diff --git a/pr-preview/pr-110/404.html b/pr-preview/pr-110/404.html deleted file mode 100644 index 4bd13c5ab..000000000 --- a/pr-preview/pr-110/404.html +++ /dev/null @@ -1,2249 +0,0 @@ - - - - - - Page Not Found :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
-
-

Page Not Found

-
-

The page you’re looking for does not exist. It may have been moved. You can follow one of the links in the navigation to the left.

-
-
-

If you arrived on this page by clicking on a link, please notify the owner of the site that the link is broken. -If you typed the URL of this page manually, please double check that you entered the address correctly.

-
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/_/css/Poppins-Bold.ttf b/pr-preview/pr-110/_/css/Poppins-Bold.ttf deleted file mode 100644 index b94d47f3a..000000000 Binary files a/pr-preview/pr-110/_/css/Poppins-Bold.ttf and /dev/null differ diff --git a/pr-preview/pr-110/_/css/Poppins-Regular.ttf b/pr-preview/pr-110/_/css/Poppins-Regular.ttf deleted file mode 100644 index be06e7fdc..000000000 Binary files a/pr-preview/pr-110/_/css/Poppins-Regular.ttf and /dev/null differ diff --git a/pr-preview/pr-110/_/css/Poppins-SemiBold.ttf b/pr-preview/pr-110/_/css/Poppins-SemiBold.ttf deleted file mode 100644 index dabf7c242..000000000 Binary files a/pr-preview/pr-110/_/css/Poppins-SemiBold.ttf and /dev/null differ diff --git a/pr-preview/pr-110/_/css/admonitions.css b/pr-preview/pr-110/_/css/admonitions.css deleted file mode 100644 index c50d16449..000000000 --- a/pr-preview/pr-110/_/css/admonitions.css +++ /dev/null @@ -1,32 +0,0 @@ -.doc .admonitionblock .icon { - border-radius: 1rem; -} - -i.fa[class^='icon-'], -i.fa[class*=' icon-']::before { - content: ""; - height: 1.25rem; - width: 1.25rem; - margin-right: 0.25rem; - margin-left: -0.5rem; -} - -i.fa.icon-note::before { - background: no-repeat url("../img/note.svg"); -} - -i.fa.icon-tip::before { - background: no-repeat url("../img/tip.svg"); -} - -i.fa.icon-important::before { - background: no-repeat url("../img/important.svg"); -} - -i.fa.icon-warning::before { - background: no-repeat url("../img/warning.svg"); -} - -i.fa.icon-caution::before { - background: no-repeat url("../img/caution.svg"); -} diff --git a/pr-preview/pr-110/_/css/fontawesome.all.min.css b/pr-preview/pr-110/_/css/fontawesome.all.min.css deleted file mode 100644 index ac76ff191..000000000 --- a/pr-preview/pr-110/_/css/fontawesome.all.min.css +++ /dev/null @@ -1,5 +0,0 @@ -/*! - * Font Awesome Free 5.15.4 by @fontawesome - https://fontawesome.com - * License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) - */ -.fa,.fab,.fad,.fal,.far,.fas{-moz-osx-font-smoothing:grayscale;-webkit-font-smoothing:antialiased;display:inline-block;font-style:normal;font-variant:normal;text-rendering:auto;line-height:1}.fa-lg{font-size:1.33333em;line-height:.75em;vertical-align:-.0667em}.fa-xs{font-size:.75em}.fa-sm{font-size:.875em}.fa-1x{font-size:1em}.fa-2x{font-size:2em}.fa-3x{font-size:3em}.fa-4x{font-size:4em}.fa-5x{font-size:5em}.fa-6x{font-size:6em}.fa-7x{font-size:7em}.fa-8x{font-size:8em}.fa-9x{font-size:9em}.fa-10x{font-size:10em}.fa-fw{text-align:center;width:1.25em}.fa-ul{list-style-type:none;margin-left:2.5em;padding-left:0}.fa-ul>li{position:relative}.fa-li{left:-2em;position:absolute;text-align:center;width:2em;line-height:inherit}.fa-border{border:.08em solid #eee;border-radius:.1em;padding:.2em .25em .15em}.fa-pull-left{float:left}.fa-pull-right{float:right}.fa.fa-pull-left,.fab.fa-pull-left,.fal.fa-pull-left,.far.fa-pull-left,.fas.fa-pull-left{margin-right:.3em}.fa.fa-pull-right,.fab.fa-pull-right,.fal.fa-pull-right,.far.fa-pull-right,.fas.fa-pull-right{margin-left:.3em}.fa-spin{-webkit-animation:fa-spin 2s linear infinite;animation:fa-spin 2s linear infinite}.fa-pulse{-webkit-animation:fa-spin 1s steps(8) infinite;animation:fa-spin 1s steps(8) infinite}@-webkit-keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(1turn);transform:rotate(1turn)}}@keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(1turn);transform:rotate(1turn)}}.fa-rotate-90{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=1)";-webkit-transform:rotate(90deg);transform:rotate(90deg)}.fa-rotate-180{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2)";-webkit-transform:rotate(180deg);transform:rotate(180deg)}.fa-rotate-270{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=3)";-webkit-transform:rotate(270deg);transform:rotate(270deg)}.fa-flip-horizontal{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1)";-webkit-transform:scaleX(-1);transform:scaleX(-1)}.fa-flip-vertical{-webkit-transform:scaleY(-1);transform:scaleY(-1)}.fa-flip-both,.fa-flip-horizontal.fa-flip-vertical,.fa-flip-vertical{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1)"}.fa-flip-both,.fa-flip-horizontal.fa-flip-vertical{-webkit-transform:scale(-1);transform:scale(-1)}:root .fa-flip-both,:root .fa-flip-horizontal,:root .fa-flip-vertical,:root .fa-rotate-90,:root .fa-rotate-180,:root .fa-rotate-270{-webkit-filter:none;filter:none}.fa-stack{display:inline-block;height:2em;line-height:2em;position:relative;vertical-align:middle;width:2.5em}.fa-stack-1x,.fa-stack-2x{left:0;position:absolute;text-align:center;width:100%}.fa-stack-1x{line-height:inherit}.fa-stack-2x{font-size:2em}.fa-inverse{color:#fff}.fa-500px:before{content:"\f26e"}.fa-accessible-icon:before{content:"\f368"}.fa-accusoft:before{content:"\f369"}.fa-acquisitions-incorporated:before{content:"\f6af"}.fa-ad:before{content:"\f641"}.fa-address-book:before{content:"\f2b9"}.fa-address-card:before{content:"\f2bb"}.fa-adjust:before{content:"\f042"}.fa-adn:before{content:"\f170"}.fa-adversal:before{content:"\f36a"}.fa-affiliatetheme:before{content:"\f36b"}.fa-air-freshener:before{content:"\f5d0"}.fa-airbnb:before{content:"\f834"}.fa-algolia:before{content:"\f36c"}.fa-align-center:before{content:"\f037"}.fa-align-justify:before{content:"\f039"}.fa-align-left:before{content:"\f036"}.fa-align-right:before{content:"\f038"}.fa-alipay:before{content:"\f642"}.fa-allergies:before{content:"\f461"}.fa-amazon:before{content:"\f270"}.fa-amazon-pay:before{content:"\f42c"}.fa-ambulance:before{content:"\f0f9"}.fa-american-sign-language-interpreting:before{content:"\f2a3"}.fa-amilia:before{content:"\f36d"}.fa-anchor:before{content:"\f13d"}.fa-android:before{content:"\f17b"}.fa-angellist:before{content:"\f209"}.fa-angle-double-down:before{content:"\f103"}.fa-angle-double-left:before{content:"\f100"}.fa-angle-double-right:before{content:"\f101"}.fa-angle-double-up:before{content:"\f102"}.fa-angle-down:before{content:"\f107"}.fa-angle-left:before{content:"\f104"}.fa-angle-right:before{content:"\f105"}.fa-angle-up:before{content:"\f106"}.fa-angry:before{content:"\f556"}.fa-angrycreative:before{content:"\f36e"}.fa-angular:before{content:"\f420"}.fa-ankh:before{content:"\f644"}.fa-app-store:before{content:"\f36f"}.fa-app-store-ios:before{content:"\f370"}.fa-apper:before{content:"\f371"}.fa-apple:before{content:"\f179"}.fa-apple-alt:before{content:"\f5d1"}.fa-apple-pay:before{content:"\f415"}.fa-archive:before{content:"\f187"}.fa-archway:before{content:"\f557"}.fa-arrow-alt-circle-down:before{content:"\f358"}.fa-arrow-alt-circle-left:before{content:"\f359"}.fa-arrow-alt-circle-right:before{content:"\f35a"}.fa-arrow-alt-circle-up:before{content:"\f35b"}.fa-arrow-circle-down:before{content:"\f0ab"}.fa-arrow-circle-left:before{content:"\f0a8"}.fa-arrow-circle-right:before{content:"\f0a9"}.fa-arrow-circle-up:before{content:"\f0aa"}.fa-arrow-down:before{content:"\f063"}.fa-arrow-left:before{content:"\f060"}.fa-arrow-right:before{content:"\f061"}.fa-arrow-up:before{content:"\f062"}.fa-arrows-alt:before{content:"\f0b2"}.fa-arrows-alt-h:before{content:"\f337"}.fa-arrows-alt-v:before{content:"\f338"}.fa-artstation:before{content:"\f77a"}.fa-assistive-listening-systems:before{content:"\f2a2"}.fa-asterisk:before{content:"\f069"}.fa-asymmetrik:before{content:"\f372"}.fa-at:before{content:"\f1fa"}.fa-atlas:before{content:"\f558"}.fa-atlassian:before{content:"\f77b"}.fa-atom:before{content:"\f5d2"}.fa-audible:before{content:"\f373"}.fa-audio-description:before{content:"\f29e"}.fa-autoprefixer:before{content:"\f41c"}.fa-avianex:before{content:"\f374"}.fa-aviato:before{content:"\f421"}.fa-award:before{content:"\f559"}.fa-aws:before{content:"\f375"}.fa-baby:before{content:"\f77c"}.fa-baby-carriage:before{content:"\f77d"}.fa-backspace:before{content:"\f55a"}.fa-backward:before{content:"\f04a"}.fa-bacon:before{content:"\f7e5"}.fa-bacteria:before{content:"\e059"}.fa-bacterium:before{content:"\e05a"}.fa-bahai:before{content:"\f666"}.fa-balance-scale:before{content:"\f24e"}.fa-balance-scale-left:before{content:"\f515"}.fa-balance-scale-right:before{content:"\f516"}.fa-ban:before{content:"\f05e"}.fa-band-aid:before{content:"\f462"}.fa-bandcamp:before{content:"\f2d5"}.fa-barcode:before{content:"\f02a"}.fa-bars:before{content:"\f0c9"}.fa-baseball-ball:before{content:"\f433"}.fa-basketball-ball:before{content:"\f434"}.fa-bath:before{content:"\f2cd"}.fa-battery-empty:before{content:"\f244"}.fa-battery-full:before{content:"\f240"}.fa-battery-half:before{content:"\f242"}.fa-battery-quarter:before{content:"\f243"}.fa-battery-three-quarters:before{content:"\f241"}.fa-battle-net:before{content:"\f835"}.fa-bed:before{content:"\f236"}.fa-beer:before{content:"\f0fc"}.fa-behance:before{content:"\f1b4"}.fa-behance-square:before{content:"\f1b5"}.fa-bell:before{content:"\f0f3"}.fa-bell-slash:before{content:"\f1f6"}.fa-bezier-curve:before{content:"\f55b"}.fa-bible:before{content:"\f647"}.fa-bicycle:before{content:"\f206"}.fa-biking:before{content:"\f84a"}.fa-bimobject:before{content:"\f378"}.fa-binoculars:before{content:"\f1e5"}.fa-biohazard:before{content:"\f780"}.fa-birthday-cake:before{content:"\f1fd"}.fa-bitbucket:before{content:"\f171"}.fa-bitcoin:before{content:"\f379"}.fa-bity:before{content:"\f37a"}.fa-black-tie:before{content:"\f27e"}.fa-blackberry:before{content:"\f37b"}.fa-blender:before{content:"\f517"}.fa-blender-phone:before{content:"\f6b6"}.fa-blind:before{content:"\f29d"}.fa-blog:before{content:"\f781"}.fa-blogger:before{content:"\f37c"}.fa-blogger-b:before{content:"\f37d"}.fa-bluetooth:before{content:"\f293"}.fa-bluetooth-b:before{content:"\f294"}.fa-bold:before{content:"\f032"}.fa-bolt:before{content:"\f0e7"}.fa-bomb:before{content:"\f1e2"}.fa-bone:before{content:"\f5d7"}.fa-bong:before{content:"\f55c"}.fa-book:before{content:"\f02d"}.fa-book-dead:before{content:"\f6b7"}.fa-book-medical:before{content:"\f7e6"}.fa-book-open:before{content:"\f518"}.fa-book-reader:before{content:"\f5da"}.fa-bookmark:before{content:"\f02e"}.fa-bootstrap:before{content:"\f836"}.fa-border-all:before{content:"\f84c"}.fa-border-none:before{content:"\f850"}.fa-border-style:before{content:"\f853"}.fa-bowling-ball:before{content:"\f436"}.fa-box:before{content:"\f466"}.fa-box-open:before{content:"\f49e"}.fa-box-tissue:before{content:"\e05b"}.fa-boxes:before{content:"\f468"}.fa-braille:before{content:"\f2a1"}.fa-brain:before{content:"\f5dc"}.fa-bread-slice:before{content:"\f7ec"}.fa-briefcase:before{content:"\f0b1"}.fa-briefcase-medical:before{content:"\f469"}.fa-broadcast-tower:before{content:"\f519"}.fa-broom:before{content:"\f51a"}.fa-brush:before{content:"\f55d"}.fa-btc:before{content:"\f15a"}.fa-buffer:before{content:"\f837"}.fa-bug:before{content:"\f188"}.fa-building:before{content:"\f1ad"}.fa-bullhorn:before{content:"\f0a1"}.fa-bullseye:before{content:"\f140"}.fa-burn:before{content:"\f46a"}.fa-buromobelexperte:before{content:"\f37f"}.fa-bus:before{content:"\f207"}.fa-bus-alt:before{content:"\f55e"}.fa-business-time:before{content:"\f64a"}.fa-buy-n-large:before{content:"\f8a6"}.fa-buysellads:before{content:"\f20d"}.fa-calculator:before{content:"\f1ec"}.fa-calendar:before{content:"\f133"}.fa-calendar-alt:before{content:"\f073"}.fa-calendar-check:before{content:"\f274"}.fa-calendar-day:before{content:"\f783"}.fa-calendar-minus:before{content:"\f272"}.fa-calendar-plus:before{content:"\f271"}.fa-calendar-times:before{content:"\f273"}.fa-calendar-week:before{content:"\f784"}.fa-camera:before{content:"\f030"}.fa-camera-retro:before{content:"\f083"}.fa-campground:before{content:"\f6bb"}.fa-canadian-maple-leaf:before{content:"\f785"}.fa-candy-cane:before{content:"\f786"}.fa-cannabis:before{content:"\f55f"}.fa-capsules:before{content:"\f46b"}.fa-car:before{content:"\f1b9"}.fa-car-alt:before{content:"\f5de"}.fa-car-battery:before{content:"\f5df"}.fa-car-crash:before{content:"\f5e1"}.fa-car-side:before{content:"\f5e4"}.fa-caravan:before{content:"\f8ff"}.fa-caret-down:before{content:"\f0d7"}.fa-caret-left:before{content:"\f0d9"}.fa-caret-right:before{content:"\f0da"}.fa-caret-square-down:before{content:"\f150"}.fa-caret-square-left:before{content:"\f191"}.fa-caret-square-right:before{content:"\f152"}.fa-caret-square-up:before{content:"\f151"}.fa-caret-up:before{content:"\f0d8"}.fa-carrot:before{content:"\f787"}.fa-cart-arrow-down:before{content:"\f218"}.fa-cart-plus:before{content:"\f217"}.fa-cash-register:before{content:"\f788"}.fa-cat:before{content:"\f6be"}.fa-cc-amazon-pay:before{content:"\f42d"}.fa-cc-amex:before{content:"\f1f3"}.fa-cc-apple-pay:before{content:"\f416"}.fa-cc-diners-club:before{content:"\f24c"}.fa-cc-discover:before{content:"\f1f2"}.fa-cc-jcb:before{content:"\f24b"}.fa-cc-mastercard:before{content:"\f1f1"}.fa-cc-paypal:before{content:"\f1f4"}.fa-cc-stripe:before{content:"\f1f5"}.fa-cc-visa:before{content:"\f1f0"}.fa-centercode:before{content:"\f380"}.fa-centos:before{content:"\f789"}.fa-certificate:before{content:"\f0a3"}.fa-chair:before{content:"\f6c0"}.fa-chalkboard:before{content:"\f51b"}.fa-chalkboard-teacher:before{content:"\f51c"}.fa-charging-station:before{content:"\f5e7"}.fa-chart-area:before{content:"\f1fe"}.fa-chart-bar:before{content:"\f080"}.fa-chart-line:before{content:"\f201"}.fa-chart-pie:before{content:"\f200"}.fa-check:before{content:"\f00c"}.fa-check-circle:before{content:"\f058"}.fa-check-double:before{content:"\f560"}.fa-check-square:before{content:"\f14a"}.fa-cheese:before{content:"\f7ef"}.fa-chess:before{content:"\f439"}.fa-chess-bishop:before{content:"\f43a"}.fa-chess-board:before{content:"\f43c"}.fa-chess-king:before{content:"\f43f"}.fa-chess-knight:before{content:"\f441"}.fa-chess-pawn:before{content:"\f443"}.fa-chess-queen:before{content:"\f445"}.fa-chess-rook:before{content:"\f447"}.fa-chevron-circle-down:before{content:"\f13a"}.fa-chevron-circle-left:before{content:"\f137"}.fa-chevron-circle-right:before{content:"\f138"}.fa-chevron-circle-up:before{content:"\f139"}.fa-chevron-down:before{content:"\f078"}.fa-chevron-left:before{content:"\f053"}.fa-chevron-right:before{content:"\f054"}.fa-chevron-up:before{content:"\f077"}.fa-child:before{content:"\f1ae"}.fa-chrome:before{content:"\f268"}.fa-chromecast:before{content:"\f838"}.fa-church:before{content:"\f51d"}.fa-circle:before{content:"\f111"}.fa-circle-notch:before{content:"\f1ce"}.fa-city:before{content:"\f64f"}.fa-clinic-medical:before{content:"\f7f2"}.fa-clipboard:before{content:"\f328"}.fa-clipboard-check:before{content:"\f46c"}.fa-clipboard-list:before{content:"\f46d"}.fa-clock:before{content:"\f017"}.fa-clone:before{content:"\f24d"}.fa-closed-captioning:before{content:"\f20a"}.fa-cloud:before{content:"\f0c2"}.fa-cloud-download-alt:before{content:"\f381"}.fa-cloud-meatball:before{content:"\f73b"}.fa-cloud-moon:before{content:"\f6c3"}.fa-cloud-moon-rain:before{content:"\f73c"}.fa-cloud-rain:before{content:"\f73d"}.fa-cloud-showers-heavy:before{content:"\f740"}.fa-cloud-sun:before{content:"\f6c4"}.fa-cloud-sun-rain:before{content:"\f743"}.fa-cloud-upload-alt:before{content:"\f382"}.fa-cloudflare:before{content:"\e07d"}.fa-cloudscale:before{content:"\f383"}.fa-cloudsmith:before{content:"\f384"}.fa-cloudversify:before{content:"\f385"}.fa-cocktail:before{content:"\f561"}.fa-code:before{content:"\f121"}.fa-code-branch:before{content:"\f126"}.fa-codepen:before{content:"\f1cb"}.fa-codiepie:before{content:"\f284"}.fa-coffee:before{content:"\f0f4"}.fa-cog:before{content:"\f013"}.fa-cogs:before{content:"\f085"}.fa-coins:before{content:"\f51e"}.fa-columns:before{content:"\f0db"}.fa-comment:before{content:"\f075"}.fa-comment-alt:before{content:"\f27a"}.fa-comment-dollar:before{content:"\f651"}.fa-comment-dots:before{content:"\f4ad"}.fa-comment-medical:before{content:"\f7f5"}.fa-comment-slash:before{content:"\f4b3"}.fa-comments:before{content:"\f086"}.fa-comments-dollar:before{content:"\f653"}.fa-compact-disc:before{content:"\f51f"}.fa-compass:before{content:"\f14e"}.fa-compress:before{content:"\f066"}.fa-compress-alt:before{content:"\f422"}.fa-compress-arrows-alt:before{content:"\f78c"}.fa-concierge-bell:before{content:"\f562"}.fa-confluence:before{content:"\f78d"}.fa-connectdevelop:before{content:"\f20e"}.fa-contao:before{content:"\f26d"}.fa-cookie:before{content:"\f563"}.fa-cookie-bite:before{content:"\f564"}.fa-copy:before{content:"\f0c5"}.fa-copyright:before{content:"\f1f9"}.fa-cotton-bureau:before{content:"\f89e"}.fa-couch:before{content:"\f4b8"}.fa-cpanel:before{content:"\f388"}.fa-creative-commons:before{content:"\f25e"}.fa-creative-commons-by:before{content:"\f4e7"}.fa-creative-commons-nc:before{content:"\f4e8"}.fa-creative-commons-nc-eu:before{content:"\f4e9"}.fa-creative-commons-nc-jp:before{content:"\f4ea"}.fa-creative-commons-nd:before{content:"\f4eb"}.fa-creative-commons-pd:before{content:"\f4ec"}.fa-creative-commons-pd-alt:before{content:"\f4ed"}.fa-creative-commons-remix:before{content:"\f4ee"}.fa-creative-commons-sa:before{content:"\f4ef"}.fa-creative-commons-sampling:before{content:"\f4f0"}.fa-creative-commons-sampling-plus:before{content:"\f4f1"}.fa-creative-commons-share:before{content:"\f4f2"}.fa-creative-commons-zero:before{content:"\f4f3"}.fa-credit-card:before{content:"\f09d"}.fa-critical-role:before{content:"\f6c9"}.fa-crop:before{content:"\f125"}.fa-crop-alt:before{content:"\f565"}.fa-cross:before{content:"\f654"}.fa-crosshairs:before{content:"\f05b"}.fa-crow:before{content:"\f520"}.fa-crown:before{content:"\f521"}.fa-crutch:before{content:"\f7f7"}.fa-css3:before{content:"\f13c"}.fa-css3-alt:before{content:"\f38b"}.fa-cube:before{content:"\f1b2"}.fa-cubes:before{content:"\f1b3"}.fa-cut:before{content:"\f0c4"}.fa-cuttlefish:before{content:"\f38c"}.fa-d-and-d:before{content:"\f38d"}.fa-d-and-d-beyond:before{content:"\f6ca"}.fa-dailymotion:before{content:"\e052"}.fa-dashcube:before{content:"\f210"}.fa-database:before{content:"\f1c0"}.fa-deaf:before{content:"\f2a4"}.fa-deezer:before{content:"\e077"}.fa-delicious:before{content:"\f1a5"}.fa-democrat:before{content:"\f747"}.fa-deploydog:before{content:"\f38e"}.fa-deskpro:before{content:"\f38f"}.fa-desktop:before{content:"\f108"}.fa-dev:before{content:"\f6cc"}.fa-deviantart:before{content:"\f1bd"}.fa-dharmachakra:before{content:"\f655"}.fa-dhl:before{content:"\f790"}.fa-diagnoses:before{content:"\f470"}.fa-diaspora:before{content:"\f791"}.fa-dice:before{content:"\f522"}.fa-dice-d20:before{content:"\f6cf"}.fa-dice-d6:before{content:"\f6d1"}.fa-dice-five:before{content:"\f523"}.fa-dice-four:before{content:"\f524"}.fa-dice-one:before{content:"\f525"}.fa-dice-six:before{content:"\f526"}.fa-dice-three:before{content:"\f527"}.fa-dice-two:before{content:"\f528"}.fa-digg:before{content:"\f1a6"}.fa-digital-ocean:before{content:"\f391"}.fa-digital-tachograph:before{content:"\f566"}.fa-directions:before{content:"\f5eb"}.fa-discord:before{content:"\f392"}.fa-discourse:before{content:"\f393"}.fa-disease:before{content:"\f7fa"}.fa-divide:before{content:"\f529"}.fa-dizzy:before{content:"\f567"}.fa-dna:before{content:"\f471"}.fa-dochub:before{content:"\f394"}.fa-docker:before{content:"\f395"}.fa-dog:before{content:"\f6d3"}.fa-dollar-sign:before{content:"\f155"}.fa-dolly:before{content:"\f472"}.fa-dolly-flatbed:before{content:"\f474"}.fa-donate:before{content:"\f4b9"}.fa-door-closed:before{content:"\f52a"}.fa-door-open:before{content:"\f52b"}.fa-dot-circle:before{content:"\f192"}.fa-dove:before{content:"\f4ba"}.fa-download:before{content:"\f019"}.fa-draft2digital:before{content:"\f396"}.fa-drafting-compass:before{content:"\f568"}.fa-dragon:before{content:"\f6d5"}.fa-draw-polygon:before{content:"\f5ee"}.fa-dribbble:before{content:"\f17d"}.fa-dribbble-square:before{content:"\f397"}.fa-dropbox:before{content:"\f16b"}.fa-drum:before{content:"\f569"}.fa-drum-steelpan:before{content:"\f56a"}.fa-drumstick-bite:before{content:"\f6d7"}.fa-drupal:before{content:"\f1a9"}.fa-dumbbell:before{content:"\f44b"}.fa-dumpster:before{content:"\f793"}.fa-dumpster-fire:before{content:"\f794"}.fa-dungeon:before{content:"\f6d9"}.fa-dyalog:before{content:"\f399"}.fa-earlybirds:before{content:"\f39a"}.fa-ebay:before{content:"\f4f4"}.fa-edge:before{content:"\f282"}.fa-edge-legacy:before{content:"\e078"}.fa-edit:before{content:"\f044"}.fa-egg:before{content:"\f7fb"}.fa-eject:before{content:"\f052"}.fa-elementor:before{content:"\f430"}.fa-ellipsis-h:before{content:"\f141"}.fa-ellipsis-v:before{content:"\f142"}.fa-ello:before{content:"\f5f1"}.fa-ember:before{content:"\f423"}.fa-empire:before{content:"\f1d1"}.fa-envelope:before{content:"\f0e0"}.fa-envelope-open:before{content:"\f2b6"}.fa-envelope-open-text:before{content:"\f658"}.fa-envelope-square:before{content:"\f199"}.fa-envira:before{content:"\f299"}.fa-equals:before{content:"\f52c"}.fa-eraser:before{content:"\f12d"}.fa-erlang:before{content:"\f39d"}.fa-ethereum:before{content:"\f42e"}.fa-ethernet:before{content:"\f796"}.fa-etsy:before{content:"\f2d7"}.fa-euro-sign:before{content:"\f153"}.fa-evernote:before{content:"\f839"}.fa-exchange-alt:before{content:"\f362"}.fa-exclamation:before{content:"\f12a"}.fa-exclamation-circle:before{content:"\f06a"}.fa-exclamation-triangle:before{content:"\f071"}.fa-expand:before{content:"\f065"}.fa-expand-alt:before{content:"\f424"}.fa-expand-arrows-alt:before{content:"\f31e"}.fa-expeditedssl:before{content:"\f23e"}.fa-external-link-alt:before{content:"\f35d"}.fa-external-link-square-alt:before{content:"\f360"}.fa-eye:before{content:"\f06e"}.fa-eye-dropper:before{content:"\f1fb"}.fa-eye-slash:before{content:"\f070"}.fa-facebook:before{content:"\f09a"}.fa-facebook-f:before{content:"\f39e"}.fa-facebook-messenger:before{content:"\f39f"}.fa-facebook-square:before{content:"\f082"}.fa-fan:before{content:"\f863"}.fa-fantasy-flight-games:before{content:"\f6dc"}.fa-fast-backward:before{content:"\f049"}.fa-fast-forward:before{content:"\f050"}.fa-faucet:before{content:"\e005"}.fa-fax:before{content:"\f1ac"}.fa-feather:before{content:"\f52d"}.fa-feather-alt:before{content:"\f56b"}.fa-fedex:before{content:"\f797"}.fa-fedora:before{content:"\f798"}.fa-female:before{content:"\f182"}.fa-fighter-jet:before{content:"\f0fb"}.fa-figma:before{content:"\f799"}.fa-file:before{content:"\f15b"}.fa-file-alt:before{content:"\f15c"}.fa-file-archive:before{content:"\f1c6"}.fa-file-audio:before{content:"\f1c7"}.fa-file-code:before{content:"\f1c9"}.fa-file-contract:before{content:"\f56c"}.fa-file-csv:before{content:"\f6dd"}.fa-file-download:before{content:"\f56d"}.fa-file-excel:before{content:"\f1c3"}.fa-file-export:before{content:"\f56e"}.fa-file-image:before{content:"\f1c5"}.fa-file-import:before{content:"\f56f"}.fa-file-invoice:before{content:"\f570"}.fa-file-invoice-dollar:before{content:"\f571"}.fa-file-medical:before{content:"\f477"}.fa-file-medical-alt:before{content:"\f478"}.fa-file-pdf:before{content:"\f1c1"}.fa-file-powerpoint:before{content:"\f1c4"}.fa-file-prescription:before{content:"\f572"}.fa-file-signature:before{content:"\f573"}.fa-file-upload:before{content:"\f574"}.fa-file-video:before{content:"\f1c8"}.fa-file-word:before{content:"\f1c2"}.fa-fill:before{content:"\f575"}.fa-fill-drip:before{content:"\f576"}.fa-film:before{content:"\f008"}.fa-filter:before{content:"\f0b0"}.fa-fingerprint:before{content:"\f577"}.fa-fire:before{content:"\f06d"}.fa-fire-alt:before{content:"\f7e4"}.fa-fire-extinguisher:before{content:"\f134"}.fa-firefox:before{content:"\f269"}.fa-firefox-browser:before{content:"\e007"}.fa-first-aid:before{content:"\f479"}.fa-first-order:before{content:"\f2b0"}.fa-first-order-alt:before{content:"\f50a"}.fa-firstdraft:before{content:"\f3a1"}.fa-fish:before{content:"\f578"}.fa-fist-raised:before{content:"\f6de"}.fa-flag:before{content:"\f024"}.fa-flag-checkered:before{content:"\f11e"}.fa-flag-usa:before{content:"\f74d"}.fa-flask:before{content:"\f0c3"}.fa-flickr:before{content:"\f16e"}.fa-flipboard:before{content:"\f44d"}.fa-flushed:before{content:"\f579"}.fa-fly:before{content:"\f417"}.fa-folder:before{content:"\f07b"}.fa-folder-minus:before{content:"\f65d"}.fa-folder-open:before{content:"\f07c"}.fa-folder-plus:before{content:"\f65e"}.fa-font:before{content:"\f031"}.fa-font-awesome:before{content:"\f2b4"}.fa-font-awesome-alt:before{content:"\f35c"}.fa-font-awesome-flag:before{content:"\f425"}.fa-font-awesome-logo-full:before{content:"\f4e6"}.fa-fonticons:before{content:"\f280"}.fa-fonticons-fi:before{content:"\f3a2"}.fa-football-ball:before{content:"\f44e"}.fa-fort-awesome:before{content:"\f286"}.fa-fort-awesome-alt:before{content:"\f3a3"}.fa-forumbee:before{content:"\f211"}.fa-forward:before{content:"\f04e"}.fa-foursquare:before{content:"\f180"}.fa-free-code-camp:before{content:"\f2c5"}.fa-freebsd:before{content:"\f3a4"}.fa-frog:before{content:"\f52e"}.fa-frown:before{content:"\f119"}.fa-frown-open:before{content:"\f57a"}.fa-fulcrum:before{content:"\f50b"}.fa-funnel-dollar:before{content:"\f662"}.fa-futbol:before{content:"\f1e3"}.fa-galactic-republic:before{content:"\f50c"}.fa-galactic-senate:before{content:"\f50d"}.fa-gamepad:before{content:"\f11b"}.fa-gas-pump:before{content:"\f52f"}.fa-gavel:before{content:"\f0e3"}.fa-gem:before{content:"\f3a5"}.fa-genderless:before{content:"\f22d"}.fa-get-pocket:before{content:"\f265"}.fa-gg:before{content:"\f260"}.fa-gg-circle:before{content:"\f261"}.fa-ghost:before{content:"\f6e2"}.fa-gift:before{content:"\f06b"}.fa-gifts:before{content:"\f79c"}.fa-git:before{content:"\f1d3"}.fa-git-alt:before{content:"\f841"}.fa-git-square:before{content:"\f1d2"}.fa-github:before{content:"\f09b"}.fa-github-alt:before{content:"\f113"}.fa-github-square:before{content:"\f092"}.fa-gitkraken:before{content:"\f3a6"}.fa-gitlab:before{content:"\f296"}.fa-gitter:before{content:"\f426"}.fa-glass-cheers:before{content:"\f79f"}.fa-glass-martini:before{content:"\f000"}.fa-glass-martini-alt:before{content:"\f57b"}.fa-glass-whiskey:before{content:"\f7a0"}.fa-glasses:before{content:"\f530"}.fa-glide:before{content:"\f2a5"}.fa-glide-g:before{content:"\f2a6"}.fa-globe:before{content:"\f0ac"}.fa-globe-africa:before{content:"\f57c"}.fa-globe-americas:before{content:"\f57d"}.fa-globe-asia:before{content:"\f57e"}.fa-globe-europe:before{content:"\f7a2"}.fa-gofore:before{content:"\f3a7"}.fa-golf-ball:before{content:"\f450"}.fa-goodreads:before{content:"\f3a8"}.fa-goodreads-g:before{content:"\f3a9"}.fa-google:before{content:"\f1a0"}.fa-google-drive:before{content:"\f3aa"}.fa-google-pay:before{content:"\e079"}.fa-google-play:before{content:"\f3ab"}.fa-google-plus:before{content:"\f2b3"}.fa-google-plus-g:before{content:"\f0d5"}.fa-google-plus-square:before{content:"\f0d4"}.fa-google-wallet:before{content:"\f1ee"}.fa-gopuram:before{content:"\f664"}.fa-graduation-cap:before{content:"\f19d"}.fa-gratipay:before{content:"\f184"}.fa-grav:before{content:"\f2d6"}.fa-greater-than:before{content:"\f531"}.fa-greater-than-equal:before{content:"\f532"}.fa-grimace:before{content:"\f57f"}.fa-grin:before{content:"\f580"}.fa-grin-alt:before{content:"\f581"}.fa-grin-beam:before{content:"\f582"}.fa-grin-beam-sweat:before{content:"\f583"}.fa-grin-hearts:before{content:"\f584"}.fa-grin-squint:before{content:"\f585"}.fa-grin-squint-tears:before{content:"\f586"}.fa-grin-stars:before{content:"\f587"}.fa-grin-tears:before{content:"\f588"}.fa-grin-tongue:before{content:"\f589"}.fa-grin-tongue-squint:before{content:"\f58a"}.fa-grin-tongue-wink:before{content:"\f58b"}.fa-grin-wink:before{content:"\f58c"}.fa-grip-horizontal:before{content:"\f58d"}.fa-grip-lines:before{content:"\f7a4"}.fa-grip-lines-vertical:before{content:"\f7a5"}.fa-grip-vertical:before{content:"\f58e"}.fa-gripfire:before{content:"\f3ac"}.fa-grunt:before{content:"\f3ad"}.fa-guilded:before{content:"\e07e"}.fa-guitar:before{content:"\f7a6"}.fa-gulp:before{content:"\f3ae"}.fa-h-square:before{content:"\f0fd"}.fa-hacker-news:before{content:"\f1d4"}.fa-hacker-news-square:before{content:"\f3af"}.fa-hackerrank:before{content:"\f5f7"}.fa-hamburger:before{content:"\f805"}.fa-hammer:before{content:"\f6e3"}.fa-hamsa:before{content:"\f665"}.fa-hand-holding:before{content:"\f4bd"}.fa-hand-holding-heart:before{content:"\f4be"}.fa-hand-holding-medical:before{content:"\e05c"}.fa-hand-holding-usd:before{content:"\f4c0"}.fa-hand-holding-water:before{content:"\f4c1"}.fa-hand-lizard:before{content:"\f258"}.fa-hand-middle-finger:before{content:"\f806"}.fa-hand-paper:before{content:"\f256"}.fa-hand-peace:before{content:"\f25b"}.fa-hand-point-down:before{content:"\f0a7"}.fa-hand-point-left:before{content:"\f0a5"}.fa-hand-point-right:before{content:"\f0a4"}.fa-hand-point-up:before{content:"\f0a6"}.fa-hand-pointer:before{content:"\f25a"}.fa-hand-rock:before{content:"\f255"}.fa-hand-scissors:before{content:"\f257"}.fa-hand-sparkles:before{content:"\e05d"}.fa-hand-spock:before{content:"\f259"}.fa-hands:before{content:"\f4c2"}.fa-hands-helping:before{content:"\f4c4"}.fa-hands-wash:before{content:"\e05e"}.fa-handshake:before{content:"\f2b5"}.fa-handshake-alt-slash:before{content:"\e05f"}.fa-handshake-slash:before{content:"\e060"}.fa-hanukiah:before{content:"\f6e6"}.fa-hard-hat:before{content:"\f807"}.fa-hashtag:before{content:"\f292"}.fa-hat-cowboy:before{content:"\f8c0"}.fa-hat-cowboy-side:before{content:"\f8c1"}.fa-hat-wizard:before{content:"\f6e8"}.fa-hdd:before{content:"\f0a0"}.fa-head-side-cough:before{content:"\e061"}.fa-head-side-cough-slash:before{content:"\e062"}.fa-head-side-mask:before{content:"\e063"}.fa-head-side-virus:before{content:"\e064"}.fa-heading:before{content:"\f1dc"}.fa-headphones:before{content:"\f025"}.fa-headphones-alt:before{content:"\f58f"}.fa-headset:before{content:"\f590"}.fa-heart:before{content:"\f004"}.fa-heart-broken:before{content:"\f7a9"}.fa-heartbeat:before{content:"\f21e"}.fa-helicopter:before{content:"\f533"}.fa-highlighter:before{content:"\f591"}.fa-hiking:before{content:"\f6ec"}.fa-hippo:before{content:"\f6ed"}.fa-hips:before{content:"\f452"}.fa-hire-a-helper:before{content:"\f3b0"}.fa-history:before{content:"\f1da"}.fa-hive:before{content:"\e07f"}.fa-hockey-puck:before{content:"\f453"}.fa-holly-berry:before{content:"\f7aa"}.fa-home:before{content:"\f015"}.fa-hooli:before{content:"\f427"}.fa-hornbill:before{content:"\f592"}.fa-horse:before{content:"\f6f0"}.fa-horse-head:before{content:"\f7ab"}.fa-hospital:before{content:"\f0f8"}.fa-hospital-alt:before{content:"\f47d"}.fa-hospital-symbol:before{content:"\f47e"}.fa-hospital-user:before{content:"\f80d"}.fa-hot-tub:before{content:"\f593"}.fa-hotdog:before{content:"\f80f"}.fa-hotel:before{content:"\f594"}.fa-hotjar:before{content:"\f3b1"}.fa-hourglass:before{content:"\f254"}.fa-hourglass-end:before{content:"\f253"}.fa-hourglass-half:before{content:"\f252"}.fa-hourglass-start:before{content:"\f251"}.fa-house-damage:before{content:"\f6f1"}.fa-house-user:before{content:"\e065"}.fa-houzz:before{content:"\f27c"}.fa-hryvnia:before{content:"\f6f2"}.fa-html5:before{content:"\f13b"}.fa-hubspot:before{content:"\f3b2"}.fa-i-cursor:before{content:"\f246"}.fa-ice-cream:before{content:"\f810"}.fa-icicles:before{content:"\f7ad"}.fa-icons:before{content:"\f86d"}.fa-id-badge:before{content:"\f2c1"}.fa-id-card:before{content:"\f2c2"}.fa-id-card-alt:before{content:"\f47f"}.fa-ideal:before{content:"\e013"}.fa-igloo:before{content:"\f7ae"}.fa-image:before{content:"\f03e"}.fa-images:before{content:"\f302"}.fa-imdb:before{content:"\f2d8"}.fa-inbox:before{content:"\f01c"}.fa-indent:before{content:"\f03c"}.fa-industry:before{content:"\f275"}.fa-infinity:before{content:"\f534"}.fa-info:before{content:"\f129"}.fa-info-circle:before{content:"\f05a"}.fa-innosoft:before{content:"\e080"}.fa-instagram:before{content:"\f16d"}.fa-instagram-square:before{content:"\e055"}.fa-instalod:before{content:"\e081"}.fa-intercom:before{content:"\f7af"}.fa-internet-explorer:before{content:"\f26b"}.fa-invision:before{content:"\f7b0"}.fa-ioxhost:before{content:"\f208"}.fa-italic:before{content:"\f033"}.fa-itch-io:before{content:"\f83a"}.fa-itunes:before{content:"\f3b4"}.fa-itunes-note:before{content:"\f3b5"}.fa-java:before{content:"\f4e4"}.fa-jedi:before{content:"\f669"}.fa-jedi-order:before{content:"\f50e"}.fa-jenkins:before{content:"\f3b6"}.fa-jira:before{content:"\f7b1"}.fa-joget:before{content:"\f3b7"}.fa-joint:before{content:"\f595"}.fa-joomla:before{content:"\f1aa"}.fa-journal-whills:before{content:"\f66a"}.fa-js:before{content:"\f3b8"}.fa-js-square:before{content:"\f3b9"}.fa-jsfiddle:before{content:"\f1cc"}.fa-kaaba:before{content:"\f66b"}.fa-kaggle:before{content:"\f5fa"}.fa-key:before{content:"\f084"}.fa-keybase:before{content:"\f4f5"}.fa-keyboard:before{content:"\f11c"}.fa-keycdn:before{content:"\f3ba"}.fa-khanda:before{content:"\f66d"}.fa-kickstarter:before{content:"\f3bb"}.fa-kickstarter-k:before{content:"\f3bc"}.fa-kiss:before{content:"\f596"}.fa-kiss-beam:before{content:"\f597"}.fa-kiss-wink-heart:before{content:"\f598"}.fa-kiwi-bird:before{content:"\f535"}.fa-korvue:before{content:"\f42f"}.fa-landmark:before{content:"\f66f"}.fa-language:before{content:"\f1ab"}.fa-laptop:before{content:"\f109"}.fa-laptop-code:before{content:"\f5fc"}.fa-laptop-house:before{content:"\e066"}.fa-laptop-medical:before{content:"\f812"}.fa-laravel:before{content:"\f3bd"}.fa-lastfm:before{content:"\f202"}.fa-lastfm-square:before{content:"\f203"}.fa-laugh:before{content:"\f599"}.fa-laugh-beam:before{content:"\f59a"}.fa-laugh-squint:before{content:"\f59b"}.fa-laugh-wink:before{content:"\f59c"}.fa-layer-group:before{content:"\f5fd"}.fa-leaf:before{content:"\f06c"}.fa-leanpub:before{content:"\f212"}.fa-lemon:before{content:"\f094"}.fa-less:before{content:"\f41d"}.fa-less-than:before{content:"\f536"}.fa-less-than-equal:before{content:"\f537"}.fa-level-down-alt:before{content:"\f3be"}.fa-level-up-alt:before{content:"\f3bf"}.fa-life-ring:before{content:"\f1cd"}.fa-lightbulb:before{content:"\f0eb"}.fa-line:before{content:"\f3c0"}.fa-link:before{content:"\f0c1"}.fa-linkedin:before{content:"\f08c"}.fa-linkedin-in:before{content:"\f0e1"}.fa-linode:before{content:"\f2b8"}.fa-linux:before{content:"\f17c"}.fa-lira-sign:before{content:"\f195"}.fa-list:before{content:"\f03a"}.fa-list-alt:before{content:"\f022"}.fa-list-ol:before{content:"\f0cb"}.fa-list-ul:before{content:"\f0ca"}.fa-location-arrow:before{content:"\f124"}.fa-lock:before{content:"\f023"}.fa-lock-open:before{content:"\f3c1"}.fa-long-arrow-alt-down:before{content:"\f309"}.fa-long-arrow-alt-left:before{content:"\f30a"}.fa-long-arrow-alt-right:before{content:"\f30b"}.fa-long-arrow-alt-up:before{content:"\f30c"}.fa-low-vision:before{content:"\f2a8"}.fa-luggage-cart:before{content:"\f59d"}.fa-lungs:before{content:"\f604"}.fa-lungs-virus:before{content:"\e067"}.fa-lyft:before{content:"\f3c3"}.fa-magento:before{content:"\f3c4"}.fa-magic:before{content:"\f0d0"}.fa-magnet:before{content:"\f076"}.fa-mail-bulk:before{content:"\f674"}.fa-mailchimp:before{content:"\f59e"}.fa-male:before{content:"\f183"}.fa-mandalorian:before{content:"\f50f"}.fa-map:before{content:"\f279"}.fa-map-marked:before{content:"\f59f"}.fa-map-marked-alt:before{content:"\f5a0"}.fa-map-marker:before{content:"\f041"}.fa-map-marker-alt:before{content:"\f3c5"}.fa-map-pin:before{content:"\f276"}.fa-map-signs:before{content:"\f277"}.fa-markdown:before{content:"\f60f"}.fa-marker:before{content:"\f5a1"}.fa-mars:before{content:"\f222"}.fa-mars-double:before{content:"\f227"}.fa-mars-stroke:before{content:"\f229"}.fa-mars-stroke-h:before{content:"\f22b"}.fa-mars-stroke-v:before{content:"\f22a"}.fa-mask:before{content:"\f6fa"}.fa-mastodon:before{content:"\f4f6"}.fa-maxcdn:before{content:"\f136"}.fa-mdb:before{content:"\f8ca"}.fa-medal:before{content:"\f5a2"}.fa-medapps:before{content:"\f3c6"}.fa-medium:before{content:"\f23a"}.fa-medium-m:before{content:"\f3c7"}.fa-medkit:before{content:"\f0fa"}.fa-medrt:before{content:"\f3c8"}.fa-meetup:before{content:"\f2e0"}.fa-megaport:before{content:"\f5a3"}.fa-meh:before{content:"\f11a"}.fa-meh-blank:before{content:"\f5a4"}.fa-meh-rolling-eyes:before{content:"\f5a5"}.fa-memory:before{content:"\f538"}.fa-mendeley:before{content:"\f7b3"}.fa-menorah:before{content:"\f676"}.fa-mercury:before{content:"\f223"}.fa-meteor:before{content:"\f753"}.fa-microblog:before{content:"\e01a"}.fa-microchip:before{content:"\f2db"}.fa-microphone:before{content:"\f130"}.fa-microphone-alt:before{content:"\f3c9"}.fa-microphone-alt-slash:before{content:"\f539"}.fa-microphone-slash:before{content:"\f131"}.fa-microscope:before{content:"\f610"}.fa-microsoft:before{content:"\f3ca"}.fa-minus:before{content:"\f068"}.fa-minus-circle:before{content:"\f056"}.fa-minus-square:before{content:"\f146"}.fa-mitten:before{content:"\f7b5"}.fa-mix:before{content:"\f3cb"}.fa-mixcloud:before{content:"\f289"}.fa-mixer:before{content:"\e056"}.fa-mizuni:before{content:"\f3cc"}.fa-mobile:before{content:"\f10b"}.fa-mobile-alt:before{content:"\f3cd"}.fa-modx:before{content:"\f285"}.fa-monero:before{content:"\f3d0"}.fa-money-bill:before{content:"\f0d6"}.fa-money-bill-alt:before{content:"\f3d1"}.fa-money-bill-wave:before{content:"\f53a"}.fa-money-bill-wave-alt:before{content:"\f53b"}.fa-money-check:before{content:"\f53c"}.fa-money-check-alt:before{content:"\f53d"}.fa-monument:before{content:"\f5a6"}.fa-moon:before{content:"\f186"}.fa-mortar-pestle:before{content:"\f5a7"}.fa-mosque:before{content:"\f678"}.fa-motorcycle:before{content:"\f21c"}.fa-mountain:before{content:"\f6fc"}.fa-mouse:before{content:"\f8cc"}.fa-mouse-pointer:before{content:"\f245"}.fa-mug-hot:before{content:"\f7b6"}.fa-music:before{content:"\f001"}.fa-napster:before{content:"\f3d2"}.fa-neos:before{content:"\f612"}.fa-network-wired:before{content:"\f6ff"}.fa-neuter:before{content:"\f22c"}.fa-newspaper:before{content:"\f1ea"}.fa-nimblr:before{content:"\f5a8"}.fa-node:before{content:"\f419"}.fa-node-js:before{content:"\f3d3"}.fa-not-equal:before{content:"\f53e"}.fa-notes-medical:before{content:"\f481"}.fa-npm:before{content:"\f3d4"}.fa-ns8:before{content:"\f3d5"}.fa-nutritionix:before{content:"\f3d6"}.fa-object-group:before{content:"\f247"}.fa-object-ungroup:before{content:"\f248"}.fa-octopus-deploy:before{content:"\e082"}.fa-odnoklassniki:before{content:"\f263"}.fa-odnoklassniki-square:before{content:"\f264"}.fa-oil-can:before{content:"\f613"}.fa-old-republic:before{content:"\f510"}.fa-om:before{content:"\f679"}.fa-opencart:before{content:"\f23d"}.fa-openid:before{content:"\f19b"}.fa-opera:before{content:"\f26a"}.fa-optin-monster:before{content:"\f23c"}.fa-orcid:before{content:"\f8d2"}.fa-osi:before{content:"\f41a"}.fa-otter:before{content:"\f700"}.fa-outdent:before{content:"\f03b"}.fa-page4:before{content:"\f3d7"}.fa-pagelines:before{content:"\f18c"}.fa-pager:before{content:"\f815"}.fa-paint-brush:before{content:"\f1fc"}.fa-paint-roller:before{content:"\f5aa"}.fa-palette:before{content:"\f53f"}.fa-palfed:before{content:"\f3d8"}.fa-pallet:before{content:"\f482"}.fa-paper-plane:before{content:"\f1d8"}.fa-paperclip:before{content:"\f0c6"}.fa-parachute-box:before{content:"\f4cd"}.fa-paragraph:before{content:"\f1dd"}.fa-parking:before{content:"\f540"}.fa-passport:before{content:"\f5ab"}.fa-pastafarianism:before{content:"\f67b"}.fa-paste:before{content:"\f0ea"}.fa-patreon:before{content:"\f3d9"}.fa-pause:before{content:"\f04c"}.fa-pause-circle:before{content:"\f28b"}.fa-paw:before{content:"\f1b0"}.fa-paypal:before{content:"\f1ed"}.fa-peace:before{content:"\f67c"}.fa-pen:before{content:"\f304"}.fa-pen-alt:before{content:"\f305"}.fa-pen-fancy:before{content:"\f5ac"}.fa-pen-nib:before{content:"\f5ad"}.fa-pen-square:before{content:"\f14b"}.fa-pencil-alt:before{content:"\f303"}.fa-pencil-ruler:before{content:"\f5ae"}.fa-penny-arcade:before{content:"\f704"}.fa-people-arrows:before{content:"\e068"}.fa-people-carry:before{content:"\f4ce"}.fa-pepper-hot:before{content:"\f816"}.fa-perbyte:before{content:"\e083"}.fa-percent:before{content:"\f295"}.fa-percentage:before{content:"\f541"}.fa-periscope:before{content:"\f3da"}.fa-person-booth:before{content:"\f756"}.fa-phabricator:before{content:"\f3db"}.fa-phoenix-framework:before{content:"\f3dc"}.fa-phoenix-squadron:before{content:"\f511"}.fa-phone:before{content:"\f095"}.fa-phone-alt:before{content:"\f879"}.fa-phone-slash:before{content:"\f3dd"}.fa-phone-square:before{content:"\f098"}.fa-phone-square-alt:before{content:"\f87b"}.fa-phone-volume:before{content:"\f2a0"}.fa-photo-video:before{content:"\f87c"}.fa-php:before{content:"\f457"}.fa-pied-piper:before{content:"\f2ae"}.fa-pied-piper-alt:before{content:"\f1a8"}.fa-pied-piper-hat:before{content:"\f4e5"}.fa-pied-piper-pp:before{content:"\f1a7"}.fa-pied-piper-square:before{content:"\e01e"}.fa-piggy-bank:before{content:"\f4d3"}.fa-pills:before{content:"\f484"}.fa-pinterest:before{content:"\f0d2"}.fa-pinterest-p:before{content:"\f231"}.fa-pinterest-square:before{content:"\f0d3"}.fa-pizza-slice:before{content:"\f818"}.fa-place-of-worship:before{content:"\f67f"}.fa-plane:before{content:"\f072"}.fa-plane-arrival:before{content:"\f5af"}.fa-plane-departure:before{content:"\f5b0"}.fa-plane-slash:before{content:"\e069"}.fa-play:before{content:"\f04b"}.fa-play-circle:before{content:"\f144"}.fa-playstation:before{content:"\f3df"}.fa-plug:before{content:"\f1e6"}.fa-plus:before{content:"\f067"}.fa-plus-circle:before{content:"\f055"}.fa-plus-square:before{content:"\f0fe"}.fa-podcast:before{content:"\f2ce"}.fa-poll:before{content:"\f681"}.fa-poll-h:before{content:"\f682"}.fa-poo:before{content:"\f2fe"}.fa-poo-storm:before{content:"\f75a"}.fa-poop:before{content:"\f619"}.fa-portrait:before{content:"\f3e0"}.fa-pound-sign:before{content:"\f154"}.fa-power-off:before{content:"\f011"}.fa-pray:before{content:"\f683"}.fa-praying-hands:before{content:"\f684"}.fa-prescription:before{content:"\f5b1"}.fa-prescription-bottle:before{content:"\f485"}.fa-prescription-bottle-alt:before{content:"\f486"}.fa-print:before{content:"\f02f"}.fa-procedures:before{content:"\f487"}.fa-product-hunt:before{content:"\f288"}.fa-project-diagram:before{content:"\f542"}.fa-pump-medical:before{content:"\e06a"}.fa-pump-soap:before{content:"\e06b"}.fa-pushed:before{content:"\f3e1"}.fa-puzzle-piece:before{content:"\f12e"}.fa-python:before{content:"\f3e2"}.fa-qq:before{content:"\f1d6"}.fa-qrcode:before{content:"\f029"}.fa-question:before{content:"\f128"}.fa-question-circle:before{content:"\f059"}.fa-quidditch:before{content:"\f458"}.fa-quinscape:before{content:"\f459"}.fa-quora:before{content:"\f2c4"}.fa-quote-left:before{content:"\f10d"}.fa-quote-right:before{content:"\f10e"}.fa-quran:before{content:"\f687"}.fa-r-project:before{content:"\f4f7"}.fa-radiation:before{content:"\f7b9"}.fa-radiation-alt:before{content:"\f7ba"}.fa-rainbow:before{content:"\f75b"}.fa-random:before{content:"\f074"}.fa-raspberry-pi:before{content:"\f7bb"}.fa-ravelry:before{content:"\f2d9"}.fa-react:before{content:"\f41b"}.fa-reacteurope:before{content:"\f75d"}.fa-readme:before{content:"\f4d5"}.fa-rebel:before{content:"\f1d0"}.fa-receipt:before{content:"\f543"}.fa-record-vinyl:before{content:"\f8d9"}.fa-recycle:before{content:"\f1b8"}.fa-red-river:before{content:"\f3e3"}.fa-reddit:before{content:"\f1a1"}.fa-reddit-alien:before{content:"\f281"}.fa-reddit-square:before{content:"\f1a2"}.fa-redhat:before{content:"\f7bc"}.fa-redo:before{content:"\f01e"}.fa-redo-alt:before{content:"\f2f9"}.fa-registered:before{content:"\f25d"}.fa-remove-format:before{content:"\f87d"}.fa-renren:before{content:"\f18b"}.fa-reply:before{content:"\f3e5"}.fa-reply-all:before{content:"\f122"}.fa-replyd:before{content:"\f3e6"}.fa-republican:before{content:"\f75e"}.fa-researchgate:before{content:"\f4f8"}.fa-resolving:before{content:"\f3e7"}.fa-restroom:before{content:"\f7bd"}.fa-retweet:before{content:"\f079"}.fa-rev:before{content:"\f5b2"}.fa-ribbon:before{content:"\f4d6"}.fa-ring:before{content:"\f70b"}.fa-road:before{content:"\f018"}.fa-robot:before{content:"\f544"}.fa-rocket:before{content:"\f135"}.fa-rocketchat:before{content:"\f3e8"}.fa-rockrms:before{content:"\f3e9"}.fa-route:before{content:"\f4d7"}.fa-rss:before{content:"\f09e"}.fa-rss-square:before{content:"\f143"}.fa-ruble-sign:before{content:"\f158"}.fa-ruler:before{content:"\f545"}.fa-ruler-combined:before{content:"\f546"}.fa-ruler-horizontal:before{content:"\f547"}.fa-ruler-vertical:before{content:"\f548"}.fa-running:before{content:"\f70c"}.fa-rupee-sign:before{content:"\f156"}.fa-rust:before{content:"\e07a"}.fa-sad-cry:before{content:"\f5b3"}.fa-sad-tear:before{content:"\f5b4"}.fa-safari:before{content:"\f267"}.fa-salesforce:before{content:"\f83b"}.fa-sass:before{content:"\f41e"}.fa-satellite:before{content:"\f7bf"}.fa-satellite-dish:before{content:"\f7c0"}.fa-save:before{content:"\f0c7"}.fa-schlix:before{content:"\f3ea"}.fa-school:before{content:"\f549"}.fa-screwdriver:before{content:"\f54a"}.fa-scribd:before{content:"\f28a"}.fa-scroll:before{content:"\f70e"}.fa-sd-card:before{content:"\f7c2"}.fa-search:before{content:"\f002"}.fa-search-dollar:before{content:"\f688"}.fa-search-location:before{content:"\f689"}.fa-search-minus:before{content:"\f010"}.fa-search-plus:before{content:"\f00e"}.fa-searchengin:before{content:"\f3eb"}.fa-seedling:before{content:"\f4d8"}.fa-sellcast:before{content:"\f2da"}.fa-sellsy:before{content:"\f213"}.fa-server:before{content:"\f233"}.fa-servicestack:before{content:"\f3ec"}.fa-shapes:before{content:"\f61f"}.fa-share:before{content:"\f064"}.fa-share-alt:before{content:"\f1e0"}.fa-share-alt-square:before{content:"\f1e1"}.fa-share-square:before{content:"\f14d"}.fa-shekel-sign:before{content:"\f20b"}.fa-shield-alt:before{content:"\f3ed"}.fa-shield-virus:before{content:"\e06c"}.fa-ship:before{content:"\f21a"}.fa-shipping-fast:before{content:"\f48b"}.fa-shirtsinbulk:before{content:"\f214"}.fa-shoe-prints:before{content:"\f54b"}.fa-shopify:before{content:"\e057"}.fa-shopping-bag:before{content:"\f290"}.fa-shopping-basket:before{content:"\f291"}.fa-shopping-cart:before{content:"\f07a"}.fa-shopware:before{content:"\f5b5"}.fa-shower:before{content:"\f2cc"}.fa-shuttle-van:before{content:"\f5b6"}.fa-sign:before{content:"\f4d9"}.fa-sign-in-alt:before{content:"\f2f6"}.fa-sign-language:before{content:"\f2a7"}.fa-sign-out-alt:before{content:"\f2f5"}.fa-signal:before{content:"\f012"}.fa-signature:before{content:"\f5b7"}.fa-sim-card:before{content:"\f7c4"}.fa-simplybuilt:before{content:"\f215"}.fa-sink:before{content:"\e06d"}.fa-sistrix:before{content:"\f3ee"}.fa-sitemap:before{content:"\f0e8"}.fa-sith:before{content:"\f512"}.fa-skating:before{content:"\f7c5"}.fa-sketch:before{content:"\f7c6"}.fa-skiing:before{content:"\f7c9"}.fa-skiing-nordic:before{content:"\f7ca"}.fa-skull:before{content:"\f54c"}.fa-skull-crossbones:before{content:"\f714"}.fa-skyatlas:before{content:"\f216"}.fa-skype:before{content:"\f17e"}.fa-slack:before{content:"\f198"}.fa-slack-hash:before{content:"\f3ef"}.fa-slash:before{content:"\f715"}.fa-sleigh:before{content:"\f7cc"}.fa-sliders-h:before{content:"\f1de"}.fa-slideshare:before{content:"\f1e7"}.fa-smile:before{content:"\f118"}.fa-smile-beam:before{content:"\f5b8"}.fa-smile-wink:before{content:"\f4da"}.fa-smog:before{content:"\f75f"}.fa-smoking:before{content:"\f48d"}.fa-smoking-ban:before{content:"\f54d"}.fa-sms:before{content:"\f7cd"}.fa-snapchat:before{content:"\f2ab"}.fa-snapchat-ghost:before{content:"\f2ac"}.fa-snapchat-square:before{content:"\f2ad"}.fa-snowboarding:before{content:"\f7ce"}.fa-snowflake:before{content:"\f2dc"}.fa-snowman:before{content:"\f7d0"}.fa-snowplow:before{content:"\f7d2"}.fa-soap:before{content:"\e06e"}.fa-socks:before{content:"\f696"}.fa-solar-panel:before{content:"\f5ba"}.fa-sort:before{content:"\f0dc"}.fa-sort-alpha-down:before{content:"\f15d"}.fa-sort-alpha-down-alt:before{content:"\f881"}.fa-sort-alpha-up:before{content:"\f15e"}.fa-sort-alpha-up-alt:before{content:"\f882"}.fa-sort-amount-down:before{content:"\f160"}.fa-sort-amount-down-alt:before{content:"\f884"}.fa-sort-amount-up:before{content:"\f161"}.fa-sort-amount-up-alt:before{content:"\f885"}.fa-sort-down:before{content:"\f0dd"}.fa-sort-numeric-down:before{content:"\f162"}.fa-sort-numeric-down-alt:before{content:"\f886"}.fa-sort-numeric-up:before{content:"\f163"}.fa-sort-numeric-up-alt:before{content:"\f887"}.fa-sort-up:before{content:"\f0de"}.fa-soundcloud:before{content:"\f1be"}.fa-sourcetree:before{content:"\f7d3"}.fa-spa:before{content:"\f5bb"}.fa-space-shuttle:before{content:"\f197"}.fa-speakap:before{content:"\f3f3"}.fa-speaker-deck:before{content:"\f83c"}.fa-spell-check:before{content:"\f891"}.fa-spider:before{content:"\f717"}.fa-spinner:before{content:"\f110"}.fa-splotch:before{content:"\f5bc"}.fa-spotify:before{content:"\f1bc"}.fa-spray-can:before{content:"\f5bd"}.fa-square:before{content:"\f0c8"}.fa-square-full:before{content:"\f45c"}.fa-square-root-alt:before{content:"\f698"}.fa-squarespace:before{content:"\f5be"}.fa-stack-exchange:before{content:"\f18d"}.fa-stack-overflow:before{content:"\f16c"}.fa-stackpath:before{content:"\f842"}.fa-stamp:before{content:"\f5bf"}.fa-star:before{content:"\f005"}.fa-star-and-crescent:before{content:"\f699"}.fa-star-half:before{content:"\f089"}.fa-star-half-alt:before{content:"\f5c0"}.fa-star-of-david:before{content:"\f69a"}.fa-star-of-life:before{content:"\f621"}.fa-staylinked:before{content:"\f3f5"}.fa-steam:before{content:"\f1b6"}.fa-steam-square:before{content:"\f1b7"}.fa-steam-symbol:before{content:"\f3f6"}.fa-step-backward:before{content:"\f048"}.fa-step-forward:before{content:"\f051"}.fa-stethoscope:before{content:"\f0f1"}.fa-sticker-mule:before{content:"\f3f7"}.fa-sticky-note:before{content:"\f249"}.fa-stop:before{content:"\f04d"}.fa-stop-circle:before{content:"\f28d"}.fa-stopwatch:before{content:"\f2f2"}.fa-stopwatch-20:before{content:"\e06f"}.fa-store:before{content:"\f54e"}.fa-store-alt:before{content:"\f54f"}.fa-store-alt-slash:before{content:"\e070"}.fa-store-slash:before{content:"\e071"}.fa-strava:before{content:"\f428"}.fa-stream:before{content:"\f550"}.fa-street-view:before{content:"\f21d"}.fa-strikethrough:before{content:"\f0cc"}.fa-stripe:before{content:"\f429"}.fa-stripe-s:before{content:"\f42a"}.fa-stroopwafel:before{content:"\f551"}.fa-studiovinari:before{content:"\f3f8"}.fa-stumbleupon:before{content:"\f1a4"}.fa-stumbleupon-circle:before{content:"\f1a3"}.fa-subscript:before{content:"\f12c"}.fa-subway:before{content:"\f239"}.fa-suitcase:before{content:"\f0f2"}.fa-suitcase-rolling:before{content:"\f5c1"}.fa-sun:before{content:"\f185"}.fa-superpowers:before{content:"\f2dd"}.fa-superscript:before{content:"\f12b"}.fa-supple:before{content:"\f3f9"}.fa-surprise:before{content:"\f5c2"}.fa-suse:before{content:"\f7d6"}.fa-swatchbook:before{content:"\f5c3"}.fa-swift:before{content:"\f8e1"}.fa-swimmer:before{content:"\f5c4"}.fa-swimming-pool:before{content:"\f5c5"}.fa-symfony:before{content:"\f83d"}.fa-synagogue:before{content:"\f69b"}.fa-sync:before{content:"\f021"}.fa-sync-alt:before{content:"\f2f1"}.fa-syringe:before{content:"\f48e"}.fa-table:before{content:"\f0ce"}.fa-table-tennis:before{content:"\f45d"}.fa-tablet:before{content:"\f10a"}.fa-tablet-alt:before{content:"\f3fa"}.fa-tablets:before{content:"\f490"}.fa-tachometer-alt:before{content:"\f3fd"}.fa-tag:before{content:"\f02b"}.fa-tags:before{content:"\f02c"}.fa-tape:before{content:"\f4db"}.fa-tasks:before{content:"\f0ae"}.fa-taxi:before{content:"\f1ba"}.fa-teamspeak:before{content:"\f4f9"}.fa-teeth:before{content:"\f62e"}.fa-teeth-open:before{content:"\f62f"}.fa-telegram:before{content:"\f2c6"}.fa-telegram-plane:before{content:"\f3fe"}.fa-temperature-high:before{content:"\f769"}.fa-temperature-low:before{content:"\f76b"}.fa-tencent-weibo:before{content:"\f1d5"}.fa-tenge:before{content:"\f7d7"}.fa-terminal:before{content:"\f120"}.fa-text-height:before{content:"\f034"}.fa-text-width:before{content:"\f035"}.fa-th:before{content:"\f00a"}.fa-th-large:before{content:"\f009"}.fa-th-list:before{content:"\f00b"}.fa-the-red-yeti:before{content:"\f69d"}.fa-theater-masks:before{content:"\f630"}.fa-themeco:before{content:"\f5c6"}.fa-themeisle:before{content:"\f2b2"}.fa-thermometer:before{content:"\f491"}.fa-thermometer-empty:before{content:"\f2cb"}.fa-thermometer-full:before{content:"\f2c7"}.fa-thermometer-half:before{content:"\f2c9"}.fa-thermometer-quarter:before{content:"\f2ca"}.fa-thermometer-three-quarters:before{content:"\f2c8"}.fa-think-peaks:before{content:"\f731"}.fa-thumbs-down:before{content:"\f165"}.fa-thumbs-up:before{content:"\f164"}.fa-thumbtack:before{content:"\f08d"}.fa-ticket-alt:before{content:"\f3ff"}.fa-tiktok:before{content:"\e07b"}.fa-times:before{content:"\f00d"}.fa-times-circle:before{content:"\f057"}.fa-tint:before{content:"\f043"}.fa-tint-slash:before{content:"\f5c7"}.fa-tired:before{content:"\f5c8"}.fa-toggle-off:before{content:"\f204"}.fa-toggle-on:before{content:"\f205"}.fa-toilet:before{content:"\f7d8"}.fa-toilet-paper:before{content:"\f71e"}.fa-toilet-paper-slash:before{content:"\e072"}.fa-toolbox:before{content:"\f552"}.fa-tools:before{content:"\f7d9"}.fa-tooth:before{content:"\f5c9"}.fa-torah:before{content:"\f6a0"}.fa-torii-gate:before{content:"\f6a1"}.fa-tractor:before{content:"\f722"}.fa-trade-federation:before{content:"\f513"}.fa-trademark:before{content:"\f25c"}.fa-traffic-light:before{content:"\f637"}.fa-trailer:before{content:"\e041"}.fa-train:before{content:"\f238"}.fa-tram:before{content:"\f7da"}.fa-transgender:before{content:"\f224"}.fa-transgender-alt:before{content:"\f225"}.fa-trash:before{content:"\f1f8"}.fa-trash-alt:before{content:"\f2ed"}.fa-trash-restore:before{content:"\f829"}.fa-trash-restore-alt:before{content:"\f82a"}.fa-tree:before{content:"\f1bb"}.fa-trello:before{content:"\f181"}.fa-trophy:before{content:"\f091"}.fa-truck:before{content:"\f0d1"}.fa-truck-loading:before{content:"\f4de"}.fa-truck-monster:before{content:"\f63b"}.fa-truck-moving:before{content:"\f4df"}.fa-truck-pickup:before{content:"\f63c"}.fa-tshirt:before{content:"\f553"}.fa-tty:before{content:"\f1e4"}.fa-tumblr:before{content:"\f173"}.fa-tumblr-square:before{content:"\f174"}.fa-tv:before{content:"\f26c"}.fa-twitch:before{content:"\f1e8"}.fa-twitter:before{content:"\f099"}.fa-twitter-square:before{content:"\f081"}.fa-typo3:before{content:"\f42b"}.fa-uber:before{content:"\f402"}.fa-ubuntu:before{content:"\f7df"}.fa-uikit:before{content:"\f403"}.fa-umbraco:before{content:"\f8e8"}.fa-umbrella:before{content:"\f0e9"}.fa-umbrella-beach:before{content:"\f5ca"}.fa-uncharted:before{content:"\e084"}.fa-underline:before{content:"\f0cd"}.fa-undo:before{content:"\f0e2"}.fa-undo-alt:before{content:"\f2ea"}.fa-uniregistry:before{content:"\f404"}.fa-unity:before{content:"\e049"}.fa-universal-access:before{content:"\f29a"}.fa-university:before{content:"\f19c"}.fa-unlink:before{content:"\f127"}.fa-unlock:before{content:"\f09c"}.fa-unlock-alt:before{content:"\f13e"}.fa-unsplash:before{content:"\e07c"}.fa-untappd:before{content:"\f405"}.fa-upload:before{content:"\f093"}.fa-ups:before{content:"\f7e0"}.fa-usb:before{content:"\f287"}.fa-user:before{content:"\f007"}.fa-user-alt:before{content:"\f406"}.fa-user-alt-slash:before{content:"\f4fa"}.fa-user-astronaut:before{content:"\f4fb"}.fa-user-check:before{content:"\f4fc"}.fa-user-circle:before{content:"\f2bd"}.fa-user-clock:before{content:"\f4fd"}.fa-user-cog:before{content:"\f4fe"}.fa-user-edit:before{content:"\f4ff"}.fa-user-friends:before{content:"\f500"}.fa-user-graduate:before{content:"\f501"}.fa-user-injured:before{content:"\f728"}.fa-user-lock:before{content:"\f502"}.fa-user-md:before{content:"\f0f0"}.fa-user-minus:before{content:"\f503"}.fa-user-ninja:before{content:"\f504"}.fa-user-nurse:before{content:"\f82f"}.fa-user-plus:before{content:"\f234"}.fa-user-secret:before{content:"\f21b"}.fa-user-shield:before{content:"\f505"}.fa-user-slash:before{content:"\f506"}.fa-user-tag:before{content:"\f507"}.fa-user-tie:before{content:"\f508"}.fa-user-times:before{content:"\f235"}.fa-users:before{content:"\f0c0"}.fa-users-cog:before{content:"\f509"}.fa-users-slash:before{content:"\e073"}.fa-usps:before{content:"\f7e1"}.fa-ussunnah:before{content:"\f407"}.fa-utensil-spoon:before{content:"\f2e5"}.fa-utensils:before{content:"\f2e7"}.fa-vaadin:before{content:"\f408"}.fa-vector-square:before{content:"\f5cb"}.fa-venus:before{content:"\f221"}.fa-venus-double:before{content:"\f226"}.fa-venus-mars:before{content:"\f228"}.fa-vest:before{content:"\e085"}.fa-vest-patches:before{content:"\e086"}.fa-viacoin:before{content:"\f237"}.fa-viadeo:before{content:"\f2a9"}.fa-viadeo-square:before{content:"\f2aa"}.fa-vial:before{content:"\f492"}.fa-vials:before{content:"\f493"}.fa-viber:before{content:"\f409"}.fa-video:before{content:"\f03d"}.fa-video-slash:before{content:"\f4e2"}.fa-vihara:before{content:"\f6a7"}.fa-vimeo:before{content:"\f40a"}.fa-vimeo-square:before{content:"\f194"}.fa-vimeo-v:before{content:"\f27d"}.fa-vine:before{content:"\f1ca"}.fa-virus:before{content:"\e074"}.fa-virus-slash:before{content:"\e075"}.fa-viruses:before{content:"\e076"}.fa-vk:before{content:"\f189"}.fa-vnv:before{content:"\f40b"}.fa-voicemail:before{content:"\f897"}.fa-volleyball-ball:before{content:"\f45f"}.fa-volume-down:before{content:"\f027"}.fa-volume-mute:before{content:"\f6a9"}.fa-volume-off:before{content:"\f026"}.fa-volume-up:before{content:"\f028"}.fa-vote-yea:before{content:"\f772"}.fa-vr-cardboard:before{content:"\f729"}.fa-vuejs:before{content:"\f41f"}.fa-walking:before{content:"\f554"}.fa-wallet:before{content:"\f555"}.fa-warehouse:before{content:"\f494"}.fa-watchman-monitoring:before{content:"\e087"}.fa-water:before{content:"\f773"}.fa-wave-square:before{content:"\f83e"}.fa-waze:before{content:"\f83f"}.fa-weebly:before{content:"\f5cc"}.fa-weibo:before{content:"\f18a"}.fa-weight:before{content:"\f496"}.fa-weight-hanging:before{content:"\f5cd"}.fa-weixin:before{content:"\f1d7"}.fa-whatsapp:before{content:"\f232"}.fa-whatsapp-square:before{content:"\f40c"}.fa-wheelchair:before{content:"\f193"}.fa-whmcs:before{content:"\f40d"}.fa-wifi:before{content:"\f1eb"}.fa-wikipedia-w:before{content:"\f266"}.fa-wind:before{content:"\f72e"}.fa-window-close:before{content:"\f410"}.fa-window-maximize:before{content:"\f2d0"}.fa-window-minimize:before{content:"\f2d1"}.fa-window-restore:before{content:"\f2d2"}.fa-windows:before{content:"\f17a"}.fa-wine-bottle:before{content:"\f72f"}.fa-wine-glass:before{content:"\f4e3"}.fa-wine-glass-alt:before{content:"\f5ce"}.fa-wix:before{content:"\f5cf"}.fa-wizards-of-the-coast:before{content:"\f730"}.fa-wodu:before{content:"\e088"}.fa-wolf-pack-battalion:before{content:"\f514"}.fa-won-sign:before{content:"\f159"}.fa-wordpress:before{content:"\f19a"}.fa-wordpress-simple:before{content:"\f411"}.fa-wpbeginner:before{content:"\f297"}.fa-wpexplorer:before{content:"\f2de"}.fa-wpforms:before{content:"\f298"}.fa-wpressr:before{content:"\f3e4"}.fa-wrench:before{content:"\f0ad"}.fa-x-ray:before{content:"\f497"}.fa-xbox:before{content:"\f412"}.fa-xing:before{content:"\f168"}.fa-xing-square:before{content:"\f169"}.fa-y-combinator:before{content:"\f23b"}.fa-yahoo:before{content:"\f19e"}.fa-yammer:before{content:"\f840"}.fa-yandex:before{content:"\f413"}.fa-yandex-international:before{content:"\f414"}.fa-yarn:before{content:"\f7e3"}.fa-yelp:before{content:"\f1e9"}.fa-yen-sign:before{content:"\f157"}.fa-yin-yang:before{content:"\f6ad"}.fa-yoast:before{content:"\f2b1"}.fa-youtube:before{content:"\f167"}.fa-youtube-square:before{content:"\f431"}.fa-zhihu:before{content:"\f63f"}.sr-only{border:0;clip:rect(0,0,0,0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}.sr-only-focusable:active,.sr-only-focusable:focus{clip:auto;height:auto;margin:0;overflow:visible;position:static;width:auto}@font-face{font-family:"Font Awesome 5 Brands";font-style:normal;font-weight:400;font-display:block;src:url(../webfonts/fa-brands-400.eot);src:url(../webfonts/fa-brands-400.eot?