forked from erigontech/erigon
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstate_transition.go
493 lines (438 loc) · 16.9 KB
/
state_transition.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package core
import (
"fmt"
"github.com/holiman/uint256"
libcommon "github.com/ledgerwatch/erigon-lib/common"
"github.com/ledgerwatch/erigon-lib/txpool/txpoolcfg"
types2 "github.com/ledgerwatch/erigon-lib/types"
cmath "github.com/ledgerwatch/erigon/common/math"
"github.com/ledgerwatch/erigon/common/u256"
"github.com/ledgerwatch/erigon/core/vm"
"github.com/ledgerwatch/erigon/core/vm/evmtypes"
"github.com/ledgerwatch/erigon/crypto"
"github.com/ledgerwatch/erigon/params"
)
var emptyCodeHash = crypto.Keccak256Hash(nil)
/*
The State Transitioning Model
A state transition is a change made when a transaction is applied to the current world state
The state transitioning model does all the necessary work to work out a valid new state root.
1) Nonce handling
2) Pre pay gas
3) Create a new state object if the recipient is \0*32
4) Value transfer
== If contract creation ==
4a) Attempt to run transaction data
4b) If valid, use result as code for the new state object
== end ==
5) Run Script section
6) Derive new state root
*/
type StateTransition struct {
gp *GasPool
msg Message
gasRemaining uint64
gasPrice *uint256.Int
gasFeeCap *uint256.Int
tip *uint256.Int
initialGas uint64
value *uint256.Int
data []byte
state evmtypes.IntraBlockState
evm *vm.EVM
//some pre-allocated intermediate variables
sharedBuyGas *uint256.Int
sharedBuyGasBalance *uint256.Int
isBor bool
}
// Message represents a message sent to a contract.
type Message interface {
From() libcommon.Address
To() *libcommon.Address
GasPrice() *uint256.Int
FeeCap() *uint256.Int
Tip() *uint256.Int
Gas() uint64
BlobGas() uint64
MaxFeePerBlobGas() *uint256.Int
Value() *uint256.Int
Nonce() uint64
CheckNonce() bool
Data() []byte
AccessList() types2.AccessList
BlobHashes() []libcommon.Hash
IsFree() bool
}
// ExecutionResult includes all output after executing given evm
// message no matter the execution itself is successful or not.
type ExecutionResult struct {
UsedGas uint64 // Total used gas but include the refunded gas
Err error // Any error encountered during the execution(listed in core/vm/errors.go)
ReturnData []byte // Returned data from evm(function result or data supplied with revert opcode)
}
// Unwrap returns the internal evm error which allows us for further
// analysis outside.
func (result *ExecutionResult) Unwrap() error {
return result.Err
}
// Failed returns the indicator whether the execution is successful or not
func (result *ExecutionResult) Failed() bool { return result.Err != nil }
// Return is a helper function to help caller distinguish between revert reason
// and function return. Return returns the data after execution if no error occurs.
func (result *ExecutionResult) Return() []byte {
if result.Err != nil {
return nil
}
return libcommon.CopyBytes(result.ReturnData)
}
// Revert returns the concrete revert reason if the execution is aborted by `REVERT`
// opcode. Note the reason can be nil if no data supplied with revert opcode.
func (result *ExecutionResult) Revert() []byte {
if result.Err != vm.ErrExecutionReverted {
return nil
}
return libcommon.CopyBytes(result.ReturnData)
}
// IntrinsicGas computes the 'intrinsic gas' for a message with the given data.
func IntrinsicGas(data []byte, accessList types2.AccessList, isContractCreation bool, isHomestead, isEIP2028, isEIP3860 bool) (uint64, error) {
// Zero and non-zero bytes are priced differently
dataLen := uint64(len(data))
dataNonZeroLen := uint64(0)
for _, byt := range data {
if byt != 0 {
dataNonZeroLen++
}
}
gas, status := txpoolcfg.CalcIntrinsicGas(dataLen, dataNonZeroLen, accessList, isContractCreation, isHomestead, isEIP2028, isEIP3860)
if status != txpoolcfg.Success {
return 0, ErrGasUintOverflow
}
return gas, nil
}
// NewStateTransition initialises and returns a new state transition object.
func NewStateTransition(evm *vm.EVM, msg Message, gp *GasPool) *StateTransition {
isBor := evm.ChainConfig().Bor != nil
return &StateTransition{
gp: gp,
evm: evm,
msg: msg,
gasPrice: msg.GasPrice(),
gasFeeCap: msg.FeeCap(),
tip: msg.Tip(),
value: msg.Value(),
data: msg.Data(),
state: evm.IntraBlockState(),
sharedBuyGas: uint256.NewInt(0),
sharedBuyGasBalance: uint256.NewInt(0),
isBor: isBor,
}
}
// ApplyMessage computes the new state by applying the given message
// against the old state within the environment.
