-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinterpolation_test.py
426 lines (344 loc) · 17.4 KB
/
interpolation_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import sys
import petsc4py
petsc4py.init(sys.argv) # needs to be done to run in parallel...
import time
from scipy.sparse import csr_matrix
from mpi4py import MPI as pyMPI
import numpy as np
from dolfin import *
from MicroProblems.cell_problem_fixed import CellProblemFixed
from Utils.helper_functions import (create_scatter_idx, BuildMacroMatrix, BuildMicroMatrix,
SolveSystem, interpolate_conductivity, CreateSolver)
from Utils.heat_soruce import HeatSource
"""
Checks the interpolation error
"""
# %%
### Parallel parameters
comm = pyMPI.COMM_WORLD
rank = comm.Get_rank()
num_of_processes = comm.Get_size()
path_to_save_folder = "Results/InterpolationResultsLower"
path_to_data_folder = "InterpolationData"
path_to_mesh_folder = "MeshCreation"
### Problem parameters
kappa_macro = 0.1
kappa_micro = 0.1
rho_macro = 1.0
rho_micro = 1.0
theta_ref = 0.0
theta_start = theta_ref
T_int = [0, 10.0]
dt = 0.1
prod_stop = 5.0
f_micro_prod = Constant(0.0)
latent_heat = 2*np.pi
### Domain parameters
macro_size_x = 1
macro_size_y = 1
micro_radius = 0.25 # original radius
micro_radius += dt * theta_start # extrapolate radius at first step
growth_speed = 0.1 # additional parameter to controll growth of cells
res_macro = 32
res_micro = 0.05
delta_h_list = [320, 160, 80, 40, 20, 10, 5]#, 80, 40, 20, 10, 5]
error_list = [[] for _ in range(len(delta_h_list) - 1)]
grad_error_list = [[] for _ in range(len(delta_h_list) - 1)]
radius_error_list = [[] for _ in range(len(delta_h_list) - 1)]
error_list_micro = [[] for _ in range(len(delta_h_list) - 1)]
grad_error_list_micro = [[] for _ in range(len(delta_h_list) - 1)]
fine_sol_list = []
fine_radius_list = []
fine_sol_list_micro = []
time_list = []
use_quadratic_interpolation = True # use quadratic interpolation
use_linear_interpolation = False # use linear interpolation (else piecewise constant)
macro_mesh = UnitSquareMesh(MPI.comm_self, res_macro, res_macro)
V_macro = FunctionSpace(macro_mesh, "Lagrange", 1)
dx_macro = Measure("dx", V_macro)
### Micro mesh and cell problems per process
micro_mesh = Mesh(MPI.comm_self)
with XDMFFile(MPI.comm_self, path_to_mesh_folder + "/micro_domain_res_" + str(res_micro) + ".xdmf") as infile:
infile.read(micro_mesh)
## Dofs (only in case of linear function spaces)
dofs_micro = len(micro_mesh.coordinates())
dofs_macro = len(macro_mesh.coordinates())
## Mesh size
print("Mesh size")
print(macro_mesh.hmax())
print(micro_mesh.hmax())
## Macro functions space and size
dof_split = int(dofs_macro / (num_of_processes - 1))
for counter, cond_res in enumerate(delta_h_list):
t_n = T_int[0]
f_macro_prod = HeatSource(t_n, prod_stop, 0.75)
## Effective conductivity
eff_cond_array = np.load(f"{path_to_data_folder}/lower_res_effective_conductivity_res_{cond_res}.npy")
## Process 0 does not get any micro problems and the last one gets the remaining ones
## if we cant perfectly devide
if rank == 0:
dofs_macro_local = dofs_macro
print("Dofs macro domain", dofs_macro)
print("Dofs of each micro cell", dofs_micro)
print("Cells per process:")
elif rank < num_of_processes - 1:
dofs_macro_local = dof_split
print(rank, dofs_macro_local)
elif rank == num_of_processes - 1:
dofs_macro_local = dofs_macro - (num_of_processes - 2) * dof_split
print(rank, dofs_macro_local)
global_range_list, global_displacement_list = create_scatter_idx(
dofs_macro, dofs_micro, num_of_processes, dof_split)
macro_range_list, macro_displacement_list = create_scatter_idx(
dofs_macro, dofs_micro, num_of_processes, dof_split, False)
# %%
### Define the weak formulation on the macro domain and create the cell problems
## All macro parameters for rank 0
if rank == 0:
## Functions
theta_old = Function(V_macro)
effective_cond_fn = Function(V_macro)
effective_density_fn = Function(V_macro)
old_effective_density_fn = Function(V_macro)
sol_fn = Function(V_macro)
radius_fn = Function(V_macro)
average_temp_fn = Function(V_macro)
helper_error_fn = Function(V_macro)
