
      • thinning (default: 1): factor by which to thin samples.
      Info

      The common keyword arguments progress, chain_type, and callback are not supported by the iterator AbstractMCMC.steps and the transducer AbstractMCMC.Sample.

      There is no "official" way for providing initial parameter values yet. However, multiple packages such as EllipticalSliceSampling.jl and AdvancedMH.jl support an init_params keyword argument for setting the initial values when sampling a single chain. To ensure that sampling multiple chains "just works" when sampling of a single chain is implemented, we decided to support init_params in the default implementations of the ensemble methods:

      • init_params (default: nothing): if set to init_params !== nothing, then the ith element of init_params is used as initial parameters of the ith chain. If one wants to use the same initial parameters x for every chain, one can specify e.g. init_params = Iterators.repeated(x) or init_params = FillArrays.Fill(x, N).

      Progress logging can be enabled and disabled globally with AbstractMCMC.setprogress!(progress).

      Chains

      The chain_type keyword argument allows to set the type of the returned chain. A common choice is to return chains of type Chains from MCMCChains.jl.

      AbstractMCMC defines the abstract type AbstractChains for Markov chains.

      AbstractMCMC.AbstractChainsType
      AbstractChains

      AbstractChains is an abstract type for an object that stores parameter samples generated through a MCMC process.

      source

      For chains of this type, AbstractMCMC defines the following two methods.

      AbstractMCMC.chainscatFunction
      chainscat(c::AbstractChains...)

      Concatenate multiple chains.

      By default, the chains are concatenated along the third dimension by calling cat(c...; dims=3).

      source
      AbstractMCMC.chainsstackFunction
      chainsstack(c::AbstractVector)

      Stack chains in c.

      By default, the vector of chains is returned unmodified. If eltype(c) <: AbstractChains, then reduce(chainscat, c) is called.

      source
      + diff --git a/previews/PR124/design/index.html b/previews/PR124/design/index.html index 91662321..cc412447 100644 --- a/previews/PR124/design/index.html +++ b/previews/PR124/design/index.html @@ -1,5 +1,469 @@ -Design · AbstractMCMC

      Design

      This page explains the default implementations and design choices of AbstractMCMC. It is not intended for users but for developers that want to implement the AbstractMCMC interface for Markov chain Monte Carlo sampling. The user-facing API is explained in API.

      Overview

      AbstractMCMC provides a default implementation of the user-facing interface described in API. You can completely neglect these and define your own implementation of the interface. However, as described below, in most use cases the default implementation allows you to obtain support of parallel sampling, progress logging, callbacks, iterators, and transducers for free by just defining the sampling step of your inference algorithm, drastically reducing the amount of code you have to write. In general, the docstrings of the functions described below might be helpful if you intend to make use of the default implementations.

      Basic structure

      The simplified structure for regular sampling (the actual implementation contains some additional error checks and support for progress logging and callbacks) is

      StatsBase.sample(
      +Design · AbstractMCMC
      +
      +
      +
      +
      +
      +

      Design

      This page explains the default implementations and design choices of AbstractMCMC. It is not intended for users but for developers that want to implement the AbstractMCMC interface for Markov chain Monte Carlo sampling. The user-facing API is explained in API.

      Overview

      AbstractMCMC provides a default implementation of the user-facing interface described in API. You can completely neglect these and define your own implementation of the interface. However, as described below, in most use cases the default implementation allows you to obtain support of parallel sampling, progress logging, callbacks, iterators, and transducers for free by just defining the sampling step of your inference algorithm, drastically reducing the amount of code you have to write. In general, the docstrings of the functions described below might be helpful if you intend to make use of the default implementations.

      Basic structure

      The simplified structure for regular sampling (the actual implementation contains some additional error checks and support for progress logging and callbacks) is

      StatsBase.sample(
           rng::Random.AbstractRNG,
           model::AbstractMCMC.AbstractModel,
           sampler::AbstractMCMC.AbstractSampler,
      @@ -25,3 +489,4 @@
       
           return AbstractMCMC.bundle_samples(samples, model, sampler, state, chain_type; kwargs...)
       end

      All other default implementations make use of the same structure and in particular call the same methods.

