-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVISTA_JTWE_DataPreparation.R
166 lines (139 loc) · 10.4 KB
/
VISTA_JTWE_DataPreparation.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
### Clear memory
rm(list = ls())
# Libraries ---------------------------------------------------------------
suppressPackageStartupMessages(library(sf)) # for spatial things
suppressPackageStartupMessages(library(lwgeom)) # for advanced spatial things
suppressPackageStartupMessages(library(dplyr)) # for manipulating data
suppressPackageStartupMessages(library(tidyr)) # for pivoting data
suppressPackageStartupMessages(library(fitdistrplus)) # for log normal distributions
suppressPackageStartupMessages(library(ggplot2)) # for plotting data
suppressPackageStartupMessages(library(purrr)) # for nested dataframes
suppressPackageStartupMessages(library(stringr))# for editing columns
suppressPackageStartupMessages(library(tidyverse))# for manipulating data
#reading journey to work and journey to education data
jtwdata <- read.csv("C:/Users/e18933/OneDrive - RMIT University/DOT_VISTA/Processed Data/JTW_VISTA_1220_coord.csv",header=T, na.strings="N/A")
jtedata <- read.csv("C:/Users/e18933/OneDrive - RMIT University/DOT_VISTA/Processed Data/JTE_VISTA_1220_coord.csv",header=T, na.strings="N/A")
#reordigng columns and adding missing columns in each data
jtwdata <- jtwdata %>%
add_column(destplace = NA, .after ="destlga")
jtedata <- jtedata %>%
add_column(duration = NA, .after ="arrtime")%>%
add_column(dist10 = NA,dist11 = NA,dist12 = NA, .after ="dist9")%>%
add_column(dur10 = NA,dur11 = NA,dur12 = NA, .after ="dur9")%>%
add_column(mode10 = NA, mode11 = NA,mode12 = NA, .after="mode9")%>%
add_column(place10 = NA, place11 = NA, place12 = NA, .after="place9")%>%
add_column(purp10 = NA, purp11 = NA, purp12 = NA, .after="purp9")%>%
add_column(stop10 = NA, stop11 = NA, stop12 = NA, .after="stop9")%>%
add_column(time10 = NA ,time11 = NA, time12 = NA, .after="time9")
jtedata <- jtedata %>%
relocate(jtetraveltime, jte_at, jteelapsedtime, jtedist, jtemode, .after = hhid)%>%
relocate(dephour, deptime, .after = duration)
#replacing jte/jtw in both dataset with jtwe
names(jtedata) = gsub(pattern = "jte", replacement = "jtwe", x = names(jtedata))
names(jtwdata) = gsub(pattern = "jtw", replacement = "jtwe", x = names(jtwdata))
jtwedata <- rbind(jtwdata,jtedata)
df <- jtwedata %>%
mutate(
orig_long = origlong,
orig_lat = origlat,
dest_long = destlong,
dest_lat = destlat
)
############################################################################################################################################
# filtering data based on geographic extent-----------------------------------------------------------------------------------------------------
studyRegion <- st_read("C:/Users/e18933/OneDrive - RMIT University/WORK/JIBE/GIS/data/absRegionsReprojected.sqlite",layer="GCCSA_2016_AUST") %>%
st_buffer(1)
orig_within_region <- df %>%
st_as_sf(coords=c("origlong","origlat"),crs=4326) %>%
st_transform(28355) %>%
st_snap_to_grid(0.1) %>%
filter(lengths(st_intersects(., studyRegion,prepared=TRUE,sparse=TRUE)) > 0)
dest_within_region <- df %>%
st_as_sf(coords=c("destlong","destlat"),crs=4326) %>%
st_transform(28355) %>%
st_snap_to_grid(0.1) %>%
filter(lengths(st_intersects(., studyRegion,prepared=TRUE,sparse=TRUE)) > 0)
############################################################################################################################################
