-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path5_plot_cv.R
85 lines (70 loc) · 3.21 KB
/
5_plot_cv.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
library(caret)
pdf("plots/cv_results.pdf")
# Confusion Matrix for Trait CV
trait.cv = read.csv("data/results/cv/loocv_traits.csv", stringsAsFactors = T)
cm = confusionMatrix(data = trait.cv$Prediction, reference = trait.cv$Treatment)
# Snippet taken from https://stackoverflow.com/questions/23891140/r-how-to-visualize-confusion-matrix-using-the-caret-package
draw_confusion_matrix <- function(cm) {
layout(matrix(c(1,1,2)))
par(mar=c(2,2,2,2))
plot(c(100, 345), c(300, 450), type = "n", xlab="", ylab="", xaxt='n', yaxt='n')
title('CONFUSION MATRIX', cex.main=2)
# create the matrix
rect(150, 430, 240, 370, col='#3F97D0')
text(195, 435, 'D', cex=1.2)
rect(250, 430, 340, 370, col='#F7AD50')
text(295, 435, 'WW', cex=1.2)
text(125, 370, 'Predicted', cex=1.3, srt=90, font=2)
text(245, 450, 'Actual', cex=1.3, font=2)
rect(150, 305, 240, 365, col='#F7AD50')
rect(250, 305, 340, 365, col='#3F97D0')
text(140, 400, 'D', cex=1.2, srt=90)
text(140, 335, 'WW', cex=1.2, srt=90)
# add in the cm results
res <- as.numeric(cm$table)
text(195, 400, res[1], cex=1.6, font=2, col='white')
text(195, 335, res[2], cex=1.6, font=2, col='white')
text(295, 400, res[3], cex=1.6, font=2, col='white')
text(295, 335, res[4], cex=1.6, font=2, col='white')
# add in the specifics
plot(c(100, 0), c(100, 0), type = "n", xlab="", ylab="", main = "DETAILS", xaxt='n', yaxt='n')
text(10, 85, names(cm$byClass[1]), cex=1.2, font=2)
text(10, 70, round(as.numeric(cm$byClass[1]), 3), cex=1.2)
text(30, 85, names(cm$byClass[2]), cex=1.2, font=2)
text(30, 70, round(as.numeric(cm$byClass[2]), 3), cex=1.2)
text(50, 85, names(cm$byClass[5]), cex=1.2, font=2)
text(50, 70, round(as.numeric(cm$byClass[5]), 3), cex=1.2)
text(70, 85, names(cm$byClass[6]), cex=1.2, font=2)
text(70, 70, round(as.numeric(cm$byClass[6]), 3), cex=1.2)
text(90, 85, names(cm$byClass[7]), cex=1.2, font=2)
text(90, 70, round(as.numeric(cm$byClass[7]), 3), cex=1.2)
# add in the accuracy information
text(30, 35, names(cm$overall[1]), cex=1.5, font=2)
text(30, 20, round(as.numeric(cm$overall[1]), 3), cex=1.4)
text(70, 35, names(cm$overall[2]), cex=1.5, font=2)
text(70, 20, round(as.numeric(cm$overall[2]), 3), cex=1.4)
}
draw_confusion_matrix(cm)
# Draw gene CVs
for(trait in list.files("data/results/cv/", pattern = "loocv_genes_*")) {
d = read.csv(paste0("data/results/cv/", trait))
plot(d$Prediction ~ d$Value, main = trait)
abline(lm(d$Prediction ~ d$Value))
cortest = cor.test(d$Value, d$Prediction)
rmse = RMSE(pred = d$Prediction, obs = d$Value)
nrmse = rmse/mean(d$Value) * 100
mae = MAE(pred = d$Prediction, obs = d$Value)
nmae = mae/mean(d$Value) * 100
plot(c(100, 0), c(100, 0), type = "n", xlab="", ylab="", main = "DETAILS", xaxt='n', yaxt='n')
text(10, 85, 'RMSE', cex=1.2, font=2)
text(10, 70, round(rmse, 3), cex=1.2)
text(30, 85, 'NRMSE', cex=1.2, font=2)
text(30, 70, paste0(round(nrmse, 1), " %"), cex=1.2)
text(50, 85, 'MAE', cex=1.2, font=2)
text(50, 70, round(mae, 3), cex=1.2)
text(70, 85, 'NMAE', cex=1.2, font=2)
text(70, 70, paste0(round(nmae, 1), " %"), cex=1.2)
text(50, 35, 'R^2', cex=1.2, font=2)
text(50, 20, round(cortest$estimate^2, 3), cex=1.2)
}
dev.off()