#iefix) format("embedded-opentype"),url(../webfonts/fa-brands-400.woff2) format("woff2"),url(../webfonts/fa-brands-400.woff) format("woff"),url(../webfonts/fa-brands-400.ttf) format("truetype"),url(../webfonts/fa-brands-400.svg#fontawesome) format("svg")}.fab{font-family:"Font Awesome 5 Brands"}@font-face{font-family:"Font Awesome 5 Free";font-style:normal;font-weight:400;font-display:block;src:url(../webfonts/fa-regular-400.eot);src:url(../webfonts/fa-regular-400.eot?#iefix) format("embedded-opentype"),url(../webfonts/fa-regular-400.woff2) format("woff2"),url(../webfonts/fa-regular-400.woff) format("woff"),url(../webfonts/fa-regular-400.ttf) format("truetype"),url(../webfonts/fa-regular-400.svg#fontawesome) format("svg")}.fab,.far{font-weight:400}@font-face{font-family:"Font Awesome 5 Free";font-style:normal;font-weight:900;font-display:block;src:url(../webfonts/fa-solid-900.eot);src:url(../webfonts/fa-solid-900.eot?#iefix) format("embedded-opentype"),url(../webfonts/fa-solid-900.woff2) format("woff2"),url(../webfonts/fa-solid-900.woff) format("woff"),url(../webfonts/fa-solid-900.ttf) format("truetype"),url(../webfonts/fa-solid-900.svg#fontawesome) format("svg")}.fa,.far,.fas{font-family:"Font Awesome 5 Free"}.fa,.fas{font-weight:900} \ No newline at end of file diff --git a/pr-preview/pr-110/_/css/navbar.css b/pr-preview/pr-110/_/css/navbar.css deleted file mode 100644 index f17569d55..000000000 --- a/pr-preview/pr-110/_/css/navbar.css +++ /dev/null @@ -1,132 +0,0 @@ -.tcom { - font-size: 0.75rem; - font-family: Inter, sans-serif; - } - .header-utility { - height: 28px; - } - - .hidden { - height: 0px; - overflow-y: hidden; - } - - .display-menu{ - display: none; - } - .dev { - font-size: 22px; - /* margin-top: 36px;*/ - color: #00233c; - letter-spacing: 0.15px; - margin-right: 100px; - font-style: normal; - font-weight: 400; - } - .dev:hover { - text-decoration: none; - } - .line { - width: 40px; - height: 2px; - flex-shrink: 0; - border-radius: 30px; - background: var(--primary-orange, #ff5f02); - margin: 0px 0px 0px 41px; - } - - .logo { - height: auto; - /* margin-top: 30px; - margin-left: -8px;*/ - margin-right: 16px; - } - - /*Dropdowns*/ - .mt { - margin-top: 32px; - margin-bottom: 20px; - } - .mb { - margin-bottom: 10px; - } - .ext-symbol { - left: 270px; - position: absolute; - } - .dropdown-content { - width: 317px; - height: 148px; - top: 115px; - display: none; - position: absolute; - background: #fff; - overflow: hidden; - transition: all 0.25s ease-in-out 0s; - border-radius: 12px; - box-shadow: 0 12px 24px -6px rgba(16, 24, 40, 0.18); - z-index: 1; - } - .dc2 { - width: 310px; - height: 225px; - } - .show { - display: block; - } - - .dropdown-item { - font-size: 15px; - line-height: 20px; - letter-spacing: 0.25px; - color: #00233c; - background-color: #fff; - height: 32px; - display: flex; - align-items: center; - padding: 12px 24px; - border-radius: 8px; - } - .dropdown-item:hover { - text-decoration: none; - color: #ff5f02; - } - .test { - padding-bottom: 30px; - background-color: white; - } - - .custom-justify-content-between { - justify-content: flex-start; - } - - .header-nav-mobile__top-links { - margin-left: auto; - } - - .developers { - margin-left: 16px; - color: #000; - font-size: 18px; - } - - .sidenav { - transition: 0.5s; - } - @media (pointer: fine){ - ::-webkit-scrollbar-thumb { - border: 0px; - border-radius: 0px; - } - html::-webkit-scrollbar { - width: 17px; - } - } - .header-nav__element.d-flex { - display: flex; - align-items: center; - } - - .header-nav__element.d-flex a.dev { - margin-top: 8px; - } \ No newline at end of file diff --git a/pr-preview/pr-110/_/css/newnavbar.css b/pr-preview/pr-110/_/css/newnavbar.css deleted file mode 100644 index c1ed5a1a4..000000000 --- a/pr-preview/pr-110/_/css/newnavbar.css +++ /dev/null @@ -1,130 +0,0 @@ -html{font-family:sans-serif;line-height:1.15;-ms-text-size-adjust:100%;-webkit-text-size-adjust:100%} -/*article,aside,footer,header,nav,section{display:block}*/ -h1{margin:.67em 0;font-size:2em} -/*figcaption,figure,main{display:block}*/ -figure{margin:1em 40px}hr{height:0;overflow:visible;box-sizing:content-box} - -a{background-color:transparent;-webkit-text-decoration-skip:objects}a:active,a:hover{outline-width:0}abbr[title]{border-bottom:none;text-decoration:underline;-webkit-text-decoration:underline dotted;text-decoration:underline dotted}b,strong{font-weight:inherit;font-weight:bolder}code,kbd,samp{font-size:1em;font-family:monospace,monospace}dfn{font-style:italic}mark{background-color:#ff0;color:#000}small{font-size:80%}sub,sup{position:relative;font-size:75%;line-height:0;vertical-align:baseline}sub{bottom:-.25em}sup{top:-.5em}audio,video{display:inline-block}audio:not([controls]){display:none;height:0}img{border-style:none}svg:not(:root){overflow:hidden}button,input,optgroup,select,textarea{margin:0;font-size:100%;font-family:sans-serif;line-height:1.15}button,input{overflow:visible}button,select{text-transform:none}[type=reset],[type=submit],button,html [type=button]{-webkit-appearance:button}[type=button]::-moz-focus-inner,[type=reset]::-moz-focus-inner,[type=submit]::-moz-focus-inner,button::-moz-focus-inner{padding:0;border-style:none}[type=button]:-moz-focusring,[type=reset]:-moz-focusring,[type=submit]:-moz-focusring,button:-moz-focusring{outline:1px dotted ButtonText}fieldset{margin:0 2px;padding:.35em .625em .75em;border:1px solid silver}legend{display:table;max-width:100%;padding:0;color:inherit;box-sizing:border-box;white-space:normal}progress{display:inline-block;vertical-align:baseline}textarea{overflow:auto}[type=checkbox],[type=radio]{box-sizing:border-box}[type=number]::-webkit-inner-spin-button,[type=number]::-webkit-outer-spin-button{height:auto}[type=search]{-webkit-appearance:textfield;outline-offset:-2px}[type=search]::-webkit-search-cancel-button,[type=search]::-webkit-search-decoration{-webkit-appearance:none}::-webkit-file-upload-button{font:inherit;-webkit-appearance:button}details,menu{display:block}summary{display:list-item}canvas{display:inline-block}[hidden],template{display:none}@page{margin:2cm 1cm}@media print{.printHide{display:none!important}*,:after,:before{background:transparent!important;color:#000!important;box-shadow:none!important;text-shadow:none!important}}*,:after,:before{box-sizing:border-box}html{font-size:16px}button,input,select,textarea{font-size:inherit;font-family:inherit;line-height:inherit}@font-face{font-family:swiper-icons;src:url("data:application/font-woff;charset=utf-8;base64, d09GRgABAAAAAAZgABAAAAAADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAGRAAAABoAAAAci6qHkUdERUYAAAWgAAAAIwAAACQAYABXR1BPUwAABhQAAAAuAAAANuAY7+xHU1VCAAAFxAAAAFAAAABm2fPczU9TLzIAAAHcAAAASgAAAGBP9V5RY21hcAAAAkQAAACIAAABYt6F0cBjdnQgAAACzAAAAAQAAAAEABEBRGdhc3AAAAWYAAAACAAAAAj//wADZ2x5ZgAAAywAAADMAAAD2MHtryVoZWFkAAABbAAAADAAAAA2E2+eoWhoZWEAAAGcAAAAHwAAACQC9gDzaG10eAAAAigAAAAZAAAArgJkABFsb2NhAAAC0AAAAFoAAABaFQAUGG1heHAAAAG8AAAAHwAAACAAcABAbmFtZQAAA/gAAAE5AAACXvFdBwlwb3N0AAAFNAAAAGIAAACE5s74hXjaY2BkYGAAYpf5Hu/j+W2+MnAzMYDAzaX6QjD6/4//Bxj5GA8AuRwMYGkAPywL13jaY2BkYGA88P8Agx4j+/8fQDYfA1AEBWgDAIB2BOoAeNpjYGRgYNBh4GdgYgABEMnIABJzYNADCQAACWgAsQB42mNgYfzCOIGBlYGB0YcxjYGBwR1Kf2WQZGhhYGBiYGVmgAFGBiQQkOaawtDAoMBQxXjg/wEGPcYDDA4wNUA2CCgwsAAAO4EL6gAAeNpj2M0gyAACqxgGNWBkZ2D4/wMA+xkDdgAAAHjaY2BgYGaAYBkGRgYQiAHyGMF8FgYHIM3DwMHABGQrMOgyWDLEM1T9/w8UBfEMgLzE////P/5//f/V/xv+r4eaAAeMbAxwIUYmIMHEgKYAYjUcsDAwsLKxc3BycfPw8jEQA/gZBASFhEVExcQlJKWkZWTl5BUUlZRVVNXUNTQZBgMAAMR+E+gAEQFEAAAAKgAqACoANAA+AEgAUgBcAGYAcAB6AIQAjgCYAKIArAC2AMAAygDUAN4A6ADyAPwBBgEQARoBJAEuATgBQgFMAVYBYAFqAXQBfgGIAZIBnAGmAbIBzgHsAAB42u2NMQ6CUAyGW568x9AneYYgm4MJbhKFaExIOAVX8ApewSt4Bic4AfeAid3VOBixDxfPYEza5O+Xfi04YADggiUIULCuEJK8VhO4bSvpdnktHI5QCYtdi2sl8ZnXaHlqUrNKzdKcT8cjlq+rwZSvIVczNiezsfnP/uznmfPFBNODM2K7MTQ45YEAZqGP81AmGGcF3iPqOop0r1SPTaTbVkfUe4HXj97wYE+yNwWYxwWu4v1ugWHgo3S1XdZEVqWM7ET0cfnLGxWfkgR42o2PvWrDMBSFj/IHLaF0zKjRgdiVMwScNRAoWUoH78Y2icB/yIY09An6AH2Bdu/UB+yxopYshQiEvnvu0dURgDt8QeC8PDw7Fpji3fEA4z/PEJ6YOB5hKh4dj3EvXhxPqH/SKUY3rJ7srZ4FZnh1PMAtPhwP6fl2PMJMPDgeQ4rY8YT6Gzao0eAEA409DuggmTnFnOcSCiEiLMgxCiTI6Cq5DZUd3Qmp10vO0LaLTd2cjN4fOumlc7lUYbSQcZFkutRG7g6JKZKy0RmdLY680CDnEJ+UMkpFFe1RN7nxdVpXrC4aTtnaurOnYercZg2YVmLN/d/gczfEimrE/fs/bOuq29Zmn8tloORaXgZgGa78yO9/cnXm2BpaGvq25Dv9S4E9+5SIc9PqupJKhYFSSl47+Qcr1mYNAAAAeNptw0cKwkAAAMDZJA8Q7OUJvkLsPfZ6zFVERPy8qHh2YER+3i/BP83vIBLLySsoKimrqKqpa2hp6+jq6RsYGhmbmJqZSy0sraxtbO3sHRydnEMU4uR6yx7JJXveP7WrDycAAAAAAAH//wACeNpjYGRgYOABYhkgZgJCZgZNBkYGLQZtIJsFLMYAAAw3ALgAeNolizEKgDAQBCchRbC2sFER0YD6qVQiBCv/H9ezGI6Z5XBAw8CBK/m5iQQVauVbXLnOrMZv2oLdKFa8Pjuru2hJzGabmOSLzNMzvutpB3N42mNgZGBg4GKQYzBhYMxJLMlj4GBgAYow/P/PAJJhLM6sSoWKfWCAAwDAjgbRAAB42mNgYGBkAIIbCZo5IPrmUn0hGA0AO8EFTQAA") format("woff");font-weight:400;font-style:normal}:root{--swiper-theme-color:#007aff}.swiper,swiper-container{margin-left:auto;margin-right:auto;position:relative;overflow:hidden;list-style:none;padding:0;z-index:1;display:block}.swiper-vertical>.swiper-wrapper{flex-direction:column}.swiper-wrapper{position:relative;width:100%;height:100%;z-index:1;display:flex;transition-property:transform;transition-timing-function:var(--swiper-wrapper-transition-timing-function,initial);box-sizing:content-box}.swiper-android .swiper-slide,.swiper-wrapper{transform:translateZ(0)}.swiper-horizontal{touch-action:pan-y}.swiper-vertical{touch-action:pan-x}.swiper-slide,swiper-slide{flex-shrink:0;width:100%;height:100%;position:relative;transition-property:transform;display:block}.swiper-slide-invisible-blank{visibility:hidden}.swiper-autoheight,.swiper-autoheight .swiper-slide{height:auto}.swiper-autoheight .swiper-wrapper{align-items:flex-start;transition-property:transform,height}.swiper-backface-hidden .swiper-slide{transform:translateZ(0);backface-visibility:hidden}.swiper-3d.swiper-css-mode .swiper-wrapper{perspective:1200px}.swiper-3d .swiper-wrapper{transform-style:preserve-3d}.swiper-3d{perspective:1200px}.swiper-3d .swiper-cube-shadow,.swiper-3d .swiper-slide,.swiper-3d .swiper-slide-shadow,.swiper-3d .swiper-slide-shadow-bottom,.swiper-3d .swiper-slide-shadow-left,.swiper-3d .swiper-slide-shadow-right,.swiper-3d .swiper-slide-shadow-top{transform-style:preserve-3d}.swiper-3d .swiper-slide-shadow,.swiper-3d .swiper-slide-shadow-bottom,.swiper-3d .swiper-slide-shadow-left,.swiper-3d .swiper-slide-shadow-right,.swiper-3d .swiper-slide-shadow-top{position:absolute;left:0;top:0;width:100%;height:100%;pointer-events:none;z-index:10}.swiper-3d .swiper-slide-shadow{background:rgba(0,0,0,.15)}.swiper-3d .swiper-slide-shadow-left{background-image:linear-gradient(270deg,rgba(0,0,0,.5),transparent)}.swiper-3d .swiper-slide-shadow-right{background-image:linear-gradient(90deg,rgba(0,0,0,.5),transparent)}.swiper-3d .swiper-slide-shadow-top{background-image:linear-gradient(0deg,rgba(0,0,0,.5),transparent)}.swiper-3d .swiper-slide-shadow-bottom{background-image:linear-gradient(180deg,rgba(0,0,0,.5),transparent)}.swiper-css-mode>.swiper-wrapper{overflow:auto;scrollbar-width:none;-ms-overflow-style:none}.swiper-css-mode>.swiper-wrapper::-webkit-scrollbar{display:none}.swiper-css-mode>.swiper-wrapper>.swiper-slide{scroll-snap-align:start start}.swiper-horizontal.swiper-css-mode>.swiper-wrapper{scroll-snap-type:x mandatory}.swiper-vertical.swiper-css-mode>.swiper-wrapper{scroll-snap-type:y mandatory}.swiper-centered>.swiper-wrapper:before{content:"";flex-shrink:0;order:9999}.swiper-centered>.swiper-wrapper>.swiper-slide{scroll-snap-align:center center;scroll-snap-stop:always}.swiper-centered.swiper-horizontal>.swiper-wrapper>.swiper-slide:first-child{margin-inline-start:var(--swiper-centered-offset-before)}.swiper-centered.swiper-horizontal>.swiper-wrapper:before{height:100%;min-height:1px;width:var(--swiper-centered-offset-after)}.swiper-centered.swiper-vertical>.swiper-wrapper>.swiper-slide:first-child{margin-block-start:var(--swiper-centered-offset-before)}.swiper-centered.swiper-vertical>.swiper-wrapper:before{width:100%;min-width:1px;height:var(--swiper-centered-offset-after)}.swiper-lazy-preloader{width:42px;height:42px;position:absolute;left:50%;top:50%;margin-left:-21px;margin-top:-21px;z-index:10;transform-origin:50%;box-sizing:border-box;border-radius:50%;border:4px solid var(--swiper-preloader-color,var(--swiper-theme-color));border-top:4px solid transparent}.swiper-watch-progress .swiper-slide-visible .swiper-lazy-preloader,.swiper:not(.swiper-watch-progress) .swiper-lazy-preloader,swiper-container:not(.swiper-watch-progress) .swiper-lazy-preloader{animation:swiper-preloader-spin 1s linear infinite}.swiper-lazy-preloader-white{--swiper-preloader-color:#fff}.swiper-lazy-preloader-black{--swiper-preloader-color:#000}@keyframes swiper-preloader-spin{0%{transform:rotate(0deg)}to{transform:rotate(1turn)}}.swiper-related-posts .swiper-slide{height:unset}/*! - * Bootstrap Grid v5.2.0 (https://getbootstrap.com/) - * Copyright 2011-2022 The Bootstrap Authors - * Copyright 2011-2022 Twitter, Inc. - * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE) - */:root{--bs-blue:#0d6efd;--bs-indigo:#6610f2;--bs-purple:#6f42c1;--bs-pink:#d63384;--bs-red:#dc3545;--bs-orange:#fd7e14;--bs-yellow:#ffc107;--bs-green:#198754;--bs-teal:#20c997;--bs-cyan:#0dcaf0;--bs-black:#000;--bs-white:#fff;--bs-gray:#6c757d;--bs-gray-dark:#343a40;--bs-gray-100:#f8f9fa;--bs-gray-200:#e9ecef;--bs-gray-300:#dee2e6;--bs-gray-400:#ced4da;--bs-gray-500:#adb5bd;--bs-gray-600:#6c757d;--bs-gray-700:#495057;--bs-gray-800:#343a40;--bs-gray-900:#212529;--bs-primary:#0d6efd;--bs-secondary:#6c757d;--bs-success:#198754;--bs-info:#0dcaf0;--bs-warning:#ffc107;--bs-danger:#dc3545;--bs-light:#f8f9fa;--bs-dark:#212529;--bs-primary-rgb:13,110,253;--bs-secondary-rgb:108,117,125;--bs-success-rgb:25,135,84;--bs-info-rgb:13,202,240;--bs-warning-rgb:255,193,7;--bs-danger-rgb:220,53,69;--bs-light-rgb:248,249,250;--bs-dark-rgb:33,37,41;--bs-white-rgb:255,255,255;--bs-black-rgb:0,0,0;--bs-body-color-rgb:33,37,41;--bs-body-bg-rgb:255,255,255;--bs-font-sans-serif:system-ui,-apple-system,"Segoe UI",Roboto,"Helvetica Neue","Noto Sans","Liberation Sans",Arial,sans-serif,"Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol","Noto Color Emoji";--bs-font-monospace:SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",monospace;--bs-gradient:linear-gradient(180deg,hsla(0,0%,100%,0.15),hsla(0,0%,100%,0));--bs-body-font-family:var(--bs-font-sans-serif);--bs-body-font-size:1rem;--bs-body-font-weight:400;--bs-body-line-height:1.5;--bs-body-color:#212529;--bs-body-bg:#fff;--bs-border-width:1px;--bs-border-style:solid;--bs-border-color:#dee2e6;--bs-border-color-translucent:rgba(0,0,0,0.175);--bs-border-radius:0.375rem;--bs-border-radius-sm:0.25rem;--bs-border-radius-lg:0.5rem;--bs-border-radius-xl:1rem;--bs-border-radius-2xl:2rem;--bs-border-radius-pill:50rem;--bs-link-color:#0d6efd;--bs-link-hover-color:#0a58ca;--bs-code-color:#d63384;--bs-highlight-bg:#fff3cd}.container,.container-fluid,.container-lg,.container-md,.container-sm,.container-xl,.container-xxl{--bs-gutter-x:1.5rem;--bs-gutter-y:0;width:100%;padding-right:calc(var(--bs-gutter-x)*0.5);padding-left:calc(var(--bs-gutter-x)*0.5);margin-right:auto;margin-left:auto}@media(min-width:576px){.container,.container-sm{max-width:540px}}@media(min-width:768px){.container,.container-md,.container-sm{max-width:720px}}@media(min-width:992px){.container,.container-lg,.container-md,.container-sm{max-width:960px}}@media(min-width:1025px){.container,.container-lg,.container-md,.container-sm,.container-xl{max-width:1140px}}@media(min-width:1501px){.container,.container-lg,.container-md,.container-sm,.container-xl,.container-xxl{max-width:1320px}}.row{--bs-gutter-x:1.5rem;--bs-gutter-y:0;display:flex;flex-wrap:wrap;margin-top:calc(var(--bs-gutter-y)*-1);margin-right:calc(var(--bs-gutter-x)*-0.5);margin-left:calc(var(--bs-gutter-x)*-0.5)}.row>*{box-sizing:border-box;flex-shrink:0;width:100%;max-width:100%;padding-right:calc(var(--bs-gutter-x)*0.5);padding-left:calc(var(--bs-gutter-x)*0.5);margin-top:var(--bs-gutter-y)}.col{flex:1 0 0%}.row-cols-auto>*{flex:0 0 auto;width:auto}.row-cols-1>*{flex:0 0 auto;width:100%}.row-cols-2>*{flex:0 0 auto;width:50%}.row-cols-3>*{flex:0 0 auto;width:33.3333333333%}.row-cols-4>*{flex:0 0 auto;width:25%}.row-cols-5>*{flex:0 0 auto;width:20%}.row-cols-6>*{flex:0 0 auto;width:16.6666666667%}.col-auto{flex:0 0 auto;width:auto}.col-1{flex:0 0 auto;width:8.33333333%}.col-2{flex:0 0 auto;width:16.66666667%}.col-3{flex:0 0 auto;width:25%}.col-4{flex:0 0 auto;width:33.33333333%}.col-5{flex:0 0 auto;width:41.66666667%}.col-6{flex:0 0 auto;width:50%}.col-7{flex:0 0 auto;width:58.33333333%}.col-8{flex:0 0 auto;width:66.66666667%}.col-9{flex:0 0 auto;width:75%}.col-10{flex:0 0 auto;width:83.33333333%}.col-11{flex:0 0 auto;width:91.66666667%}.col-12,.elq-form .col-xs-12{flex:0 0 auto;width:100%}.offset-1{margin-left:8.33333333%}.offset-2{margin-left:16.66666667%}.offset-3{margin-left:25%}.offset-4{margin-left:33.33333333%}.offset-5{margin-left:41.66666667%}.offset-6{margin-left:50%}.offset-7{margin-left:58.33333333%}.offset-8{margin-left:66.66666667%}.offset-9{margin-left:75%}.offset-10{margin-left:83.33333333%}.offset-11{margin-left:91.66666667%}.g-0,.gx-0{--bs-gutter-x:0}.g-0,.gy-0{--bs-gutter-y:0}.g-1,.gx-1{--bs-gutter-x:0.25rem}.g-1,.gy-1{--bs-gutter-y:0.25rem}.g-2,.gx-2{--bs-gutter-x:0.5rem}.g-2,.gy-2{--bs-gutter-y:0.5rem}.g-3,.gx-3{--bs-gutter-x:0.75rem}.g-3,.gy-3{--bs-gutter-y:0.75rem}.g-4,.gx-4{--bs-gutter-x:1rem}.g-4,.gy-4{--bs-gutter-y:1rem}.g-5,.gx-5{--bs-gutter-x:1.25rem}.g-5,.gy-5{--bs-gutter-y:1.25rem}.g-6,.gx-6{--bs-gutter-x:1.5rem}.g-6,.gy-6{--bs-gutter-y:1.5rem}.g-7,.gx-7{--bs-gutter-x:2rem}.g-7,.gy-7{--bs-gutter-y:2rem}.g-8,.gx-8{--bs-gutter-x:2.5rem}.g-8,.gy-8{--bs-gutter-y:2.5rem}.g-9,.gx-9{--bs-gutter-x:3rem}.g-9,.gy-9{--bs-gutter-y:3rem}.g-10,.gx-10{--bs-gutter-x:4rem}.g-10,.gy-10{--bs-gutter-y:4rem}.g-11,.gx-11{--bs-gutter-x:5rem}.g-11,.gy-11{--bs-gutter-y:5rem}@media(min-width:576px){.col-sm{flex:1 0 0%}.row-cols-sm-auto>*{flex:0 0 auto;width:auto}.row-cols-sm-1>*{flex:0 0 auto;width:100%}.row-cols-sm-2>*{flex:0 0 auto;width:50%}.row-cols-sm-3>*{flex:0 0 auto;width:33.3333333333%}.row-cols-sm-4>*{flex:0 0 auto;width:25%}.row-cols-sm-5>*{flex:0 0 auto;width:20%}.row-cols-sm-6>*{flex:0 0 auto;width:16.6666666667%}.col-sm-auto{flex:0 0 auto;width:auto}.col-sm-1{flex:0 0 auto;width:8.33333333%}.col-sm-2{flex:0 0 auto;width:16.66666667%}.col-sm-3{flex:0 0 auto;width:25%}.col-sm-4{flex:0 0 auto;width:33.33333333%}.col-sm-5{flex:0 0 auto;width:41.66666667%}.col-sm-6{flex:0 0 auto;width:50%}.col-sm-7{flex:0 0 auto;width:58.33333333%}.col-sm-8{flex:0 0 auto;width:66.66666667%}.col-sm-9{flex:0 0 auto;width:75%}.col-sm-10{flex:0 0 auto;width:83.33333333%}.col-sm-11{flex:0 0 auto;width:91.66666667%}.col-sm-12{flex:0 0 auto;width:100%}.offset-sm-0{margin-left:0}.offset-sm-1{margin-left:8.33333333%}.offset-sm-2{margin-left:16.66666667%}.offset-sm-3{margin-left:25%}.offset-sm-4{margin-left:33.33333333%}.offset-sm-5{margin-left:41.66666667%}.offset-sm-6{margin-left:50%}.offset-sm-7{margin-left:58.33333333%}.offset-sm-8{margin-left:66.66666667%}.offset-sm-9{margin-left:75%}.offset-sm-10{margin-left:83.33333333%}.offset-sm-11{margin-left:91.66666667%}.g-sm-0,.gx-sm-0{--bs-gutter-x:0}.g-sm-0,.gy-sm-0{--bs-gutter-y:0}.g-sm-1,.gx-sm-1{--bs-gutter-x:0.25rem}.g-sm-1,.gy-sm-1{--bs-gutter-y:0.25rem}.g-sm-2,.gx-sm-2{--bs-gutter-x:0.5rem}.g-sm-2,.gy-sm-2{--bs-gutter-y:0.5rem}.g-sm-3,.gx-sm-3{--bs-gutter-x:0.75rem}.g-sm-3,.gy-sm-3{--bs-gutter-y:0.75rem}.g-sm-4,.gx-sm-4{--bs-gutter-x:1rem}.g-sm-4,.gy-sm-4{--bs-gutter-y:1rem}.g-sm-5,.gx-sm-5{--bs-gutter-x:1.25rem}.g-sm-5,.gy-sm-5{--bs-gutter-y:1.25rem}.g-sm-6,.gx-sm-6{--bs-gutter-x:1.5rem}.g-sm-6,.gy-sm-6{--bs-gutter-y:1.5rem}.g-sm-7,.gx-sm-7{--bs-gutter-x:2rem}.g-sm-7,.gy-sm-7{--bs-gutter-y:2rem}.g-sm-8,.gx-sm-8{--bs-gutter-x:2.5rem}.g-sm-8,.gy-sm-8{--bs-gutter-y:2.5rem}.g-sm-9,.gx-sm-9{--bs-gutter-x:3rem}.g-sm-9,.gy-sm-9{--bs-gutter-y:3rem}.g-sm-10,.gx-sm-10{--bs-gutter-x:4rem}.g-sm-10,.gy-sm-10{--bs-gutter-y:4rem}.g-sm-11,.gx-sm-11{--bs-gutter-x:5rem}.g-sm-11,.gy-sm-11{--bs-gutter-y:5rem}}@media(min-width:768px){.col-md{flex:1 0 0%}.row-cols-md-auto>*{flex:0 0 auto;width:auto}.row-cols-md-1>*{flex:0 0 auto;width:100%}.row-cols-md-2>*{flex:0 0 auto;width:50%}.row-cols-md-3>*{flex:0 0 auto;width:33.3333333333%}.row-cols-md-4>*{flex:0 0 auto;width:25%}.row-cols-md-5>*{flex:0 0 auto;width:20%}.row-cols-md-6>*{flex:0 0 auto;width:16.6666666667%}.col-md-auto{flex:0 0 auto;width:auto}.col-md-1{flex:0 0 auto;width:8.33333333%}.col-md-2{flex:0 0 auto;width:16.66666667%}.col-md-3{flex:0 0 auto;width:25%}.col-md-4{flex:0 0 auto;width:33.33333333%}.col-md-5{flex:0 0 auto;width:41.66666667%}.col-md-6{flex:0 0 auto;width:50%}.col-md-7{flex:0 0 auto;width:58.33333333%}.col-md-8{flex:0 0 auto;width:66.66666667%}.col-md-9{flex:0 0 auto;width:75%}.col-md-10{flex:0 0 auto;width:83.33333333%}.col-md-11{flex:0 0 auto;width:91.66666667%}.col-md-12{flex:0 0 auto;width:100%}.offset-md-0{margin-left:0}.offset-md-1{margin-left:8.33333333%}.offset-md-2{margin-left:16.66666667%}.offset-md-3{margin-left:25%}.offset-md-4{margin-left:33.33333333%}.offset-md-5{margin-left:41.66666667%}.offset-md-6{margin-left:50%}.offset-md-7{margin-left:58.33333333%}.offset-md-8{margin-left:66.66666667%}.offset-md-9{margin-left:75%}.offset-md-10{margin-left:83.33333333%}.offset-md-11{margin-left:91.66666667%}.g-md-0,.gx-md-0{--bs-gutter-x:0}.g-md-0,.gy-md-0{--bs-gutter-y:0}.g-md-1,.gx-md-1{--bs-gutter-x:0.25rem}.g-md-1,.gy-md-1{--bs-gutter-y:0.25rem}.g-md-2,.gx-md-2{--bs-gutter-x:0.5rem}.g-md-2,.gy-md-2{--bs-gutter-y:0.5rem}.g-md-3,.gx-md-3{--bs-gutter-x:0.75rem}.g-md-3,.gy-md-3{--bs-gutter-y:0.75rem}.g-md-4,.gx-md-4{--bs-gutter-x:1rem}.g-md-4,.gy-md-4{--bs-gutter-y:1rem}.g-md-5,.gx-md-5{--bs-gutter-x:1.25rem}.g-md-5,.gy-md-5{--bs-gutter-y:1.25rem}.g-md-6,.gx-md-6{--bs-gutter-x:1.5rem}.g-md-6,.gy-md-6{--bs-gutter-y:1.5rem}.g-md-7,.gx-md-7{--bs-gutter-x:2rem}.g-md-7,.gy-md-7{--bs-gutter-y:2rem}.g-md-8,.gx-md-8{--bs-gutter-x:2.5rem}.g-md-8,.gy-md-8{--bs-gutter-y:2.5rem}.g-md-9,.gx-md-9{--bs-gutter-x:3rem}.g-md-9,.gy-md-9{--bs-gutter-y:3rem}.g-md-10,.gx-md-10{--bs-gutter-x:4rem}.g-md-10,.gy-md-10{--bs-gutter-y:4rem}.g-md-11,.gx-md-11{--bs-gutter-x:5rem}.g-md-11,.gy-md-11{--bs-gutter-y:5rem}}@media(min-width:992px){.col-lg{flex:1 0 0%}.row-cols-lg-auto>*{flex:0 0 auto;width:auto}.row-cols-lg-1>*{flex:0 0 auto;width:100%}.row-cols-lg-2>*{flex:0 0 auto;width:50%}.row-cols-lg-3>*{flex:0 0 auto;width:33.3333333333%}.row-cols-lg-4>*{flex:0 0 auto;width:25%}.row-cols-lg-5>*{flex:0 0 auto;width:20%}.row-cols-lg-6>*{flex:0 0 auto;width:16.6666666667%}.col-lg-auto{flex:0 0 auto;width:auto}.col-lg-1{flex:0 0 auto;width:8.33333333%}.col-lg-2{flex:0 0 auto;width:16.66666667%}.col-lg-3{flex:0 0 auto;width:25%}.col-lg-4{flex:0 0 auto;width:33.33333333%}.col-lg-5{flex:0 0 auto;width:41.66666667%} - .col-lg-6{flex:0 0 auto;width:50%} - .col-lg-7{flex:0 0 auto;width:58.33333333%} - .col-lg-8{flex:0 0 auto;width:66.66666667%} - .col-lg-9{flex:0 0 auto;width:75%} - .col-lg-10{flex:0 0 auto;width:83.33333333%} - .col-lg-11{flex:0 0 auto;width:91.66666667%} - .col-lg-12{flex:0 0 auto;width:100%} - .offset-lg-0{margin-left:0} - .offset-lg-1{margin-left:8.33333333%} - .offset-lg-2{margin-left:16.66666667%} - .offset-lg-3{margin-left:25%} - .offset-lg-4{margin-left:33.33333333%} - .offset-lg-5{margin-left:41.66666667%} - .offset-lg-6{margin-left:50%} - .offset-lg-7{margin-left:58.33333333%}.offset-lg-8{margin-left:66.66666667%}.offset-lg-9{margin-left:75%}.offset-lg-10{margin-left:83.33333333%}.offset-lg-11{margin-left:91.66666667%}.g-lg-0,.gx-lg-0{--bs-gutter-x:0}.g-lg-0,.gy-lg-0{--bs-gutter-y:0}.g-lg-1,.gx-lg-1{--bs-gutter-x:0.25rem}.g-lg-1,.gy-lg-1{--bs-gutter-y:0.25rem}.g-lg-2,.gx-lg-2{--bs-gutter-x:0.5rem}.g-lg-2,.gy-lg-2{--bs-gutter-y:0.5rem}.g-lg-3,.gx-lg-3{--bs-gutter-x:0.75rem}.g-lg-3,.gy-lg-3{--bs-gutter-y:0.75rem}.g-lg-4,.gx-lg-4{--bs-gutter-x:1rem}.g-lg-4,.gy-lg-4{--bs-gutter-y:1rem}.g-lg-5,.gx-lg-5{--bs-gutter-x:1.25rem}.g-lg-5,.gy-lg-5{--bs-gutter-y:1.25rem}.g-lg-6,.gx-lg-6{--bs-gutter-x:1.5rem}.g-lg-6,.gy-lg-6{--bs-gutter-y:1.5rem}.g-lg-7,.gx-lg-7{--bs-gutter-x:2rem}.g-lg-7,.gy-lg-7{--bs-gutter-y:2rem}.g-lg-8,.gx-lg-8{--bs-gutter-x:2.5rem}.g-lg-8,.gy-lg-8{--bs-gutter-y:2.5rem}.g-lg-9,.gx-lg-9{--bs-gutter-x:3rem}.g-lg-9,.gy-lg-9{--bs-gutter-y:3rem}.g-lg-10,.gx-lg-10{--bs-gutter-x:4rem}.g-lg-10,.gy-lg-10{--bs-gutter-y:4rem}.g-lg-11,.gx-lg-11{--bs-gutter-x:5rem}.g-lg-11,.gy-lg-11{--bs-gutter-y:5rem}}@media(min-width:1025px){.col-xl{flex:1 0 0%}.row-cols-xl-auto>*{flex:0 0 auto;width:auto}.row-cols-xl-1>*{flex:0 0 auto;width:100%}.row-cols-xl-2>*{flex:0 0 auto;width:50%}.row-cols-xl-3>*{flex:0 0 auto;width:33.3333333333%}.row-cols-xl-4>*{flex:0 0 auto;width:25%}.row-cols-xl-5>*{flex:0 0 auto;width:20%}.row-cols-xl-6>*{flex:0 0 auto;width:16.6666666667%}.col-xl-auto{flex:0 0 auto;width:auto}.col-xl-1{flex:0 0 auto;width:8.33333333%}.col-xl-2{flex:0 0 auto;width:16.66666667%}.col-xl-3{flex:0 0 auto;width:25%}.col-xl-4{flex:0 0 auto;width:33.33333333%}.col-xl-5{flex:0 0 auto;width:41.66666667%}.col-xl-6{flex:0 0 auto;width:50%}.col-xl-7{flex:0 0 auto;width:58.33333333%}.col-xl-8{flex:0 0 auto;width:66.66666667%}.col-xl-9{flex:0 0 auto;width:75%}.col-xl-10{flex:0 0 auto;width:83.33333333%}.col-xl-11{flex:0 0 auto;width:91.66666667%}.col-xl-12{flex:0 0 auto;width:100%}.offset-xl-0{margin-left:0}.offset-xl-1{margin-left:8.33333333%}.offset-xl-2{margin-left:16.66666667%}.offset-xl-3{margin-left:25%}.offset-xl-4{margin-left:33.33333333%}.offset-xl-5{margin-left:41.66666667%}.offset-xl-6{margin-left:50%}.offset-xl-7{margin-left:58.33333333%}.offset-xl-8{margin-left:66.66666667%}.offset-xl-9{margin-left:75%}.offset-xl-10{margin-left:83.33333333%}.offset-xl-11{margin-left:91.66666667%}.g-xl-0,.gx-xl-0{--bs-gutter-x:0}.g-xl-0,.gy-xl-0{--bs-gutter-y:0}.g-xl-1,.gx-xl-1{--bs-gutter-x:0.25rem}.g-xl-1,.gy-xl-1{--bs-gutter-y:0.25rem}.g-xl-2,.gx-xl-2{--bs-gutter-x:0.5rem}.g-xl-2,.gy-xl-2{--bs-gutter-y:0.5rem}.g-xl-3,.gx-xl-3{--bs-gutter-x:0.75rem}.g-xl-3,.gy-xl-3{--bs-gutter-y:0.75rem}.g-xl-4,.gx-xl-4{--bs-gutter-x:1rem}.g-xl-4,.gy-xl-4{--bs-gutter-y:1rem}.g-xl-5,.gx-xl-5{--bs-gutter-x:1.25rem}.g-xl-5,.gy-xl-5{--bs-gutter-y:1.25rem}.g-xl-6,.gx-xl-6{--bs-gutter-x:1.5rem}.g-xl-6,.gy-xl-6{--bs-gutter-y:1.5rem}.g-xl-7,.gx-xl-7{--bs-gutter-x:2rem}.g-xl-7,.gy-xl-7{--bs-gutter-y:2rem}.g-xl-8,.gx-xl-8{--bs-gutter-x:2.5rem}.g-xl-8,.gy-xl-8{--bs-gutter-y:2.5rem}.g-xl-9,.gx-xl-9{--bs-gutter-x:3rem}.g-xl-9,.gy-xl-9{--bs-gutter-y:3rem}.g-xl-10,.gx-xl-10{--bs-gutter-x:4rem}.g-xl-10,.gy-xl-10{--bs-gutter-y:4rem}.g-xl-11,.gx-xl-11{--bs-gutter-x:5rem}.g-xl-11,.gy-xl-11{--bs-gutter-y:5rem}}@media(min-width:1501px){.col-xxl{flex:1 0 0%}.row-cols-xxl-auto>*{flex:0 0 auto;width:auto}.row-cols-xxl-1>*{flex:0 0 auto;width:100%}.row-cols-xxl-2>*{flex:0 0 auto;width:50%}.row-cols-xxl-3>*{flex:0 0 auto;width:33.3333333333%}.row-cols-xxl-4>*{flex:0 0 auto;width:25%}.row-cols-xxl-5>*{flex:0 0 auto;width:20%}.row-cols-xxl-6>*{flex:0 0 auto;width:16.6666666667%}.col-xxl-auto{flex:0 0 auto;width:auto}.col-xxl-1{flex:0 0 auto;width:8.33333333%}.col-xxl-2{flex:0 0 auto;width:16.66666667%}.col-xxl-3{flex:0 0 auto;width:25%}.col-xxl-4{flex:0 0 auto;width:33.33333333%}.col-xxl-5{flex:0 0 auto;width:41.66666667%}.col-xxl-6{flex:0 0 auto;width:50%}.col-xxl-7{flex:0 0 auto;width:58.33333333%}.col-xxl-8{flex:0 0 auto;width:66.66666667%}.col-xxl-9{flex:0 0 auto;width:75%}.col-xxl-10{flex:0 0 auto;width:83.33333333%}.col-xxl-11{flex:0 0 auto;width:91.66666667%}.col-xxl-12{flex:0 0 auto;width:100%}.offset-xxl-0{margin-left:0}.offset-xxl-1{margin-left:8.33333333%}.offset-xxl-2{margin-left:16.66666667%}.offset-xxl-3{margin-left:25%}.offset-xxl-4{margin-left:33.33333333%}.offset-xxl-5{margin-left:41.66666667%}.offset-xxl-6{margin-left:50%}.offset-xxl-7{margin-left:58.33333333%}.offset-xxl-8{margin-left:66.66666667%}.offset-xxl-9{margin-left:75%}.offset-xxl-10{margin-left:83.33333333%}.offset-xxl-11{margin-left:91.66666667%}.g-xxl-0,.gx-xxl-0{--bs-gutter-x:0}.g-xxl-0,.gy-xxl-0{--bs-gutter-y:0}.g-xxl-1,.gx-xxl-1{--bs-gutter-x:0.25rem}.g-xxl-1,.gy-xxl-1{--bs-gutter-y:0.25rem}.g-xxl-2,.gx-xxl-2{--bs-gutter-x:0.5rem}.g-xxl-2,.gy-xxl-2{--bs-gutter-y:0.5rem}.g-xxl-3,.gx-xxl-3{--bs-gutter-x:0.75rem}.g-xxl-3,.gy-xxl-3{--bs-gutter-y:0.75rem}.g-xxl-4,.gx-xxl-4{--bs-gutter-x:1rem}.g-xxl-4,.gy-xxl-4{--bs-gutter-y:1rem}.g-xxl-5,.gx-xxl-5{--bs-gutter-x:1.25rem}.g-xxl-5,.gy-xxl-5{--bs-gutter-y:1.25rem}.g-xxl-6,.gx-xxl-6{--bs-gutter-x:1.5rem}.g-xxl-6,.gy-xxl-6{--bs-gutter-y:1.5rem}.g-xxl-7,.gx-xxl-7{--bs-gutter-x:2rem}.g-xxl-7,.gy-xxl-7{--bs-gutter-y:2rem}.g-xxl-8,.gx-xxl-8{--bs-gutter-x:2.5rem}.g-xxl-8,.gy-xxl-8{--bs-gutter-y:2.5rem}.g-xxl-9,.gx-xxl-9{--bs-gutter-x:3rem}.g-xxl-9,.gy-xxl-9{--bs-gutter-y:3rem}.g-xxl-10,.gx-xxl-10{--bs-gutter-x:4rem}.g-xxl-10,.gy-xxl-10{--bs-gutter-y:4rem}.g-xxl-11,.gx-xxl-11{--bs-gutter-x:5rem}.g-xxl-11,.gy-xxl-11{--bs-gutter-y:5rem}}.d-inline{display:inline!important}.d-inline-block{display:inline-block!important}.d-block{display:block!important}.d-grid{display:grid!important}.d-table{display:table!important}.d-table-row{display:table-row!important}.d-table-cell{display:table-cell!important}.d-flex{display:flex!important}.d-inline-flex{display:inline-flex!important}.d-none{display:none!important}.flex-fill{flex:1 1 auto!important}.flex-row{flex-direction:row!important}.flex-column{flex-direction:column!important}.flex-row-reverse{flex-direction:row-reverse!important}.flex-column-reverse{flex-direction:column-reverse!important}.flex-grow-0{flex-grow:0!important}.flex-grow-1{flex-grow:1!important}.flex-shrink-0{flex-shrink:0!important}.flex-shrink-1{flex-shrink:1!important}.flex-wrap{flex-wrap:wrap!important}.flex-nowrap{flex-wrap:nowrap!important}.flex-wrap-reverse{flex-wrap:wrap-reverse!important}.justify-content-start{justify-content:flex-start!important}.justify-content-end{justify-content:flex-end!important}.justify-content-center{justify-content:center!important}.justify-content-between{justify-content:space-between!important}.justify-content-around{justify-content:space-around!important}.justify-content-evenly{justify-content:space-evenly!important}.align-items-start{align-items:flex-start!important}.align-items-end{align-items:flex-end!important}.align-items-center{align-items:center!important}.align-items-baseline{align-items:baseline!important}.align-items-stretch{align-items:stretch!important}.align-content-start{align-content:flex-start!important}.align-content-end{align-content:flex-end!important}.align-content-center{align-content:center!important}.align-content-between{align-content:space-between!important}.align-content-around{align-content:space-around!important}.align-content-stretch{align-content:stretch!important}.align-self-auto{align-self:auto!important}.align-self-start{align-self:flex-start!important}.align-self-end{align-self:flex-end!important}.align-self-center{align-self:center!important}.align-self-baseline{align-self:baseline!important}.align-self-stretch{align-self:stretch!important}.order-first{order:-1!important}.order-0{order:0!important}.order-1{order:1!important}.order-2{order:2!important}.order-3{order:3!important}.order-4{order:4!important}.order-5{order:5!important}.order-last{order:6!important}.m-0{margin:0!important}.m-1{margin:.25rem!important}.m-2{margin:.5rem!important}.m-3{margin:.75rem!important}.m-4{margin:1rem!important}.m-5{margin:1.25rem!important}.m-6{margin:1.5rem!important}.m-7{margin:2rem!important}.m-8{margin:2.5rem!important}.m-9{margin:3rem!important}.m-10{margin:4rem!important}.m-11{margin:5rem!important}.m-auto{margin:auto!important}.mx-0{margin-right:0!important;margin-left:0!important}.mx-1{margin-right:.25rem!important;margin-left:.25rem!important}.mx-2{margin-right:.5rem!important;margin-left:.5rem!important}.mx-3{margin-right:.75rem!important;margin-left:.75rem!important}.mx-4{margin-right:1rem!important;margin-left:1rem!important}.mx-5{margin-right:1.25rem!important;margin-left:1.25rem!important}.mx-6{margin-right:1.5rem!important;margin-left:1.5rem!important}.mx-7{margin-right:2rem!important;margin-left:2rem!important}.mx-8{margin-right:2.5rem!important;margin-left:2.5rem!important}.mx-9{margin-right:3rem!important;margin-left:3rem!important}.mx-10{margin-right:4rem!important;margin-left:4rem!important}.mx-11{margin-right:5rem!important;margin-left:5rem!important}.mx-auto{margin-right:auto!important;margin-left:auto!important}.my-0{margin-top:0!important;margin-bottom:0!important}.my-1{margin-top:.25rem!important;margin-bottom:.25rem!important}.my-2{margin-top:.5rem!important;margin-bottom:.5rem!important}.my-3{margin-top:.75rem!important;margin-bottom:.75rem!important}.my-4{margin-top:1rem!important;margin-bottom:1rem!important}.my-5{margin-top:1.25rem!important;margin-bottom:1.25rem!important}.my-6{margin-top:1.5rem!important;margin-bottom:1.5rem!important}.my-7{margin-top:2rem!important;margin-bottom:2rem!important}.my-8{margin-top:2.5rem!important;margin-bottom:2.5rem!important}.my-9{margin-top:3rem!important;margin-bottom:3rem!important}.my-10{margin-top:4rem!important;margin-bottom:4rem!important} - .my-11{margin-top:5rem!important; - margin-bottom:5rem!important} - .my-auto{margin-top:auto!important;margin-bottom:auto!important} - .mt-0{margin-top:0!important} - .mt-1{margin-top:.25rem!important} - .mt-2{margin-top:.5rem!important} - .mt-3{margin-top:.75rem!important} - .mt-4{margin-top:1rem!important} - .mt-5{margin-top:1.25rem!important} - .mt-6{margin-top:1.5rem!important} - .mt-7{margin-top:2rem!important} - .mt-8{margin-top:2.5rem!important} - .mt-9{margin-top:3rem!important} - .mt-10{margin-top:4rem!important} - .mt-11{margin-top:5rem!important} - .mt-auto{margin-top:auto!important} - .me-0{margin-right:0!important - } - .me-1{margin-right:.25rem!important} - .me-2{margin-right:.5rem!important} - .me-3{margin-right:.75rem!important} - .me-4{margin-right:1rem!important} - .me-5{margin-right:1.25rem!important} - .me-6{margin-right:1.5rem!important}.me-7{margin-right:2rem!important}.me-8{margin-right:2.5rem!important} - .me-9{margin-right:3rem!important}.me-10{margin-right:4rem!important}.me-11{margin-right:5rem!important} - .me-auto{margin-right:auto!important}.mb-0{margin-bottom:0!important}.mb-1{margin-bottom:.25rem!important} - .mb-2{margin-bottom:.5rem!important}.mb-3{margin-bottom:.75rem!important}.mb-4{margin-bottom:1rem!important} - .mb-5{margin-bottom:1.25rem!important}.mb-6{margin-bottom:1.5rem!important}.mb-7{margin-bottom:2rem!important} - .mb-8{margin-bottom:2.5rem!important}.mb-9{margin-bottom:3rem!important}.mb-10{margin-bottom:4rem!important} - .mb-11{margin-bottom:5rem!important}.mb-auto{margin-bottom:auto!important}.ms-0{margin-left:0!important} - .ms-1{margin-left:.25rem!important}.ms-2{margin-left:.5rem!important}.ms-3{margin-left:.75rem!important} - .ms-4{margin-left:1rem!important}.ms-5{margin-left:1.25rem!important}.ms-6{margin-left:1.5rem!important} - .ms-7{margin-left:2rem!important}.ms-8{margin-left:2.5rem!important}.ms-9{margin-left:3rem!important}.ms-10{margin-left:4rem!important} - .ms-11{margin-left:5rem!important}.ms-auto{margin-left:auto!important}.p-0{padding:0!important}.p-1{padding:.25rem!important} - .p-2{padding:.5rem!important}.p-3{padding:.75rem!important}.p-4{padding:1rem!important}.p-5{padding:1.25rem!important} - .p-6{padding:1.5rem!important}.p-7{padding:2rem!important}.p-8{padding:2.5rem!important}.p-9{padding:3rem!important}.p-10{padding:4rem!important} - .p-11{padding:5rem!important}.px-0{padding-right:0!important;padding-left:0!important} - .px-1{padding-right:.25rem!important;padding-left:.25rem!important}.px-2{padding-right:.5rem!important;padding-left:.5rem!important} - .px-3{padding-right:.75rem!important;padding-left:.75rem!important}.px-4{padding-right:1rem!important;padding-left:1rem!important} - .px-5{padding-right:1.25rem!important;padding-left:1.25rem!important}.px-6{padding-right:1.5rem!important;padding-left:1.5rem!important} - .px-7{padding-right:2rem!important;padding-left:2rem!important}.px-8{padding-right:2.5rem!important;padding-left:2.5rem!important} - .px-9{padding-right:3rem!important;padding-left:3rem!important}.px-10{padding-right:4rem!important;padding-left:4rem!important} - .px-11{padding-right:5rem!important;padding-left:5rem!important}.py-0{padding-top:0!important;padding-bottom:0!important} - .py-1{padding-top:.25rem!important;padding-bottom:.25rem!important}.py-2{padding-top:.5rem!important;padding-bottom:.5rem!important} - .py-3{padding-top:.75rem!important;padding-bottom:.75rem!important}.py-4{padding-top:1rem!important;padding-bottom:1rem!important} - .py-5{padding-top:1.25rem!important;padding-bottom:1.25rem!important}.py-6{padding-top:1.5rem!important;padding-bottom:1.5rem!important} - .py-7{padding-top:2rem!important;padding-bottom:2rem!important}.py-8{padding-top:2.5rem!important;padding-bottom:2.5rem!important} - .py-9{padding-top:3rem!important;padding-bottom:3rem!important}.py-10{padding-top:4rem!important;padding-bottom:4rem!important} - .py-11{padding-top:5rem!important;padding-bottom:5rem!important}.pt-0{padding-top:0!important}.pt-1{padding-top:.25rem!important} - .pt-2{padding-top:.5rem!important}.pt-3{padding-top:.75rem!important}.pt-4{padding-top:1rem!important}.pt-5{padding-top:1.25rem!important} - .pt-6{padding-top:1.5rem!important}.pt-7{padding-top:2rem!important}.pt-8{padding-top:2.5rem!important}.pt-9{padding-top:3rem!important} - .pt-10{padding-top:4rem!important}.pt-11{padding-top:5rem!important}.pe-0{padding-right:0!important}.pe-1{padding-right:.25rem!important} - .pe-2{padding-right:.5rem!important}.pe-3{padding-right:.75rem!important}.pe-4{padding-right:1rem!important}.pe-5{padding-right:1.25rem!important}.pe-6{padding-right:1.5rem!important}.pe-7{padding-right:2rem!important}.pe-8{padding-right:2.5rem!important}.pe-9{padding-right:3rem!important}.pe-10{padding-right:4rem!important}.pe-11{padding-right:5rem!important}.pb-0{padding-bottom:0!important}.pb-1{padding-bottom:.25rem!important}.pb-2{padding-bottom:.5rem!important}.pb-3{padding-bottom:.75rem!important}.pb-4{padding-bottom:1rem!important}.pb-5{padding-bottom:1.25rem!important}.pb-6{padding-bottom:1.5rem!important}.pb-7{padding-bottom:2rem!important}.pb-8{padding-bottom:2.5rem!important}.pb-9{padding-bottom:3rem!important}.pb-10{padding-bottom:4rem!important}.pb-11{padding-bottom:5rem!important}.ps-0{padding-left:0!important}.ps-1{padding-left:.25rem!important}.ps-2{padding-left:.5rem!important}.ps-3{padding-left:.75rem!important}.ps-4{padding-left:1rem!important}.ps-5{padding-left:1.25rem!important}.ps-6{padding-left:1.5rem!important}.ps-7{padding-left:2rem!important}.ps-8{padding-left:2.5rem!important}.ps-9{padding-left:3rem!important}.ps-10{padding-left:4rem!important}.ps-11{padding-left:5rem!important}@media(min-width:576px){.d-sm-inline{display:inline!important}.d-sm-inline-block{display:inline-block!important}.d-sm-block{display:block!important}.d-sm-grid{display:grid!important}.d-sm-table{display:table!important}.d-sm-table-row{display:table-row!important}.d-sm-table-cell{display:table-cell!important}.d-sm-flex{display:flex!important}.d-sm-inline-flex{display:inline-flex!important}.d-sm-none{display:none!important}.flex-sm-fill{flex:1 1 auto!important}.flex-sm-row{flex-direction:row!important}.flex-sm-column{flex-direction:column!important}.flex-sm-row-reverse{flex-direction:row-reverse!important}.flex-sm-column-reverse{flex-direction:column-reverse!important}.flex-sm-grow-0{flex-grow:0!important}.flex-sm-grow-1{flex-grow:1!important}.flex-sm-shrink-0{flex-shrink:0!important}.flex-sm-shrink-1{flex-shrink:1!important}.flex-sm-wrap{flex-wrap:wrap!important}.flex-sm-nowrap{flex-wrap:nowrap!important}.flex-sm-wrap-reverse{flex-wrap:wrap-reverse!important}.justify-content-sm-start{justify-content:flex-start!important}.justify-content-sm-end{justify-content:flex-end!important}.justify-content-sm-center{justify-content:center!important}.justify-content-sm-between{justify-content:space-between!important}.justify-content-sm-around{justify-content:space-around!important}.justify-content-sm-evenly{justify-content:space-evenly!important}.align-items-sm-start{align-items:flex-start!important}.align-items-sm-end{align-items:flex-end!important}.align-items-sm-center{align-items:center!important}.align-items-sm-baseline{align-items:baseline!important}.align-items-sm-stretch{align-items:stretch!important}.align-content-sm-start{align-content:flex-start!important}.align-content-sm-end{align-content:flex-end!important}.align-content-sm-center{align-content:center!important}.align-content-sm-between{align-content:space-between!important}.align-content-sm-around{align-content:space-around!important}.align-content-sm-stretch{align-content:stretch!important}.align-self-sm-auto{align-self:auto!important}.align-self-sm-start{align-self:flex-start!important}.align-self-sm-end{align-self:flex-end!important}.align-self-sm-center{align-self:center!important}.align-self-sm-baseline{align-self:baseline!important}.align-self-sm-stretch{align-self:stretch!important}.order-sm-first{order:-1!important}.order-sm-0{order:0!important}.order-sm-1{order:1!important}.order-sm-2{order:2!important}.order-sm-3{order:3!important}.order-sm-4{order:4!important}.order-sm-5{order:5!important}.order-sm-last{order:6!important}.m-sm-0{margin:0!important}.m-sm-1{margin:.25rem!important}.m-sm-2{margin:.5rem!important}.m-sm-3{margin:.75rem!important}.m-sm-4{margin:1rem!important}.m-sm-5{margin:1.25rem!important}.m-sm-6{margin:1.5rem!important}.m-sm-7{margin:2rem!important}.m-sm-8{margin:2.5rem!important}.m-sm-9{margin:3rem!important}.m-sm-10{margin:4rem!important}.m-sm-11{margin:5rem!important}.m-sm-auto{margin:auto!important}.mx-sm-0{margin-right:0!important;margin-left:0!important}.mx-sm-1{margin-right:.25rem!important;margin-left:.25rem!important}.mx-sm-2{margin-right:.5rem!important;margin-left:.5rem!important}.mx-sm-3{margin-right:.75rem!important;margin-left:.75rem!important}.mx-sm-4{margin-right:1rem!important;margin-left:1rem!important}.mx-sm-5{margin-right:1.25rem!important;margin-left:1.25rem!important}.mx-sm-6{margin-right:1.5rem!important;margin-left:1.5rem!important}.mx-sm-7{margin-right:2rem!important;margin-left:2rem!important}.mx-sm-8{margin-right:2.5rem!important;margin-left:2.5rem!important}.mx-sm-9{margin-right:3rem!important;margin-left:3rem!important}.mx-sm-10{margin-right:4rem!important;margin-left:4rem!important}.mx-sm-11{margin-right:5rem!important;margin-left:5rem!important}.mx-sm-auto{margin-right:auto!important;margin-left:auto!important}.my-sm-0{margin-top:0!important;margin-bottom:0!important}.my-sm-1{margin-top:.25rem!important;margin-bottom:.25rem!important}.my-sm-2{margin-top:.5rem!important;margin-bottom:.5rem!important}.my-sm-3{margin-top:.75rem!important;margin-bottom:.75rem!important}.my-sm-4{margin-top:1rem!important;margin-bottom:1rem!important}.my-sm-5{margin-top:1.25rem!important;margin-bottom:1.25rem!important}.my-sm-6{margin-top:1.5rem!important;margin-bottom:1.5rem!important}.my-sm-7{margin-top:2rem!important;margin-bottom:2rem!important}.my-sm-8{margin-top:2.5rem!important;margin-bottom:2.5rem!important}.my-sm-9{margin-top:3rem!important;margin-bottom:3rem!important}.my-sm-10{margin-top:4rem!important;margin-bottom:4rem!important}.my-sm-11{margin-top:5rem!important;margin-bottom:5rem!important}.my-sm-auto{margin-top:auto!important;margin-bottom:auto!important}.mt-sm-0{margin-top:0!important}.mt-sm-1{margin-top:.25rem!important}.mt-sm-2{margin-top:.5rem!important}.mt-sm-3{margin-top:.75rem!important}.mt-sm-4{margin-top:1rem!important}.mt-sm-5{margin-top:1.25rem!important}.mt-sm-6{margin-top:1.5rem!important}.mt-sm-7{margin-top:2rem!important}.mt-sm-8{margin-top:2.5rem!important}.mt-sm-9{margin-top:3rem!important}.mt-sm-10{margin-top:4rem!important}.mt-sm-11{margin-top:5rem!important}.mt-sm-auto{margin-top:auto!important}.me-sm-0{margin-right:0!important}.me-sm-1{margin-right:.25rem!important}.me-sm-2{margin-right:.5rem!important}.me-sm-3{margin-right:.75rem!important}.me-sm-4{margin-right:1rem!important}.me-sm-5{margin-right:1.25rem!important}.me-sm-6{margin-right:1.5rem!important}.me-sm-7{margin-right:2rem!important}.me-sm-8{margin-right:2.5rem!important}.me-sm-9{margin-right:3rem!important}.me-sm-10{margin-right:4rem!important}.me-sm-11{margin-right:5rem!important}.me-sm-auto{margin-right:auto!important}.mb-sm-0{margin-bottom:0!important}.mb-sm-1{margin-bottom:.25rem!important}.mb-sm-2{margin-bottom:.5rem!important}.mb-sm-3{margin-bottom:.75rem!important}.mb-sm-4{margin-bottom:1rem!important}.mb-sm-5{margin-bottom:1.25rem!important}.mb-sm-6{margin-bottom:1.5rem!important}.mb-sm-7{margin-bottom:2rem!important}.mb-sm-8{margin-bottom:2.5rem!important}.mb-sm-9{margin-bottom:3rem!important}.mb-sm-10{margin-bottom:4rem!important}.mb-sm-11{margin-bottom:5rem!important}.mb-sm-auto{margin-bottom:auto!important}.ms-sm-0{margin-left:0!important}.ms-sm-1{margin-left:.25rem!important}.ms-sm-2{margin-left:.5rem!important}.ms-sm-3{margin-left:.75rem!important}.ms-sm-4{margin-left:1rem!important}.ms-sm-5{margin-left:1.25rem!important}.ms-sm-6{margin-left:1.5rem!important}.ms-sm-7{margin-left:2rem!important}.ms-sm-8{margin-left:2.5rem!important}.ms-sm-9{margin-left:3rem!important}.ms-sm-10{margin-left:4rem!important}.ms-sm-11{margin-left:5rem!important}.ms-sm-auto{margin-left:auto!important}.p-sm-0{padding:0!important}.p-sm-1{padding:.25rem!important}.p-sm-2{padding:.5rem!important}.p-sm-3{padding:.75rem!important}.p-sm-4{padding:1rem!important}.p-sm-5{padding:1.25rem!important}.p-sm-6{padding:1.5rem!important}.p-sm-7{padding:2rem!important}.p-sm-8{padding:2.5rem!important}.p-sm-9{padding:3rem!important}.p-sm-10{padding:4rem!important}.p-sm-11{padding:5rem!important}.px-sm-0{padding-right:0!important;padding-left:0!important}.px-sm-1{padding-right:.25rem!important;padding-left:.25rem!important}.px-sm-2{padding-right:.5rem!important;padding-left:.5rem!important}.px-sm-3{padding-right:.75rem!important;padding-left:.75rem!important}.px-sm-4{padding-right:1rem!important;padding-left:1rem!important}.px-sm-5{padding-right:1.25rem!important;padding-left:1.25rem!important}.px-sm-6{padding-right:1.5rem!important;padding-left:1.5rem!important}.px-sm-7{padding-right:2rem!important;padding-left:2rem!important}.px-sm-8{padding-right:2.5rem!important;padding-left:2.5rem!important}.px-sm-9{padding-right:3rem!important;padding-left:3rem!important}.px-sm-10{padding-right:4rem!important;padding-left:4rem!important}.px-sm-11{padding-right:5rem!important;padding-left:5rem!important}.py-sm-0{padding-top:0!important;padding-bottom:0!important}.py-sm-1{padding-top:.25rem!important;padding-bottom:.25rem!important}.py-sm-2{padding-top:.5rem!important;padding-bottom:.5rem!important}.py-sm-3{padding-top:.75rem!important;padding-bottom:.75rem!important}.py-sm-4{padding-top:1rem!important;padding-bottom:1rem!important}.py-sm-5{padding-top:1.25rem!important;padding-bottom:1.25rem!important}.py-sm-6{padding-top:1.5rem!important;padding-bottom:1.5rem!important}.py-sm-7{padding-top:2rem!important;padding-bottom:2rem!important}.py-sm-8{padding-top:2.5rem!important;padding-bottom:2.5rem!important}.py-sm-9{padding-top:3rem!important;padding-bottom:3rem!important}.py-sm-10{padding-top:4rem!important;padding-bottom:4rem!important}.py-sm-11{padding-top:5rem!important;padding-bottom:5rem!important}.pt-sm-0{padding-top:0!important}.pt-sm-1{padding-top:.25rem!important}.pt-sm-2{padding-top:.5rem!important}.pt-sm-3{padding-top:.75rem!important}.pt-sm-4{padding-top:1rem!important}.pt-sm-5{padding-top:1.25rem!important}.pt-sm-6{padding-top:1.5rem!important}.pt-sm-7{padding-top:2rem!important}.pt-sm-8{padding-top:2.5rem!important}.pt-sm-9{padding-top:3rem!important}.pt-sm-10{padding-top:4rem!important}.pt-sm-11{padding-top:5rem!important}.pe-sm-0{padding-right:0!important}.pe-sm-1{padding-right:.25rem!important}.pe-sm-2{padding-right:.5rem!important}.pe-sm-3{padding-right:.75rem!important}.pe-sm-4{padding-right:1rem!important}.pe-sm-5{padding-right:1.25rem!important}.pe-sm-6{padding-right:1.5rem!important}.pe-sm-7{padding-right:2rem!important}.pe-sm-8{padding-right:2.5rem!important}.pe-sm-9{padding-right:3rem!important}.pe-sm-10{padding-right:4rem!important}.pe-sm-11{padding-right:5rem!important}.pb-sm-0{padding-bottom:0!important}.pb-sm-1{padding-bottom:.25rem!important}.pb-sm-2{padding-bottom:.5rem!important}.pb-sm-3{padding-bottom:.75rem!important}.pb-sm-4{padding-bottom:1rem!important}.pb-sm-5{padding-bottom:1.25rem!important}.pb-sm-6{padding-bottom:1.5rem!important}.pb-sm-7{padding-bottom:2rem!important}.pb-sm-8{padding-bottom:2.5rem!important}.pb-sm-9{padding-bottom:3rem!important}.pb-sm-10{padding-bottom:4rem!important}.pb-sm-11{padding-bottom:5rem!important}.ps-sm-0{padding-left:0!important}.ps-sm-1{padding-left:.25rem!important}.ps-sm-2{padding-left:.5rem!important}.ps-sm-3{padding-left:.75rem!important}.ps-sm-4{padding-left:1rem!important}.ps-sm-5{padding-left:1.25rem!important}.ps-sm-6{padding-left:1.5rem!important}.ps-sm-7{padding-left:2rem!important}.ps-sm-8{padding-left:2.5rem!important}.ps-sm-9{padding-left:3rem!important}.ps-sm-10{padding-left:4rem!important}.ps-sm-11{padding-left:5rem!important}}@media(min-width:768px){.d-md-inline{display:inline!important}.d-md-inline-block{display:inline-block!important}.d-md-block{display:block!important}.d-md-grid{display:grid!important}.d-md-table{display:table!important}.d-md-table-row{display:table-row!important}.d-md-table-cell{display:table-cell!important}.d-md-flex{display:flex!important}.d-md-inline-flex{display:inline-flex!important}.d-md-none{display:none!important}.flex-md-fill{flex:1 1 auto!important}.flex-md-row{flex-direction:row!important}.flex-md-column{flex-direction:column!important}.flex-md-row-reverse{flex-direction:row-reverse!important}.flex-md-column-reverse{flex-direction:column-reverse!important}.flex-md-grow-0{flex-grow:0!important}.flex-md-grow-1{flex-grow:1!important}.flex-md-shrink-0{flex-shrink:0!important}.flex-md-shrink-1{flex-shrink:1!important}.flex-md-wrap{flex-wrap:wrap!important}.flex-md-nowrap{flex-wrap:nowrap!important}.flex-md-wrap-reverse{flex-wrap:wrap-reverse!important}.justify-content-md-start{justify-content:flex-start!important}.justify-content-md-end{justify-content:flex-end!important}.justify-content-md-center{justify-content:center!important}.justify-content-md-between{justify-content:space-between!important}.justify-content-md-around{justify-content:space-around!important}.justify-content-md-evenly{justify-content:space-evenly!important}.align-items-md-start{align-items:flex-start!important}.align-items-md-end{align-items:flex-end!important}.align-items-md-center{align-items:center!important}.align-items-md-baseline{align-items:baseline!important}.align-items-md-stretch{align-items:stretch!important}.align-content-md-start{align-content:flex-start!important}.align-content-md-end{align-content:flex-end!important}.align-content-md-center{align-content:center!important}.align-content-md-between{align-content:space-between!important}.align-content-md-around{align-content:space-around!important}.align-content-md-stretch{align-content:stretch!important}.align-self-md-auto{align-self:auto!important}.align-self-md-start{align-self:flex-start!important}.align-self-md-end{align-self:flex-end!important}.align-self-md-center{align-self:center!important}.align-self-md-baseline{align-self:baseline!important}.align-self-md-stretch{align-self:stretch!important}.order-md-first{order:-1!important}.order-md-0{order:0!important}.order-md-1{order:1!important}.order-md-2{order:2!important}.order-md-3{order:3!important}.order-md-4{order:4!important}.order-md-5{order:5!important}.order-md-last{order:6!important}.m-md-0{margin:0!important}.m-md-1{margin:.25rem!important}.m-md-2{margin:.5rem!important}.m-md-3{margin:.75rem!important}.m-md-4{margin:1rem!important}.m-md-5{margin:1.25rem!important}.m-md-6{margin:1.5rem!important}.m-md-7{margin:2rem!important}.m-md-8{margin:2.5rem!important}.m-md-9{margin:3rem!important}.m-md-10{margin:4rem!important}.m-md-11{margin:5rem!important}.m-md-auto{margin:auto!important}.mx-md-0{margin-right:0!important;margin-left:0!important}.mx-md-1{margin-right:.25rem!important;margin-left:.25rem!important}.mx-md-2{margin-right:.5rem!important;margin-left:.5rem!important}.mx-md-3{margin-right:.75rem!important;margin-left:.75rem!important}.mx-md-4{margin-right:1rem!important;margin-left:1rem!important}.mx-md-5{margin-right:1.25rem!important;margin-left:1.25rem!important}.mx-md-6{margin-right:1.5rem!important;margin-left:1.5rem!important}.mx-md-7{margin-right:2rem!important;margin-left:2rem!important}.mx-md-8{margin-right:2.5rem!important;margin-left:2.5rem!important}.mx-md-9{margin-right:3rem!important;margin-left:3rem!important}.mx-md-10{margin-right:4rem!important;margin-left:4rem!important}.mx-md-11{margin-right:5rem!important;margin-left:5rem!important}.mx-md-auto{margin-right:auto!important;margin-left:auto!important}.my-md-0{margin-top:0!important;margin-bottom:0!important}.my-md-1{margin-top:.25rem!important;margin-bottom:.25rem!important}.my-md-2{margin-top:.5rem!important;margin-bottom:.5rem!important}.my-md-3{margin-top:.75rem!important;margin-bottom:.75rem!important}.my-md-4{margin-top:1rem!important;margin-bottom:1rem!important}.my-md-5{margin-top:1.25rem!important;margin-bottom:1.25rem!important}.my-md-6{margin-top:1.5rem!important;margin-bottom:1.5rem!important}.my-md-7{margin-top:2rem!important;margin-bottom:2rem!important}.my-md-8{margin-top:2.5rem!important;margin-bottom:2.5rem!important}.my-md-9{margin-top:3rem!important;margin-bottom:3rem!important}.my-md-10{margin-top:4rem!important;margin-bottom:4rem!important}.my-md-11{margin-top:5rem!important;margin-bottom:5rem!important}.my-md-auto{margin-top:auto!important;margin-bottom:auto!important}.mt-md-0{margin-top:0!important}.mt-md-1{margin-top:.25rem!important}.mt-md-2{margin-top:.5rem!important}.mt-md-3{margin-top:.75rem!important}.mt-md-4{margin-top:1rem!important}.mt-md-5{margin-top:1.25rem!important}.mt-md-6{margin-top:1.5rem!important}.mt-md-7{margin-top:2rem!important}.mt-md-8{margin-top:2.5rem!important}.mt-md-9{margin-top:3rem!important}.mt-md-10{margin-top:4rem!important}.mt-md-11{margin-top:5rem!important}.mt-md-auto{margin-top:auto!important}.me-md-0{margin-right:0!important}.me-md-1{margin-right:.25rem!important}.me-md-2{margin-right:.5rem!important}.me-md-3{margin-right:.75rem!important}.me-md-4{margin-right:1rem!important}.me-md-5{margin-right:1.25rem!important}.me-md-6{margin-right:1.5rem!important}.me-md-7{margin-right:2rem!important}.me-md-8{margin-right:2.5rem!important}.me-md-9{margin-right:3rem!important}.me-md-10{margin-right:4rem!important}.me-md-11{margin-right:5rem!important}.me-md-auto{margin-right:auto!important}.mb-md-0{margin-bottom:0!important}.mb-md-1{margin-bottom:.25rem!important}.mb-md-2{margin-bottom:.5rem!important}.mb-md-3{margin-bottom:.75rem!important}.mb-md-4{margin-bottom:1rem!important}.mb-md-5{margin-bottom:1.25rem!important}.mb-md-6{margin-bottom:1.5rem!important}.mb-md-7{margin-bottom:2rem!important}.mb-md-8{margin-bottom:2.5rem!important}.mb-md-9{margin-bottom:3rem!important}.mb-md-10{margin-bottom:4rem!important}.mb-md-11{margin-bottom:5rem!important}.mb-md-auto{margin-bottom:auto!important}.ms-md-0{margin-left:0!important}.ms-md-1{margin-left:.25rem!important}.ms-md-2{margin-left:.5rem!important}.ms-md-3{margin-left:.75rem!important}.ms-md-4{margin-left:1rem!important}.ms-md-5{margin-left:1.25rem!important}.ms-md-6{margin-left:1.5rem!important}.ms-md-7{margin-left:2rem!important}.ms-md-8{margin-left:2.5rem!important}.ms-md-9{margin-left:3rem!important}.ms-md-10{margin-left:4rem!important}.ms-md-11{margin-left:5rem!important}.ms-md-auto{margin-left:auto!important}.p-md-0{padding:0!important}.p-md-1{padding:.25rem!important}.p-md-2{padding:.5rem!important}.p-md-3{padding:.75rem!important}.p-md-4{padding:1rem!important}.p-md-5{padding:1.25rem!important}.p-md-6{padding:1.5rem!important}.p-md-7{padding:2rem!important}.p-md-8{padding:2.5rem!important}.p-md-9{padding:3rem!important}.p-md-10{padding:4rem!important}.p-md-11{padding:5rem!important}.px-md-0{padding-right:0!important;padding-left:0!important}.px-md-1{padding-right:.25rem!important;padding-left:.25rem!important}.px-md-2{padding-right:.5rem!important;padding-left:.5rem!important}.px-md-3{padding-right:.75rem!important;padding-left:.75rem!important}.px-md-4{padding-right:1rem!important;padding-left:1rem!important}.px-md-5{padding-right:1.25rem!important;padding-left:1.25rem!important}.px-md-6{padding-right:1.5rem!important;padding-left:1.5rem!important}.px-md-7{padding-right:2rem!important;padding-left:2rem!important}.px-md-8{padding-right:2.5rem!important;padding-left:2.5rem!important}.px-md-9{padding-right:3rem!important;padding-left:3rem!important}.px-md-10{padding-right:4rem!important;padding-left:4rem!important}.px-md-11{padding-right:5rem!important;padding-left:5rem!important}.py-md-0{padding-top:0!important;padding-bottom:0!important}.py-md-1{padding-top:.25rem!important;padding-bottom:.25rem!important}.py-md-2{padding-top:.5rem!important;padding-bottom:.5rem!important}.py-md-3{padding-top:.75rem!important;padding-bottom:.75rem!important}.py-md-4{padding-top:1rem!important;padding-bottom:1rem!important}.py-md-5{padding-top:1.25rem!important;padding-bottom:1.25rem!important}.py-md-6{padding-top:1.5rem!important;padding-bottom:1.5rem!important}.py-md-7{padding-top:2rem!important;padding-bottom:2rem!important}.py-md-8{padding-top:2.5rem!important;padding-bottom:2.5rem!important}.py-md-9{padding-top:3rem!important;padding-bottom:3rem!important}.py-md-10{padding-top:4rem!important;padding-bottom:4rem!important}.py-md-11{padding-top:5rem!important;padding-bottom:5rem!important}.pt-md-0{padding-top:0!important}.pt-md-1{padding-top:.25rem!important}.pt-md-2{padding-top:.5rem!important}.pt-md-3{padding-top:.75rem!important}.pt-md-4{padding-top:1rem!important}.pt-md-5{padding-top:1.25rem!important}.pt-md-6{padding-top:1.5rem!important}.pt-md-7{padding-top:2rem!important}.pt-md-8{padding-top:2.5rem!important}.pt-md-9{padding-top:3rem!important}.pt-md-10{padding-top:4rem!important}.pt-md-11{padding-top:5rem!important}.pe-md-0{padding-right:0!important}.pe-md-1{padding-right:.25rem!important}.pe-md-2{padding-right:.5rem!important}.pe-md-3{padding-right:.75rem!important}.pe-md-4{padding-right:1rem!important}.pe-md-5{padding-right:1.25rem!important}.pe-md-6{padding-right:1.5rem!important}.pe-md-7{padding-right:2rem!important}.pe-md-8{padding-right:2.5rem!important}.pe-md-9{padding-right:3rem!important}.pe-md-10{padding-right:4rem!important}.pe-md-11{padding-right:5rem!important}.pb-md-0{padding-bottom:0!important}.pb-md-1{padding-bottom:.25rem!important}.pb-md-2{padding-bottom:.5rem!important}.pb-md-3{padding-bottom:.75rem!important}.pb-md-4{padding-bottom:1rem!important}.pb-md-5{padding-bottom:1.25rem!important}.pb-md-6{padding-bottom:1.5rem!important}.pb-md-7{padding-bottom:2rem!important}.pb-md-8{padding-bottom:2.5rem!important}.pb-md-9{padding-bottom:3rem!important}.pb-md-10{padding-bottom:4rem!important}.pb-md-11{padding-bottom:5rem!important}.ps-md-0{padding-left:0!important}.ps-md-1{padding-left:.25rem!important}.ps-md-2{padding-left:.5rem!important}.ps-md-3{padding-left:.75rem!important}.ps-md-4{padding-left:1rem!important}.ps-md-5{padding-left:1.25rem!important}.ps-md-6{padding-left:1.5rem!important}.ps-md-7{padding-left:2rem!important}.ps-md-8{padding-left:2.5rem!important}.ps-md-9{padding-left:3rem!important}.ps-md-10{padding-left:4rem!important}.ps-md-11{padding-left:5rem!important}}@media(min-width:992px){.d-lg-inline{display:inline!important}.d-lg-inline-block{display:inline-block!important}.d-lg-block{display:block!important}.d-lg-grid{display:grid!important}.d-lg-table{display:table!important}.d-lg-table-row{display:table-row!important}.d-lg-table-cell{display:table-cell!important}.d-lg-flex{display:flex!important}.d-lg-inline-flex{display:inline-flex!important}.d-lg-none{display:none!important}.flex-lg-fill{flex:1 