-
Notifications
You must be signed in to change notification settings - Fork 90
/
Copy pathicde-2022-tutorial-paper-list
202 lines (103 loc) · 13.8 KB
/
icde-2022-tutorial-paper-list
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
Table of Contents
=================
- [Table of Contents](#table-of-contents)
- [1. Learned Advisor](#1-learned-advisor)
- [Knob Tuner](#knob-tuner)
- [Index Advisor](#index-advisor)
- [Relevant Code Repositories:](#relevant-code-repositories)
- [View Advisor](#view-advisor)
- [Partition Advisor](#partition-advisor)
- [Scheduling Advisor](#scheduling-advisor)
- [2. Learned Optimizer](#2-learned-optimizer)
- [Query Rewriter](#query-rewriter)
- [Plan Enumerator](#plan-enumerator)
- [Cardinality Estimator](#cardinality-estimator)
- [Query-Driven](#query-driven)
- [Data-Driven](#data-driven)
- [Cost Estimator/Latency Predictor](#cost-estimator)
- [3. Learned Designer](#3-learned-designer)
- [Learned Index](#learned-index)
- [Learned Layout](#learned-layout)
- [4. Learned Generator](#4-learned-generator)
- [Adaptive Benchmark](#adaptive-benchmark)
- [SQL Generation](#sql-generation)
- [5. Autonomous Database](#5-autonomous-database)
## 1. Learned Advisor
### Knob Tuner
Songyun Duan, Vamsidhar Thummala, Shivnath Babu. Tuning Database Configuration Parameters with iTuned. VLDB, 2009. [[paper](https://users.cs.duke.edu/~shivnath/papers/ituned.pdf)]
Aken, D. Van, Pavlo, A., Gordon, G. J., & Zhang, B. (2017). Automatic database management system tuning through large-scale machine learning. SIGMOD, 2017. [[paper](https://doi.org/10.1145/3035918.3064029)] [code](https://github.com/cmu-db/ottertune/tree/9758c65721d2624b813857ba9340d5550e899bda)
Kunjir, M., & Babu, S. (2020). *Black or White? How to Develop an AutoTuner for Memory-based Analytics [Extended Version]*. SIGMOD, 2020. [[paper](https://doi.org/10.1145/3318464.3380591)]
Tan, J., Zhang, T., Li, F., Chen, J., Zheng, Q., & Zhang, P. (2019). iBTune : Individualized Buffer Tuning for Large-scale Cloud Databases. VLDB, 2019. [[paper](http://www.vldb.org/pvldb/vol12/p1221-tan.pdf)]
Zhang, J., Liu, Y., Zhou, K., Li, G., Xiao, Z., Cheng, B., … Li, Z. (2019). An end-to-end automatic cloud database tuning system using deep reinforcement learning. SIGMOD, 2019. [[paper](https://doi.org/10.1145/3299869.3300085)] [[code](https://github.com/KqSMea8/CDBTune)]
Li, G., Zhou, X., Gao, B., & Li, S. (2019). *QTune: A Query-Aware Database Tuning System with Deep Reinforcement Learning*. VLDB, 2019. [[paper](http://www.vldb.org/pvldb/vol12/p2118-li.pdf)] [[code](https://github.com/zhouxh19/qtune-mysql)]
Zhang, X., Tan, J., & Cui, B. (n.d.). *ResTune : Resource Oriented Tuning Boosted by Meta-Learning for Cloud Databases*. SIGMOD, 2021. [[paper](https://doi.org/10.1145/3448016.3457291)] [code](https://github.com/shxinding/ResTune)]
### Index Advisor
G. Valentin, M. Zuliani, D. C. Zilio, G. M. Lohman, and A. Skelley. DB2 advisor: An optimizer smart enough to recommend its own indexes. In ICDE 2000. [[paper](http://www.cs.toronto.edu/~alan/papers/icde00.pdf)]
K. Schnaitter, S. Abiteboul, T. Milo and N. Polyzotis. On-Line Index Selection for Shifting Workloads. In ICDE 2007. [[paper](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.130.3168&rep=rep1&type=pdf)]
Hai Lan, Zhifeng Bao, Yuwei Peng. An Index Advisor Using Deep Reinforcement Learning. CIKM, 2020. [[paper](https://doi.org/10.1145/3340531.3412106)]