//
// ApplyMessage returns the bytes returned by any EVM execution (if it took place),
// the gas used (which includes gas refunds) and an error if it failed. An error always
// indicates a core error meaning that the message would always fail for that particular
// state and would never be accepted within a block.
// `refunds` is false when it is not required to apply gas refunds
// `gasBailout` is true when it is not required to fail transaction if the balance is not enough to pay gas.
// for trace_call to replicate OE/Parity behaviour
func ApplyMessage(evm *vm.EVM, msg Message, gp *GasPool, refunds bool, gasBailout bool) (*ExecutionResult, error) {
return NewStateTransition(evm, msg, gp).TransitionDb(refunds, gasBailout)
}
// to returns the recipient of the message.
func (st *StateTransition) to() libcommon.Address {
if st.msg == nil || st.msg.To() == nil /* contract creation */ {
return libcommon.Address{}
}
return *st.msg.To()
}
func (st *StateTransition) buyGas(gasBailout bool) error {
gasVal := st.sharedBuyGas
gasVal.SetUint64(st.msg.Gas())
gasVal, overflow := gasVal.MulOverflow(gasVal, st.gasPrice)
if overflow {
return fmt.Errorf("%w: address %v", ErrInsufficientFunds, st.msg.From().Hex())
}
// compute blob fee for eip-4844 data blobs if any
blobGasVal := new(uint256.Int)
if st.evm.ChainRules().IsCancun {
blobGasPrice := st.evm.Context.BlobBaseFee
if blobGasPrice == nil {
return fmt.Errorf("%w: Cancun is active but ExcessBlobGas is nil", ErrInternalFailure)
}
blobGasVal, overflow = blobGasVal.MulOverflow(blobGasPrice, new(uint256.Int).SetUint64(st.msg.BlobGas()))
if overflow {
return fmt.Errorf("%w: overflow converting blob gas: %v", ErrInsufficientFunds, blobGasVal)
}
if err := st.gp.SubBlobGas(st.msg.BlobGas()); err != nil {
return err
}
}
balanceCheck := gasVal
if st.gasFeeCap != nil {
balanceCheck = st.sharedBuyGasBalance.SetUint64(st.msg.Gas())
balanceCheck, overflow = balanceCheck.MulOverflow(balanceCheck, st.gasFeeCap)
if overflow {
return fmt.Errorf("%w: address %v", ErrInsufficientFunds, st.msg.From().Hex())
}
balanceCheck, overflow = balanceCheck.AddOverflow(balanceCheck, st.value)
if overflow {
return fmt.Errorf("%w: address %v", ErrInsufficientFunds, st.msg.From().Hex())
}
if st.evm.ChainRules().IsCancun {
maxBlobFee, overflow := new(uint256.Int).MulOverflow(st.msg.MaxFeePerBlobGas(), new(uint256.Int).SetUint64(st.msg.BlobGas()))
if overflow {
return fmt.Errorf("%w: address %v", ErrInsufficientFunds, st.msg.From().Hex())
}
balanceCheck, overflow = balanceCheck.AddOverflow(balanceCheck, maxBlobFee)
if overflow {
return fmt.Errorf("%w: address %v", ErrInsufficientFunds, st.msg.From().Hex())
}
}
}
var subBalance = false
if have, want := st.state.GetBalance(st.msg.From()), balanceCheck; have.Cmp(want) < 0 {
if !gasBailout {
return fmt.Errorf("%w: address %v have %v want %v", ErrInsufficientFunds, st.msg.From().Hex(), have, want)
}
} else {
subBalance = true
}
if err := st.gp.SubGas(st.msg.Gas()); err != nil {
if !gasBailout {
return err
}
}
st.gasRemaining += st.msg.Gas()
st.initialGas = st.msg.Gas()
if subBalance {
st.state.SubBalance(st.msg.From(), gasVal)
st.state.SubBalance(st.msg.From(), blobGasVal)
}
return nil
}
func CheckEip1559TxGasFeeCap(from libcommon.Address, gasFeeCap, tip, baseFee *uint256.Int, isFree bool) error {
if gasFeeCap.Lt(tip) {
return fmt.Errorf("%w: address %v, tip: %s, gasFeeCap: %s", ErrTipAboveFeeCap,
from.Hex(), tip, gasFeeCap)
}
if baseFee != nil && gasFeeCap.Lt(baseFee) && !isFree {
return fmt.Errorf("%w: address %v, gasFeeCap: %s baseFee: %s", ErrFeeCapTooLow,
from.Hex(), gasFeeCap, baseFee)
}
return nil
}
// DESCRIBED: docs/programmers_guide/guide.md#nonce
func (st *StateTransition) preCheck(gasBailout bool) error {
// Make sure this transaction's nonce is correct.