      Sampling step

      The only method for which no default implementation is provided (and hence which downstream packages have to implement) is AbstractMCMC.step. It defines the sampling step of the inference method.

      AbstractMCMC.stepFunction
      step(rng, model, sampler[, state; kwargs...])

      Return a 2-tuple of the next sample and the next state of the MCMC sampler for model.

      Samples describe the results of a single step of the sampler. As an example, a sample might include a vector of parameters sampled from a prior distribution.

      When sampling using sample, every step call after the first has access to the current state of the sampler.

      source

      Collecting samples

      Note

      This section does not apply to the iterator and transducer interface.

      After the initial sample is obtained, the default implementations for regular and parallel sampling (not for the iterator and the transducer since it is not needed there) create a container for all samples (the initial one and all subsequent samples) using AbstractMCMC.samples.

      AbstractMCMC.samplesFunction
      samples(sample, model, sampler[, N; kwargs...])

      Generate a container for the samples of the MCMC sampler for the model, whose first sample is sample.

      The method can be called with and without a predefined number N of samples.

      source

      In each step, the sample is saved in the container by AbstractMCMC.save!!. The notation !! follows the convention of the package BangBang.jl which is used in the default implementation of AbstractMCMC.save!!. It indicates that the sample is pushed to the container but a "widening" fallback is used if the container type does not allow to save the sample. Therefore AbstractMCMC.save!! always has to return the container.

      AbstractMCMC.save!!Function
      save!!(samples, sample, iteration, model, sampler[, N; kwargs...])

      Save the sample of the MCMC sampler at the current iteration in the container of samples.

      The function can be called with and without a predefined number N of samples. By default, AbstractMCMC uses push!! from the Julia package BangBang to append to the container, and widen its type if needed.

      source

      For most use cases the default implementation of AbstractMCMC.samples and AbstractMCMC.save!! should work out of the box and hence need not to be overloaded in downstream code.

      Creating chains

      Note

      This section does not apply to the iterator and transducer interface.

      At the end of the sampling procedure for regular and paralle sampling we transform the collection of samples to the desired output type by calling AbstractMCMC.bundle_samples.

      AbstractMCMC.bundle_samplesFunction
      bundle_samples(samples, model, sampler, state, chain_type[; kwargs...])

      Bundle all samples that were sampled from the model with the given sampler in a chain.

      The final state of the sampler can be included in the chain. The type of the chain can be specified with the chain_type argument.

      By default, this method returns samples.

      source

      The default implementation should be fine in most use cases, but downstream packages could, e.g., save the final state of the sampler as well if they overload AbstractMCMC.bundle_samples.

      + diff --git a/previews/PR124/index.html b/previews/PR124/index.html index 2c955a6e..9e3a4244 100644 --- a/previews/PR124/index.html +++ b/previews/PR124/index.html @@ -1,2 +1,467 @@ -Home · AbstractMCMC

      AbstractMCMC.jl

      Abstract types and interfaces for Markov chain Monte Carlo methods.

      AbstractMCMC defines an interface for sampling and combining Markov chains. It comes with a default sampling algorithm that provides support of progress bars, parallel sampling (multithreaded and multicore), and user-provided callbacks out of the box. Typically developers only have to define the sampling step of their inference method in an iterator-like fashion to make use of this functionality. Additionally, the package defines an iterator and a transducer for sampling Markov chains based on the interface.

      +Home · AbstractMCMC + + + + + +

      AbstractMCMC.jl

      Abstract types and interfaces for Markov chain Monte Carlo methods.

      AbstractMCMC defines an interface for sampling and combining Markov chains. It comes with a default sampling algorithm that provides support of progress bars, parallel sampling (multithreaded and multicore), and user-provided callbacks out of the box. Typically developers only have to define the sampling step of their inference method in an iterator-like fashion to make use of this functionality. Additionally, the package defines an iterator and a transducer for sampling Markov chains based on the interface.

      + diff --git a/previews/PR124/search/index.html b/previews/PR124/search/index.html index 6dc9d650..d4b8e358 100644 --- a/previews/PR124/search/index.html +++ b/previews/PR124/search/index.html @@ -1,2 +1,467 @@ -Search · AbstractMCMC

      Loading search...