# joining trip data with household&person data-----------------------------------------------------------------------------------------------------
HHdata <- read.csv("C:/Users/e18933/OneDrive - RMIT University/DOT_VISTA/Processed Data/H_VISTA_1220_Coord.csv")
Pdata <- read.csv("C:/Users/e18933/OneDrive - RMIT University/DOT_VISTA/Processed Data/P_VISTA_1220_Coord.csv")
# note: change orig_within_region to dest_within_region for modelling based on BE features on destinations
###########################################################################################################
jtwe_HHJoined <- merge(orig_within_region,HHdata, by="hhid")
jtwe_HHP_Joined <- merge(jtwe_HHJoined,Pdata, by="persid")
# filtering data based on surveyperiod
jtwe_HHP_1620 <- subset(jtwe_HHP_Joined, surveyperiod=="2016-17" | surveyperiod=="2017-18" | surveyperiod=="2018-19" | surveyperiod=="2019-20")
# filtering work journeys started from home
stopdata<- read.csv("C:/Users/e18933/OneDrive - RMIT University/DOT_VISTA/Processed Data/S_VISTA_1220_Coord.csv")
stopdata <- stopdata[, c("persid","stopno","origpurp1")]
stopdata<- subset(stopdata, stopno==1)
stopdata<- subset(stopdata, origpurp1=="At Home")
jtwe_stop <- merge(jtwe_HHP_1620, stopdata, by="persid")
hb_jtwe<- subset(jtwe_stop, stopno==1)
hb_jtwe = hb_jtwe[,!(names(hb_jtwe) %in% c("persid","stopno","origpurp1"))]
# recoding linkmode var (might be changed)
#hb_jtwe$mainmode[hb_jtwe$jtwemode=="Vehicle Driver"] = "Vehicle Driver"
#hb_jtwe$mainmode[hb_jtwe$jtwemode=="Motorcycle"] = "Vehicle Driver"
#hb_jtwe$mainmode[hb_jtwe$jtwemode=="Vehicle Passenger"] = "Vehicle Passenger"
#hb_jtwe$mainmode[hb_jtwe$jtwemode=="Taxi"] = "Vehicle Passenger"
#hb_jtwe$mainmode[hb_jtwe$jtwemode=="Walking"] = "Walking"
#hb_jtwe$mainmode[hb_jtwe$jtwemode=="Jogging"] = "Walking"
#hb_jtwe$mainmode[hb_jtwe$jtwemode=="Bicycle"] = "Bicycle"
#hb_jtwe$mainmode[hb_jtwe$jtwemode=="Public Bus"] = "Bus"
#hb_jtwe$mainmode[hb_jtwe$jtwemode=="School Bus"] = "Bus"
#hb_jtwe$mainmode[hb_jtwe$jtwemode=="Train"] = "Train"
#hb_jtwe$mainmode[hb_jtwe$jtwemode=="Tram"] = "Tram"
#hb_jtwe$mainmode[hb_jtwe$jtwemode=="Other"] = "Other"
hb_jtwe <- hb_jtwe %>%
mutate_at(c('mode1', 'mode2', 'mode3','mode4','mode5','mode6','mode7','mode8','mode9','mode10','mode11','mode12'),funs(ifelse(. == 'Motorcycle', 'Vehicle Driver', .)))%>%
mutate_at(c('mode1', 'mode2', 'mode3','mode4','mode5','mode6','mode7','mode8','mode9','mode10','mode11','mode12'),funs(ifelse(. == 'Taxi', 'Vehicle Passenger', .))) %>%
mutate_at(c('mode1', 'mode2', 'mode3','mode4','mode5','mode6','mode7','mode8','mode9','mode10','mode11','mode12'),funs(ifelse(. == 'Jogging', 'Walking', .)))%>%
mutate_at(c('mode1', 'mode2', 'mode3','mode4','mode5','mode6','mode7','mode8','mode9','mode10','mode11','mode12'),funs(ifelse(. == 'Public Bus', 'PT', .)))%>%
mutate_at(c('mode1', 'mode2', 'mode3','mode4','mode5','mode6','mode7','mode8','mode9','mode10','mode11','mode12'),funs(ifelse(. == 'Mobility Scooter', 'Bicycle', .)))%>%
mutate_at(c('mode1', 'mode2', 'mode3','mode4','mode5','mode6','mode7','mode8','mode9','mode10','mode11','mode12'),funs(ifelse(. == 'School Bus', 'PT', .)))%>%
mutate_at(c('mode1', 'mode2', 'mode3','mode4','mode5','mode6','mode7','mode8','mode9','mode10','mode11','mode12'),funs(ifelse(. == 'Train', 'PT', .)))%>%
mutate_at(c('mode1', 'mode2', 'mode3','mode4','mode5','mode6','mode7','mode8','mode9','mode10','mode11','mode12'),funs(ifelse(. == 'Tram', 'PT', .)))
