diff --git a/pycbc/inject/inject.py b/pycbc/inject/inject.py index adbc2211019..50e8d071b98 100644 --- a/pycbc/inject/inject.py +++ b/pycbc/inject/inject.py @@ -633,16 +633,16 @@ def make_strain_from_inj_object(self, inj, delta_t, detector_name, # systematics cal_errors = { - "H1": (0.03, 0), - "L1": (0.03, 0), - "V1": (0.035, 0) + "H1": (0.036, 0), + "L1": (0.056, 0), + "V1": (0, 0) } - cal_systematics = 1 - mu_log = np.log((cal_systematics**2)/(np.sqrt(cal_systematics**2 + cal_errors[detector_name][0]**2))) - sigma_log = np.sqrt(np.log(1+(cal_errors[detector_name][0]**2)/cal_systematics**2)) + cal_offset = 1 + mu_log = np.log((cal_offset**2)/(np.sqrt(cal_offset**2 + cal_errors[detector_name][0]**2))) + sigma_log = np.sqrt(np.log1p((cal_errors[detector_name][0]**2)/cal_offset**2)) cal_factor = np.random.lognormal(mu_log, sigma_log) - + #inj['coa_phase'] = np.vonmises(inj['coa_pahse'], cal_errors[detector_name][1]) if inj['approximant'] in fd_det: strain = get_td_det_waveform_from_fd_det( inj, delta_t=delta_t, f_lower=f_l, @@ -656,7 +656,7 @@ def make_strain_from_inj_object(self, inj, delta_t, detector_name, inj, hp, hc, distance_scale=distance_scale) #strain.coa_phase = np.vonmises(strain.coa_phase, cal_errors[detector_name][1]) - strain /= cal_factor + strain /= cal_factor return strain def end_times(self):