1 auto!important}.flex-lg-row{flex-direction:row!important}.flex-lg-column{flex-direction:column!important}.flex-lg-row-reverse{flex-direction:row-reverse!important}.flex-lg-column-reverse{flex-direction:column-reverse!important}.flex-lg-grow-0{flex-grow:0!important}.flex-lg-grow-1{flex-grow:1!important}.flex-lg-shrink-0{flex-shrink:0!important}.flex-lg-shrink-1{flex-shrink:1!important}.flex-lg-wrap{flex-wrap:wrap!important}.flex-lg-nowrap{flex-wrap:nowrap!important}.flex-lg-wrap-reverse{flex-wrap:wrap-reverse!important}.justify-content-lg-start{justify-content:flex-start!important}.justify-content-lg-end{justify-content:flex-end!important}.justify-content-lg-center{justify-content:center!important}.justify-content-lg-between{justify-content:space-between!important}.justify-content-lg-around{justify-content:space-around!important}.justify-content-lg-evenly{justify-content:space-evenly!important}.align-items-lg-start{align-items:flex-start!important}.align-items-lg-end{align-items:flex-end!important}.align-items-lg-center{align-items:center!important}.align-items-lg-baseline{align-items:baseline!important}.align-items-lg-stretch{align-items:stretch!important}.align-content-lg-start{align-content:flex-start!important}.align-content-lg-end{align-content:flex-end!important}.align-content-lg-center{align-content:center!important}.align-content-lg-between{align-content:space-between!important}.align-content-lg-around{align-content:space-around!important}.align-content-lg-stretch{align-content:stretch!important}.align-self-lg-auto{align-self:auto!important}.align-self-lg-start{align-self:flex-start!important}.align-self-lg-end{align-self:flex-end!important}.align-self-lg-center{align-self:center!important}.align-self-lg-baseline{align-self:baseline!important}.align-self-lg-stretch{align-self:stretch!important}.order-lg-first{order:-1!important}.order-lg-0{order:0!important}.order-lg-1{order:1!important}.order-lg-2{order:2!important}.order-lg-3{order:3!important}.order-lg-4{order:4!important}.order-lg-5{order:5!important}.order-lg-last{order:6!important}.m-lg-0{margin:0!important}.m-lg-1{margin:.25rem!important}.m-lg-2{margin:.5rem!important}.m-lg-3{margin:.75rem!important}.m-lg-4{margin:1rem!important}.m-lg-5{margin:1.25rem!important}.m-lg-6{margin:1.5rem!important}.m-lg-7{margin:2rem!important}.m-lg-8{margin:2.5rem!important}.m-lg-9{margin:3rem!important}.m-lg-10{margin:4rem!important}.m-lg-11{margin:5rem!important}.m-lg-auto{margin:auto!important}.mx-lg-0{margin-right:0!important;margin-left:0!important}.mx-lg-1{margin-right:.25rem!important;margin-left:.25rem!important}.mx-lg-2{margin-right:.5rem!important;margin-left:.5rem!important}.mx-lg-3{margin-right:.75rem!important;margin-left:.75rem!important}.mx-lg-4{margin-right:1rem!important;margin-left:1rem!important}.mx-lg-5{margin-right:1.25rem!important;margin-left:1.25rem!important}.mx-lg-6{margin-right:1.5rem!important;margin-left:1.5rem!important}.mx-lg-7{margin-right:2rem!important;margin-left:2rem!important}.mx-lg-8{margin-right:2.5rem!important;margin-left:2.5rem!important}.mx-lg-9{margin-right:3rem!important;margin-left:3rem!important}.mx-lg-10{margin-right:4rem!important;margin-left:4rem!important}.mx-lg-11{margin-right:5rem!important;margin-left:5rem!important}.mx-lg-auto{margin-right:auto!important;margin-left:auto!important}.my-lg-0{margin-top:0!important;margin-bottom:0!important}.my-lg-1{margin-top:.25rem!important;margin-bottom:.25rem!important}.my-lg-2{margin-top:.5rem!important;margin-bottom:.5rem!important}.my-lg-3{margin-top:.75rem!important;margin-bottom:.75rem!important}.my-lg-4{margin-top:1rem!important;margin-bottom:1rem!important}.my-lg-5{margin-top:1.25rem!important;margin-bottom:1.25rem!important}.my-lg-6{margin-top:1.5rem!important;margin-bottom:1.5rem!important}.my-lg-7{margin-top:2rem!important;margin-bottom:2rem!important}.my-lg-8{margin-top:2.5rem!important;margin-bottom:2.5rem!important}.my-lg-9{margin-top:3rem!important;margin-bottom:3rem!important}.my-lg-10{margin-top:4rem!important;margin-bottom:4rem!important}.my-lg-11{margin-top:5rem!important;margin-bottom:5rem!important}.my-lg-auto{margin-top:auto!important;margin-bottom:auto!important}.mt-lg-0{margin-top:0!important}.mt-lg-1{margin-top:.25rem!important}.mt-lg-2{margin-top:.5rem!important}.mt-lg-3{margin-top:.75rem!important}.mt-lg-4{margin-top:1rem!important}.mt-lg-5{margin-top:1.25rem!important}.mt-lg-6{margin-top:1.5rem!important}.mt-lg-7{margin-top:2rem!important}.mt-lg-8{margin-top:2.5rem!important}.mt-lg-9{margin-top:3rem!important}.mt-lg-10{margin-top:4rem!important}.mt-lg-11{margin-top:5rem!important}.mt-lg-auto{margin-top:auto!important}.me-lg-0{margin-right:0!important}.me-lg-1{margin-right:.25rem!important}.me-lg-2{margin-right:.5rem!important}.me-lg-3{margin-right:.75rem!important}.me-lg-4{margin-right:1rem!important}.me-lg-5{margin-right:1.25rem!important}.me-lg-6{margin-right:1.5rem!important}.me-lg-7{margin-right:2rem!important}.me-lg-8{margin-right:2.5rem!important}.me-lg-9{margin-right:3rem!important}.me-lg-10{margin-right:4rem!important}.me-lg-11{margin-right:5rem!important}.me-lg-auto{margin-right:auto!important}.mb-lg-0{margin-bottom:0!important}.mb-lg-1{margin-bottom:.25rem!important}.mb-lg-2{margin-bottom:.5rem!important}.mb-lg-3{margin-bottom:.75rem!important}.mb-lg-4{margin-bottom:1rem!important}.mb-lg-5{margin-bottom:1.25rem!important}.mb-lg-6{margin-bottom:1.5rem!important}.mb-lg-7{margin-bottom:2rem!important}.mb-lg-8{margin-bottom:2.5rem!important}.mb-lg-9{margin-bottom:3rem!important}.mb-lg-10{margin-bottom:4rem!important}.mb-lg-11{margin-bottom:5rem!important}.mb-lg-auto{margin-bottom:auto!important}.ms-lg-0{margin-left:0!important}.ms-lg-1{margin-left:.25rem!important}.ms-lg-2{margin-left:.5rem!important}.ms-lg-3{margin-left:.75rem!important}.ms-lg-4{margin-left:1rem!important}.ms-lg-5{margin-left:1.25rem!important}.ms-lg-6{margin-left:1.5rem!important}.ms-lg-7{margin-left:2rem!important}.ms-lg-8{margin-left:2.5rem!important}.ms-lg-9{margin-left:3rem!important}.ms-lg-10{margin-left:4rem!important}.ms-lg-11{margin-left:5rem!important}.ms-lg-auto{margin-left:auto!important}.p-lg-0{padding:0!important}.p-lg-1{padding:.25rem!important}.p-lg-2{padding:.5rem!important}.p-lg-3{padding:.75rem!important}.p-lg-4{padding:1rem!important}.p-lg-5{padding:1.25rem!important}.p-lg-6{padding:1.5rem!important}.p-lg-7{padding:2rem!important}.p-lg-8{padding:2.5rem!important}.p-lg-9{padding:3rem!important}.p-lg-10{padding:4rem!important}.p-lg-11{padding:5rem!important}.px-lg-0{padding-right:0!important;padding-left:0!important}.px-lg-1{padding-right:.25rem!important;padding-left:.25rem!important}.px-lg-2{padding-right:.5rem!important;padding-left:.5rem!important}.px-lg-3{padding-right:.75rem!important;padding-left:.75rem!important}.px-lg-4{padding-right:1rem!important;padding-left:1rem!important}.px-lg-5{padding-right:1.25rem!important;padding-left:1.25rem!important}.px-lg-6{padding-right:1.5rem!important;padding-left:1.5rem!important}.px-lg-7{padding-right:2rem!important;padding-left:2rem!important}.px-lg-8{padding-right:2.5rem!important;padding-left:2.5rem!important}.px-lg-9{padding-right:3rem!important;padding-left:3rem!important}.px-lg-10{padding-right:4rem!important;padding-left:4rem!important}.px-lg-11{padding-right:5rem!important;padding-left:5rem!important}.py-lg-0{padding-top:0!important;padding-bottom:0!important}.py-lg-1{padding-top:.25rem!important;padding-bottom:.25rem!important}.py-lg-2{padding-top:.5rem!important;padding-bottom:.5rem!important}.py-lg-3{padding-top:.75rem!important;padding-bottom:.75rem!important}.py-lg-4{padding-top:1rem!important;padding-bottom:1rem!important}.py-lg-5{padding-top:1.25rem!important;padding-bottom:1.25rem!important}.py-lg-6{padding-top:1.5rem!important;padding-bottom:1.5rem!important}.py-lg-7{padding-top:2rem!important;padding-bottom:2rem!important}.py-lg-8{padding-top:2.5rem!important;padding-bottom:2.5rem!important}.py-lg-9{padding-top:3rem!important;padding-bottom:3rem!important}.py-lg-10{padding-top:4rem!important;padding-bottom:4rem!important}.py-lg-11{padding-top:5rem!important;padding-bottom:5rem!important}.pt-lg-0{padding-top:0!important}.pt-lg-1{padding-top:.25rem!important}.pt-lg-2{padding-top:.5rem!important}.pt-lg-3{padding-top:.75rem!important}.pt-lg-4{padding-top:1rem!important}.pt-lg-5{padding-top:1.25rem!important}.pt-lg-6{padding-top:1.5rem!important}.pt-lg-7{padding-top:2rem!important}.pt-lg-8{padding-top:2.5rem!important}.pt-lg-9{padding-top:3rem!important}.pt-lg-10{padding-top:4rem!important}.pt-lg-11{padding-top:5rem!important}.pe-lg-0{padding-right:0!important}.pe-lg-1{padding-right:.25rem!important}.pe-lg-2{padding-right:.5rem!important}.pe-lg-3{padding-right:.75rem!important}.pe-lg-4{padding-right:1rem!important}.pe-lg-5{padding-right:1.25rem!important}.pe-lg-6{padding-right:1.5rem!important}.pe-lg-7{padding-right:2rem!important}.pe-lg-8{padding-right:2.5rem!important}.pe-lg-9{padding-right:3rem!important}.pe-lg-10{padding-right:4rem!important}.pe-lg-11{padding-right:5rem!important}.pb-lg-0{padding-bottom:0!important}.pb-lg-1{padding-bottom:.25rem!important}.pb-lg-2{padding-bottom:.5rem!important}.pb-lg-3{padding-bottom:.75rem!important}.pb-lg-4{padding-bottom:1rem!important}.pb-lg-5{padding-bottom:1.25rem!important}.pb-lg-6{padding-bottom:1.5rem!important}.pb-lg-7{padding-bottom:2rem!important}.pb-lg-8{padding-bottom:2.5rem!important}.pb-lg-9{padding-bottom:3rem!important}.pb-lg-10{padding-bottom:4rem!important}.pb-lg-11{padding-bottom:5rem!important}.ps-lg-0{padding-left:0!important}.ps-lg-1{padding-left:.25rem!important}.ps-lg-2{padding-left:.5rem!important}.ps-lg-3{padding-left:.75rem!important}.ps-lg-4{padding-left:1rem!important}.ps-lg-5{padding-left:1.25rem!important}.ps-lg-6{padding-left:1.5rem!important}.ps-lg-7{padding-left:2rem!important}.ps-lg-8{padding-left:2.5rem!important}.ps-lg-9{padding-left:3rem!important}.ps-lg-10{padding-left:4rem!important}.ps-lg-11{padding-left:5rem!important}}@media(min-width:1025px){.d-xl-inline{display:inline!important}.d-xl-inline-block{display:inline-block!important}.d-xl-block{display:block!important}.d-xl-grid{display:grid!important}.d-xl-table{display:table!important}.d-xl-table-row{display:table-row!important}.d-xl-table-cell{display:table-cell!important}.d-xl-flex{display:flex!important}.d-xl-inline-flex{display:inline-flex!important}.d-xl-none{display:none!important}.flex-xl-fill{flex:1 1 auto!important}.flex-xl-row{flex-direction:row!important}.flex-xl-column{flex-direction:column!important}.flex-xl-row-reverse{flex-direction:row-reverse!important}.flex-xl-column-reverse{flex-direction:column-reverse!important}.flex-xl-grow-0{flex-grow:0!important}.flex-xl-grow-1{flex-grow:1!important}.flex-xl-shrink-0{flex-shrink:0!important}.flex-xl-shrink-1{flex-shrink:1!important}.flex-xl-wrap{flex-wrap:wrap!important}.flex-xl-nowrap{flex-wrap:nowrap!important}.flex-xl-wrap-reverse{flex-wrap:wrap-reverse!important}.justify-content-xl-start{justify-content:flex-start!important}.justify-content-xl-end{justify-content:flex-end!important}.justify-content-xl-center{justify-content:center!important}.justify-content-xl-between{justify-content:space-between!important}.justify-content-xl-around{justify-content:space-around!important}.justify-content-xl-evenly{justify-content:space-evenly!important}.align-items-xl-start{align-items:flex-start!important}.align-items-xl-end{align-items:flex-end!important}.align-items-xl-center{align-items:center!important}.align-items-xl-baseline{align-items:baseline!important}.align-items-xl-stretch{align-items:stretch!important}.align-content-xl-start{align-content:flex-start!important}.align-content-xl-end{align-content:flex-end!important}.align-content-xl-center{align-content:center!important}.align-content-xl-between{align-content:space-between!important}.align-content-xl-around{align-content:space-around!important}.align-content-xl-stretch{align-content:stretch!important}.align-self-xl-auto{align-self:auto!important}.align-self-xl-start{align-self:flex-start!important}.align-self-xl-end{align-self:flex-end!important}.align-self-xl-center{align-self:center!important}.align-self-xl-baseline{align-self:baseline!important}.align-self-xl-stretch{align-self:stretch!important}.order-xl-first{order:-1!important}.order-xl-0{order:0!important}.order-xl-1{order:1!important}.order-xl-2{order:2!important}.order-xl-3{order:3!important}.order-xl-4{order:4!important}.order-xl-5{order:5!important}.order-xl-last{order:6!important}.m-xl-0{margin:0!important}.m-xl-1{margin:.25rem!important}.m-xl-2{margin:.5rem!important}.m-xl-3{margin:.75rem!important}.m-xl-4{margin:1rem!important}.m-xl-5{margin:1.25rem!important}.m-xl-6{margin:1.5rem!important}.m-xl-7{margin:2rem!important}.m-xl-8{margin:2.5rem!important}.m-xl-9{margin:3rem!important}.m-xl-10{margin:4rem!important}.m-xl-11{margin:5rem!important}.m-xl-auto{margin:auto!important}.mx-xl-0{margin-right:0!important;margin-left:0!important}.mx-xl-1{margin-right:.25rem!important;margin-left:.25rem!important}.mx-xl-2{margin-right:.5rem!important;margin-left:.5rem!important}.mx-xl-3{margin-right:.75rem!important;margin-left:.75rem!important}.mx-xl-4{margin-right:1rem!important;margin-left:1rem!important}.mx-xl-5{margin-right:1.25rem!important;margin-left:1.25rem!important}.mx-xl-6{margin-right:1.5rem!important;margin-left:1.5rem!important}.mx-xl-7{margin-right:2rem!important;margin-left:2rem!important}.mx-xl-8{margin-right:2.5rem!important;margin-left:2.5rem!important}.mx-xl-9{margin-right:3rem!important;margin-left:3rem!important}.mx-xl-10{margin-right:4rem!important;margin-left:4rem!important}.mx-xl-11{margin-right:5rem!important;margin-left:5rem!important}.mx-xl-auto{margin-right:auto!important;margin-left:auto!important}.my-xl-0{margin-top:0!important;margin-bottom:0!important}.my-xl-1{margin-top:.25rem!important;margin-bottom:.25rem!important}.my-xl-2{margin-top:.5rem!important;margin-bottom:.5rem!important}.my-xl-3{margin-top:.75rem!important;margin-bottom:.75rem!important}.my-xl-4{margin-top:1rem!important;margin-bottom:1rem!important}.my-xl-5{margin-top:1.25rem!important;margin-bottom:1.25rem!important}.my-xl-6{margin-top:1.5rem!important;margin-bottom:1.5rem!important}.my-xl-7{margin-top:2rem!important;margin-bottom:2rem!important}.my-xl-8{margin-top:2.5rem!important;margin-bottom:2.5rem!important}.my-xl-9{margin-top:3rem!important;margin-bottom:3rem!important}.my-xl-10{margin-top:4rem!important;margin-bottom:4rem!important}.my-xl-11{margin-top:5rem!important;margin-bottom:5rem!important}.my-xl-auto{margin-top:auto!important;margin-bottom:auto!important}.mt-xl-0{margin-top:0!important}.mt-xl-1{margin-top:.25rem!important}.mt-xl-2{margin-top:.5rem!important}.mt-xl-3{margin-top:.75rem!important}.mt-xl-4{margin-top:1rem!important}.mt-xl-5{margin-top:1.25rem!important}.mt-xl-6{margin-top:1.5rem!important}.mt-xl-7{margin-top:2rem!important}.mt-xl-8{margin-top:2.5rem!important}.mt-xl-9{margin-top:3rem!important}.mt-xl-10{margin-top:4rem!important}.mt-xl-11{margin-top:5rem!important}.mt-xl-auto{margin-top:auto!important}.me-xl-0{margin-right:0!important}.me-xl-1{margin-right:.25rem!important}.me-xl-2{margin-right:.5rem!important}.me-xl-3{margin-right:.75rem!important}.me-xl-4{margin-right:1rem!important}.me-xl-5{margin-right:1.25rem!important}.me-xl-6{margin-right:1.5rem!important}.me-xl-7{margin-right:2rem!important}.me-xl-8{margin-right:2.5rem!important}.me-xl-9{margin-right:3rem!important}.me-xl-10{margin-right:4rem!important}.me-xl-11{margin-right:5rem!important}.me-xl-auto{margin-right:auto!important}.mb-xl-0{margin-bottom:0!important}.mb-xl-1{margin-bottom:.25rem!important}.mb-xl-2{margin-bottom:.5rem!important}.mb-xl-3{margin-bottom:.75rem!important}.mb-xl-4{margin-bottom:1rem!important}.mb-xl-5{margin-bottom:1.25rem!important}.mb-xl-6{margin-bottom:1.5rem!important}.mb-xl-7{margin-bottom:2rem!important}.mb-xl-8{margin-bottom:2.5rem!important}.mb-xl-9{margin-bottom:3rem!important}.mb-xl-10{margin-bottom:4rem!important}.mb-xl-11{margin-bottom:5rem!important}.mb-xl-auto{margin-bottom:auto!important}.ms-xl-0{margin-left:0!important}.ms-xl-1{margin-left:.25rem!important}.ms-xl-2{margin-left:.5rem!important}.ms-xl-3{margin-left:.75rem!important}.ms-xl-4{margin-left:1rem!important}.ms-xl-5{margin-left:1.25rem!important}.ms-xl-6{margin-left:1.5rem!important}.ms-xl-7{margin-left:2rem!important}.ms-xl-8{margin-left:2.5rem!important}.ms-xl-9{margin-left:3rem!important}.ms-xl-10{margin-left:4rem!important}.ms-xl-11{margin-left:5rem!important}.ms-xl-auto{margin-left:auto!important}.p-xl-0{padding:0!important}.p-xl-1{padding:.25rem!important}.p-xl-2{padding:.5rem!important}.p-xl-3{padding:.75rem!important}.p-xl-4{padding:1rem!important}.p-xl-5{padding:1.25rem!important}.p-xl-6{padding:1.5rem!important}.p-xl-7{padding:2rem!important}.p-xl-8{padding:2.5rem!important}.p-xl-9{padding:3rem!important}.p-xl-10{padding:4rem!important}.p-xl-11{padding:5rem!important}.px-xl-0{padding-right:0!important;padding-left:0!important}.px-xl-1{padding-right:.25rem!important;padding-left:.25rem!important}.px-xl-2{padding-right:.5rem!important;padding-left:.5rem!important}.px-xl-3{padding-right:.75rem!important;padding-left:.75rem!important}.px-xl-4{padding-right:1rem!important;padding-left:1rem!important}.px-xl-5{padding-right:1.25rem!important;padding-left:1.25rem!important}.px-xl-6{padding-right:1.5rem!important;padding-left:1.5rem!important}.px-xl-7{padding-right:2rem!important;padding-left:2rem!important}.px-xl-8{padding-right:2.5rem!important;padding-left:2.5rem!important}.px-xl-9{padding-right:3rem!important;padding-left:3rem!important}.px-xl-10{padding-right:4rem!important;padding-left:4rem!important}.px-xl-11{padding-right:5rem!important;padding-left:5rem!important}.py-xl-0{padding-top:0!important;padding-bottom:0!important}.py-xl-1{padding-top:.25rem!important;padding-bottom:.25rem!important}.py-xl-2{padding-top:.5rem!important;padding-bottom:.5rem!important}.py-xl-3{padding-top:.75rem!important;padding-bottom:.75rem!important}.py-xl-4{padding-top:1rem!important;padding-bottom:1rem!important}.py-xl-5{padding-top:1.25rem!important;padding-bottom:1.25rem!important}.py-xl-6{padding-top:1.5rem!important;padding-bottom:1.5rem!important}.py-xl-7{padding-top:2rem!important;padding-bottom:2rem!important}.py-xl-8{padding-top:2.5rem!important;padding-bottom:2.5rem!important}.py-xl-9{padding-top:3rem!important;padding-bottom:3rem!important}.py-xl-10{padding-top:4rem!important;padding-bottom:4rem!important}.py-xl-11{padding-top:5rem!important;padding-bottom:5rem!important}.pt-xl-0{padding-top:0!important}.pt-xl-1{padding-top:.25rem!important}.pt-xl-2{padding-top:.5rem!important}.pt-xl-3{padding-top:.75rem!important}.pt-xl-4{padding-top:1rem!important}.pt-xl-5{padding-top:1.25rem!important}.pt-xl-6{padding-top:1.5rem!important}.pt-xl-7{padding-top:2rem!important}.pt-xl-8{padding-top:2.5rem!important}.pt-xl-9{padding-top:3rem!important}.pt-xl-10{padding-top:4rem!important}.pt-xl-11{padding-top:5rem!important}.pe-xl-0{padding-right:0!important}.pe-xl-1{padding-right:.25rem!important}.pe-xl-2{padding-right:.5rem!important}.pe-xl-3{padding-right:.75rem!important}.pe-xl-4{padding-right:1rem!important}.pe-xl-5{padding-right:1.25rem!important}.pe-xl-6{padding-right:1.5rem!important}.pe-xl-7{padding-right:2rem!important}.pe-xl-8{padding-right:2.5rem!important}.pe-xl-9{padding-right:3rem!important}.pe-xl-10{padding-right:4rem!important}.pe-xl-11{padding-right:5rem!important}.pb-xl-0{padding-bottom:0!important}.pb-xl-1{padding-bottom:.25rem!important}.pb-xl-2{padding-bottom:.5rem!important}.pb-xl-3{padding-bottom:.75rem!important}.pb-xl-4{padding-bottom:1rem!important}.pb-xl-5{padding-bottom:1.25rem!important}.pb-xl-6{padding-bottom:1.5rem!important}.pb-xl-7{padding-bottom:2rem!important}.pb-xl-8{padding-bottom:2.5rem!important}.pb-xl-9{padding-bottom:3rem!important}.pb-xl-10{padding-bottom:4rem!important}.pb-xl-11{padding-bottom:5rem!important}.ps-xl-0{padding-left:0!important}.ps-xl-1{padding-left:.25rem!important}.ps-xl-2{padding-left:.5rem!important}.ps-xl-3{padding-left:.75rem!important}.ps-xl-4{padding-left:1rem!important}.ps-xl-5{padding-left:1.25rem!important}.ps-xl-6{padding-left:1.5rem!important}.ps-xl-7{padding-left:2rem!important}.ps-xl-8{padding-left:2.5rem!important}.ps-xl-9{padding-left:3rem!important}.ps-xl-10{padding-left:4rem!important}.ps-xl-11{padding-left:5rem!important}}@media(min-width:1501px){.d-xxl-inline{display:inline!important}.d-xxl-inline-block{display:inline-block!important}.d-xxl-block{display:block!important}.d-xxl-grid{display:grid!important}.d-xxl-table{display:table!important}.d-xxl-table-row{display:table-row!important}.d-xxl-table-cell{display:table-cell!important}.d-xxl-flex{display:flex!important}.d-xxl-inline-flex{display:inline-flex!important}.d-xxl-none{display:none!important}.flex-xxl-fill{flex:1 1 auto!important}.flex-xxl-row{flex-direction:row!important}.flex-xxl-column{flex-direction:column!important}.flex-xxl-row-reverse{flex-direction:row-reverse!important}.flex-xxl-column-reverse{flex-direction:column-reverse!important}.flex-xxl-grow-0{flex-grow:0!important}.flex-xxl-grow-1{flex-grow:1!important}.flex-xxl-shrink-0{flex-shrink:0!important}.flex-xxl-shrink-1{flex-shrink:1!important}.flex-xxl-wrap{flex-wrap:wrap!important}.flex-xxl-nowrap{flex-wrap:nowrap!important}.flex-xxl-wrap-reverse{flex-wrap:wrap-reverse!important}.justify-content-xxl-start{justify-content:flex-start!important}.justify-content-xxl-end{justify-content:flex-end!important}.justify-content-xxl-center{justify-content:center!important}.justify-content-xxl-between{justify-content:space-between!important}.justify-content-xxl-around{justify-content:space-around!important}.justify-content-xxl-evenly{justify-content:space-evenly!important}.align-items-xxl-start{align-items:flex-start!important}.align-items-xxl-end{align-items:flex-end!important}.align-items-xxl-center{align-items:center!important}.align-items-xxl-baseline{align-items:baseline!important}.align-items-xxl-stretch{align-items:stretch!important}.align-content-xxl-start{align-content:flex-start!important}.align-content-xxl-end{align-content:flex-end!important}.align-content-xxl-center{align-content:center!important}.align-content-xxl-between{align-content:space-between!important}.align-content-xxl-around{align-content:space-around!important}.align-content-xxl-stretch{align-content:stretch!important}.align-self-xxl-auto{align-self:auto!important}.align-self-xxl-start{align-self:flex-start!important}.align-self-xxl-end{align-self:flex-end!important}.align-self-xxl-center{align-self:center!important}.align-self-xxl-baseline{align-self:baseline!important}.align-self-xxl-stretch{align-self:stretch!important}.order-xxl-first{order:-1!important}.order-xxl-0{order:0!important}.order-xxl-1{order:1!important}.order-xxl-2{order:2!important}.order-xxl-3{order:3!important}.order-xxl-4{order:4!important}.order-xxl-5{order:5!important}.order-xxl-last{order:6!important}.m-xxl-0{margin:0!important}.m-xxl-1{margin:.25rem!important}.m-xxl-2{margin:.5rem!important}.m-xxl-3{margin:.75rem!important}.m-xxl-4{margin:1rem!important}.m-xxl-5{margin:1.25rem!important}.m-xxl-6{margin:1.5rem!important}.m-xxl-7{margin:2rem!important}.m-xxl-8{margin:2.5rem!important}.m-xxl-9{margin:3rem!important}.m-xxl-10{margin:4rem!important}.m-xxl-11{margin:5rem!important}.m-xxl-auto{margin:auto!important}.mx-xxl-0{margin-right:0!important;margin-left:0!important}.mx-xxl-1{margin-right:.25rem!important;margin-left:.25rem!important}.mx-xxl-2{margin-right:.5rem!important;margin-left:.5rem!important}.mx-xxl-3{margin-right:.75rem!important;margin-left:.75rem!important}.mx-xxl-4{margin-right:1rem!important;margin-left:1rem!important}.mx-xxl-5{margin-right:1.25rem!important;margin-left:1.25rem!important}.mx-xxl-6{margin-right:1.5rem!important;margin-left:1.5rem!important}.mx-xxl-7{margin-right:2rem!important;margin-left:2rem!important}.mx-xxl-8{margin-right:2.5rem!important;margin-left:2.5rem!important}.mx-xxl-9{margin-right:3rem!important;margin-left:3rem!important}.mx-xxl-10{margin-right:4rem!important;margin-left:4rem!important}.mx-xxl-11{margin-right:5rem!important;margin-left:5rem!important}.mx-xxl-auto{margin-right:auto!important;margin-left:auto!important}.my-xxl-0{margin-top:0!important;margin-bottom:0!important}.my-xxl-1{margin-top:.25rem!important;margin-bottom:.25rem!important}.my-xxl-2{margin-top:.5rem!important;margin-bottom:.5rem!important}.my-xxl-3{margin-top:.75rem!important;margin-bottom:.75rem!important}.my-xxl-4{margin-top:1rem!important;margin-bottom:1rem!important}.my-xxl-5{margin-top:1.25rem!important;margin-bottom:1.25rem!important}.my-xxl-6{margin-top:1.5rem!important;margin-bottom:1.5rem!important}.my-xxl-7{margin-top:2rem!important;margin-bottom:2rem!important}.my-xxl-8{margin-top:2.5rem!important;margin-bottom:2.5rem!important}.my-xxl-9{margin-top:3rem!important;margin-bottom:3rem!important}.my-xxl-10{margin-top:4rem!important;margin-bottom:4rem!important}.my-xxl-11{margin-top:5rem!important;margin-bottom:5rem!important}.my-xxl-auto{margin-top:auto!important;margin-bottom:auto!important}.mt-xxl-0{margin-top:0!important}.mt-xxl-1{margin-top:.25rem!important}.mt-xxl-2{margin-top:.5rem!important}.mt-xxl-3{margin-top:.75rem!important}.mt-xxl-4{margin-top:1rem!important}.mt-xxl-5{margin-top:1.25rem!important}.mt-xxl-6{margin-top:1.5rem!important}.mt-xxl-7{margin-top:2rem!important}.mt-xxl-8{margin-top:2.5rem!important}.mt-xxl-9{margin-top:3rem!important}.mt-xxl-10{margin-top:4rem!important}.mt-xxl-11{margin-top:5rem!important}.mt-xxl-auto{margin-top:auto!important}.me-xxl-0{margin-right:0!important}.me-xxl-1{margin-right:.25rem!important}.me-xxl-2{margin-right:.5rem!important}.me-xxl-3{margin-right:.75rem!important}.me-xxl-4{margin-right:1rem!important}.me-xxl-5{margin-right:1.25rem!important}.me-xxl-6{margin-right:1.5rem!important}.me-xxl-7{margin-right:2rem!important}.me-xxl-8{margin-right:2.5rem!important}.me-xxl-9{margin-right:3rem!important}.me-xxl-10{margin-right:4rem!important}.me-xxl-11{margin-right:5rem!important}.me-xxl-auto{margin-right:auto!important}.mb-xxl-0{margin-bottom:0!important}.mb-xxl-1{margin-bottom:.25rem!important}.mb-xxl-2{margin-bottom:.5rem!important}.mb-xxl-3{margin-bottom:.75rem!important}.mb-xxl-4{margin-bottom:1rem!important}.mb-xxl-5{margin-bottom:1.25rem!important}.mb-xxl-6{margin-bottom:1.5rem!important}.mb-xxl-7{margin-bottom:2rem!important}.mb-xxl-8{margin-bottom:2.5rem!important}.mb-xxl-9{margin-bottom:3rem!important}.mb-xxl-10{margin-bottom:4rem!important}.mb-xxl-11{margin-bottom:5rem!important}.mb-xxl-auto{margin-bottom:auto!important}.ms-xxl-0{margin-left:0!important}.ms-xxl-1{margin-left:.25rem!important}.ms-xxl-2{margin-left:.5rem!important}.ms-xxl-3{margin-left:.75rem!important}.ms-xxl-4{margin-left:1rem!important}.ms-xxl-5{margin-left:1.25rem!important}.ms-xxl-6{margin-left:1.5rem!important}.ms-xxl-7{margin-left:2rem!important}.ms-xxl-8{margin-left:2.5rem!important}.ms-xxl-9{margin-left:3rem!important}.ms-xxl-10{margin-left:4rem!important}.ms-xxl-11{margin-left:5rem!important}.ms-xxl-auto{margin-left:auto!important}.p-xxl-0{padding:0!important}.p-xxl-1{padding:.25rem!important}.p-xxl-2{padding:.5rem!important}.p-xxl-3{padding:.75rem!important}.p-xxl-4{padding:1rem!important}.p-xxl-5{padding:1.25rem!important}.p-xxl-6{padding:1.5rem!important}.p-xxl-7{padding:2rem!important}.p-xxl-8{padding:2.5rem!important}.p-xxl-9{padding:3rem!important}.p-xxl-10{padding:4rem!important}.p-xxl-11{padding:5rem!important}.px-xxl-0{padding-right:0!important;padding-left:0!important}.px-xxl-1{padding-right:.25rem!important;padding-left:.25rem!important}.px-xxl-2{padding-right:.5rem!important;padding-left:.5rem!important}.px-xxl-3{padding-right:.75rem!important;padding-left:.75rem!important}.px-xxl-4{padding-right:1rem!important;padding-left:1rem!important}.px-xxl-5{padding-right:1.25rem!important;padding-left:1.25rem!important}.px-xxl-6{padding-right:1.5rem!important;padding-left:1.5rem!important}.px-xxl-7{padding-right:2rem!important;padding-left:2rem!important}.px-xxl-8{padding-right:2.5rem!important;padding-left:2.5rem!important}.px-xxl-9{padding-right:3rem!important;padding-left:3rem!important}.px-xxl-10{padding-right:4rem!important;padding-left:4rem!important}.px-xxl-11{padding-right:5rem!important;padding-left:5rem!important}.py-xxl-0{padding-top:0!important;padding-bottom:0!important}.py-xxl-1{padding-top:.25rem!important;padding-bottom:.25rem!important}.py-xxl-2{padding-top:.5rem!important;padding-bottom:.5rem!important}.py-xxl-3{padding-top:.75rem!important;padding-bottom:.75rem!important}.py-xxl-4{padding-top:1rem!important;padding-bottom:1rem!important}.py-xxl-5{padding-top:1.25rem!important;padding-bottom:1.25rem!important}.py-xxl-6{padding-top:1.5rem!important;padding-bottom:1.5rem!important}.py-xxl-7{padding-top:2rem!important;padding-bottom:2rem!important}.py-xxl-8{padding-top:2.5rem!important;padding-bottom:2.5rem!important}.py-xxl-9{padding-top:3rem!important;padding-bottom:3rem!important}.py-xxl-10{padding-top:4rem!important;padding-bottom:4rem!important}.py-xxl-11{padding-top:5rem!important;padding-bottom:5rem!important}.pt-xxl-0{padding-top:0!important}.pt-xxl-1{padding-top:.25rem!important}.pt-xxl-2{padding-top:.5rem!important}.pt-xxl-3{padding-top:.75rem!important}.pt-xxl-4{padding-top:1rem!important}.pt-xxl-5{padding-top:1.25rem!important}.pt-xxl-6{padding-top:1.5rem!important}.pt-xxl-7{padding-top:2rem!important}.pt-xxl-8{padding-top:2.5rem!important}.pt-xxl-9{padding-top:3rem!important}.pt-xxl-10{padding-top:4rem!important}.pt-xxl-11{padding-top:5rem!important}.pe-xxl-0{padding-right:0!important}.pe-xxl-1{padding-right:.25rem!important}.pe-xxl-2{padding-right:.5rem!important}.pe-xxl-3{padding-right:.75rem!important}.pe-xxl-4{padding-right:1rem!important}.pe-xxl-5{padding-right:1.25rem!important}.pe-xxl-6{padding-right:1.5rem!important}.pe-xxl-7{padding-right:2rem!important}.pe-xxl-8{padding-right:2.5rem!important}.pe-xxl-9{padding-right:3rem!important}.pe-xxl-10{padding-right:4rem!important}.pe-xxl-11{padding-right:5rem!important}.pb-xxl-0{padding-bottom:0!important}.pb-xxl-1{padding-bottom:.25rem!important}.pb-xxl-2{padding-bottom:.5rem!important}.pb-xxl-3{padding-bottom:.75rem!important}.pb-xxl-4{padding-bottom:1rem!important}.pb-xxl-5{padding-bottom:1.25rem!important}.pb-xxl-6{padding-bottom:1.5rem!important}.pb-xxl-7{padding-bottom:2rem!important}.pb-xxl-8{padding-bottom:2.5rem!important}.pb-xxl-9{padding-bottom:3rem!important}.pb-xxl-10{padding-bottom:4rem!important}.pb-xxl-11{padding-bottom:5rem!important}.ps-xxl-0{padding-left:0!important}.ps-xxl-1{padding-left:.25rem!important}.ps-xxl-2{padding-left:.5rem!important}.ps-xxl-3{padding-left:.75rem!important}.ps-xxl-4{padding-left:1rem!important}.ps-xxl-5{padding-left:1.25rem!important}.ps-xxl-6{padding-left:1.5rem!important}.ps-xxl-7{padding-left:2rem!important}.ps-xxl-8{padding-left:2.5rem!important}.ps-xxl-9{padding-left:3rem!important}.ps-xxl-10{padding-left:4rem!important}.ps-xxl-11{padding-left:5rem!important}}@media print{.d-print-inline{display:inline!important}.d-print-inline-block{display:inline-block!important}.d-print-block{display:block!important}.d-print-grid{display:grid!important}.d-print-table{display:table!important}.d-print-table-row{display:table-row!important}.d-print-table-cell{display:table-cell!important}.d-print-flex{display:flex!important}.d-print-inline-flex{display:inline-flex!important}.d-print-none{display:none!important}} - .ktc-widget-zone{z-index:2} - - - @media(max-width:1200px){body{font-size:1.5vw;line-height:2.1666666667vw;font-size:18px;line-height:26px}}.fonts-loaded body{font-family:Inter,sans-serif}.js-loading *{transition:none!important}@media(max-width:1024px){body.js-menuVisible{position:fixed;overflow:hidden}}::-moz-selection{background:#00233c;color:#fff}::selection{background:#00233c;color:#fff} - - button{background:none;color:inherit;border:none;padding:0;font:inherit;cursor:pointer;outline:inherit} - summary:focus{outline:none}.videoWrapper{position:relative;height:0;min-width:320px;padding-bottom:56.25%}.videoWrapper .video-js,.videoWrapper iframe{position:absolute;top:0;left:0;width:100%!important;height:100%!important}.videoWrapper .video-js{position:absolute!important}.videoWrapper .video-js .vjs-tech{position:absolute;top:0;left:0;width:100%!important;height:100%!important}.absolute{position:absolute!important}.absolute-top{top:0}.absolute-right{right:0}.absolute-bottom{bottom:0}.absolute-left{left:0}.relative{position:relative}.fixed{position:fixed}.box-shadow{box-shadow:0 8px 30px rgba(0,0,0,.1)}.remove-box-shadow{box-shadow:none!important}.shadow--s{box-shadow:0 1px 4px rgba(0,0,0,.12)}.card:not(.nolink):hover,.card__wide:hover,.large-card:hover,.media-hero--leftSidebar:hover .media-hero__content,.media-hero--leftSidebar:hover .media-hero__media,.shadow--m{box-shadow:0 4px 12px rgba(0,0,0,.12)}.shadow--l{box-shadow:0 24px 48px -12px rgba(16,24,40,.18)}.text-right{text-align:right}.text-left{text-align:left}.text-center{text-align:center}.noPointerEvents{pointer-events:none!important}a.namedAnchor{position:relative;display:block;visibility:hidden}@media(min-width:1025px){.bannerZoom-desktop.padding{padding-top:120px;padding-bottom:120px}.bannerZoom-desktop h1{max-width:1200px;font-size:65px}.bannerZoom-desktop p{max-width:1200px;font-size:22px}}.object-fit--ie{background-position:0 0;background-repeat:no-repeat;background-size:cover}.object-fit--ie picture img{display:none!important}.overflow-hidden{overflow:hidden}.overflow-scroll{overflow:scroll;-webkit-overflow-scrolling:touch}.circle{overflow:hidden;border-radius:50%}.circle img{width:100%;height:100%;vertical-align:middle;-o-object-fit:cover;object-fit:cover}[v-cloak]{display:none}.hidden{visibility:hidden}.break{flex-basis:100%;height:0}mark.highlight{background-color:rgba(243,116,64,.2)}.button,.button-primary,.eloqua-container__nested .elq-form-text .submit-button-style,.submit-button-style,[type=button],[type=submit]{position:relative;display:inline-flex;align-items:center;min-width:0;margin-bottom:0;padding:12px 16px;border:1px solid #00233c;border-radius:12px;background:#00233c;font-weight:600;font-size:1rem;line-height:1.5rem;color:#fff;text-align:center;text-decoration:none;overflow:hidden;touch-action:manipulation;cursor:pointer;-webkit-appearance:none;-moz-appearance:none;appearance:none;transition:all .25s ease-in-out 0s}.button-primary:after,.button:after,.eloqua-container__nested .elq-form-text .submit-button-style:after,.submit-button-style:after,[type=button]:after,[type=submit]:after{font-family:Material Symbols Outlined;content:"east";margin-left:.5rem;position:relative;top:1px}.button-primary.selected,.button-primary:focus,.button-primary:hover,.button.selected,.button:focus,.button:hover,.eloqua-container__nested .elq-form-text .selected.submit-button-style,.eloqua-container__nested .elq-form-text .submit-button-style:focus,.eloqua-container__nested .elq-form-text .submit-button-style:hover,.submit-button-style.selected,.submit-button-style:focus,.submit-button-style:hover,[type=button].selected,[type=button]:focus,[type=button]:hover,[type=submit].selected,[type=submit]:focus,[type=submit]:hover{border-color:#ff5f02;background:#ff5f02;color:#fff;text-decoration:none}.button-primary.button-disabled,.button-primary:disabled,.button.button-disabled,.button:disabled,.eloqua-container__nested .elq-form-text .button-disabled.submit-button-style,.eloqua-container__nested .elq-form-text .submit-button-style:disabled,.submit-button-style.button-disabled,.submit-button-style:disabled,[type=button].button-disabled,[type=button]:disabled,[type=submit].button-disabled,[type=submit]:disabled{color:#677078!important;cursor:not-allowed}.button-primary .background-slate .submit-button-style,.button-primary .background-slate [type=button],.button .background-slate .submit-button-style,.button .background-slate [type=button],.submit-button-style .background-slate .submit-button-style,.submit-button-style .background-slate [type=button],[type=button] .background-slate .submit-button-style,[type=button] .background-slate [type=button],[type=submit] .background-slate .submit-button-style,[type=submit] .background-slate [type=button]{background:#fff;border-color:#00233c;color:#00233c}.button-primary .background-slate .submit-button-style:hover,.button-primary .background-slate [type=button]:hover,.button .background-slate .submit-button-style:hover,.button .background-slate [type=button]:hover,.submit-button-style .background-slate .submit-button-style:hover,.submit-button-style .background-slate [type=button]:hover,[type=button] .background-slate .submit-button-style:hover,[type=button] .background-slate [type=button]:hover,[type=submit] .background-slate .submit-button-style:hover,[type=submit] .background-slate [type=button]:hover{background:hsla(0,0%,100%,.15)}.button-primary.button-secondary,.button.button-secondary,.eloqua-container__nested .elq-form-text .button-secondary.submit-button-style,.submit-button-style.button-secondary,[type=button].button-secondary,[type=submit].button-secondary{background:transparent;border-color:#00233c;color:#00233c}.button-primary.button-secondary:hover,.button.button-secondary:hover,.submit-button-style.button-secondary:hover,[type=button].button-secondary:hover,[type=submit].button-secondary:hover{background:rgba(0,35,60,.15)}.button-primary.tab,.button.tab,.eloqua-container__nested .elq-form-text .tab.submit-button-style,.submit-button-style.tab,[type=button].tab,[type=submit].tab{background-color:#fff;border-radius:25px;border-color:#b2b9c0;color:#00233c;font-weight:600;white-space:nowrap}.button-primary.tab:hover,.button.tab:hover,.submit-button-style.tab:hover,[type=button].tab:hover,[type=submit].tab:hover{border-color:#00233c}.button-primary.tab:after,.button.tab:after,.eloqua-container__nested .elq-form-text .tab.submit-button-style:after,.submit-button-style.tab:after,[type=button].tab:after,[type=submit].tab:after{display:none}.button-primary.tab.primary,.button.tab.primary,.submit-button-style.tab.primary,[type=button].tab.primary,[type=submit].tab.primary{background-color:#00233c;border-color:#00233c;color:#fff;cursor:default}.button-small{border-radius:3px;padding:.625rem 1.25rem}.button-inverted{border-color:#fff;background:#fff;color:#00233c}.button-inverted:hover{background:#fff;border-color:#ff5f02;color:#ff5f02}.button-tag{padding:4px 8px;border-width:1px;text-transform:none}.button-tag:before{display:none}.button-subnav{background:transparent;color:#fff;border:1px solid #fff;padding:8px 16px}.button-subnav:focus,.button-subnav:hover{background-color:#f6f7fb;color:#101010}.button:hover .link-hasArrow_icon{animation:bobbingAnim 1s ease-in-out infinite}.button.button--uppercase{text-transform:uppercase!important}.button--bold{font-weight:600}.button--icon svg{margin-left:5px}.button--text-link{border:none;padding-right:0;padding-left:0;text-transform:none;transition:.25s}.button--text-link:hover{background:none;color:#ff5f02;text-decoration:underline}.button--text-normal{text-transform:none}.button--switch{border-radius:34px;border:none;padding:4px;width:60px;height:34px;background-color:#333;position:relative;transition:background-color .4s ease}.button--switch:focus,.button--switch:hover{background-color:#333;outline:none}.button--switch:before{content:"";border-radius:50%;width:26px;height:26px;background-color:#fff;position:absolute;left:4px;top:50%;margin-top:-13px;transition:left .4s ease}.button--switch-active,.button--switch-active:focus,.button--switch-active:hover{background-color:#ff5f02}.button--switch-active:before{left:calc(100% - 30px)}.video__button{z-index:3;width:48px;height:48px;background:#fff;color:#333a3e;box-shadow:0 24px 48px -12px rgba(16,24,40,.18);border-radius:50%;border-color:#fff;text-align:center;transition:all .25s ease-in-out 0s}.video__button,.video__button:after{position:absolute;left:50%;top:50%;transform:translate(-50%,-50%)}.video__button:after{font-family:Material Symbols Outlined;font-variation-settings:"FILL" 1,"wght" 400,"GRAD" 0,"opsz" 48;content:"play_arrow";-webkit-font-feature-settings:"liga";color:#ff5f02;margin-left:0;font-size:1.5rem}.video__button:hover{background:#ff5f02}.video__button:hover:after{color:#fff}@media screen and (min-width:768px){.video__button{width:80px;height:80px}.video__button--small{width:60px;height:60px}.video__button--small:after{font-size:2rem}.video__button:after{font-size:2.25rem}}@media screen and (min-width:1300px){.video__button.video__button--offset{transform:translate(175%,-50%)}}.fr-toolbar button[type=button]:after,.ktc-btn[type=button]:after{display:none}.background-midnightBlack.color-white .button.button-primary,.background-midnightBlack.color-white .eloqua-container:not(.eloqua-container__nested) .submit-button-style,.background-midnightBlack.color-white .eloqua-container__nested .elq-form-text .button.submit-button-style,.background-navy .button.button-primary,.background-navy .eloqua-container:not(.eloqua-container__nested) .submit-button-style,.background-navy .eloqua-container__nested .elq-form-text .button.submit-button-style,.background-slate.color-white .button.button-primary,.background-slate.color-white .eloqua-container:not(.eloqua-container__nested) .submit-button-style,.background-slate.color-white .eloqua-container__nested .elq-form-text .button.submit-button-style,.eloqua-container__nested .elq-form-text .background-midnightBlack.color-white .button.submit-button-style,.eloqua-container__nested .elq-form-text .background-navy .button.submit-button-style,.eloqua-container__nested .elq-form-text .background-slate.color-white .button.submit-button-style{background:#3053f4;border-color:#3053f4;color:#fff}.background-midnightBlack.color-white .button.button-primary:focus,.background-midnightBlack.color-white .button.button-primary:hover,.background-midnightBlack.color-white .eloqua-container:not(.eloqua-container__nested) .submit-button-style:focus,.background-midnightBlack.color-white .eloqua-container:not(.eloqua-container__nested) .submit-button-style:hover,.background-midnightBlack.color-white .eloqua-container__nested .elq-form-text .button.submit-button-style:focus,.background-midnightBlack.color-white .eloqua-container__nested .elq-form-text .button.submit-button-style:hover,.background-navy .button.button-primary:focus,.background-navy .button.button-primary:hover,.background-navy .eloqua-container:not(.eloqua-container__nested) .submit-button-style:focus,.background-navy .eloqua-container:not(.eloqua-container__nested) .submit-button-style:hover,.background-navy .eloqua-container__nested .elq-form-text .button.submit-button-style:focus,.background-navy .eloqua-container__nested .elq-form-text .button.submit-button-style:hover,.background-slate.color-white .button.button-primary:focus,.background-slate.color-white .button.button-primary:hover,.background-slate.color-white .eloqua-container:not(.eloqua-container__nested) .submit-button-style:focus,.background-slate.color-white .eloqua-container:not(.eloqua-container__nested) .submit-button-style:hover,.background-slate.color-white .eloqua-container__nested .elq-form-text .button.submit-button-style:focus,.background-slate.color-white .eloqua-container__nested .elq-form-text .button.submit-button-style:hover,.eloqua-container__nested .elq-form-text .background-midnightBlack.color-white .button.submit-button-style:focus,.eloqua-container__nested .elq-form-text .background-midnightBlack.color-white .button.submit-button-style:hover,.eloqua-container__nested .elq-form-text .background-navy .button.submit-button-style:focus,.eloqua-container__nested .elq-form-text .background-navy .button.submit-button-style:hover,.eloqua-container__nested .elq-form-text .background-slate.color-white .button.submit-button-style:focus,.eloqua-container__nested .elq-form-text .background-slate.color-white .button.submit-button-style:hover{background:#ff5f02;border-color:#ff5f02}.background-midnightBlack.color-white .button.button-secondary,.background-navy .button.button-secondary,.background-slate.color-white .button.button-secondary{background:transparent;border-color:#fff;color:#fff}.background-midnightBlack.color-white .button.button-secondary:focus,.background-midnightBlack.color-white .button.button-secondary:hover,.background-navy .button.button-secondary:focus,.background-navy .button.button-secondary:hover,.background-slate.color-white .button.button-secondary:focus,.background-slate.color-white .button.button-secondary:hover{background:hsla(0,0%,100%,.15)}.button-tabs__nav{display:flex;width:100%;align-items:center;overflow-x:scroll;scrollbar-width:none;-ms-overflow-style:none;padding:0 1.5rem 1rem}.button-tabs__nav::-webkit-scrollbar{width:0!important;height:0!important;background:transparent}@media screen and (min-width:768px){.button-tabs__nav{padding:0 2.5rem 1rem}}@media screen and (min-width:1025px){.button-tabs__nav{padding:0 6.625rem 1rem;max-width:1440px;margin:auto}}.background-white{background:#fff;color:#333a3e}.background-white-shadow{box-shadow:0 2px 4px 0 rgba(0,0,0,.1)}.background-grayLight{background:#f6f7fb;color:#333a3e}.background-midnightBlack{background:#101010;color:#fff}.background-slate{background:#333a3e;color:#fff}.background-teal{background:#006969;color:#fff}.background-gray25{background-color:#f6f7fb}.background-gray300{background-color:#b2b9c0}.background-grayDark{background-color:#263136}.background-grayLightMedium{background:#f2f2f2;color:#333a3e}.background-grayLightest{background:#fafafa;color:#333a3e}.background-grayWarm{background:#e2dedb;color:#333a3e}.background-grayVeryDark{background:#263136}.background-gray{background:#677078}.background-grayAlt{background:#e5e5e5}.background-grayGainsboro{background:#d8d8d8}.background-black{background:#333a3e;color:#fff}.background-black a{color:#fff}.background-black a:focus,.background-black a:hover{color:#ff5f02}.background-pureBlack{background:#000;color:#fff}.background-orange,.background-theme{background:#ff5f02}.background-tealDark{background:#006969}.background-tealDark .fr-view h4,.background-tealDark .h2,.background-tealDark .h3,.background-tealDark .structured-content h4,.background-tealDark blockquote,.background-tealDark h2,.background-tealDark h3,.background-tealDark q,.fr-view .background-tealDark h4,.structured-content .background-tealDark h4{color:#fff}.background-navy{background:#00233c;color:#fff}.background-navy .fr-view h4,.background-navy .h2,.background-navy .h3,.background-navy .structured-content h4,.background-navy blockquote,.background-navy h2,.background-navy h3,.background-navy q,.fr-view .background-navy h4,.structured-content .background-navy h4{color:#fff}.background-oceanBlue{background:#3053f4}.color-white{color:#fff!important}.color-grayLight{color:#f6f7fb}.color-grayLightMedium{color:#f2f2f2}.color-grayLightest{color:#fafafa}.color-gray{color:#677078}.color-grayMedium{color:#b2b9c0}.color-grayDark,.color-grayVeryDark{color:#263136}.color-black{color:#333a3e}.color-midnightBlack{color:#101010}.color-pureBlack{color:#000}.color-orange{color:#ff5f02!important}.color-blue,.color-blueDark,.color-navy{color:#00233c}.color-oceanBlue{color:#3053f4}.color-teal,.color-tealDark{color:#006969}.color-granite{color:#676767}.color-silver{color:#c4c4c4}.color-matterhorn{color:#4c4c4c!important}.color-slate{color:#333a3e}.color-chateau{color:#9ca4a8}.color-gray500{color:#677078}.Red{color:red}.border-top-white{border-top:1px solid #fff}label{display:block;margin:0 0 4px;text-align:left}fieldset{max-width:800px;margin:0;padding:0;border:none}[type=email],[type=number],[type=password],[type=search],[type=tel],[type=text],[type=url],select,textarea{width:100%;min-height:48px;margin:0 0 16px;padding:8px;border:1px solid #333a3e;border-radius:4px;-webkit-appearance:none;-moz-appearance:none}[type=email]:focus,[type=email]:hover,[type=number]:focus,[type=number]:hover,[type=password]:focus,[type=password]:hover,[type=search]:focus,[type=search]:hover,[type=tel]:focus,[type=tel]:hover,[type=text]:focus,[type=text]:hover,[type=url]:focus,[type=url]:hover,select:focus,select:hover,textarea:focus,textarea:hover{outline:none}[type=email] .background-slate,[type=number] .background-slate,[type=password] .background-slate,[type=search] .background-slate,[type=tel] .background-slate,[type=text] .background-slate,[type=url] .background-slate,select .background-slate,textarea .background-slate{color:#fff}textarea{height:inherit;padding-top:8px}.dropdown,select{padding-right:42px;background:#fff url(../../Assets/icons/icon-carrot-down-gray.png) right 16px center no-repeat;background-size:8px auto}select::-ms-expand{display:none}[type=search]{background:#fff url() no-repeat;background-size:15px auto;background-position:calc(100% - 10px) 50%}.searchBox{width:800px;margin:auto}.searchBox - .form-control{background:#fff url() no-repeat;background-size:15px auto;background-position:calc(100% - 10px) 50%}.searchBox .btn-default{display:none}.searchBox .search-xl{max-width:800px;padding:12px 60px 11px;border-radius:50px;background-image:url();color:#263136;font-size:1rem;background-position:27px}.textAlign-center .searchBox .search-xl{margin:auto}.search-xl{max-width:800px;padding:12px 60px 11px;border-radius:50px;background-image:url();color:#263136;font-size:1rem;background-position:27px}.textAlign-center .search-xl{margin:auto}[type=email]{background-image:url();background-size:15px auto;background-repeat:no-repeat;background-position:calc(100% - 10px) 50%}::-webkit-input-placeholder{color:#677078}::-moz-placeholder{color:#677078}:-ms-input-placeholder{color:#677078}[type=checkbox],[type=radio]{width:14px;height:14px;min-width:14px;margin-right:12px;padding:0;border:none;border-radius:2px;outline:none;background:no-repeat;background-size:12px auto;background-position:50%;vertical-align:middle;-moz-appearance:none;-webkit-appearance:none;cursor:pointer}[type=checkbox]+label,[type=radio]+label{margin-bottom:0;color:#263136}.background-slate [type=checkbox],.background-slate [type=checkbox]+label,.background-slate [type=radio],.background-slate [type=radio]+label{color:#fff}[type=checkbox]:disabled,[type=checkbox]:disabled+label,[type=radio]:disabled,[type=radio]:disabled+label{cursor:not-allowed;opacity:.5}[type=checkbox]:disabled+label,[type=radio]:disabled+label{text-decoration:line-through;cursor:not-allowed}[type=checkbox]{background-image:url(../../Assets/icons/ic_check_box_outline_blank_24px-gray.png)}[type=checkbox]:checked{background-image:url(../../Assets/icons/ic_check_box_outline_checked_24px.png)}[type=radio]{border-radius:7px;background-image:url(../../Assets/icons/ic_radio_button_unchecked_24px-gray.png)}[type=radio]:checked{background-image:url(../../Assets/icons/ic_radio_button_checked_24px.png)}.radioWrapper{display:flex;width:-moz-fit-content;width:fit-content;align-items:center;cursor:pointer}.radioWrapper+.radioWrapper{margin-top:12px}.radioWrapper label{width:100%;-webkit-user-select:none;-moz-user-select:none;user-select:none}.radioWrapper-alignTop{align-items:flex-start}.radioWrapper-alignTop [type=checkbox],.radioWrapper-alignTop [type=radio]{margin-top:1px}.radioWrapper_label{pointer-events:none}.radioWrapper_icon{height:24px;background:none!important;line-height:24px}.radioWrapper_icon:before{content:attr(data-icon)}.submitWrapper{padding-top:40px}.material-symbols-outlined{font-family:Material Symbols Outlined;font-size:2.25rem;line-height:1;letter-spacing:normal;text-transform:none;display:inline-block;white-space:nowrap;word-wrap:normal;direction:ltr;-webkit-font-feature-settings:"liga";-webkit-font-smoothing:antialiased;font-variation-settings:"FILL" 0,"wght" 400,"GRAD" 0,"opsz" 48}.material-symbols-outlined.md-16{font-size:1rem}.material-symbols-outlined.md-18{font-size:1.125rem}.material-symbols-outlined.md-24{font-size:1.5rem}.icon-social{width:30px;height:30px;padding:6px;background:transparent;color:#333a3e}.icon-social svg{width:18px;height:18px}.icon-social-facebook:hover,.icon-social-google-plus:hover,.icon-social-linkedIn:hover,.icon-social-rss:hover,.icon-social-twitter:hover, - .icon-social-youTube:hover{color:#fff}.icon-social-facebook:focus,.icon-social-facebook:hover{background-color:#3a5897} - .icon-social-twitter:focus,.icon-social-twitter:hover{background-color:#54aced} - .icon-social-youTube:focus,.icon-social-youTube:hover{background-color:#cc171e}.icon-social-google-plus:focus,.icon-social-google-plus:hover{background-color:#d34836}.icon-social-linkedIn:focus,.icon-social-linkedIn:hover{background-color:#0077b5}.icon-social-rss:focus,.icon-social-rss:hover{background-color:#f69537}.icon-social-blue{color:#00233c}.icon-rounded{display:block;border-radius:100%}.icon-whiteBkg{background:#fff}.icon--quicksilver{color:#a6a6a6}.icon-small{width:65px;height:65px;padding:15px 0;text-align:center}.icon-24px{width:24px;height:24px;min-width:24px}.social-gray - .icon-social{display:inline-block;width:32px;height:32px;padding:0;border:1px solid #677078;border-radius:5px;color:#677078;text-align:center}.social-gray .icon-social:focus,.social-gray - .icon-social:hover{border-color:transparent;color:#fff}.social-gray .icon-social+.icon-social{margin-left:16px}.social-gray .icon-social .icon-material{font-size:12px}.social-gray .icon-social.icon-email:focus,.social-gray .icon-social.icon-email:hover{background:#ff5f02}.social-gray .icon-social svg{width:12px;height:12px}.social-gray-vertical .icon-social{display:block}.social-gray-vertical .icon-social+.icon-social{margin-top:16px;margin-left:0}@media(min-width:768px)and (max-width:1024px){.social-gray-vertical.social-horizontal-tablet{margin-bottom:20px}.social-gray-vertical.social-horizontal-tablet .icon-social{display:inline-block;margin-top:0}}@media only screen and (max-width:767px){.social-gray-vertical.social-horizontal-tablet{margin-bottom:20px}.social-gray-vertical.social-horizontal-phone .icon-social{display:inline-block;margin-top:0}}.label-hasOverline+.social-gray-vertical{margin-top:16px}.icon-default{display:inline-block;font-style:normal;font-weight:400;font-size:24px;text-transform:none;width:24px;height:24px;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale;line-height:1;letter-spacing:normal;word-wrap:normal;white-space:nowrap;direction:ltr;text-rendering:optimizeLegibility;font-feature-settings:"liga"}.icon-categoryWrapper{color:#a6a6a6}.icon-categoryWrapper .icon{height:16px;width:16px;color:inherit}.icon-categoryWrapper .icon-large{height:24px;width:24px;color:inherit}.icon-categoryWrapper .icon-large.icon--contact{flex-basis:24px;color:#ff5f02}.icon-category{width:16px;height:16px;color:#a6a6a6;font-weight:500;flex:1}.icon-category+.icon-categoryLabel{margin-left:8px}.icon-categoryLabel{flex:1}.icon-categoryLabel-fontSecondary{font-weight:600;font-size:13px;font-family:Inter,sans-serif;text-transform:uppercase;letter-spacing:1px;line-height:1;font-size:14px}.container-extra-wide{padding-left:2rem;padding-right:2rem}@media screen and (min-width:1025px){.container-extra-wide{padding-left:60px;padding-right:60px}}.container-wide,.media-selector-with-text__main-row-container{margin:auto;padding:0 1.5rem}.container-wide__grid{display:grid;grid-template-columns:repeat(4,1fr);grid-template-rows:auto;grid-gap:0 2%}.container-wide__grid *{grid-column:1/-1}@media screen and (min-width:768px){.container-wide,.media-selector-with-text__main-row-container{padding:0 2.5rem}.container-wide__overflow--right{padding-right:0}.container-wide__grid{grid-template-columns:repeat(8,1fr)}}@media screen and (min-width:1025px){.container-wide,.media-selector-with-text__main-row-container{padding:0 6.625rem;width:100%;max-width:1440px}.container-wide__grid{grid-template-columns:repeat(12,1fr);grid-gap:0 1.7%}.container-wide__grid--narrow{grid-column:3/11;grid-template-columns:subgrid}.container-wide__rightAdjust{padding:0;width:80%;margin:0 5% 0 15%}}.container.container-narrow{max-width:800px}@media screen and (min-width:1600px){.container.container--jms{max-width:1440px;padding-left:0;padding-right:0}}.container-contentPage{padding:0 .75rem;display:flex;align-items:center;justify-content:center}.container-contentPage>*{max-width:1400px}.container_swiper{padding-left:1.5rem}@media screen and (min-width:768px){.container_swiper{padding-left:2.5rem}}@media screen and (min-width:1025px){.container_swiper{padding:0 6.625rem;width:100%;max-width:1440px;margin:auto}}.maxWidth-100{max-width:100%}.w-550{max-width:34.375rem}.w-800{max-width:50rem}.w-100{width:100%}.h-100{height:100%}.h-auto{height:auto!important}.multi-col{display:flex;gap:15px}.multi-col div{flex:1}.grid__align--start{align-items:start}.gap--16{gap:16px}.gap--24{gap:8px}@media screen and (min-width:768px){.gap--24{gap:16px}}@media screen and (min-width:1025px){.gap--24{gap:24px}}.row-gap--24{row-gap:24px}ol,ul{margin:0;padding:0;list-style:none}.bulletedList li+li{margin-top:12px}ul.bulletedList li{padding-left:8px;background:url() no-repeat left 9px;background-size:4px auto}ol.bulletedList{list-style:decimal inside}.list-checked{padding-left:0!important;list-style:none!important}.list-checked li:last-of-type{margin-bottom:0}ul.list-checked li{margin-bottom:22px;padding-left:24px;background-size:14px auto}ol.list-checked{list-style:decimal inside}.list-desktopFourColumn,.list-desktopThreeColumn,.list-desktopTwoColumn,.list-phoneFourColumn,.list-phoneThreeColumn,.list-phoneTwoColumn,.list-tabletFourColumn,.list-tabletThreeColumn,.list-tabletTwoColumn{-moz-column-gap:1.25rem;column-gap:1.25rem}@media(min-width:1025px){.list-desktopTwoColumn{-moz-column-count:2;column-count:2}.list-desktopThreeColumn{-moz-column-count:3;column-count:3}.list-desktopFourColumn{-moz-column-count:4;column-count:4}}@media(min-width:768px)and (max-width:1024px){.list-tabletTwoColumn{-moz-column-count:2;column-count:2}.list-tabletThreeColumn{-moz-column-count:3;column-count:3}.list-tabletFourColumn{-moz-column-count:4;column-count:4}}[data-click=list-load-more]{display:none}@media only screen and (max-width:767px){.show--five>:not(:nth-child(-n+5)){display:none}.show--five+[data-click=list-load-more]{margin:1rem auto 3rem;display:block}.show--three>:not(:nth-child(-n+3)){display:none}.show--three+[data-click=list-load-more]{margin:1rem auto 3rem;display:block}.list-phoneOneColumn{-moz-column-count:1;column-count:1}.list-phoneTwoColumn{-moz-column-count:2;column-count:2}.list-phoneThreeColumn{-moz-column-count:3;column-count:3}.list-phoneFourColumn{-moz-column-count:4;column-count:4}}ul.list-columnLargeGap{-moz-column-gap:40px;column-gap:40px} - - - - .table__wrapper{overflow-x:scroll} - .table-partnersDetail{width:auto;min-width:50%;margin-top:20px;border:1px solid #fff;background-color:transparent} - .table-partnersDetail thead{color:#fff}.table-partnersDetail thead tr th{background-color:#00233c;color:#fff;text-transform:none} - .table-partnersDetail td,.table-partnersDetail th{padding:25px;border:1px solid #fff} - .table-partnersDetail td{padding:10px 25px;color:#333a3e;vertical-align:top}.table-partnersDetail td p{margin:10px 0} - .table-partnersDetail td p:first-child{margin-top:0}.table-partnersDetail td p:last-child{margin-bottom:0} - .table-partnersDetail th{padding:25px}.table-partnersDetail tbody td{background-color:#f6f7fb} - .table-partnersDetail tbody tr:nth-of-type(odd) td{background-color:#e4e7f3}@media(max-width:767px){table thead{display:none}table tr{display:block;padding:10px 0} - table td{width:100%;border:none;color:#333a3e;text-align:left;font-size:.875rem} - table td>div{padding:0 5px} - table td:empty{display:none} - table td a{display:table-cell;width:60%} - table tbody tr:nth-of-type(odd){background:#d9d9d9}}.h1,h1{font-size:54px;line-height:64px;font-weight:300;letter-spacing:-2px;letter-spacing:-.125rem;color:#00233c}@media(max-width:1200px){.h1,h1{font-size:4.5vw;line-height:5.3333333333vw}}@media(max-width:711.1111111111px){.h1,h1{font-size:32px;line-height:42px}}.background-midnightBlack .h1,.background-midnightBlack h1,.background-navy .h1,.background-navy h1,.background-slate .h1,.background-slate