forked from lucidrains/DALLE-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_dalle.py
378 lines (284 loc) · 10.5 KB
/
train_dalle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import argparse
from random import choice
from pathlib import Path
# torch
import torch
from torch.nn.utils import clip_grad_norm_
from torch.optim import Adam
from torch.optim.lr_scheduler import ReduceLROnPlateau
# vision imports
from PIL import Image
from torchvision import transforms as T
from torch.utils.data import DataLoader, Dataset
from torchvision.datasets import ImageFolder
from torchvision.utils import make_grid, save_image
# dalle related classes and utils
from dalle_pytorch import distributed_utils
from dalle_pytorch import OpenAIDiscreteVAE, VQGanVAE1024, DiscreteVAE, DALLE
from dalle_pytorch.simple_tokenizer import tokenize, tokenizer, VOCAB_SIZE
# argument parsing
parser = argparse.ArgumentParser()
group = parser.add_mutually_exclusive_group(required = False)
group.add_argument('--vae_path', type = str,
help='path to your trained discrete VAE')
group.add_argument('--dalle_path', type = str,
help='path to your partially trained DALL-E')
parser.add_argument('--image_text_folder', type = str, required = True,
help='path to your folder of images and text for learning the DALL-E')
parser.add_argument('--truncate_captions', dest='truncate_captions',
help='Captions passed in which exceed the max token length will be truncated if this is set.')
parser.add_argument('--taming', dest='taming', action='store_true')
parser.add_argument('--fp16', action='store_true')
parser = distributed_utils.wrap_arg_parser(parser)
args = parser.parse_args()
# helpers
def exists(val):
return val is not None
# constants
VAE_PATH = args.vae_path
DALLE_PATH = args.dalle_path
RESUME = exists(DALLE_PATH)
EPOCHS = 20
BATCH_SIZE = 4
LEARNING_RATE = 3e-4
GRAD_CLIP_NORM = 0.5
MODEL_DIM = 512
TEXT_SEQ_LEN = 256
DEPTH = 2
HEADS = 4
DIM_HEAD = 64
REVERSIBLE = True
LOSS_IMG_WEIGHT = 7
LR_DECAY = False
# initialize distributed backend
distr_backend = distributed_utils.set_backend_from_args(args)
distr_backend.initialize()
using_deepspeed = \
distributed_utils.using_backend(distributed_utils.DeepSpeedBackend)
# reconstitute vae
if RESUME:
dalle_path = Path(DALLE_PATH)
assert dalle_path.exists(), 'DALL-E model file does not exist'
loaded_obj = torch.load(str(dalle_path), map_location='cpu')
dalle_params, vae_params, weights = loaded_obj['hparams'], loaded_obj['vae_params'], loaded_obj['weights']
if vae_params is not None:
vae = DiscreteVAE(**vae_params)
else:
vae_klass = OpenAIDiscreteVAE if not args.taming else VQGanVAE1024
vae = vae_klass()
dalle_params = dict(
**dalle_params
)
IMAGE_SIZE = vae.image_size
else:
if exists(VAE_PATH):
vae_path = Path(VAE_PATH)
assert vae_path.exists(), 'VAE model file does not exist'
loaded_obj = torch.load(str(vae_path))
vae_params, weights = loaded_obj['hparams'], loaded_obj['weights']
vae = DiscreteVAE(**vae_params)
vae.load_state_dict(weights)
else:
if distr_backend.is_root_worker():
print('using pretrained VAE for encoding images to tokens')
vae_params = None
vae_klass = OpenAIDiscreteVAE if not args.taming else VQGanVAE1024
vae = vae_klass()
IMAGE_SIZE = vae.image_size
dalle_params = dict(
num_text_tokens = VOCAB_SIZE,
text_seq_len = TEXT_SEQ_LEN,
dim = MODEL_DIM,
depth = DEPTH,
heads = HEADS,
dim_head = DIM_HEAD,
reversible = REVERSIBLE,
loss_img_weight = LOSS_IMG_WEIGHT
)
# configure OpenAI VAE for float16s
if isinstance(vae, OpenAIDiscreteVAE) and args.fp16:
vae.enc.blocks.output.conv.use_float16 = True
# helpers
def save_model(path):
if not distr_backend.is_root_worker():
return
save_obj = {
'hparams': dalle_params,
'vae_params': vae_params,
'weights': dalle.state_dict()
}
torch.save(save_obj, path)
def group_weight(model):
group_decay, group_no_decay = [], []
for params in model.named_parameters():
if 'transformer' in params[0]:
if 'bias' in params[0] or 'norm' in params[0]:
group_no_decay.append(params[1])
continue
group_decay.append(params[1])
assert len(list(model.parameters())) == len(group_decay) + len(group_no_decay)
groups = [dict(params=group_decay), dict(params=group_no_decay, weight_decay=.0)]
return groups
# dataset loading
class TextImageDataset(Dataset):
def __init__(self, folder, text_len = 256, image_size = 128):
super().__init__()
path = Path(folder)
text_files = [*path.glob('**/*.txt')]
image_files = [
*path.glob('**/*.png'),
*path.glob('**/*.jpg'),
*path.glob('**/*.jpeg'),
*path.glob('**/*.bmp')
]
text_files = {t.stem: t for t in text_files}