Ding, B., Das, S., Marcus, R., Wu, W., Chaudhuri, S., & Narasayya, V. R. (2019). AI meets AI: Leveraging query executions to improve index recommendations. SIGMOD, 2019. [[paper](https://doi.org/10.1145/3299869.3324957)]
Xuanhe Zhou, Luyang Liu, Wenbo Li, Lianyuan Jin, Tianqing Wang, Shifu Li. AutoIndex: An Incremental Index Management System for Dynamic Workloads. [[paper](http://dbgroup.cs.tsinghua.edu.cn/ligl/papers/icde2022-autoindex.pdf)]
[Empirical code](https://github.com/shankur/autoindex)]
##### Relevant Code Repositories:
1. https://github.com/shankur/autoindex
2. https://github.com/hyrise/index_selection_evaluation/tree/bensk1/deep_reinforcement_learning
### View Advisor
D. Zilio, C. Zuzarte, S. Lightstone, W. Ma, et al. Recommending Materialized Views and Indexes with IBM DB2 Design Advisor. ICAC, 2004. [[paper](https://cs.uwaterloo.ca/~kmsalem/courses/CS848F06/presentations/S05_1.pdf)]
Ahmed, R., Bello, R., Witkowski, A., & Kumar, P. (2020). Automated generation of materialized views in Oracle. VLDB, 2020. [[paper](https://doi.org/10.14778/3415478.3415533)]
Yuan, H., Sun, J., & Li, G. (2020). *Automatic View Generation for Equivalent Subqueries with Deep Learning and Reinforcement Learning*. ICDE, 2020. [[paper](https://doi.org/10.1109/ICDE48307.2020.00133)]
Han, Y., Li, G., Yuan, H., & Sun, J. (n.d.). *An Autonomous Materialized View Management System with Deep Reinforcement Learning*. ICDE, 2021. [[paper](https://doi.org/10.1109/ICDE51399.2021.00217)]
### Partition Advisor
Zamanian, E., Binnig, C., & Salama, A. (2015). Locality-aware partitioning in parallel database systems. *Proceedings of the ACM SIGMOD International Conference on Management of Data*, *2015*-*May*, 17–30. [[paper](https://doi.org/10.1145/2723372.2723718)]
Parchas, P., Naamad, Y., Van Bouwel, P., Faloutsos, C., & Petropoulos, M. (2020). Fast and effective distribution-key recommendation for amazon redshift. *Proceedings of the VLDB Endowment*, *13*(11), 2411–2423. [[paper](https://doi.org/10.14778/3407790.3407834)]
Hilprecht, B., Binnig, C., & Röhm, U. (2019). Towards learning a partitioning advisor with deep reinforcement learning. *Proceedings of the ACM SIGMOD International Conference on Management of Data*. [[paper](https://doi.org/10.1145/3329859.3329876)]
### Scheduling Advisor
Chi Zhang, Ryan Marcus, and et al. Buffer Pool Aware Query Scheduling via Deep Reinforcement Learning. In VLDB, 2020. [[paper](https://arxiv.org/pdf/2007.10568.pdf)]
## 2. Learned Optimizer
### Query Rewriter
Qi Zhou, Joy Arulraj, Shamkant B. Navathe, William Harris, Jinpeng Wu. Sia : Optimizing Queries using Learned Predicates. SIGMOD, 2021. [[paper](https://doi.org/10.1145/3448016.3457262)]
Xuanhe Zhou, Guoliang Li, Chengliang Chai, Jianhua Feng. A Learned Query Rewrite System using Monte Carlo Tree Search. VLDB, 2022. [[paper](http://dbgroup.cs.tsinghua.edu.cn/ligl/papers/vldb22-query-rewrite.pdf)] [code](http://rewrite_demo.dbmind.cn/)]
### Plan Enumerator
Marcus, R., & Papaemmanouil, O.. Deep reinforcement learning for join order enumeration. aiDM@SIGMOD, 2018. [[paper](https://doi.org/10.1145/3211954.3211957)] [[code](https://github.com/antonismand/ReJOIN)]
Marcus, R., Negi, P., Mao, H., Zhang, C., Alizadeh, M., Kraska, T., … Tatbul, N.. Neo: A Learned query optimizer. VLDB, 2018. [[paper](https://doi.org/10.14778/3342263.3342644)]
Yu, X., Li, G., Tang, N. (n.d.). Reinforcement Learning with Tree-LSTM for Join Order Selection. ICDE, 2020. [[paper](http://dbgroup.cs.tsinghua.edu.cn/ligl/papers/icde2020-learnedjoinorder.pdf)]