# Data arrays to save stuff.
# Energy in form: time, expected energy, macro energy, micro energy
energy_array = np.zeros((int(T_int[1]/dt)+1, 4))
energy_idx = 0
expected_energy = 0
## Weak form
u_macro = TrialFunction(V_macro)
phi_macro = TestFunction(V_macro)
a_macro = 0.5*inner(kappa_macro * effective_cond_fn * grad(u_macro),
grad(phi_macro)) * dx_macro
a_macro += inner(rho_macro * effective_density_fn * u_macro, phi_macro) / dt * dx_macro
a_macro += growth_speed * latent_heat * u_macro * phi_macro * radius_fn * dx_macro
f_macro = (inner(rho_macro * old_effective_density_fn * theta_old, phi_macro) / dt \
+ inner(f_macro_prod, phi_macro)) * dx_macro \
- 0.5*inner(kappa_macro * effective_cond_fn * grad(theta_old),
grad(phi_macro)) * dx_macro
## dummy cell to determine cells dofs that should be coupled with the
## Dirichlet condition
dummy_cell = CellProblemFixed(micro_mesh, kappa_micro,
f_micro_prod, growth_speed,
theta_ref, theta_start, dt,
micro_radius, rho_micro)
dummy_dirichlet_helper = dummy_cell.BC_helper.get_local()
num_bc_elements = len(np.nonzero(dummy_dirichlet_helper)[0])
dummy_cell = None
## Setup everything for the first time step
# initial temperature, radius, conductivity and
theta_old.assign(Constant(theta_start))
average_temp_fn.assign(Constant(theta_start))
radius_fn.assign(Constant(micro_radius))
new_values = interpolate_conductivity(radius_fn.vector().get_local(),
eff_cond_array[:, 0],
eff_cond_array[:, 1],
use_linear_interpolation,
use_quadratic_interpolation)
effective_cond_fn.vector().set_local(new_values)
micro_cell_volume = np.pi * radius_fn.vector().get_local()**2
effective_density_fn.vector().set_local(1.0 - micro_cell_volume)
old_effective_density_fn.assign(effective_density_fn)
## All other processecs handle the cell problems
else:
## Will need the mass matrix to construc the coupling
u_macro = TrialFunction(V_macro)
phi_macro = TestFunction(V_macro)
global_mass_matrix = assemble(u_macro * phi_macro * dx_macro)
## Cell problems on each process
micro_problem_list = []
for _ in range(dofs_macro_local):
micro_problem_list.append(
CellProblemFixed(micro_mesh, kappa_micro, f_micro_prod, growth_speed,
theta_ref, theta_start, dt, micro_radius, rho_micro))
num_bc_elements = len(np.nonzero(micro_problem_list[0].BC_helper.get_local())[0])
print(rank, "waiting for macro- and cell-problem definition")
comm.barrier()