image_files = {i.stem: i for i in image_files}
keys = (image_files.keys() & text_files.keys())
self.keys = list(keys)
self.text_files = {k: v for k, v in text_files.items() if k in keys}
self.image_files = {k: v for k, v in image_files.items() if k in keys}
self.text_len = text_len
self.image_tranform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.RandomResizedCrop(image_size, scale = (0.6, 1.), ratio = (1., 1.)),
T.ToTensor()
])
def __len__(self):
return len(self.keys)
def __getitem__(self, ind):
key = self.keys[ind]
text_file = self.text_files[key]
image_file = self.image_files[key]
image = Image.open(image_file)
descriptions = text_file.read_text().split('\n')
descriptions = list(filter(lambda t: len(t) > 0, descriptions))
description = choice(descriptions)
tokenized_text = tokenize(description, self.text_len, truncate_text=args.truncate_captions).squeeze(0)
image_tensor = self.image_tranform(image)
return tokenized_text, image_tensor
# create dataset and dataloader
ds = TextImageDataset(
args.image_text_folder,
text_len = TEXT_SEQ_LEN,
image_size = IMAGE_SIZE
)
assert len(ds) > 0, 'dataset is empty'
if distr_backend.is_root_worker():
print(f'{len(ds)} image-text pairs found for training')
if distributed_utils.using_backend(distributed_utils.HorovodBackend):
data_sampler = torch.utils.data.distributed.DistributedSampler(
ds, num_replicas=distr_backend.get_world_size(),
rank=distr_backend.get_rank())
else:
data_sampler = None
dl = DataLoader(ds, batch_size = BATCH_SIZE, shuffle = not data_sampler,
drop_last = True, sampler=data_sampler)
# initialize DALL-E
dalle = DALLE(vae = vae, **dalle_params)
if args.fp16:
dalle = dalle.half()
dalle = dalle.cuda()
if RESUME:
dalle.load_state_dict(weights)
# optimizer
opt = Adam(dalle.parameters(), lr = LEARNING_RATE)
if LR_DECAY:
scheduler = ReduceLROnPlateau(
opt,
mode = "min",
factor = 0.5,
patience = 10,
cooldown = 10,
min_lr = 1e-6,
verbose = True,
)
if distr_backend.is_root_worker():
# experiment tracker
import wandb
model_config = dict(
depth = DEPTH,
heads = HEADS,
dim_head = DIM_HEAD
)
run = wandb.init(
project = 'dalle_train_transformer',
resume = RESUME,
config = model_config,
)
# distribute
distr_backend.check_batch_size(BATCH_SIZE)
deepspeed_config = {
'train_batch_size': BATCH_SIZE,
'gradient_clipping': GRAD_CLIP_NORM,
'fp16': {
'enabled': args.fp16,
},
}
(distr_dalle, opt, dl, scheduler) = distr_backend.distribute(
args=args,
model=dalle,
optimizer=opt,
model_parameters=dalle.parameters(),
training_data=ds if using_deepspeed else dl,
lr_scheduler=scheduler if LR_DECAY else None,
config_params=deepspeed_config,
)
avoid_model_calls = using_deepspeed and args.fp16
# training
torch.cuda.empty_cache() # Avoid allocation error due to potential bug in deepspeed. See https://github.com/lucidrains/DALLE-pytorch/issues/161
for epoch in range(EPOCHS):
for i, (text, images) in enumerate(dl):
if args.fp16:
images = images.half()
text, images = map(lambda t: t.cuda(), (text, images))
loss = distr_dalle(text, images, return_loss = True)
if using_deepspeed:
distr_dalle.backward(loss)
distr_dalle.step()
# Gradients are automatically zeroed after the step
else:
loss.backward()
clip_grad_norm_(distr_dalle.parameters(), GRAD_CLIP_NORM)
opt.step()
opt.zero_grad()
# Collective loss, averaged
avg_loss = distr_backend.average_all(loss)
if distr_backend.is_root_worker():
log = {}
if i % 10 == 0:
print(epoch, i, f'loss - {avg_loss.item()}')
log = {
**log,
'epoch': epoch,
'iter': i,
'loss': avg_loss.item()
}
if i % 100 == 0:
sample_text = text[:1]
token_list = sample_text.masked_select(sample_text != 0).tolist()
decoded_text = tokenizer.decode(token_list)
if not avoid_model_calls:
# CUDA index errors when we don't guard this
image = dalle.generate_images(text[:1], filter_thres = 0.9) # topk sampling at 0.9
save_model(f'./dalle.pt')
wandb.save(f'./dalle.pt')
log = {
**log,
}
if not avoid_model_calls:
log['image'] = wandb.Image(image, caption = decoded_text)
wandb.log(log)
if LR_DECAY:
scheduler.step(loss)
if distr_backend.is_root_worker():
# save trained model to wandb as an artifact every epoch's end
model_artifact = wandb.Artifact('trained-dalle', type = 'model', metadata = dict(model_config))
model_artifact.add_file('dalle.pt')
run.log_artifact(model_artifact)
if distr_backend.is_root_worker():
save_model(f'./dalle-final.pt')
wandb.save('./dalle-final.pt')
model_artifact = wandb.Artifact('trained-dalle', type = 'model', metadata = dict(model_config))
model_artifact.add_file('dalle-final.pt')
run.log_artifact(model_artifact)
wandb.finish()