        +Search · AbstractMCMC + + + + + +

        Loading search...

          + diff --git a/previews/PR137/api/index.html b/previews/PR137/api/index.html index 4cf6822d..3914e958 100644 --- a/previews/PR137/api/index.html +++ b/previews/PR137/api/index.html @@ -1,5 +1,469 @@ -API · AbstractMCMC

          API

          AbstractMCMC defines an interface for sampling Markov chains.

          Model

          AbstractMCMC.LogDensityModelType
          LogDensityModel <: AbstractMCMC.AbstractModel

          Wrapper around something that implements the LogDensityProblem.jl interface.

          Note that this does not implement the LogDensityProblems.jl interface itself, but it simply useful for indicating to the sample and other AbstractMCMC methods that the wrapped object implements the LogDensityProblems.jl interface.

          Fields

          • logdensity: The object that implements the LogDensityProblems.jl interface.
          source

          Sampler

          AbstractMCMC.AbstractSamplerType
          AbstractSampler

          The AbstractSampler type is intended to be inherited from when implementing a custom sampler. Any persistent state information should be saved in a subtype of AbstractSampler.

          When defining a new sampler, you should also overload the function transition_type, which tells the sample function what type of parameter it should expect to receive.

          source

          Sampling a single chain

          StatsBase.sampleMethod
          sample(
          +API · AbstractMCMC
          +
          +
          +
          +
          +
          +

          API

          AbstractMCMC defines an interface for sampling Markov chains.

          Model

          AbstractMCMC.LogDensityModelType
          LogDensityModel <: AbstractMCMC.AbstractModel

          Wrapper around something that implements the LogDensityProblem.jl interface.

          Note that this does not implement the LogDensityProblems.jl interface itself, but it simply useful for indicating to the sample and other AbstractMCMC methods that the wrapped object implements the LogDensityProblems.jl interface.

          Fields

          • logdensity: The object that implements the LogDensityProblems.jl interface.
          source

          Sampler

          AbstractMCMC.AbstractSamplerType
          AbstractSampler

          The AbstractSampler type is intended to be inherited from when implementing a custom sampler. Any persistent state information should be saved in a subtype of AbstractSampler.

          When defining a new sampler, you should also overload the function transition_type, which tells the sample function what type of parameter it should expect to receive.

          source

          Sampling a single chain

          StatsBase.sampleMethod
          sample(
               rng::Random.AbatractRNG=Random.default_rng(),
               model::AbstractModel,
               sampler::AbstractSampler,
          @@ -72,3 +536,4 @@
               nchains::Integer;
               kwargs...,
           )

          Wrap the logdensity function in a LogDensityModel, and call sample with the resulting model instead of logdensity.

          The logdensity function has to support the LogDensityProblems.jl interface.

          source

          Two algorithms are provided for parallel sampling with multiple threads and multiple processes, and one allows for the user to sample multiple chains in serial (no parallelization):

          Common keyword arguments

          Common keyword arguments for regular and parallel sampling are:

          • progress (default: AbstractMCMC.PROGRESS[] which is true initially): toggles progress logging
          • chain_type (default: Any): determines the type of the returned chain
          • callback (default: nothing): if callback !== nothing, then callback(rng, model, sampler, sample, state, iteration) is called after every sampling step, where sample is the most recent sample of the Markov chain and state and iteration are the current state and iteration of the sampler
          • discard_initial (default: 0): number of initial samples that are discarded
          • thinning (default: 1): factor by which to thin samples.
          • initial_state (default: nothing): if initial_state !== nothing, the first call to AbstractMCMC.step is passed initial_state as the state argument.
          Info

          The common keyword arguments progress, chain_type, and callback are not supported by the iterator AbstractMCMC.steps and the transducer AbstractMCMC.Sample.

          There is no "official" way for providing initial parameter values yet. However, multiple packages such as EllipticalSliceSampling.jl and AdvancedMH.jl support an initial_params keyword argument for setting the initial values when sampling a single chain. To ensure that sampling multiple chains "just works" when sampling of a single chain is implemented, we decided to support initial_params in the default implementations of the ensemble methods:

          • initial_params (default: nothing): if initial_params isa AbstractArray, then the ith element of initial_params is used as initial parameters of the ith chain. If one wants to use the same initial parameters x for every chain, one can specify e.g. initial_params = FillArrays.Fill(x, N).

