forked from trekhleb/javascript-algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkMeans.test.js
40 lines (34 loc) · 1.15 KB
/
kMeans.test.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import KMeans from '../kMeans';
describe('kMeans', () => {
it('should throw an error on invalid data', () => {
expect(() => {
KMeans();
}).toThrowError('The data is empty');
});
it('should throw an error on inconsistent data', () => {
expect(() => {
KMeans([[1, 2], [1]], 2);
}).toThrowError('Matrices have different shapes');
});
it('should find the nearest neighbour', () => {
const data = [[1, 1], [6, 2], [3, 3], [4, 5], [9, 2], [2, 4], [8, 7]];
const k = 2;
const expectedClusters = [0, 1, 0, 1, 1, 0, 1];
expect(KMeans(data, k)).toEqual(expectedClusters);
expect(KMeans([[0, 0], [0, 1], [10, 10]], 2)).toEqual(
[0, 0, 1],
);
});
it('should find the clusters with equal distances', () => {
const dataSet = [[0, 0], [1, 1], [2, 2]];
const k = 3;
const expectedCluster = [0, 1, 2];
expect(KMeans(dataSet, k)).toEqual(expectedCluster);
});
it('should find the nearest neighbour in 3D space', () => {
const dataSet = [[0, 0, 0], [0, 1, 0], [2, 0, 2]];
const k = 2;
const expectedCluster = [1, 1, 0];
expect(KMeans(dataSet, k)).toEqual(expectedCluster);
});
});