if st.msg.CheckNonce() {
stNonce := st.state.GetNonce(st.msg.From())
if msgNonce := st.msg.Nonce(); stNonce < msgNonce {
return fmt.Errorf("%w: address %v, tx: %d state: %d", ErrNonceTooHigh,
st.msg.From().Hex(), msgNonce, stNonce)
} else if stNonce > msgNonce {
return fmt.Errorf("%w: address %v, tx: %d state: %d", ErrNonceTooLow,
st.msg.From().Hex(), msgNonce, stNonce)
} else if stNonce+1 < stNonce {
return fmt.Errorf("%w: address %v, nonce: %d", ErrNonceMax,
st.msg.From().Hex(), stNonce)
}
// Make sure the sender is an EOA (EIP-3607)
if codeHash := st.state.GetCodeHash(st.msg.From()); codeHash != emptyCodeHash && codeHash != (libcommon.Hash{}) {
// libcommon.Hash{} means that the sender is not in the state.
// Historically there were transactions with 0 gas price and non-existing sender,
// so we have to allow that.
return fmt.Errorf("%w: address %v, codehash: %s", ErrSenderNoEOA,
st.msg.From().Hex(), codeHash)
}
}
// Make sure the transaction gasFeeCap is greater than the block's baseFee.
if st.evm.ChainRules().IsLondon {
// Skip the checks if gas fields are zero and baseFee was explicitly disabled (eth_call)
if !st.evm.Config().NoBaseFee || !st.gasFeeCap.IsZero() || !st.tip.IsZero() {
if err := CheckEip1559TxGasFeeCap(st.msg.From(), st.gasFeeCap, st.tip, st.evm.Context.BaseFee, st.msg.IsFree()); err != nil {
return err
}
}
}
if st.msg.BlobGas() > 0 && st.evm.ChainRules().IsCancun {
blobGasPrice := st.evm.Context.BlobBaseFee
if blobGasPrice == nil {
return fmt.Errorf("%w: Cancun is active but ExcessBlobGas is nil", ErrInternalFailure)
}
maxFeePerBlobGas := st.msg.MaxFeePerBlobGas()
if blobGasPrice.Cmp(maxFeePerBlobGas) > 0 {
return fmt.Errorf("%w: address %v, maxFeePerBlobGas: %v < blobGasPrice: %v",
ErrMaxFeePerBlobGas, st.msg.From().Hex(), st.msg.MaxFeePerBlobGas(), blobGasPrice)
}
}
return st.buyGas(gasBailout)
}
// TransitionDb will transition the state by applying the current message and
// returning the evm execution result with following fields.
//
// - used gas:
// total gas used (including gas being refunded)
// - returndata:
// the returned data from evm
// - concrete execution error:
// various **EVM** error which aborts the execution,
// e.g. ErrOutOfGas, ErrExecutionReverted
//
// However if any consensus issue encountered, return the error directly with
// nil evm execution result.
func (st *StateTransition) TransitionDb(refunds bool, gasBailout bool) (*ExecutionResult, error) {
coinbase := st.evm.Context.Coinbase
var input1 *uint256.Int
var input2 *uint256.Int
if st.isBor {
input1 = st.state.GetBalance(st.msg.From()).Clone()
input2 = st.state.GetBalance(coinbase).Clone()
}
// First check this message satisfies all consensus rules before
// applying the message. The rules include these clauses
//
// 1. the nonce of the message caller is correct
// 2. caller has enough balance to cover transaction fee(gaslimit * gasprice)
// 3. the amount of gas required is available in the block
// 4. the purchased gas is enough to cover intrinsic usage
// 5. there is no overflow when calculating intrinsic gas
// 6. caller has enough balance to cover asset transfer for **topmost** call
// Check clauses 1-3 and 6, buy gas if everything is correct
if err := st.preCheck(gasBailout); err != nil {
return nil, err
}
if st.evm.Config().Debug {
st.evm.Config().Tracer.CaptureTxStart(st.initialGas)
defer func() {
st.evm.Config().Tracer.CaptureTxEnd(st.gasRemaining)
}()
}
msg := st.msg
sender := vm.AccountRef(msg.From())
contractCreation := msg.To() == nil
rules := st.evm.ChainRules()
vmConfig := st.evm.Config()
isEIP3860 := vmConfig.HasEip3860(rules)
// Check clauses 4-5, subtract intrinsic gas if everything is correct
gas, err := IntrinsicGas(st.data, st.msg.AccessList(), contractCreation, rules.IsHomestead, rules.IsIstanbul, isEIP3860)
if err != nil {
return nil, err
}
if st.gasRemaining < gas {
return nil, fmt.Errorf("%w: have %d, want %d", ErrIntrinsicGas, st.gasRemaining, gas)
}
st.gasRemaining -= gas
var bailout bool
// Gas bailout (for trace_call) should only be applied if there is not sufficient balance to perform value transfer
if gasBailout {
if !msg.Value().IsZero() && !st.evm.Context.CanTransfer(st.state, msg.From(), msg.Value()) {
bailout = true
}
}
// Check whether the init code size has been exceeded.
