forked from vedderb/vesc_bms_fw
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bms_if.c
676 lines (561 loc) · 16 KB
/
bms_if.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
/*
Copyright 2019 - 2020 Benjamin Vedder [email protected]
This file is part of the VESC BMS firmware.
The VESC BMS firmware is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The VESC BMS firmware is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "ltc6813.h"
#include "main.h"
#include "bms_if.h"
#include "pwr.h"
#include "utils.h"
#include "hdc1080.h"
#include "sht30.h"
#include "shtc3.h"
#include "bme280_if.h"
#include "comm_can.h"
#include "timeout.h"
#include "sleep.h"
#include "terminal.h"
#include "flash_helper.h"
#include "commands.h"
#include <math.h>
// Settings
#define I_IN_FILTER_CONST 0.006
#define I_IN_FILTER_CONST_IC 0.006
#define IC_ISENSE_I_GAIN_CORR 0.997 // This gain correction is a hack and should probably be set in config or in hw config
// Private variables
static volatile float m_i_in_filter = 0.0;
static volatile float m_i_in_filter_ic = 0.0;
static volatile bool m_charge_allowed = true;
static volatile bool m_is_charging = false;
static volatile bool m_is_balancing = false;
static volatile float m_voltage_cell_min = 0.0;
static volatile float m_voltage_cell_max = 0.0;
static volatile int m_balance_override[HW_CELLS_SERIES] = {0};
static volatile bool m_bal_ok = false;
static volatile bool m_was_charge_overcurrent = false;
static float m_soc_filtered = 0.0;
static bool m_soc_filter_init_done = false;
bms_if_fault_cb m_fault_cb = NULL;
// Threads
static THD_WORKING_AREA(if_thd_wa, 2048);
static THD_FUNCTION(if_thd, p);
static THD_WORKING_AREA(charge_thd_wa, 2048);
static THD_FUNCTION(charge_thd, p);
static THD_WORKING_AREA(balance_thd_wa, 2048);
static THD_FUNCTION(balance_thd, p);
void bms_if_init(void) {
chThdCreateStatic(if_thd_wa, sizeof(if_thd_wa), NORMALPRIO, if_thd, 0);
chThdCreateStatic(charge_thd_wa, sizeof(charge_thd_wa), NORMALPRIO, charge_thd, 0);
chThdCreateStatic(balance_thd_wa, sizeof(balance_thd_wa), NORMALPRIO, balance_thd, 0);
}
bool bms_if_charge_ok(void) {
float max = m_is_charging ? backup.config.vc_charge_end : backup.config.vc_charge_start;
return m_voltage_cell_min > backup.config.vc_charge_min &&
m_voltage_cell_max < max &&
(!backup.config.t_charge_mon_en || (HW_TEMP_CELLS_MAX() < backup.config.t_charge_max &&
HW_TEMP_CELLS_MAX() > backup.config.t_charge_min));
}
static THD_FUNCTION(charge_thd, p) {
(void)p;
chRegSetThreadName("Charge");
int no_charge_cnt = 0;
for (;;) {
#ifdef ADC_CH_CURRENT
float chg_current = m_i_in_filter;
#else
float chg_current = m_i_in_filter_ic;
#endif
if (m_is_charging && HW_TEMP_CELLS_MAX() >= backup.config.t_charge_max &&
backup.config.t_charge_mon_en) {
bms_if_fault_report(FAULT_CODE_CHARGE_OVERTEMP);
}
bms_soc_soh_temp_stat *msg;
bool chg_can_ok = true;
for (int i = 0;i < CAN_BMS_STATUS_MSGS_TO_STORE;i++) {
msg = comm_can_get_bms_soc_soh_temp_stat_index(i);
if (msg->id >= 0) {
if (!msg->is_charge_ok) {
chg_can_ok = false;
break;
}
} else {
break;
}
}
if (chg_can_ok && HW_GET_V_CHARGE() > backup.config.v_charge_detect &&
bms_if_charge_ok() && m_charge_allowed && !m_was_charge_overcurrent) {
if (!m_is_charging) {
sleep_reset();
chThdSleepMilliseconds(2000);
if (bms_if_charge_ok() && HW_GET_V_CHARGE() > backup.config.v_charge_detect) {
m_is_charging = true;
CHARGE_ENABLE();
}
}
} else {
m_is_charging = false;
CHARGE_DISABLE();
}
chThdSleepMilliseconds(10);
if (fabsf(chg_current) < backup.config.min_charge_current && m_is_charging && !HW_CHARGER_DETECTED()) {
no_charge_cnt++;
if (no_charge_cnt > 100) {