# %%
### Now do time stepping:
### 1) Build the matrix for the given time step in parallel for macro and cells
### 2) Solve the complete system
### 3) Update cell information
### 4) Update effective parameters on macro scale (density, conductivity, ...)
### 5) Save data
first_time_step = True # some stuff stays the same between iterations
dirichlet_coupling_data = None
time_counter = 0
while t_n <= T_int[1] - dt/8.0:
t_n += dt
### 1) Build matrix
### Macro domain
if rank == 0:
print("Currently working on time step", t_n)
f_macro_prod.t = t_n
## Update previous data functions
theta_old.assign(sol_fn)
## Build matrix
start_time = time.time()
non_zero_rows, non_zero_cols, non_zero_data, rhs_vec, dirichlet_coupling_data = \
BuildMacroMatrix(dofs_micro, dofs_macro, a_macro, f_macro,
dummy_dirichlet_helper, first_time_step,
dirichlet_coupling_data)
### Cell problems
else:
## Assemble cells on other process including coupling back
## to the macro scale
non_zero_rows, non_zero_cols, non_zero_data, rhs_vec = \
BuildMicroMatrix(rank, dofs_micro, dofs_macro, dof_split, dofs_macro_local,
global_mass_matrix, micro_problem_list, first_time_step)
# %%
#print(rank, "waiting for block matrix creation")
comm.barrier()
### Bring data to process 0 that will build the complete matrix
if first_time_step:
global_non_zero_rows = comm.gather(non_zero_rows, root=0)
global_non_zero_cols = comm.gather(non_zero_cols, root=0)
# Matrix data and rhs changes in each iteration
global_non_zero_data = comm.gather(non_zero_data, root=0)
global_rhs_vec = comm.gather(rhs_vec, root=0)
# Afterwards we can delete local memory space
non_zero_rows = None
non_zero_cols = None
non_zero_data = None
rhs_vec = None
if rank == 0:
if first_time_step:
global_non_zero_rows = np.concatenate(global_non_zero_rows)
global_non_zero_cols = np.concatenate(global_non_zero_cols)
global_non_zero_data = np.concatenate(global_non_zero_data)
global_rhs_vec = np.concatenate(global_rhs_vec)
# print(global_non_zero_rows.dtype, global_non_zero_cols.dtype)
# print(global_non_zero_rows.shape, global_non_zero_cols.shape, global_non_zero_data.shape)
M_macro = csr_matrix((global_non_zero_data, (global_non_zero_rows, global_non_zero_cols)),
shape=[dofs_macro*(1+dofs_micro), dofs_macro*(1+dofs_micro)])
comm.barrier()
#%%
### 2) Start solving
if rank == 0:
if first_time_step:
petsc_vec, u_sol_petsc, solver = CreateSolver(dofs_micro, dofs_macro)
u_sol_petsc = SolveSystem(petsc_vec, u_sol_petsc, solver,
global_rhs_vec, M_macro, start_time)
solution_array = u_sol_petsc.array
macro_array = solution_array[:dofs_macro]
else:
solution_array = None
macro_array = None
#print(rank, "waiting for solution")
comm.barrier()
#%%
### 3) Scatter solution data from 0 to the other processes
### and update cells
local_solution_array = np.zeros(dofs_macro_local*dofs_micro)
macro_solution_array = np.zeros(dofs_macro_local)
comm.Scatterv([solution_array, global_range_list, global_displacement_list, pyMPI.DOUBLE],
local_solution_array, root=0)
#print(macro_displacement_list, macro_range_list)
comm.Scatterv([macro_array, macro_range_list, macro_displacement_list, pyMPI.DOUBLE],
macro_solution_array, root=0)
#print("macro sol", len(macro_solution_array))
if rank == 0:
start_time = time.time()
sol_fn.vector().set_local(macro_solution_array)
data_for_macro_domain = np.zeros((1, 2)) # dummy
print("Waiting for update of cells")
else:
## Data to send to the macro domain:
## current temperature intergral, radius after cell movement
data_for_macro_domain = np.zeros((dofs_macro_local, 2))
for i in range(dofs_macro_local):
## First set the current solution and compute average temperature
micro_problem_list[i].update_cell(
macro_solution_array[i],
local_solution_array[i*dofs_micro:(i+1)*dofs_micro])
data_for_macro_domain[i, 0] = micro_problem_list[i].current_energy