          Progress logging can be enabled and disabled globally with AbstractMCMC.setprogress!(progress).

          Chains

          The chain_type keyword argument allows to set the type of the returned chain. A common choice is to return chains of type Chains from MCMCChains.jl.

          AbstractMCMC defines the abstract type AbstractChains for Markov chains.

          AbstractMCMC.AbstractChainsType
          AbstractChains

          AbstractChains is an abstract type for an object that stores parameter samples generated through a MCMC process.

          source

          For chains of this type, AbstractMCMC defines the following two methods.

          AbstractMCMC.chainscatFunction
          chainscat(c::AbstractChains...)

          Concatenate multiple chains.

          By default, the chains are concatenated along the third dimension by calling cat(c...; dims=3).

          source
          AbstractMCMC.chainsstackFunction
          chainsstack(c::AbstractVector)

          Stack chains in c.

          By default, the vector of chains is returned unmodified. If eltype(c) <: AbstractChains, then reduce(chainscat, c) is called.

          source
          + diff --git a/previews/PR137/design/index.html b/previews/PR137/design/index.html index dbcadafc..d9557f02 100644 --- a/previews/PR137/design/index.html +++ b/previews/PR137/design/index.html @@ -1,5 +1,469 @@ -Design · AbstractMCMC

          Design

          This page explains the default implementations and design choices of AbstractMCMC. It is not intended for users but for developers that want to implement the AbstractMCMC interface for Markov chain Monte Carlo sampling. The user-facing API is explained in API.

          Overview

          AbstractMCMC provides a default implementation of the user-facing interface described in API. You can completely neglect these and define your own implementation of the interface. However, as described below, in most use cases the default implementation allows you to obtain support of parallel sampling, progress logging, callbacks, iterators, and transducers for free by just defining the sampling step of your inference algorithm, drastically reducing the amount of code you have to write. In general, the docstrings of the functions described below might be helpful if you intend to make use of the default implementations.

          Basic structure

          The simplified structure for regular sampling (the actual implementation contains some additional error checks and support for progress logging and callbacks) is

          StatsBase.sample(
          +Design · AbstractMCMC
          +
          +
          +
          +
          +
          +

          Design

          This page explains the default implementations and design choices of AbstractMCMC. It is not intended for users but for developers that want to implement the AbstractMCMC interface for Markov chain Monte Carlo sampling. The user-facing API is explained in API.

          Overview

          AbstractMCMC provides a default implementation of the user-facing interface described in API. You can completely neglect these and define your own implementation of the interface. However, as described below, in most use cases the default implementation allows you to obtain support of parallel sampling, progress logging, callbacks, iterators, and transducers for free by just defining the sampling step of your inference algorithm, drastically reducing the amount of code you have to write. In general, the docstrings of the functions described below might be helpful if you intend to make use of the default implementations.

          Basic structure

          The simplified structure for regular sampling (the actual implementation contains some additional error checks and support for progress logging and callbacks) is

          StatsBase.sample(
               rng::Random.AbstractRNG,
               model::AbstractMCMC.AbstractModel,
               sampler::AbstractMCMC.AbstractSampler,
          @@ -25,3 +489,4 @@
           
               return AbstractMCMC.bundle_samples(samples, model, sampler, state, chain_type; kwargs...)
           end

          All other default implementations make use of the same structure and in particular call the same methods.

          Sampling step

          The only method for which no default implementation is provided (and hence which downstream packages have to implement) is AbstractMCMC.step. It defines the sampling step of the inference method.

          AbstractMCMC.stepFunction
          step(rng, model, sampler[, state; kwargs...])

          Return a 2-tuple of the next sample and the next state of the MCMC sampler for model.

          Samples describe the results of a single step of the sampler. As an example, a sample might include a vector of parameters sampled from a prior distribution.

          When sampling using sample, every step call after the first has access to the current state of the sampler.

          source

          Collecting samples

          Note

          This section does not apply to the iterator and transducer interface.