no_charge_cnt = 0;
m_is_charging = false;
CHARGE_DISABLE();
chThdSleepMilliseconds(5000);
}
} else {
no_charge_cnt = 0;
}
if (m_is_charging) {
if (fabsf(chg_current) > backup.config.max_charge_current) {
m_was_charge_overcurrent = true;
m_is_charging = false;
CHARGE_DISABLE();
bms_if_fault_report(FAULT_CODE_CHARGE_OVERCURRENT);
}
sleep_reset();
}
// Charger must be disconnected and reconnected on charge overcurrent events
if (m_was_charge_overcurrent && HW_GET_V_CHARGE() < backup.config.v_charge_detect) {
m_was_charge_overcurrent = false;
}
// Store data and counters to flash every time charger is disconnected
static bool charger_connected_last = false;
if (charger_connected_last && HW_GET_V_CHARGE() < backup.config.v_charge_detect) {
flash_helper_store_backup_data();
}
charger_connected_last = HW_GET_V_CHARGE() > backup.config.v_charge_detect;
}
}
static THD_FUNCTION(balance_thd, p) {
(void)p;
chRegSetThreadName("Balance");
systime_t last_charge_time = 0.0;
while (!chThdShouldTerminateX()) {
float v_min = 10.0;
float v_max = 0.0;
// Allow some time to start balancing after unplugging the charger. This is useful if it is unplugged
// while the current was so high that balancing was prevented.
float time_since_charge = 1000.0;
if (UTILS_AGE_S(0) > 1.0) {
if (m_is_charging) {
last_charge_time = chVTGetSystemTimeX();
}
time_since_charge = UTILS_AGE_S(last_charge_time);
}
switch (backup.config.balance_mode) {
case BALANCE_MODE_DISABLED:
m_bal_ok = false;
break;
case BALANCE_MODE_CHARGING_ONLY:
if (m_is_charging) {
m_bal_ok = true;
} else {
m_bal_ok = false;
}
break;
case BALANCE_MODE_DURING_AND_AFTER_CHARGING:
if (time_since_charge < 2.0) {
m_bal_ok = true;
}
break;
case BALANCE_MODE_ALWAYS:
m_bal_ok = true;
break;
}
for (int i = backup.config.cell_first_index;i <
(backup.config.cell_num + backup.config.cell_first_index);i++) {
if (ltc_last_cell_voltage(i) > v_max) {
v_max = ltc_last_cell_voltage(i);
}
if (ltc_last_cell_voltage(i) < v_min) {
v_min = ltc_last_cell_voltage(i);
}
}
m_voltage_cell_min = v_min;
m_voltage_cell_max = v_max;
m_is_balancing = false;
bool is_balance_override = false;
int bal_ch = 0;
for (int i = backup.config.cell_first_index;
i < (backup.config.cell_num + backup.config.cell_first_index);i++) {
if (m_balance_override[i] == 1) {
is_balance_override = true;
ltc_set_dsc(i, false);
} else if (m_balance_override[i] == 2) {
is_balance_override = true;
ltc_set_dsc(i, true);
bal_ch++;
m_is_balancing = true;
}
}
if (backup.config.dist_bal) {
bms_soc_soh_temp_stat *msg = comm_can_get_bms_stat_v_cell_min();
if (msg->id >= 0 && UTILS_AGE_S(msg->rx_time) < 10.0 && msg->v_cell_min < v_min) {
v_min = msg->v_cell_min;
}
}
if (v_min > backup.config.vc_balance_min &&
m_bal_ok &&
!is_balance_override &&
fabsf(bms_if_get_i_in_ic()) < backup.config.balance_max_current) {
bal_ch = 0;
for (int i = backup.config.cell_first_index;i <
(backup.config.cell_num + backup.config.cell_first_index);i++) {
float limit = ltc_get_dsc(i) ? backup.config.vc_balance_end : backup.config.vc_balance_start;
limit += v_min;
if (ltc_last_cell_voltage(i) >= limit) {
ltc_set_dsc(i, true);
bal_ch++;
m_is_balancing = true;
} else {
ltc_set_dsc(i, false);
}
}
}
float t_bal = HW_GET_BAL_TEMP();
float t_bal_start = backup.config.t_bal_lim_start;
float t_bal_end = backup.config.t_bal_lim_end;
int bal_ch_max = backup.config.max_bal_ch;
if (t_bal > (t_bal_end - 0.5)) {
bal_ch_max = 0;
} else if (t_bal > t_bal_start) {
bal_ch_max = utils_map_int(t_bal, t_bal_start, t_bal_end, bal_ch_max, 0);
}
// Limit number of simultaneous balancing channels by disabling
// balancing on the cells with the highest voltage.
