-
Notifications
You must be signed in to change notification settings - Fork 31
/
manifest.json
128 lines (128 loc) · 5.78 KB
/
manifest.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
{
"title": "Torsk",
"description": "Implementation of http://arxiv.org/abs/1909.01709",
"inputDimensionality": "multivariate",
"version": "0.3.0",
"authors": "Niklas Heim, James E. Avery",
"language": "Python",
"type": "Detector",
"mainFile": "algorithm.py",
"learningType": "unsupervised",
"executionStep": {
"parameters": [
{
"name": "input_map_size",
"type": "int",
"defaultValue": 100,
"optional": "true",
"description": "Size of the random weight preprocessing latent space. `input_map_size` must be larger than or equal to `context_window_size`!"
},
{
"name": "input_map_scale",
"type": "float",
"defaultValue": 0.125,
"optional": "true",
"description": "Feature scaling of the random weight preprocessing."
},
{
"name": "context_window_size",
"type": "int",
"defaultValue": 10,
"optional": "true",
"description": "Size of a tumbling window used to encode the time series into a 2D (image-based) representation, called slices"
},
{
"name": "train_window_size",
"type": "int",
"defaultValue": 50,
"optional": "true",
"description": "Torsk creates the input subsequences by sliding a window of size `train_window_size + prediction_window_size + 1` over the slices with shape (context_window_size, dim). `train_window_size` represents the size of the input windows for training and prediction"
},
{
"name": "prediction_window_size",
"type": "int",
"defaultValue": 20,
"optional": "true",
"description": "Torsk creates the input subsequences by sliding a window of size `train_window_size + prediction_window_size + 1` over the slices with shape (context_window_size, dim). `prediction_window_size` represents the size of the ESN predictions, should be `min_anomaly_length < prediction_window_size < 10 * min_anomaly_length`"
},
{
"name": "transient_window_size",
"type": "int",
"defaultValue": 10,
"optional": "true",
"description": "Just a part of the training window, the first `transient_window_size` slices, are used for the ESN optimization."
},
{
"name": "spectral_radius",
"type": "float",
"defaultValue": 2.0,
"optional": "true",
"description": "ESN hyperparameter that determines the influence of previous internal ESN state on the next one. `spectral_radius > 1.0` increases non-linearity, but decreases short-term-memory capacity (maximized at 1.0)"
},
{
"name": "density",
"type": "float",
"defaultValue": 0.01,
"optional": "true",
"description": "Density of the ESN cell, where approx. `density` percent of elements being non-zero"
},
{
"name": "reservoir_representation",
"type": "enum[sparse,dense]",
"defaultValue": "sparse",
"optional": "true",
"description": "Representation of the ESN reservoirs. `sparse` is significantly faster than `dense`"
},
{
"name": "imed_loss",
"type": "boolean",
"defaultValue": false,
"optional": "true",
"description": "Calculate loss on spatially aware (image-based) data representation instead of flat arrays"
},
{
"name": "train_method",
"type": "enum[pinv_lstsq,pinv_svd,tikhonov]",
"defaultValue": "pinv_svd",
"optional": "true",
"description": "Solver used to train the ESN. `tikhonov` - linear solver with tikhonov regularization, `pinv_lstsq` - exact least-squares-solver that may lead to a numerical blowup, `pinv_svd` - SVD-based least-squares-solver that is highly numerically stable, but approximate"
},
{
"name": "tikhonov_beta",
"type": "float",
"defaultValue": null,
"optional": "true",
"description": "Parameter of the Tikhonov regularization term when `train_method = tikhonov` is used."
},
{
"name": "verbose",
"type": "int",
"defaultValue": 2,
"optional": "true",
"description": "Controls the logging output"
},
{
"name": "scoring_small_window_size",
"type": "int",
"defaultValue": 10,
"optional": "true",
"description": "Size of the smaller of two windows slid over the prediction errors to calculate the final anomaly scores."
},
{
"name": "scoring_large_window_size",
"type": "int",
"defaultValue": 100,
"optional": "true",
"description": "Size of the larger of two windows slid over the prediction errors to calculate the final anomaly scores."
},
{
"name": "random_state",
"type": "int",
"defaultValue": 42,
"optional": "true",
"description": "Seed for random number generation."
}
],
"modelInput": "none"
}
}