-
Notifications
You must be signed in to change notification settings - Fork 0
/
area_funcs.py
431 lines (363 loc) · 15.1 KB
/
area_funcs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
import area
from nc.nc import *
import math
import kurve_funcs
# some globals, to save passing variables as parameters too much
area_for_feed_possible = None
tool_radius_for_pocket = None
def cut_curve(curve, need_rapid, p, rapid_safety_space, current_start_depth, final_depth):
prev_p = p
first = True
for vertex in curve.getVertices():
if need_rapid and first:
# rapid across
rapid(vertex.p.x, vertex.p.y)
##rapid down
rapid(z = current_start_depth + rapid_safety_space)
#feed down
feed(z = final_depth)
first = False
else:
if vertex.type == 1:
arc_ccw(vertex.p.x, vertex.p.y, i = vertex.c.x, j = vertex.c.y)
elif vertex.type == -1:
arc_cw(vertex.p.x, vertex.p.y, i = vertex.c.x, j = vertex.c.y)
else:
feed(vertex.p.x, vertex.p.y)
prev_p = vertex.p
return prev_p
def area_distance(a, old_area):
best_dist = None
for curve in a.getCurves():
for vertex in curve.getVertices():
c = old_area.NearestPoint(vertex.p)
d = c.dist(vertex.p)
if best_dist == None or d < best_dist:
best_dist = d
for curve in old_area.getCurves():
for vertex in curve.getVertices():
c = a.NearestPoint(vertex.p)
d = c.dist(vertex.p)
if best_dist == None or d < best_dist:
best_dist = d
return best_dist
def make_obround(p0, p1, radius):
dir = p1 - p0
d = dir.length()
dir.normalize()
right = area.Point(dir.y, -dir.x)
obround = area.Area()
c = area.Curve()
vt0 = p0 + right * radius
vt1 = p1 + right * radius
vt2 = p1 - right * radius
vt3 = p0 - right * radius
c.append(area.Vertex(0, vt0, area.Point(0, 0)))
c.append(area.Vertex(0, vt1, area.Point(0, 0)))
c.append(area.Vertex(1, vt2, p1))
c.append(area.Vertex(0, vt3, area.Point(0, 0)))
c.append(area.Vertex(1, vt0, p0))
obround.append(c)
return obround
def feed_possible(p0, p1):
if p0 == p1:
return True
obround = make_obround(p0, p1, tool_radius_for_pocket)
a = area.Area(area_for_feed_possible)
obround.Subtract(a)
if obround.num_curves() > 0:
return False
return True
def cut_curvelist1(curve_list, rapid_safety_space, current_start_depth, depth, clearance_height, keep_tool_down_if_poss):
p = area.Point(0, 0)
first = True
for curve in curve_list:
need_rapid = True
if first == False:
s = curve.FirstVertex().p
if keep_tool_down_if_poss == True:
# see if we can feed across
if feed_possible(p, s):
need_rapid = False
elif s.x == p.x and s.y == p.y:
need_rapid = False
if need_rapid:
rapid(z = clearance_height)
p = cut_curve(curve, need_rapid, p, rapid_safety_space, current_start_depth, depth)
first = False
rapid(z = clearance_height)
def cut_curvelist2(curve_list, rapid_safety_space, current_start_depth, depth, clearance_height, keep_tool_down_if_poss,start_point):
p = area.Point(0, 0)
start_x,start_y=start_point
first = True
for curve in curve_list:
need_rapid = True
if first == True:
direction = "on";radius = 0.0;offset_extra = 0.0; roll_radius = 0.0;roll_on = 0.0; roll_off = 0.0; rapid_safety_space; step_down = math.fabs(depth);extend_at_start = 0.0;extend_at_end = 0.0
kurve_funcs.make_smaller( curve, start = area.Point(start_x,start_y))
kurve_funcs.profile(curve, direction, radius , offset_extra, roll_radius, roll_on, roll_off, rapid_safety_space , clearance_height, current_start_depth, step_down , depth, extend_at_start, extend_at_end)
else:
s = curve.FirstVertex().p
if keep_tool_down_if_poss == True:
# see if we can feed across
if feed_possible(p, s):
need_rapid = False
elif s.x == p.x and s.y == p.y:
need_rapid = False
cut_curve(curve, need_rapid, p, rapid_safety_space, current_start_depth, depth)
first = False #change to True if you want to rapid back to start side before zigging again with unidirectional set
rapid(z = clearance_height)
def recur(arealist, a1, stepover, from_center):
# this makes arealist by recursively offsetting a1 inwards
if a1.num_curves() == 0:
return
if from_center:
arealist.insert(0, a1)
else:
arealist.append(a1)
a_offset = area.Area(a1)