while (bal_ch > bal_ch_max) {
float v_min = 100.0;
int v_min_cell = 0;
for (int i = backup.config.cell_first_index;i <
(backup.config.cell_num + backup.config.cell_first_index);i++) {
if (ltc_last_cell_voltage(i) < v_min && ltc_get_dsc(i)) {
v_min = ltc_last_cell_voltage(i);
v_min_cell = i;
}
}
ltc_set_dsc(v_min_cell, false);
bal_ch--;
}
if (m_is_balancing) {
sleep_reset();
} else {
m_bal_ok = false;
for (int i = 0;i < HW_CELLS_SERIES;i++) {
ltc_set_dsc(i, false);
}
}
timeout_feed_WDT(THREAD_BAL);
chThdSleepMilliseconds(50);
}
}
static THD_FUNCTION(if_thd, p) {
(void)p;
chRegSetThreadName("IfThd");
systime_t tick_last = chVTGetSystemTimeX();
chThdSleepMilliseconds(2000);
for(;;) {
float ltc_curr_adc = ltc_last_gpio_voltage(LTC_GPIO_CURR_MON) - 1.65;
#ifdef LTC_GPIO_CURR_MON_2
ltc_curr_adc += ltc_last_gpio_voltage(LTC_GPIO_CURR_MON_2) - 1.65;
#endif
#ifdef LTC_INVERT_CURRENT
ltc_curr_adc = -ltc_curr_adc;
#endif
float i_bms_ic = -(ltc_curr_adc + backup.ic_i_sens_v_ofs) *
(1.0 / HW_SHUNT_AMP_GAIN) * (1.0 / backup.config.ext_shunt_res) * IC_ISENSE_I_GAIN_CORR;
float i_adc = pwr_get_iin();
#ifdef LTC_GPIO_CURR_MON_2
if (ltc_last_gpio_voltage(LTC_GPIO_CURR_MON) <= 0.0 ||
ltc_last_gpio_voltage(LTC_GPIO_CURR_MON_2) < 0.0) {
i_bms_ic = 0.0;
}
#else
if (ltc_last_gpio_voltage(LTC_GPIO_CURR_MON) <= 0.0) {
i_bms_ic = 0.0;
}
#endif
if (backup.config.i_measure_mode == I_MEASURE_MODE_VESC) {
for (int i = 0;i < CAN_STATUS_MSGS_TO_STORE;i++) {
can_status_msg_4 *msg = comm_can_get_status_msg_4_index(i);
if (msg->id >= 0 && UTILS_AGE_S(msg->rx_time) < 2.0) {
i_bms_ic += msg->current_in;
}
}
}
UTILS_LP_FAST(m_i_in_filter, i_adc, I_IN_FILTER_CONST);
UTILS_LP_FAST(m_i_in_filter_ic, i_bms_ic, I_IN_FILTER_CONST_IC);
double time = (double)TIME_I2US(chVTTimeElapsedSinceX(tick_last)) *
(double)1.0e-6 * ((double)1.0 / (double)60.0) * ((double)1.0 / (double)60.0);
tick_last = chVTGetSystemTimeX();
if (fabsf(m_i_in_filter_ic) > backup.config.min_current_ah_wh_cnt) {
double d_ah = (double)bms_if_get_i_in_ic() * time;
double d_wh = (double)bms_if_get_i_in_ic() * (double)bms_if_get_v_tot() * time;
backup.ah_cnt += d_ah;
backup.wh_cnt += d_wh;
if (m_i_in_filter_ic > 0.0) {
backup.ah_cnt_dis_total += d_ah;
backup.wh_cnt_dis_total += d_wh;
} else {
backup.ah_cnt_chg_total -= d_ah;
backup.wh_cnt_chg_total -= d_wh;
}
}
if (fabsf(bms_if_get_i_in_ic()) > backup.config.min_current_sleep) {