          After the initial sample is obtained, the default implementations for regular and parallel sampling (not for the iterator and the transducer since it is not needed there) create a container for all samples (the initial one and all subsequent samples) using AbstractMCMC.samples.

          AbstractMCMC.samplesFunction
          samples(sample, model, sampler[, N; kwargs...])

          Generate a container for the samples of the MCMC sampler for the model, whose first sample is sample.

          The method can be called with and without a predefined number N of samples.

          source

          In each step, the sample is saved in the container by AbstractMCMC.save!!. The notation !! follows the convention of the package BangBang.jl which is used in the default implementation of AbstractMCMC.save!!. It indicates that the sample is pushed to the container but a "widening" fallback is used if the container type does not allow to save the sample. Therefore AbstractMCMC.save!! always has to return the container.

          AbstractMCMC.save!!Function
          save!!(samples, sample, iteration, model, sampler[, N; kwargs...])

          Save the sample of the MCMC sampler at the current iteration in the container of samples.

          The function can be called with and without a predefined number N of samples. By default, AbstractMCMC uses push!! from the Julia package BangBang to append to the container, and widen its type if needed.

          source

          For most use cases the default implementation of AbstractMCMC.samples and AbstractMCMC.save!! should work out of the box and hence need not to be overloaded in downstream code.

          Creating chains

          Note

          This section does not apply to the iterator and transducer interface.

          At the end of the sampling procedure for regular and paralle sampling we transform the collection of samples to the desired output type by calling AbstractMCMC.bundle_samples.

          AbstractMCMC.bundle_samplesFunction
          bundle_samples(samples, model, sampler, state, chain_type[; kwargs...])

          Bundle all samples that were sampled from the model with the given sampler in a chain.

          The final state of the sampler can be included in the chain. The type of the chain can be specified with the chain_type argument.

          By default, this method returns samples.

          source

          The default implementation should be fine in most use cases, but downstream packages could, e.g., save the final state of the sampler as well if they overload AbstractMCMC.bundle_samples.

          + diff --git a/previews/PR137/index.html b/previews/PR137/index.html index 1acfcc48..90a02547 100644 --- a/previews/PR137/index.html +++ b/previews/PR137/index.html @@ -1,2 +1,467 @@ -Home · AbstractMCMC

          AbstractMCMC.jl

          Abstract types and interfaces for Markov chain Monte Carlo methods.

          AbstractMCMC defines an interface for sampling and combining Markov chains. It comes with a default sampling algorithm that provides support of progress bars, parallel sampling (multithreaded and multicore), and user-provided callbacks out of the box. Typically developers only have to define the sampling step of their inference method in an iterator-like fashion to make use of this functionality. Additionally, the package defines an iterator and a transducer for sampling Markov chains based on the interface.

          +Home · AbstractMCMC + + + + + +

          AbstractMCMC.jl

          Abstract types and interfaces for Markov chain Monte Carlo methods.

          AbstractMCMC defines an interface for sampling and combining Markov chains. It comes with a default sampling algorithm that provides support of progress bars, parallel sampling (multithreaded and multicore), and user-provided callbacks out of the box. Typically developers only have to define the sampling step of their inference method in an iterator-like fashion to make use of this functionality. Additionally, the package defines an iterator and a transducer for sampling Markov chains based on the interface.

          + diff --git a/previews/PR86/api/index.html b/previews/PR86/api/index.html index f3afb89d..4a942655 100644 --- a/previews/PR86/api/index.html +++ b/previews/PR86/api/index.html @@ -1,5 +1,469 @@ -API · AbstractMCMC

          API

          AbstractMCMC defines an interface for sampling Markov chains.

          Sampling a single chain

          StatsBase.sampleMethod
          sample([rng, ]model, sampler, N; kwargs...)

          Return N samples from the model with the Markov chain Monte Carlo sampler.

          source
          StatsBase.sampleMethod
          sample([rng, ]model, sampler, isdone; kwargs...)

          Sample from the model with the Markov chain Monte Carlo sampler until a convergence criterion isdone returns true, and return the samples.