h1,.color-white .h1,.color-white h1{color:#fff}.h1--plus,h1--plus{font-size:66px;line-height:76px}@media(max-width:1200px){.h1--plus,h1--plus{font-size:5.5vw;line-height:6.3333333333vw}}@media(max-width:654.5454545455px){.h1--plus,h1--plus{font-size:36px;line-height:48px}}.h2,h2{font-size:42px;line-height:52px;font-weight:300;letter-spacing:-2px;letter-spacing:-.125rem;color:#00233c}@media(max-width:1200px){.h2,h2{font-size:3.5vw;line-height:4.3333333333vw}}@media(max-width:742.8571428571px){.h2,h2{font-size:26px;line-height:36px}}.background-midnightBlack .h2,.background-midnightBlack h2,.background-navy .h2,.background-navy h2,.background-slate .h2,.background-slate h2,.color-white .h2,.color-white h2{color:#fff} - .fr-view h3,.fr-view h4,.h3,.structured-content h3,.structured-content h4,blockquote,h3,q{font-size:24px;line-height:34px;letter-spacing:-.5px;letter-spacing:-.03125rem;font-weight:600;color:#00233c}@media(max-width:1200px){.fr-view h3,.fr-view h4,.h3,.structured-content h3,.structured-content h4,blockquote,h3,q{font-size:2vw;line-height:2.8333333333vw}}@media(max-width:900px){.fr-view h3,.fr-view h4,.h3,.structured-content h3,.structured-content h4,blockquote,h3,q{font-size:18px;line-height:28px}}.background-midnightBlack .fr-view h4,.background-midnightBlack .h3,.background-midnightBlack .structured-content h4,.background-midnightBlack blockquote,.background-midnightBlack h3,.background-midnightBlack q,.background-navy .fr-view h4,.background-navy .h3,.background-navy .structured-content h4,.background-navy blockquote,.background-navy h3,.background-navy q,.background-slate .fr-view h4,.background-slate .h3,.background-slate .structured-content h4,.background-slate blockquote,.background-slate h3,.background-slate q,.color-white .fr-view h4,.color-white .h3,.color-white .structured-content h4,.color-white blockquote,.color-white h3,.color-white q,.fr-view .background-midnightBlack h4,.fr-view .background-navy h4,.fr-view .background-slate h4,.fr-view .color-white h4,.structured-content .background-midnightBlack h4,.structured-content .background-navy h4,.structured-content .background-slate h4,.structured-content .color-white h4{color:#fff} - .fr-view h5,.fr-view h6,.h4,.h5,.h6,.media__contact--header,.structured-content h5,.structured-content h6,h4,h5,h6{font-size:18px;line-height:28px;font-weight:600;color:#00233c}@media(max-width:1200px){.fr-view h5,.fr-view h6,.h4,.h5,.h6,.media__contact--header,.structured-content h5,.structured-content h6,h4,h5,h6{font-size:1.5vw;line-height:2.3333333333vw}}@media(max-width:1066.6666666667px){.fr-view h5,.fr-view h6,.h4,.h5,.h6,.media__contact--header,.structured-content h5,.structured-content h6,h4,h5,h6{font-size:16px;line-height:24px}}.background-midnightBlack .h4,.background-midnightBlack .h5,.background-midnightBlack .h6,.background-midnightBlack .media__contact--header,.background-midnightBlack h4,.background-midnightBlack h5,.background-midnightBlack h6,.background-navy .h4,.background-navy .h5,.background-navy .h6,.background-navy .media__contact--header,.background-navy h4,.background-navy h5,.background-navy h6,.background-slate .h4,.background-slate .h5,.background-slate .h6,.background-slate .media__contact--header,.background-slate h4,.background-slate h5,.background-slate h6,.color-white .h4,.color-white .h5,.color-white .h6,.color-white .media__contact--header,.color-white h4,.color-white h5,.color-white h6{color:#fff}.body-2,.comparison-chart .table__tr-heading,.comparison-chart .table__tr-text,.elq-form .LV_invalid,.elq-form .LV_valid,.elq-form .LV_validation_message,.meta-details__name,.radioWrapper label,.topics__list-item a,[type=checkbox]+label,[type=email],[type=number],[type=password],[type=radio]+label,[type=search],[type=tel],[type=text],[type=url],label,select,textarea{font-size:16px;line-height:24px;font-weight:400}@media(max-width:1200px){.body-2,.comparison-chart .table__tr-heading,.comparison-chart .table__tr-text,.elq-form .LV_invalid,.elq-form .LV_valid,.elq-form .LV_validation_message,.meta-details__name,.radioWrapper label,.topics__list-item a,[type=checkbox]+label,[type=email],[type=number],[type=password],[type=radio]+label,[type=search],[type=tel],[type=text],[type=url],label,select,textarea{font-size:1.3333333333vw;line-height:2vw}}@media(max-width:1050px){.body-2,.comparison-chart .table__tr-heading,.comparison-chart .table__tr-text,.elq-form .LV_invalid,.elq-form .LV_valid,.elq-form .LV_validation_message,.meta-details__name,.radioWrapper label,.topics__list-item a,[type=checkbox]+label,[type=email],[type=number],[type=password],[type=radio]+label,[type=search],[type=tel],[type=text],[type=url],label,select,textarea{font-size:14px;line-height:21px}}.body-2--bold{font-weight:600}.body-3,.card__wide .card_details,.media__contact--label{font-size:14px;line-height:21px;font-weight:400}@media(max-width:1200px){.body-3,.card__wide .card_details,.media__contact--label{font-size:1.1666666667vw;line-height:1.75vw}}@media(max-width:1028.5714285714px){.body-3,.card__wide .card_details,.media__contact--label{font-size:12px;line-height:20px}}.body-3--bold{font-weight:600}.caption,.caption--bold,.card__wide .card_date,.elq-form .elq-form-text,.elq-form .elq-heading.form-element-form-text,.icon-categoryLabel,.label-hasIcon,.label-hasOverline,.label-hasUnderline,.meta-details__datestamp,.meta-details__readtime{font-size:16px;line-height:20px;font-weight:400;color:#5e7484}@media(max-width:1200px){.caption,.caption--bold,.card__wide .card_date,.elq-form .elq-form-text,.elq-form .elq-heading.form-element-form-text,.icon-categoryLabel,.label-hasIcon,.label-hasOverline,.label-hasUnderline,.meta-details__datestamp,.meta-details__readtime{font-size:1.3333333333vw;line-height:1.6666666667vw}}@media(max-width:1125px){.caption,.caption--bold,.card__wide .card_date,.elq-form .elq-form-text,.elq-form .elq-heading.form-element-form-text,.icon-categoryLabel,.label-hasIcon,.label-hasOverline,.label-hasUnderline,.meta-details__datestamp,.meta-details__readtime{font-size:15px;line-height:19px}}.background-midnightBlack .caption,.background-midnightBlack .caption--bold,.background-midnightBlack .card__wide .card_date,.background-midnightBlack .elq-form .elq-form-text,.background-midnightBlack .elq-form .elq-heading.form-element-form-text,.background-midnightBlack .icon-categoryLabel,.background-midnightBlack .label-hasIcon,.background-midnightBlack .label-hasOverline,.background-midnightBlack .label-hasUnderline,.background-midnightBlack .meta-details__datestamp,.background-midnightBlack .meta-details__readtime,.background-navy .caption,.background-navy .caption--bold,.background-navy .card__wide .card_date,.background-navy .elq-form .elq-form-text,.background-navy .elq-form .elq-heading.form-element-form-text,.background-navy .icon-categoryLabel,.background-navy .label-hasIcon,.background-navy .label-hasOverline,.background-navy .label-hasUnderline,.background-navy .meta-details__datestamp,.background-navy .meta-details__readtime,.background-slate .caption,.background-slate .caption--bold,.background-slate .card__wide .card_date,.background-slate .elq-form .elq-form-text,.background-slate .elq-form .elq-heading.form-element-form-text,.background-slate .icon-categoryLabel,.background-slate .label-hasIcon,.background-slate .label-hasOverline,.background-slate .label-hasUnderline,.background-slate .meta-details__datestamp,.background-slate .meta-details__readtime,.card__wide .background-midnightBlack .card_date,.card__wide .background-navy .card_date,.card__wide .background-slate .card_date,.card__wide .color-white .card_date,.color-white .caption,.color-white .caption--bold,.color-white .card__wide .card_date,.color-white .elq-form .elq-form-text,.color-white .elq-form .elq-heading.form-element-form-text,.color-white .icon-categoryLabel,.color-white .label-hasIcon,.color-white .label-hasOverline,.color-white .label-hasUnderline,.color-white .meta-details__datestamp,.color-white .meta-details__readtime,.elq-form .background-midnightBlack .elq-form-text,.elq-form .background-midnightBlack .elq-heading.form-element-form-text,.elq-form .background-navy .elq-form-text,.elq-form .background-navy .elq-heading.form-element-form-text,.elq-form .background-slate .elq-form-text,.elq-form .background-slate .elq-heading.form-element-form-text,.elq-form .color-white .elq-form-text,.elq-form .color-white .elq-heading.form-element-form-text{color:#fff}.caption--bold,.label-hasIcon,.label-hasOverline,.label-hasUnderline{font-weight:600}.footer-nav__desktop ul a:not(.icon-social),.nav-1,.nav-2{font-size:.9375rem;line-height:1.5rem;font-weight:600;color:#00233c}.footer-nav__desktop ul a:not(.icon-social),.nav-2{font-weight:400;color:#00233c}.breadcrumb-nav,.nav-3{font-size:.75rem;line-height:1rem;color:#00233c}.font-primary,.font-secondary{font-family:Inter,sans-serif!important}.fontWeight-ultraLight{font-weight:100}.fontWeight-thin{font-weight:200}.fontWeight-light{font-weight:300}.fontWeight-book{font-weight:400}.fontWeight-medium{font-weight:500}.fontWeight-semiBold{font-weight:600!important}.fontWeight-strong,b,strong{font-weight:600}.fontWeight-extraBold{font-weight:800}.fontWeight-black{font-weight:900}.fontSize-micro{font-size:12px!important}.fontSize-minor{font-size:14px!important}.fontSize-body{font-size:18px!important}.fontSize-major{font-size:20px!important}.fontSize-macro{font-size:24px!important}.fontStyle-italic{font-style:italic}.textCase-caps{text-transform:uppercase}.textCase-capitalize{text-transform:capitalize}.textCase-nocaps{text-transform:none}.textAlign-left{text-align:left}.textAlign-right{text-align:right}.textAlign-center{text-align:center}.textAlign-center h1,.textAlign-center h2,.textAlign-center h3,.textAlign-center h4,.textAlign-center h5,.textAlign-center h6,.textAlign-center p{margin-right:auto;margin-left:auto}.textKerning-small{letter-spacing:1.5px}@media(max-width:1024px){.textAlign-left-mobile{text-align:left}.textAlign-left-mobile h1,.textAlign-left-mobile h2,.textAlign-left-mobile h3,.textAlign-left-mobile h4,.textAlign-left-mobile h5,.textAlign-left-mobile h6,.textAlign-left-mobile p{margin-right:0;margin-left:0}.textAlign-right-mobile{text-align:right}.textAlign-center-mobile{text-align:center}.textAlign-center-mobile h1,.textAlign-center-mobile h2,.textAlign-center-mobile h3,.textAlign-center-mobile h4,.textAlign-center-mobile h5,.textAlign-center-mobile h6,.textAlign-center-mobile p{margin-right:auto;margin-left:auto}}@media(min-width:768px)and (max-width:1024px){.textAlign-left-tablet{text-align:left}.textAlign-right-tablet{text-align:right}.textAlign-center-tablet{text-align:center}.textAlign-center-tablet h1,.textAlign-center-tablet h2,.textAlign-center-tablet h3,.textAlign-center-tablet h4,.textAlign-center-tablet h5,.textAlign-center-tablet h6,.textAlign-center-tablet p{margin-right:auto;margin-left:auto}}@media(max-width:767px){.textAlign-left-phone{text-align:left}.textAlign-right-phone{text-align:right}.textAlign-center-phone{text-align:center}.textAlign-center-phone h1,.textAlign-center-phone h2,.textAlign-center-phone h3,.textAlign-center-phone h4,.textAlign-center-phone h5,.textAlign-center-phone h6,.textAlign-center-phone p{margin-right:auto;margin-left:auto}} - .textBlock_contentEntry .h1,.textBlock_contentEntry .h2,.textBlock_contentEntry .h3,.textBlock_contentEntry .h4,.textBlock_contentEntry .h5,.textBlock_contentEntry .h6,.textBlock_contentEntry .media__contact--header,.textBlock_contentEntry blockquote,.textBlock_contentEntry h1,.textBlock_contentEntry h2,.textBlock_contentEntry h3,.textBlock_contentEntry h4,.textBlock_contentEntry h5,.textBlock_contentEntry h6,.textBlock_contentEntry hr,.textBlock_contentEntry ol,.textBlock_contentEntry p,.textBlock_contentEntry q,.textBlock_contentEntry ul{max-width:100%}a{cursor:pointer;transition:all .25s ease-in-out 0s}a,a.no-underline,a.no-underline:focus,a.no-underline:hover{text-decoration:none}q{quotes:"“" "”" "‘" "’"}q:before{content:open-quote}q:after{content:close-quote}blockquote{quotes:"“" "”" "‘" "’"}blockquote:before{content:open-quote}blockquote:after{content:close-quote}blockquote cite:before{content:"~"}cite.person_name{font-weight:600}cite.person_name,cite.person_title{letter-spacing:-.1px;line-height:1.56}@media screen and (min-width:768px){cite.person_name{font-weight:600}cite.person_name,cite.person_title{font-size:1.0625rem;line-height:1.52;margin-top:0}}blockquote,q{font-weight:600}sup{font-size:60%;vertical-align:top;top:.5em}abbr{border-bottom:1px dotted;cursor:help}address{font-style:normal;line-height:26px}hr{height:1px;margin:32px 0;border:none;background:#677078}address,cite,dfn,em,i,var{font-style:normal}h1.h1--plus+.hero_banner__subheading{font-size:1.25rem;line-height:1.875rem}.border12,.detail_media img,.header-nav__feature,.icon-card.card{border-radius:12px}.border-bottom{border-bottom:1px solid #677078}.border-bottom-light{border-bottom:1px solid #ced3da}.border-bottom-medium{border-bottom:1px solid #b2b9c0}.border-bottom-warm{border-bottom:1px solid #e2dedb}.border-bottom-gainsboro{border-bottom:1px solid #d8d8d8}.border-top{border-top:1px solid #ced3da}.border-top-light{border-top:1px solid #f6f7fb}.border-top-medium{border-top:1px solid #b2b9c0}.border-top-warm{border-top:1px solid #e2dedb}.border-top-gainsboro{border-top:1px solid #d8d8d8}.border-top-charcoal{border-top:1px solid #424242}.border-warm{border-color:#e2dedb}.accordion_details,.border-rounded--med,.border-rounded--small,.card{border:1px solid #ced3da;border-radius:12px}.border-rounded--full{border:1px solid #ced3da;border-radius:60px}.fade-enter-active,.fade-leave-active{transition:all .25s!important}.fade-enter-from,.fade-leave-to{opacity:0!important}.slide-enter-active,.slide-leave-active{transition:all .25s ease-in-out!important}.slide-enter-from{transform:translateY(-50%) translateX(-100%)!important;transition:none!important}.slide-enter-to{transform:translateY(-50%) translateX(0)!important}.slide-leave-to{transform:translateY(-50%) translateX(100%)!important}.slideIn-enter-active,.slideIn-leave-active{transition:transform .5s ease-in-out}.slideIn-enter-from,.slideIn-leave-to{transform:translateX(100%)}.slide-down-enter-active{transition:all .25s ease}.slide-down-leave-active{transition:all .25s}.slide-down-enter-from,.slide-down-leave-to{transform:translateY(-10px);opacity:0}.filterClear-transition-enter-active,.filterClear-transition-leave-active{transition:all .25s ease}.filterClear-transition-enter-from,.filterClear-transition-leave-to{transform:translateY(-10px);opacity:0}.filterClear-transition-enter-to,.filterClear-transition-leave-from{transform:translateY(0);opacity:1}.filterClear-transition-move{transition:all .25s ease .25s}[v-cloak]{display:none!important}.rslidesWrapper{position:relative}.rslides{position:relative;margin:0;padding:0;list-style:none}.rslides,.rslides li{width:100%;overflow:hidden}.rslides li{position:absolute;top:0;left:0;display:none;-webkit-backface-visibility:hidden}.rslides li:first-child{position:relative;display:block;float:left}.rslides_tabs{position:absolute;top:0;right:32px;bottom:0;display:flex;width:8px;flex-direction:column;justify-content:center;z-index:5}.rslides_tabs li{display:inline-block;width:8px;height:8px}.rslides_tabs li+li{margin-top:16px}.rslides_tabs a{display:block;width:8px;height:8px;border-radius:100%;background:#999;text-indent:9999px;overflow:hidden;cursor:pointer}.rslides_tabs .rslides_here a{background:#fff}.rslides_nav{position:absolute}@media(max-width:1024px){.rslides_tabs a{width:18px;height:18px}.rslides_tabs li+li{margin-top:28px}}.atcb-list{position:relative!important;display:none!important;visibility:visible!important}.addtocalendar{display:block!important}.addtocalendar-active .atcb-list{display:block!important;background:transparent}.atcb-list{width:100%!important}.atcb-item{margin-top:4px!important;padding-left:20px!important}.atcb-item:before{content:"- "}.atcb-item:nth-last-child(-n+2){display:none}.atcb-item-link{display:inline-block!important}body.dark--activated .be-related-link-container{background-color:#333a3e}body.dark--activated .be-related-link-container *{color:#fff!important}.be-ix-link-block{clear:both;width:100%;font-size:.875rem}.be-ix-link-block .be-label{font-family:Inter,sans-serif;color:#00233c;font-weight:600;margin:0}@media(max-width:767px){.be-ix-link-block .be-label{width:100%}}@media(min-width:768px){.be-ix-link-block .be-label{display:inline-block;flex-basis:140px;flex-grow:0;flex-shrink:0;margin-right:2em}}.be-ix-link-block .be-label,.be-ix-link-block .be-list{font-family:Space Grotesk,sans-serif}.be-ix-link-block .be-list{list-style:none;margin:0;padding:0}@media(max-width:767px){.be-ix-link-block .be-list{display:block;width:100%}}@media(min-width:768px){.be-ix-link-block .be-list{display:inline-block;width:auto}}.be-ix-link-block .be-list-item{margin:0;padding:0}@media(max-width:1023px){.be-ix-link-block .be-list-item{display:block}}@media(min-width:1024px){.be-ix-link-block .be-list-item{display:inline-block;margin-right:2em}}@media(max-width:767px){.be-ix-link-block .be-list-item:last-child{margin-bottom:0}}@media(min-width:768px){.be-ix-link-block .be-list-item:last-child{margin-right:0}}.be-ix-link-block .be-list-item a{font-family:Inter,sans-serif;color:#00233c;text-decoration:underline;-webkit-text-decoration-color:#00233c;text-decoration-color:#00233c;transition:.25s}@media screen and (min-width:1025px){.be-ix-link-block .be-list-item a{text-decoration:none;position:relative;background-image:linear-gradient(#00233c,#00233c);background-image:webkit-linear-gradient(#00233c,#00233c);background-position:0 100%;background-repeat:no-repeat;background-size:0 1px;transition:all .25s ease-in-out 0s}.be-ix-link-block .be-list-item a:focus,.be-ix-link-block .be-list-item a:hover{background-size:100% 1px}}.be-ix-link-block .be-related-link-container{padding:.5em}@media(max-width:767px){.be-ix-link-block .be-related-link-container{text-align:center}}@media(min-width:768px)and (max-width:1023px){.be-ix-link-block .be-related-link-container{align-items:center}}@media(min-width:768px){.be-ix-link-block .be-related-link-container{display:flex;justify-content:center}}.flag{-o-object-fit:none;object-fit:none;width:24px;height:24px;font-family:"object-fit: none;"}.flag-ar-SA{-o-object-position:-1px -1px;object-position:-1px -1px;font-family:"object-fit: none; object-position: -1px -1px;"}.flag-da-DK{-o-object-position:-27px -1px;object-position:-27px -1px;font-family:"object-fit: none; object-position: -27px -1px;"}.flag-de-AT{-o-object-position:-53px -1px;object-position:-53px -1px;font-family:"object-fit: none; object-position: -53px -1px;"}.flag-de-CH{-o-object-position:-79px -1px;object-position:-79px -1px;font-family:"object-fit: none; object-position: -79px -1px;"}.flag-de-DE{-o-object-position:-105px -1px;object-position:-105px -1px;font-family:"object-fit: none; object-position: -105px -1px;"}.flag-en-AU{-o-object-position:-1px -27px;object-position:-1px -27px;font-family:"object-fit: none; object-position: -1px -27px;"}.flag-en-GB{-o-object-position:-27px -27px;object-position:-27px -27px;font-family:"object-fit: none; object-position: -27px -27px;"}.flag-en-IN{-o-object-position:-53px -27px;object-position:-53px -27px;font-family:"object-fit: none; object-position: -53px -27px;"}.flag-en-US{-o-object-position:-79px -27px;object-position:-79px -27px;font-family:"object-fit: none; object-position: -79px -27px;"}.flag-es-ES{-o-object-position:-105px -27px;object-position:-105px -27px;font-family:"object-fit: none; object-position: -105px -27px;"}.flag-es-MX{-o-object-position:-1px -53px;object-position:-1px -53px;font-family:"object-fit: none; object-position: -1px -53px;"}.flag-fr-FR{-o-object-position:-27px -53px;object-position:-27px -53px;font-family:"object-fit: none; object-position: -27px -53px;"}.flag-hu-HU{-o-object-position:-53px -53px;object-position:-53px -53px;font-family:"object-fit: none; object-position: -53px -53px;"}.flag-id-ID{-o-object-position:-79px -53px;object-position:-79px -53px;font-family:"object-fit: none; object-position: -79px -53px;"}.flag-it-IT{-o-object-position:-105px -53px;object-position:-105px -53px;font-family:"object-fit: none; object-position: -105px -53px;"}.flag-ja-JP{-o-object-position:-1px -79px;object-position:-1px -79px;font-family:"object-fit: none; object-position: -1px -79px;"}.flag-ko-KR{-o-object-position:-27px -79px;object-position:-27px -79px;font-family:"object-fit: none; object-position: -27px -79px;"}.flag-nl-NL{-o-object-position:-53px -79px;object-position:-53px -79px;font-family:"object-fit: none; object-position: -53px -79px;"}.flag-pl-PL{-o-object-position:-79px -79px;object-position:-79px -79px;font-family:"object-fit: none; object-position: -79px -79px;"}.flag-pt-BR{-o-object-position:-105px -79px;object-position:-105px -79px;font-family:"object-fit: none; object-position: -105px -79px;"}.flag-ru-RU{-o-object-position:-1px -105px;object-position:-1px -105px;font-family:"object-fit: none; object-position: -1px -105px;"}.flag-sv-SE{-o-object-position:-27px -105px;object-position:-27px -105px;font-family:"object-fit: none; object-position: -27px -105px;"}.flag-tr-TR{-o-object-position:-53px -105px;object-position:-53px -105px;font-family:"object-fit: none; object-position: -53px -105px;"}.flag-ur-PK{-o-object-position:-79px -105px;object-position:-79px -105px;font-family:"object-fit: none; object-position: -79px -105px;"}.flag-zh-CN{-o-object-position:-105px -105px;object-position:-105px -105px;font-family:"object-fit: none; object-position: -105px -105px;"}[data-aos][data-aos][data-aos-duration="50"],body[data-aos-duration="50"] [data-aos]{transition-duration:50ms}[data-aos][data-aos][data-aos-delay="50"],body[data-aos-delay="50"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="50"].aos-animate,body[data-aos-delay="50"] [data-aos].aos-animate{transition-delay:50ms}[data-aos][data-aos][data-aos-duration="100"],body[data-aos-duration="100"] [data-aos]{transition-duration:.1s}[data-aos][data-aos][data-aos-delay="100"],body[data-aos-delay="100"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="100"].aos-animate,body[data-aos-delay="100"] [data-aos].aos-animate{transition-delay:.1s}[data-aos][data-aos][data-aos-duration="150"],body[data-aos-duration="150"] [data-aos]{transition-duration:.15s}[data-aos][data-aos][data-aos-delay="150"],body[data-aos-delay="150"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="150"].aos-animate,body[data-aos-delay="150"] [data-aos].aos-animate{transition-delay:.15s}[data-aos][data-aos][data-aos-duration="200"],body[data-aos-duration="200"] [data-aos]{transition-duration:.2s}[data-aos][data-aos][data-aos-delay="200"],body[data-aos-delay="200"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="200"].aos-animate,body[data-aos-delay="200"] [data-aos].aos-animate{transition-delay:.2s}[data-aos][data-aos][data-aos-duration="250"],body[data-aos-duration="250"] [data-aos]{transition-duration:.25s}[data-aos][data-aos][data-aos-delay="250"],body[data-aos-delay="250"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="250"].aos-animate,body[data-aos-delay="250"] [data-aos].aos-animate{transition-delay:.25s}[data-aos][data-aos][data-aos-duration="300"],body[data-aos-duration="300"] [data-aos]{transition-duration:.3s}[data-aos][data-aos][data-aos-delay="300"],body[data-aos-delay="300"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="300"].aos-animate,body[data-aos-delay="300"] [data-aos].aos-animate{transition-delay:.3s}[data-aos][data-aos][data-aos-duration="350"],body[data-aos-duration="350"] [data-aos]{transition-duration:.35s}[data-aos][data-aos][data-aos-delay="350"],body[data-aos-delay="350"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="350"].aos-animate,body[data-aos-delay="350"] [data-aos].aos-animate{transition-delay:.35s}[data-aos][data-aos][data-aos-duration="400"],body[data-aos-duration="400"] [data-aos]{transition-duration:.4s}[data-aos][data-aos][data-aos-delay="400"],body[data-aos-delay="400"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="400"].aos-animate,body[data-aos-delay="400"] [data-aos].aos-animate{transition-delay:.4s}[data-aos][data-aos][data-aos-duration="450"],body[data-aos-duration="450"] [data-aos]{transition-duration:.45s}[data-aos][data-aos][data-aos-delay="450"],body[data-aos-delay="450"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="450"].aos-animate,body[data-aos-delay="450"] [data-aos].aos-animate{transition-delay:.45s}[data-aos][data-aos][data-aos-duration="500"],body[data-aos-duration="500"] [data-aos]{transition-duration:.5s}[data-aos][data-aos][data-aos-delay="500"],body[data-aos-delay="500"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="500"].aos-animate,body[data-aos-delay="500"] [data-aos].aos-animate{transition-delay:.5s}[data-aos][data-aos][data-aos-duration="550"],body[data-aos-duration="550"] [data-aos]{transition-duration:.55s}[data-aos][data-aos][data-aos-delay="550"],body[data-aos-delay="550"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="550"].aos-animate,body[data-aos-delay="550"] [data-aos].aos-animate{transition-delay:.55s}[data-aos][data-aos][data-aos-duration="600"],body[data-aos-duration="600"] [data-aos]{transition-duration:.6s}[data-aos][data-aos][data-aos-delay="600"],body[data-aos-delay="600"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="600"].aos-animate,body[data-aos-delay="600"] [data-aos].aos-animate{transition-delay:.6s}[data-aos][data-aos][data-aos-duration="650"],body[data-aos-duration="650"] [data-aos]{transition-duration:.65s}[data-aos][data-aos][data-aos-delay="650"],body[data-aos-delay="650"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="650"].aos-animate,body[data-aos-delay="650"] [data-aos].aos-animate{transition-delay:.65s}[data-aos][data-aos][data-aos-duration="700"],body[data-aos-duration="700"] [data-aos]{transition-duration:.7s}[data-aos][data-aos][data-aos-delay="700"],body[data-aos-delay="700"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="700"].aos-animate,body[data-aos-delay="700"] [data-aos].aos-animate{transition-delay:.7s}[data-aos][data-aos][data-aos-duration="750"],body[data-aos-duration="750"] [data-aos]{transition-duration:.75s}[data-aos][data-aos][data-aos-delay="750"],body[data-aos-delay="750"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="750"].aos-animate,body[data-aos-delay="750"] [data-aos].aos-animate{transition-delay:.75s}[data-aos][data-aos][data-aos-duration="800"],body[data-aos-duration="800"] [data-aos]{transition-duration:.8s}[data-aos][data-aos][data-aos-delay="800"],body[data-aos-delay="800"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="800"].aos-animate,body[data-aos-delay="800"] [data-aos].aos-animate{transition-delay:.8s}[data-aos][data-aos][data-aos-duration="850"],body[data-aos-duration="850"] [data-aos]{transition-duration:.85s}[data-aos][data-aos][data-aos-delay="850"],body[data-aos-delay="850"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="850"].aos-animate,body[data-aos-delay="850"] [data-aos].aos-animate{transition-delay:.85s}[data-aos][data-aos][data-aos-duration="900"],body[data-aos-duration="900"] [data-aos]{transition-duration:.9s}[data-aos][data-aos][data-aos-delay="900"],body[data-aos-delay="900"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="900"].aos-animate,body[data-aos-delay="900"] [data-aos].aos-animate{transition-delay:.9s}[data-aos][data-aos][data-aos-duration="950"],body[data-aos-duration="950"] [data-aos]{transition-duration:.95s}[data-aos][data-aos][data-aos-delay="950"],body[data-aos-delay="950"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="950"].aos-animate,body[data-aos-delay="950"] [data-aos].aos-animate{transition-delay:.95s}[data-aos][data-aos][data-aos-duration="1000"],body[data-aos-duration="1000"] [data-aos]{transition-duration:1s}[data-aos][data-aos][data-aos-delay="1000"],body[data-aos-delay="1000"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="1000"].aos-animate,body[data-aos-delay="1000"] [data-aos].aos-animate{transition-delay:1s}[data-aos][data-aos][data-aos-duration="1050"],body[data-aos-duration="1050"] [data-aos]{transition-duration:1.05s}[data-aos][data-aos][data-aos-delay="1050"],body[data-aos-delay="1050"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="1050"].aos-animate,body[data-aos-delay="1050"] [data-aos].aos-animate{transition-delay:1.05s}[data-aos][data-aos][data-aos-duration="1100"],body[data-aos-duration="1100"] [data-aos]{transition-duration:1.1s}[data-aos][data-aos][data-aos-delay="1100"],body[data-aos-delay="1100"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="1100"].aos-animate,body[data-aos-delay="1100"] [data-aos].aos-animate{transition-delay:1.1s}[data-aos][data-aos][data-aos-duration="1150"],body[data-aos-duration="1150"] [data-aos]{transition-duration:1.15s}[data-aos][data-aos][data-aos-delay="1150"],body[data-aos-delay="1150"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="1150"].aos-animate,body[data-aos-delay="1150"] [data-aos].aos-animate{transition-delay:1.15s}[data-aos][data-aos][data-aos-duration="1200"],body[data-aos-duration="1200"] [data-aos]{transition-duration:1.2s}[data-aos][data-aos][data-aos-delay="1200"],body[data-aos-delay="1200"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="1200"].aos-animate,body[data-aos-delay="1200"] [data-aos].aos-animate{transition-delay:1.2s}[data-aos][data-aos][data-aos-duration="1250"],body[data-aos-duration="1250"] [data-aos]{transition-duration:1.25s}[data-aos][data-aos][data-aos-delay="1250"],body[data-aos-delay="1250"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="1250"].aos-animate,body[data-aos-delay="1250"] [data-aos].aos-animate{transition-delay:1.25s}[data-aos][data-aos][data-aos-duration="1300"],body[data-aos-duration="1300"] [data-aos]{transition-duration:1.3s}[data-aos][data-aos][data-aos-delay="1300"],body[data-aos-delay="1300"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="1300"].aos-animate,body[data-aos-delay="1300"] [data-aos].aos-animate{transition-delay:1.3s}[data-aos][data-aos][data-aos-duration="1350"],body[data-aos-duration="1350"] [data-aos]{transition-duration:1.35s}[data-aos][data-aos][data-aos-delay="1350"],body[data-aos-delay="1350"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="1350"].aos-animate,body[data-aos-delay="1350"] [data-aos].aos-animate{transition-delay:1.35s}[data-aos][data-aos][data-aos-duration="1400"],body[data-aos-duration="1400"] [data-aos]{transition-duration:1.4s}[data-aos][data-aos][data-aos-delay="1400"],body[data-aos-delay="1400"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="1400"].aos-animate,body[data-aos-delay="1400"] [data-aos].aos-animate{transition-delay:1.4s}[data-aos][data-aos][data-aos-duration="1450"],body[data-aos-duration="1450"] [data-aos]{transition-duration:1.45s}[data-aos][data-aos][data-aos-delay="1450"],body[data-aos-delay="1450"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="1450"].aos-animate,body[data-aos-delay="1450"] [data-aos].aos-animate{transition-delay:1.45s}[data-aos][data-aos][data-aos-duration="1500"],body[data-aos-duration="1500"] [data-aos]{transition-duration:1.5s}[data-aos][data-aos][data-aos-delay="1500"],body[data-aos-delay="1500"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="1500"].aos-animate,body[data-aos-delay="1500"] [data-aos].aos-animate{transition-delay:1.5s}[data-aos][data-aos][data-aos-duration="1550"],body[data-aos-duration="1550"] [data-aos]{transition-duration:1.55s}[data-aos][data-aos][data-aos-delay="1550"],body[data-aos-delay="1550"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="1550"].aos-animate,body[data-aos-delay="1550"] [data-aos].aos-animate{transition-delay:1.55s}[data-aos][data-aos][data-aos-duration="1600"],body[data-aos-duration="1600"] [data-aos]{transition-duration:1.6s}[data-aos][data-aos][data-aos-delay="1600"],body[data-aos-delay="1600"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="1600"].aos-animate,body[data-aos-delay="1600"] [data-aos].aos-animate{transition-delay:1.6s}[data-aos][data-aos][data-aos-duration="1650"],body[data-aos-duration="1650"] [data-aos]{transition-duration:1.65s}[data-aos][data-aos][data-aos-delay="1650"],body[data-aos-delay="1650"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="1650"].aos-animate,body[data-aos-delay="1650"] [data-aos].aos-animate{transition-delay:1.65s}[data-aos][data-aos][data-aos-duration="1700"],body[data-aos-duration="1700"] [data-aos]{transition-duration:1.7s}[data-aos][data-aos][data-aos-delay="1700"],body[data-aos-delay="1700"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="1700"].aos-animate,body[data-aos-delay="1700"] [data-aos].aos-animate{transition-delay:1.7s}[data-aos][data-aos][data-aos-duration="1750"],body[data-aos-duration="1750"] [data-aos]{transition-duration:1.75s}[data-aos][data-aos][data-aos-delay="1750"],body[data-aos-delay="1750"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="1750"].aos-animate,body[data-aos-delay="1750"] [data-aos].aos-animate{transition-delay:1.75s}[data-aos][data-aos][data-aos-duration="1800"],body[data-aos-duration="1800"] [data-aos]{transition-duration:1.8s}[data-aos][data-aos][data-aos-delay="1800"],body[data-aos-delay="1800"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="1800"].aos-animate,body[data-aos-delay="1800"] [data-aos].aos-animate{transition-delay:1.8s}[data-aos][data-aos][data-aos-duration="1850"],body[data-aos-duration="1850"] [data-aos]{transition-duration:1.85s}[data-aos][data-aos][data-aos-delay="1850"],body[data-aos-delay="1850"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="1850"].aos-animate,body[data-aos-delay="1850"] [data-aos].aos-animate{transition-delay:1.85s}[data-aos][data-aos][data-aos-duration="1900"],body[data-aos-duration="1900"] [data-aos]{transition-duration:1.9s}[data-aos][data-aos][data-aos-delay="1900"],body[data-aos-delay="1900"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="1900"].aos-animate,body[data-aos-delay="1900"] [data-aos].aos-animate{transition-delay:1.9s}[data-aos][data-aos][data-aos-duration="1950"],body[data-aos-duration="1950"] [data-aos]{transition-duration:1.95s}[data-aos][data-aos][data-aos-delay="1950"],body[data-aos-delay="1950"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="1950"].aos-animate,body[data-aos-delay="1950"] [data-aos].aos-animate{transition-delay:1.95s}[data-aos][data-aos][data-aos-duration="2000"],body[data-aos-duration="2000"] [data-aos]{transition-duration:2s}[data-aos][data-aos][data-aos-delay="2000"],body[data-aos-delay="2000"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="2000"].aos-animate,body[data-aos-delay="2000"] [data-aos].aos-animate{transition-delay:2s}[data-aos][data-aos][data-aos-duration="2050"],body[data-aos-duration="2050"] [data-aos]{transition-duration:2.05s}[data-aos][data-aos][data-aos-delay="2050"],body[data-aos-delay="2050"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="2050"].aos-animate,body[data-aos-delay="2050"] [data-aos].aos-animate{transition-delay:2.05s}[data-aos][data-aos][data-aos-duration="2100"],body[data-aos-duration="2100"] [data-aos]{transition-duration:2.1s}[data-aos][data-aos][data-aos-delay="2100"],body[data-aos-delay="2100"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="2100"].aos-animate,body[data-aos-delay="2100"] [data-aos].aos-animate{transition-delay:2.1s}[data-aos][data-aos][data-aos-duration="2150"],body[data-aos-duration="2150"] [data-aos]{transition-duration:2.15s}[data-aos][data-aos][data-aos-delay="2150"],body[data-aos-delay="2150"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="2150"].aos-animate,body[data-aos-delay="2150"] [data-aos].aos-animate{transition-delay:2.15s}[data-aos][data-aos][data-aos-duration="2200"],body[data-aos-duration="2200"] [data-aos]{transition-duration:2.2s}[data-aos][data-aos][data-aos-delay="2200"],body[data-aos-delay="2200"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="2200"].aos-animate,body[data-aos-delay="2200"] [data-aos].aos-animate{transition-delay:2.2s}[data-aos][data-aos][data-aos-duration="2250"],body[data-aos-duration="2250"] [data-aos]{transition-duration:2.25s}[data-aos][data-aos][data-aos-delay="2250"],body[data-aos-delay="2250"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="2250"].aos-animate,body[data-aos-delay="2250"] [data-aos].aos-animate{transition-delay:2.25s}[data-aos][data-aos][data-aos-duration="2300"],body[data-aos-duration="2300"] [data-aos]{transition-duration:2.3s}[data-aos][data-aos][data-aos-delay="2300"],body[data-aos-delay="2300"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="2300"].aos-animate,body[data-aos-delay="2300"] [data-aos].aos-animate{transition-delay:2.3s}[data-aos][data-aos][data-aos-duration="2350"],body[data-aos-duration="2350"] [data-aos]{transition-duration:2.35s}[data-aos][data-aos][data-aos-delay="2350"],body[data-aos-delay="2350"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="2350"].aos-animate,body[data-aos-delay="2350"] [data-aos].aos-animate{transition-delay:2.35s}[data-aos][data-aos][data-aos-duration="2400"],body[data-aos-duration="2400"] [data-aos]{transition-duration:2.4s}[data-aos][data-aos][data-aos-delay="2400"],body[data-aos-delay="2400"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="2400"].aos-animate,body[data-aos-delay="2400"] [data-aos].aos-animate{transition-delay:2.4s}[data-aos][data-aos][data-aos-duration="2450"],body[data-aos-duration="2450"] [data-aos]{transition-duration:2.45s}[data-aos][data-aos][data-aos-delay="2450"],body[data-aos-delay="2450"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="2450"].aos-animate,body[data-aos-delay="2450"] [data-aos].aos-animate{transition-delay:2.45s}[data-aos][data-aos][data-aos-duration="2500"],body[data-aos-duration="2500"] [data-aos]{transition-duration:2.5s}[data-aos][data-aos][data-aos-delay="2500"],body[data-aos-delay="2500"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="2500"].aos-animate,body[data-aos-delay="2500"] [data-aos].aos-animate{transition-delay:2.5s}[data-aos][data-aos][data-aos-duration="2550"],body[data-aos-duration="2550"] [data-aos]{transition-duration:2.55s}[data-aos][data-aos][data-aos-delay="2550"],body[data-aos-delay="2550"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="2550"].aos-animate,body[data-aos-delay="2550"] [data-aos].aos-animate{transition-delay:2.55s}[data-aos][data-aos][data-aos-duration="2600"],body[data-aos-duration="2600"] [data-aos]{transition-duration:2.6s}[data-aos][data-aos][data-aos-delay="2600"],body[data-aos-delay="2600"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="2600"].aos-animate,body[data-aos-delay="2600"] [data-aos].aos-animate{transition-delay:2.6s}[data-aos][data-aos][data-aos-duration="2650"],body[data-aos-duration="2650"] [data-aos]{transition-duration:2.65s}[data-aos][data-aos][data-aos-delay="2650"],body[data-aos-delay="2650"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="2650"].aos-animate,body[data-aos-delay="2650"] [data-aos].aos-animate{transition-delay:2.65s}[data-aos][data-aos][data-aos-duration="2700"],body[data-aos-duration="2700"] [data-aos]{transition-duration:2.7s}[data-aos][data-aos][data-aos-delay="2700"],body[data-aos-delay="2700"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="2700"].aos-animate,body[data-aos-delay="2700"] [data-aos].aos-animate{transition-delay:2.7s}[data-aos][data-aos][data-aos-duration="2750"],body[data-aos-duration="2750"] [data-aos]{transition-duration:2.75s}[data-aos][data-aos][data-aos-delay="2750"],body[data-aos-delay="2750"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="2750"].aos-animate,body[data-aos-delay="2750"] [data-aos].aos-animate{transition-delay:2.75s}[data-aos][data-aos][data-aos-duration="2800"],body[data-aos-duration="2800"] [data-aos]{transition-duration:2.8s}[data-aos][data-aos][data-aos-delay="2800"],body[data-aos-delay="2800"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="2800"].aos-animate,body[data-aos-delay="2800"] [data-aos].aos-animate{transition-delay:2.8s}[data-aos][data-aos][data-aos-duration="2850"],body[data-aos-duration="2850"] [data-aos]{transition-duration:2.85s}[data-aos][data-aos][data-aos-delay="2850"],body[data-aos-delay="2850"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="2850"].aos-animate,body[data-aos-delay="2850"] [data-aos].aos-animate{transition-delay:2.85s}[data-aos][data-aos][data-aos-duration="2900"],body[data-aos-duration="2900"] [data-aos]{transition-duration:2.9s}[data-aos][data-aos][data-aos-delay="2900"],body[data-aos-delay="2900"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="2900"].aos-animate,body[data-aos-delay="2900"] [data-aos].aos-animate{transition-delay:2.9s}[data-aos][data-aos][data-aos-duration="2950"],body[data-aos-duration="2950"] [data-aos]{transition-duration:2.95s}[data-aos][data-aos][data-aos-delay="2950"],body[data-aos-delay="2950"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="2950"].aos-animate,body[data-aos-delay="2950"] [data-aos].aos-animate{transition-delay:2.95s}[data-aos][data-aos][data-aos-duration="3000"],body[data-aos-duration="3000"] [data-aos]{transition-duration:3s}[data-aos][data-aos][data-aos-delay="3000"],body[data-aos-delay="3000"] [data-aos]{transition-delay:0s}[data-aos][data-aos][data-aos-delay="3000"].aos-animate,body[data-aos-delay="3000"] [data-aos].aos-animate{transition-delay:3s}[data-aos]{pointer-events:none}[data-aos].aos-animate{pointer-events:auto}[data-aos][data-aos][data-aos-easing=linear],body[data-aos-easing=linear] [data-aos]{transition-timing-function:cubic-bezier(.25,.25,.75,.75)}[data-aos][data-aos][data-aos-easing=ease],body[data-aos-easing=ease] [data-aos]{transition-timing-function:ease}[data-aos][data-aos][data-aos-easing=ease-in],body[data-aos-easing=ease-in] [data-aos]{transition-timing-function:ease-in}[data-aos][data-aos][data-aos-easing=ease-out],body[data-aos-easing=ease-out] [data-aos]{transition-timing-function:ease-out}[data-aos][data-aos][data-aos-easing=ease-in-out],body[data-aos-easing=ease-in-out] [data-aos]{transition-timing-function:ease-in-out}[data-aos][data-aos][data-aos-easing=ease-in-back],body[data-aos-easing=ease-in-back] [data-aos]{transition-timing-function:cubic-bezier(.6,-.28,.735,.045)}[data-aos][data-aos][data-aos-easing=ease-out-back],body[data-aos-easing=ease-out-back] [data-aos]{transition-timing-function:cubic-bezier(.175,.885,.32,1.275)}[data-aos][data-aos][data-aos-easing=ease-in-out-back],body[data-aos-easing=ease-in-out-back] [data-aos]{transition-timing-function:cubic-bezier(.68,-.55,.265,1.55)}[data-aos][data-aos][data-aos-easing=ease-in-sine],body[data-aos-easing=ease-in-sine] [data-aos]{transition-timing-function:cubic-bezier(.47,0,.745,.715)}[data-aos][data-aos][data-aos-easing=ease-out-sine],body[data-aos-easing=ease-out-sine] [data-aos]{transition-timing-function:cubic-bezier(.39,.575,.565,1)}[data-aos][data-aos][data-aos-easing=ease-in-out-sine],body[data-aos-easing=ease-in-out-sine] [data-aos]{transition-timing-function:cubic-bezier(.445,.05,.55,.95)}[data-aos][data-aos][data-aos-easing=ease-in-quad],body[data-aos-easing=ease-in-quad] [data-aos]{transition-timing-function:cubic-bezier(.55,.085,.68,.53)}[data-aos][data-aos][data-aos-easing=ease-out-quad],body[data-aos-easing=ease-out-quad] [data-aos]{transition-timing-function:cubic-bezier(.25,.46,.45,.94)}[data-aos][data-aos][data-aos-easing=ease-in-out-quad],body[data-aos-easing=ease-in-out-quad] [data-aos]{transition-timing-function:cubic-bezier(.455,.03,.515,.955)}[data-aos][data-aos][data-aos-easing=ease-in-cubic],body[data-aos-easing=ease-in-cubic] [data-aos]{transition-timing-function:cubic-bezier(.55,.085,.68,.53)}[data-aos][data-aos][data-aos-easing=ease-out-cubic],body[data-aos-easing=ease-out-cubic] [data-aos]{transition-timing-function:cubic-bezier(.25,.46,.45,.94)}[data-aos][data-aos][data-aos-easing=ease-in-out-cubic],body[data-aos-easing=ease-in-out-cubic] [data-aos]{transition-timing-function:cubic-bezier(.455,.03,.515,.955)}[data-aos][data-aos][data-aos-easing=ease-in-quart],body[data-aos-easing=ease-in-quart] [data-aos]{transition-timing-function:cubic-bezier(.55,.085,.68,.53)}[data-aos][data-aos][data-aos-easing=ease-out-quart],body[data-aos-easing=ease-out-quart] [data-aos]{transition-timing-function:cubic-bezier(.25,.46,.45,.94)}[data-aos][data-aos][data-aos-easing=ease-in-out-quart],body[data-aos-easing=ease-in-out-quart] [data-aos]{transition-timing-function:cubic-bezier(.455,.03,.515,.955)}@media screen{html:not(.no-js) [data-aos^=fade][data-aos^=fade]{opacity:0;transition-property:opacity,transform}html:not(.no-js) [data-aos^=fade][data-aos^=fade].aos-animate{opacity:1;transform:none}html:not(.no-js) [data-aos=fade-up]{transform:translate3d(0,100px,0)}html:not(.no-js) [data-aos=fade-down]{transform:translate3d(0,-100px,0)}html:not(.no-js) [data-aos=fade-right]{transform:translate3d(-100px,0,0)}html:not(.no-js) [data-aos=fade-left]{transform:translate3d(100px,0,0)}html:not(.no-js) [data-aos=fade-up-right]{transform:translate3d(-100px,100px,0)}html:not(.no-js) [data-aos=fade-up-left]{transform:translate3d(100px,100px,0)}html:not(.no-js) [data-aos=fade-down-right]{transform:translate3d(-100px,-100px,0)}html:not(.no-js) [data-aos=fade-down-left]{transform:translate3d(100px,-100px,0)}html:not(.no-js) [data-aos^=zoom][data-aos^=zoom]{opacity:0;transition-property:opacity,transform}html:not(.no-js) [data-aos^=zoom][data-aos^=zoom].aos-animate{opacity:1;transform:translateZ(0) scale(1)}html:not(.no-js) [data-aos=zoom-in]{transform:scale(.6)}html:not(.no-js) [data-aos=zoom-in-up]{transform:translate3d(0,100px,0) scale(.6)}html:not(.no-js) [data-aos=zoom-in-down]{transform:translate3d(0,-100px,0) scale(.6)}html:not(.no-js) [data-aos=zoom-in-right]{transform:translate3d(-100px,0,0) scale(.6)}html:not(.no-js) [data-aos=zoom-in-left]{transform:translate3d(100px,0,0) scale(.6)}html:not(.no-js) [data-aos=zoom-out]{transform:scale(1.2)}html:not(.no-js) [data-aos=zoom-out-up]{transform:translate3d(0,100px,0) scale(1.2)}html:not(.no-js) [data-aos=zoom-out-down]{transform:translate3d(0,-100px,0) scale(1.2)}html:not(.no-js) [data-aos=zoom-out-right]{transform:translate3d(-100px,0,0) scale(1.2)}html:not(.no-js) [data-aos=zoom-out-left]{transform:translate3d(100px,0,0) scale(1.2)}html:not(.no-js) [data-aos^=slide][data-aos^=slide]{transition-property:transform;visibility:hidden}html:not(.no-js) [data-aos^=slide][data-aos^=slide].aos-animate{visibility:visible;transform:translateZ(0)}html:not(.no-js) [data-aos=slide-up]{transform:translate3d(0,100%,0)}html:not(.no-js) [data-aos=slide-down]{transform:translate3d(0,-100%,0)}html:not(.no-js) [data-aos=slide-right]{transform:translate3d(-100%,0,0)}html:not(.no-js) [data-aos=slide-left]{transform:translate3d(100%,0,0)}html:not(.no-js) [data-aos^=flip][data-aos^=flip]{backface-visibility:hidden;transition-property:transform}html:not(.no-js) [data-aos=flip-left]{transform:perspective(2500px) rotateY(-100deg)}html:not(.no-js) [data-aos=flip-left].aos-animate{transform:perspective(2500px) rotateY(0)}html:not(.no-js) [data-aos=flip-right]{transform:perspective(2500px) rotateY(100deg)}html:not(.no-js) [data-aos=flip-right].aos-animate{transform:perspective(2500px) rotateY(0)}html:not(.no-js) [data-aos=flip-up]{transform:perspective(2500px) rotateX(-100deg)}html:not(.no-js) [data-aos=flip-up].aos-animate{transform:perspective(2500px) rotateX(0)}html:not(.no-js) [data-aos=flip-down]{transform:perspective(2500px) rotateX(100deg)}html:not(.no-js) [data-aos=flip-down].aos-animate{transform:perspective(2500px) rotateX(0)}}html:not(.no-js) [data-aos^=fade][data-aos^=fade]{opacity:0;transition-property:opacity,transform}html:not(.no-js) [data-aos^=fade][data-aos^=fade].aos-animate{opacity:1;transform:none}* [data-aos]{overflow-x:hidden}.teradata-logo{width:148px;height:28px;display:block}.header-nav-mobile .teradata-logo{width:88px;height:24px}body.menu-open{overflow:hidden;position:relative}.header-nav{background:#fff}.header-nav-wrapper{position:fixed;top:0;z-index:101;width:100%}.header-nav-wrapper .header-utility>.container-wide,.header-nav-wrapper .header-utility>.media-selector-with-text__main-row-container{justify-content:flex-end}.header-nav__element{flex:1 0 auto}.header-nav__element:first-child{margin-right:auto}.header-nav__element:last-child{margin-left:auto}.header-nav__logo *{pointer-events:none}.header-nav .icon{display:inline-block;width:1em;height:1em;color:#b2b9c0;stroke-width:0;stroke:currentColor!important;fill:currentColor!important}.header-nav .link--fat{color:#ff5f02;display:inline-flex;align-items:center}.header-nav .link--fat svg{margin-left:10px;transition:all 1s ease;color:#ff5f02}.header-nav .link--fat:focus svg,.header-nav .link--fat:hover svg{transform:translateX(10%)}.header-nav .menu-item{padding:12px 8px;color:#00233c;display:inline-flex;place-content:center space-between;border-radius:2px;width:100%;position:relative;text-decoration:none;cursor:pointer}.header-nav .menu-item,.header-nav .menu-item .material-symbols-outlined{transition:all .25s ease-in-out 0s}.header-nav .menu-item.link--fat{place-content:baseline;font-weight:600}.header-nav .menu-item.with-description{flex-direction:column}.header-nav .menu-item.with-description span.line1{display:flex;place-content:center space-between}.header-nav .menu-item.with-description span.line2{font-weight:400;font-size:.75rem}.header-nav .menu-item:focus,.header-nav .menu-item:hover{text-decoration:none;color:#ff5f02}.header-nav .menu-item:focus .material-symbols-outlined,.header-nav .menu-item:hover .material-symbols-outlined{color:#ff5f02}.header-nav .menu-item--activeSubmenu{background:rgba(255,95,2,.04)}.header-nav .menu-item--sublink:hover{color:#ff5f02}.header-nav .menu-item--large{color:#00233c;display:inline-flex;align-items:center;transition:color .2s ease}.header-nav .menu-item--large .icon{height:1.5rem;width:1.5rem;margin-right:16px;color:#00233c;display:inline-block;transition:color .2s ease}.header-nav .menu-item--large:focus,.header-nav .menu-item--large:focus .icon,.header-nav .menu-item--large:hover,.header-nav .menu-item--large:hover .icon{color:#ff5f02}.header-nav .menu-list--arrows .menu-item.active,.header-nav .menu-list--arrows .menu-item:focus,.header-nav .menu-list--arrows .menu-item:hover{background:#f2f2f2;color:#00233c}.header-nav .menu-list--large p{padding-bottom:0;color:#676767}.header-nav .menu-list--large li{margin:24px 0}.header-nav .menu-list li hr{margin:12px 8px;background-color:#ced3da}.header-nav .no-margin .menu-list{margin-top:6px}.header-nav .column-heading~.menu-list{margin-top:0}.header-nav .column-heading~.menu-list>li:first-child{margin-top:18px} - /*main{margin-top:55px}*/ - main .main-nav-spacing{height:55px;position:fixed} - @media(max-width:1024px){main.with-notification{margin-top:87px} - main.with-notification .main-nav-spacing{height:87px}} - @media(min-width:1025px){ - /* main{margin-top:121px}*/ - main .main-nav-spacing{height:121px} - } - header.header-nav{align-items:center;z-index:51} - .header-utility,header.header-nav{display:flex;width:100%;position:relative} - .header-utility{z-index:101;justify-content:flex-end;transition:all .5s linear} - @media(min-width:1025px){.header-utility .header-utility__right{word-break:keep-all}} - .header-utility ul.header-utility__nav{display:flex;align-items:center} - .header-utility ul.header-utility__nav li+li{margin-left:2.5rem} - .header-utility ul.header-utility__nav a{color:inherit;transition:all .25s ease-in-out 0s;color:#00233c;text-decoration:underline;-webkit-text-decoration-color:#00233c;text-decoration-color:#00233c;transition:.25s} - @media screen and (min-width:1025px){.header-utility ul.header-utility__nav a{text-decoration:none;position:relative;background-image:linear-gradient(#00233c,#00233c);background-image:webkit-linear-gradient(#00233c,#00233c);background-position:0 100%;background-repeat:no-repeat;background-size:0 1px;transition:all .25s ease-in-out 0s}.header-utility ul.header-utility__nav a:focus,.header-utility ul.header-utility__nav a:hover{background-size:100% 1px}} - @media(min-width:1501px){.header-utility .td-language-selector,.header-utility ul.header-utility__nav{z-index:2}}.bannerWrapper-promo{width:100%;align-items:center;justify-content:center}@media(min-width:1025px){.bannerWrapper-promo{justify-content:start}}.header-nav__logo h1{display:inline-block;line-height:20px}.header-nav__feature{color:#333a3e;display:block;background:#f6f7fb;overflow:hidden;position:relative}.header-nav__feature:after{display:block;content:"";border-bottom:2px solid #ff5f02;transform:scaleX(0);transform-origin:0 50%;transition:transform .25s ease-in-out;position:absolute;bottom:0;width:100%;left:0}.header-nav__feature:hover:after{transform:scaleX(1)}.header-nav__feature .header-nav__feature__thumb{max-width:350px}.header-nav__feature .header-nav__feature__thumb img{width:100%;display:block}.header-nav__feature p{margin-bottom:6px;display:-webkit-box;overflow:hidden;-webkit-line-clamp:4;-webkit-box-orient:vertical;padding-bottom:0}.header-nav__main-menu{display:flex;justify-content:center;align-items:center;padding:0 20px;flex:1;-ms-flex:1 auto;margin:0 auto;height:88px}.header-nav__main-menu__drop-section{position:absolute;width:720px;left:50%;top:150%;background:#fff;transform:translateX(-50%);opacity:0;visibility:hidden;pointer-events:none;overflow:hidden;transition:all .25s ease-in-out 0s;border-radius:12px;box-shadow:0 12px 24px -6px rgba(16,24,40,.18)}.header-nav__main-menu__drop-section.active{pointer-events:all;opacity:1;visibility:visible}.header-nav__main-menu__link,.header-nav__main-menu__search button{cursor:pointer}.header-nav__main-menu__link{color:#00233c;position:relative;display:block;white-space:nowrap;text-decoration:none;transition:.25s;padding:0 1.25rem}.header-nav__main-menu__link:focus,.header-nav__main-menu__link:hover{color:#ff5f02;text-decoration:none}.header-nav__main-menu__link:after{content:"";position:absolute;height:2px;bottom:-8px;background:transparent;width:40px;left:50%;transform:translateX(-50%);transition:all .2s ease}.header-nav__main-menu__link.active{color:#333a3e}.header-nav__main-menu__link.active:after{background:#ff5f02}.header-nav__alt-menu__search{min-width:48px}.page-blackout{opacity:0;transform:translateX(-100%);position:fixed;width:100%;height:100%;top:0;left:0;background:#333a3e;pointer-events:none;transition:opacity .25s ease;z-index:49}.page-blackout.active{opacity:.15;transform:translateX(0);pointer-events:all}.drop-section__header{border-bottom:1px solid #ebedee}.drop-section__header:not(.drop-section__header--search):after{content:"";display:block;border-bottom:2px solid #ff5f02;margin-bottom:0;width:56px;border-radius:30px}.header-nav__main-menu__search{display:flex;align-items:center}.header-nav__main-menu__search>button>svg{position:relative;top:4px;left:1px}@media(min-width:1025px){.header-nav__main-menu__search>button{padding:6px 13px}}.header-nav__main-menu__search.active>a{opacity:0}.header-nav__main-menu__search .header-nav__main-menu__drop-section{top:100%}.header-nav__search input{width:100%;border-radius:4px;padding:11px 13px 11px 48px;border:none;height:40px;color:#333a3e;margin-bottom:0;transition:all .5s ease;font-size:1rem;line-height:3rem}.header-nav__search input:focus,.header-nav__search input:hover{border-color:none;box-shadow:none}.header-nav__search a{position:absolute;left:4px;top:0;bottom:0;width:40px;height:40px;margin:auto;text-align:center;padding:6px}@media(max-width:1024px){header.header-nav{display:none}}.header-nav-mobile{border-bottom:1px solid #e5e5e5;position:fixed;top:0;left:0;width:100%;background:#fff;z-index:200}.header-nav-mobile nav{z-index:200;position:relative;width:100%}.header-nav-mobile__menu-listing{display:flex;flex-direction:column;justify-content:space-between;position:relative}.header-nav-mobile__buttons{padding-top:40px}@media(min-width:1025px){.header-nav-mobile{display:none}}.header-nav-mobile .header-nav__logo{height:100%}.header-nav-mobile__top-links{display:flex}.header-nav-mobile>.container-fluid,.header-nav-mobile>.container-lg,.header-nav-mobile>.container-md,.header-nav-mobile>.container-sm,.header-nav-mobile>.container-xl,.header-nav-mobile>.container-xxl{padding-right:0}.header-nav-mobile__menu-icon,.header-nav-mobile__search-link{width:54px;height:54px;text-align:center;display:flex;align-items:center;color:#333a3e;justify-content:center;position:relative}.header-nav-mobile__menu-icon svg,.header-nav-mobile__search-link svg{width:18px;height:18px;transform:rotate(270deg)}.header-nav-mobile__menu-icon span{position:absolute;top:0;bottom:0;height:2px;width:24px;left:0;right:0;margin:auto;background:#333a3e;transition:all .25s ease}.header-nav-mobile__menu-icon span:first-of-type{transform:translateY(-6px)}.header-nav-mobile__menu-icon span:nth-of-type(4){transform:translateY(6px)}.header-nav-mobile__menu-icon.active span:first-of-type{transform:translateY(-12px);opacity:0}.header-nav-mobile__menu-icon.active span:nth-of-type(2){transform:rotate(45deg)}.header-nav-mobile__menu-icon.active span:nth-of-type(3){transform:rotate(-45deg)}.header-nav-mobile__menu-icon.active span:nth-of-type(4){transform:translateY(12px);opacity:0}.header-nav-mobile__menu-listing,.header-nav-mobile__menu-search{position:fixed;height:calc(100dvh - 55px);width:100%;top:55px;right:0;max-width:700px;background:#fff;overflow:auto;-webkit-overflow-scrolling:touch;will-change:transform}@media(min-width:767px){.header-nav-mobile__menu-listing,.header-nav-mobile__menu-search{border-left:1px solid #e5e5e5;box-shadow:2px 7px 10px rgba(0,0,0,.46)}}.header-nav-mobile__menu-search__input{position:relative}.header-nav-mobile__menu-search__input input{margin-bottom:0;line-height:48px;padding:0 8px 0 48px;min-height:48px;border:none;border-bottom:1px solid #f6f7fb}.header-nav-mobile__menu-search__input input:focus{border-bottom:1px solid #ff5f02}.header-nav-mobile__menu-search__input button{position:absolute;top:0;left:0;bottom:0;width:48px;height:48px;margin:auto}.header-nav-mobile__menu-search__input svg{width:20px;height:20px}.with-notification .header-nav-mobile{top:32px}.with-notification .header-nav-mobile__menu-listing,.with-notification .header-nav-mobile__menu-search{height:calc(100vh - 86px);top:86px}.header-nav-mobile__menu-listing-ul{margin:unset;margin-top:0}.header-nav-mobile__menu-listing__item{display:block;transition:all .25s ease}.header-nav-mobile__menu-listing__item details>summary{list-style:none}.header-nav-mobile__menu-listing__item details>summary::-webkit-details-marker{display:none}.header-nav-mobile__menu-listing__item .header-nav-mobile__menu-listing__header{position:relative;margin:0;padding:16px 0}.header-nav-mobile__menu-listing__item .header-nav-mobile__menu-listing__item__links{position:absolute;background:#fff;z-index:2;top:0;bottom:0;right:0;left:0}.header-nav-mobile__menu-listing__item .header-nav-mobile__menu-listing__item__links .bottom-button,.header-nav-mobile__menu-listing__item .header-nav-mobile__menu-listing__item__links ul li{opacity:1;transition:1s ease}.header-nav-mobile__menu-listing__item.has-sub-items .header-nav-mobile__menu-listing__header{transition:all .25s ease}.header-nav-mobile__menu-listing__item__links li a{display:inline-block;line-height:1}.header-nav-mobile__menu-listing__item__links li .sub-heading{color:#b2b9c0;padding:0}.header-nav-mobile__menu-listing__item__links__bottom-link{padding-top:20px;text-align:center}.header-nav-mobile__menu-listing__item__links__bottom-link .bottom-button{color:#fff;background:#ff5f02;padding:16px 48px;display:inline-block}.footer-nav{color:#00233c;padding:20px 0 40px;line-height:1}.footer-nav__top{padding-bottom:20px}.footer-nav__top svg{display:block}.footer-nav__top .footer-nav__logo{display:inline-block}.footer-nav__mobile.accordionContent details{border-bottom:1px solid #b2b9c0}.footer-nav__desktop ul .footer-nav__mobile.accordionContent a:not(.icon-social),.footer-nav__mobile.accordionContent .footer-nav__desktop ul a:not(.icon-social),.footer-nav__mobile.accordionContent a.nav-2{color:#00233c}.footer-nav__desktop ul