sleep_reset();
}
float soc_now = utils_batt_liion_norm_v_to_capacity(utils_map(m_voltage_cell_min, 3.2, 4.2, 0.0, 1.0));
if (!m_soc_filter_init_done) {
m_soc_filter_init_done = true;
m_soc_filtered = soc_now;
} else {
UTILS_LP_FAST(m_soc_filtered, soc_now, backup.config.soc_filter_const);
}
// RED LED
if (m_was_charge_overcurrent) {
// Prevent sleeping to keep the charge input disabled (as long as the battery does not run too low)
if (bms_if_get_soc() > 0.3) {
sleep_reset();
}
// Blink out fault on red LED
static int blink = 0;
blink++;
if (blink > 200) {
blink = 0;
}
if (blink < 100) {
LED_ON(LINE_LED_RED);
} else {
LED_OFF(LINE_LED_RED);
}
} else {
if (m_is_balancing) {
LED_ON(LINE_LED_RED);
} else {
LED_OFF(LINE_LED_RED);
}
}
chThdSleepMilliseconds(1);
}
}
float bms_if_get_i_in(void) {
return m_i_in_filter;
}
float bms_if_get_i_in_ic(void) {
return m_i_in_filter_ic;
}
float bms_if_get_v_cell(int cell) {
return ltc_last_cell_voltage(cell);
}
float bms_if_get_v_cell_min(void) {
return m_voltage_cell_min;
}
float bms_if_get_v_cell_max(void) {
return m_voltage_cell_max;
}
float bms_if_get_v_tot(void) {
float ret = 0.0;
for (int i = backup.config.cell_first_index;i <
(backup.config.cell_num + backup.config.cell_first_index);i++) {
ret += bms_if_get_v_cell(i);
}
return ret;
}
float bms_if_get_v_charge(void) {
return HW_GET_V_CHARGE();
}
float bms_if_get_temp(int sensor) {
#ifdef HW_GET_TEMP
return HW_GET_TEMP(sensor);
#else
return pwr_get_temp(sensor);
#endif
}
float bms_if_get_temp_ic(void) {
return ltc_last_temp();
}
bool bms_if_is_balancing_cell(int cell) {
return ltc_get_dsc(cell);
}
double bms_if_get_ah_cnt(void) {
return backup.ah_cnt;
}
double bms_if_get_wh_cnt(void) {
return backup.wh_cnt;
}
double bms_if_get_ah_cnt_chg_total(void) {
return backup.ah_cnt_chg_total;
}
double bms_if_get_wh_cnt_chg_total(void) {
return backup.wh_cnt_chg_total;
}
double bms_if_get_ah_cnt_dis_total(void) {
return backup.ah_cnt_dis_total;
}
double bms_if_get_wh_cnt_dis_total(void) {
return backup.wh_cnt_dis_total;
}
bool bms_if_is_charge_allowed(void) {
return m_charge_allowed;
}
void bms_if_set_charge_allowed(bool allowed) {
m_charge_allowed = allowed;
}
bool bms_if_is_charging(void) {
return m_is_charging;
}
bool bms_if_is_balancing(void) {
return m_is_balancing;
}
/**
* Override balancing.
*
* cell
* Cell number
*
* override
* Override setting.