Ron Avnur, Joseph M. Hellerstein. Eddies: Continuously Adaptive Query Processing. SIGMOD, 2000. [[paper](https://dl.acm.org/doi/pdf/10.1145/342009.335420)]
Trummer, I., Wang, J., Maram, D., Moseley, S., Jo, S., & Antonakakis, J. (n.d.). SkinnerDB : Regret-Bounded Query Evaluation via Reinforcement Learning. SIGMOD, 2019. [[paper](https://arxiv.org/abs/1901.05152)] [[code](https://github.com/cornelldbgroup/skinnerdb)]
Marcus, R., Negi, P., Mao, H., Tatbul, N., Alizadeh, M., & Kraska, T. (2020). Bao: Making Learned Query Optimization Practical. SIGMOD, 2021. [[paper](https://doi.org/10.1145/3448016.3452838)] [[code](https://github.com/learnedsystems/baoforpostgresql)]
The Optimizer In Oracle Database 19c. [[paper](https://www.oracle.com/technetwork/database/bi-datawarehousing/twp-optimizer-with-oracledb-19c-5324206.pdf)]
### Cardinality Estimator
#### Query-Driven
Kipf A, Kipf T, Radke B, et al. Learned cardinalities: Estimating correlated joins with deep learning. CIDR, 2019. [[paper](https://arxiv.org/pdf/1809.00677)]
Dutt, A., Wang, C., Nazi, A., Kandula, S., Narasayya, V., & Chaudhuri, S. (2018). Selectivity estimation for range predicates using lightweight models. Proceedings of the VLDB Endowment, 12(9), 1044–1057, 2018. [[paper](https://doi.org/10.14778/3329772.3329780)]
#### Data-Driven
Heimel M, Kiefer M, Markl V. Self-tuning, GPU-accelerated kernel density models for multidimensional selectivity estimation. Proceedings of the ACM SIGMOD, 2015. [[paper](https://dl.acm.org/doi/pdf/10.1145/2723372.2749438)]
Yongjoo Park, Shucheng Zhong, and Barzan Mozafari. Quicksel: Quick selectivity learning with mixture models. SIGMOD 2020. [[paper](https://arxiv.org/pdf/1812.10568.pdf)]
Yang, Z., Liang, E., Kamsetty, A., Wu, C., Duan, Y., Chen, X., … Stoica, I. (2019). Deep Unsupervised Cardinality Estimation. VLDB, 2019. [[paper](https://doi.org/10.14778/3368289.3368294)]
Yang, Z., Kamsetty, A., Luan, S., Liang, E., Duan, Y., Chen, X., & Stoica, I. (2020). Neurocard: One cardinality estimator for all tables. *Proceedings of the VLDB Endowment*, *14*(1), 61–73, 2020. [[paper](https://doi.org/10.14778/3421424.3421432)]
Hilprecht, B., Schmidt, A., Kulessa, M., Molina, A., Kersting, K., & Binnig, C. (2020). DeepDB: Learn from data, not from queries! *Proceedings of the VLDB Endowment*, *13*(7), 992–1005, 2020. [[paper](https://doi.org/10.14778/3384345.3384349)]
Sun, J., & Li, G. (n.d.). *An End-to-End Learning-based Cost Estimator*. VLDB, 2020. [[paper](http://dbgroup.cs.tsinghua.edu.cn/ligl/papers/vldb2020-learnedcost.pdf)]
### Cost Estimator
Sun, J., & Li, G. (n.d.). *An End-to-End Learning-based Cost Estimator*. VLDB, 2020. [[paper](http://dbgroup.cs.tsinghua.edu.cn/ligl/papers/vldb2020-learnedcost.pdf)]
Marcus, R., & Papaemmanouil, O. (2019). Plan-structured deep neural network models for query performance prediction. VLDB, 2019. [[paper](https://dl.acm.org/doi/10.14778/3342263.3342646)]
## 3. Learned Designer
### Learned Index
Kraska, T., Beutel, A., Chi, E. H., Dean, J., & Polyzotis, N. (2018). The case for learned index structures. *Proceedings of the ACM SIGMOD International Conference on Management of Data*, 489–504. [[paper](https://dl.acm.org/doi/10.1145/3183713.3196909)] [[code](https://github.com/learnedsystems/RMI/tree/5fdff45d0929beaccf6bc56f8f4c0d82baf10304)]
Marcus, R., Stoian, M., Kipf, A., Misra, S., van Renen, A., Kemper, A., Neumann, T., & Kraska, T. (2020). Benchmarking learned indexes. *The Proceedings of the VLDB Endowment (PVLDB)*, *14*(1), 1–13. [[paper](https://dl.acm.org/doi/10.14778/3421424.3421425)] [[code](https://github.com/learnedsystems/SOSD)]
