-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathArgonSimNumba.py
298 lines (273 loc) · 11.8 KB
/
ArgonSimNumba.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
from itertools import combinations, permutations
import numpy as np
from numpy import linalg as LA
from scipy import ndimage as NI # import the types
from numba import njit
from numba import void, uint32, float64
@njit(void(float64[:,:], float64))
def apply_pbc_dist(dist_vecs, box_len) -> np.ndarray:
"""Apply periodic boundary conditions on distance vectors. Shortest
distance vector will be determined from box_length and assigned
to the distance array directly"""
## This is deliberately written with for loops and flow control for complier
## to vectorize and optimize. It is faster than numpy's boolean masks.
length_comp = box_len/2
dim1 = range(dist_vecs.shape[0])
dim2 = range(3)
for i in dim1:
for j in dim2:
cur_dist = dist_vecs[i,j]
if cur_dist > length_comp:
dist_vecs[i,j] = cur_dist - box_len
elif cur_dist < -length_comp:
dist_vecs[i,j] = cur_dist + box_len
@njit(void(float64[:,:], float64))
def apply_pbc_coord(coords, box_len) -> None:
"""Apply periodic boundary conditions on coordinates. Any out of bound
coord will be wrapped and place to the other side of the box. The new
coords will be assigned to the coords array directly"""
dim1 = range(coords.shape[0])
dim2 = range(3)
for i in dim1:
for j in dim2:
cur_coord = coords[i,j]
if cur_coord > box_len:
coords[i,j] = cur_coord % box_len
elif cur_coord < 0:
coords[i,j] = box_len - ( -cur_coord % box_len)
@njit
def verlet(curr_x, last_x, accl, dt) -> np.ndarray:
"""Verlet algorithm"""
return 2*curr_x-last_x+accl*dt**2
@njit
def lennard_jones(lj_coeff, sigma, r) -> np.ndarray:
'''
Lennard-Jones potentials
v_LJ(r) = 4*epsilon[(sigma/r)^12-(sigma/r)^6]
units in J
epsilon/k_b = 120K => epsilon: J (m^2 kg s^-2)
'''
return lj_coeff*((sigma/r)**12-(sigma/r)**6)
@njit(float64[:,:](float64, float64[:], float64[:,:]))
def del_potential(dp_coef, r, dist_vecs):
"""Gradient operator on Lennard Jones potentials to find force vectors
"""
force_vecs = np.empty_like(dist_vecs)
for i in range(3):
dist_1d = dist_vecs[:,i]
force_vecs[:,i] = dp_coef*dist_1d*r**(-2)*(
(3.405e-10/r)**12-0.5*(3.405e-10/r)**6
)
return force_vecs
def _sum_pair_forces_1d(pair_forces_1d, pair_labels, idx_array) -> np.ndarray:
"""
Sum pairwise forces (i,j pairs) according the label ids. The directions
of the pairwise forces are taken into account.
"""
# force j to i
f_in = NI.sum(pair_forces_1d, pair_labels[:,0], idx_array)
# force i to j
f_out = NI.sum(pair_forces_1d, pair_labels[:,1], idx_array)
f_total = f_in - f_out
return f_total
@njit(float64[:,:](float64[:,:], uint32[:,:], uint32))
def sum_pair_forces(pair_forces, pair_labels, dim1) -> np.ndarray:
"""
Sum pairwise forces (i,j pairs) according the label ids. The directions
of the pairwise forces are taken into account.