* 0: Do not override balancing
* 1: Override and disable balancing on cell
* 2: Override and enable balancing on cell
*/
void bms_if_set_balance_override(int cell, int override) {
if (cell >= 0 && cell < HW_CELLS_SERIES) {
m_balance_override[cell] = override;
}
}
void bms_if_reset_counter_ah(void) {
backup.ah_cnt = 0.0;
}
void bms_if_reset_counter_wh(void) {
backup.wh_cnt = 0.0;
}
void bms_if_force_balance(bool bal_en) {
if (bal_en) {
m_bal_ok = true;
} else {
m_bal_ok = false;
for (int i = 0;i < HW_CELLS_SERIES;i++) {
ltc_set_dsc(i, false);
}
}
}
void bms_if_zero_current_offset(void) {
float ofs_avg = 0.0;
float samples = 0.0;
for (int i = 0;i < 20;i++) {
float ltc_curr_adc = ltc_last_gpio_voltage(LTC_GPIO_CURR_MON) - 1.65;
#ifdef LTC_GPIO_CURR_MON_2
ltc_curr_adc += ltc_last_gpio_voltage(LTC_GPIO_CURR_MON_2) - 1.65;
#endif
#ifdef LTC_INVERT_CURRENT
ltc_curr_adc = -ltc_curr_adc;
#endif
ofs_avg -= ltc_curr_adc;
samples += 1.0;
chThdSleepMilliseconds(100);
}
backup.ic_i_sens_v_ofs = ofs_avg / samples;
flash_helper_store_backup_data();
}
float bms_if_get_humsens_hum_pcb(void) {
#ifdef HDC1080_SDA_GPIO
return hdc1080_get_hum();
#elif defined(SHT30_SDA_GPIO)
return sht30_get_hum();
#elif defined(SHTC3_SDA_GPIO)
return shtc3_get_hum();
#elif defined(BME280_SDA_GPIO)
return bme280_if_get_hum();
#else
return 0.0;
#endif
}
float bms_if_get_humsens_temp_pcb(void) {
#ifdef HDC1080_SDA_GPIO
return hdc1080_get_temp();
#elif defined(SHT30_SDA_GPIO)
return sht30_get_temp();
#elif defined(SHTC3_SDA_GPIO)
return shtc3_get_temp();
#elif defined(BME280_SDA_GPIO)
return bme280_if_get_temp();
#else
return 0.0;
#endif
}
float bms_if_get_humsens_pres_pcb(void) {
#if defined(BME280_SDA_GPIO)
return bme280_if_get_pres();
#else
return 0.0;
#endif
}
float bms_if_get_humsens_hum_ext(void) {
#if defined(BME280_SDA_GPIO)
return bme280_if_get_hum();
#else
return sht30_get_hum();
#endif
}
float bms_if_get_humsens_temp_ext(void) {
#if defined(BME280_SDA_GPIO)
return bme280_if_get_temp();
#else
return sht30_get_temp();
#endif
}
float bms_if_get_soc(void) {
// TODO: Estimate and compensate for ESR
if (HW_SOC_OVERRIDE() >= 0.0) {
return HW_SOC_OVERRIDE();
} else {
return m_soc_filtered;
}
}
float bms_if_get_soh(void) {
// TODO!
return 1.0;
}
void bms_if_sleep(void) {
ltc_sleep();
}
void bms_if_fault_report(bms_fault_code fault) {
fault_data f;
f.fault = fault;
f.fault_time = chVTGetSystemTimeX();
f.current = bms_if_get_i_in();
f.current_ic = bms_if_get_i_in_ic();
f.temp_batt = HW_TEMP_CELLS_MAX();
f.temp_pcb = bms_if_get_temp(0);
f.temp_ic = bms_if_get_temp_ic();
f.v_cell_min = bms_if_get_v_cell_min();
f.v_cell_max = bms_if_get_v_cell_max();
f.pcb_humidity = bms_if_get_humsens_hum_pcb();
terminal_add_fault_data(&f);
if (m_fault_cb)
m_fault_cb(&f);
}
bms_fault_code bms_if_fault_now(void) {
bms_fault_code res = FAULT_CODE_NONE;
if (m_was_charge_overcurrent) {
res = FAULT_CODE_CHARGE_OVERCURRENT;
}
return res;
}
void bms_if_register_fault_cb(const bms_if_fault_cb cb)
{
m_fault_cb = cb;
}