Ding, J., Minhas, U. F., Yu, J., Wang, C., Do, J., Li, Y., Zhang, H., Chandramouli, B., Gehrke, J., Kossmann, D., Lomet, D., & Kraska, T. (2020). ALEX: An Updatable Adaptive Learned Index. *Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data*, 969–984. [[paper]https://dl.acm.org/doi/10.1145/3318464.3389711] [[code](https://github.com/microsoft/ALEX)]
Nathan, V., Ding, J., Alizadeh, M., & Kraska, T. (2020). Learning multi-dimensional indexes. *Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data*, 985-1000. [[paper](https://dl.acm.org/doi/10.1145/3318464.3380579)]
Li, P., Lu, H., Zheng, Q., Yang, L., & Pan, G. (2020). LISA: A Learned Index Structure for Spatial Data. *Proceedings of the ACM SIGMOD International Conference on Management of Data*, 2119–2133. [[paper](https://doi.org/10.1145/3318464.3389703)]
Dittrich, J., Nix, J., & Schön, C. (2021). The next 50 years in database indexing or. *The Proceedings of the VLDB Endowment (PVLDB)*, *15*(3), 527–540. [[paper](https://doi.org/10.14778/3494124.3494136)] [[code](https://github.com/BigDataAnalyticsGroup/GENE)]
Lu, B., Ding, J., Lo, E., Minhas, U. F., & Wang, T. (2021). *APEX: A High-Performance Learned Index on Persistent Memory. Proceedings of the VLDB Endowment*, *15*(3), 597–610. [[paper](https://doi.org/10.14778/3494124.3494141)]
Wang, Z., Chen, H., Wang, Y., & Tang, C. (2022). The Concurrent Learned Indexes for Multicore Data Storage. *ACM Transactions on Storage*, *18*(1), 1-35. [[paper](https://dl.acm.org/doi/pdf/10.1145/3478289)] [[code](https://ipads.se.sjtu.edu.cn:1312/opensource/xindex.git)]
### Learned Layout
Yang, Z., Chandramouli, B., Wang, C., Gehrke, J., Li, Y., Minhas, U. F., … Acharya, R. (n.d.). *Qd-tree : Learning Data Layouts for Big Data Analytics*. SIGMOD, 2020. [[paper](https://doi.org/10.1145/3183713.3196909)]
Jialin Ding, Umar Farooq Minhas, Badrish Chandramouli, et al. *Instance-Optimized Data Layouts for Cloud Analytics Workloads*. SIGMOD, 2021. [[paper](https://doi.org/10.1145/3448016.3457270)]
## 4. Learned Generator
### Adaptive Benchmark
Francesco Ventura. Expand your training limits! generating training data for ML-based data management. SIGMOD, 2021. [[paper](https://dl.acm.org/doi/pdf/10.1145/3448016.3457286)]
### SQL Generation
Lixi Zhang, Chengliang Chai, Xuanhe Zhou, Guoliang Li. LearnedSQLGen: Constraint-aware SQL Generation using Reinforcement Learning. SIGMOD 2022. [[paper](http://dbgroup.cs.tsinghua.edu.cn/ligl/papers/sigmod2022-sqlgen.pdf)]
## 5. Autonomous Database
Pavlo, A., Angulo, G., Arulraj, J., Lin, H., Lin, J., Ma, L., … Zhang, T. (2017). Self-Driving Database Management Systems. CIDR, 2017. [[paper](https://www.pdl.cmu.edu/PDL-FTP/Database/p42-pavlo-cidr17.pdf)]
Kraska, T., Alizadeh, M., Beutel, A., Chi, E. H., Ding, J., Kristo, A., … Nathan, V. (2019). SageDB: A learned database system. CIDR, 2019. [[paper](http://www.alexbeutel.com/papers/CIDR2019_SageDB.pdf)]
Ma, L., Zhang, W., Jiao, J., Wang, W., Butrovich, M., Lim, W. S., … Pavlo, A. (2021). *MB2 : Decomposed Behavior Modeling for Self-Driving Database Management Systems*. SIGMOD, 2021. [[paper](https://dl.acm.org/doi/10.1145/3448016.3457276)]
Guoliang Li, Xuanhe Zhou, , Ji Sun, Xiang Yu, Yue Han, Lianyuan Jin, Wenbo Li, Tianqing Wang, Shifu Li. openGauss: An Autonomous Database System. VLDB, 2021. [[paper](http://dbgroup.cs.tsinghua.edu.cn/ligl/papers/vldb21-opengauss.pdf)]