data_for_macro_domain[i, 1] = micro_problem_list[i].current_radius
comm.barrier()
#%%
### Finally update the effective parameters and save solution
effective_data = comm.gather(data_for_macro_domain, root=0)
if rank == 0:
effective_data = np.concatenate(effective_data[1:])
average_temp_fn.vector().set_local(effective_data[:, 0] / rho_micro)
radius_fn.vector().set_local(effective_data[:, 1])
## Update effective data
if counter == 0: # at reference always use quadratic interpolation and high res
eff_cond_array = np.load(f"{path_to_data_folder}/higher_res_effective_conductivity_res_{cond_res}.npy")
new_values = interpolate_conductivity(radius_fn.vector().get_local(),
eff_cond_array[:, 0],
eff_cond_array[:, 1],
False, True)
else:
new_values = interpolate_conductivity(radius_fn.vector().get_local(),
eff_cond_array[:, 0],
eff_cond_array[:, 1],
use_linear_interpolation,
use_quadratic_interpolation)
effective_cond_fn.vector().set_local(new_values)
old_effective_density_fn.assign(effective_density_fn)
micro_cell_volume = np.pi * radius_fn.vector().get_local()**2
effective_density_fn.vector().set_local(1.0 - micro_cell_volume)
if counter == 0:
#print(assemble(sol_fn * dx))
fine_sol_list.append(sol_fn.copy(True))
fine_radius_list.append(radius_fn.copy(True))
time_list.append(t_n)
else:
#print(time_counter, assemble(fine_sol_list[time_counter] * dx))
current_error = np.sqrt(assemble(inner(sol_fn - fine_sol_list[time_counter],
sol_fn - fine_sol_list[time_counter]) * dx_macro))
error_list[counter - 1].append(current_error)
current_grad_error = np.sqrt(assemble(inner(grad(sol_fn - fine_sol_list[time_counter]),
grad(sol_fn - fine_sol_list[time_counter])) * dx_macro))
grad_error_list[counter - 1].append(current_grad_error)
radius_error = np.sqrt(assemble(inner(radius_fn - fine_radius_list[time_counter],
radius_fn - fine_radius_list[time_counter]) * dx))
radius_error_list[counter - 1].append(radius_error)
error_from_micro_domain = np.zeros((1, 2)) # dummy
else:
if counter == 0:
fine_sol_list_micro.append([])
for i in range(dofs_macro_local):
fine_sol_list_micro[-1].append(micro_problem_list[i].theta_old.copy(True))
else:
error_from_micro_domain = np.zeros((dofs_macro_local, 2))
for i in range(dofs_macro_local):
current_diff = micro_problem_list[i].theta_old - fine_sol_list_micro[time_counter][i]
error_from_micro_domain[i, 0] = \
assemble(inner(current_diff, current_diff) * micro_problem_list[i].dx_micro)
error_from_micro_domain[i, 1] = \
assemble(inner(grad(current_diff),
grad(current_diff)) * micro_problem_list[i].dx_micro)
comm.barrier()
if counter > 0:
micro_error = comm.gather(error_from_micro_domain, root=0)
if rank == 0:
micro_error = np.concatenate(micro_error[1:])
# First function error:
helper_error_fn.vector().set_local(micro_error[:, 0])
error_list_micro[counter - 1].append(np.sqrt(assemble(helper_error_fn * dx_macro)))
# Next gradient error:
helper_error_fn.vector().set_local(micro_error[:, 1])
grad_error_list_micro[counter - 1].append(np.sqrt(assemble(helper_error_fn * dx_macro)))
print("Updating cells and saving took:", time.time() - start_time)
comm.barrier()
first_time_step = False
time_counter += 1
if rank==0:
if use_quadratic_interpolation:
save_path = "quadratic"
elif use_linear_interpolation:
save_path = "linear"
else:
save_path = "pwc"
error_list = np.array(error_list)
np.save(f"{path_to_save_folder}/h_error_micro_{save_path}", error_list_micro)
np.save(f"{path_to_save_folder}/h_grad_error_micro_{save_path}", grad_error_list_micro)
np.save(f"{path_to_save_folder}/h_error_{save_path}", error_list)
np.save(f"{path_to_save_folder}/h_grad_error_{save_path}", grad_error_list)
np.save(f"{path_to_save_folder}/time_list_{save_path}", np.array(time_list))
np.save(f"{path_to_save_folder}/radius_error_{save_path}", np.array(radius_error_list))