a_offset.Offset(stepover)
# split curves into new areas
if area.holes_linked():
for curve in a_offset.getCurves():
a2 = area.Area()
a2.append(curve)
recur(arealist, a2, stepover, from_center)
else:
# split curves into new areas
a_offset.Reorder()
a2 = None
for curve in a_offset.getCurves():
if curve.IsClockwise():
if a2 != None:
a2.append(curve)
else:
if a2 != None:
recur(arealist, a2, stepover, from_center)
a2 = area.Area()
a2.append(curve)
if a2 != None:
recur(arealist, a2, stepover, from_center)
def get_curve_list(arealist, reverse_curves = False):
curve_list = list()
for a in arealist:
for curve in a.getCurves():
if reverse_curves == True:
curve.Reverse()
curve_list.append(curve)
return curve_list
curve_list_for_zigs = []
rightward_for_zigs = True
sin_angle_for_zigs = 0.0
cos_angle_for_zigs = 1.0
sin_minus_angle_for_zigs = 0.0
cos_minus_angle_for_zigs = 1.0
one_over_units = 1.0
def make_zig_curve(curve, y0, y, zig_unidirectional):
if rightward_for_zigs:
curve.Reverse()
# find a high point to start looking from
high_point = None
for vertex in curve.getVertices():
if high_point == None:
high_point = vertex.p
elif vertex.p.y > high_point.y:
# use this as the new high point
high_point = vertex.p
elif math.fabs(vertex.p.y - high_point.y) < 0.002 * one_over_units:
# equal high point
if rightward_for_zigs:
# use the furthest left point
if vertex.p.x < high_point.x:
high_point = vertex.p
else:
# use the furthest right point
if vertex.p.x > high_point.x:
high_point = vertex.p
zig = area.Curve()
high_point_found = False
zig_started = False
zag_found = False
for i in range(0, 2): # process the curve twice because we don't know where it will start
prev_p = None
for vertex in curve.getVertices():
if zag_found: break
if prev_p != None:
if zig_started:
zig.append(unrotated_vertex(vertex))
if math.fabs(vertex.p.y - y) < 0.002 * one_over_units:
zag_found = True
break
elif high_point_found:
if math.fabs(vertex.p.y - y0) < 0.002 * one_over_units:
if zig_started:
zig.append(unrotated_vertex(vertex))
elif math.fabs(prev_p.y - y0) < 0.002 * one_over_units and vertex.type == 0:
zig.append(area.Vertex(0, unrotated_point(prev_p), area.Point(0, 0)))
zig.append(unrotated_vertex(vertex))
zig_started = True
elif vertex.p.x == high_point.x and vertex.p.y == high_point.y:
high_point_found = True
prev_p = vertex.p
if zig_started:
if zig_unidirectional == True:
# remove the last bit of zig
if math.fabs(zig.LastVertex().p.y - y) < 0.002 * one_over_units:
vertices = zig.getVertices()
while len(vertices) > 0:
v = vertices[len(vertices)-1]
if math.fabs(v.p.y - y0) < 0.002 * one_over_units:
break
else:
vertices.pop()
zig = area.Curve()
for v in vertices:
zig.append(v)
curve_list_for_zigs.append(zig)
def make_zig(a, y0, y, zig_unidirectional):
for curve in a.getCurves():
make_zig_curve(curve, y0, y, zig_unidirectional)
reorder_zig_list_list = []
def add_reorder_zig(curve):
global reorder_zig_list_list
# look in existing lists
s = curve.FirstVertex().p
for curve_list in reorder_zig_list_list:
last_curve = curve_list[len(curve_list) - 1]
e = last_curve.LastVertex().p
if math.fabs(s.x - e.x) < 0.002 * one_over_units and math.fabs(s.y - e.y) < 0.002 * one_over_units:
curve_list.append(curve)
return
# else add a new list
curve_list = []
curve_list.append(curve)
reorder_zig_list_list.append(curve_list)
def reorder_zigs():
global curve_list_for_zigs
global reorder_zig_list_list
reorder_zig_list_list = []
for curve in curve_list_for_zigs:
add_reorder_zig(curve)
curve_list_for_zigs = []
for curve_list in reorder_zig_list_list:
for curve in curve_list:
curve_list_for_zigs.append(curve)
def rotated_point(p):
return area.Point(p.x * cos_angle_for_zigs - p.y * sin_angle_for_zigs, p.x * sin_angle_for_zigs + p.y * cos_angle_for_zigs)
def unrotated_point(p):
return area.Point(p.x * cos_minus_angle_for_zigs - p.y * sin_minus_angle_for_zigs, p.x * sin_minus_angle_for_zigs + p.y * cos_minus_angle_for_zigs)
def rotated_vertex(v):
if v.type:
return area.Vertex(v.type, rotated_point(v.p), rotated_point(v.c))