          The function isdone has the signature

          isdone(rng, model, sampler, samples, iteration; kwargs...)

          and should return true when sampling should end, and false otherwise.

          source

          Iterator

          AbstractMCMC.stepsMethod
          steps([rng, ]model, sampler; kwargs...)

          Create an iterator that returns samples from the model with the Markov chain Monte Carlo sampler.

          Examples

          julia> struct MyModel <: AbstractMCMC.AbstractModel end
          +API · AbstractMCMC
          +
          +
          +
          +
          +
          +

          API

          AbstractMCMC defines an interface for sampling Markov chains.

          Sampling a single chain

          StatsBase.sampleMethod
          sample([rng, ]model, sampler, N; kwargs...)

          Return N samples from the model with the Markov chain Monte Carlo sampler.

          source
          StatsBase.sampleMethod
          sample([rng, ]model, sampler, isdone; kwargs...)

          Sample from the model with the Markov chain Monte Carlo sampler until a convergence criterion isdone returns true, and return the samples.

          The function isdone has the signature

          isdone(rng, model, sampler, samples, iteration; kwargs...)

          and should return true when sampling should end, and false otherwise.

          source

          Iterator

          AbstractMCMC.stepsMethod
          steps([rng, ]model, sampler; kwargs...)

          Create an iterator that returns samples from the model with the Markov chain Monte Carlo sampler.

          Examples

          julia> struct MyModel <: AbstractMCMC.AbstractModel end
           
           julia> struct MySampler <: AbstractMCMC.AbstractSampler end
           
          @@ -112,3 +576,4 @@
               rng, model[i], sampler_current, state_current;
               kwargs...
           )

          This issue should eventually disappear as the community moves towards a unified approach to implement AbstractMCMC.AbstractModel.

          + diff --git a/previews/PR86/design/index.html b/previews/PR86/design/index.html index c31f7d2b..c225922c 100644 --- a/previews/PR86/design/index.html +++ b/previews/PR86/design/index.html @@ -1,5 +1,469 @@ -Design · AbstractMCMC

          Design

          This page explains the default implementations and design choices of AbstractMCMC. It is not intended for users but for developers that want to implement the AbstractMCMC interface for Markov chain Monte Carlo sampling. The user-facing API is explained in API.

          Overview

          AbstractMCMC provides a default implementation of the user-facing interface described in API. You can completely neglect these and define your own implementation of the interface. However, as described below, in most use cases the default implementation allows you to obtain support of parallel sampling, progress logging, callbacks, iterators, and transducers for free by just defining the sampling step of your inference algorithm, drastically reducing the amount of code you have to write. In general, the docstrings of the functions described below might be helpful if you intend to make use of the default implementations.

          Basic structure

          The simplified structure for regular sampling (the actual implementation contains some additional error checks and support for progress logging and callbacks) is

          StatsBase.sample(
          +Design · AbstractMCMC
          +
          +
          +
          +
          +
          +

          Design

          This page explains the default implementations and design choices of AbstractMCMC. It is not intended for users but for developers that want to implement the AbstractMCMC interface for Markov chain Monte Carlo sampling. The user-facing API is explained in API.

          Overview

          AbstractMCMC provides a default implementation of the user-facing interface described in API. You can completely neglect these and define your own implementation of the interface. However, as described below, in most use cases the default implementation allows you to obtain support of parallel sampling, progress logging, callbacks, iterators, and transducers for free by just defining the sampling step of your inference algorithm, drastically reducing the amount of code you have to write. In general, the docstrings of the functions described below might be helpful if you intend to make use of the default implementations.

          Basic structure

          The simplified structure for regular sampling (the actual implementation contains some additional error checks and support for progress logging and callbacks) is

          StatsBase.sample(
               rng::Random.AbstractRNG,
               model::AbstractMCMC.AbstractModel,
               sampler::AbstractMCMC.AbstractSampler,
          @@ -25,3 +489,4 @@
           
               return AbstractMCMC.bundle_samples(samples, model, sampler, state, chain_type; kwargs...)
           end

          All other default implementations make use of the same structure and in particular call the same methods.

          Sampling step

          The only method for which no default implementation is provided (and hence which downstream packages have to implement) is AbstractMCMC.step. It defines the sampling step of the inference method.