if isEIP3860 && contractCreation && len(st.data) > params.MaxInitCodeSize {
return nil, fmt.Errorf("%w: code size %v limit %v", ErrMaxInitCodeSizeExceeded, len(st.data), params.MaxInitCodeSize)
}
// Execute the preparatory steps for state transition which includes:
// - prepare accessList(post-berlin)
// - reset transient storage(eip 1153)
st.state.Prepare(rules, msg.From(), coinbase, msg.To(), vm.ActivePrecompiles(rules), msg.AccessList())
var (
ret []byte
vmerr error // vm errors do not effect consensus and are therefore not assigned to err
)
if contractCreation {
// The reason why we don't increment nonce here is that we need the original
// nonce to calculate the address of the contract that is being created
// It does get incremented inside the `Create` call, after the computation
// of the contract's address, but before the execution of the code.
ret, _, st.gasRemaining, vmerr = st.evm.Create(sender, st.data, st.gasRemaining, st.value)
} else {
// Increment the nonce for the next transaction
st.state.SetNonce(msg.From(), st.state.GetNonce(sender.Address())+1)
ret, st.gasRemaining, vmerr = st.evm.Call(sender, st.to(), st.data, st.gasRemaining, st.value, bailout)
}
if refunds {
if rules.IsLondon {
// After EIP-3529: refunds are capped to gasUsed / 5
st.refundGas(params.RefundQuotientEIP3529)
} else {
// Before EIP-3529: refunds were capped to gasUsed / 2
st.refundGas(params.RefundQuotient)
}
}
effectiveTip := st.gasPrice
if rules.IsLondon {
if st.gasFeeCap.Gt(st.evm.Context.BaseFee) {
effectiveTip = cmath.Min256(st.tip, new(uint256.Int).Sub(st.gasFeeCap, st.evm.Context.BaseFee))
} else {
effectiveTip = u256.Num0
}
}
amount := new(uint256.Int).SetUint64(st.gasUsed())
amount.Mul(amount, effectiveTip) // gasUsed * effectiveTip = how much goes to the block producer (miner, validator)
st.state.AddBalance(coinbase, amount)
if !msg.IsFree() && rules.IsLondon {
burntContractAddress := st.evm.ChainConfig().GetBurntContract(st.evm.Context.BlockNumber)
if burntContractAddress != nil {
burnAmount := new(uint256.Int).Mul(new(uint256.Int).SetUint64(st.gasUsed()), st.evm.Context.BaseFee)
st.state.AddBalance(*burntContractAddress, burnAmount)
}
}
if st.isBor {
// Deprecating transfer log and will be removed in future fork. PLEASE DO NOT USE this transfer log going forward. Parameters won't get updated as expected going forward with EIP1559
// add transfer log
output1 := input1.Clone()
output2 := input2.Clone()
AddFeeTransferLog(
st.state,
msg.From(),
coinbase,
amount,
input1,
input2,
output1.Sub(output1, amount),
output2.Add(output2, amount),
)
}
return &ExecutionResult{
UsedGas: st.gasUsed(),
Err: vmerr,
ReturnData: ret,
}, nil
}
func (st *StateTransition) refundGas(refundQuotient uint64) {
// Apply refund counter, capped to half of the used gas.
refund := st.gasUsed() / refundQuotient
if refund > st.state.GetRefund() {
refund = st.state.GetRefund()
}
st.gasRemaining += refund
// Return ETH for remaining gas, exchanged at the original rate.
remaining := new(uint256.Int).Mul(new(uint256.Int).SetUint64(st.gasRemaining), st.gasPrice)
st.state.AddBalance(st.msg.From(), remaining)
// Also return remaining gas to the block gas counter so it is
// available for the next transaction.
st.gp.AddGas(st.gasRemaining)
}
// gasUsed returns the amount of gas used up by the state transition.
func (st *StateTransition) gasUsed() uint64 {
return st.initialGas - st.gasRemaining
}