return area.Vertex(v.type, rotated_point(v.p), area.Point(0, 0))
def unrotated_vertex(v):
if v.type:
return area.Vertex(v.type, unrotated_point(v.p), unrotated_point(v.c))
return area.Vertex(v.type, unrotated_point(v.p), area.Point(0, 0))
def rotated_area(a):
an = area.Area()
for curve in a.getCurves():
curve_new = area.Curve()
for v in curve.getVertices():
curve_new.append(rotated_vertex(v))
an.append(curve_new)
return an
def zigzag(a, stepover, zig_unidirectional):
if a.num_curves() == 0:
return
global rightward_for_zigs
global curve_list_for_zigs
global sin_angle_for_zigs
global cos_angle_for_zigs
global sin_minus_angle_for_zigs
global cos_minus_angle_for_zigs
global one_over_units
one_over_units = 1 / area.get_units()
a = rotated_area(a)
b = area.Box()
a.GetBox(b)
x0 = b.MinX() - 1.0
x1 = b.MaxX() + 1.0
height = b.MaxY() - b.MinY()
num_steps = int(height / stepover + 1)
y = b.MinY() + 0.1 * one_over_units
null_point = area.Point(0, 0)
rightward_for_zigs = True
curve_list_for_zigs = []
for i in range(0, num_steps):
y0 = y
y = y + stepover
p0 = area.Point(x0, y0)
p1 = area.Point(x0, y)
p2 = area.Point(x1, y)
p3 = area.Point(x1, y0)
c = area.Curve()
c.append(area.Vertex(0, p0, null_point, 0))
c.append(area.Vertex(0, p1, null_point, 0))
c.append(area.Vertex(0, p2, null_point, 1))
c.append(area.Vertex(0, p3, null_point, 0))
c.append(area.Vertex(0, p0, null_point, 1))
a2 = area.Area()
a2.append(c)
a2.Intersect(a)
make_zig(a2, y0, y, zig_unidirectional)
if zig_unidirectional == False:
rightward_for_zigs = (rightward_for_zigs == False)
reorder_zigs()
def pocket(a,tool_radius, extra_offset, stepover, depthparams, from_center, keep_tool_down_if_poss, use_zig_zag, zig_angle, zig_unidirectional = False,start_point=None, cut_mode = 'conventional'):
global tool_radius_for_pocket
global area_for_feed_possible
#if len(a.getCurves()) > 1:
# for crv in a.getCurves():
# ar = area.Area()
# ar.append(crv)
# pocket(ar, tool_radius, extra_offset, rapid_safety_space, start_depth, final_depth, stepover, stepdown, clearance_height, from_center, keep_tool_down_if_poss, use_zig_zag, zig_angle, zig_unidirectional)
# return
tool_radius_for_pocket = tool_radius
if keep_tool_down_if_poss:
area_for_feed_possible = area.Area(a)
area_for_feed_possible.Offset(extra_offset - 0.01)
use_internal_function = (area.holes_linked() == False) # use internal function, if area module is the Clipper library
if use_internal_function:
curve_list = a.MakePocketToolpath(tool_radius, extra_offset, stepover, from_center, use_zig_zag, zig_angle)
else:
global sin_angle_for_zigs
global cos_angle_for_zigs
global sin_minus_angle_for_zigs
global cos_minus_angle_for_zigs
radians_angle = zig_angle * math.pi / 180
sin_angle_for_zigs = math.sin(-radians_angle)
cos_angle_for_zigs = math.cos(-radians_angle)
sin_minus_angle_for_zigs = math.sin(radians_angle)
cos_minus_angle_for_zigs = math.cos(radians_angle)
arealist = list()
a_offset = area.Area(a)
current_offset = tool_radius + extra_offset
a_offset.Offset(current_offset)
do_recursive = True
if use_zig_zag:
zigzag(a_offset, stepover, zig_unidirectional)
curve_list = curve_list_for_zigs
else:
if do_recursive:
recur(arealist, a_offset, stepover, from_center)
else:
while(a_offset.num_curves() > 0):
if from_center:
arealist.insert(0, a_offset)
else:
arealist.append(a_offset)
current_offset = current_offset + stepover
a_offset = area.Area(a)
a_offset.Offset(current_offset)
curve_list = get_curve_list(arealist, cut_mode == 'climb')
depths = depthparams.get_depths()
current_start_depth = depthparams.start_depth
if start_point==None:
for depth in depths:
cut_curvelist1(curve_list, depthparams.rapid_safety_space, current_start_depth, depth, depthparams.clearance_height, keep_tool_down_if_poss)
current_start_depth = depth
else:
for depth in depths:
cut_curvelist2(curve_list, depthparams.rapid_safety_space, current_start_depth, depth, depthparams.clearance_height, keep_tool_down_if_poss, start_point)
current_start_depth = depth