-
Notifications
You must be signed in to change notification settings - Fork 31
/
visualize_flow.py
97 lines (88 loc) · 5.17 KB
/
visualize_flow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import argparse
import os
import pandas as pd
import glob
import numpy as np
import cv2 as cv
from lib.data_formats.read_events import read_memmap_events, read_h5_events_dict
if __name__ == "__main__":
"""
Quick demo
"""
parser = argparse.ArgumentParser()
parser.add_argument("path", help="events path")
parser.add_argument("flow_path", help="flow path")
parser.add_argument("--output_path", type=str, default="/tmp/visualization", help="Where to save image outputs")
parser.add_argument('--plot_method', default='between_frames', type=str,
help='which method should be used to visualize',
choices=['between_frames', 'k_events', 't_seconds'])
parser.add_argument('--w_width', type=float, default=0.01,
help='new plot is formed every t seconds (required if voxel_method is t_seconds)')
parser.add_argument('--sw_width', type=float,
help='sliding_window size in seconds (required if voxel_method is t_seconds)')
parser.add_argument("--num_bins", type=int, default=6, help="How many bins voxels should have.")
parser.add_argument('--show_plot', action='store_true', help='If true, will also display the plot in an interactive window.\
Useful for selecting the desired orientation.')
parser.add_argument("--num_show", type=int, default=-1, help="How many events to show per plot. If -1, show all events.")
parser.add_argument("--event_size", type=float, default=2, help="Marker size of the plotted events")
parser.add_argument("--ts_scale", type=int, default=10000, help="Scales the time axis. Only applicable for mayavi rendering.")
parser.add_argument("--elev", type=float, default=0, help="Elevation of plot")
parser.add_argument("--azim", type=float, default=45, help="Azimuth of plot")
parser.add_argument("--stride", type=int, default=1, help="Downsample stride for plotted images.")
parser.add_argument("--skip_frames", type=int, default=1, help="Amount of frames to place per plot.")
parser.add_argument("--start_frame", type=int, default=0, help="On which frame to start.")
parser.add_argument('--hide_skipped', action='store_true', help='Do not draw skipped frames into plot.')
parser.add_argument('--hide_events', action='store_true', help='Do not draw events')
parser.add_argument('--hide_frames', action='store_true', help='Do not draw frames')
parser.add_argument('--show_axes', action='store_true', help='Draw axes')
parser.add_argument("--num_compress", type=int, default=0, help="How many events to draw compressed. If 'auto'\
will automatically determine.", choices=['value', 'auto'])
parser.add_argument('--compress_front', action='store_true', help='If set, will put the compressed events at the _start_\
of the event volume, rather than the back.')
parser.add_argument('--invert', action='store_true', help='If the figure is for a black background, you can invert the \
colors for better visibility.')
parser.add_argument("--crop", type=str, default=None, help="Set a crop of both images and events. Uses 'imagemagick' \
syntax, eg for a crop of 10x20 starting from point 30,40 use: 10x20+30+40.")
parser.add_argument("--renderer", type=str, default="matplotlib", help="Which renderer to use (mayavi is faster)", choices=["matplotlib", "mayavi"])
args = parser.parse_args()
events = read_h5_events_dict(args.path)
xs = events['xs']
ys = events['ys']
ts = events['ts']
ps = events['ps']
t0 = ts[0]
ts = ts-t0
frames = [np.flip(np.flip(x/255., axis=0), axis=1) for x in events['frames']]
frame_ts = events['frame_timestamps'][1:]-t0
frame_end = events['frame_event_indices'][1:]
frame_start = np.concatenate((np.array([0]), frame_end))
frame_idx = np.stack((frame_end, frame_start[0:-1]), axis=1)
ys = frames[0].shape[0]-ys
xs = frames[0].shape[1]-xs
flow_paths = sorted(glob.glob(os.path.join(args.flow_path, "*.npy")))
flow_img_paths = sorted(glob.glob(os.path.join(args.flow_path, "*.png")))
flow_ts = pd.read_csv(os.path.join(args.flow_path, "timestamps.txt"), delimiter=" ", names=["fname", "timestamp"])
flow_ts = np.array(flow_ts["timestamp"])
#flows = [-np.flip(np.flip(np.load(fp), axis=1), axis=2) for fp in flow_paths]
flows = [-np.load(fp) for fp in flow_paths]
flow_imgs = [cv.imread(fi) for fi in flow_img_paths]
print("Loaded {} flow, {} img, {} ts".format(len(flows), len(flow_imgs), len(flow_ts)))
if args.plot_method == 'between_frames':
if args.renderer == "mayavi":
print(args.renderer)
pass
elif args.renderer == "matplotlib":
from lib.visualization.draw_flow import plot_between_frames
plot_between_frames(xs, ys, ts, ps, flows, flow_imgs, flow_ts, args)
print(args.renderer)
pass
elif args.plot_method == 'k_events':
print(args.renderer)
pass
elif args.plot_method == 't_seconds':
if args.renderer == "mayavi":
print(args.renderer)
pass
elif args.renderer == "matplotlib":
print(args.renderer)
pass