"""
## This is somehow slower than NI.sum after compiled
f_total = np.zeros((dim1, 3))
for i in range(f_total.shape[0]):
# force j to i
f_total[i] += pair_forces[pair_labels[:,0] == i].sum(0)
# force i to j
f_total[i] -= pair_forces[pair_labels[:,1] == i].sum(0)
return f_total
class ArgonSim:
"""Simple molecular dynamics simulation engine for Argon systems. This is a
reimplementation of the Verlet paper on Phys Review, 1976 except that this
simulator does not use the reduced unit as Verlet did."""
n = 6.0221415e23 # /mol
m_argon = 39.948/n # gram
m_argon_kg = m_argon*1e-3 # mass of one Argon atom in kg
kb = 1.3806503e-23 # J/K
# characteristic length for lennard jones
sigma = 3.405e-10 # m
def __init__(
self,
n_cells : int,
temp : float = 120,
dt : float = 1e-14, # seconds
density : float = 1.16, # g/cm^3 @ 130K
lennard_jones_cutoff : float = 2.5 # 2.5 sigma is set as lennard jones potential cutoff
):
"""
Initialize the system by specifying the number of face-centered cubic
unit cells, temperature, and time step. The coordinates and the system
size for the Argon atoms will be calculated from its density in 130K,
and the atoms are arranged as FCC nodes.
The total number of atoms will be 4*N^3, where N is the number of
the unit cells per dimension.
n_cells
param : Number of unit cells per dimension. The entire system size
will be N^3 unit cells
type : int
temp
param : Temperature of the simulation, unit in Kelvin. Default to
120K
type : float
dt
param : Time step ∆t for the simulation, unit in second. Default
value is set to 1 X 10^-14 s.
type : float
density
param : Density of the Argon system, unit in g/cm^3. Default to
1.16 g/cm^3 (@130K)
type : float
"""
if not isinstance(n_cells, int):
raise TypeError(
"Integer value is required to specify the number of unit cells"
)
self.dt = dt # second
n_atoms = 4*n_cells**3
L = (self.m_argon*n_atoms/density)**(1/3) # centimeter
self.lennard_jones_cutoff = lennard_jones_cutoff * self.sigma
self.box_len = L * 1e-2 # system dimension in meters
self.lj_coef = 4*119.8*self.kb # Lennard Jones energy coeff
self.del_pot_coef = 12*self.lj_coef # potential gradient coeff
self.init_coords = self._init_coords(self.box_len, n_cells) # meters
self._idx_array = np.arange(self.init_coords.shape[0])
self.velo = self._init_velocities(temp, self.init_coords.shape)
# combination of indices (i, j) for atom i and atom j
self.id_pairs = np.array(
list(combinations(range(len(self.init_coords)),2)),
dtype = np.uint32
)
self.coords = np.empty_like(self.init_coords, dtype=np.float64)
self.r_ij = None
self.cutoff_ids = None
self.pair_potentials = None
self.last_coords = None
self.accl = None
self._init_step()
def _init_coords(self, box_len, n_cells) -> np.ndarray:
"""
Initialize coordinates in face centered cubic unit cells
"""
cell_len = box_len/n_cells
x_corner = np.linspace(0, box_len-cell_len, n_cells) # corner atom spacings
x_face = np.linspace(cell_len/2, box_len-cell_len/2, n_cells) # face atom spacings
grid_c = np.meshgrid(x_corner, x_corner, x_corner, indexing='ij')
grid_f = np.meshgrid(x_face, x_corner, x_face, indexing='ij')
# get all 3 face nodes by combinations of grid_f
grid_3f = np.array(tuple(permutations(grid_f))[:3]).reshape((3,3,-1))
face_coords = np.concatenate(grid_3f, axis = 1)
corner_coords = np.array(grid_c).reshape((3,-1))
# N x 3 coords array
coords = np.concatenate([face_coords, corner_coords], axis = 1).T
return coords
@staticmethod
def _init_velocities(temp, size) -> np.ndarray:
"""Initialize velocities for each atom from a Maxwell-Boltzmann
distribution"""
kbT_over_m = 1.3806503*temp/(39.948e-3*6.0221415**(-1)) # m^2/s^2