a:not(.icon-social){text-decoration:none;color:#00233c;text-decoration:underline;-webkit-text-decoration-color:#00233c;text-decoration-color:#00233c;transition:.25s}@media screen and (min-width:1025px){.footer-nav__desktop ul a:not(.icon-social){text-decoration:none;position:relative;background-image:linear-gradient(#00233c,#00233c);background-image:webkit-linear-gradient(#00233c,#00233c);background-position:0 100%;background-repeat:no-repeat;background-size:0 1px;transition:all .25s ease-in-out 0s}.footer-nav__desktop ul a:not(.icon-social):focus,.footer-nav__desktop ul a:not(.icon-social):hover{background-size:100% 1px}}.footer-nav__desktop ul li{margin:16px 0}.footer-nav__bottom{margin-top:20px;margin-bottom:20px}.footer-nav__bottom .td-language-selector{border:1px solid #ced3da;padding:0}.footer-nav__bottom .td-language-selector:after{right:12px}.footer-nav__bottom .td-language-selector .selected{padding:6px 27px 6px 50px;width:100%}.footer-nav__bottom .td-language-selector .selected:before{left:12px}.footer-nav__bottom .td-language-selector ul{right:auto;left:0;z-index:3;top:auto;bottom:102%;border-radius:8px 0 0 8px}.footer-nav .footer_social{display:flex;align-items:center;justify-content:flex-start;flex-wrap:wrap}.footer-nav .footer_social li:not(.break){margin:16px 0 0}.footer-nav .footer_social .icon-social{color:#fff;margin:0 8px 0 0;background:#00233c;width:32px;height:32px;border-radius:100%;display:inline-flex;align-items:center;justify-content:center}.footer-nav .footer_social .icon-social:focus,.footer-nav .footer_social .icon-social:hover{background:#ff5f02}.footer-nav .footer_social svg{max-width:13px;transition:all .5s ease}.footer-nav__baseline{font-family:Inter,sans-serif;font-size:.875rem;margin:0;padding-top:24px;align-items:center}.footer-nav__baseline .copyright{display:block;color:#00233c;margin-bottom:24px}.footer-nav__baseline ul{display:flex}.footer-nav__baseline ul li{margin-bottom:8px}.footer-nav__baseline ul li:nth-of-type(2){margin-left:24px}.footer-nav__baseline ul li+li{margin-right:24px}.footer-nav__baseline ul a{text-decoration:none;color:#00233c;text-decoration:underline;-webkit-text-decoration-color:#00233c;text-decoration-color:#00233c;transition:.25s}@media screen and (min-width:1025px){.footer-nav__baseline ul a{text-decoration:none;position:relative;background-image:linear-gradient(#00233c,#00233c);background-image:webkit-linear-gradient(#00233c,#00233c);background-position:0 100%;background-repeat:no-repeat;background-size:0 1px;transition:all .25s ease-in-out 0s}.footer-nav__baseline ul a:focus,.footer-nav__baseline ul a:hover{background-size:100% 1px}}@media screen and (min-width:768px){.footer-nav{padding:60px 0 40px}.footer-nav__top{padding-bottom:60px}.footer-nav__bottom{margin-top:90px;margin-bottom:20px}.footer-nav__baseline ul li{margin-bottom:0}.footer_social{margin:0}.footer_social .icon-social{margin-left:0 0 0 8px}}@media screen and (min-width:992px){.footer-nav__baseline{margin:16px 0 42px}.footer-nav__baseline .copyright{margin-bottom:0}}.editable__subnav{background:#000;color:#fff;position:relative;z-index:99;box-shadow:0 2px 6px rgba(57,73,81,.25);position:sticky;top:55px}.editable__subnav.editable__subnav--blogs{position:fixed}.editable__subnav--desktop{min-height:50px}.editable__subnav.scroll-fix{position:fixed;top:55px}.editable__subnav-title{color:#fff}.editable__subnav-link:after{border:solid #fff;border-width:0 2px 2px 0;padding:2px;transform:rotate(-45deg);display:inline-block;margin-left:5px;top:0;content:"";transition:.25s}.editable__subnav-link:hover:after{border-color:#ff5f02}.editable__subnav-menu{width:100%;padding-left:2rem;overflow-y:auto;max-height:calc(100vh - 100px)}.editable__subnav-menu .editable__subnav-menu-item:not(.editable__subnav-cta)>a,.editable__subnav-menu .editable__subnav-toplevel--toggle{padding:1.5rem 0;display:block}.editable__subnav-menu .editable__subnav-cta{padding:1.5rem 0}.editable__subnav-menu .editable__subnav-menu-item a{color:inherit}.editable__subnav-menu .editable__subnav-menu-item a .icon{transition:.25s}.editable__subnav-menu .editable__subnav-menu-item a:focus .caret,.editable__subnav-menu .editable__subnav-menu-item a:hover .caret{border-width:0 2px 2px 0;transform:rotate(45deg);display:inline-block;margin-left:10px;position:relative;top:-2px}.editable__subnav-menu .editable__subnav-toplevel .editable__subnav-list{display:none;background:#000;top:100%;z-index:1;padding:.5rem 0}.editable__subnav-menu .editable__subnav-toplevel .editable__subnav-list li ul{padding-left:2rem}.editable__subnav-menu .editable__subnav-toplevel .editable__subnav-list li>a,.editable__subnav-menu .editable__subnav-toplevel .editable__subnav-list li>button{color:#fff;padding:15px 0 15px 2rem;display:block;text-decoration:none}.editable__subnav-menu .editable__subnav-toplevel .editable__subnav-list .parent.active>.editable__subnav-list__link--toggle .caret{transform:rotate(45deg) rotate(-180deg)!important}.editable__subnav-menu .editable__subnav-toplevel .editable__subnav-list .level-one__list-item.active .editable__subnav-list--level-two,.editable__subnav-menu .editable__subnav-toplevel .editable__subnav-list .level-two__list-item.active .editable__subnav-list--level-three{display:block}.editable__subnav-menu .editable__subnav-toplevel.active .editable__subnav-toplevel--toggle .caret{transform:rotate(45deg) rotate(-180deg)!important}.editable__subnav-menu .editable__subnav-toplevel.active .editable__subnav-list--level-one{display:block}.editable__subnav-menu .editable__subnav-search .icon{width:14px;height:14px;fill:#fff;margin-right:6px;position:relative;top:2px}.editable__subnav .caret{border:solid #fff;border-width:0 2px 2px 0;padding:3px;transform:rotate(45deg);display:inline-block;margin-left:10px;position:relative;top:-2px;transition:.25s}@media(min-width:1025px){.editable__subnav .caret{padding:2px}}@media(min-width:1025px){.editable__subnav{position:relative;top:unset}.editable__subnav.editable__subnav--blogs .editable__subnav-menu-item{padding:0 2rem}.editable__subnav.editable__subnav--blogs .editable__subnav__positioned-wrapper--level-one{position:absolute}.editable__subnav.editable__subnav--blogs .blog__subnav__search--desktop.active{opacity:1;pointer-events:all}.editable__subnav.editable__subnav--blogs .blog__subnav__search--desktop.active .blog__subnav__search--desktop--wrapper{transform:translateX(0)}.editable__subnav.editable__subnav--blogs .blog__subnav__search--desktop{right:auto;left:50%;transform:translateX(-50%);opacity:0;position:absolute;pointer-events:none;min-width:550px;transition:all .5s ease-in-out}.editable__subnav.editable__subnav--blogs .blog__subnav__search--desktop--wrapper{position:relative;transform:translateX(-50px) translateX(100%);transition:all .5s ease-in-out}.editable__subnav.editable__subnav--blogs .blog__subnav__search--desktop--wrapper a{position:absolute;left:4px;top:0;bottom:0;width:40px;height:40px;margin:auto;text-align:center;padding:6px}.editable__subnav.editable__subnav--blogs .blog__subnav__search--desktop--wrapper a .icon{width:1em;height:1em;stroke-width:0;fill:#b2b9c0;color:#b2b9c0}.editable__subnav.editable__subnav--blogs .blog__subnav__search--desktop--input{width:100%;background:#263136;border-radius:4px;padding:11px 13px 11px 48px;border:none;color:#b2b9c0;transition:all .5s ease;margin-bottom:0;height:35px;min-height:0}.editable__subnav.scroll-fix{top:116px}.editable__subnav-cta--right{letter-spacing:normal;color:#fff}.editable__subnav__positioned-wrapper{position:absolute;display:none;background:#000}.editable__subnav__positioned-wrapper--level-one{top:100%;z-index:1}.editable__subnav__positioned-wrapper--level-three,.editable__subnav__positioned-wrapper--level-two{left:100%;top:0}.editable__subnav-menu{padding:0}.editable__subnav-menu .editable__subnav-toplevel .editable__subnav-list li ul{padding-left:0}.editable__subnav-menu .editable__subnav-menu-item{padding:0 1.25rem}.editable__subnav-menu .editable__subnav-menu-item.active .editable__subnav__positioned-wrapper--level-one{display:block}.editable__subnav-menu .editable__subnav-menu-item .editable__subnav-list{box-shadow:0 2px 6px rgba(57,73,81,.25);width:-moz-max-content;width:max-content;font-size:inherit;line-height:inherit;min-width:190px;background:#000;padding:15px 0;max-height:420px;overflow-y:auto}.editable__subnav-menu .editable__subnav-menu-item .editable__subnav-list--level-one{border-top:1px solid #424242;z-index:1}.editable__subnav-menu .editable__subnav-menu-item .editable__subnav-list--level-three,.editable__subnav-menu .editable__subnav-menu-item .editable__subnav-list--level-two{background:#000;border-left:1px solid #424242;transition:.25s}.editable__subnav-menu .editable__subnav-menu-item .editable__subnav-list__link>a:after{border:solid #fff;border-width:0 2px 2px 0;padding:2px;transform:rotate(-45deg);display:inline-block;margin-left:10px;top:0;content:"";transition:.25s}.editable__subnav-menu .editable__subnav-menu-item .editable__subnav-list__link>a:hover:after{border-color:#ff5f02}.editable__subnav-menu .editable__subnav-menu-item .editable__subnav-list__link-two:hover>a{background:#263136}.editable__subnav-menu .editable__subnav-menu-item .editable__subnav-list__link-two:hover>.editable__subnav__positioned-wrapper--level-two{display:block}.editable__subnav-menu .editable__subnav-menu-item .editable__subnav-list__link-two:hover>.editable__subnav__positioned-wrapper--level-two .editable__subnav-list--level-two{display:block!important}.editable__subnav-menu .editable__subnav-menu-item .editable__subnav-list__link-three:hover>a{background:#263136}.editable__subnav-menu .editable__subnav-menu-item .editable__subnav-list__link-three:hover>.editable__subnav__positioned-wrapper--level-three{display:block}.editable__subnav-menu .editable__subnav-menu-item .editable__subnav-list__link-three:hover>.editable__subnav__positioned-wrapper--level-three .editable__subnav-list--level-three{display:block!important}.editable__subnav-menu .editable__subnav-menu-item .editable__subnav-list li a{color:#fff;display:block;transition:.25s;margin:auto;border-radius:4px;width:90%;line-height:1.2;padding:.5rem 0 .5rem 1rem;text-align:left}.editable__subnav-menu .editable__subnav-menu-item .editable__subnav-list li a:focus,.editable__subnav-menu .editable__subnav-menu-item .editable__subnav-list li a:hover{color:#ff5f02}.editable__subnav-menu .editable__subnav-menu-item:not(.editable__subnav-cta)>a,.editable__subnav-menu .editable__subnav-menu-item:not(.editable__subnav-cta)>button{color:inherit;display:block;padding:15px 0;transition:.25s}.editable__subnav-menu .editable__subnav-menu-item:not(.editable__subnav-cta)>a:focus,.editable__subnav-menu .editable__subnav-menu-item:not(.editable__subnav-cta)>a:hover,.editable__subnav-menu .editable__subnav-menu-item:not(.editable__subnav-cta)>button:focus,.editable__subnav-menu .editable__subnav-menu-item:not(.editable__subnav-cta)>button:hover{color:#ff5f02}.editable__subnav-menu .editable__subnav-menu-item:not(.editable__subnav-cta)>a .icon,.editable__subnav-menu .editable__subnav-menu-item:not(.editable__subnav-cta)>button .icon{transition:.25s}.editable__subnav-menu .editable__subnav-menu-item:not(.editable__subnav-cta)>a:focus .icon,.editable__subnav-menu .editable__subnav-menu-item:not(.editable__subnav-cta)>a:hover .icon,.editable__subnav-menu .editable__subnav-menu-item:not(.editable__subnav-cta)>button:focus .icon,.editable__subnav-menu .editable__subnav-menu-item:not(.editable__subnav-cta)>button:hover .icon{color:#ff5f02;fill:#ff5f02}.editable__subnav-menu .editable__subnav-menu-item:not(.editable__subnav-cta)>a:focus .caret,.editable__subnav-menu .editable__subnav-menu-item:not(.editable__subnav-cta)>a:hover .caret,.editable__subnav-menu .editable__subnav-menu-item:not(.editable__subnav-cta)>button:focus .caret,.editable__subnav-menu .editable__subnav-menu-item:not(.editable__subnav-cta)>button:hover - .caret{border:solid #ff5f02;border-width:0 2px 2px 0;padding:2px;transform:rotate(45deg);display:inline-block;margin-left:10px;top:-2px}.editable__subnav__search--desktop.active{opacity:1;pointer-events:all}.editable__subnav__search--desktop.active .editable__subnav__search--desktop--wrapper{transform:translateX(0)}.editable__subnav__search--desktop{right:auto;left:calc(50% - 48px);transform:translateX(-50%);opacity:0;position:absolute;pointer-events:none;min-width:550px;transition:all .5s ease-in-out}.editable__subnav__search--desktop--wrapper{position:relative;transform:translateX(-50px) translateX(100%);transition:all .5s ease-in-out}.editable__subnav__search--desktop--wrapper a{position:absolute;left:4px;top:0;bottom:0;width:40px;height:40px;margin:auto;text-align:center;padding:6px}.editable__subnav__search--desktop--wrapper a .icon{width:1em;height:1em;stroke-width:0;fill:#b2b9c0}.editable__subnav__search--desktop--input{width:100%;background:#263136;border-radius:4px;padding:11px 13px 11px 48px;border:none;color:#b2b9c0;fill:#b2b9c0;transition:all .5s ease;margin-bottom:0;height:35px;min-height:0}}.editable__subnav--mobile div:only-child{margin-left:auto}.editable__subnav--mobile .editable__subnav-menu{display:none;border-top:1px solid #263136}.editable__subnav--mobile.active .editable__subnav-menu{display:block}.editable__subnav--mobile.active .editable__subnav--mobile-header .caret{transform:rotate(45deg) rotate(-180deg)}.editable__subnav--mobile .editable__subnav-toplevel-list{display:block}.editable__subnav__progress--container{position:absolute;left:0;right:0}.editable__subnav__progress--container .editable__subnav-bar__progress{height:6px;background:#ff5f02;transition:all .15s ease;transform:translateX(-100%);width:100%;display:block;border-radius:0 50px 50px 0}@media(max-width:1024px){.with-notification .editable__subnav,.with-notification .editable__subnav.scroll-fix{top:91px}}.blog__subnav-categories--toggle{padding:1.5rem 0;display:block}.blog__subnav-categories .blog__subnav-categories-list{display:none;background:#000;position:relative;top:100%;z-index:1}.blog__subnav-categories .blog__subnav-categories-list li a{color:#fff;line-height:3;padding-left:2rem;display:block;transition:.25s}.blog__subnav-categories .blog__subnav-categories-list li a:focus,.blog__subnav-categories .blog__subnav-categories-list li a:hover{color:#ff5f02}.blog__subnav-categories.active .caret{transform:rotate(45deg) rotate(-180deg)!important}.blog__subnav-categories.active .blog__subnav-categories-list{display:block}.blog__subnav-search .icon{width:14px;height:14px;fill:#fff;margin-right:6px;position:relative;top:2px}.breadcrumb-nav{padding-top:1.5rem;padding-bottom:1.5rem}.breadcrumb-nav .breadcrumb-nav-item{display:none;align-items:center}.breadcrumb-nav .breadcrumb-nav-item.breadcrumb-mobile{display:inline-flex}.breadcrumb-nav .breadcrumb-nav-item>a{color:inherit}.breadcrumb-nav .breadcrumb-nav-item>a:before{font-family:Material Symbols Outlined;content:"chevron_left";display:inline-block;margin-right:.25rem;position:relative;top:3px}@media screen and (min-width:768px){.breadcrumb-nav .breadcrumb-nav-item:not(:last-of-type){cursor:pointer;transition:.25s}.breadcrumb-nav .breadcrumb-nav-item:not(:last-of-type) :hover{color:#ff5f02}.breadcrumb-nav .breadcrumb-nav-item:not(.breadcrumb-mobile){display:inline-flex}.breadcrumb-nav .breadcrumb-nav-item:not(:last-of-type):after{font-family:Material Symbols Outlined;content:"chevron_right";margin-left:.25rem}.breadcrumb-nav .breadcrumb-nav-item>a:before{content:unset;margin:unset}.breadcrumb-nav.breadcrumb-nav__ancestors-only .breadcrumb-nav-item:last-of-type{color:inherit}.breadcrumb-nav.breadcrumb-nav__ancestors-only .breadcrumb-nav-item:last-of-type :hover{color:#ff5f02}}@media screen and (min-width:1400px){.breadcrumb-nav{padding-top:0;padding-bottom:1.5rem}}.anchor-nav{background-color:hsla(0,0%,100%,.8);position:sticky;grid-column-start:11;grid-row-start:1;top:130px;z-index:5;justify-self:end;max-width:160px}.anchor-nav ul{gap:1.5rem;display:flex;flex-direction:column;padding-left:1.125rem;border-left:1px solid #ced3da}.anchor-nav a{color:#9ca4a8;display:inline-block;position:relative;transition:all .25s ease-in-out 0s}.anchor-nav a:hover{color:inherit}.anchor-nav a.active{color:#00233c;font-weight:600}.anchor-nav a.active:before{content:"";display:block;border-left:2px solid #ff5f02;margin-bottom:0;border-radius:30px;position:absolute;left:-1.125rem;height:100%;transition:all .25s ease-in-out 0s}.generic-block{padding:4rem 0}.generic-block__list{-moz-column-count:2;column-count:2;-moz-column-gap:1.25rem;column-gap:1.25rem}.generic-block__list>*{-webkit-column-break-inside:avoid}.section-padding__thin{padding-top:2.5rem;padding-bottom:2.5rem}.section-padding__top{padding-top:4rem!important}.section-padding__top--short{padding-top:2.5rem!important}.section-padding__bottom{padding-bottom:4rem}.section-padding__bottom--short{padding-bottom:2.5rem}.footer-cta-block,.section-padding__medium{padding:4rem 0}.footer-cta-block-header{line-height:1.08}@media screen and (min-width:768px){.generic-block__list{-moz-column-count:3;column-count:3}.generic-block__list--four-col,.generic-block__list--two-col{-moz-column-count:2;column-count:2}.section-padding__md-top{padding-top:4rem}.section-padding__md-bottom{padding-bottom:4rem}}@media screen and (min-width:1025px){.section-padding__top{padding-top:7.5rem!important}.section-padding__bottom{padding-bottom:7.5rem}.section-padding__xl-top{padding-top:7.5rem}.section-padding__xl-bottom{padding-bottom:7.5rem}.generic-block__list{-moz-column-count:5;column-count:5}.generic-block__list--two-col{-moz-column-count:2;column-count:2}.generic-block__list--four-col{-moz-column-count:4;column-count:4}}.column-break{-moz-column-break-after:column;break-after:column}@media screen and (min-width:1025px){.column--2{-moz-column-count:2;column-count:2;gap:24px}}.link-hasArrow{display:inline-block;color:#333a3e;align-items:center}.link-hasArrow:after{margin-left:6px;color:#ff5f02;content:">"}.link-hasArrow-alt{display:inline-flex;color:#ff5f02;align-items:center}.link-hasArrow-alt .arrow{margin-left:8px;transition:transform .25s ease-in-out}.link-hasArrow-alt:hover .arrow{transform:translateX(4px)}.link-hasArrow_icon{display:none;width:26px;height:6px;margin-left:16px;transform:translateX(0);transition:all .25s ease-in-out 0s}.cta-textLink{transition:.25s;display:inline-flex;align-items:center;color:#00233c;text-decoration:none;font-weight:600}.cta-textLink:after{font-family:Material Symbols Outlined;content:"east";margin-left:.5rem;position:relative;transition:transform .25s ease-in-out}.cta-textLink:hover:after{transform:translateX(4px)}.background-midnightBlack .cta-textLink,.background-midnightBlack .cta-textLink:hover,.background-navy .cta-textLink,.background-navy .cta-textLink:hover,.background-slate .cta-textLink,.background-slate .cta-textLink:hover,.cta-textLink--white,.cta-textLink--white:hover{color:#fff}.button-primary.button-anchor:after,.button.button-anchor:after,.cta-textLink.button-anchor:after,.eloqua-container__nested .elq-form-text .button-anchor.submit-button-style:after{content:"south";top:0}.button-primary.button-download:after,.button.button-download:after,.cta-textLink.button-download:after,.eloqua-container__nested .elq-form-text .button-download.submit-button-style:after{content:"download";top:0}.button-primary.button-external:after,.button.button-external:after,.cta-textLink.button-external:after,.eloqua-container__nested .elq-form-text .button-external.submit-button-style:after{content:"open_in_new";top:0}.td-language-selector{position:relative;padding:6px 0}.td-language-selector ul{background:#f6f7fb;border-radius:2px;box-shadow:0 4px 4px rgba(0,0,0,.25);color:#333a3e;position:absolute;top:150%;right:0;padding:28px 32px;overflow:auto;opacity:0;visibility:hidden;transition:all .25s ease}.td-language-selector:after{content:"";width:6px;height:6px;border-top:1px solid;border-left:1px solid;transform:translateY(-1px) rotate(45deg) rotate(180deg);position:absolute;top:0;bottom:0;right:2px;margin:auto;transition:all .25s ease;z-index:0}.td-language-selector.active:after{transform:translateY(2px) rotate(45deg)}.td-language-selector.active ul{opacity:1;visibility:visible}.td-language-selector__menu-item{display:flex;justify-content:flex-end;padding:8px 0}.td-language-selector__location{color:#333a3e}.td-language-selector .selected:before{content:" ";width:0;height:100%;border:1px solid #9ca4a8;position:absolute;left:0;top:0;margin-right:1.5rem}.td-language-selector a:hover{text-decoration:none}.td-language-selector__toggle{align-items:center;position:relative;display:inline-block;width:auto;padding:0 1.2rem;display:flex;z-index:1;transition:.25s}.td-language-selector__toggle span{color:#00233c;text-decoration:underline;-webkit-text-decoration-color:#00233c;text-decoration-color:#00233c;transition:.25s}@media screen and (min-width:1025px){.td-language-selector__toggle span{text-decoration:none;position:relative;background-image:linear-gradient(#00233c,#00233c);background-image:webkit-linear-gradient(#00233c,#00233c);background-position:0 100%;background-repeat:no-repeat;background-size:0 1px;transition:all .25s ease-in-out 0s}.td-language-selector__toggle span:focus,.td-language-selector__toggle span:hover{background-size:100% 1px}}.langSelect_input{width:auto;min-height:12px;max-width:110px;margin-bottom:0;padding:0 18px 0 2px;border:none;background-color:transparent;font-size:.75rem;background-size:8px;background-repeat:no-repeat;background-position:100%;-webkit-appearance:none;-moz-appearance:none}.langSelect_icon{width:10px;height:10px;margin-right:6px}.langSelect-gray{color:#333a3e}.langSelect-gray .langSelect_input{color:inherit}.langSelect-gray .langSelect_input option{background:#fff;color:inherit}.langSelect-white{color:#fff}.langSelect-white .langSelect_input{background-image:url(../../Assets/icons/icon-carrot-down-white.png);color:#fff}.langSelect-white .langSelect_input option{background:#fff;color:#677078}.loaderWrapper{min-height:50vh}.loader,.loader:after,.loader:before{width:2.5em;height:2.5em;border-radius:50%;animation-fill-mode:both;animation:load7 1.8s ease-in-out infinite}.loader{position:relative;margin:80px auto;color:#ff5f02;text-indent:-9999em;transform:translateZ(0);animation-delay:-.16s}.loader:after,.loader:before{position:absolute;top:0;content:""}.loader:before{left:-3.5em;animation-delay:-.32s}.loader:after{left:3.5em}@keyframes load7{0%,80%,to{box-shadow:0 2.5em 0 -1.3em}40%{box-shadow:0 2.5em 0 0}}.default-modal{position:fixed;top:0;right:0;bottom:0;left:0;justify-content:center;align-items:center;background-color:rgba(0,0,0,.5);display:flex;z-index:200}.modal-close span{font-size:22px!important;margin-left:1px}.device-mobile .modal-close span{margin-top:4px}.modal-close{position:absolute;width:26px;height:26px;background-color:#fff;color:#333a3e;border-radius:13px;right:-26px;top:-26px;justify-content:center;align-items:center;flex-wrap:wrap;cursor:pointer;line-height:1}:root{--modal-padding:2.5rem}.rounded-modal{display:none;background-color:rgba(0,0,0,.5);z-index:200;position:fixed;top:0;bottom:0;right:0;left:0;align-items:center;justify-content:center}.rounded-modal.fade-in{animation:fadeIn 1s;animation-fill-mode:both;display:flex}.rounded-modal.fade-out{animation:fadeOut 1s;animation-fill-mode:both}.rounded-modal__header-wrap{padding:var(--modal-padding)}.rounded-modal__container{width:50vw;border-radius:10px}.rounded-modal__close{position:absolute;right:0;padding:.5rem;border:none;color:#9a9a9a}.rounded-modal__close:focus,.rounded-modal__close:hover{background:transparent;color:#c4c4c4}.rounded-modal__close svg{color:inherit}.rounded-modal__heading{margin-bottom:10px}.rounded-modal__btn{background:#006969;border-radius:5px;right:0;top:0;bottom:0;padding-left:1rem;padding-right:1rem;border:none;transition:all .5s}.rounded-modal__btn:focus,.rounded-modal__btn:hover{background:#006969}.eloqua-container__nested{padding:.75rem;border-radius:12px}.eloqua-container__nested .elq-label{color:#333a3e!important}.elq-form a{font-weight:600;color:#00233c;text-decoration:underline}.background-navy .elq-form a{color:#fff}.elq-form .layout{padding:0}.elq-form .layout .row .grid-layout-col{display:contents}.elq-form .layout .row .grid-layout-col .layout-col{position:relative;overflow-x:unset;overflow-y:unset;padding-right:calc(var(--bs-gutter-x)*0.5);padding-left:calc(var(--bs-gutter-x)*0.5)}.elq-form .elq-item-input,.elq-form .elq-item-select,.elq-form .elq-item-textarea,.elq-form .elq-label,.elq-form .field-p{margin-bottom:0;color:#333a3e}.elq-form .elq-form-text,.elq-form .elq-heading.form-element-form-text{margin-bottom:0;padding-bottom:0}.elq-form .elq-label--placeholder{position:absolute;z-index:1;left:25px;top:15px;transition:transform .25s ease-in-out,color .25s ease-in-out;transform-origin:left}.elq-form .elq-label--placeholder.focused{transform:translateY(-29.5px) translateX(-5px) scale(.9)}.elq-form .elq-label--placeholder:after{content:"";position:absolute;background-color:#fff;height:50%;top:50%;left:-4px;right:-4px;z-index:-1;border-radius:4px;opacity:0;transition:opacity .25s ease-in-out}.elq-form .elq-label--placeholder.focused:after{opacity:1}.elq-form .elq-item-textarea{padding-top:13px}.elq-form .elq-item-select[multiple]{background-image:none}.elq-form .form-element-layout{margin-bottom:24px}.elq-form .field-control-wrapper{line-height:1}.elq-form .single-checkbox-row.row{margin:0}.elq-form .single-checkbox-row.row>*{width:auto}.elq-form label.checkbox-aligned{display:inline-block}.elq-form .list-order{display:inline-block;margin-right:16px}.elq-form .LV_validation_message{margin:0 0 0 5px}.elq-form .LV_invalid{color:#b42318}.elq-form .LV_invalid_field{border-color:#b42318}.elq-form .LV_valid{color:#027a48;display:none}.elq-form .LV_valid_field{border-color:#027a48}.elq-form .submit-button{height:auto!important;width:auto!important}.elq-form .field-p{position:relative}@media screen and (min-width:576px){.elq-form .row{justify-content:space-between}.elq-form .row .grid-layout-col .col-sm-12{width:100%}.elq-form .row .grid-layout-col .col-sm-6{width:50%!important}}@media screen and (min-width:768px){.eloqua-container__nested{padding:2.5rem}.eloqua-container__nested [type=checkbox],.eloqua-container__nested [type=checkbox]+label,.eloqua-container__nested [type=radio],.eloqua-container__nested [type=radio]+label{color:#333a3e}}.background-navy .elq-form .elq-label:not(.elq-label--placeholder),.background-slate.color-white .elq-form .elq-label:not(.elq-label--placeholder){color:#fff}.background-navy .elq-form .elq-label.elq-label--placeholder.focused,.background-slate.color-white .elq-form .elq-label.elq-label--placeholder.focused{transform:translateY(-37px) translateX(-5px) scale(.9);color:#fff}.background-navy .elq-form .elq-label.elq-label--placeholder.focused:after,.background-slate.color-white .elq-form .elq-label.elq-label--placeholder.focused:after{content:unset}.background-navy .elq-form .LV_invalid,.background-slate.color-white .elq-form .LV_invalid{color:#ff998b}.background-navy .elq-form .LV_invalid_field,.background-slate.color-white .elq-form .LV_invalid_field{border-color:#ff998b}.background-navy .elq-form .LV_valid,.background-slate.color-white .elq-form .LV_valid{color:#3fcb8a}.background-navy .elq-form .LV_valid_field,.background-slate.color-white .elq-form .LV_valid_field{border-color:#3fcb8a}.background-navy .eloqua-container [type=checkbox]+label,.background-navy .eloqua-container [type=radio]+label,.background-slate.color-white .eloqua-container [type=checkbox]+label,.background-slate.color-white .eloqua-container [type=radio]+label{color:#fff}.background-navy .eloqua-container__nested [type=checkbox]+label,.background-navy .eloqua-container__nested [type=radio]+label,.background-slate.color-white .eloqua-container__nested [type=checkbox]+label,.background-slate.color-white .eloqua-container__nested [type=radio]+label{color:#333a3e}.background-navy .eloqua-container__nested .elq-form-text,.background-navy .eloqua-container__nested .elq-heading.form-element-form-text,.background-slate.color-white .eloqua-container__nested .elq-form-text,.background-slate.color-white .eloqua-container__nested .elq-heading.form-element-form-text{color:#333a3e;font-size:.75rem;line-height:1.6}.fr-view a:not(.button,.card,.large-card,.card_content),.structured-content a:not(.button,.card,.large-card,.card_content){font-weight:600;color:#00233c;text-decoration:underline;-webkit-text-decoration-color:#00233c;text-decoration-color:#00233c;transition:.25s}@media screen and (min-width:1025px){.fr-view a:not(.button,.card,.large-card,.card_content),.structured-content a:not(.button,.card,.large-card,.card_content){text-decoration:none;position:relative;background-image:linear-gradient(#00233c,#00233c);background-image:webkit-linear-gradient(#00233c,#00233c);background-position:0 100%;background-repeat:no-repeat;background-size:0 1px;transition:all .25s ease-in-out 0s}.fr-view a:not(.button,.card,.large-card,.card_content):focus,.fr-view a:not(.button,.card,.large-card,.card_content):hover,.structured-content a:not(.button,.card,.large-card,.card_content):focus,.structured-content a:not(.button,.card,.large-card,.card_content):hover{background-size:100% 1px}}.fr-view ul,.structured-content ul{list-style:none}.fr-view ul:not(.noBullets) li:before,.structured-content ul:not(.noBullets) li:before{content:"•";color:#ff5f02;font-weight:700;display:inline-block;width:1em;margin-left:-1em}.fr-view ol,.structured-content ol{list-style:decimal outside}.fr-view ol,.fr-view ul,.structured-content ol,.structured-content ul{margin-bottom:20px;padding-left:20px}.fr-view button,.structured-content button{text-align:center}.fr-view h3,.fr-view h4,.structured-content h3,.structured-content h4{font-weight:600}.fr-view>:first-child,.structured-content>:first-child{padding-top:0}.fr-view img,.structured-content img{margin-top:36px;margin-bottom:36px;height:auto!important}.fr-view img[style*="float:left;"],.fr-view img[style*="float: left;"],.structured-content img[style*="float:left;"],.structured-content img[style*="float: left;"]{margin-right:36px!important;margin-left:0!important}.fr-view img[style*="float:right;"],.fr-view img[style*="float: right;"],.structured-content img[style*="float:right;"],.structured-content img[style*="float: right;"]{margin-right:0!important;margin-left:36px!important}.fr-view .cfPadding img,.structured-content .cfPadding img{margin:0!important}.fr-view iframe[src*=youtube],.structured-content iframe[src*=youtube]{width:100%!important}.fr-view .button+h2,.fr-view .button+h3,.fr-view .button+h4,.fr-view .button+p,.structured-content .button+h2,.structured-content .button+h3,.structured-content .button+h4,.structured-content .button+p{padding-top:60px}.fr-view ol ol,.structured-content ol ol{list-style:lower-alpha outside}.fr-view ol,.fr-view ul,.structured-content ol,.structured-content ul{max-width:100%;margin-right:auto;margin-left:auto;padding-left:25px}.fr-view ol ol,.fr-view ol ul,.fr-view ul ol,.fr-view ul ul,.structured-content ol ol,.structured-content ol ul,.structured-content ul ol,.structured-content ul ul{margin-bottom:0}.fr-view big,.structured-content big{font-size:22px;line-height:22px;font-weight:400;font-family:Inter,sans-serif}@media(max-width:1200px){.fr-view big,.structured-content big{font-size:1.8333333333vw;line-height:1.8333333333vw}}@media(max-width:872.7272727273px){.fr-view big,.structured-content big{font-size:16px;line-height:16px}}.fr-view .playContainer img,.structured-content .playContainer img{margin:0}.fr-view svg.icon,.structured-content svg.icon{display:inline-block;width:16px;height:16px;margin-left:.5rem}@media screen and (min-width:768px){.fr-view button,.structured-content button{text-align:initial}}.press-release-detail__content.structured-content img[style*="float:left;"],.press-release-detail__content.structured-content img[style*="float: left;"],.press-release-detail__content.structured-content img[style*="float:right;"],.press-release-detail__content.structured-content img[style*="float: right;"]{width:auto}.fr-view .large-card__image-wrapper{display:flex;padding:1.5rem}.fr-view .large-card__image{margin:0}.filter-clear{display:inline-flex;margin:0 .5rem .25rem 0;padding:.25rem .5rem;border-radius:3px;background:#e6e6e6;color:#676767;align-items:center;transition:all .25s ease-in-out 0s}.filter-clear_icon{height:.8125rem;width:.8125rem;position:relative;top:-1px;cursor:pointer}.filter-clear-title+.filter-clear{margin-left:24px}.filter-clear-title{margin-top:5px}.filter-clear:last-of-type{margin-right:16px}.filterWrapper-transition-enter-active,.filterWrapper-transition-leave-active{transition:all .25s ease}.filterWrapper-transition-enter-from,.filterWrapper-transition-leave-to{transform:translateY(-10px);opacity:0}.filterWrapper-transition-enter-to,.filterWrapper-transition-leave-from{transform:translateY(0);opacity:1}.filterWrapper-transition-move{transition:all .5s ease}.filter-dropdown{box-shadow:0 0 15px rgba(0,0,0,.1);position:relative;background:#fff;color:#333a3e;overflow-x:hidden;border-radius:5px;padding:0 1.5rem}.filter-dropdown-wrapper{top:52px;z-index:1}.filter-dropdown details>summary{list-style:none}.filter-dropdown details>summary::webkit-details-marker{display:none}.filter-dropdown .caret{border:solid #ced3da;border-width:0 2px 2px 0}.filter-dropdown [type=checkbox]{background-image:url('data:image/svg+xml;utf8,')}.filter-dropdown [type=checkbox]:checked{background-image:url('data:image/svg+xml;utf8,')}.filter-dropdown__wrapper:not(:last-child) .filterWrapper{border-bottom:1px solid #ced3da}.filter-dropdown__wrapper:not(:last-child) details[open] .filterWrapper{border-bottom:none}.filter-dropdown__wrapper:not(:last-child) .checklistWrapper{border-bottom:1px solid #ced3da}.filter-dropdown details[open]:focus{outline:none}.filter-dropdown details[open] .caret{transform:rotate(45deg) rotate(-180deg)}.filterWrapper{display:flex;padding:24px 0;align-items:center;cursor:pointer}.filterWrapper-title{padding:13px 16px 14px;border-top:1px solid #677078;border-bottom:1px solid #677078;background:#fff;overflow:hidden}.filterMobile_searchInput{top:1px;right:0;width:auto;height:45px;padding-left:18px;border-left:1px solid #677078;background:#fff;transform:translateX(100%) translateX(-44px);z-index:10;transition:all .25s ease 0s}.filterMobile_searchInput.searchInput{position:absolute}.filterMobile_searchInput input{display:none}.filterMobile_searchInput:not([style="display: none;"])+.filterWrapper-title{padding-right:50px}.checklistWrapper{-moz-columns:2;column-count:2;padding-bottom:24px}.checklistWrapper>*{-webkit-column-break-inside:avoid}.filterMobile_searchInput.searchInput-active{width:100%;border-left:none;transform:translateX(0)}.filterMobile_searchInput.searchInput-active input{display:block}.cardWrapper{display:grid;grid-template-columns:1fr;grid-gap:16px;justify-items:center}.cardWrapper__relatedPosts{display:flex;justify-content:center;gap:30px;flex-wrap:wrap}.cardWrapper__relatedPosts .card{margin:initial}.card{color:#333a3e;background:#fff;overflow:hidden;transition:.25s;text-decoration:none;height:100%;width:100%;margin:auto;text-align:left}.card:not(.nolink){transition:all .25s ease-in-out 0s;position:relative}.card:not(.nolink):after{display:block;content:"";border-bottom:2px solid #ff5f02;transform:scaleX(0);transform-origin:0 50%;transition:transform .25s ease-in-out;position:absolute;bottom:0;width:100%;left:0}.card:not(.nolink):hover:after{transform:scaleX(1)}.card:focus,.card:hover{color:#333a3e}.card_image{max-height:132px;flex-basis:132px;aspect-ratio:16/9;margin:auto}.card_image img{max-height:100%;-o-object-fit:contain;object-fit:contain;margin:auto;display:block}.card_description{display:-webkit-box;overflow:hidden;-webkit-line-clamp:3;-webkit-box-orient:vertical}.card__wide{grid-column:1/-1;grid-row:auto;max-width:100%}.card_link{transition:.25s;width:100%}.card_link,.card_link:focus,.card_link:hover{color:inherit}.card__wide{transition:all .25s ease-in-out 0s;position:relative}.card__wide:after{display:block;content:"";border-bottom:2px solid #ff5f02;transform:scaleX(0);transform-origin:0 50%;transition:transform .25s ease-in-out;position:absolute;bottom:0;width:100%;left:0}.card__wide:hover:after{transform:scaleX(1)}.card__wide .card_date{position:absolute;top:0;right:0;left:0;padding:24px 24px 48px;background:linear-gradient(180deg,#333a3e,transparent);color:#fff}.card__wide .card_image{height:115px;padding-top:20px}.card__wide .card_image img{max-height:64px;width:auto;display:block;max-width:100%}.card__wide .card_details{line-height:1.25}.card_locked{position:absolute;top:1px;right:0}.card_description{position:relative;width:100%}.card_description-flex{display:flex;color:#333a3e;flex-direction:column;justify-content:flex-start}.card:hover .card_description-flex{color:#333a3e}.card_header{margin-bottom:16px;margin-left:0}.card_description_flex .card_header{flex:1}.card_categoryWrapper{display:flex;margin-bottom:24px;align-items:center}.card_categoryWrapper .icon-categoryLabel{white-space:nowrap}.card_category-primaryFont{font-family:Inter,sans-serif}.card_date{color:#333a3e}.card_icon{color:#a6a6a6;width:16px;height:16px;min-width:16px}.card_icon-alt{color:#ff5f02}.card_icon+.card_category{margin-left:8px}.card_action_icon{width:26px;height:6px;margin-left:16px;transform:translateX(0);transition:all .25s ease-in-out 0s}.card_tagWrapper{display:flex;margin:0;flex-wrap:wrap}@media(min-width:1025px){.card_description .card_tagWrapper{position:absolute;bottom:20px;left:20px}}.card__wide .card__image,.card__wide .card_description .card_details{flex:0 0 250px}.card__wide .card_descriptionWrapper *,.card__wide .card_title{display:-webkit-box;overflow:hidden;-webkit-line-clamp:2;-webkit-box-orient:vertical;padding-bottom:0}.card__wide .card__image{aspect-ratio:2/1}.card__wide .card_description{position:relative;width:100%;height:250px}.card__wide .card_description .card_details{max-width:250px;margin-left:40px;padding:12px 0 12px 24px;border-left:1px solid #ced3da;flex:0 0 250px}@media screen and (min-width:750px){.card__wide .card_link{display:flex}.card__wide .card__image{aspect-ratio:1/1}.card__wide .card_titleWrapper{height:auto}}@media screen and (min-width:768px){.cardWrapper{grid-template-columns:repeat(2,1fr)}}@media screen and (min-width:1025px){.card_titleWrapper--smallTitle{height:225px}.checklistWrapper{-moz-columns:3;column-count:3}}@media screen and (min-width:1300px){.cardWrapper__relatedPosts{flex-wrap:nowrap}}@media screen and (min-width:1400px){.cardWrapper{grid-gap:24px;grid-template-columns:repeat(3,1fr)}}.card_partners .card_link{display:flex;flex-direction:column;justify-content:space-between;height:100%}.card_partners .card_titleWrapper{height:auto}.card_partners .card_image img{max-height:100%;max-width:100%;width:auto}.paginationWrapper{display:inline-block}.cardWrapper~.paginationWrapper{padding-top:40px}.pagination{display:flex;overflow:hidden;align-content:center}.pagination_link{min-width:32px;padding:0 11px;border:1px solid #a6a6a6;background:transparent;color:#a6a6a6;text-align:center;cursor:pointer;line-height:30px}.pagination_link:focus,.pagination_link:hover{background-color:#f6f7fb;color:#333a3e}.pagination_link svg{height:32px}.pagination_link+.pagination_link,.pagination_link+.pagination_link.pagination_link-active{border-left:none}.pagination_link-active{border-color:#333a3e;background:#333a3e;color:#fff}.pagination_link-active:focus,.pagination_link-active:hover{border-color:#333a3e;background-color:#333a3e;color:#fff}.pagination_link-disabled{display:none}.pagination_link-viewAll{border:none;line-height:32px}.pagination-blog .pagination_link{padding:0 10px;border:none;cursor:pointer}.pagination-blog .pagination_link:focus,.pagination-blog .pagination_link:hover{background-color:#ff5f02;color:#fff}.pagination-blog .pagination_link.disabled{-webkit-user-select:none;-moz-user-select:none;user-select:none;cursor:auto}.pagination-blog .pagination_link.disabled:focus,.pagination-blog .pagination_link.disabled:hover{background-color:#fff}.pagination-blog .pagination_link-active{border-color:#ff5f02;background:#ff5f02;color:#fff}.pagination-blog .pagination_link-active:focus,.pagination-blog .pagination_link-active:hover{border-color:#ff5f02;background-color:#ff5f02;color:#fff}.pagination-blog .pagination_link-next{padding:0 6px 0 9px}.pagination-blog .pagination_link-next .arrow{padding-right:17px;background:url(../../Assets/icons/ic_arrow_right_24px-gray.png) no-repeat 100%;text-align:center;background-size:19px auto}.pagination-blog .pagination_link-next:hover:not(.disabled) .arrow{background:url(../../Assets/icons/ic_arrow_right_24px-white.png) no-repeat 100%;background-size:19px auto}.pagination-blog .pagination_link-prev{padding:0 6px 0 9px}.pagination-blog .pagination_link-prev .arrow{padding-right:17px;background:url(../../Assets/icons/ic_arrow_left_24px-gray.png) no-repeat 100%;text-align:center;background-size:19px auto}.pagination-blog .pagination_link-prev:hover:not(.disabled) .arrow{background:url(../../Assets/icons/ic_arrow_left_24px-white.png) no-repeat 100%;background-size:19px auto}.paginationWrapper-center{display:block;padding:32px;text-align:center}.paginationWrapper-center>div{display:inline-block}.searchBar .search-icon{position:absolute;left:25px;top:0;bottom:0;transform:translateY(25%)}.searchBar input[type=text]{width:100%;background:#e6e6e6;border-radius:5px;padding:11px 13px 11px 48px;border:none;color:#333a3e;transition:all .5s ease;font-size:.938rem;line-height:1.53;margin-bottom:0}.searchBar input[type=text]:-moz-placeholder,.searchBar input[type=text]::-moz-placeholder,.searchBar input[type=text]::-webkit-input-placeholder{color:#9a9a9a}.searchBar.searchBar-withFilter input[type=text]{border-top-right-radius:0;border-bottom-right-radius:0;flex:1}.searchBar.searchBar-withFilter .searchBar-withFilter__clear{position:absolute;right:69px;width:48px;height:48px;margin:auto;text-align:center;padding:12px;transition:.25s;background:#e6e6e6;border:transparent;line-height:1}.searchBar.searchBar-withFilter .searchBar-withFilter__clear:hover .searchBar-withFilter-clear_icon{color:#55595b}.searchBar.searchBar-withFilter .searchBar-withFilter-clear_icon{color:#9a9a9a;height:100%;width:100%;transition:.25s}.searchBar.searchBar-withFilter .searchBar-withFilter__toggle{background:#e6e6e6;cursor:pointer;height:48px;padding:.5rem 1rem;margin-left:.125rem;border-top-right-radius:5px;border-bottom-right-radius:5px;border:transparent;line-height:1}.searchBar.searchBar-withFilter .searchBar-withFilter__toggle:focus{outline:none}.searchBar.searchBar-withFilter .searchBar-withFilter__toggle.active{background:#ced3da}.searchBar.searchBar-withFilter .searchBar-withFilter__toggle svg{width:20px;height:20px;fill:#333a3e}.searchInput{position:relative;display:flex;align-items:center}.searchInput-query{min-height:48px}.searchInput_input{margin-bottom:0;border:none;background:transparent;color:#333a3e}.searchInput_input:focus,.searchInput_input:hover{box-shadow:none}.searchInput_underlineHolder{position:absolute;bottom:0;left:0;display:block;width:auto;height:4px;max-width:100%;padding-left:56px;background:#ff5f02;overflow:hidden;flex:none;transition:width 1s ease}.searchInput_input-wide{min-width:300px}.searchInput-small .searchInput_icon{width:1.125rem;height:1.125rem;color:#677078;stroke-width:3px}.searchInput-small .searchInput_input{min-width:300px}.searchInput-small .searchInput_input-resources{min-width:190px}.searchInput-small .searchInput_input-newsCoverage{min-width:250px}.searchInput-searchPage{padding-bottom:0;border-bottom:1px solid #9ca4a8}.searchInput-searchPage .searchInput_input::-moz-placeholder{color:#9ca4a8}.searchInput-searchPage .searchInput_input::placeholder{color:#9ca4a8}.searchInput-searchPage .searchInput_icon{width:26px;height:26px}.searchInput-searchPage:before{display:none}.searchInput_predictive{position:absolute;top:100%;left:0;display:none;width:100%;padding:20px 0 24px;background:#fff;box-shadow:0 4px 24px rgba(57,73,81,.3);z-index:100}.searchInput_predictive-active{display:block}.searchInput_predictive-header{top:108px;right:200px;left:auto;width:236px;box-shadow:0 8px 20px 0 rgba(0,0,0,.35)}.searchInput_predictive-header a{font-size:.875rem}@media(max-width:1024px){.searchInput_predictive-header{top:67px;right:0}}@media(max-width:767px){.searchInput_predictive-header{right:0}}.searchInput_predictive-searchPage{box-shadow:0 8px 20px 0 rgba(0,0,0,.35)}.searchInput_predictive_item,a.searchInput_predictive_item{display:flex;width:100%;padding:4px 60px;color:#677078;text-align:left;text-decoration:none;line-height:1}.searchInput_predictive_item:hover,a.searchInput_predictive_item:hover{background-color:#f6f7fb;color:#ff5f02}.searchInput_predictive_item+.searchInput_predictive_item,a.searchInput_predictive_item+.searchInput_predictive_item{margin-top:12px}@media(max-width:767px){.searchInput_predictive{padding:12px 0}.searchInput_predictive_item{padding:4px 16px}.searchInput_predictive_item+.searchInput_predictive_item{margin-top:8px}}.caret{border:solid #fff;border-width:0 2px 2px 0;padding:3px;transform:rotate(45deg);display:inline-block;margin-left:10px;position:relative;top:-2px;transition:.25s}.caret--slate{border-color:#333a3e}.toggle-active .caret{transform:rotate(45deg) rotate(-180deg)}@media(min-width:1025px){.caret{padding:2px}}.excerpt__content{border-left:2px solid #ff5f02;font-weight:600;padding:1.5rem 0 1.5rem 1.5rem}.excerpt__content a:not(.button){font-weight:600;color:#00233c;text-decoration:underline;-webkit-text-decoration-color:#00233c;text-decoration-color:#00233c;transition:.25s}@media screen and (min-width:1025px){.excerpt__content a:not(.button){text-decoration:none;position:relative;background-image:linear-gradient(#00233c,#00233c);background-image:webkit-linear-gradient(#00233c,#00233c);background-position:0 100%;background-repeat:no-repeat;background-size:0 1px;transition:all .25s ease-in-out 0s}.excerpt__content a:not(.button):focus,.excerpt__content a:not(.button):hover{background-size:100% 1px}}.author-profile{margin-right:1rem;width:48px;height:48px;border-radius:50%;overflow:hidden;min-width:40px;flex:none}.author-profile img{width:100%;height:100%;vertical-align:middle;-o-object-fit:cover;object-fit:cover}@media screen and (min-width:1025px){.author-profile{width:60px;height:60px}}.image_16_9{aspect-ratio:16/9}.icon-card__partner__logo-wrapper,.large-card.large-card__wide--customer .large-card__detail .logo,.large-card__secondary .logo,.logo__size,.media-hero__logo{max-height:40px;max-width:100px}@media screen and (min-width:1025px){.detail_media{max-width:1025px;margin:auto}}.afterglow{position:relative;display:inline-block;margin-bottom:4rem}.afterglow img{position:relative;z-index:2}.afterglow:after{content:"";width:75%;height:50%;background:rgba(255,95,2,.6);position:absolute;bottom:-3%;margin:auto;filter:blur(50px);border-radius:12px;right:50%;transform:translateX(50%)}@media screen and (min-width:768px){.afterglow{margin-bottom:1rem}}@media screen and (min-width:1025px){.afterglow{margin-bottom:0}}.invisible{visibility:hidden}.mosaic-four-text-blocks{margin-bottom:0;width:100vw;max-width:100vw;overflow:hidden;border-top:1px solid #f2f2f2;border-bottom:1px solid #f2f2f2}.mosaic-four-text-blocks a{text-decoration:none!important}.mosaic-four-text-blocks a:focus,.mosaic-four-text-blocks a:hover{color:inherit!important;text-decoration:none!important}.mosaic-four-text-blocks .tile{margin-bottom:.1875rem;min-height:25vw}.mosaic-four-text-blocks .tile.background-gray300 .text-link{color:#00233c}.mosaic-four-text-blocks .tile .text-link{color:#fff}.mosaic-four-text-blocks .tile.quarter:not(.fluid){width:100%;min-width:100%;flex-basis:100%}.mosaic-four-text-blocks .tile.quarter:not(.fluid) a{padding:4.1875rem 2rem}.mosaic-four-text-blocks .tile.quarter:not(.fluid) h2{max-width:100%}.mosaic__tile{position:relative}.mosaic__wrapper{display:flex;flex-direction:column;height:100%;justify-content:center;left:0;padding:20px 30px!important;top:0;width:100%}.mosaic .tile.text label.mosaic__label{margin-bottom:1rem}.mosaic-link,.mosaic-link:hover{color:inherit}@media(min-width:768px){.mosaic__wrapper{padding:20px 60px!important}.mosaic-four-text-blocks{display:flex;flex-flow:row wrap}.mosaic-four-text-blocks .tile{position:relative;margin-bottom:2px}.mosaic-four-text-blocks .tile:before{content:"";width:2px;height:100%;bottom:unset;left:unset;top:0;right:0;position:absolute;display:block;background:#f2f2f2;z-index:1}.mosaic-four-text-blocks .tile.quarter:not(.fluid){width:50vw;min-width:50vw;flex-basis:50vw}}@media(min-width:1025px){.mosaic-four-text-blocks{flex-flow:row}.mosaic-four-text-blocks .tile{margin-bottom:0;min-height:25vw}.mosaic-four-text-blocks .tile.quarter:not(.fluid){width:25vw;min-width:25vw;flex-basis:25vw}.mosaic-four-text-blocks .tile.quarter:not(.fluid) a{min-height:25vw;padding:60px}}.intro-block{padding-bottom:1.5rem;overflow:hidden}.intro-block__image-wrapper img{display:block;height:100%;max-height:350px;-o-object-fit:cover;object-fit:cover;width:100%}.intro-block__bg-circle{height:40vw;width:40vw;right:-15%;border:2px solid #ced3da;border-radius:50%;top:35%}.intro-block .author-profile{margin-right:1.5rem;width:66px;height:66px}.intro-block__author-detail{padding-left:15px;padding-right:15px}.intro-block__blogAuthor--subheader-mobile .authorBio__profile--title{position:relative;top:25px}@media screen and (min-width:768px){.intro-block__blog{padding-top:7rem}.intro-block__subheading{max-width:65%}}@media screen and (min-width:1025px){.intro-block__blog{padding-top:8rem;padding-bottom:5rem}.intro-block__heading{max-width:65%}.intro-block__subheading{max-width:40%}.intro-block__image-wrapper{width:80%;max-width:920px;max-height:350px}.intro-block__blogAuthor .intro-block__meta{max-width:65%}}.editors-picks{display:grid;padding-bottom:5rem;grid-template-columns:auto;grid-template-rows:auto;grid-gap:15px;grid-template-areas:" featured" "sidebar-1" "sidebar-2" "sidebar-3" "sidebar-4"}.editors-picks .editors-picks-featured{-ms-grid-row:1;-ms-grid-column:1;grid-area:featured}.editors-picks .editors-picks-featured a:not(.meta-details__name):not(.blog__label--meta),.editors-picks .editors-picks-featured a:not(.meta-details__name):not(.blog__label--meta):hover{color:#333a3e}.editors-picks .editors-picks-featured-container{height:100%}.editors-picks .editors-picks-featured-image-wrapper{position:relative}.editors-picks .editors-picks-featured-label{z-index:2;padding:.75rem 0}.editors-picks .editors-picks-detail{padding:1rem}.editors-picks .editors-picks-featured-image-wrapper{overflow:hidden}.editors-picks .editors-picks-featured-image,.editors-picks .editors-picks-sidebar-image{transition:.25s;width:100%;height:100%;-o-object-fit:cover;object-fit:cover}.editors-picks .editors-picks-sidebar-image{position:absolute}.editors-picks .editors-picks-sidebar-article{display:grid;grid-template-columns:130px 1fr;grid-template-rows:1fr;grid-template-areas:"picture content"}.editors-picks .editors-picks-sidebar-article__1{-ms-grid-row:3;-ms-grid-column:1;grid-area:sidebar-1}.editors-picks .editors-picks-sidebar-article__2{-ms-grid-row:5;-ms-grid-column:1;grid-area:sidebar-2}.editors-picks .editors-picks-sidebar-article__3{-ms-grid-row:7;-ms-grid-column:1;grid-area:sidebar-3}.editors-picks .editors-picks-sidebar-article__4{-ms-grid-row:9;-ms-grid-column:1;grid-area:sidebar-4}.editors-picks .editors-picks-sidebar-article:hover{color:inherit}.editors-picks .editors-picks-sidebar-article .sidebar-article-content{-ms-grid-row:1;-ms-grid-column:2;margin:1rem 2rem 1rem 1rem;grid-area:content;background:#fff}.editors-picks .editors-picks-sidebar-article .editors-picks-sidebar-image-wrap{-ms-grid-row:1;-ms-grid-column:1;grid-area:picture;overflow:hidden;position:relative;min-height:130px}.editors-picks .editors-picks-sidebar-article .editors-picks-sidebar-image-wrap img{width:100%;height:100%;-o-object-fit:cover;object-fit:cover}.meta-details__name{font-weight:600;color:#333a3e;transition:.25s}.meta-details__name:hover{color:#333a3e;-webkit-text-decoration-color:#333a3e;text-decoration-color:#333a3e;font-weight:700;text-decoration:underline;text-shadow:0 0 .5px #333a3e}.meta-details__datestamp:after{content:" ";width:0;height:100%;border:1px solid #9ca4a8;position:absolute;right:0;top:0}@media screen and (min-width:768px){.editors-picks{padding-left:0;padding-right:0}.editors-picks-featured{margin-bottom:3rem}.editors-picks-detail{padding:1.5rem}.editors-picks .editors-picks-sidebar-article{margin:0 10vw;grid-template-columns:165px 1fr}.editors-picks .editors-picks-sidebar-article .editors-picks-sidebar-image-wrap{min-height:165px}.editors-picks .editors-picks-featured-label{background:rgba(16,16,16,.75);text-transform:uppercase;position:absolute;top:3rem;width:25vw;padding:.75rem 1.25rem .75rem 0;color:#fff;text-align:right;font-weight:600;z-index:3}.editors-picks .editors-picks-detail{padding-left:10vw}}@media screen and (min-width:1250px){.editors-picks{display:grid;padding-right:10vw;padding-left:0;padding-bottom:8rem;grid-template-columns:65% auto;grid-template-rows:repeat(4,auto);grid-gap:35px;grid-template-areas:" featured sidebar-1" " featured sidebar-2" " featured sidebar-3" " featured sidebar-4"}.editors-picks .editors-picks-sidebar-article{margin:0}.editors-picks-detail{flex:1}.editors-picks .editors-picks-featured{margin-bottom:0}.editors-picks .editors-picks-featured-image-wrapper{flex:0 0 48%}.editors-picks .editors-picks-featured-label{width:10vw}.editors-picks-featured-image-wrapper:before,.editors-picks-sidebar-image-wrap:before{position:absolute;content:"";top:0;bottom:0;z-index:2;opacity:0;width:100%;height:100%;transition:.25s;background:radial-gradient(117% 117% at 50% 50%,transparent 0,rgba(0,0,0,.375) 100%)}.editors-picks-featured-container:hover .editors-picks-featured-image-wrapper:before,.editors-picks-sidebar-article:hover .editors-picks-sidebar-image-wrap:before{opacity:1}.editors-picks-featured-container:hover .editors-picks-featured-image,.editors-picks-sidebar-article:hover .editors-picks-sidebar-image{transform:scale(1.05)}.editors-picks .editors-picks-featured{-ms-grid-row:1;-ms-grid-row-span:7;-ms-grid-column:1}.editors-picks .editors-picks-sidebar-article__1{-ms-grid-row:1;-ms-grid-column:3}.editors-picks .editors-picks-sidebar-article__2{-ms-grid-row:3;-ms-grid-column:3}.editors-picks .editors-picks-sidebar-article__3{-ms-grid-row:5;-ms-grid-column:3}.editors-picks .editors-picks-sidebar-article__4{-ms-grid-row:7;-ms-grid-column:3}}@media screen and (min-width:1700px){.editors-picks .editors-picks-sidebar-article{grid-template-columns:220px 1fr}.editors-picks .editors-picks-sidebar-article .editors-picks-sidebar-image-wrap{min-height:220px}}@media screen and (max-width:1249px)and (-ms-high-contrast:active),screen and (max-width:1249px)and (-ms-high-contrast:none){.editors-picks{grid-template-columns:1fr;grid-template-rows:repeat(5,auto)}}.large-headline{padding:4rem 20px 1.5rem;overflow-x:hidden;overflow:hidden}.large-headline.text-center .large-headline__inner--narrow,.large-headline.text-center .large-headline__inner--narrow>*{margin:auto}.large-headline__h1{padding-top:1.5rem}.large-headline__featured{padding-top:80px!important;padding-bottom:80px!important}.large-headline__inner{overflow-x:auto;overflow-y:hidden;width:100%}@media(min-width:1025px){.large-headline__inner::-webkit-scrollbar{width:12px;height:12px}.large-headline__inner::-webkit-scrollbar-thumb{border-radius:0;background-color:rgba(16,16,16,.17);width:12px;height:12px}.large-headline__inner::-webkit-scrollbar-corner{background-color:inherit}}.large-headline__inner--indent-25{padding-left:24px;padding-right:24px}.large-headline__inner--narrow>*{max-width:800px}.large-headline__title{color:inherit}@media screen and (min-width:768px){.large-headline__featured{padding-top:120px!important;padding-bottom:120px!important}.large-headline__inner--indent-md{padding:0 182px}.large-headline__inner--indent-lg{padding:0 123px}.large-headline__inner--indent-25{padding-left:33%}}@media screen and (min-width:1025px){.large-headline{padding:7.5rem 0 2.5rem}.large-headline__h1{padding-top:2.5rem}.large-headline__featured--tall{min-height:660px;display:flex}.large-headline__inner{padding-left:10vw}.large-headline__inner--indent-lg{padding:0 241px}.large-headline__inner--indent-25{padding-left:25%}}.card-listing .row,.card-listing [class^=col-]{padding-left:.375rem;padding-right:.375rem}@media(min-width:1025px){.card-listing .row,.card-listing [class^=col-]{padding-left:.75rem;padding-right:.75rem}}.large-card{display:flex;flex-direction:column;color:#333a3e;background-color:#fff;width:100%;height:100%;border-radius:12px;overflow:hidden;transition:all .25s ease-in-out 0s;position:relative}.large-card:after{display:block;content:"";border-bottom:2px solid #ff5f02;transform:scaleX(0);transform-origin:0 50%;transition:transform .25s ease-in-out;position:absolute;bottom:0;width:100%;left:0}.large-card:hover:after{transform:scaleX(1)}.large-card:focus,.large-card:hover{color:#333a3e}.large-card__wrapper{width:100%;height:100%}.large-card .icon-wrapper{position:absolute;left:20px;top:20px;width:60px;height:36px;aspect-ratio:16/9;padding:4px;border-radius:4px}.large-card .icon-wrapper img{max-height:100%}.large-card__image-wrapper{overflow:hidden;margin:0;padding:0;line-height:0;aspect-ratio:16/9;border-top-left-radius:12px;border-top-right-radius:12px}.large-card--wide .large-card__image-wrapper{border-top-right-radius:0}.large-card__image-wrapper--aspect-2-1{aspect-ratio:2/1}.large-card__image-wrapper .duration{background:#333a3e;color:#fff;border-radius:4px;display:block;font-size:.75rem;line-height:2;padding:0 8px;position:absolute;bottom:8px;right:8px}.large-card__image{transition:transform .25s ease-in-out;width:100%;height:100%;-o-object-fit:cover;object-fit:cover;color:#333a3e;flex:3}.large-card__detail{padding:1.5rem}.large-card__category{display:block}.large-card__title-wrapper,.large-card__title-wrapper:focus,.large-card__title-wrapper:hover{color:#333a3e}.large-card__title-wrapper{display:block;margin-top:4px}.large-card__title{word-break:break-word;color:#333a3e}.large-card__title:hover{color:#333a3e}.large-card__meta{display:flex;align-items:center}.large-card:not(.large-card--wide):not(.large-card__wide--customer) .large-card__title{display:-webkit-box;overflow:hidden;-webkit-line-clamp:2;-webkit-box-orient:vertical;padding-bottom:0}.large-card:not(.large-card--wide):not(.large-card__wide--customer) .large-card__detail{flex:auto}.large-card:not(.large-card--wide):not(.large-card__wide--customer) .large-card__detail h3,.large-card:not(.large-card--wide):not(.large-card__wide--customer) .large-card__detail p.h3{display:-webkit-box;overflow:hidden;-webkit-line-clamp:4;-webkit-box-orient:vertical;padding-bottom:0}.large-card--featured .large-card__detail{padding-top:28px}.large-card--featured .large-card__title-wrapper{margin-bottom:10px}@media(max-width:575.98px){.large-card--featured .large-card__image-wrapper{margin-top:-24px;margin-left:-15px;margin-right:-15px}}.large-card__image-wrapper{position:relative}@media screen and (min-width:768px){.large-card--wide{flex-direction:row}.large-card .meta-details__datestamp{display:block}.large-card .meta-details__datestamp:after{content:unset}.large-card:not(.large-card--wide) .meta-details__datetime{display:block!important}.large-card:not(.large-card--wide) .large-card__narrow__meta-details__datetime{display:none!important}.large-card__secondary__detail{flex:1}.large-card__secondary .image-wrapper{flex:1 0 100%;aspect-ratio:1/1;max-height:216px;max-width:216px}.large-card__secondary .image-wrapper .image{height:100%;width:100%}}@media screen and (min-width:992px){.large-card--wide{flex-direction:row}.large-card--wide .large-card__detail{padding:35px 40px;flex:0 0 calc(33.3333% - 20px)}.large-card--wide .large-card__title-wrapper{margin-bottom:10px}}@media screen and (min-width:1025px){.large-card__title-wrapper{margin-bottom:4rem}.large-card--wide .large-card__image-wrapper{flex:0 0 calc(66.66667% + 20px)}.large-card .meta-details__datestamp{display:inline-block}.large-card .meta-details__datestamp:after{content:" ";width:0;height:100%;border:1px solid #9ca4a8;position:absolute;top:0}.large-card.large-card__wide--customer .icon-wrapper{display:none}.large-card.large-card__wide--customer .large-card__image-wrapper{order:2;border-top-left-radius:unset;border-bottom-left-radius:unset;flex:1;flex:1 0 68.66667%}.large-card.large-card__wide--customer .large-card__detail .logo{max-width:100px;max-height:40px}.large-card__secondary{position:relative}.large-card__secondary:after{display:block;content:"";border-bottom:2px solid #ff5f02;transform:scaleX(0);transform-origin:0 50%;transition:transform .25s ease-in-out;position:absolute;bottom:0;width:100%;left:0}.large-card__secondary:hover:after{transform:scaleX(1)}.large-card__secondary__detail .large-card__secondary__label{display:-webkit-box;overflow:hidden;-webkit-line-clamp:1;-webkit-box-orient:vertical;padding-bottom:0}.large-card__secondary__detail .large-card__secondary__headline{display:-webkit-box;overflow:hidden;-webkit-line-clamp:2;-webkit-box-orient:vertical;padding-bottom:0}}@media screen and (max-width:767px){.large-card:not(.large-card--wide):not(.continue-reading__blog) .large-card__meta{display:block}.large-card:not(.large-card--wide):not(.continue-reading__blog) .large-card__meta .meta-details__datetime{padding-top:1rem}.large-card:not(.large-card--wide):not(.continue-reading__blog) .large-card__meta .meta-details__datetime span{display:block}.large-card:not(.large-card--wide):not(.continue-reading__blog) .large-card__meta .meta-details__datestamp:after{content:unset}.large-card:not(.large-card--wide):not(.continue-reading__blog) .author-profile{width:40px;height:40px;min-width:40px;display:block}.large-card:not(.large-card--wide):not(.continue-reading__blog) .meta-details__name{position:absolute;top:5px;right:0;max-width:60%;word-break:break-word}}.background-midnightBlack .large-card .caption,.background-midnightBlack .large-card .caption--bold,.background-midnightBlack .large-card .card__wide .card_date,.background-midnightBlack .large-card .elq-form .elq-form-text,.background-midnightBlack .large-card .elq-form .elq-heading.form-element-form-text,.background-midnightBlack .large-card .icon-categoryLabel,.background-midnightBlack .large-card .label-hasIcon,.background-midnightBlack .large-card .label-hasOverline,.background-midnightBlack .large-card .label-hasUnderline,.background-midnightBlack .large-card .meta-details__datestamp,.background-midnightBlack .large-card .meta-details__readtime,.card__wide .background-midnightBlack .large-card .card_date,.elq-form .background-midnightBlack .large-card .elq-form-text,.elq-form .background-midnightBlack .large-card .elq-heading.form-element-form-text{color:#333a3e}.authors-block{padding:5rem 0}.authors-block__container:not(:last-of-type){margin-bottom:5rem}.authors-block__image-wrap{width:50vw;height:50vw}.authors-block__name{font-size:1.25rem;font-weight:600;line-height:1.2}.authors-block__title{font-size:1rem;line-height:1.1875rem}.authors-block__cta,.authors-block__name,.authors-block__title{max-width:80%}@media screen and (min-width:768px){.authors-block__image-wrap{width:18vw;height:18vw}.authors-block__container:not(:last-of-type){margin-bottom:0}}@media screen and (min-width:1025px){.authors-block__image-wrap{width:13vw;height:13vw}.authors-block__cta,.authors-block__name,.authors-block__title{max-width:65%}}.blog-subscribe{overflow-x:hidden}.blog-subscribe .blog-subscribe__graphic-container,.blog-subscribe__form{padding-top:10vh}.blog-subscribe__graphic{vertical-align:bottom;position:relative}.blog-subscribe__graphic canvas{display:none}.blog-subscribe__graphic svg{width:100%;vertical-align:bottom;fill:#f6f7fb}.blog-envelope .circle--teal{fill:#006969}.blog-envelope .circle--orange{fill:#ff5f02}.blog-envelope .circle--slate{fill:#333a3e}.blog-envelope .envelope-icon{fill:#f6f7fb}@media screen and (min-width:768px){.blog-subscribe__graphic-container{left:8%}}@media screen and (min-width:1025px){.blog-subscribe__form{padding:10vh 0 10vh 10vw}.blog-subscribe__form--content,.blog-subscribe__form--header{max-width:60%}.blog-subscribe__graphic{width:80%;max-width:800px;margin:auto}.blog-subscribe__graphic-container{left:0}}.cta-insert__whitepaper .cta-insert__background{min-height:300px}.cta-insert__background{background-position:50%;background-repeat:no-repeat;background-size:cover;min-height:255px;display:flex;align-items:center}.cta-insert__content{color:#fff;padding:3rem}.cta-insert__detail{padding-bottom:.5rem}@media screen and (min-width:768px){.cta-insert__content{max-width:60%;padding:3rem 0}}@media screen and (min-width:768px){.cta-insert{padding-bottom:8rem}.cta-insert__background{background-position:75%}}.cta-insert__press-releases .cta-insert__background{background-position:10%}@media screen and (min-width:1025px){.cta-insert__content{padding:3rem 0 3rem 5rem}.cta-insert__background{background-position:100%}.cta-insert__whitepaper .cta-insert__content{padding:4rem 0 4rem 5rem}.cta-insert__press-releases .cta-insert__background{background-position:75%}}@media screen and (min-width:1200px){.cta-insert__content{max-width:40%}}.promo-standard-cta{padding:240px 14px 180px;position:relative;overflow:hidden}.promo-standard-cta>div{overflow-x:auto;overflow-y:hidden}@media screen and (max-width:767px){.promo-standard-cta{background-size:125%}}@media screen and (min-width:768px){.promo-standard-cta{padding:120px 60px}}@media(max-width:767px){.promo-standard-cta{padding:80px 14px 180px}}.promo-standard-cta.promo-standard-cta--fade-left .promo-standard-cta__header,.promo-standard-cta.promo-standard-cta--fade-left .promo-standard-cta__text,.promo-standard-cta.promo-standard-cta--fade-left a{transition-duration:.48s;transition-property:opacity,left;transition-timing-function:ease;opacity:0;left:-24px;position:relative}.promo-standard-cta.promo-standard-cta-loaded .promo-standard-cta__header,.promo-standard-cta.promo-standard-cta-loaded .promo-standard-cta__text,.promo-standard-cta.promo-standard-cta-loaded a{opacity:1;left:0}.promo-standard-cta__header{margin-bottom:1.75rem}@media(min-width:768px){.promo-standard-cta__header{margin-bottom:1.0625rem}}.promo-standard-cta__text{margin-bottom:.75rem}@media(min-width:768px){.promo-standard-cta__text{margin-bottom:2.0625rem}}.promo-standard-cta__text,.promo-standard-cta h1,.promo-standard-cta h2{margin-bottom:31.92px}.promo-standard-cta--sm-px{padding:240px 14px 180px}@media screen and (min-width:768px){.promo-standard-cta--sm-px{padding:120px 60px}}@media(min-width:1025px){.promo-standard-cta--md-px{padding-left:108px;padding-right:108px}}.promo-standard-cta--lg-px{padding-left:120px;padding-right:120px}@media screen and (max-width:1024px){.promo-standard-cta--lg-px{padding-left:20px;padding-right:20px}}.promo-standard-cta--xl-px{padding-left:160px;padding-right:160px}@media(max-width:1024px){.promo-standard-cta--xl-px .promo-standard-cta__header{max-width:100%}}@media(max-width:1024px){.promo-standard-cta--xl-px{padding-left:20px;padding-right:20px}}.promo-standard-cta--sm-py{padding-top:60px;padding-bottom:60px}@media screen and (max-width:1024px){.promo-standard-cta--sm-py{padding-top:40px;padding-bottom:40px}}.promo-standard-cta--mw-answers{max-width:650px}@media screen and (max-width:1024px){.promo-standard-cta--mw-answers{max-width:550px}}.promo-standard-cta--mw-650{max-width:650px}.promo-standard-cta--mw-700{max-width:700px}.promo-standard-cta--mw-750{max-width:750px}.promo-standard-cta--mw-975{max-width:975px}.promo-standard-cta--mw-1025{max-width:1025px}.promo-standard-cta--mw-1100{max-width:1100px}.promo-standard-cta--border-top-white-2{border-top:2px solid #fff}.promo-standard-cta--border-top-black-2{border-top:2px solid #000}.promo-standard-cta--border-top-white-10{border-top:10px solid #fff}@media screen and (max-width:1024px){.promo-standard-cta--border-top-white-10{border-top:5px solid #fff}}.promo-standard-cta--border-top-black-10{border-top:10px solid #000}@media screen and (max-width:1024px){.promo-standard-cta--border-top-black-10{border-top:5px solid #000}}.promo-standard-cta__container{background-position:0}.promo-standard-cta__blogs{padding:3rem .75rem}@media(min-width:768px){.promo-standard-cta__blogs{padding-left:10vw;padding-right:10vw}}@media(min-width:1025px){.promo-standard-cta__blogs{padding-left:0;padding-right:0}}@media screen and (min-width:768px){.promo-standard-cta__text{max-width:50%}.promo-standard-cta__container{background-position:80% 100%;background-size:cover}.promo-standard-cta__blogs{padding-top:3.75rem;padding-bottom:3.75rem}}@media screen and (min-width:1025px){.promo-standard-cta__container{background-position:100% 100%;background-size:cover}.promo-standard-cta__blogs{padding-top:7.5rem;padding-bottom:7.5rem}}@media screen and (min-width:1400px){.promo-standard-cta__container{background-size:contain;background-color:#101010;background-repeat:no-repeat}}.home-standard-cta{padding:240px 14px 180px;position:relative;overflow:hidden}.home-standard-cta>div{overflow-x:auto;overflow-y:hidden}@media(min-width:1025px){.home-standard-cta>div::-webkit-scrollbar{width:12px;height:12px}.home-standard-cta>div::-webkit-scrollbar-thumb{border-radius:0;background-color:rgba(16,16,16,.17);width:12px;height:12px}.home-standard-cta>div::-webkit-scrollbar-corner{background-color:inherit}}@media(min-width:1025px){.home-standard-cta>div::-webkit-scrollbar-thumb{background-color:hsla(0,0%,100%,.17)}}@media screen and (max-width:767px){.home-standard-cta{background-size:125%}}@media screen and (min-width:768px){.home-standard-cta{padding:120px 60px}}@media(max-width:767px){.home-standard-cta{padding:80px 14px 180px}}.home-standard-cta.home-standard-cta--fade-left .home-standard-cta__header,.home-standard-cta.home-standard-cta--fade-left .home-standard-cta__text,.home-standard-cta.home-standard-cta--fade-left a{transition-duration:.48s;transition-property:opacity,left;transition-timing-function:ease;opacity:0;left:-24px;position:relative}.home-standard-cta.home-standard-cta-loaded .home-standard-cta__header,.home-standard-cta.home-standard-cta-loaded .home-standard-cta__text,.home-standard-cta.home-standard-cta-loaded a{opacity:1;left:0}.home-standard-cta__header{margin-bottom:1.75rem}@media(min-width:768px){.home-standard-cta__header{margin-bottom:1.0625rem}}.home-standard-cta__text{margin-bottom:.75rem}@media(min-width:768px){.home-standard-cta__text{margin-bottom:2.0625rem}}.home-standard-cta__text,.home-standard-cta h1,.home-standard-cta h2{width:100%;margin-bottom:31.92px}.home-standard-cta--sm-px{padding:240px 14px 180px}@media screen and (min-width:768px){.home-standard-cta--sm-px{padding:120px 60px}}@media(min-width:1025px){.home-standard-cta--md-px{padding-left:108px;padding-right:108px}}.home-standard-cta--lg-px{padding-left:120px;padding-right:120px}@media screen and (max-width:1024px){.home-standard-cta--lg-px{padding-left:20px;padding-right:20px}}.home-standard-cta--xl-px{padding-left:160px;padding-right:160px}@media(max-width:1024px){.home-standard-cta--xl-px .home-standard-cta__header{max-width:100%}}@media(max-width:1024px){.home-standard-cta--xl-px{padding-left:20px;padding-right:20px}}.home-standard-cta--sm-py{padding-top:60px;padding-bottom:60px}@media screen and (max-width:1024px){.home-standard-cta--sm-py{padding-top:40px;padding-bottom:40px}}.home-standard-cta--mw-answers{max-width:650px}@media screen and (max-width:1024px){.home-standard-cta--mw-answers{max-width:550px}}.home-standard-cta--mw-650{max-width:650px}.home-standard-cta--mw-700{max-width:700px}.home-standard-cta--mw-750{max-width:750px}.home-standard-cta--mw-975{max-width:975px}.home-standard-cta--mw-1025{max-width:1025px}.home-standard-cta--mw-1100{max-width:1100px}.home-standard-cta--border-top-white-2{border-top:2px solid #fff}.home-standard-cta--border-top-black-2{border-top:2px solid #000}.home-standard-cta--border-top-white-10{border-top:10px solid #fff}@media screen and (max-width:1024px){.home-standard-cta--border-top-white-10{border-top:5px solid #fff}}.home-standard-cta--border-top-black-10{border-top:10px solid #000}@media screen and (max-width:1024px){.home-standard-cta--border-top-black-10{border-top:5px solid #000}}.social-share{position:absolute;top:5rem;height:calc(100% - 5rem)}.social-share__blog{top:11rem;height:calc(100% - 11rem)}.social-share__list{position:sticky;top:125px;height:236px;padding-top:15px;justify-content:space-evenly}.social-share__list.social-share__blog-list{top:180px}.social-share .icon-social{width:12px;height:12px;padding:10px;transition:.25s ease-in-out}.social-share__with-download li:last-child{border-top:3px solid #fff}.social-share__with-download li:last-child svg{position:relative;top:6px}.social-share__mobile .social-share__list{padding:10px 0 0;position:fixed;bottom:0;width:100%;z-index:10005;height:auto;top:auto}.menu-open .social-share__mobile .social-share__list{z-index:5}@media (-ms-high-contrast:none),screen and (-ms-high-contrast:active){.social-share__list{height:unset}}.video__poster{cursor:pointer;transition:all .25s ease-in-out 0s;display:block;width:100%;-o-object-fit:cover;object-fit:cover}.video__container{margin:auto;position:relative;overflow:hidden}.video__container:after{content:"";display:block;position:absolute;left:0;top:0;right:0;bottom:0;background:#000;opacity:.2;z-index:2}.detail_media img.video__container .video__poster,.detail_media img.video__container:after,.video__container.border12 .video__poster,.video__container.border12:after,.video__container.header-nav__feature .video__poster,.video__container.header-nav__feature:after,.video__container.icon-card.card .video__poster,.video__container.icon-card.card:after{border-radius:12px}.video__container:hover .video__poster{transform:scale(1.05)}.video__overlay{width:100%;height:100%;top:0;z-index:2;background:linear-gradient(0deg,rgba(0,0,0,.15),rgba(0,0,0,.15));border-radius:12px}.video__overlay+img,.video__overlay>img{aspect-ratio:16/9;width:100%;height:100%;-o-object-fit:cover;object-fit:cover;position:relative;z-index:1}.video-gated__cta{opacity:1;z-index:4;background-color:rgba(0,0,0,.6);transition:.25s;width:100%;height:100%;top:0}.video-gated__cta>p{top:50%;left:50%;transform:translate(-50%,-50%)}.video__transcript{margin-bottom:10px;border-radius:0 0 10px 10px}.video__transcript .collapsible{height:0;overflow-y:scroll;position:relative;scrollbar-width:thin;transition:.25s}.video__transcript .collapsible blockquote,.video__transcript .collapsible ol,.video__transcript .collapsible p,.video__transcript .collapsible ul{line-height:1.94}.video__transcript .collapsible::-webkit-scrollbar{width:8px;height:30px;transition:background .2s ease-in}.video__transcript .collapsible::-webkit-scrollbar-thumb{border-radius:20px;background:#ced3da}.video__transcript .collapsible:before{background-color:#d8d8d8;content:"";height:1px;left:1rem;right:1rem;position:absolute;top:0;transition:background-color .25s ease-in}.video__transcript .collapsible>:first-child{margin-top:1.5rem}.video__transcript__trigger{display:inline-block;color:#263136;cursor:pointer;padding-right:24px;position:relative;padding-top:0}.video__transcript__trigger .sub-label:before{--subLabelGray:$colorGrayMedium;content:"";position:absolute;right:0;top:14px;width:8px;height:8px;pointer-events:none;border-top:2px solid var(--subLabelGray);border-right:2px solid var(--subLabelGray);transform:rotate(135deg);transition:top .2s ease-in-out,transform .2s ease-in-out}.video__transcript__trigger.active .sub-label:before{transform:rotate(-45deg);top:16px}.video__transcript__trigger.active+.collapsible{height:300px;overflow-y:scroll;scrollbar-width:thin}.video__transcript__trigger.active+.collapsible::-webkit-scrollbar{width:8px;height:30px;transition:background .2s ease-in}.video__transcript__trigger.active+.collapsible::-webkit-scrollbar-thumb{border-radius:20px;background:#ced3da}.brightcove-wrapper{padding:8px;background:#fff}.brightcove-video{width:80vh;max-width:calc(85vw - 32px)}.brightcove-video.aspect_1_1{width:80vh}.brightcove-video.aspect_1_1>div>div{padding-top:100%!important}.brightcove-video.aspect_2_1{width:40vh}.brightcove-video.aspect_4_3{width:106.66667vh}.brightcove-video.aspect_4_3>div>div{padding-top:75%!important}.brightcove-video.aspect_16_9{width:142.22222vh}.brightcove-video.aspect_16_9>div>div{padding-top:56.25%!important}.brightcove-video.aspect_185_1{width:148vh}.brightcove-video.aspect_185_1>div>div{padding-top:42.5531914894%!important}.brightcove-video.aspect_2_1{width:160vh}.brightcove-video.aspect_2_1>div>div{padding-top:50%!important}.brightcove-video.aspect_235_1{width:188vh}.brightcove-video.aspect_235_1>div>div{padding-top:42.5531914894%!important}.brightcove-video.aspect_239_1{width:191.2vh}.brightcove-video.aspect_239_1>div>div{padding-top:41.8410041841%!important}.brightcove-video.aspect_24_1{width:192vh}.brightcove-video.aspect_24_1>div>div{padding-top:41.6666666667%!important}.brightcove-video [type=button]:after{display:none}.brightcoveVideo_wrapper{max-width:100%}.resource_video .brightcoveVideo_wrapper{width:-moz-fit-content!important;width:fit-content!important}.playContainer{cursor:pointer}.playContainer.brightcove-poster{position:relative;width:100%;padding-top:56.25%;background-color:#101010}.playContainer.brightcove-poster .aspect_container{position:absolute;top:0;right:0;bottom:0;left:0;display:flex;align-items:center;justify-content:center;overflow:hidden}.playContainer .playContainer_content{position:relative;width:100%}.playContainer .playContainer_overlay{position:absolute;width:100%;height:100%;top:0;background-color:rgba(0,0,0,.2)}.playContainer img{display:block}.playContainer .playContainer_button{position:absolute;top:50%;left:50%;display:inline-flex;color:#fff;font-weight:600;transform:translate(-50%,-50%);align-items:center;width:100%;justify-content:center}.playContainer .playContainer_button svg{width:110px;height:110px;opacity:.75;transition:opacity .25s ease-in-out}.playContainer .playContainer_text{margin-left:20px;white-space:nowrap}.playContainer .playContainer_text:empty{margin-left:0}.playContainer:hover .playContainer_button svg{opacity:1}.vjs-picture-in-picture-control{display:none!important}.vjs-text-track-cue div{background-color:rgba(57,73,81,.7)!important;border-radius:4px;color:#fff!important;padding:1px 10px;font-family:Inter,sans-serif!important;font-size:.75em}@media screen and (min-width:1025px){.video__transcript .collapsible:before{left:3rem;right:3rem}.video-gated__cta{opacity:0}.video-gated__cta:hover,.video__button.gated:hover .video-gated__cta,.video__button:not(.gated):hover .play__icon{opacity:1}}.sidebar-element__ad-insert{width:285px;height:285px;background-size:cover;background-position:50%;margin:auto}.sidebar-element__ad-insert a{width:100%;height:100%}.sidebar-element__media .media__contact+.media__contact{margin-top:1rem}.sidebar-element__media .icon{width:20px;height:20px;min-width:20px;margin-right:8px}.sidebar-element__media .media__contact--label .icon{color:#677078;min-width:20px}@media screen and (min-width:1025px){.sidebar-element__sticky{position:sticky;top:125px}}.relatedPosts__article{font-weight:600;color:#00233c;text-decoration:underline;-webkit-text-decoration-color:#00233c;text-decoration-color:#00233c;transition:.25s}@media screen and (min-width:1025px){.relatedPosts__article{text-decoration:none;position:relative;background-image:linear-gradient(#00233c,#00233c);background-image:webkit-linear-gradient(#00233c,#00233c);background-position:0 100%;background-repeat:no-repeat;background-size:0 1px;transition:all .25s ease-in-out 0s}.relatedPosts__article:focus,.relatedPosts__article:hover{background-size:100% 1px}}.media-showcase__container{align-items:center;display:flex;flex-wrap:wrap;justify-content:space-between;margin-left:auto;margin-right:auto;min-height:366px;background-color:inherit}.media-showcase--reverse .media-showcase__container{flex-direction:row-reverse}.media-showcase__container.aos-init.aos-animate{overflow:initial}@media(min-width:1600px){.media-showcase__container{max-width:1440px;max-width:90rem}}.media-showcase__container,.media-showcase__container:active,.media-showcase__container:focus,.media-showcase__container:hover{color:inherit}.media-showcase__container.background-navy{background-color:#00233c;border-radius:12px;color:#fff;padding:1.5em;width:100%;grid-column-start:1;grid-column-end:13}@media(min-width:768px){.media-showcase__container.background-navy{padding:2.5em}}@media(min-width:1025px){.media-showcase__container.background-navy{padding:3.75em 6em}}.media-showcase__media-container{flex:1 0 100%;max-width:100%;width:100%;margin-top:2.5rem;margin-bottom:1.5rem;background-color:inherit}.media-showcase__media-container div:not(.afterglow){flex-basis:0;flex-grow:1}.media-showcase__media-container .lottie svg,.media-showcase__media-container .lottie svg *{transform:translate3d(0);will-change:transform}.media-showcase__media-container .media-selector__media-item{display:flex}.media-showcase__media-container .media-selector__media-item.image-center{justify-content:center}.flex-row-reverse .media-showcase__media-container .media-selector__media-item.image-edge,.media-showcase--reverse .media-showcase__media-container .media-selector__media-item.image-edge{justify-content:end}.media-showcase__media-container .media-selector__media-item--img,.media-showcase__media-container .media-selector__media-item--lottie,.media-showcase__media-container .media-selector__media-item--video{height:auto!important;width:auto!important;max-height:498px;max-width:100%;text-align:center;overflow:hidden}.media-showcase__text{flex:1 0 100%;max-width:100%;width:100%;overflow-x:auto;overflow-y:hidden}@media(min-width:1025px){.media-showcase__text::-webkit-scrollbar{width:12px;height:12px}.media-showcase__text::-webkit-scrollbar-thumb{border-radius:0;background-color:rgba(16,16,16,.17);width:12px;height:12px}.media-showcase__text::-webkit-scrollbar-corner{background-color:inherit}}.media-showcase__text .ktc-editable-area{overflow:visible}@media(min-width:1025px){.background-midnightBlack .media-showcase .media-showcase__text::-webkit-scrollbar{width:12px;height:12px}.background-midnightBlack .media-showcase .media-showcase__text::-webkit-scrollbar-thumb{border-radius:0;background-color:rgba(16,16,16,.17);width:12px;height:12px}.background-midnightBlack .media-showcase .media-showcase__text::-webkit-scrollbar-corner{background-color:inherit}}@media(min-width:1025px){.background-midnightBlack .media-showcase .media-showcase__text::-webkit-scrollbar-thumb{background-color:hsla(0,0%,100%,.17)}}@media screen and (min-width:1025px){.media-showcase__text__subtitle{max-width:90%}}@media(min-width:1025px){.media-showcase.background-midnightBlack .h2::-webkit-scrollbar,.media-showcase.background-midnightBlack h2::-webkit-scrollbar{width:12px;height:12px}.media-showcase.background-midnightBlack .h2::-webkit-scrollbar-thumb,.media-showcase.background-midnightBlack h2::-webkit-scrollbar-thumb{border-radius:0;background-color:rgba(16,16,16,.17);width:12px;height:12px}.media-showcase.background-midnightBlack .h2::-webkit-scrollbar-corner,.media-showcase.background-midnightBlack h2::-webkit-scrollbar-corner{background-color:inherit}}.media-showcase.background-midnightBlack .media-selector__media-item--video,.media-showcase.background-midnightBlack .media-showcase__video,.media-showcase.background-midnightBlack .media-showcase video{mix-blend-mode:lighten}.media-showcase__wrapper{max-width:100%}@media screen and (min-width:768px){.media-showcase__media-container{flex:1 0 calc(47.5% - 50px);max-width:calc(47.5% - 50px);margin-bottom:0;margin-top:0}.media-showcase__text{flex:1 0 50%;max-width:50%}}@media screen and (min-width:1025px){.media-showcase.with-dots .dots{display:block;width:415px;height:1195px;background:url(/Content/Assets/dots.png) no-repeat 100% 0;position:absolute;top:0;right:0}.media-showcase.with-dots.container-wide .dots,.media-showcase.with-dots.media-selector-with-text__main-row-container .dots{display:none}}@keyframes bobbingAnim{0%{transform:translateX(0);animation-timing-function:ease-in-out}50%{transform:translateX(4px);animation-timing-function:ease-in-out}to{transform:translateX(0);animation-timing-function:ease-in-out}}@keyframes fadeIn{0%{opacity:0}to{opacity:1}}@keyframes fadeOut{0%{opacity:1}to{opacity:0}}.hero_banner{align-items:center;justify-content:flex-start;overflow:hidden;padding:75px .75rem;display:flex;justify-content:center;position:relative;min-height:300px}.hero_banner__content--wrapper{width:100%}.hero_banner__cta{display:flex}.hero_banner__cta a:first-child{margin-bottom:20px}.hero_banner__heading,.hero_banner__subheading,.hero_banner_cta-wrapper{z-index:1}.hero_banner__video-container{z-index:5}.hero_banner__heading span:after{background-repeat:no-repeat;background-size:contain;content:"";position:absolute;z-index:-1}.hero_banner__header{max-width:1132px;width:100%;margin:unset;position:relative;top:0;display:flex;flex-flow:column;align-items:flex-start}@media screen and (-ms-high-contrast:active),screen and (-ms-high-contrast:none){.hero_banner__header{margin-top:120px}}.hero_banner__header.text-right{text-align:right;align-items:flex-end}.hero_banner__header.text-center .hero_banner__content--wrapper,.hero_banner__header.text-center.hero_banner__content>*,.hero_banner__header.text-center .hero_banner__heading,.hero_banner__header.text-center .hero_banner__subheading{margin-left:auto;margin-right:auto}.hero_banner__header.text-center .hero_banner_cta-wrapper{justify-content:center}.hero_banner__header h1{margin-bottom:24px;display:block;width:100%}.hero_banner__header p{display:block;width:100%;margin-bottom:32px}.hero_banner__header.hero_banner__header--small-indent{max-width:none;padding:0}.hero_banner__header:not(.header--static) .hero_banner__heading,.hero_banner__header:not(.header--static) .hero_banner__label,.hero_banner__header:not(.header--static) .hero_banner__subheading,.hero_banner__header:not(.header--static) .hero_banner_cta-wrapper,.hero_banner__header:not(.header--static) a,.hero_banner__header:not(.header--static) button{opacity:0;animation:fadeIn ease-in;animation-fill-mode:forwards;animation-delay:.7s;animation-duration:1s}.hero_banner .hero_banner__bg-image{position:absolute;top:0;left:0;width:100%;height:100%;background-size:cover;background-position:50%;background-repeat:no-repeat}.hero_banner>picture{display:flex;height:100%;top:0;opacity:0}.hero_banner>picture img{font-family:"object-fit: cover; object-position: center;";height:100%;-o-object-fit:cover;object-fit:cover;-o-object-position:center;object-position:center;width:100%}.hero_banner>picture,.hero_banner>video{transition-duration:.48s!important;transition-property:opacity!important;transition-timing-function:ease-in-out!important;position:absolute;left:0;width:100%;-o-object-fit:cover;object-fit:cover}.hero_banner.hero_banner--fade-in>picture{opacity:1}.hero_banner>video:first-of-type{transition-duration:.48s!important;transition-property:opacity!important;transition-timing-function:ease-in-out!important;height:auto;max-width:none!important;min-width:100%;min-height:100%;top:50%;transform:translateY(-50%);width:100vw!important}.hero_banner .placeholder-image{position:absolute;height:auto;min-height:100%;-o-object-fit:cover;object-fit:cover;top:50%;transform:translateY(-50%);z-index:1}.hero_banner.hero_banner--short{min-height:0;padding-top:5rem;padding-bottom:4rem}.hero_banner.hero_banner--short .hero_banner__header h1,.hero_banner.hero_banner--short .hero_banner__header p{padding-bottom:0}.hero_banner--customer{padding:25px 0}@media screen and (min-width:768px){.hero_banner{padding:4rem .75rem;min-height:67vh}.hero_banner__cta-wrapper{align-items:center;display:flex}.hero_banner>:first-child{margin-right:30px}.hero_banner__cta a:first-child{margin-bottom:0}.hero_banner__header.hero_banner__header--small-indent{padding:0 75px}.hero_banner>header .button+.button{margin-left:24px}.hero_banner--customer{padding:2rem 0;min-height:40vh}}@media screen and (min-width:1025px){.hero_banner{max-width:unset}.hero_banner.hero_banner--fade-in>video:first-of-type{opacity:1}.hero_banner.hero_banner--fade-in>picture{opacity:0}.hero_banner__header{max-width:1400px}.hero_banner h1,.hero_banner p{max-width:60%}.hero_banner--customer{min-height:50vh}.hero_banner--customer .hero_banner__header{max-width:1132px}.hero_banner--short{padding-top:3rem;padding-bottom:3rem}}@media screen and (min-width:1600px){.hero_banner.hero_banner--industry-video h1{max-width:57rem}.hero_banner.hero_banner--industry-video>video:first-of-type{top:auto;bottom:0;transform:none}}.media-two-panels{border-bottom:2px solid #fff;border-top:2px solid #fff;overflow:hidden;position:relative}@media(min-width:1025px){.media-two-panels:before{width:2px;width:.125rem;background-color:#fff;content:"";display:block;height:100%;left:50%;position:absolute;top:0;transform:translateX(-50%);z-index:1}}.media-two-panels__content-wrapper{align-items:center;display:flex;flex-direction:column;height:100%}.media-two-panels__image{padding:0 2.5rem;flex:1 1 auto;margin-top:auto;max-width:100%}@supports(-webkit-touch-callout:none){.media-two-panels__image{display:block!important;line-height:0}}.media-two-panels__image img{margin-left:auto;margin-right:auto}.media-two-panels__panel{padding-bottom:5.625rem;flex:1 0 100%;max-width:100%;position:relative;width:100%}@media(min-width:1025px){.media-two-panels__panel{padding-bottom:2.8125rem;flex:1 0 50%;max-width:50%}}@media(max-width:1024px){.media-two-panels__panel:first-child{border-bottom:2px solid #fff}}.media-two-panels__panel--alt{padding-bottom:0!important}@media(min-width:1025px){.media-two-panels__panel--alt:after{padding-bottom:100%}}.media-two-panels__panel--alt .media-selector__media-item{width:100%!important}.media-two-panels__panel--alt .media-two-panels__image{width:100%}.media-two-panels__panel--alt .media-two-panels__image img{margin-top:auto}.media-two-panels__row{align-items:stretch;display:flex;flex-wrap:wrap;width:100%}.media-two-panels__text,.media-two-panels__text *{margin-bottom:0}.media-two-panels__text-container{margin-bottom:2rem;max-width:540px;max-width:33.75rem;padding:5.625rem 2.5rem 0;flex:1 0 auto;margin-left:auto;margin-right:auto;width:100%}@supports(-webkit-touch-callout:none){.media-two-panels__text-container{display:block!important}}.media-two-panels .media-selector__media-item{height:auto!important;max-height:400px;width:auto!important}.media-two-panels .media-selector__media-item svg{height:auto!important;max-height:100%;max-width:100%;width:auto!important}.video-headline{overflow:hidden}.video-headline__video-container,.video-headline__video-container .brightcoveVideo_wrapper{margin:0 auto}.video-headline__video-text{margin:0 auto;display:none}.video-headline__video-text--visible{display:block}.video-headline__title{text-align:center;margin-top:2.25rem}@media screen and (min-width:768px){.video-headline__title{margin-top:0;text-align:left;max-width:477px}.video-headline__title.max-width{max-width:100%}.video-headline__text{max-width:477px}.video-headline__text.max-width{max-width:100%}}.large-textblock-three{padding:60px 0 0;text-align:left;overflow:hidden}.large-textblock-three h1,.large-textblock-three h2{text-align:left;margin-left:auto;margin-right:auto;max-width:632px}.large-textblock-three p{margin-bottom:45px;max-width:855px;margin-left:auto;margin-right:auto;text-align:left}.large-textblock-three--rich h1,.large-textblock-three--rich h2,.large-textblock-three--rich p{text-align:left}.large-textblock-three--rich p{max-width:700px}.large-textblock-three--rich p:last-child{margin-bottom:0}@media screen and (min-width:768px){.large-textblock-three{padding:80px 0;text-align:center}.large-textblock-three--rich h1,.large-textblock-three--rich h2,.large-textblock-three--rich p,.large-textblock-three h1,.large-textblock-three h2,.large-textblock-three p{text-align:center}}@media screen and (min-width:1025px){.large-textblock-three{padding:140px 0 104px}.large-textblock-three--rich h1,.large-textblock-three--rich h2:not(.h2){max-width:800px}}.large-inline-video-text{padding-top:2.5rem;align-items:center;display:flex;flex-direction:column}.large-inline-video-text__body{flex:1 0 100%;max-width:100%;width:100%}.large-inline-video-text__body>:not(:last-child){margin-bottom:.625rem}.large-inline-video-text__desc{margin-top:.625rem}.large-inline-video-text__header{margin-bottom:2.5rem;flex:1 0 100%;max-width:100%;width:100%}.large-inline-video-text__header h2{letter-spacing:-1.2px;letter-spacing:-.075rem;line-height:39px;line-height:2.4375rem;margin-bottom:0}.large-inline-video-text__text{margin-bottom:6.25rem;margin-top:2.5rem;max-width:1200px;max-width:75rem;padding:0 2.5rem;align-items:flex-start;display:flex;flex-wrap:wrap;justify-content:space-between;width:100%}.large-inline-video-text__video{height:300px;height:18.75rem;max-width:100%;-o-object-fit:cover;object-fit:cover;width:100%}@media screen and (min-width:768px){.large-inline-video-text{padding:5rem 2.5rem 0}.large-inline-video-text__body{flex:1 0 50%;max-width:50%}.large-inline-video-text__header{flex:1 0 calc(50% - 40px);margin-bottom:0;max-width:calc(50% - 40px)}.large-inline-video-text__text{margin-bottom:12.5rem;padding:0}.large-inline-video-text__video{height:450px;height:28.125rem}}@media screen and (min-width:1201px){.large-inline-video-text__video{height:600px;height:37.5rem;max-width:1200px;max-width:75rem;width:1200px;width:75rem}}.vantage-product-cta{padding:6.25rem 2.5rem 0;overflow:hidden;position:relative}.vantage-product-cta__container{max-width:1200px;max-width:75rem;display:flex;flex-wrap:wrap;margin-left:auto;margin-right:auto;width:100%}.vantage-product-cta__description{margin-bottom:.625rem;margin-top:.625rem}.vantage-product-cta__image{background-position:bottom;background-repeat:no-repeat;background-size:contain}.vantage-product-cta__image-container{flex:1 0 100%;max-width:100%;width:100%}@media screen and (max-width:700px){.vantage-product-cta__image-container{order:2;padding:0}}.vantage-product-cta__text{display:flex;flex:1 0 100%;flex-direction:column;justify-content:center;max-width:100%;width:100%;margin-bottom:6.25rem}.vantage-product-cta h3,.vantage-product-cta h4{margin-bottom:0}.vantage-product-cta h4{margin-top:.625rem}.color-midnightBlack .vantage-image-with-text__description,.color-pureBlack .vantage-image-with-text__description{color:#263136}@media screen and (min-width:768px){.vantage-product-cta{padding:6.25rem 2.5rem}.vantage-product-cta__image-container{flex:1 0 55%;max-width:55%}.vantage-product-cta__image-container img{bottom:0;height:auto;left:50%;max-width:50%;position:absolute;width:auto}.vantage-product-cta__text{flex:1 0 45%;max-width:45%;margin-bottom:0}}.card-grid{display:grid;grid-template-columns:2;grid-auto-rows:auto;grid-gap:10px;grid-template-areas:"card1 card2" "card3 card4" "card5 card6" "card7 card8"}.card-grid__item{font-size:.75rem;line-height:1.4}.card-grid__item p{word-break:break-word}.card-grid__icon-wrapper{background:#006969;border-radius:50%;width:1.75rem;height:1.75rem;min-width:1.75rem}.card-grid__icon{height:16px;width:16px;top:50%;left:50%;transform:translateX(-50%) translateY(-50%)}.card-grid__description{font-size:.75rem;line-height:1.4}@media screen and (min-width:1025px){.card-grid{display:grid;grid-template-columns:4;grid-auto-rows:auto;grid-gap:15px;grid-template-areas:"card1 card2 card3 card4" "card5 card6 card7 card8"}.card-grid__item{min-height:135px}}.mosaic__2_1_1 .tile-flex-50.image-wrapper :is(h1,h2,h3,h4,h5,h6,p){padding-left:10vw}.consulting-mosaic__tile{position:relative}.consulting-mosaic__wrapper{display:flex;flex-direction:column;height:100%;justify-content:center;left:0;padding:30px;top:0;width:100%}.consulting-mosaic .tile.text h2.consulting-mosaic__h2{word-break:break-word;-webkit-hyphens:auto;hyphens:auto}.customer-lander{background:#f2f2f2}.customer-lander a:hover{color:inherit}.customer-lander__title-block{display:block}.customer-lander .wrapper{width:100%;max-width:1440px;margin:0 auto}.customer-lander .mosaic-link{color:inherit}@media(max-width:600px){.customer-lander .mosaic-link article .tile-flex-50{min-width:0;width:100vw;flex-grow:1}}.customer-lander .mosaic-link .half{width:100vw;max-width:100vw;min-width:100vw}.customer-lander .tile-flex-column{display:flex;flex:1 1 auto}@media(min-width:1025px){.customer-lander .tile-flex-column{flex-flow:column}}.customer-lander .tile-flex-row{display:flex;flex-flow:wrap;flex:1 1 auto}@media(min-width:1025px){.customer-lander .tile-flex-row{flex-flow:row}}@media(max-width:1024px){.customer-lander .tile-flex-75{flex-basis:100vw;min-width:100vw;max-width:100vw}.customer-lander .tile-flex-75 .tile.quarter.tile-flex-25{width:100vw}.customer-lander .tile-flex-75 .half{width:100vw;min-width:100vw;max-width:100vw}}@media(min-width:1025px){.customer-lander .tile-flex-50{flex-basis:50vw;max-width:50vw;min-width:50vw;width:50vw}}@media(min-width:1025px){.customer-lander .tile-flex-25{flex-basis:25vw;max-width:25vw;min-width:25vw}}@media(max-width:1024px){.customer-lander .tile-flex-25.quarter:not(.fluid){flex-basis:100vw;max-width:100vw;min-width:100vw}}.customer-lander .min-w-0{min-width:0}.customer-lander .mw-25{max-width:25vw}@media(max-width:1024px){.customer-lander .mw-25.tile.quarter{max-width:none;width:100vw}}.customer-lander .mw-33{max-width:33vw}@media(max-width:1024px){.customer-lander .mw-33{width:100vw}}.customer-lander .border-bottom-bg-grey{border-bottom:1px solid #f2f2f2}@media(max-width:1024px){.customer-lander .border-bottom--mobile{border-bottom:2px solid #f2f2f2}}@media(min-width:768px)and (max-width:1024px){.customer-lander .min-w-md-50{max-width:50%}}.customer-lander .min-w-50{min-width:50vw;width:50vw;max-width:50vw}@media(max-width:1024px){.customer-lander .min-w-50{min-width:100vw;max-width:100vw;width:100vw}}.customer-lander .min-w-75{min-width:75vw;max-width:75vw;width:75vw}@media(max-width:1024px){.customer-lander .min-w-75{min-width:100vw;max-width:100vw;width:100vw}.customer-lander .min-w-75+.tile-flex-25{flex-grow:1}}@media(min-width:1025px){.customer-lander .br-bg-grey{position:relative}.customer-lander .br-bg-grey:after{content:"";right:-2px;top:0;height:100%;width:2px;background:#f2f2f2;position:absolute;z-index:1}}@media(min-width:1025px){.customer-lander .bl-bg-grey{position:relative}.customer-lander .bl-bg-grey:after{content:"";left:-2px;top:0;height:100%;width:2px;background:#f2f2f2;position:absolute;z-index:1}}.customer-lander article{display:flex;width:100vw;max-width:100vw;overflow:hidden;border-top:1px solid #f2f2f2;border-bottom:1px solid #f2f2f2}@media(max-width:1024px){.customer-lander article{flex-flow:row wrap}}@media(max-width:1024px){.customer-lander article .tile:nth-child(2),.customer-lander article>:nth-child(2){order:1!important}}.customer-lander .tile{min-height:100vw;box-sizing:border-box}.customer-lander .tile.quote,.customer-lander .tile.text{padding:60px;word-break:keep-all}.customer-lander .tile.text{display:flex;flex-direction:column;align-items:flex-start;justify-content:center}.customer-lander .tile.text.color-midnightBlack .text-inner .tile__label,.customer-lander .tile.text.color-midnightBlack .text-inner p,.customer-lander .tile.text.color-pureBlack .text-inner .tile__label,.customer-lander .tile.text.color-pureBlack .text-inner p{color:#263136}.customer-lander .tile.text .text-inner{display:flex;flex-direction:column;align-items:flex-start;justify-content:center;height:100%}.customer-lander .tile.text p{margin-bottom:12px}.customer-lander .tile.text .h2,.customer-lander .tile.text h2{margin-bottom:.5625rem}.customer-lander .tile.text .tile__label{margin-bottom:.875rem}.customer-lander .tile.quote{display:flex;flex-direction:column;align-items:flex-start;justify-content:center}.customer-lander .tile.quote blockquote{max-width:358px;color:inherit}@media(max-width:600px){.customer-lander .tile.quote blockquote{font-size:.75rem;line-height:1.25rem}}.customer-lander .tile.quote cite{display:inline-block;color:inherit}.customer-lander .tile.featured{background-repeat:no-repeat;background-position:50%;background-size:cover;color:inherit;padding:120px;box-sizing:border-box;display:flex;flex-direction:column;justify-content:center;align-items:flex-start;min-height:50vw;height:50vw}@media(max-width:1024px){.customer-lander .tile.featured{width:100vw;padding:60px;min-height:200vw;max-width:100vw}}@media(min-width:768px)and (max-width:1024px){.customer-lander .tile.featured{height:auto}}.customer-lander .tile.featured p{margin-top:-5px}.customer-lander .tile.featured p+a{margin-top:10px}.customer-lander .tile.featured span.button{margin-top:40px;transition:all .2s;width:auto}.customer-lander .tile .text-link{display:block;margin-top:0}.customer-lander .tile.background-teal .text-link,.customer-lander .tile.green .text-link{color:#fff}.customer-lander .tile .tile__label{margin-bottom:1.875rem}@media(max-width:1024px){.customer-lander .tile.w-md-33,.customer-lander .tile.w-md-33.tile-flex-50,.customer-lander .tile.w-md-66{width:100vw}.customer-lander .tile.min-w-md-0,.customer-lander .tile.min-w-md-0:not(.fluid){min-width:0}}.customer-lander .quarter{width:25vw;min-width:25vw;max-width:25vw}@media(max-width:1024px){.customer-lander .quarter{width:100vw;min-width:100vw;max-width:100vw}}@media(max-width:450px){.customer-lander .quarter{min-height:0}}.customer-lander .half{width:50vw;min-width:50vw;max-width:50vw}@media(max-width:1024px){.customer-lander .half{width:100vw;min-width:100vw;max-width:100vw;min-height:66.66vw;order:1!important}}.customer-lander .three-quarter{width:75vw;min-width:75vw;max-width:75vw}@media(max-width:1024px){.customer-lander .three-quarter,.customer-lander .three-quarter .half{width:100vw;min-width:100vw;max-width:100vw}}.customer-lander .image-wrapper{width:100%;height:100%;overflow:hidden;position:relative;min-height:66.66vw}.customer-lander .image-wrapper .image{background-size:cover;width:100%;height:100%;transition:height 1.3s,width 1.3s,transform 1.3s;position:absolute;top:0;left:0}.customer-lander .image-wrapper :is(h1,h2,h3,h4,h5,h6,p){padding-left:10vw;padding-right:3.75rem;z-index:10}@media(max-width:1024px){.customer-lander .mw-md-33,.customer-lander .mw-md-66{max-width:100vw}.customer-lander .tile-flex-md-50,.customer-lander .tile-flex-md-66,.customer-lander div.tile.tile-flex-md-33{flex-basis:100vw;min-width:100vw;max-width:100vw}}@media(max-width:1024px){.customer-lander .w-sm-100{width:100vw;max-width:100vw}}@media(max-width:1024px){.customer-lander .mosaic-link article .tile.half{order:1!important}.customer-lander .mosaic-link article .tile.half:not(.tile-flex-md-33){width:100vw;max-width:100vw;min-width:100vw}.customer-lander .mosaic-link article .tile:not(.half){order:2!important}.customer-lander article .mosaic-link .tile.half{order:1!important}.customer-lander article .mosaic-link .tile:not(.half){order:2!important}}.customer-lander--consulting-mosaic .image-wrapper{display:flex;align-items:flex-end;justify-content:center;padding:0}.customer-lander--consulting-mosaic .image-wrapper .image{position:absolute;left:0;top:0}@media(max-width:1024px){.customer-lander--consulting-mosaic .tile,.customer-lander--consulting-mosaic .tile.quarter:not(.fluid){width:100vw;min-width:100vw;max-width:100vw;flex-basis:100vw;min-height:75vw}.customer-lander--consulting-mosaic .image-wrapper .h2,.customer-lander--consulting-mosaic .image-wrapper h2{padding:2.438rem 1.438rem;line-height:1.2;letter-spacing:-1.73px}.customer-lander--consulting-mosaic article>:nth-child(3){order:3}}.customer-lander .mosaic-link,.customer-lander .tile{overflow-x:auto;overflow-y:hidden}@media(min-width:1025px){.customer-lander .mosaic-link::-webkit-scrollbar,.customer-lander .tile::-webkit-scrollbar{width:12px;height:12px}.customer-lander .mosaic-link::-webkit-scrollbar-thumb,.customer-lander .tile::-webkit-scrollbar-thumb{border-radius:0;background-color:rgba(16,16,16,.17);width:12px;height:12px}.customer-lander .mosaic-link::-webkit-scrollbar-corner,.customer-lander .tile::-webkit-scrollbar-corner{background-color:inherit}}.customer-lander .mosaic-link.background-midnightBlack::-webkit-scrollbar-thumb,.customer-lander .tile.background-midnightBlack::-webkit-scrollbar-thumb{background:rgba(76,76,76,.7)}.customer-lander.t4{background-color:#fff}.customer-lander.t4 article{width:100%;max-width:100%}.customer-lander.t4 article a.d-flex{width:100%}.customer-lander.t4 .logo{max-height:40px}.customer-lander.t4 .tile.text p{margin-bottom:8px}.customer-lander.t4 .tile.text .tile__label{color:#ff5f02;font-size:.75rem;font-weight:600;line-height:16px;margin-bottom:8px}@media screen and (min-width:768px)and (max-width:1024px){.customer-lander--consulting-mosaic .tile,.customer-lander--consulting-mosaic .tile.quarter:not(.fluid){min-height:50vw}.customer-lander--consulting-mosaic .image-wrapper{align-items:center}.customer-lander--consulting-mosaic .image-wrapper .h2,.customer-lander--consulting-mosaic .image-wrapper h2{padding:2.438rem 60px}}@media screen and (min-width:768px){.consulting-mosaic__wrapper{padding:30px 60px}.customer-lander{margin-bottom:0}.customer-lander .tile.quote,.customer-lander .tile.text{padding:40px}.customer-lander .image-wrapper{min-height:auto}}@media screen and (min-width:1025px){.customer-lander--consulting-mosaic .image-wrapper{align-items:center}.customer-lander .tile{min-height:25vw}.customer-lander .tile.quote,.customer-lander .tile.text{padding:50px}.customer-lander .tile-flex-column{flex-flow:column}.customer-lander .half{width:50vw;min-width:50vw;max-width:50vw}.customer-lander.t4 .tile{min-height:0}.customer-lander.t4 .tile.quarter.text{padding:40px;width:32%;min-width:0;max-width:100%}.customer-lander.t4 .tile.quarter.text.w-md-66{padding:24px;width:68%}.customer-lander.t4 .tile.half{min-width:0;min-height:0;max-width:100%}.customer-lander.t4 .tile.half.w-md-66{aspect-ratio:16/9;width:68%}.customer-lander.t4 .tile.half.w-md-33{aspect-ratio:1;width:33%}}.featured-videos__player{background-position:50%;background-size:cover;justify-content:center;align-items:center;color:#fff;cursor:pointer;width:100%;height:56.25vw;aspect-ratio:16/9}.featured-videos__player:hover .play-icon{fill-opacity:1;opacity:1}.featured-videos__player .play-icon{max-width:110px;width:17.5%;opacity:.75;transition:all .25s ease-in-out 0s}.featured-videos__player .play-icon path{transition:all .3s ease-in-out}.featured-videos__queue{height:100%;align-items:flex-start;justify-content:flex-start;padding-top:15px}.featured-videos__queue--container{padding:0 .375rem}.featured-videos__queue li{flex:1;padding:0 .375rem}.featured-video{align-items:flex-start;cursor:pointer}.featured-video__thumbnail{position:relative}.featured-video__thumbnail .video__button{aspect-ratio:unset}.featured-video__thumbnail .video__overlay{opacity:1;transition:opacity .3s ease-in-out}.active .featured-video__thumbnail .video__overlay{opacity:0}.featured-video__thumbnail-overlay--active{top:0;left:0;width:100%;height:100%;background-color:rgba(15,10,10,.45);z-index:3;display:flex;align-items:center;justify-content:center;text-align:center;position:absolute;font-weight:600;font-size:13px;font-family:Inter,sans-serif;text-transform:uppercase;letter-spacing:1px;line-height:1;color:#fff;opacity:0;transition:opacity .3s ease-in-out;padding:0 8px}.active .featured-video__thumbnail-overlay--active{opacity:1}.featured-video__thumbnail-image{display:block;position:relative;z-index:2;max-width:100%;height:auto;height:100%;width:100%;-o-object-fit:cover;object-fit:cover}.featured-video__meta{display:block;padding-top:14px}.featured-video__meta label{margin-bottom:6px}.featured-video:focus .featured-video__meta p,.featured-video:hover .featured-video__meta p{color:inherit;background-size:100% 1px}[class*=color] .featured-videos blockquote,[class*=color] .featured-videos h1,[class*=color] .featured-videos h2,[class*=color] .featured-videos h3,[class*=color] .featured-videos h4,[class*=color] .featured-videos h5,[class*=color] .featured-videos h6,[class*=color] .featured-videos label,[class*=color] .featured-videos li,[class*=color] .featured-videos p,[class*=color] .featured-videos span{color:inherit}@media screen and (min-width:1025px){.featured-videos__player{height:auto}.featured-videos__queue{flex-direction:column;margin-right:0;margin-left:0;padding-top:0}.featured-videos__queue li{padding:0}.featured-videos__queue--container{padding-left:.75rem;padding-right:.75rem}.featured-videos__queue li:nth-of-type(2){margin-left:0;margin-right:0;padding-bottom:15px;padding-top:15px}.featured-video__thumbnail{min-height:135px;height:100%}.featured-video__meta{padding-left:14px}}.device-carousel-container{overflow:hidden;width:100vw;padding:20px 0}.device-carousel-container .device-carousel__slide-container{overflow-y:hidden;overflow-x:auto;word-break:break-word}@media(min-width:1025px){.device-carousel-container .device-carousel__slide-container::-webkit-scrollbar{width:12px;height:12px}.device-carousel-container .device-carousel__slide-container::-webkit-scrollbar-thumb{border-radius:0;background-color:rgba(16,16,16,.17);width:12px;height:12px}.device-carousel-container .device-carousel__slide-container::-webkit-scrollbar-corner{background-color:inherit}}.device-carousel-container .device-carousel__category-title{padding:0 2.375rem}.device-carousel-container .device-carousel__category-text{padding:0 2.375rem;margin-bottom:2.25rem}.device-carousel-container .device-carousel__media-col{background-size:contain;background-position:0;background-repeat:no-repeat}.device-carousel-container .device-carousel__media-col .device-carousel__slide-container{overflow-x:hidden;min-height:100vw}.device-carousel-container .device-carousel__media-col:after,.device-carousel-container .device-carousel__media-col:before{display:block;width:100%;height:100%;position:absolute;top:0;left:0;background-color:inherit}.device-carousel-container .device-carousel__media-col:before{content:"";background-image:url(https://www.teradata.com/Teradata/Content/Images/vantage/analyst-tablet-optimized-4x3.png);background-size:contain;background-position:0;background-repeat:no-repeat}.device-carousel-container .device-carousel__media-col .carousel,.device-carousel-container .device-carousel__media-col .slick-list{top:16vw;width:82vw;position:relative;margin-right:15.6vw}.device-carousel-container .device-carousel__media{left:0;-o-object-fit:cover;object-fit:cover;height:63.1vw;width:82vw}.device-carousel-container .device-carousel__text-col{padding:0 4.75rem 2.375rem 2.375rem;position:relative}.device-carousel-container .device-carousel__text-col .carousel{text-align:left}.device-carousel-container .slick-dots{position:absolute;bottom:-25px;display:block;width:100%;padding:0;margin:0;list-style:none;text-align:center}.device-carousel-container .slick-dots li{position:relative;display:inline-block;width:20px;height:20px;margin:0 5px;padding:0;cursor:pointer}.device-carousel-container .slick-dots li button{font-size:0;line-height:0;display:block;width:10px;height:10px;padding:0;cursor:pointer;color:transparent;background-color:#333a3e;border-radius:5px;border-width:0;outline:none}.device-carousel-container .slick-dots li button:focus,.device-carousel-container .slick-dots li button:hover{outline:none}.device-carousel-container .slick-dots li.slick-active button{background-color:#ff5f02}.device-carousel-container .carousel__slide,.device-carousel-container .slick-slide{top:0;padding:0 2px;margin-left:-2px;margin-right:3px}.device-carousel-container .slick-arrow{background:#fff;border-color:#e5e5e5;border-radius:32px;color:#333a3e;font-size:0;width:64px;height:64px;padding:0;position:absolute;top:50%;right:0;margin-top:-32px}.device-carousel-container .slick-arrow:hover{background-color:#f6f7fb;color:#ff5f02}.device-carousel-container .slick-arrow svg{width:32px;height:32px}.device-carousel-container button.slick-prev{display:none!important}.device-carousel-container .carousel,.device-carousel-container .slick-list{max-width:100vw}.device-carousel-container .slick-dots{top:83vw;bottom:unset}.device-carousel-container .slick-dots li{margin:0}.device-carousel-container .slick-dots button:before{opacity:1;color:#333a3e;font-size:.75rem}.device-carousel-container .slick-dots .slick-active button:before{color:#ff5f02}.device-carousel-container .device-carousel__slide-container:focus{outline:none}@media screen and (min-width:768px){.device-carousel-container{padding:0}.device-carousel-container .device-carousel__category-title{min-width:100vw}.device-carousel-container .device-carousel__category-text{max-width:522px;box-sizing:content-box}}@media(min-width:1025px){.device-carousel-container{padding:50px 0 213px}.device-carousel-container .device-carousel__category-title{padding:0 7.5rem;margin-bottom:1.25rem}.device-carousel-container .device-carousel__category-text{padding:0 7.5rem}.device-carousel-container .device-carousel__slide-container{position:relative;top:0}.device-carousel-container .device-carousel__media{height:42.1vw;width:54.8vw}.device-carousel-container .device-carousel__media-col{min-height:702px;height:702px;max-height:702px;min-width:912px}.device-carousel-container .device-carousel__media-col .carousel,.device-carousel-container .device-carousel__media-col .slick-list{top:0;width:755px}.device-carousel-container .device-carousel__media-col .device-carousel__slide-container{position:relative;top:45px;min-height:unset}.device-carousel-container .device-carousel__text-col{padding:2.375rem 4.75rem 2.375rem 0;flex:1;min-width:0!important}.device-carousel-container .device-carousel__media{top:0;width:755px;height:567px}.device-carousel-container .carousel__slide,.device-carousel-container .slick-slide{top:0}.device-carousel-container .slick-dots{top:46vw;width:48.66vw;top:645px;width:785px}.device-carousel-container--laptop-bg .device-carousel__media-col{min-width:886px;height:566px;max-height:566px;min-height:566px}.device-carousel-container--laptop-bg .device-carousel__media-col .carousel,.device-carousel-container--laptop-bg .device-carousel__media-col .slick-list{top:0!important;left:0!important}}@media(min-width:1500px){.device-carousel-container .device-carousel__text-col{right:6vw}}.device-carousel-container--laptop-bg .device-carousel__media-col.col-xs-12.col-xl-8.px-0{right:4px}.device-carousel-container--laptop-bg .device-carousel__media-col:before{background-image:url(https://marvel-b1-cdn.bc0a.com/f00000000151999/www.teradata.com/getmedia/c7342fde-aac3-4ae0-9ecc-e4f783d76629/macbook.png)}.device-carousel-container--laptop-bg .device-carousel__media-col .device-carousel__slide-container{position:relative;top:21vw}@media(min-width:1025px){.device-carousel-container--laptop-bg .device-carousel__media-col .device-carousel__slide-container{top:39px}}.device-carousel-container--laptop-bg .device-carousel__media-col .carousel,.device-carousel-container--laptop-bg .device-carousel__media-col .slick-list{top:0;width:79vw}.device-carousel-container--laptop-bg .device-carousel__media,.device-carousel-container--laptop-bg .device-carousel__media:focus{height:50.5vw;width:79vw;-o-object-position:top left;object-position:top left}.device-carousel-container--laptop-bg .carousel__slide,.device-carousel-container--laptop-bg .slick-slide{top:0;padding:0;margin-left:-2px;margin-right:3px}@media(min-width:1025px){.device-carousel-container--laptop-bg .device-carousel__media-col .carousel,.device-carousel-container--laptop-bg .device-carousel__media-col .slick-list{top:45px;width:685px}.device-carousel-container--laptop-bg .device-carousel__media{top:0;-o-object-position:top left;object-position:top left;width:685px;height:442px}}.double-rich-text{position:relative;overflow:hidden}.double-rich-text .container-fluid>.row>div,.double-rich-text .container-lg>.row>div,.double-rich-text .container-md>.row>div,.double-rich-text .container-sm>.row>div,.double-rich-text .container-xl>.row>div,.double-rich-text .container-xxl>.row>div{overflow-x:auto;overflow-y:hidden}@media(min-width:1025px){.double-rich-text .container-fluid>.row>div::-webkit-scrollbar,.double-rich-text .container-lg>.row>div::-webkit-scrollbar,.double-rich-text .container-md>.row>div::-webkit-scrollbar,.double-rich-text .container-sm>.row>div::-webkit-scrollbar,.double-rich-text .container-xl>.row>div::-webkit-scrollbar,.double-rich-text .container-xxl>.row>div::-webkit-scrollbar{width:12px;height:12px}.double-rich-text .container-fluid>.row>div::-webkit-scrollbar-thumb,.double-rich-text .container-lg>.row>div::-webkit-scrollbar-thumb,.double-rich-text .container-md>.row>div::-webkit-scrollbar-thumb,.double-rich-text .container-sm>.row>div::-webkit-scrollbar-thumb,.double-rich-text .container-xl>.row>div::-webkit-scrollbar-thumb,.double-rich-text .container-xxl>.row>div::-webkit-scrollbar-thumb{border-radius:0;background-color:rgba(16,16,16,.17);width:12px;height:12px}.double-rich-text .container-fluid>.row>div::-webkit-scrollbar-corner,.double-rich-text .container-lg>.row>div::-webkit-scrollbar-corner,.double-rich-text .container-md>.row>div::-webkit-scrollbar-corner,.double-rich-text .container-sm>.row>div::-webkit-scrollbar-corner,.double-rich-text .container-xl>.row>div::-webkit-scrollbar-corner,.double-rich-text .container-xxl>.row>div::-webkit-scrollbar-corner{background-color:inherit}}@media(min-width:1025px){.background-midnightBlack .double-rich-text .container-fluid>.row>div::-webkit-scrollbar,.background-midnightBlack .double-rich-text .container-lg>.row>div::-webkit-scrollbar,.background-midnightBlack .double-rich-text .container-md>.row>div::-webkit-scrollbar,.background-midnightBlack .double-rich-text .container-sm>.row>div::-webkit-scrollbar,.background-midnightBlack .double-rich-text .container-xl>.row>div::-webkit-scrollbar,.background-midnightBlack .double-rich-text .container-xxl>.row>div::-webkit-scrollbar,.background-midnightBlack .double-rich-text .container>.row>div::-webkit-scrollbar{width:12px;height:12px}.background-midnightBlack .double-rich-text .container-fluid>.row>div::-webkit-scrollbar-thumb,.background-midnightBlack .double-rich-text .container-lg>.row>div::-webkit-scrollbar-thumb,.background-midnightBlack .double-rich-text .container-md>.row>div::-webkit-scrollbar-thumb,.background-midnightBlack .double-rich-text .container-sm>.row>div::-webkit-scrollbar-thumb,.background-midnightBlack .double-rich-text .container-xl>.row>div::-webkit-scrollbar-thumb,.background-midnightBlack .double-rich-text .container-xxl>.row>div::-webkit-scrollbar-thumb,.background-midnightBlack .double-rich-text .container>.row>div::-webkit-scrollbar-thumb{border-radius:0;background-color:rgba(16,16,16,.17);width:12px;height:12px}.background-midnightBlack .double-rich-text .container-fluid>.row>div::-webkit-scrollbar-corner,.background-midnightBlack .double-rich-text .container-lg>.row>div::-webkit-scrollbar-corner,.background-midnightBlack .double-rich-text .container-md>.row>div::-webkit-scrollbar-corner,.background-midnightBlack .double-rich-text .container-sm>.row>div::-webkit-scrollbar-corner,.background-midnightBlack .double-rich-text .container-xl>.row>div::-webkit-scrollbar-corner,.background-midnightBlack .double-rich-text .container-xxl>.row>div::-webkit-scrollbar-corner,.background-midnightBlack .double-rich-text .container>.row>div::-webkit-scrollbar-corner{background-color:inherit}}@media(min-width:1025px){.background-midnightBlack .double-rich-text .container-fluid>.row>div::-webkit-scrollbar-thumb,.background-midnightBlack .double-rich-text .container-lg>.row>div::-webkit-scrollbar-thumb,.background-midnightBlack .double-rich-text .container-md>.row>div::-webkit-scrollbar-thumb,.background-midnightBlack .double-rich-text .container-sm>.row>div::-webkit-scrollbar-thumb,.background-midnightBlack .double-rich-text .container-xl>.row>div::-webkit-scrollbar-thumb,.background-midnightBlack .double-rich-text .container-xxl>.row>div::-webkit-scrollbar-thumb,.background-midnightBlack .double-rich-text .container>.row>div::-webkit-scrollbar-thumb{background-color:hsla(0,0%,100%,.17)}}.double-rich-text .col-xl-6:last-child{margin-top:48px}.double-rich-text p:not(:last-child){margin-bottom:1em}.double-rich-text ol,.double-rich-text ul{padding-left:20px}.double-rich-text ul{list-style:none}.double-rich-text ul li:before{content:"•";color:#ff5f02;font-weight:700;display:inline-block;width:1em;margin-left:-1em}.double-rich-text ol{list-style:decimal}.double-rich-text--blockquote .row{align-items:center}.double-rich-text--blockquote .quotation{margin-bottom:40px}@media screen and (min-width:768px){.double-rich-text .col-xl-6:last-child{margin-top:86px}.container-fluid .double-rich-text p:not(:first-child),.container-fluid .double-rich-text p:not(:last-child),.container-lg .double-rich-text p:not(:first-child),.container-lg .double-rich-text p:not(:last-child),.container-md .double-rich-text p:not(:first-child),.container-md .double-rich-text p:not(:last-child),.container-sm .double-rich-text p:not(:first-child),.container-sm .double-rich-text p:not(:last-child),.container-xl .double-rich-text p:not(:first-child),.container-xl .double-rich-text p:not(:last-child),.container-xxl .double-rich-text p:not(:first-child),.container-xxl .double-rich-text p:not(:last-child){margin-top:.5em}.double-rich-text ol,.double-rich-text ul{padding-left:20px}}@media screen and (min-width:1025px){.double-rich-text .col-xl-6:last-child{margin-top:0}}@media screen and (min-width:1400px){.container.container-v4{max-width:1140px}}.accordion .faqList{max-width:290px;flex:1}.accordion .faqList_sectionList{max-width:90%;display:flex;flex-direction:column;align-items:flex-start}.accordion .faqList_sectionList button{text-align:left}.accordion .faqList_section{position:relative;display:inline-block;max-width:100%;padding-bottom:4px;border-bottom:4px solid transparent;font-weight:600;list-style:none;cursor:pointer;transition:all .25s linear;line-height:1;letter-spacing:1.5px}.accordion .faqList_section+.faqList_section{margin-top:32px}.accordion .faqList_section.faqList_section-active{border-bottom:4px solid #ff5f02;color:#ff5f02}.accordion .faqList_section:hover{color:#ff5f02}.accordion_details:not(:first-of-type){margin-top:-1px}.accordion_details .textBlock_contentEntry{padding:0 1.5rem 1.5rem}.accordionContent{flex:1}.accordionContent .fr-view h3.sectionTitle,.accordionContent .fr-view h4.sectionTitle,.accordionContent .sectionTitle.h3,.accordionContent .structured-content h3.sectionTitle,.accordionContent .structured-content h4.sectionTitle,.accordionContent blockquote.sectionTitle,.accordionContent q.sectionTitle,.fr-view .accordionContent h3.sectionTitle,.fr-view .accordionContent h4.sectionTitle,.structured-content .accordionContent h3.sectionTitle,.structured-content .accordionContent h4.sectionTitle{display:block;text-transform:uppercase}.accordionContent summary{padding:1.5rem;outline:none;list-style:none;align-items:center;justify-content:space-between;cursor:pointer}.accordionContent summary>div{display:flex;align-items:center;justify-content:space-between}.accordionContent summary h2,.accordionContent summary h3{padding:0;font-weight:600}.accordionContent summary::-webkit-details-marker{display:none}.accordionContent summary .caret{width:4px;height:4px;transition:transform .4s;border-color:inherit;margin-left:20px}.accordionContent summary:before{display:none}.accordionContent details[open] summary .icon{transform:rotate(-135deg)}.Gecko.Gecko4 .accordionContent summary,.Gecko.Gecko6 .accordionContent summary,.Safari .accordionContent summary{position:relative}.Gecko.Gecko4 .accordionContent summary h2,.Gecko.Gecko4 .accordionContent summary h3,.Gecko.Gecko6 .accordionContent summary h2,.Gecko.Gecko6 .accordionContent summary h3,.Safari .accordionContent summary h2,.Safari .accordionContent summary h3{padding-right:24px}@media screen and (min-width:1025px){.accordion_details:not(:first-of-type){margin-top:0}.accordion_details:not(last-of-type){margin-bottom:1.5rem}.accordionContent summary .caret{padding:3px}}.media-selector-with-text{overflow-x:hidden}.media-selector-with-text__main-row-container{z-index:2;max-height:none;margin-bottom:6.8125rem}.media-selector-with-text__main-row{min-width:100%}.media-selector-with-text__main-title.media-selector-with-text__main-title{padding-left:0;padding-right:1.875rem;margin-bottom:1.25rem;color:inherit}.media-selector-with-text__main-title.media-selector-with-text__main-title.media-selector-with-text__main-title--font-reg{margin-bottom:1.25rem}.media-selector-with-text__subheading{margin-bottom:10px}.media-selector-with-text__main-subtitle p:not(:last-child){margin-bottom:.625rem}.media-selector-with-text__video-row-container{background:inherit;padding-left:2.09375rem;padding-right:2.09375rem}.media-selector-with-text__video-col,.media-selector-with-text__video-row{background:inherit}.media-selector-with-text__video-container{height:100%;min-height:575px;background:inherit}@media(max-width:574px){.media-selector-with-text__video-container{min-height:100vw}}.media-selector-with-text__video{width:575px;height:575px;-o-object-fit:contain;object-fit:contain;height:auto;position:absolute;top:0;mix-blend-mode:lighten;opacity:0;transition:opacity 1s ease}.media-selector-with-text__video--active{opacity:1}.media-selector-with-text__subtitle{margin-bottom:.5rem;color:#fff;transition:color 1s ease}.media-selector-with-text__title{margin-bottom:1.375rem;color:#fff;transition:color 1s ease}@media(max-width:1275px){.media-selector-with-text__title{word-break:break-all}}.media-selector-with-text__description{opacity:.5;transition:opacity 1s ease}.media-selector-with-text__text-block-container{padding:0 1.875rem}@media(min-width:1025px)and (max-width:1275px){.media-selector-with-text__text-block-container{padding-left:0}}@media(min-width:1276px){.media-selector-with-text__text-block-container{padding-left:7.1875rem}}.media-selector-with-text__text-block--active .media-selector-with-text__subtitle,.media-selector-with-text__text-block--active .media-selector-with-text__title{color:#ff5f02}.media-selector-with-text__text-block--active .media-selector-with-text__description{opacity:1}.media-selector-with-text__btn-block{padding:3.5rem .625rem}@media(max-width:450px){.media-selector-with-text__btn-block{padding-left:0;padding-right:0}}.media-selector-with-text__bottom-row{margin-left:0;margin-right:0}.media-selector-with-text__bottom-text-row{max-width:1110px}.media-selector-with-text__bottom-text-container{max-width:479px;margin-top:4.5051875rem}.media-selector-with-text__bottom-text{margin-bottom:1}.media-selector-with-text__lottie-container{min-width:100%}.media-selector-with-text__lottie-container .media-selector__media-item--lottie{width:100%!important;height:auto!important}@media screen and (min-width:768px){.media-selector-with-text__main-title.media-selector-with-text__main-title.media-selector-with-text__main-title--font-reg{margin-bottom:0}.media-selector-with-text__video-row-container{margin-left:auto;margin-right:auto}.media-selector-with-text__video{left:50%;margin-left:-17.96875rem}.media-selector-with-text__bottom-row{margin-left:inherit;margin-right:inherit}.media-selector-with-text__bottom-text-container{margin-right:4rem}.media-selector-with-text__text-block-container{padding:0}}@media screen and (min-width:1025px){.media-selector-with-text{min-height:575px}.media-selector-with-text__main-row-container{max-width:1439px;margin-bottom:1.875rem}.media-selector-with-text__main-title.media-selector-with-text__main-title{margin-bottom:.125rem;padding-left:0}.media-selector-with-text__subheading{margin-bottom:60px}.media-selector-with-text__video-row-container{max-width:1439px;margin-bottom:0}.media-selector-with-text__video{margin-left:-15.875rem}.media-selector-with-text__text-block{max-width:219px}.media-selector-with-text__text-block-container{margin-top:6.625rem}.media-selector-with-text__lottie-container .media-selector__media-item--lottie{min-height:0}}.rich-text-with-image{overflow:hidden}.rich-text-with-image__image{min-height:320px}.rich-text-with-image__text{padding:7.6%}@media(max-width:767px){.rich-text-with-image__text{padding:12% 11% 8%}}.rich-text-with-image h2{margin-bottom:20px}.rich-text-with-image h3,.rich-text-with-image p{margin-bottom:48px}.rich-text-with-image__cta:hover{text-decoration:underline}@media(min-width:768px){.rich-text-with-image__cta{margin-bottom:48px}}.hover-tiles{overflow:hidden;width:100%}.hover-tiles__link{color:inherit}.hover-tiles__link:hover{color:inherit;text-decoration:underline}.hover-tiles__main-title{margin-bottom:1rem;text-align:center}.hover-tiles__main-cta,.hover-tiles__main-text{text-align:center;margin:0 auto 5.9375rem;max-width:838px}.hover-tiles.no__link .hover-tiles__tile-front{opacity:0}.hover-tiles.no__link .hover-tiles__tile-back{opacity:1}.hover-tiles__tile{min-height:69vw;position:relative;margin-bottom:3px}.hover-tiles__tile-back,.hover-tiles__tile-front{transition-property:opacity;transition-timing-function:ease;transition-duration:.9s;position:absolute;max-height:100%;height:100%;width:100%;backface-visibility:hidden;overflow:hidden}@media(min-width:1025px){.hover-tiles__tile-back::-webkit-scrollbar,.hover-tiles__tile-front::-webkit-scrollbar{width:12px;height:12px}.hover-tiles__tile-back::-webkit-scrollbar-thumb,.hover-tiles__tile-front::-webkit-scrollbar-thumb{border-radius:0;background-color:rgba(16,16,16,.17);width:12px;height:12px}.hover-tiles__tile-back::-webkit-scrollbar-corner,.hover-tiles__tile-front::-webkit-scrollbar-corner{background-color:inherit}}.hover-tiles__tile-front{padding:2.375rem;z-index:3;background:#fff;background-position:50% 50%;background-size:cover;opacity:1}.hover-tiles__tile-front:before{content:"";width:100%;height:100%;position:absolute;top:0;left:0;background:radial-gradient(102.86% 102.86% at 50% 50%,rgba(0,0,0,.113145) 0,#000 100%);z-index:3}.hover-tiles__tile-back{display:block;padding:2.375rem;z-index:4;opacity:0;overflow-y:scroll}@media(min-width:1025px){.hover-tiles__tile-back::-webkit-scrollbar{width:12px;height:12px}.hover-tiles__tile-back::-webkit-scrollbar-thumb{border-radius:0;background-color:rgba(16,16,16,.17);width:12px;height:12px}.hover-tiles__tile-back::-webkit-scrollbar-corner{background-color:inherit}}.hover-tiles__tile .hover-tiles__tile-category{margin-bottom:5.9375rem}.hover-tiles--wide .hover-tiles__tile,.hover-tiles--wide .hover-tiles__tile-back,.hover-tiles--wide .hover-tiles__tile-front{min-height:calc(150vw - 2px)}.hover-tiles__category-title{margin-bottom:1rem;word-break:break-word}.hover-tiles__category-text{margin:0 auto 2.25rem}.hover-tiles__category-cta{margin-bottom:2.25rem}.hover-tiles__card{min-height:69vw;padding:1.75rem 2.375rem;margin-bottom:.25rem;background:#fff}.hover-tiles__logo-container{margin:0 auto 1.875rem}.hover-tiles__logo{margin:0 auto;display:block}.hover-tiles__card-title{position:relative;z-index:3;margin-bottom:1rem;color:inherit}.hover-tiles__card-text{margin-bottom:.8125rem}.hover-tiles__card-cta,.hover-tiles__card-cta:hover{color:inherit}@media screen and (min-width:768px){.hover-tiles__main-title{max-width:none}.hover-tiles__tile-container{display:flex;flex-flow:row wrap}.hover-tiles__tile{max-width:calc(50% - 1.5px);min-height:0;margin:1.5px;flex-grow:1;flex-basis:50%}.hover-tiles--wide .hover-tiles__tile{max-width:100%;flex-basis:100%;margin:0 0 3px}.hover-tiles--wide .hover-tiles__tile:nth-child(odd){margin-left:0}.hover-tiles--wide .hover-tiles__tile:nth-child(2n){margin-right:0}.hover-tiles--wide .hover-tiles__tile-back,.hover-tiles--wide .hover-tiles__tile-front{min-height:0}.hover-tiles__tile-category{display:flex;flex-flow:row wrap}.hover-tiles__category-text{max-width:522px;box-sizing:content-box}.hover-tiles__card{width:calc(50% - .25rem);min-height:calc(50vw - .25rem);margin-right:.25rem}.hover-tiles__logo{margin:0}}@media(min-width:768px)and (max-width:991.98px){.hover-tiles__tile,.hover-tiles__tile-back,.hover-tiles__tile-front{min-height:0}.hover-tiles__tile:after{content:"";display:block;margin-top:100%}.hover-tiles__tile:nth-child(odd){margin-left:0}.hover-tiles__tile:nth-child(2n){margin-right:0}.hover-tiles--wide .hover-tiles__tile{min-height:0}.hover-tiles--wide .hover-tiles__tile:after{content:"";display:block;margin-top:50%}}@media screen and (min-width:992px){.hover-tiles__main-title{margin-bottom:2.1875rem;text-align:center}.hover-tiles__category-title{margin-bottom:1.25rem}.hover-tiles__tile{width:calc(33.33% - 2px);max-width:calc(33.33% - 2px);min-height:calc(22.9977vw - 2px);margin:1.5px}.hover-tiles__tile:nth-child(3n){margin-right:0}.hover-tiles__tile:nth-child(3n+1){margin-left:0}.hover-tiles__tile-back,.hover-tiles__tile-front{min-height:calc(22.9977vw - 2px)}.hover-tiles__card{width:calc(33.33% - .25rem);min-height:calc(22.9977vw - .25rem);padding:5.625rem 4rem;margin:0 .25rem .25rem 0}.hover-tiles--wide .hover-tiles__tile{width:calc(50% - 2px);max-width:calc(50% - 2px);margin:1.5px}.hover-tiles--wide .hover-tiles__tile:nth-child(2n){margin-right:0}.hover-tiles--wide .hover-tiles__tile:nth-child(odd){margin-left:0}.hover-tiles--wide .hover-tiles__tile,.hover-tiles--wide .hover-tiles__tile-back,.hover-tiles--wide .hover-tiles__tile-front{min-height:calc(25vw - 2px)}.hover-tiles--wide .hover-tiles__card{width:calc(25% - .25rem);min-height:calc(25vw - .25rem);padding:5.625rem 4rem;margin:0 .25rem .25rem 0}.hover-tiles__logo-container{margin:0 0 3.125rem}.hover-tiles__card-cta{transform:translateY(.625rem);transition:transform;transition-delay:1s;transition-duration:1s;transition-timing-function:ease}}@media screen and (min-width:1025px){.hover-tiles--wide,.hover-tiles--wide .hover-tiles__tile,.hover-tiles--wide .hover-tiles__tile-back,.hover-tiles--wide .hover-tiles__tile-front{min-height:calc(50vw - 2px)}}@media(min-width:1400px){.hover-tiles.no__link .hover-tiles__tile-front{opacity:1}.hover-tiles.no__link .hover-tiles__tile-back{opacity:0}.hover-tiles__tile-back{z-index:2}.hover-tiles__tile:active .hover-tiles__tile-front,.hover-tiles__tile:focus .hover-tiles__tile-front,.hover-tiles__tile:hover .hover-tiles__tile-front{opacity:0}.hover-tiles__tile:active .hover-tiles__tile-back,.hover-tiles__tile:focus .hover-tiles__tile-back,.hover-tiles__tile:hover .hover-tiles__tile-back{opacity:1;z-index:3}.hover-tiles__tile:active .hover-tiles__tile-back .hover-tiles__card-cta,.hover-tiles__tile:focus .hover-tiles__tile-back .hover-tiles__card-cta,.hover-tiles__tile:hover .hover-tiles__tile-back .hover-tiles__card-cta{transform:translateY(0);color:inherit}.hover-tiles--wide,.hover-tiles--wide .hover-tiles__tile,.hover-tiles--wide .hover-tiles__tile-back,.hover-tiles--wide .hover-tiles__tile-front{min-height:calc(25vw - 2px)}}.cloud-four-block-image{padding:3.75rem 1.25rem}.cloud-four-block-image__cta{max-width:600px;max-width:37.5rem;margin-left:auto;margin-right:auto;text-align:center;width:100%}@media(min-width:768px){.cloud-four-block-image__cta h4{margin-bottom:.9375rem}}.cloud-four-block-image__cta-link:hover{text-decoration:underline}.cloud-four-block-image__header{margin-bottom:2.5rem;max-width:800px;max-width:50rem;padding:0 1.25rem;margin-left:auto;margin-right:auto}.cloud-four-block-image__image{margin-bottom:2rem}@media(min-width:768px){.cloud-four-block-image__image{margin-bottom:3.75rem}}.cloud-four-block-image__image,.cloud-four-block-image__image img{max-width:100%;width:100%}.cloud-four-block-image__image img{height:auto}.cloud-four-block-image__li{margin-bottom:2.5rem;padding:1.25rem;max-width:100%;flex:1 0 100%;width:100%}@media(min-width:768px){.cloud-four-block-image__li{margin-bottom:3.75rem;max-width:calc(50% - 40px);flex:1 0 calc(50% - 40px)}}@media(min-width:1025px){.cloud-four-block-image__li{margin-bottom:5rem;max-width:calc(50% - 80px);flex:1 0 calc(50% - 80px)}}.cloud-four-block-image__li-body,.cloud-four-block-image__li-body *{letter-spacing:-.6px;letter-spacing:-.0375rem}.cloud-four-block-image__li-header{margin-bottom:.9375rem}.cloud-four-block-image__text{margin-top:auto}.cloud-four-block-image__ul{max-width:1240px;max-width:77.5rem;align-items:stretch;display:flex;flex-wrap:wrap;justify-content:space-between;margin-left:auto;margin-right:auto;width:100%}.showcase-tiles{width:100vw;overflow:hidden}.showcase-tiles__link,.showcase-tiles__link:hover{color:inherit}.showcase-tiles__title{padding:0 2.375rem;margin-bottom:4rem}.showcase-tiles__cloud-category{margin-bottom:5.9375rem}.showcase-tiles__cloud-category:last-child{margin-bottom:0}.showcase-tiles__cloud-category-title{margin-bottom:2.4375rem;padding:0 2.375rem}.showcase-tiles__card{padding:1.75rem 2.375rem;margin-bottom:.25rem;background:#fff;overflow:hidden}.showcase-tiles__card-inner{width:100%;height:100%;overflow-x:auto;overflow-y:hidden}@media(min-width:1025px){.showcase-tiles__card-inner::-webkit-scrollbar{width:12px;height:12px}.showcase-tiles__card-inner::-webkit-scrollbar-thumb{border-radius:0;background-color:rgba(16,16,16,.17);width:12px;height:12px}.showcase-tiles__card-inner::-webkit-scrollbar-corner{background-color:inherit}}.showcase-tiles__logo-container{margin-bottom:1.875rem}.showcase-tiles__logo{margin:0 auto;display:block}.showcase-tiles__card-title{margin-bottom:1rem}.showcase-tiles__card-text{margin-bottom:.8125rem}@media screen and (min-width:768px){.showcase-tiles__title{max-width:none}.showcase-tiles__cloud-category{display:flex;flex-flow:row wrap}.showcase-tiles__cloud-category-title{min-width:100vw}.showcase-tiles__card{width:calc(50vw - .25rem);min-height:calc(50vw - .25rem);margin-right:.25rem}.showcase-tiles__logo{margin:0}}@media screen and (min-width:1025px){.showcase-tiles__title{margin-bottom:4.6875rem;width:100vw;text-align:center}.showcase-tiles__cloud-category:last-child{margin-bottom:5.9375rem}.showcase-tiles__cloud-category-title{margin-bottom:4rem;padding:0 4rem}.showcase-tiles__card{width:calc(33.33vw - .25rem);min-height:calc(33.33vw - .25rem);padding:5.625rem 4rem;margin:0 .25rem .25rem 0}.showcase-tiles__card-cta{margin-bottom:.625rem}.showcase-tiles__card:hover .showcase-tiles__card-cta{transform:translateY(0)}.showcase-tiles__logo-container{margin:0 0 3.125rem}.showcase-tiles__card-cta{transform:translateY(.625rem);transition:opacity,transform;transition-duration:1s;transition-timing-function:ease}}.animated-image-with-text{overflow:hidden}.animated-image-with-text__main-heading{max-width:none}@media(max-width:767px){.animated-image-with-text__main-heading{min-height:525px;min-height:32.8125rem;padding:2.5rem;background-color:rgba(0,0,0,.3);border-top:2px solid #fff;margin-bottom:0}}@media(min-width:1025px){.animated-image-with-text__main-heading{line-height:87px}}.animated-image-with-text__text-block{padding-left:20px;padding-right:20px;min-height:0}.animated-image-with-text__text-inner{overflow-x:auto}@media(min-width:1025px){.animated-image-with-text__text-inner::-webkit-scrollbar{width:12px;height:12px}.animated-image-with-text__text-inner::-webkit-scrollbar-thumb{border-radius:0;background-color:rgba(16,16,16,.17);width:12px;height:12px}.animated-image-with-text__text-inner::-webkit-scrollbar-corner{background-color:inherit}}@media(min-width:1025px){.animated-image-with-text__text-inner::-webkit-scrollbar-thumb{background-color:hsla(0,0%,100%,.17)}}.animated-image-with-text__heading{line-height:39px;line-height:2.4375rem;margin-bottom:1.25rem!important}.animated-image-with-text__bg-image{background-size:cover;background-repeat:no-repeat;background-position:50%;width:100%;height:320px;height:20rem}.animated-image-with-text__bg-image--hidden{visibility:hidden}@media screen and (min-width:768px){.animated-image-with-text__text-block{padding-left:40px;padding-right:40px;min-height:350px}.animated-image-with-text__heading{margin-bottom:12px}.animated-image-with-text__bg-image{height:100%}}@media screen and (min-width:1025px){.animated-image-with-text__main-heading{line-height:87px;line-height:5.4375rem}.animated-image-with-text__text-block{padding-left:215px;min-height:450px}}.offset-content-block{position:relative;display:flex;flex-direction:column;flex-flow:column-reverse}.offset-content-block>*{position:relative}.offset-content-block__content{background-color:#fff;z-index:19;min-height:320px;align-items:center;display:flex;flex-direction:column;justify-content:center}.offset-content-block__content>*{max-width:600px;color:#000;font-weight:600}.offset-content-block__picture{height:320px!important;width:100%;max-width:100%;display:block;-o-object-fit:cover;object-fit:cover}@media screen and (min-width:1025px){.offset-content-block__wrapper+*{padding-top:200px!important}.offset-content-block{display:block;min-height:680px}.offset-content-block__content{bottom:-120px;left:0;min-height:0;padding:192px 32px;position:absolute;max-width:800px}.offset-content-block__content>*{margin-left:auto}.offset-content-block__picture{display:none}.offset-content-block__wrapper+*{padding-top:calc(120 + 32px)!important}}.comparison-chart-container{width:100vw;overflow-x:hidden}.comparison-chart{padding-bottom:2.5rem}@media(max-width:767px){.comparison-chart .table-responsive-sm{display:block;width:100%;overflow-x:hidden}}.comparison-chart__table{margin-top:2.828125rem}.comparison-chart .table{background-color:inherit;border:none}.comparison-chart .table td,.comparison-chart .table th{border:none;color:inherit;text-transform:none}.comparison-chart .table th>span{overflow-x:auto;overflow-y:hidden;display:block}@media(min-width:1025px){.comparison-chart .table th>span::-webkit-scrollbar{width:12px;height:12px}.comparison-chart .table th>span::-webkit-scrollbar-thumb{border-radius:0;background-color:rgba(16,16,16,.17);width:12px;height:12px}.comparison-chart .table th>span::-webkit-scrollbar-corner{background-color:inherit}}.comparison-chart .table__thead{color:inherit}.comparison-chart .table__thead--pr{padding-right:1.940125rem}.comparison-chart .table__thead--pl{padding-left:1.940125rem}.comparison-chart .table__tr{background-color:#fff}.comparison-chart .table__tr[data-aos=fade-left]{transform:translate3d(20px,0,0)}.comparison-chart .table__tr>:first-child{position:relative}.comparison-chart .table__tr--open .table__tr-text-inner{display:block}.comparison-chart .table__tr-heading{font-weight:600}@media(max-width:767px){.comparison-chart .table__tr-heading{width:100%;border-bottom:none;padding-left:.75rem}}@media(max-width:767px){.comparison-chart .table__tr--open .table__tr-heading{padding-bottom:0}}.comparison-chart .table .table__td,.comparison-chart .table .table__tr-heading{padding:1.3rem}.comparison-chart .table__thead-row{background-color:inherit;color:inherit}.comparison-chart .table__thead-heading{position:relative;padding:1.125rem 0}@media(min-width:1025px){.comparison-chart .table__thead-heading:last-child{width:402.972px}}.comparison-chart .table__thead-heading:last-child:before{width:100%}.comparison-chart .table__tr-icon{min-width:1.25rem;display:block;background-repeat:no-repeat;background-size:contain;font-size:1.5rem}.comparison-chart .table__tr-icon--checkmark:after{font-family:Material Symbols Outlined;content:"done";position:relative;color:#ff5f02}.comparison-chart .table__tr-icon--x:after{font-family:Material Symbols Outlined;content:"close";position:relative;color:#676767}@media(max-width:767px){.comparison-chart .table__tr-icon{min-width:21px;min-height:16px;margin-bottom:10px}}.comparison-chart .table__tr-text{flex-flow:column-reverse;text-align:center}.comparison-chart .table__tr-text-heading{display:block;font-weight:600;line-height:1rem;margin-bottom:.8125rem}@media(min-width:768px){.comparison-chart .table__tr-text-heading{display:none}}.comparison-chart .table__tr-text-inner{max-width:265px}@media(max-width:767px){.comparison-chart .table__tr-text-inner{display:none}}@media(max-width:767px){.comparison-chart table:not(.table-productDetail):not(.tabCompList).comparison-chart__table .caret{border:solid #263136;border-width:0 2px 2px 0;padding:3px;transform:rotate(45deg);display:inline-block;margin-left:10px;position:relative;top:-2px;transition:.25s}.comparison-chart table:not(.table-productDetail):not(.tabCompList).comparison-chart__table thead{display:table-header-group}.comparison-chart table:not(.table-productDetail):not(.tabCompList).comparison-chart__table thead:after{content:none}.comparison-chart table:not(.table-productDetail):not(.tabCompList).comparison-chart__table tbody{display:table-row-group}.comparison-chart table:not(.table-productDetail):not(.tabCompList).comparison-chart__table tbody tr{background:inherit;border-top:1px solid #ced3da}.comparison-chart table:not(.table-productDetail):not(.tabCompList).comparison-chart__table tbody tr:last-of-type{border-bottom:1px solid #ced3da}.comparison-chart table:not(.table-productDetail):not(.tabCompList).comparison-chart__table tr{display:table-row;padding:0}.comparison-chart table:not(.table-productDetail):not(.tabCompList).comparison-chart__table .table__tr{display:flex;flex-flow:row wrap}.comparison-chart table:not(.table-productDetail):not(.tabCompList).comparison-chart__table .table__tr--open .caret{transform:rotate(45deg) rotate(-180deg)}.comparison-chart table:not(.table-productDetail):not(.tabCompList).comparison-chart__table .table__thead-row{display:none}.comparison-chart table:not(.table-productDetail):not(.tabCompList).comparison-chart__table .table__td{display:table-cell;color:inherit;text-align:inherit;border:none;background-color:inherit;width:50%}.comparison-chart table:not(.table-productDetail):not(.tabCompList).comparison-chart__table .table__td:not(:first-child):before{content:none}.comparison-chart table:not(.table-productDetail):not(.tabCompList).comparison-chart__table .table__tr:not(.table__tr--open) .table__td{display:none}}@media screen and (min-width:768px){.comparison-chart .table__body{box-shadow:0 0 10px rgba(0,0,0,.1);border-radius:10px 10px 0 0}.comparison-chart .table__td--second-col{background:rgba(215,218,220,.2)}.comparison-chart .table__tr .table__td,.comparison-chart .table__tr .table__tr-heading{border:1px solid #eee}}@media screen and (min-width:1025px){.comparison-chart .table__td-heading,.comparison-chart .table__tr-heading{padding:1.3rem 3rem!important}.comparison-chart__table--single .table__thead-heading:last-child{width:65%}.comparison-chart__table--single .table__tr-text-inner{max-width:90%}}.logo-text-block>.container{overflow-x:auto;overflow-y:hidden}@media(min-width:1025px){.logo-text-block>.container::-webkit-scrollbar{width:12px;height:12px}.logo-text-block>.container::-webkit-scrollbar-thumb{border-radius:0;background-color:rgba(16,16,16,.17);width:12px;height:12px}.logo-text-block>.container::-webkit-scrollbar-corner{background-color:inherit}}.logo-text-block__image{max-width:184px;height:auto;margin-bottom:16px}.logo-text-block__header{max-width:none}@media screen and (min-width:768px){.logo-text-block__image{margin-bottom:24px}}@media screen and (min-width:992px){.logo-text-block.logo-text-block--narrow{width:66.66667%;max-width:800px}}@media screen and (min-width:1025px){.logo-text-block__header{margin-bottom:16px}.logo-text-block__content{max-width:75%}}.full-width-image{width:100%;height:480px;overflow:hidden;position:relative}.full-width-image:after{content:"";position:absolute;top:0;left:0;width:100%;height:100%;box-shadow:inset 0 0 50px #000;transition:box-shadow 1.3s}.full-width-image__bg{background-size:cover;background-position:50%;background-repeat:no-repeat;width:100%;height:100%;transition:height 1.3s,width 1.3s,transform 1.3s}.full-width-image.editing{height:auto;min-height:480px;overflow:visible}.full-width-image.editing:after{z-index:1}.full-width-image.editing .ktc-widget-zone{z-index:2}.full-width-image.editing__bg{min-height:480px}.full-width-image:focus.full-width-image:after,.full-width-image:hover.full-width-image:after{box-shadow:inset 0 0 100px #000}.logo-blanket{--fadeColor:hsla(0,0%,100%,0.9)}.background-grayLight .logo-blanket{--fadeColor:rgba(246,247,251,0.9)}.background-midnightBlack .logo-blanket{--fadeColor:rgba(16,16,16,0.9)}.background-midnightBlack .logo-blanket .logo-blanket_grid:not(.logo--fullColor) img{filter:saturate(0) brightness(70%) contrast(1000%) invert(1);opacity:1}.logo-blanket__wrapper{--gap:66px;position:relative;display:flex;overflow:hidden;-webkit-user-select:none;-moz-user-select:none;user-select:none;gap:var(--gap)}.logo-blanket__wrapper:after,.logo-blanket__wrapper:before{width:40rem;background:linear-gradient(90deg,var(--fadeColor) 20%,hsla(0,0%,100%,0));content:"";height:4.8rem;position:absolute;width:10rem;z-index:2;background:linear-gradient(270deg,var(--fadeColor),hsla(0,0%,100%,0))}.logo-blanket__wrapper:before{left:0;top:0;transform:matrix(-1,0,0,1,0,0)}.logo-blanket__wrapper:after{right:0;top:0}.logo-blanket__marquee{display:flex;flex-wrap:nowrap;min-width:100%;flex-shrink:0;gap:var(--gap);animation:marquee 89s linear 0s infinite normal none running}.logo-blanket_grid{row-gap:75px}.logo-blanket_grid img{max-height:60px;width:auto;max-width:100%}.logo-blanket_grid:not(.logo--fullColor) img{filter:brightness(.7) contrast(3) grayscale(1);opacity:.6}@media screen and (min-width:768px){.logo-blanket_grid.maxwidth{max-width:1140px;margin:0 auto}}@keyframes marquee{0%{transform:translate(0)}to{transform:translate(calc(-100% - var(--gap)))}}.leaderGrid{display:flex;align-items:start;justify-content:center;flex-wrap:wrap;row-gap:50px}.leaderGrid.featuredLeader{row-gap:0;margin-bottom:50px;align-items:center;justify-content:start}.leaderGrid.featuredLeader .leaderCallout{flex:1}.leaderCallout_name,.leaderTile_name{padding-bottom:8px}.leaderCallout_role,.leaderTile_role{text-transform:uppercase}.leaderTile_image{position:relative;display:block;margin-bottom:24px;transition:all .25s ease-in-out 0s;width:100%}.leaderTile_image img{display:block}.leaderTile_image img.rounded{border-radius:50%}.leaderTile_image .leaderTile_link{position:absolute;bottom:0;left:0;display:flex;width:155px;height:40px;padding-left:24px;background-color:rgba(243,116,64,.7);color:#fff;text-transform:uppercase;transition:all .25s ease-in-out 0s;cursor:pointer;justify-content:center}.leaderTile_image .leaderTile_link .link-hasArrow_icon{width:21px;margin-left:8px}.textModal{position:fixed;top:0;left:0;width:100%;height:100%;background:rgba(0,0,0,.5);z-index:101;visibility:hidden}.textModal,.textModal-bg{display:none}.textModal.textModal-open{display:block;visibility:visible}.textModal_close{position:absolute;top:10px;right:10px;padding:2px 4px;background:hsla(0,0%,100%,.9);color:#677078;font-weight:600;font-size:.6875rem;font-family:Inter,sans-serif;text-transform:uppercase;cursor:pointer}.textModal_close .textModule_close_icon{margin-bottom:2px;margin-left:8px;vertical-align:middle;width:.875rem;height:.875rem}.textModal_contentWrapper{position:fixed;top:50%;left:50%;width:80vw;max-width:1000px;max-height:70vh;overflow:hidden;transform:translateY(-50%) translateX(-50%);z-index:102}.textModal_contentWrapper.eula_wrapper{border-radius:12px;box-shadow:0 12px 24px -6px rgba(16,24,40,.18)}.textModal_contentWrapper.eula_wrapper .textModal_content{display:flex;flex-direction:column}.textModal_contentWrapper.eula_wrapper .textModal_content .textModal_content_scroll{max-height:50dvh}.textModal_contentWrapper.eula_wrapper .textModal_content .textModal_content_scroll p:last-child{padding-bottom:0}.textModal_contentWrapper.eula_wrapper header{border-bottom:1px solid #ced3da}.textModal_contentWrapper.eula_wrapper header:after{content:"";display:block;border-bottom:2px solid #ff5f02;margin-bottom:0;width:56px;border-radius:30px;position:absolute;bottom:0}.textModal_contentWrapper.eula_wrapper footer{border-top:1px solid #ced3da}.textModal_contentWrapper .textModal_content{height:100%;background:#fff}.textModal_contentWrapper .textModal_content .flex_cell{height:100%;overflow:hidden}.textModal_contentWrapper .textModal_content_scroll{height:100%;max-height:578px;overflow-y:auto}.textModal_contentWrapper .textModal_content_scroll p:last-of-type{margin-bottom:24px}.textModal-blur>:not(.textModal-noBlur){-ms-filter:blur(3px);-moz-filter:blur(3px);-o-filter:blur(3px);filter:blur(3px)}.textModal-bg.textModal-open{position:fixed;top:0;left:0;display:block;width:100%;height:100%;z-index:101}.modalFade-enter-active,.modalFade-leave-active,.modalFade-transition{transition:.25s ease-out}.modalFade-enter-to,.modalFade-leave-from{opacity:1;visibility:visible}.modalFade-enter-from,.modalFade-leave-to{opacity:0;visibility:hidden}.textModal-fullScreen::-webkit-scrollbar{width:0}@media screen and (min-width:768px){.leaderGrid{-moz-column-gap:30px;column-gap:30px;row-gap:80px}.leaderGrid.featuredLeader .leaderTile_image_wrapper{flex:0 0 calc(50% - 15px)}.leaderGrid .leaderTile{width:calc(50% - 15px)}.textModal_contentWrapper{width:80vw;height:auto;max-height:70vh}.textModal_contentWrapper .textModal_content{max-height:100%}.textModal_contentWrapper .textModal_content img{max-height:300px;width:auto}.textModal_contentWrapper .textModal_content_scroll{max-height:70vh}.textModal_close{content:""}}@media screen and (min-width:1025px){.leaderTile_image .leaderTile_link{opacity:0}.leaderTile_image:hover .leaderTile_link{opacity:1}.leaderTile_image:hover img{filter:grayscale(0)}.leaderTile_image img{filter:grayscale(100%);will-change:filter;transition:all .25s ease-in-out 0s}.leaderTile:hover img{filter:grayscale(0)}.leaderGrid__3.featuredLeader .leaderTile_image_wrapper{flex:0 0 calc(33.33333% - 20px)}.leaderGrid__3 .leaderTile{width:calc(33.33333% - 20px)}.leaderGrid__4.featuredLeader .leaderTile_image_wrapper{flex:0 0 calc(25% - 22.5px)}.leaderGrid__4 .leaderTile{width:calc(25% - 22.5px)}.leaderGrid__5.featuredLeader .leaderTile_image_wrapper{flex:0 0 calc(20% - 24px)}.leaderGrid__5 .leaderTile{width:calc(20% - 24px)}.leaderGrid__6.featuredLeader .leaderTile_image_wrapper{flex:0 0 calc(16.66667% - 25px)}.leaderGrid__6 .leaderTile{width:calc(16.66667% - 25px)}.textModal_image{height:100%;overflow:hidden;flex:2}.textModal_content_wrap{flex:3}.textModal_contentWrapper{width:66.66666vw;height:38.53332vw;max-width:1000px;max-height:578px}.textModal_contentWrapper .textModal_content{height:100%}.textModal_contentWrapper .textModal_content img{max-height:100%}.textModal_contentWrapper .textModal_content_scroll{height:100%;max-height:578px;overflow-y:auto}.textModal_contentWrapper .textModal_content_scroll p:last-of-type{margin-bottom:24px}}.logoCarousel{position:relative;overflow:hidden}.logoCarousel_nav_mobileWrapper{position:relative;display:flex;align-items:center;justify-content:space-between}.logoCarousel_content{display:flex;min-height:360px;max-width:1024px;margin:auto;flex-direction:column;align-items:center;justify-content:flex-start;padding:40px 24px;flex-wrap:wrap}.logoCarousel_content_logo{height:64px;width:auto;max-width:50%;margin-bottom:40px}.logoCarousel_content_text{color:#101010;text-align:center;max-width:300px;margin:0 35px}.logoCarousel_content_title{margin-bottom:12px;color:#101010;text-align:center}.logoCarousel_content_cite{display:block;padding:10px 0 2px 26px;border-left:1px solid #ced3da;color:#101010}.logoCarousel_content_cite_name{padding-top:20px}.logoCarousel_nav_item{display:flex;width:100px;height:56px;margin:0 15px;border-bottom:4px solid transparent;align-items:center;justify-content:center;cursor:pointer}.logoCarousel_nav_item img{display:block;width:100px;max-width:100%;height:auto;max-height:40px;margin:0 auto 8px;filter:grayscale(100%)}.logoCarousel_nav_item:hover{border-bottom-color:#f6f7fb}.logoCarousel_nav_item:hover img{filter:grayscale(0)}.logoCarousel_nav_item-active{border-bottom-color:#ff5f02}.logoCarousel_nav_item-active img{filter:grayscale(0)}.logoCarousel_nav_item-active:hover{border-bottom-color:#ff5f02}.logoCarousel_navArrow{position:absolute;top:115px;display:flex;width:48px;height:48px;border:1px solid #e4e4e4;border-radius:50%;background-color:#fff;transform:translateY(-50%);justify-content:center;align-items:center;cursor:pointer;z-index:10;transition:all .25s ease-in-out 0s;-webkit-user-select:none;-moz-user-select:none;user-select:none}.logoCarousel_navArrow .nav_icon{color:#333a3e;line-height:1;transition:all .25s ease-in-out 0s}.logoCarousel_navArrow .nav_icon svg{fill:#333a3e;width:32px;height:32px}.logoCarousel_navArrow .nav_icon.previous svg{transform:scaleX(-1)}.logoCarousel_navArrow:hover{background-color:#f6f7fb}.logoCarousel_navArrow:hover .nav_icon{color:#ff5f02}.logoCarousel_navArrow-prev{left:3%}.logoCarousel_navArrow-next{right:3%}@media screen and (min-width:768px){.logoCarousel_nav{justify-content:center}.logoCarousel_nav_mobileWrapper{position:relative;display:flex;align-items:center;justify-content:space-between}.logoCarousel_content{padding:40px 114px}.logoCarousel_content_logo{height:64px;width:auto;max-width:350px;margin-bottom:32px}.logoCarousel_content_text{max-width:400px;margin:0 24px}.logoCarousel_navArrow{top:142px;width:64px;height:64px}.logoCarousel_navArrow-next{right:15%}.logoCarousel_navArrow-prev{left:15%}}@media screen and (min-width:1025px){.logoCarousel_nav{padding:12px 108px 0}.logoCarousel_nav_item{width:160px}.logoCarousel_nav_item img{width:auto}.logoCarousel_content_title{margin-bottom:16px}.logoCarousel_content_text{max-width:unset;margin:0}}@media screen and (min-width:1300px){.logoCarousel_navArrow{top:calc(50% + 34px)}}.background-grayAlt .consulting-img-text__text:before{background:linear-gradient(180deg,hsla(0,0%,89.8%,0) 0,#e5e5e5)}@media(min-width:768px){.background-grayAlt .consulting-img-text__text:before{background:linear-gradient(90deg,hsla(0,0%,89.8%,0) 0,#e5e5e5)}}.background-grayLight .consulting-img-text__text:before{background:linear-gradient(180deg,rgba(246,247,251,0) 0,#f6f7fb)}@media(min-width:768px){.background-grayLight .consulting-img-text__text:before{background:linear-gradient(90deg,rgba(246,247,251,0) 0,#f6f7fb)}}.background-grayLightest .consulting-img-text__text:before{background:linear-gradient(180deg,hsla(0,0%,98%,0) 0,#fafafa)}@media(min-width:768px){.background-grayLightest .consulting-img-text__text:before{background:linear-gradient(90deg,hsla(0,0%,98%,0) 0,#fafafa)}}.background-grayLightMedium .consulting-img-text__text:before{background:linear-gradient(180deg,hsla(0,0%,94.9%,0) 0,#f2f2f2)}@media(min-width:768px){.background-grayLightMedium .consulting-img-text__text:before{background:linear-gradient(90deg,hsla(0,0%,94.9%,0) 0,#f2f2f2)}}.background-grayWarm .consulting-img-text__text:before{background:linear-gradient(180deg,rgba(226,222,219,0) 0,#e2dedb)}@media(min-width:768px){.background-grayWarm .consulting-img-text__text:before{background:linear-gradient(90deg,rgba(226,222,219,0) 0,#e2dedb)}}.background-midnightBlack .consulting-img-text__text:before{background:linear-gradient(180deg,rgba(16,16,16,0) 0,#101010)}@media(min-width:768px){.background-midnightBlack .consulting-img-text__text:before{background:linear-gradient(90deg,rgba(16,16,16,0) 0,#101010)}}.background-orange .consulting-img-text__text:before{background:linear-gradient(180deg,rgba(255,95,2,0) 0,#ff5f02)}@media(min-width:768px){.background-orange .consulting-img-text__text:before{background:linear-gradient(90deg,rgba(255,95,2,0) 0,#ff5f02)}}.background-orange .consulting-img-text__cta{color:#fff}.background-pureBlack .consulting-img-text__text:before{background:linear-gradient(180deg,transparent 0,#000)}@media(min-width:768px){.background-pureBlack .consulting-img-text__text:before{background:linear-gradient(90deg,transparent 0,#000)}}.background-slate .consulting-img-text__text:before{background:linear-gradient(180deg,rgba(51,58,62,0) 0,#333a3e)}@media(min-width:768px){.background-slate .consulting-img-text__text:before{background:linear-gradient(90deg,rgba(51,58,62,0) 0,#333a3e)}}.background-teal .consulting-img-text__text:before{background:linear-gradient(180deg,rgba(0,105,105,0) 0,#006969)}@media(min-width:768px){.background-teal .consulting-img-text__text:before{background:linear-gradient(90deg,rgba(0,105,105,0) 0,#006969)}}.background-teal .consulting-img-text__cta{color:#fff}.background-white .consulting-img-text__text:before{background:linear-gradient(180deg,hsla(0,0%,100%,0) 0,#fff)}@media(min-width:768px){.background-white .consulting-img-text__text:before{background:linear-gradient(90deg,hsla(0,0%,100%,0) 0,#fff)}}.consulting-img-text{align-items:stretch;display:flex;flex-wrap:wrap;overflow:hidden}@media(min-width:768px){.consulting-img-text--alt .consulting-img-text__image{order:2}}.consulting-img-text__cta{padding:0;text-align:left}@media(max-width:767px){.consulting-img-text__cta{max-width:200px;max-width:12.5rem}}.consulting-img-text__cta:focus{background-color:transparent;color:#ff5f02;outline:none;text-decoration:underline}.consulting-img-text__image{flex:1 0 100%;max-width:100%;width:100%}@media(max-width:767px){.consulting-img-text__image{height:420px;height:26.25rem;height:auto}}@media(min-width:768px){.consulting-img-text__image{flex:1 0 60%;max-width:60%}}.consulting-img-text__img{height:100%;max-width:100%;-o-object-fit:cover;object-fit:cover;-o-object-position:center;object-position:center;font-family:"object-fit: cover; object-position: center;";width:100%;max-height:500px}@media (-ms-high-contrast:active),(-ms-high-contrast:none){.consulting-img-text__img{height:100%;left:0;max-width:100%;position:absolute;top:0;width:100%}}.consulting-img-text__picture{display:flex;height:100%;width:100%}@media (-ms-high-contrast:active),(-ms-high-contrast:none){.consulting-img-text__picture{position:relative}}@media(min-width:768px){.consulting-img-text__picture{min-height:500px;min-height:31.25rem}}.consulting-img-text__text{padding:1.5625rem 2.5rem 5.625rem;display:flex;flex:1 0 100%;flex-direction:column;justify-content:center;max-width:100%;position:relative;width:100%;overflow-x:visible}.consulting-img-text__text:before{height:90px;height:5.625rem;top:-90px;top:-5.625rem;content:"";left:0;position:absolute;width:100%;z-index:9}@media(min-width:768px){.consulting-img-text__text:before{left:-240px;left:-15rem;width:240px;width:15rem;height:100%;top:0}}@media(min-width:768px){.consulting-img-text__text{padding:3.75rem;flex:1 0 40%;max-width:40%}}@media(min-width:768px){.consulting-img-text__text>*{max-width:500px;max-width:31.25rem}}.consulting-img-text__text>:not(:last-child){margin-bottom:1.5625rem}.right-cta-banner{padding:6.25rem 2.5rem;display:flex;position:relative}@media(min-width:768px){.right-cta-banner{padding:8.75rem 3.75rem}}.right-cta-banner__body,.right-cta-banner__header{margin-bottom:1rem}.right-cta-banner__image,.right-cta-banner__image:before{height:100%;left:0;position:absolute;top:0;width:100%}.right-cta-banner__image:before{background:radial-gradient(117.63% 117.63% at 50% 50%,hsla(0,0%,100%,.2) 0,rgba(0,0,0,.2) 100%);content:""}.right-cta-banner__img{height:100%;max-width:100%;-o-object-fit:cover;object-fit:cover;-o-object-position:center;object-position:center;width:100%}.right-cta-banner__picture{display:flex;height:100%;width:100%}.right-cta-banner__text{max-width:500px;max-width:31.25rem;margin-left:auto;position:relative;z-index:9}.media-hero{pointer-events:all;transition:all .25s ease-in-out 0s}.media-hero:hover .video__container>.media-hero__media__img,.media-hero:hover a>.media-hero__media__img{transform:scale(1.05)}.media-hero--leftSidebar:hover .media-hero__content{position:relative;-webkit-clip-path:inset(0 0 -12px -4px);clip-path:inset(0 0 -12px -4px)}.media-hero--leftSidebar:hover .media-hero__content:after{display:block;content:"";border-bottom:2px solid #ff5f02;transform:scaleX(0);transform-origin:0 50%;transition:transform .25s ease-in-out;position:absolute;bottom:0;width:100%;left:0}.media-hero--leftSidebar:hover .media-hero__content:hover:after{transform:scaleX(1)}.media-hero.container-wide__grid{grid-template-rows:auto}.media-hero__content{display:flex;flex-direction:column;justify-content:space-between;align-items:start;padding:40px 0;border:1px solid #ced3da;color:#333a3e;transition:all .25s ease-in-out 0s;text-decoration:none;position:relative;text-align:left;order:2;border-bottom-left-radius:12px;border-bottom-right-radius:12px}.media-hero__content__label{display:-webkit-box;overflow:hidden;-webkit-line-clamp:1;-webkit-box-orient:vertical;padding-bottom:0}.media-hero__content.media-hero__content--short .media-hero__logo{max-height:32px}.media-hero__content.media-hero__content--short .card_description{display:-webkit-box;overflow:hidden;-webkit-line-clamp:5;-webkit-box-orient:vertical;padding-bottom:0}.media-hero__content:hover{color:#333a3e;text-decoration:none}.media-hero__media{aspect-ratio:16/9;overflow:hidden;border-top-left-radius:12px;border-top-right-radius:12px}.media-hero__media.video__container{margin:initial}.media-hero__media__img{transition:all .25s ease-in-out 0s;width:100%;height:100%;-o-object-fit:cover;object-fit:cover}.media-hero__data-points{width:100%;background:#f6f7fb;border-radius:12px;padding:20px 24px;margin-left:0}.media-hero__data-points .data-points__desc{display:inline-block}.media-hero__data-points li.data-points__point:not(:first-of-type){padding-left:12px}.media-hero__data-points li.data-points__point:not(:last-of-type){padding-right:12px}.media-hero__data-points li.data-points__point:not(:last-of-type):after{content:" ";width:0;height:100%;border:1px solid #ced3da;position:absolute;right:0;top:0}.media-hero__quote{display:none}.media-hero__quote blockquote{display:-webkit-box;overflow:hidden;-webkit-line-clamp:6;-webkit-box-orient:vertical;padding-bottom:0}@media screen and (min-width:1300px){.media-hero.container-wide__grid{grid-template-rows:repeat(11,50px)}.media-hero__quote{display:flex;grid-row:6/11;grid-column:9/12;top:100px;justify-self:end;align-self:self-end}.media-hero__content{grid-column:1/7;grid-row:1/12;background:#fff;z-index:3;padding:40px;order:1;border-radius:12px;overflow:hidden;align-self:center}.media-hero__content .card_description,.media-hero__content h1,.media-hero__content p{display:-webkit-box;overflow:hidden;-webkit-line-clamp:4;-webkit-box-orient:vertical;padding-bottom:0}.media-hero--leftSidebar .media-hero__content{align-self:unset;border-top-right-radius:0;border-bottom-right-radius:0}.media-hero--leftSidebar .media-hero__content .card_description,.media-hero--leftSidebar .media-hero__content h1,.media-hero--leftSidebar .media-hero__content p{display:-webkit-box;overflow:hidden;-webkit-line-clamp:4;-webkit-box-orient:vertical;padding-bottom:0}.media-hero__content.media-hero__content--short{grid-column:1/4;grid-row:3/10}.media-hero__media{grid-column:3/-1;grid-row:1/-1;aspect-ratio:unset;border-radius:12px}.media-hero--leftSidebar{grid-gap:0}.media-hero--leftSidebar .media-hero__content{grid-column:1/5;grid-row:1/-1}.media-hero--leftSidebar .media-hero__media{grid-column:5/-1;grid-row:1/-1;aspect-ratio:unset;border-top-left-radius:0;border-bottom-left-radius:0}}@media screen and (min-width:1400px){.media-hero__content{grid-row:2/11;border-radius:12px}.media-hero.media-hero--leftSidebar .media-hero__content{border-top-right-radius:0;border-bottom-right-radius:0}}.data-nav{width:100%;background:#f6f7fb;border-radius:12px;padding:24px 32px}.data-nav .data-points__desc{display:inline-block}.data-nav li.data-points__point:not(:last-of-type){border-bottom:1px solid #ced3da;margin-bottom:.5rem}@media screen and (min-width:768px){.data-nav li.data-points__point:not(:first-of-type){padding-left:32px}.data-nav li.data-points__point:not(:last-of-type){padding-right:32px;border-bottom:unset;margin-bottom:0}.data-nav li.data-points__point:not(:last-of-type):after{content:" ";width:0;height:100%;border:1px solid #ced3da;position:absolute;right:0;top:0}}.data-nav .data-points__point ul li{display:block;margin-bottom:.5rem;font-weight:600}.data-nav .data-points__point ul li a{color:#00233c}.icon-card.card{color:#333a3e;padding:0;max-width:unset;height:auto;transition:all .25s ease-in-out 0s}.icon-card.card h3{color:#00233c}.icon-card.card:hover{color:#333a3e}.icon-card.card:hover h3{color:#00233c}.icon-card .card_content,.icon-card a.card_content{color:#333a3e;display:block;height:100%;padding:24px}.icon-card .card_content:hover,.icon-card a.card_content:hover{text-decoration:none}.icon-card.nolink{background:none;border:none}.icon-card .logos{filter:grayscale(1) brightness(1.25);gap:.75rem}.icon-card .logos img{flex:1 1 0px;display:flex;max-width:70px;max-height:35px}.icon-card__partner{width:184px;aspect-ratio:1}.icon-card__partner__logo-wrapper img{max-height:100%;width:auto;max-width:100%}@media screen and (min-width:768px){.icon-card__3col .icon-card{max-width:calc(33% - 12px);margin:unset}.icon-card.card{height:100%}.icon-card.card.col-lg-6{width:50%}.card.icon-card.nolink:not(:only-child){height:auto;margin-bottom:.75rem}}@media screen and (min-width:1025px){.card.icon-card.col-lg-6{width:50%}.icon-card .logos{-moz-column-gap:4rem;column-gap:4rem;row-gap:1rem}}.numbered-blocks li .numbered-blocks__number{position:relative;font-weight:600}.numbered-blocks li .numbered-blocks__number:after{content:"";border-top:1px solid #677078;opacity:1;margin-left:15px;width:100%}.numbered-blocks li:first-child .numbered-blocks__number{opacity:.4}.numbered-blocks li:nth-child(2) .numbered-blocks__number{opacity:.6}.numbered-blocks li:nth-child(3) .numbered-blocks__number{opacity:.8}.numbered-blocks li:nth-child(5)>*{background:#00233c;padding-left:16px;padding-right:16px}.numbered-blocks li:nth-child(5) .numbered-blocks__number{padding-top:16px;border-top-left-radius:12px;border-top-right-radius:12px;top:-8px}.numbered-blocks li:nth-child(5) .numbered-blocks__number:before{content:" ";width:100%;height:8px;background:inherit;position:absolute;top:100%;left:0}.numbered-blocks li:nth-child(5) .numbered-blocks__number:after{border-color:#fff}.numbered-blocks li:nth-child(5) .numbered-blocks__heading{color:#fff;padding-top:3.5rem;padding-bottom:3.5rem}.numbered-blocks li:nth-child(5) .numbered-blocks__desc{padding-bottom:16px;border-bottom-left-radius:12px;border-bottom-right-radius:12px;color:#fff}@media screen and (min-width:1025px){.numbered-blocks>li{display:contents}.numbered-blocks>li .numbered-blocks__number{grid-row-start:1}.numbered-blocks>li .numbered-blocks__heading{grid-row-start:2}.numbered-blocks>li .numbered-blocks__desc{grid-row-start:3}.numbered-blocks--three li:first-child>*{grid-column:1/span 4}.numbered-blocks--three li:first-child .numbered-blocks__number{grid-row-start:1}.numbered-blocks--three li:nth-child(2)>*{grid-column:5/span 4}.numbered-blocks--three li:nth-child(2) .numbered-blocks__number{grid-row-start:1}.numbered-blocks--three li:nth-child(3)>*{grid-column:9/span 4}.numbered-blocks--three li:nth-child(3) .numbered-blocks__number{grid-row-start:1}.numbered-blocks--five li:first-child>*{grid-column:1/span 2}.numbered-blocks--five li:first-child .numbered-blocks__number{grid-row-start:1}.numbered-blocks--five li:nth-child(2)>*{grid-column:3/span 2}.numbered-blocks--five li:nth-child(2) .numbered-blocks__number{grid-row-start:1}.numbered-blocks--five li:nth-child(3)>*{grid-column:5/span 2}.numbered-blocks--five li:nth-child(3) .numbered-blocks__number{grid-row-start:1}.numbered-blocks--five li:nth-child(4)>*{grid-column:7/span 2}.numbered-blocks--five li:nth-child(4) .numbered-blocks__number{grid-row-start:1}.numbered-blocks--five li:nth-child(5)>*{grid-column:9/span 3}.numbered-blocks--five li:nth-child(5) .numbered-blocks__number{grid-row-start:1}}.staggered-image.container-wide__grid{grid-template-columns:repeat(12,1fr)}.staggered-image__media{aspect-ratio:16/9;grid-row-start:1}.staggered-image__content{grid-column:2/-2;grid-row-start:1;margin-top:50%;background:#fff;z-index:1}.staggered-image__content>h1,.staggered-image__content>h2,.staggered-image__content>h3,.staggered-image__content>h4,.staggered-image__content>p{padding-bottom:0}@media screen and (min-width:1400px){.staggered-image{grid-template-rows:repeat(11,50px)}.staggered-image__content{margin-top:0;grid-column:2/6;grid-row:2/11;background:#fff;z-index:1;align-self:center}.staggered-image__media{aspect-ratio:unset;grid-row:1/-1}.staggered-image--offset .staggered-image__content{grid-column:1/5}.staggered-image--offset .staggered-image__media{grid-column:3/-1}}@media (max-width:1024px){.cta-insert__resources{padding-top:0}}.media__contact--header{color:inherit}.media__contact--label{color:#00233c;word-break:break-word}a.media__contact--label span:last-child{text-decoration:underline;-webkit-text-decoration-color:#00233c;text-decoration-color:#00233c;transition:.25s}@media screen and (min-width:1025px){a.media__contact--label span:last-child{text-decoration:none;position:relative;background-image:linear-gradient(#00233c,#00233c);background-image:webkit-linear-gradient(#00233c,#00233c);background-position:0 100%;background-repeat:no-repeat;background-size:0 1px;transition:all .25s ease-in-out 0s}a.media__contact--label:focus span:last-child,a.media__contact--label:hover span:last-child{text-decoration:underline;-webkit-text-decoration-color:#00233c;text-decoration-color:#00233c;transition:.25s}}.label{display:block;margin-bottom:0;color:inherit}.label.label-margin-top-10{margin-top:10px}.label-large{font-size:1rem}.label-hasMargin,.label-large,.label-medium{margin-bottom:20px}.label-gray{color:#677078}.label-darkgray{color:#333a3e}.label-orange{color:#ff5f02}.label-teal{color:#006969}.label-transparent{opacity:.6}.label-yellow{color:#ffc74e}.background-grayLight .label-gray{filter:brightness(90%)}.label-hasOverline,.label-hasUnderline{display:inline-block;color:#00233c}.background-midnightBlack .label-hasOverline,.background-midnightBlack .label-hasUnderline,.background-navy .label-hasOverline,.background-navy .label-hasUnderline,.background-slate .label-hasOverline,.background-slate .label-hasUnderline,.color-white .label-hasOverline,.color-white .label-hasUnderline{color:#fff}.label-hasOverline:after,.label-hasOverline:before,.label-hasUnderline:after,.label-hasUnderline:before{display:block;width:20px;height:2px;border-radius:2px;background:#ff5f02}.text-center .label-hasOverline:after,.text-center .label-hasOverline:before,.text-center .label-hasUnderline:after,.text-center .label-hasUnderline:before{margin-right:auto;margin-left:auto}.label-hasIcon{color:#00233c;display:inline-block}.background-midnightBlack .label-hasIcon,.background-navy .label-hasIcon,.background-slate .label-hasIcon,.color-white .label-hasIcon{color:#fff}.card__wide .label-hasIcon .card_date,.elq-form .label-hasIcon .elq-form-text,.elq-form .label-hasIcon .elq-heading.form-element-form-text,.label-hasIcon .caption,.label-hasIcon .caption--bold,.label-hasIcon .card__wide .card_date,.label-hasIcon .elq-form .elq-form-text,.label-hasIcon .elq-form .elq-heading.form-element-form-text,.label-hasIcon .icon-categoryLabel,.label-hasIcon .label-hasIcon,.label-hasIcon .label-hasOverline,.label-hasIcon .label-hasUnderline,.label-hasIcon .meta-details__datestamp,.label-hasIcon .meta-details__readtime{font-weight:600;color:#00233c}.background-midnightBlack .label-hasIcon .caption,.background-midnightBlack .label-hasIcon .caption--bold,.background-midnightBlack .label-hasIcon .card__wide .card_date,.background-midnightBlack .label-hasIcon .elq-form .elq-form-text,.background-midnightBlack .label-hasIcon .elq-form .elq-heading.form-element-form-text,.background-midnightBlack .label-hasIcon .icon-categoryLabel,.background-midnightBlack .label-hasIcon .label-hasIcon,.background-midnightBlack .label-hasIcon .label-hasOverline,.background-midnightBlack .label-hasIcon .label-hasUnderline,.background-midnightBlack .label-hasIcon .meta-details__datestamp,.background-midnightBlack .label-hasIcon .meta-details__readtime,.background-navy .label-hasIcon .caption,.background-navy .label-hasIcon .caption--bold,.background-navy .label-hasIcon .card__wide .card_date,.background-navy .label-hasIcon .elq-form .elq-form-text,.background-navy .label-hasIcon .elq-form .elq-heading.form-element-form-text,.background-navy .label-hasIcon .icon-categoryLabel,.background-navy .label-hasIcon .label-hasIcon,.background-navy .label-hasIcon .label-hasOverline,.background-navy .label-hasIcon .label-hasUnderline,.background-navy .label-hasIcon .meta-details__datestamp,.background-navy .label-hasIcon .meta-details__readtime,.background-slate .label-hasIcon .caption,.background-slate .label-hasIcon .caption--bold,.background-slate .label-hasIcon .card__wide .card_date,.background-slate .label-hasIcon .elq-form .elq-form-text,.background-slate .label-hasIcon .elq-form .elq-heading.form-element-form-text,.background-slate .label-hasIcon .icon-categoryLabel,.background-slate .label-hasIcon .label-hasIcon,.background-slate .label-hasIcon .label-hasOverline,.background-slate .label-hasIcon .label-hasUnderline,.background-slate .label-hasIcon .meta-details__datestamp,.background-slate .label-hasIcon .meta-details__readtime,.card__wide .background-midnightBlack .label-hasIcon .card_date,.card__wide .background-navy .label-hasIcon .card_date,.card__wide .background-slate .label-hasIcon .card_date,.card__wide .color-white .label-hasIcon .card_date,.color-white .label-hasIcon .caption,.color-white .label-hasIcon .caption--bold,.color-white .label-hasIcon .card__wide .card_date,.color-white .label-hasIcon .elq-form .elq-form-text,.color-white .label-hasIcon .elq-form .elq-heading.form-element-form-text,.color-white .label-hasIcon .icon-categoryLabel,.color-white .label-hasIcon .label-hasIcon,.color-white .label-hasIcon .label-hasOverline,.color-white .label-hasIcon .label-hasUnderline,.color-white .label-hasIcon .meta-details__datestamp,.color-white .label-hasIcon .meta-details__readtime,.elq-form .background-midnightBlack .label-hasIcon .elq-form-text,.elq-form .background-midnightBlack .label-hasIcon .elq-heading.form-element-form-text,.elq-form .background-navy .label-hasIcon .elq-form-text,.elq-form .background-navy .label-hasIcon .elq-heading.form-element-form-text,.elq-form .background-slate .label-hasIcon .elq-form-text,.elq-form .background-slate .label-hasIcon .elq-heading.form-element-form-text,.elq-form .color-white .label-hasIcon .elq-form-text,.elq-form .color-white .label-hasIcon .elq-heading.form-element-form-text{color:#fff}.label-hasOverline:before{margin-bottom:16px;content:""}.label-hasUnderline:after{margin-top:.5rem;content:"";margin-bottom:1rem}.label--secondary:before{content:"|";padding-right:.25rem}.radioWrapper+.label-hasOverline{margin-top:40px}.label-hasOverline+.radioWrapper{margin-top:24px}.subLabel{display:block;color:#00233c}.topics__header{word-break:keep-all}.topics__list-item{margin:0 1rem 1rem 0}.topics__list-item a{font-weight:600;padding:.5rem 1rem;display:inline-block} \ No newline at end of file diff --git a/pr-preview/pr-110/_/css/search.css b/pr-preview/pr-110/_/css/search.css deleted file mode 100644 index f02f9971f..000000000 --- a/pr-preview/pr-110/_/css/search.css +++ /dev/null @@ -1,75 +0,0 @@ -.search-result-dropdown-menu { - position: absolute; - z-index: 100; - display: block; - right: 0; - left: inherit; - top: 100%; - border-radius: 4px; - margin: 6px 0 0; - padding: 0; - text-align: left; - height: auto; - background: transparent; - border: none; - max-width: 600px; - min-width: 500px; - box-shadow: 0 1px 0 0 rgba(0, 0, 0, 0.2), 0 2px 3px 0 rgba(0, 0, 0, 0.1); -} - -@media screen and (max-width: 768px) { - .search-result-dropdown-menu { - min-width: calc(100vw - 3.75rem); - } -} - -.search-result-dataset { - position: relative; - border: 1px solid #d9d9d9; - background: #fff; - border-radius: 4px; - overflow: auto; - padding: 0 8px; - max-height: calc(100vh - 5.25rem); - line-height: 1.5; -} - -.search-result-item { - display: flex; - margin: 0.5rem 0; -} - -.search-result-document-title { - width: 33%; - border-right: 1px solid #ddd; - color: #02060c; - font-weight: 500; - font-size: 0.8rem; - padding: 0.5rem 0.5rem 0.5rem 0; - text-align: right; - position: relative; - word-wrap: break-word; -} - -.search-result-document-hit { - flex: 1; - font-size: 