          AbstractMCMC.stepFunction
          step(rng, model, sampler[, state; kwargs...])

          Return a 2-tuple of the next sample and the next state of the MCMC sampler for model.

          Samples describe the results of a single step of the sampler. As an example, a sample might include a vector of parameters sampled from a prior distribution.

          When sampling using sample, every step call after the first has access to the current state of the sampler.

          source

          Collecting samples

          Note

          This section does not apply to the iterator and transducer interface.

          After the initial sample is obtained, the default implementations for regular and parallel sampling (not for the iterator and the transducer since it is not needed there) create a container for all samples (the initial one and all subsequent samples) using AbstractMCMC.samples.

          AbstractMCMC.samplesFunction
          samples(sample, model, sampler[, N; kwargs...])

          Generate a container for the samples of the MCMC sampler for the model, whose first sample is sample.

          The method can be called with and without a predefined number N of samples.

          source

          In each step, the sample is saved in the container by AbstractMCMC.save!!. The notation !! follows the convention of the package BangBang.jl which is used in the default implementation of AbstractMCMC.save!!. It indicates that the sample is pushed to the container but a "widening" fallback is used if the container type does not allow to save the sample. Therefore AbstractMCMC.save!! always has to return the container.

          AbstractMCMC.save!!Function
          save!!(samples, sample, iteration, model, sampler[, N; kwargs...])

          Save the sample of the MCMC sampler at the current iteration in the container of samples.

          The function can be called with and without a predefined number N of samples. By default, AbstractMCMC uses push!! from the Julia package BangBang to append to the container, and widen its type if needed.

          source

          For most use cases the default implementation of AbstractMCMC.samples and AbstractMCMC.save!! should work out of the box and hence need not to be overloaded in downstream code.

          Creating chains

          Note

          This section does not apply to the iterator and transducer interface.

          At the end of the sampling procedure for regular and paralle sampling we transform the collection of samples to the desired output type by calling AbstractMCMC.bundle_samples.

          AbstractMCMC.bundle_samplesFunction
          bundle_samples(samples, model, sampler, state, chain_type[; kwargs...])

          Bundle all samples that were sampled from the model with the given sampler in a chain.

          The final state of the sampler can be included in the chain. The type of the chain can be specified with the chain_type argument.

          By default, this method returns samples.

          source

          The default implementation should be fine in most use cases, but downstream packages could, e.g., save the final state of the sampler as well if they overload AbstractMCMC.bundle_samples.

          + diff --git a/previews/PR86/index.html b/previews/PR86/index.html index ee575643..5f0f7a6b 100644 --- a/previews/PR86/index.html +++ b/previews/PR86/index.html @@ -1,2 +1,467 @@ -Home · AbstractMCMC

          AbstractMCMC.jl

          Abstract types and interfaces for Markov chain Monte Carlo methods.

          AbstractMCMC defines an interface for sampling and combining Markov chains. It comes with a default sampling algorithm that provides support of progress bars, parallel sampling (multithreaded and multicore), and user-provided callbacks out of the box. Typically developers only have to define the sampling step of their inference method in an iterator-like fashion to make use of this functionality. Additionally, the package defines an iterator and a transducer for sampling Markov chains based on the interface.

          +Home · AbstractMCMC + + + + + +

          AbstractMCMC.jl

          Abstract types and interfaces for Markov chain Monte Carlo methods.

          AbstractMCMC defines an interface for sampling and combining Markov chains. It comes with a default sampling algorithm that provides support of progress bars, parallel sampling (multithreaded and multicore), and user-provided callbacks out of the box. Typically developers only have to define the sampling step of their inference method in an iterator-like fashion to make use of this functionality. Additionally, the package defines an iterator and a transducer for sampling Markov chains based on the interface.

          + diff --git a/previews/PR86/search/index.html b/previews/PR86/search/index.html index f1faf2a9..68466cf6 100644 --- a/previews/PR86/search/index.html +++ b/previews/PR86/search/index.html @@ -1,2 +1,467 @@ -Search · AbstractMCMC

          Loading search...

            +Search · AbstractMCMC + + + + + +

            Loading search...

              +