hb_jtwe <- hb_jtwe[!(hb_jtwe$jtwemode=="Other"),]
# concatenating modes
hb_jtwe <- hb_jtwe %>%
unite("combinedmode", c('mode1', 'mode2', 'mode3','mode4','mode5','mode6','mode7','mode8','mode9','mode10','mode11','mode12'), sep ='_', na.rm = TRUE, remove = FALSE)
hb_jtwe$combinedmode2 <- sapply(hb_jtwe$combinedmode, function(x) paste(unique(unlist(str_split(x,"_"))), collapse = "_"))
hb_jtwe$combinedmode2 <- gsub('_Other', '', hb_jtwe$combinedmode2)
hb_jtwe$combinedmode2 <- gsub('Other_', '', hb_jtwe$combinedmode2)
rep_str = c('Vehicle Driver'='Vehicle Driver','Vehicle Passenger'='Vehicle Passenger','Walking'='Walking', 'Bicycle'='Bicycle','Bicycle_PT'= 'PT_walk_Bike',
'Bicycle_PT_Walking'='PT_walk_Bike', 'Bicycle_Walking_PT'='PT_walk_Bike', 'PT_Walking'='PT_walk_Bike', 'Vehicle Driver_PT_Walking'='PT_Car', 'Bicycle_PT'='PT_Walk_Bike',
'Vehicle Driver_Vehicle Passenger_PT_Walking'='PT_Car','Vehicle Driver_Walking_PT'='PT_Car','Vehicle Passenger_PT_Walking'='PT_Car',
'Vehicle Passenger_Vehicle Driver_Walking_PT'='PT_Car', 'Vehicle Passenger_Walking_PT'='PT_walk_Bike', 'Walking_PT'='PT_walk_Bike','Walking_PT_Vehicle Driver'='PT_Car',
'Walking_PT_Vehicle Passenger'='PT_walk_Bike','Vehicle Driver_Bicycle'='Vehicle Driver','Vehicle Driver_Vehicle Passenger'='Vehicle Driver',
'Vehicle Driver_Vehicle Passenger_Walking'='Vehicle Driver','Vehicle Driver_Walking'='Vehicle Driver','Vehicle Driver_Walking_Vehicle Passenger'='Vehicle Driver',
'Vehicle Passenger_Vehicle Driver_Walking'='Vehicle Driver','Vehicle Passenger_Walking'='Vehicle Passenger','Vehicle Passenger_Walking_Vehicle Driver'=
'Vehicle Driver','Walking_Bicycle'='Walking', 'Bicycle_Walking'='Bicycle', 'Walking_Vehicle Driver'='Vehicle Driver','Walking_Vehicle Passenger'='Vehicle Passenger',
'Vehicle Passenger_Vehicle Driver'='Vehicle Driver','Vehicle Passenger_PT_Walking'='PT_Walk_Bike','Vehicle Passenger_Walking_PT'='PT_Walk_Bike','Vehicle Driver_Vehicle Passenger'=
'Vehicle Driver','Vehicle Passenger_PT_Walking'='PT_Walk_Bike','Vehicle Driver_PT_walking'='PT_Car','PT_walk_Bike_Walking'='PT_walk_Bike','Vehicle Driver_PT_walk_Bike'='PT_Car',
'Vehicle Passenger_PT_walk_Bike'='PT_Car','PT_walk_Bike_Vehicle Driver'='PT_Car','PT_walk_Bike_Vehicle Passenger'='PT_Car','Vehicle Passenger_PT_Car'='PT_Car','Vehicle Driver_PT'='PT_Car',
'Vehicle Passenger_PT'='PT_Car')
hb_jtwe$combinedmode3 <- str_replace_all(hb_jtwe$combinedmode2, rep_str)
# recoding carlicence var
hb_jtwe$licence[hb_jtwe$carlicence=="Full Licence"] = 1
hb_jtwe$licence[hb_jtwe$carlicence=="Green Probationary Licence"] = 1
hb_jtwe$licence[hb_jtwe$carlicence=="Learners Permit"] = 1
hb_jtwe$licence[hb_jtwe$carlicence=="Red Probationary Licence"] = 1
hb_jtwe$licence[hb_jtwe$carlicence=="No Car Licence"] = 0
# recoding No of cars in HH
hb_jtwe$carsno[hb_jtwe$cars == 0] = 0
hb_jtwe$carsno[hb_jtwe$cars == 1] = 1
hb_jtwe$carsno[hb_jtwe$cars== 2] = 2
hb_jtwe$carsno[hb_jtwe$cars >=3] = 3
#recoding sex var
hb_jtwe$gender[hb_jtwe$sex=="M"] = 1
hb_jtwe$gender[hb_jtwe$sex=="F"] = 0
#recoding household income var
hb_jtwe$hhinc_an = hb_jtwe$hhinc*52
hb_jtwe$hhincat[hb_jtwe$hhinc_an<=59999] = 1
hb_jtwe$hhincat[60000<=hb_jtwe$hhinc_an & hb_jtwe$hhinc_an<=94999] = 2
hb_jtwe$hhincat[95000<=hb_jtwe$hhinc_an & hb_jtwe$hhinc_an<=139999] = 3
hb_jtwe$hhincat[140000<=hb_jtwe$hhinc_an & hb_jtwe$hhinc_an<=189999] = 4
hb_jtwe$hhincat[hb_jtwe$hhinc_an>=190000] = 5
# exporting work and education trips to csv format
hb_jtwe$geometry <- gsub(',', '-', hb_jtwe$geometry)
write.csv(hb_jtwe,file = "C:/Users/e18933/OneDrive - RMIT University/DOT_VISTA/Processed Data/hb_jtwe.csv")