velo_std = (kbT_over_m)**0.5 # m/s
init_velo = np.random.normal(0, velo_std, size)
return init_velo
def _find_cutoff_ids(self) -> np.ndarray:
cutoff_mask = self.r_ij <= self.lennard_jones_cutoff
return np.nonzero(cutoff_mask)[0]
def _compute_pair_potentials(self) -> np.ndarray:
"""Compute the potentials from the cutoff list only. Return pairwise
potentials of atoms"""
pair_potentials = lennard_jones(
self.lj_coef,
self.sigma,
self.r_ij[self.cutoff_ids]
)
return pair_potentials
def _get_atom_forces_ni_sum(self, pair_forces, pair_labels):
# calculate pairwise force vectors (fx,fy,fz) from atom j to atom i
fx, fy, fz = pair_forces.T
# force vectors for each atom
f_atoms = np.empty(self.coords.shape)
for i, f1d in enumerate((fx, fy, fz)):
# sum all pairwise forces by each dimension on each atom
f_atoms[:,i] = _sum_pair_forces_1d(
f1d, pair_labels, self._idx_array
)
return f_atoms
def get_accelerations(self, coords) -> np.ndarray:
"""
Get accelerations from a set of coordinates. The pairwaise distance
vectors and distances (vector norm) will be determined first. The
atom pairs that are within distance cutoff will be selected, and the
Lennard Jones potentials, the force vectors, and the accelerations on
each atom will be calculated. Only acceleration array is returned
Args
coords
param : a set of coordinates of the Argon atoms at a given time step
type: np.array
Return
acclerations
param : acceleration vectors for each atom with shape (N, 3)
type : np.array
"""
id_pairs = self.id_pairs
# dist vector from atom j to atom i
dist_vecs = coords[id_pairs[:,0]] - coords[id_pairs[:,1]]
# apply periodic boundary conditions on distances
apply_pbc_dist(dist_vecs, self.box_len)
# update the pairwise euclidean distances from atom j to atom i
self.r_ij = LA.norm(dist_vecs, axis = 1)
# update the indices of r_ij that need are within the 2.5 sigma cutoff
self.cutoff_ids = self._find_cutoff_ids()
# indices pair that are within cutoff
effective_id_pairs = self.id_pairs[self.cutoff_ids]
# pair forces from del operator
pair_forces = del_potential(
self.del_pot_coef,
self.r_ij[self.cutoff_ids],
dist_vecs[self.cutoff_ids]
)
f_atoms = self._get_atom_forces_ni_sum(pair_forces, effective_id_pairs)
# f_atoms = _sum_pair_forces(
# pair_forces,
# effective_id_pairs,
# self.coords.shape[0]
# )
# acceleration
accl = f_atoms/(self.m_argon_kg)
return accl
def _init_step(self) -> None:
"""The first two steps calculated using the taylor series expansion
for t=0 and t+∆t"""
self.accl = self.get_accelerations(self.init_coords)
self.pair_potentials = self._compute_pair_potentials()
self.coords = self.init_coords+self.velo*self.dt+self.accl*self.dt**2/2
apply_pbc_coord(self.coords, self.box_len)
self.last_coords = self.init_coords
def step(self) -> None:
"""
Advance the simulation for one time step ∆t. New velocities,
accelerations, coordinates, and last coordinates will be updated."""
self.accl = self.get_accelerations(self.coords)
self.pair_potentials = self._compute_pair_potentials()
new_coords = verlet(
self.coords, self.last_coords, self.accl, self.dt
)
apply_pbc_coord(new_coords, self.box_len)
dx_2dt = new_coords - self.last_coords
apply_pbc_dist(dx_2dt, self.box_len)
self.velo = dx_2dt/(2*self.dt)
self.last_coords = self.coords
self.coords = new_coords
def step_velocity_verlet(self) -> None:
self.coords = self.coords+self.velo*self.dt+self.accl*self.dt**2/2
apply_pbc_coord(self.coords, self.box_len)
self.velo = self.velo+self.accl*self.dt/2
self.accl = self.get_accelerations(self.coords)
self.pair_potentials = self._compute_pair_potentials()
self.velo = self.velo+self.accl*self.dt/2