0.75rem; - color: #63676d; -} - -.search-result-document-hit > a { - color: inherit; - display: block; - padding: 0.55rem 0.25rem 0.55rem 0.75rem; -} - -.search-result-document-hit > a:hover { - background-color: rgba(69, 142, 225, 0.05); -} - -.search-result-highlight { - color: #174d8c; - background: rgba(143, 187, 237, 0.1); - padding: 0.1em 0.05em; - font-weight: 500; -} diff --git a/pr-preview/pr-110/_/css/site.css b/pr-preview/pr-110/_/css/site.css deleted file mode 100644 index 0b3ce5201..000000000 --- a/pr-preview/pr-110/_/css/site.css +++ /dev/null @@ -1,3 +0,0 @@ -@font-face{font-family:Roboto;font-style:normal;font-weight:400;src:url(../font/roboto-latin-400-normal.woff2) format("woff2"),url(../font/roboto-latin-400-normal.woff) format("woff");unicode-range:U+00??,U+0131,U+0152-0153,U+02bb-02bc,U+02c6,U+02da,U+02dc,U+2000-206f,U+2074,U+20ac,U+2122,U+2191,U+2193,U+2212,U+2215,U+feff,U+fffd}@font-face{font-family:Roboto;font-style:italic;font-weight:400;src:url(../font/roboto-latin-400-italic.woff2) format("woff2"),url(../font/roboto-latin-400-italic.woff) format("woff");unicode-range:U+00??,U+0131,U+0152-0153,U+02bb-02bc,U+02c6,U+02da,U+02dc,U+2000-206f,U+2074,U+20ac,U+2122,U+2191,U+2193,U+2212,U+2215,U+feff,U+fffd}@font-face{font-family:Roboto;font-style:normal;font-weight:500;src:url(../font/roboto-latin-500-normal.woff2) format("woff2"),url(../font/roboto-latin-500-normal.woff) format("woff");unicode-range:U+00??,U+0131,U+0152-0153,U+02bb-02bc,U+02c6,U+02da,U+02dc,U+2000-206f,U+2074,U+20ac,U+2122,U+2191,U+2193,U+2212,U+2215,U+feff,U+fffd}@font-face{font-family:Roboto;font-style:italic;font-weight:500;src:url(../font/roboto-latin-500-italic.woff2) format("woff2"),url(../font/roboto-latin-500-italic.woff) format("woff");unicode-range:U+00??,U+0131,U+0152-0153,U+02bb-02bc,U+02c6,U+02da,U+02dc,U+2000-206f,U+2074,U+20ac,U+2122,U+2191,U+2193,U+2212,U+2215,U+feff,U+fffd}@font-face{font-family:Roboto Mono;font-style:normal;font-weight:400;src:url(../font/roboto-mono-latin-400-normal.woff2) format("woff2"),url(../font/roboto-mono-latin-400-normal.woff) format("woff");unicode-range:U+00??,U+0131,U+0152-0153,U+02bb-02bc,U+02c6,U+02da,U+02dc,U+2000-206f,U+2074,U+20ac,U+2122,U+2191,U+2193,U+2212,U+2215,U+feff,U+fffd}@font-face{font-family:Roboto Mono;font-style:normal;font-weight:500;src:url(../font/roboto-mono-latin-500-normal.woff2) format("woff2"),url(../font/roboto-mono-latin-500-normal.woff) format("woff");unicode-range:U+00??,U+0131,U+0152-0153,U+02bb-02bc,U+02c6,U+02da,U+02dc,U+2000-206f,U+2074,U+20ac,U+2122,U+2191,U+2193,U+2212,U+2215,U+feff,U+fffd}*,::after,::before{-webkit-box-sizing:inherit;box-sizing:inherit}html{-webkit-box-sizing:border-box;box-sizing:border-box;font-size:1.0625em;height:100%;scroll-behavior:smooth}@media screen and (min-width:1024px){html{font-size:1.125em}}body{background:#fff;color:#222;font-family:Roboto,sans-serif;line-height:1.15;margin:0;-moz-tab-size:4;-o-tab-size:4;tab-size:4;word-wrap:anywhere}a{text-decoration:none}a:hover{text-decoration:underline}a:active{background-color:none}code,kbd,pre{font-family:Roboto Mono,monospace}b,dt,strong,th{font-weight:500}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline}sub{bottom:-.25em}sup{top:-.5em}em em{font-style:normal}strong strong{font-weight:400}button{cursor:pointer;font-family:inherit;font-size:1em;line-height:1.15;margin:0}button::-moz-focus-inner{border:none;padding:0}summary{cursor:pointer;-webkit-tap-highlight-color:transparent;outline:none}table{border-collapse:collapse;word-wrap:normal}object[type="image/svg+xml"]:not([width]){width:-webkit-fit-content;width:-moz-fit-content;width:fit-content}::-webkit-input-placeholder{opacity:.5}::-moz-placeholder{opacity:.5}:-ms-input-placeholder{opacity:.5}::-ms-input-placeholder{opacity:.5}::placeholder{opacity:.5}@media (pointer:fine){@supports (scrollbar-width:thin){html{scrollbar-color:#c1c1c1 #fafafa}body *{scrollbar-width:thin;scrollbar-color:#c1c1c1 transparent}}html::-webkit-scrollbar{background-color:#fafafa;height:12px;width:12px}body ::-webkit-scrollbar{height:6px;width:6px}::-webkit-scrollbar-thumb{background-clip:padding-box;background-color:#c1c1c1;border:3px solid transparent;border-radius:12px}body ::-webkit-scrollbar-thumb{border-width:1.75px;border-radius:6px}::-webkit-scrollbar-thumb:hover{background-color:#9c9c9c}}@media screen and (min-width:1024px){.body{display:-webkit-box;display:-ms-flexbox;display:flex}}.nav-container{position:fixed;top:3.5rem;left:0;width:100%;font-size:.94444rem;z-index:1;visibility:hidden}@media screen and (min-width:769px){.nav-container{width:15rem}}@media screen and (min-width:1024px){.nav-container{font-size:.86111rem;-webkit-box-flex:0;-ms-flex:none;flex:none;position:static;top:0;visibility:visible}}.nav-container.is-active{visibility:visible}.nav{background:#fafafa;position:relative;top:2.5rem;height:calc(100vh - 6rem)}@media screen and (min-width:769px){.nav{-webkit-box-shadow:.5px 0 3px #c1c1c1;box-shadow:.5px 0 3px #c1c1c1}}@media screen and (min-width:1024px){.nav{top:3.5rem;-webkit-box-shadow:none;box-shadow:none;position:sticky;height:calc(100vh - 3.5rem)}}.nav a{color:inherit}.nav .panels{display:-webkit-box;display:-ms-flexbox;display:flex;-webkit-box-orient:vertical;-webkit-box-direction:normal;-ms-flex-direction:column;flex-direction:column;height:inherit}html.is-clipped--nav{overflow-y:hidden}.nav-panel-menu{overflow-y:scroll;-ms-scroll-chaining:none;overscroll-behavior:none;height:calc(100% - 2.5rem)}.nav-panel-menu:not(.is-active) .nav-menu{opacity:.75}.nav-panel-menu:not(.is-active)::after{content:"";background:rgba(0,0,0,.5);display:block;position:absolute;top:0;right:0;bottom:0;left:0}.nav-menu{min-height:100%;padding:.5rem .75rem;line-height:1.35;position:relative}.nav-menu h3.title{color:#424242;font-size:inherit;font-weight:500;margin:0;padding:.25em 0 .125em}.nav-list{list-style:none;margin:0 0 0 .75rem;padding:0}.nav-menu>.nav-list+.nav-list{margin-top:.5rem}.nav-item{margin-top:.5em}.nav-item-toggle~.nav-list{padding-bottom:.125rem}.nav-item[data-depth="0"]>.nav-list:first-child{display:block;margin:0}.nav-item:not(.is-active)>.nav-list{display:none}.nav-item-toggle{background:transparent url(../img/caret.svg) no-repeat 50%/50%;border:none;outline:none;line-height:inherit;padding:0;position:absolute;height:1.35em;width:1.35em;margin-top:-.05em;margin-left:-1.35em}.nav-item.is-active>.nav-item-toggle{-webkit-transform:rotate(90deg);transform:rotate(90deg)}.is-current-page>.nav-link,.is-current-page>.nav-text{font-weight:500}.nav-panel-explore{background:#fafafa;display:-webkit-box;display:-ms-flexbox;display:flex;-webkit-box-orient:vertical;-webkit-box-direction:normal;-ms-flex-direction:column;flex-direction:column;position:absolute;top:0;right:0;bottom:0;left:0}.nav-panel-explore:not(:first-child){top:auto;max-height:calc(50% + 2.5rem)}.nav-panel-explore .context{font-size:.83333rem;-ms-flex-negative:0;flex-shrink:0;color:#5d5d5d;-webkit-box-shadow:0 -1px 0 #e1e1e1;box-shadow:0 -1px 0 #e1e1e1;padding:0 .5rem;display:-webkit-box;display:-ms-flexbox;display:flex;-webkit-box-align:center;-ms-flex-align:center;align-items:center;-webkit-box-pack:justify;-ms-flex-pack:justify;justify-content:space-between;line-height:1;height:2.5rem}.nav-panel-explore:not(:first-child) .context{cursor:pointer}.nav-panel-explore .context .version{display:-webkit-box;display:-ms-flexbox;display:flex;-webkit-box-align:inherit;-ms-flex-align:inherit;align-items:inherit}.nav-panel-explore .context .version::after{content:"";background:url(../img/chevron.svg) no-repeat 100%/auto 100%;width:1.25em;height:.75em}.nav-panel-explore .components{line-height:1.6;-webkit-box-flex:1;-ms-flex-positive:1;flex-grow:1;-webkit-box-shadow:inset 0 1px 5px #e1e1e1;box-shadow:inset 0 1px 5px #e1e1e1;background:#f0f0f0;padding:.5rem .75rem 0;margin:0;overflow-y:scroll;-ms-scroll-chaining:none;overscroll-behavior:none;max-height:100%;display:block}.nav-panel-explore:not(.is-active) .components{display:none}.nav-panel-explore .component{display:block}.nav-panel-explore .component+.component{margin-top:.5rem}.nav-panel-explore .component:last-child{margin-bottom:.75rem}.nav-panel-explore .component .title{font-weight:500}.nav-panel-explore .versions{display:-webkit-box;display:-ms-flexbox;display:flex;-ms-flex-wrap:wrap;flex-wrap:wrap;padding-left:0;margin-top:-.25rem;line-height:1;list-style:none}.nav-panel-explore .component .version{margin:.375rem .375rem 0 0}.nav-panel-explore .component .version a{border:1px solid #c1c1c1;border-radius:.25rem;opacity:.75;white-space:nowrap;padding:.125em .25em;display:inherit}.nav-panel-explore .component .is-current a{border-color:currentColor;opacity:.9;font-weight:500}@media screen and (max-width:1023.5px){aside.toc.sidebar{display:none}main>.content{overflow-x:auto}}@media screen and (min-width:1024px){main{-webkit-box-flex:1;-ms-flex:auto;flex:auto;min-width:0}main>.content{display:-webkit-box;display:-ms-flexbox;display:flex}aside.toc.embedded{display:none}aside.toc.sidebar{-webkit-box-flex:0;-ms-flex:0 0 9rem;flex:0 0 9rem;-webkit-box-ordinal-group:2;-ms-flex-order:1;order:1}}@media screen and (min-width:1216px){aside.toc.sidebar{-ms-flex-preferred-size:12rem;flex-basis:12rem}}.toolbar{color:#5d5d5d;-webkit-box-align:center;-ms-flex-align:center;align-items:center;background-color:#fafafa;-webkit-box-shadow:0 1px 0 #e1e1e1;box-shadow:0 1px 0 #e1e1e1;display:-webkit-box;display:-ms-flexbox;display:flex;font-size:.83333rem;height:2.5rem;-webkit-box-pack:start;-ms-flex-pack:start;justify-content:flex-start;position:sticky;top:3.5rem;z-index:2}.toolbar a{color:inherit}.nav-toggle{background:url(../img/menu.svg) no-repeat 50% 47.5%;background-size:49%;border:none;outline:none;line-height:inherit;padding:0;height:2.5rem;width:2.5rem;margin-right:-.25rem}@media screen and (min-width:1024px){.nav-toggle{display:none}}.nav-toggle.is-active{background-image:url(../img/back.svg);background-size:41.5%}.home-link{display:block;background:url(../img/home-o.svg) no-repeat 50%;height:1.25rem;width:1.25rem;margin:.625rem}.home-link.is-current,.home-link:hover{background-image:url(../img/home.svg)}.edit-this-page{display:none;padding-right:.5rem}@media screen and (min-width:1024px){.edit-this-page{display:block}}.toolbar .edit-this-page a{color:#8e8e8e}.breadcrumbs{display:none;-webkit-box-flex:1;-ms-flex:1 1;flex:1 1;padding:0 .5rem 0 .75rem;line-height:1.35}@media screen and (min-width:1024px){.breadcrumbs{display:block}}a+.breadcrumbs{padding-left:.05rem}.breadcrumbs ul{display:-webkit-box;display:-ms-flexbox;display:flex;-ms-flex-wrap:wrap;flex-wrap:wrap;margin:0;padding:0;list-style:none}.breadcrumbs li{display:inline;margin:0}.breadcrumbs li::after{content:"/";padding:0 .5rem}.breadcrumbs li:last-of-type::after{content:none}.page-versions{margin:0 .2rem 0 auto;position:relative;line-height:1}@media screen and (min-width:1024px){.page-versions{margin-right:.7rem}}.page-versions .version-menu-toggle{color:inherit;background:url(../img/chevron.svg) no-repeat;background-position:right .5rem top 50%;background-size:auto .75em;border:none;outline:none;line-height:inherit;padding:.5rem 1.5rem .5rem .5rem;position:relative;z-index:3}.page-versions .version-menu{display:-webkit-box;display:-ms-flexbox;display:flex;min-width:100%;-webkit-box-orient:vertical;-webkit-box-direction:normal;-ms-flex-direction:column;flex-direction:column;-webkit-box-align:end;-ms-flex-align:end;align-items:flex-end;background:-webkit-gradient(linear,left top,left bottom,from(#f0f0f0),to(#f0f0f0)) no-repeat;background:linear-gradient(180deg,#f0f0f0 0,#f0f0f0) no-repeat;padding:1.375rem 1.5rem .5rem .5rem;position:absolute;top:0;right:0;white-space:nowrap}.page-versions:not(.is-active) .version-menu{display:none}.page-versions .version{display:block;padding-top:.5rem}.page-versions .version.is-current{display:none}.page-versions .version.is-missing{color:#8e8e8e;font-style:italic;text-decoration:none}.toc-menu{color:#5d5d5d}.toc.sidebar .toc-menu{margin-right:.75rem;position:sticky;top:6rem}.toc .toc-menu h3{color:#333;font-size:.88889rem;font-weight:500;line-height:1.3;margin:0 -.5px;padding-bottom:.25rem}.toc.sidebar .toc-menu h3{display:-webkit-box;display:-ms-flexbox;display:flex;-webkit-box-orient:vertical;-webkit-box-direction:normal;-ms-flex-direction:column;flex-direction:column;height:2.5rem;-webkit-box-pack:end;-ms-flex-pack:end;justify-content:flex-end}.toc .toc-menu ul{font-size:.83333rem;line-height:1.2;list-style:none;margin:0;padding:0}.toc.sidebar .toc-menu ul{max-height:calc(100vh - 8.5rem);overflow-y:auto;-ms-scroll-chaining:none;overscroll-behavior:none}@supports (scrollbar-width:none){.toc.sidebar .toc-menu ul{scrollbar-width:none}}.toc .toc-menu ul::-webkit-scrollbar{width:0;height:0}@media screen and (min-width:1024px){.toc .toc-menu h3{font-size:.83333rem}.toc .toc-menu ul{font-size:.75rem}}.toc .toc-menu li{margin:0}.toc .toc-menu li[data-level="2"] a{padding-left:1.25rem}.toc .toc-menu li[data-level="3"] a{padding-left:2rem}.toc .toc-menu a{color:inherit;border-left:2px solid #e1e1e1;display:inline-block;padding:.25rem 0 .25rem .5rem;text-decoration:none}.sidebar.toc .toc-menu a{display:block;outline:none}.toc .toc-menu a:hover{color:#1565c0}.toc .toc-menu a.is-active{border-left-color:#1565c0;color:#333}.sidebar.toc .toc-menu a:focus{background:#fafafa}.toc .toc-menu .is-hidden-toc{display:none!important}.doc{color:#333;font-size:inherit;-webkit-hyphens:auto;-ms-hyphens:auto;hyphens:auto;line-height:1.6;margin:0 auto;max-width:40rem;padding:0 1rem 4rem}@media screen and (min-width:1024px){.doc{-webkit-box-flex:1;-ms-flex:auto;flex:auto;font-size:.94444rem;margin:0 2rem;max-width:46rem;min-width:0}}.doc h1,.doc h2,.doc h3,.doc h4,.doc h5,.doc h6{color:#191919;font-weight:400;-webkit-hyphens:none;-ms-hyphens:none;hyphens:none;line-height:1.3;margin:1rem 0 0}.doc>h1.page:first-child{font-size:2rem;margin:1.5rem 0}@media screen and (min-width:769px){.doc>h1.page:first-child{margin-top:2.5rem}}.doc>h1.page:first-child+aside.toc.embedded{margin-top:-.5rem}.doc>h2#name+.sectionbody{margin-top:1rem}#preamble+.sect1,.doc .sect1+.sect1{margin-top:2rem}.doc h1.sect0{background:#f0f0f0;font-size:1.8em;margin:1.5rem -1rem 0;padding:.5rem 1rem}.doc h2:not(.discrete){border-bottom:1px solid #e1e1e1;margin-left:-1rem;margin-right:-1rem;padding:.4rem 1rem .1rem}.doc h3:not(.discrete),.doc h4:not(.discrete){font-weight:500}.doc h1 .anchor,.doc h2 .anchor,.doc h3 .anchor,.doc h4 .anchor,.doc h5 .anchor,.doc h6 .anchor{position:absolute;text-decoration:none;width:1.75ex;margin-left:-1.5ex;visibility:hidden;font-size:.8em;font-weight:400;padding-top:.05em}.doc h1 .anchor::before,.doc h2 .anchor::before,.doc h3 .anchor::before,.doc h4 .anchor::before,.doc h5 .anchor::before,.doc h6 .anchor::before{content:"\00a7"}.doc h1:hover .anchor,.doc h2:hover .anchor,.doc h3:hover .anchor,.doc h4:hover .anchor,.doc h5:hover .anchor,.doc h6:hover .anchor{visibility:visible}.doc dl,.doc p{margin:0}.doc a{color:#1565c0}.doc a:hover{color:#104d92}.doc a.bare{-webkit-hyphens:none;-ms-hyphens:none;hyphens:none}.doc a.unresolved{color:#d32f2f}.doc i.fa{-webkit-hyphens:none;-ms-hyphens:none;hyphens:none;font-style:normal}.doc .colist>table code,.doc p code,.doc thead code{color:#222;background:#fafafa;border-radius:.25em;font-size:.95em;padding:.125em .25em}.doc code,.doc pre{-webkit-hyphens:none;-ms-hyphens:none;hyphens:none}.doc pre{font-size:.88889rem;line-height:1.5;margin:0}.doc blockquote{margin:0}.doc .paragraph.lead>p{font-size:1rem}.doc .right{float:right}.doc .left{float:left}.doc .float-gap.right{margin:0 1rem 1rem 0}.doc .float-gap.left{margin:0 0 1rem 1rem}.doc .float-group::after{content:"";display:table;clear:both}.doc .stretch{width:100%}.doc .underline{text-decoration:underline}.doc .line-through{text-decoration:line-through}.doc .dlist,.doc .exampleblock,.doc .hdlist,.doc .imageblock,.doc .listingblock,.doc .literalblock,.doc .olist,.doc .paragraph,.doc .partintro,.doc .quoteblock,.doc .sidebarblock,.doc .tabs,.doc .ulist,.doc .verseblock,.doc .videoblock,.doc details,.doc hr{margin:1rem 0 0}.doc table.tableblock{font-size:.83333rem}.doc .tablecontainer,.doc .tablecontainer+*,.doc :not(.tablecontainer)>table.tableblock,.doc :not(.tablecontainer)>table.tableblock+*{margin-top:1.5rem}.doc p.tableblock+p.tableblock{margin-top:.5rem}.doc td.tableblock>.content>:first-child{margin-top:0}.doc table.tableblock td,.doc table.tableblock th{padding:.5rem}.doc table.tableblock,.doc table.tableblock>*>tr>*{border:0 solid #e1e1e1}.doc table.grid-all>*>tr>*{border-width:1px}.doc table.grid-cols>*>tr>*{border-width:0 1px}.doc table.grid-rows>*>tr>*{border-width:1px 0}.doc table.grid-all>thead th,.doc table.grid-rows>thead th{border-bottom-width:2.5px}.doc table.frame-all{border-width:1px}.doc table.frame-ends{border-width:1px 0}.doc table.frame-sides{border-width:0 1px}.doc table.frame-none>colgroup+*>:first-child>*,.doc table.frame-sides>colgroup+*>:first-child>*{border-top-width:0}.doc table.frame-sides>:last-child>:last-child>*{border-bottom-width:0}.doc table.frame-ends>*>tr>:first-child,.doc table.frame-none>*>tr>:first-child{border-left-width:0}.doc table.frame-ends>*>tr>:last-child,.doc table.frame-none>*>tr>:last-child{border-right-width:0}.doc table.stripes-all>tbody>tr,.doc table.stripes-even>tbody>tr:nth-of-type(2n),.doc table.stripes-hover>tbody>tr:hover,.doc table.stripes-odd>tbody>tr:nth-of-type(odd){background:#fafafa}.doc table.tableblock>tfoot{background:-webkit-gradient(linear,left top,left bottom,from(#f0f0f0),to(#fff));background:linear-gradient(180deg,#f0f0f0 0,#fff)}.doc .halign-left{text-align:left}.doc .halign-right{text-align:right}.doc .halign-center{text-align:center}.doc .valign-top{vertical-align:top}.doc .valign-bottom{vertical-align:bottom}.doc .valign-middle{vertical-align:middle}.doc .admonitionblock{margin:1.4rem 0 0}.doc .admonitionblock p,.doc .admonitionblock td.content{font-size:.88889rem}.doc .admonitionblock td.content>.title+*,.doc .admonitionblock td.content>:not(.title):first-child{margin-top:0}.doc .admonitionblock pre{font-size:.83333rem}.doc .admonitionblock>table{table-layout:fixed;position:relative;width:100%}.doc .admonitionblock td.content{padding:1rem 1rem .75rem;background:#fafafa;width:100%;word-wrap:anywhere}.doc .admonitionblock .icon{position:absolute;top:0;left:0;font-size:.83333rem;padding:0 .5rem;height:1.25rem;line-height:1;font-weight:500;text-transform:uppercase;border-radius:.45rem;-webkit-transform:translate(-.5rem,-50%);transform:translate(-.5rem,-50%)}.doc .admonitionblock.caution .icon{background-color:#a0439c;color:#fff}.doc .admonitionblock.important .icon{background-color:#d32f2f;color:#fff}.doc .admonitionblock.note .icon{background-color:#217ee7;color:#fff}.doc .admonitionblock.tip .icon{background-color:#41af46;color:#fff}.doc .admonitionblock.warning .icon{background-color:#e18114;color:#fff}.doc .admonitionblock .icon i{display:-webkit-inline-box;display:-ms-inline-flexbox;display:inline-flex;-webkit-box-align:center;-ms-flex-align:center;align-items:center;height:100%}.doc .admonitionblock .icon i::after{content:attr(title)}.doc .imageblock,.doc .videoblock{display:-webkit-box;display:-ms-flexbox;display:flex;-webkit-box-orient:vertical;-webkit-box-direction:normal;-ms-flex-direction:column;flex-direction:column;-webkit-box-align:center;-ms-flex-align:center;align-items:center}.doc .imageblock.text-left,.doc .videoblock.text-left{-webkit-box-align:start;-ms-flex-align:start;align-items:flex-start}.doc .imageblock.text-right,.doc .videoblock.text-right{-webkit-box-align:end;-ms-flex-align:end;align-items:flex-end}.doc .image>img,.doc .image>object,.doc .image>svg,.doc .imageblock img,.doc .imageblock object,.doc .imageblock svg{display:inline-block;height:auto;max-width:100%;vertical-align:middle}.doc .image:not(.left):not(.right)>img{margin-top:-.2em}.doc .videoblock iframe{max-width:100%;vertical-align:middle}#preamble .abstract blockquote{background:#f0f0f0;border-left:5px solid #e1e1e1;color:#4a4a4a;font-size:.88889rem;padding:.75em 1em}.doc .quoteblock,.doc .verseblock{background:#fafafa;border-left:5px solid #5d5d5d;color:#5d5d5d}.doc .quoteblock{padding:.25rem 2rem 1.25rem}.doc .quoteblock .attribution{color:#8e8e8e;font-size:.83333rem;margin-top:.75rem}.doc .quoteblock blockquote{margin-top:1rem}.doc .quoteblock .paragraph{font-style:italic}.doc .quoteblock cite{padding-left:1em}.doc .verseblock{font-size:1.15em;padding:1rem 2rem}.doc .verseblock pre{font-family:inherit;font-size:inherit}.doc ol,.doc ul{margin:0;padding:0 0 0 2rem}.doc ol.none,.doc ol.unnumbered,.doc ol.unstyled,.doc ul.checklist,.doc ul.no-bullet,.doc ul.none,.doc ul.unstyled{list-style-type:none}.doc ol.unnumbered,.doc ul.no-bullet{padding-left:1.25rem}.doc ol.unstyled,.doc ul.unstyled{padding-left:0}.doc ul.circle{list-style-type:circle}.doc ul.disc{list-style-type:disc}.doc ul.square{list-style-type:square}.doc ul.circle ul:not([class]),.doc ul.disc ul:not([class]),.doc ul.square ul:not([class]){list-style:inherit}.doc ol.arabic{list-style-type:decimal}.doc ol.decimal{list-style-type:decimal-leading-zero}.doc ol.loweralpha{list-style-type:lower-alpha}.doc ol.upperalpha{list-style-type:upper-alpha}.doc ol.lowerroman{list-style-type:lower-roman}.doc ol.upperroman{list-style-type:upper-roman}.doc ol.lowergreek{list-style-type:lower-greek}.doc ul.checklist{padding-left:1.75rem}.doc ul.checklist p>i.fa-check-square-o:first-child,.doc ul.checklist p>i.fa-square-o:first-child{display:-webkit-inline-box;display:-ms-inline-flexbox;display:inline-flex;-webkit-box-pack:center;-ms-flex-pack:center;justify-content:center;width:1.25rem;margin-left:-1.25rem}.doc ul.checklist i.fa-check-square-o::before{content:"\2713"}.doc ul.checklist i.fa-square-o::before{content:"\274f"}.doc .dlist .dlist,.doc .dlist .olist,.doc .dlist .ulist,.doc .olist .dlist,.doc .olist .olist,.doc .olist .ulist,.doc .olist li+li,.doc .ulist .dlist,.doc .ulist .olist,.doc .ulist .ulist,.doc .ulist li+li{margin-top:.5rem}.doc .admonitionblock .listingblock,.doc .olist .listingblock,.doc .ulist .listingblock{padding:0}.doc .admonitionblock .title,.doc .exampleblock .title,.doc .imageblock .title,.doc .listingblock .title,.doc .literalblock .title,.doc .openblock .title,.doc .tableblock caption,.doc .videoblock .title{color:#5d5d5d;font-size:.88889rem;font-style:italic;font-weight:500;-webkit-hyphens:none;-ms-hyphens:none;hyphens:none;letter-spacing:.01em;padding-bottom:.075rem}.doc .tableblock caption{text-align:left}.doc .olist .title,.doc .ulist .title{font-style:italic;font-weight:500;margin-bottom:.25rem}.doc .imageblock .title{margin-top:.5rem;padding-bottom:0}.doc details{margin-left:1rem}.doc details>summary{display:block;position:relative;line-height:1.6;margin-bottom:.5rem}.doc details>summary::-webkit-details-marker{display:none}.doc details>summary::before{content:"";border:solid transparent;border-left:solid;border-width:.3em 0 .3em .5em;position:absolute;top:.5em;left:-1rem;-webkit-transform:translateX(15%);transform:translateX(15%)}.doc details[open]>summary::before{border-color:currentColor transparent transparent;border-width:.5rem .3rem 0;-webkit-transform:translateY(15%);transform:translateY(15%)}.doc details>summary::after{content:"";width:1rem;height:1em;position:absolute;top:.3em;left:-1rem}.doc details.result{margin-top:.25rem}.doc details.result>summary{color:#5d5d5d;font-style:italic;margin-bottom:0}.doc details.result>.content{margin-left:-1rem}.doc .exampleblock>.content,.doc details.result>.content{background:#fff;border:.25rem solid #5d5d5d;border-radius:.5rem;padding:.75rem}.doc .exampleblock>.content::after,.doc details.result>.content::after{content:"";display:table;clear:both}.doc .exampleblock>.content>:first-child,.doc details>.content>:first-child{margin-top:0}.doc .sidebarblock{background:#e1e1e1;border-radius:.75rem;padding:.75rem 1.5rem}.doc .sidebarblock>.content>.title{font-size:1.25rem;font-weight:500;line-height:1.3;margin-bottom:-.3em;text-align:center}.doc .sidebarblock>.content>:not(.title):first-child{margin-top:0}.doc .listingblock.wrap pre,.doc .tableblock pre{white-space:pre-wrap}.doc .listingblock pre:not(.highlight),.doc .literalblock pre,.doc pre.highlight code{background:#fafafa;-webkit-box-shadow:inset 0 0 1.75px #e1e1e1;box-shadow:inset 0 0 1.75px #e1e1e1;display:block;overflow-x:auto;padding:.875em}.doc .listingblock>.content{position:relative}.doc .source-toolbox{display:-webkit-box;display:-ms-flexbox;display:flex;visibility:hidden;position:absolute;top:.25rem;right:.5rem;color:grey;font-family:Roboto,sans-serif;font-size:.72222rem;line-height:1;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;white-space:nowrap;z-index:1}.doc .listingblock:hover .source-toolbox{visibility:visible}.doc .source-toolbox .source-lang{text-transform:uppercase;letter-spacing:.075em}.doc .source-toolbox>:not(:last-child)::after{content:"|";letter-spacing:0;padding:0 1ch}.doc .source-toolbox .copy-button{display:-webkit-box;display:-ms-flexbox;display:flex;-webkit-box-orient:vertical;-webkit-box-direction:normal;-ms-flex-direction:column;flex-direction:column;-webkit-box-align:center;-ms-flex-align:center;align-items:center;background:none;border:none;color:inherit;outline:none;padding:0;font-size:inherit;line-height:inherit;width:1em;height:1em}.doc .source-toolbox .copy-icon{-webkit-box-flex:0;-ms-flex:none;flex:none;width:inherit;height:inherit}.doc .source-toolbox img.copy-icon{-webkit-filter:invert(50.2%);filter:invert(50.2%)}.doc .source-toolbox svg.copy-icon{fill:currentColor}.doc .source-toolbox .copy-toast{-webkit-box-flex:0;-ms-flex:none;flex:none;position:relative;display:-webkit-inline-box;display:-ms-inline-flexbox;display:inline-flex;-webkit-box-pack:center;-ms-flex-pack:center;justify-content:center;margin-top:1em;background-color:#333;border-radius:.25em;padding:.5em;color:#fff;cursor:auto;opacity:0;-webkit-transition:opacity .5s ease .5s;transition:opacity .5s ease .5s}.doc .source-toolbox .copy-toast::after{content:"";position:absolute;top:0;width:1em;height:1em;border:.55em solid transparent;border-left-color:#333;-webkit-transform:rotate(-90deg) translateX(50%) translateY(50%);transform:rotate(-90deg) translateX(50%) translateY(50%);-webkit-transform-origin:left;transform-origin:left}.doc .source-toolbox .copy-button.clicked .copy-toast{opacity:1;-webkit-transition:none;transition:none}.doc .language-console .hljs-meta{-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none}.doc .dlist dt{font-style:italic}.doc .dlist dd{margin:0 0 .25rem 1.5rem}.doc .dlist dd:last-of-type{margin-bottom:0}.doc td.hdlist1,.doc td.hdlist2{padding:.5rem 0 0;vertical-align:top}.doc tr:first-child>.hdlist1,.doc tr:first-child>.hdlist2{padding-top:0}.doc td.hdlist1{font-weight:500;padding-right:.25rem}.doc td.hdlist2{padding-left:.25rem}.doc .colist{font-size:.88889rem;margin:.25rem 0 -.25rem}.doc .colist>table>tbody>tr>:first-child,.doc .colist>table>tr>:first-child{padding:.25em .5rem 0;vertical-align:top}.doc .colist>table>tbody>tr>:last-child,.doc .colist>table>tr>:last-child{padding:.25rem 0}.doc .conum[data-value]{border:1px solid;border-radius:100%;display:inline-block;font-family:Roboto,sans-serif;font-size:.75rem;font-style:normal;line-height:1.2;text-align:center;width:1.25em;height:1.25em;letter-spacing:-.25ex;text-indent:-.25ex}.doc .conum[data-value]::after{content:attr(data-value)}.doc .conum[data-value]+b{display:none}.doc hr{border:solid #e1e1e1;border-width:2px 0 0;height:0}.doc b.button{white-space:nowrap}.doc b.button::before{content:"[";padding-right:.25em}.doc b.button::after{content:"]";padding-left:.25em}.doc kbd{display:inline-block;font-size:.66667rem;background:#fafafa;border:1px solid #c1c1c1;border-radius:.25em;-webkit-box-shadow:0 1px 0 #c1c1c1,0 0 0 .1em #fff inset;box-shadow:0 1px 0 #c1c1c1,inset 0 0 0 .1em #fff;padding:.25em .5em;vertical-align:text-bottom;white-space:nowrap}.doc .keyseq,.doc kbd{line-height:1}.doc .keyseq{font-size:.88889rem}.doc .keyseq kbd{margin:0 .125em}.doc .keyseq kbd:first-child{margin-left:0}.doc .keyseq kbd:last-child{margin-right:0}.doc .menuseq,.doc .path{-webkit-hyphens:none;-ms-hyphens:none;hyphens:none}.doc .menuseq i.caret::before{content:"\203a";font-size:1.1em;font-weight:500;line-height:.90909}.doc :not(pre).nowrap{white-space:nowrap}.doc .nobreak{-webkit-hyphens:none;-ms-hyphens:none;hyphens:none;word-wrap:normal}#footnotes{font-size:.85em;line-height:1.5;margin:2rem -.5rem 0}.doc td.tableblock>.content #footnotes{margin:2rem 0 0}#footnotes hr{border-top-width:1px;margin-top:0;width:20%}#footnotes .footnote{margin:.5em 0 0 1em}#footnotes .footnote+.footnote{margin-top:.25em}#footnotes .footnote>a:first-of-type{display:inline-block;margin-left:-2em;text-align:right;width:1.5em}nav.pagination{border-top:1px solid #e1e1e1;line-height:1;margin:2rem -1rem -1rem;padding:.75rem 1rem 0}nav.pagination,nav.pagination span{display:-webkit-box;display:-ms-flexbox;display:flex}nav.pagination span{-webkit-box-flex:50%;-ms-flex:50%;flex:50%;-webkit-box-orient:vertical;-webkit-box-direction:normal;-ms-flex-direction:column;flex-direction:column}nav.pagination .prev{padding-right:.5rem}nav.pagination .next{margin-left:auto;padding-left:.5rem;text-align:right}nav.pagination span::before{color:#8e8e8e;font-size:.75em;padding-bottom:.1em}nav.pagination .prev::before{content:"Prev"}nav.pagination .next::before{content:"Next"}nav.pagination a{font-weight:500;line-height:1.3;position:relative}nav.pagination a::after,nav.pagination a::before{color:#8e8e8e;font-weight:400;font-size:1.5em;line-height:.75;position:absolute;top:0;width:1rem}nav.pagination .prev a::before{content:"\2039";-webkit-transform:translateX(-100%);transform:translateX(-100%)}nav.pagination .next a::after{content:"\203a"}html.is-clipped--navbar{overflow-y:hidden}body{padding-top:3.5rem}.navbar{background:#191919;color:#fff;font-size:.88889rem;height:3.5rem;position:fixed;top:0;width:100%;z-index:4}.navbar a{text-decoration:none}.navbar-brand{display:-webkit-box;display:-ms-flexbox;display:flex;-webkit-box-flex:1;-ms-flex:auto;flex:auto;padding-left:1rem}.navbar-brand .navbar-item{color:#fff}.navbar-brand .navbar-item:first-child{-ms-flex-item-align:center;align-self:center;padding:0;font-size:1.22222rem;-ms-flex-wrap:wrap;flex-wrap:wrap;line-height:1}.navbar-brand .navbar-item:first-child a{color:inherit;word-wrap:normal}.navbar-brand .navbar-item:first-child :not(:last-child){padding-right:.375rem}.navbar-brand .navbar-item.search{-webkit-box-flex:1;-ms-flex:auto;flex:auto;-webkit-box-pack:end;-ms-flex-pack:end;justify-content:flex-end}#search-input{color:#333;font-family:inherit;font-size:.95rem;width:150px;border:1px solid #dbdbdb;border-radius:.1em;line-height:1.5;padding:0 .25em}#search-input:disabled{background-color:#dbdbdb;cursor:not-allowed;pointer-events:all!important}#search-input:disabled::-webkit-input-placeholder{color:#4c4c4c}#search-input:disabled::-moz-placeholder{color:#4c4c4c}#search-input:disabled:-ms-input-placeholder{color:#4c4c4c}#search-input:disabled::-ms-input-placeholder{color:#4c4c4c}#search-input:disabled::placeholder{color:#4c4c4c}#search-input:focus{outline:none}.navbar-burger{background:none;border:none;outline:none;line-height:1;position:relative;width:3rem;padding:0;display:-webkit-box;display:-ms-flexbox;display:flex;-webkit-box-orient:vertical;-webkit-box-direction:normal;-ms-flex-direction:column;flex-direction:column;-webkit-box-align:center;-ms-flex-align:center;align-items:center;-webkit-box-pack:center;-ms-flex-pack:center;justify-content:center;margin-left:auto;min-width:0}.navbar-burger span{background-color:#fff;height:1.5px;width:1rem}.navbar-burger:not(.is-active) span{-webkit-transition:opacity 0s .25s,margin-top .25s ease-out .25s,-webkit-transform .25s ease-out;transition:opacity 0s .25s,margin-top .25s ease-out .25s,-webkit-transform .25s ease-out;transition:transform .25s ease-out,opacity 0s .25s,margin-top .25s ease-out .25s;transition:transform .25s ease-out,opacity 0s .25s,margin-top .25s ease-out .25s,-webkit-transform .25s ease-out}.navbar-burger span+span{margin-top:.25rem}.navbar-burger.is-active span+span{margin-top:-1.5px}.navbar-burger.is-active span:first-child{-webkit-transform:rotate(45deg);transform:rotate(45deg)}.navbar-burger.is-active span:nth-child(2){opacity:0}.navbar-burger.is-active span:nth-child(3){-webkit-transform:rotate(-45deg);transform:rotate(-45deg)}.navbar-item,.navbar-link{color:#222;display:block;line-height:1.6;padding:.5rem 1rem}.navbar-item.has-dropdown{padding:0}.navbar-item .icon{width:1.25rem;height:1.25rem;display:block}.navbar-item .icon img,.navbar-item .icon svg{fill:currentColor;width:inherit;height:inherit}.navbar-link{padding-right:2.5em}.navbar-dropdown .navbar-item{padding-left:1.5rem;padding-right:1.5rem}.navbar-dropdown .navbar-item.has-label{display:-webkit-box;display:-ms-flexbox;display:flex;-webkit-box-pack:justify;-ms-flex-pack:justify;justify-content:space-between}.navbar-dropdown .navbar-item small{color:#8e8e8e;font-size:.66667rem}.navbar-divider{background-color:#e1e1e1;border:none;height:1px;margin:.25rem 0}.navbar .button{display:-webkit-inline-box;display:-ms-inline-flexbox;display:inline-flex;-webkit-box-align:center;-ms-flex-align:center;align-items:center;background:#fff;border:1px solid #e1e1e1;border-radius:.15rem;height:1.75rem;color:#222;padding:0 .75em;white-space:nowrap}@media screen and (max-width:768.5px){.navbar-brand .navbar-item.search{padding-left:0;padding-right:0}}@media screen and (min-width:769px){#search-input{width:200px}}@media screen and (max-width:1023.5px){.navbar-brand{height:inherit}.navbar-brand .navbar-item{-webkit-box-align:center;-ms-flex-align:center;align-items:center;display:-webkit-box;display:-ms-flexbox;display:flex}.navbar-menu{background:#fff;-webkit-box-shadow:0 8px 16px rgba(10,10,10,.1);box-shadow:0 8px 16px rgba(10,10,10,.1);max-height:calc(100vh - 3.5rem);overflow-y:auto;-ms-scroll-chaining:none;overscroll-behavior:none;padding:.5rem 0}.navbar-menu:not(.is-active){display:none}.navbar-menu .navbar-link:hover,.navbar-menu a.navbar-item:hover{background:#f5f5f5}}@media screen and (min-width:1024px){.navbar-burger{display:none}.navbar,.navbar-end,.navbar-item,.navbar-link,.navbar-menu{display:-webkit-box;display:-ms-flexbox;display:flex}.navbar-item,.navbar-link{position:relative;-webkit-box-flex:0;-ms-flex:none;flex:none}.navbar-item:not(.has-dropdown),.navbar-link{-webkit-box-align:center;-ms-flex-align:center;align-items:center}.navbar-item.is-hoverable:hover .navbar-dropdown{display:block}.navbar-link::after{border-width:0 0 1px 1px;border-style:solid;content:"";display:block;height:.5em;pointer-events:none;position:absolute;-webkit-transform:rotate(-45deg);transform:rotate(-45deg);width:.5em;margin-top:-.375em;right:1.125em;top:50%}.navbar-end .navbar-link,.navbar-end>.navbar-item{color:#fff}.navbar-end .navbar-item.has-dropdown:hover .navbar-link,.navbar-end .navbar-link:hover,.navbar-end>a.navbar-item:hover{background:#000;color:#fff}.navbar-end .navbar-link::after{border-color:currentColor}.navbar-dropdown{background:#fff;border:1px solid #e1e1e1;border-top:none;border-radius:0 0 .25rem .25rem;display:none;top:100%;left:0;min-width:100%;position:absolute}.navbar-dropdown .navbar-item{padding:.5rem 3rem .5rem 1rem;white-space:nowrap}.navbar-dropdown .navbar-item small{position:relative;right:-2rem}.navbar-dropdown .navbar-item:last-child{border-radius:inherit}.navbar-dropdown.is-right{left:auto;right:0}.navbar-dropdown a.navbar-item:hover{background:#f5f5f5}}footer.footer{background-color:#e1e1e1;color:#5d5d5d;font-size:.83333rem;line-height:1.6;padding:1.5rem}.footer p{margin:.5rem 0}.footer a{color:#191919} - -/*! Adapted from the GitHub style by Vasily Polovnyov */.hljs-comment,.hljs-quote{color:#998;font-style:italic}.hljs-keyword,.hljs-selector-tag,.hljs-subst{color:#333;font-weight:500}.hljs-literal,.hljs-number,.hljs-tag .hljs-attr,.hljs-template-variable,.hljs-variable{color:teal}.hljs-doctag,.hljs-string{color:#d14}.hljs-section,.hljs-selector-id,.hljs-title{color:#900;font-weight:500}.hljs-subst{font-weight:400}.hljs-class .hljs-title,.hljs-type{color:#458;font-weight:500}.hljs-attribute,.hljs-name,.hljs-tag{color:navy;font-weight:400}.hljs-link,.hljs-regexp{color:#009926}.hljs-bullet,.hljs-symbol{color:#990073}.hljs-built_in,.hljs-builtin-name{color:#0086b3}.hljs-meta{color:#999;font-weight:500}.hljs-deletion{background:#fdd}.hljs-addition{background:#dfd}.hljs-emphasis{font-style:italic}.hljs-strong{font-weight:500}@page{margin:.5in}@media print{.hide-for-print{display:none!important}html{font-size:.9375em}a{color:inherit!important;text-decoration:underline}a.bare,a[href^="#"],a[href^="mailto:"]{text-decoration:none}img,object,svg,tr{page-break-inside:avoid}thead{display:table-header-group}pre{-webkit-hyphens:none;-ms-hyphens:none;hyphens:none;white-space:pre-wrap}body{padding-top:2rem}.navbar{background:none;color:inherit;position:absolute}.navbar *{color:inherit!important}.nav-container,.navbar>:not(.navbar-brand),.toolbar,aside.toc,nav.pagination{display:none}.doc{color:inherit;margin:auto;max-width:none;padding-bottom:2rem}.doc .admonitionblock td.icon{-webkit-print-color-adjust:exact;color-adjust:exact}.doc .listingblock code[data-lang]::before{display:block}footer.footer{background:none;border-top:1px solid #e1e1e1;color:#8e8e8e;padding:.25rem .5rem 0}.footer *{color:inherit}} \ No newline at end of file diff --git a/pr-preview/pr-110/_/css/styles.css b/pr-preview/pr-110/_/css/styles.css deleted file mode 100644 index c91ee8550..000000000 --- a/pr-preview/pr-110/_/css/styles.css +++ /dev/null @@ -1,60 +0,0 @@ -.tabs ul { - display: flex; - flex-wrap: wrap; - list-style: none; - margin: 0 -0.25rem 0 0; - padding: 0; -} - -.tabs li { - align-items: center; - border: 1px solid #616d73; - border-bottom: 0; - cursor: pointer; - display: flex; - height: 2rem; - line-height: 1; - margin-right: 0.25rem; - padding: 0 1.5rem; - position: relative; -} - -.tabs.ulist li { - margin-bottom: 0; -} - -.tabs.ulist li + li { - margin-top: 0; -} - -.tabset.is-loading .tabs li:not(:first-child), -.tabset:not(.is-loading) .tabs li:not(.is-active) { - background-color: #616d73; - color: #f5f5f5; -} - -.tabset.is-loading .tabs li:first-child::after, -.tabs li.is-active::after { - background-color: #f5f5f5; - content: ""; - display: block; - height: 3px; /* Chrome doesn't always paint the line accurately, so add a little extra */ - position: absolute; - bottom: -1.5px; - left: 0; - right: 0; -} - -.tabset > .content { - border: 1px solid gray; - padding: 1.25rem; -} - -.tabset.is-loading .tab-pane:not(:first-child), -.tabset:not(.is-loading) .tab-pane:not(.is-active) { - display: none; -} - -.tab-pane > :first-child { - margin-top: 0; -} diff --git a/pr-preview/pr-110/_/css/webfonts.css b/pr-preview/pr-110/_/css/webfonts.css deleted file mode 100644 index 4e4392b0d..000000000 --- a/pr-preview/pr-110/_/css/webfonts.css +++ /dev/null @@ -1,86 +0,0 @@ -/** - * @license - * MyFonts Webfont Build ID 3623752, 2018-08-17T17:27:24-0400 - * - * The fonts listed in this notice are subject to the End User License - * Agreement(s) entered into by the website owner. All other parties are - * explicitly restricted from using the Licensed Webfonts(s). - * - * You may obtain a valid license at the URLs below. - * - * Webfont: RidleyGrotesk-Black by Radomir Tinkov - * URL: https://www.myfonts.com/fonts/radomir-tinkov/ridley-grotesk/black/ - * - * Webfont: RidleyGrotesk-ExtraBoldItalic by Radomir Tinkov - * URL: https://www.myfonts.com/fonts/radomir-tinkov/ridley-grotesk/extra-bold-italic/ - * - * Webfont: RidleyGrotesk-ExtraBold by Radomir Tinkov - * URL: https://www.myfonts.com/fonts/radomir-tinkov/ridley-grotesk/extra-bold/ - * - * Webfont: RidleyGrotesk-Bold by Radomir Tinkov - * URL: https://www.myfonts.com/fonts/radomir-tinkov/ridley-grotesk/bold/ - * - * Webfont: RidleyGrotesk-BoldItalic by Radomir Tinkov - * URL: https://www.myfonts.com/fonts/radomir-tinkov/ridley-grotesk/bold-italic/ - * - * Webfont: RidleyGrotesk-BlackItalic by Radomir Tinkov - * URL: https://www.myfonts.com/fonts/radomir-tinkov/ridley-grotesk/black-italic/ - * - * Webfont: RidleyGrotesk-Italic by Radomir Tinkov - * URL: https://www.myfonts.com/fonts/radomir-tinkov/ridley-grotesk/italic/ - * - * Webfont: RidleyGrotesk-Light by Radomir Tinkov - * URL: https://www.myfonts.com/fonts/radomir-tinkov/ridley-grotesk/light/ - * - * Webfont: RidleyGrotesk-LightItalic by Radomir Tinkov - * URL: https://www.myfonts.com/fonts/radomir-tinkov/ridley-grotesk/light-italic/ - * - * Webfont: RidleyGrotesk-Medium by Radomir Tinkov - * URL: https://www.myfonts.com/fonts/radomir-tinkov/ridley-grotesk/medium/ - * - * Webfont: RidleyGrotesk-MediumItalic by Radomir Tinkov - * URL: https://www.myfonts.com/fonts/radomir-tinkov/ridley-grotesk/medium-italic/ - * - * Webfont: RidleyGrotesk-Regular by Radomir Tinkov - * URL: https://www.myfonts.com/fonts/radomir-tinkov/ridley-grotesk/regular/ - * - * Webfont: RidleyGrotesk-SemiBold by Radomir Tinkov - * URL: https://www.myfonts.com/fonts/radomir-tinkov/ridley-grotesk/semi-bold/ - * - * Webfont: RidleyGrotesk-SemiBoldItalic by Radomir Tinkov - * URL: https://www.myfonts.com/fonts/radomir-tinkov/ridley-grotesk/semi-bold-italic/ - * - * Webfont: RidleyGrotesk-Thin by Radomir Tinkov - * URL: https://www.myfonts.com/fonts/radomir-tinkov/ridley-grotesk/thin/ - * - * Webfont: RidleyGrotesk-ThinItalic by Radomir Tinkov - * URL: https://www.myfonts.com/fonts/radomir-tinkov/ridley-grotesk/thin-italic/ - * - * Webfont: RidleyGrotesk-UltraLight by Radomir Tinkov - * URL: https://www.myfonts.com/fonts/radomir-tinkov/ridley-grotesk/ultra-light/ - * - * Webfont: RidleyGrotesk-UltraLightItalic by Radomir Tinkov - * URL: https://www.myfonts.com/fonts/radomir-tinkov/ridley-grotesk/ultra-light-italic/ - * - * - * License: https://www.myfonts.com/viewlicense?type=web&buildid=3623752 - * Licensed pageviews: 2,000,000 - * Webfonts copyright: Copyright © 2016 by Radomir Tinkov. All rights reserved. - * - * © 2018 MyFonts Inc -*/ - -@font-face{ - font-family: 'Poppins-Regular'; - src: url('Poppins-Regular.ttf') format('truetype'); -} - -@font-face{ - font-family: 'Poppins-SemiBold'; - src: url('Poppins-SemiBold.ttf') format('truetype'); -} - -@font-face{ - font-family: 'Poppins-Bold'; - src: url('Poppins-Bold.ttf') format('truetype'); -} diff --git a/pr-preview/pr-110/_/font/roboto-latin-400-italic.woff b/pr-preview/pr-110/_/font/roboto-latin-400-italic.woff deleted file mode 100644 index ebee16b9e..000000000 Binary files a/pr-preview/pr-110/_/font/roboto-latin-400-italic.woff and /dev/null differ diff --git a/pr-preview/pr-110/_/font/roboto-latin-400-italic.woff2 b/pr-preview/pr-110/_/font/roboto-latin-400-italic.woff2 deleted file mode 100644 index e1b7a79f9..000000000 Binary files a/pr-preview/pr-110/_/font/roboto-latin-400-italic.woff2 and /dev/null differ diff --git a/pr-preview/pr-110/_/font/roboto-latin-400-normal.woff b/pr-preview/pr-110/_/font/roboto-latin-400-normal.woff deleted file mode 100644 index 9eaa94f9b..000000000 Binary files a/pr-preview/pr-110/_/font/roboto-latin-400-normal.woff and /dev/null differ diff --git a/pr-preview/pr-110/_/font/roboto-latin-400-normal.woff2 b/pr-preview/pr-110/_/font/roboto-latin-400-normal.woff2 deleted file mode 100644 index 020729ef8..000000000 Binary files a/pr-preview/pr-110/_/font/roboto-latin-400-normal.woff2 and /dev/null differ diff --git a/pr-preview/pr-110/_/font/roboto-latin-500-italic.woff b/pr-preview/pr-110/_/font/roboto-latin-500-italic.woff deleted file mode 100644 index b6ad1c5be..000000000 Binary files a/pr-preview/pr-110/_/font/roboto-latin-500-italic.woff and /dev/null differ diff --git a/pr-preview/pr-110/_/font/roboto-latin-500-italic.woff2 b/pr-preview/pr-110/_/font/roboto-latin-500-italic.woff2 deleted file mode 100644 index ae1933f38..000000000 Binary files a/pr-preview/pr-110/_/font/roboto-latin-500-italic.woff2 and /dev/null differ diff --git a/pr-preview/pr-110/_/font/roboto-latin-500-normal.woff b/pr-preview/pr-110/_/font/roboto-latin-500-normal.woff deleted file mode 100644 index d39bb52a5..000000000 Binary files a/pr-preview/pr-110/_/font/roboto-latin-500-normal.woff and /dev/null differ diff --git a/pr-preview/pr-110/_/font/roboto-latin-500-normal.woff2 b/pr-preview/pr-110/_/font/roboto-latin-500-normal.woff2 deleted file mode 100644 index 29342a8de..000000000 Binary files a/pr-preview/pr-110/_/font/roboto-latin-500-normal.woff2 and /dev/null differ diff --git a/pr-preview/pr-110/_/font/roboto-mono-latin-400-normal.woff b/pr-preview/pr-110/_/font/roboto-mono-latin-400-normal.woff deleted file mode 100644 index be3eb4c4c..000000000 Binary files a/pr-preview/pr-110/_/font/roboto-mono-latin-400-normal.woff and /dev/null differ diff --git a/pr-preview/pr-110/_/font/roboto-mono-latin-400-normal.woff2 b/pr-preview/pr-110/_/font/roboto-mono-latin-400-normal.woff2 deleted file mode 100644 index f8894bab5..000000000 Binary files a/pr-preview/pr-110/_/font/roboto-mono-latin-400-normal.woff2 and /dev/null differ diff --git a/pr-preview/pr-110/_/font/roboto-mono-latin-500-normal.woff b/pr-preview/pr-110/_/font/roboto-mono-latin-500-normal.woff deleted file mode 100644 index 43ca6a1b9..000000000 Binary files a/pr-preview/pr-110/_/font/roboto-mono-latin-500-normal.woff and /dev/null differ diff --git a/pr-preview/pr-110/_/font/roboto-mono-latin-500-normal.woff2 b/pr-preview/pr-110/_/font/roboto-mono-latin-500-normal.woff2 deleted file mode 100644 index b4f2bf8c2..000000000 Binary files a/pr-preview/pr-110/_/font/roboto-mono-latin-500-normal.woff2 and /dev/null differ diff --git a/pr-preview/pr-110/_/img/TD-Logo.svg b/pr-preview/pr-110/_/img/TD-Logo.svg deleted file mode 100644 index b29bf5d38..000000000 --- a/pr-preview/pr-110/_/img/TD-Logo.svg +++ /dev/null @@ -1,12 +0,0 @@ - \ No newline at end of file diff --git a/pr-preview/pr-110/_/img/back.svg b/pr-preview/pr-110/_/img/back.svg deleted file mode 100644 index bf7d30e9a..000000000 --- a/pr-preview/pr-110/_/img/back.svg +++ /dev/null @@ -1 +0,0 @@ - \ No newline at end of file diff --git a/pr-preview/pr-110/_/img/caret.svg b/pr-preview/pr-110/_/img/caret.svg deleted file mode 100644 index 1af41bc6e..000000000 --- a/pr-preview/pr-110/_/img/caret.svg +++ /dev/null @@ -1 +0,0 @@ - \ No newline at end of file diff --git a/pr-preview/pr-110/_/img/caution.svg b/pr-preview/pr-110/_/img/caution.svg deleted file mode 100644 index 98c94214f..000000000 --- a/pr-preview/pr-110/_/img/caution.svg +++ /dev/null @@ -1,8 +0,0 @@ - - - - - - - - diff --git a/pr-preview/pr-110/_/img/chevron.svg b/pr-preview/pr-110/_/img/chevron.svg deleted file mode 100644 index 40e962aff..000000000 --- a/pr-preview/pr-110/_/img/chevron.svg +++ /dev/null @@ -1 +0,0 @@ - \ No newline at end of file diff --git a/pr-preview/pr-110/_/img/copy.svg b/pr-preview/pr-110/_/img/copy.svg deleted file mode 100644 index 2624cc33c..000000000 --- a/pr-preview/pr-110/_/img/copy.svg +++ /dev/null @@ -1,3 +0,0 @@ - - - diff --git a/pr-preview/pr-110/_/img/edit.svg b/pr-preview/pr-110/_/img/edit.svg deleted file mode 100644 index f46290652..000000000 --- a/pr-preview/pr-110/_/img/edit.svg +++ /dev/null @@ -1,3 +0,0 @@ - - - diff --git a/pr-preview/pr-110/_/img/external-symbol.svg b/pr-preview/pr-110/_/img/external-symbol.svg deleted file mode 100644 index 564123c50..000000000 --- a/pr-preview/pr-110/_/img/external-symbol.svg +++ /dev/null @@ -1,3 +0,0 @@ - - - diff --git a/pr-preview/pr-110/_/img/favicon.ico b/pr-preview/pr-110/_/img/favicon.ico deleted file mode 100644 index 7b730beb0..000000000 Binary files a/pr-preview/pr-110/_/img/favicon.ico and /dev/null differ diff --git a/pr-preview/pr-110/_/img/gcp.logo.svg b/pr-preview/pr-110/_/img/gcp.logo.svg deleted file mode 100644 index b8478f1f9..000000000 --- a/pr-preview/pr-110/_/img/gcp.logo.svg +++ /dev/null @@ -1,9 +0,0 @@ - - - - - - - - - diff --git a/pr-preview/pr-110/_/img/home-o.svg b/pr-preview/pr-110/_/img/home-o.svg deleted file mode 100644 index 95d193b77..000000000 --- a/pr-preview/pr-110/_/img/home-o.svg +++ /dev/null @@ -1 +0,0 @@ - \ No newline at end of file diff --git a/pr-preview/pr-110/_/img/home.svg b/pr-preview/pr-110/_/img/home.svg deleted file mode 100644 index 4e96b3545..000000000 --- a/pr-preview/pr-110/_/img/home.svg +++ /dev/null @@ -1 +0,0 @@ - \ No newline at end of file diff --git a/pr-preview/pr-110/_/img/icons/arrow_drop_down.svg b/pr-preview/pr-110/_/img/icons/arrow_drop_down.svg deleted file mode 100644 index 670ad8f64..000000000 --- a/pr-preview/pr-110/_/img/icons/arrow_drop_down.svg +++ /dev/null @@ -1 +0,0 @@ - \ No newline at end of file diff --git a/pr-preview/pr-110/_/img/icons/external-symbol.svg b/pr-preview/pr-110/_/img/icons/external-symbol.svg deleted file mode 100644 index 564123c50..000000000 --- a/pr-preview/pr-110/_/img/icons/external-symbol.svg +++ /dev/null @@ -1,3 +0,0 @@ - - - diff --git a/pr-preview/pr-110/_/img/illustration.svg b/pr-preview/pr-110/_/img/illustration.svg deleted file mode 100644 index 3a2aac424..000000000 --- a/pr-preview/pr-110/_/img/illustration.svg +++ /dev/null @@ -1,83 +0,0 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/_/img/important.svg b/pr-preview/pr-110/_/img/important.svg deleted file mode 100644 index 3ddcc8134..000000000 --- a/pr-preview/pr-110/_/img/important.svg +++ /dev/null @@ -1,8 +0,0 @@ - - - - - - - - diff --git a/pr-preview/pr-110/_/img/java.logo.svg b/pr-preview/pr-110/_/img/java.logo.svg deleted file mode 100644 index 5ccbeff1c..000000000 --- a/pr-preview/pr-110/_/img/java.logo.svg +++ /dev/null @@ -1,80 +0,0 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/_/img/menu.svg b/pr-preview/pr-110/_/img/menu.svg deleted file mode 100644 index 8b43b2e00..000000000 --- a/pr-preview/pr-110/_/img/menu.svg +++ /dev/null @@ -1 +0,0 @@ - \ No newline at end of file diff --git a/pr-preview/pr-110/_/img/mulesoft.logo.svg b/pr-preview/pr-110/_/img/mulesoft.logo.svg deleted file mode 100644 index f6e435126..000000000 --- a/pr-preview/pr-110/_/img/mulesoft.logo.svg +++ /dev/null @@ -1 +0,0 @@ - \ No newline at end of file diff --git a/pr-preview/pr-110/_/img/nodejs.logo.svg b/pr-preview/pr-110/_/img/nodejs.logo.svg deleted file mode 100644 index e33a58892..000000000 --- a/pr-preview/pr-110/_/img/nodejs.logo.svg +++ /dev/null @@ -1 +0,0 @@ - \ No newline at end of file diff --git a/pr-preview/pr-110/_/img/note.svg b/pr-preview/pr-110/_/img/note.svg deleted file mode 100644 index 4f5751b5e..000000000 --- a/pr-preview/pr-110/_/img/note.svg +++ /dev/null @@ -1,3 +0,0 @@ - - - diff --git a/pr-preview/pr-110/_/img/octicons-16.svg b/pr-preview/pr-110/_/img/octicons-16.svg deleted file mode 100644 index e3b4e2022..000000000 --- a/pr-preview/pr-110/_/img/octicons-16.svg +++ /dev/null @@ -1 +0,0 @@ -Octicons v11.2.0 by GitHub - https://primer.style/octicons/ - License: MIT \ No newline at end of file diff --git a/pr-preview/pr-110/_/img/open_in_new.svg b/pr-preview/pr-110/_/img/open_in_new.svg deleted file mode 100644 index 9f8128218..000000000 --- a/pr-preview/pr-110/_/img/open_in_new.svg +++ /dev/null @@ -1 +0,0 @@ - \ No newline at end of file diff --git a/pr-preview/pr-110/_/img/pan_tool.svg b/pr-preview/pr-110/_/img/pan_tool.svg deleted file mode 100644 index 148a0bc4a..000000000 --- a/pr-preview/pr-110/_/img/pan_tool.svg +++ /dev/null @@ -1,3 +0,0 @@ - - - diff --git a/pr-preview/pr-110/_/img/question.mark.svg b/pr-preview/pr-110/_/img/question.mark.svg deleted file mode 100644 index 97100e9a7..000000000 --- a/pr-preview/pr-110/_/img/question.mark.svg +++ /dev/null @@ -1,3 +0,0 @@ - - - diff --git a/pr-preview/pr-110/_/img/search.svg b/pr-preview/pr-110/_/img/search.svg deleted file mode 100644 index fd816e598..000000000 --- a/pr-preview/pr-110/_/img/search.svg +++ /dev/null @@ -1,3 +0,0 @@ - - - diff --git a/pr-preview/pr-110/_/img/small-external.svg b/pr-preview/pr-110/_/img/small-external.svg deleted file mode 100644 index 7a6c34b9a..000000000 --- a/pr-preview/pr-110/_/img/small-external.svg +++ /dev/null @@ -1,3 +0,0 @@ - - - diff --git a/pr-preview/pr-110/_/img/teradata.logo.svg b/pr-preview/pr-110/_/img/teradata.logo.svg deleted file mode 100644 index ddae4bfef..000000000 --- a/pr-preview/pr-110/_/img/teradata.logo.svg +++ /dev/null @@ -1,4 +0,0 @@ - - - - diff --git a/pr-preview/pr-110/_/img/tip.svg b/pr-preview/pr-110/_/img/tip.svg deleted file mode 100644 index 1405622eb..000000000 --- a/pr-preview/pr-110/_/img/tip.svg +++ /dev/null @@ -1,8 +0,0 @@ - - - - - - - - diff --git a/pr-preview/pr-110/_/img/twilio.logo.svg b/pr-preview/pr-110/_/img/twilio.logo.svg deleted file mode 100644 index c55f3e100..000000000 --- a/pr-preview/pr-110/_/img/twilio.logo.svg +++ /dev/null @@ -1,10 +0,0 @@ - - - - - - - - - - diff --git a/pr-preview/pr-110/_/img/warning.svg b/pr-preview/pr-110/_/img/warning.svg deleted file mode 100644 index e41cbea37..000000000 --- a/pr-preview/pr-110/_/img/warning.svg +++ /dev/null @@ -1,3 +0,0 @@ - - - diff --git a/pr-preview/pr-110/_/js/behavior.js b/pr-preview/pr-110/_/js/behavior.js deleted file mode 100644 index deb642f5f..000000000 --- a/pr-preview/pr-110/_/js/behavior.js +++ /dev/null @@ -1,119 +0,0 @@ -;(function () { - 'use strict' - - var hash = window.location.hash - find('.tabset').forEach(function (tabset) { - var active - var tabs = tabset.querySelector('.tabs') - if (tabs) { - var first - find('li', tabs).forEach(function (tab, idx) { - var id = (tab.querySelector('a[id]') || tab).id - var label = (tab.querySelector('a[id]') || tab).parentElement.innerText - if (!id) return - var pane = getPane(id, tabset) - if (!idx) first = { tab: tab, pane: pane } - if (!active && hash === '#' + id && (active = true)) { - tab.classList.add('is-active') - if (pane) pane.classList.add('is-active') - } else if (!idx) { - tab.classList.remove('is-active') - if (pane) pane.classList.remove('is-active') - } - tab.addEventListener('click', activateTab.bind({ tabset: tabset, tab: tab, pane: pane, label: label })) - }) - if (!active && first) { - first.tab.classList.add('is-active') - if (first.pane) first.pane.classList.add('is-active') - } - } - tabset.classList.remove('is-loading') - }) - - function activateTab (e) { - var tab = this.tab - var pane = this.pane - var label = this.label - find('.tabs li').forEach(function (it) { - if (it.children[0].innerText === label) { - it.classList.add('is-active'); - } else { - it.classList.remove('is-active'); - } - }) - find('.tab-pane').forEach(function (it) { - if (it.getAttribute('aria-labelledby').includes(label.toLowerCase())) { - it.classList.add('is-active'); - } else { - it.classList.remove('is-active'); - } - }) - e.preventDefault() - } - - function find (selector, from) { - return Array.prototype.slice.call((from || document).querySelectorAll(selector)) - } - - function getPane (id, tabset) { - return find('.tab-pane', tabset).find(function (it) { - return it.getAttribute('aria-labelledby') === id - }) - } - - var pageReady = function(callback) { - document.readyState !== 'loading' ? callback() : document.addEventListener('DOMContentLoaded', callback); - } - - pageReady(function() { - enableMobileMenu(); - }); - - function enableMobileMenu() { - var navbar = document.querySelector('.navbar'); - var mobileMenuButton = document.querySelector('.header-nav-mobile__menu-icon'); - var pageBody = document.querySelector('body'); - var pageBlackout = document.querySelector('.page-blackout'); - - function resetClasses() { - mobileMenuButton.classList.remove('active'); - pageBody.classList.remove('menu-open'); - pageBlackout.classList.remove('active'); - navbar.classList.remove('active'); - } - resetClasses(); - - mobileMenuButton.addEventListener('click', function(e) { - e.preventDefault(); - - this.classList.toggle('active'); - pageBody.classList.toggle('menu-open'); - pageBlackout.classList.toggle('active'); - navbar.classList.toggle('active'); - }) - - var dropdowns = document.querySelectorAll('.header-nav-mobile__menu-item.has-sub-items > header'), i; - - for (i = 0; i < dropdowns.length; ++i) { - dropdowns[i].addEventListener('click', function (e) { - if(this == e.target) { - e.stopPropagation(); - this.parentElement.classList.toggle('active'); - this.nextElementSibling.classList.toggle('dropdown-open'); - } else { - return true; - } - }) - } - - function checkWidth() { - var currentWidth = window.innerWidth; - var desktopBreakpoint = 1024; - - if (pageBody.classList.contains('menu-open') && currentWidth >= desktopBreakpoint) { - resetClasses(); - } - } - window.addEventListener('resize', checkWidth); - } -})() diff --git a/pr-preview/pr-110/_/js/search-ui.js b/pr-preview/pr-110/_/js/search-ui.js deleted file mode 100644 index 055bd836b..000000000 --- a/pr-preview/pr-110/_/js/search-ui.js +++ /dev/null @@ -1,229 +0,0 @@ -;(function (globalScope) { - /* eslint-disable no-var */ - var config = document.getElementById('search-ui-script').dataset - var snippetLength = parseInt(config.snippetLength || 100, 10) - var siteRootPath = config.siteRootPath || '' - appendStylesheet(config.stylesheet) - var searchInput = document.getElementById('search-input') - var searchResult = document.createElement('div') - searchResult.classList.add('search-result-dropdown-menu') - searchInput.parentNode.appendChild(searchResult) - - function appendStylesheet (href) { - if (!href) return - document.head.appendChild(Object.assign(document.createElement('link'), { rel: 'stylesheet', href: href })) - } - - function highlightText (doc, position) { - var hits = [] - var start = position[0] - var length = position[1] - - var text = doc.text - var highlightSpan = document.createElement('span') - highlightSpan.classList.add('search-result-highlight') - highlightSpan.innerText = text.substr(start, length) - - var end = start + length - var textEnd = text.length - 1 - var contextAfter = end + snippetLength > textEnd ? textEnd : end + snippetLength - var contextBefore = start - snippetLength < 0 ? 0 : start - snippetLength - if (start === 0 && end === textEnd) { - hits.push(highlightSpan) - } else if (start === 0) { - hits.push(highlightSpan) - hits.push(document.createTextNode(text.substr(end, contextAfter))) - } else if (end === textEnd) { - hits.push(document.createTextNode(text.substr(0, start))) - hits.push(highlightSpan) - } else { - hits.push(document.createTextNode('...' + text.substr(contextBefore, start - contextBefore))) - hits.push(highlightSpan) - hits.push(document.createTextNode(text.substr(end, contextAfter - end) + '...')) - } - return hits - } - - function highlightTitle (hash, doc, position) { - var hits = [] - var start = position[0] - var length = position[1] - - var highlightSpan = document.createElement('span') - highlightSpan.classList.add('search-result-highlight') - var title - if (hash) { - title = doc.titles.filter(function (item) { - return item.id === hash - })[0].text - } else { - title = doc.title - } - highlightSpan.innerText = title.substr(start, length) - - var end = start + length - var titleEnd = title.length - 1 - if (start === 0 && end === titleEnd) { - hits.push(highlightSpan) - } else if (start === 0) { - hits.push(highlightSpan) - hits.push(document.createTextNode(title.substr(length, titleEnd))) - } else if (end === titleEnd) { - hits.push(document.createTextNode(title.substr(0, start))) - hits.push(highlightSpan) - } else { - hits.push(document.createTextNode(title.substr(0, start))) - hits.push(highlightSpan) - hits.push(document.createTextNode(title.substr(end, titleEnd))) - } - return hits - } - - function highlightHit (metadata, hash, doc) { - var hits = [] - for (var token in metadata) { - var fields = metadata[token] - for (var field in fields) { - var positions = fields[field] - if (positions.position) { - var position = positions.position[0] // only higlight the first match - if (field === 'title') { - hits = highlightTitle(hash, doc, position) - } else if (field === 'text') { - hits = highlightText(doc, position) - } - } - } - } - return hits - } - - function createSearchResult (result, store, searchResultDataset) { - result.forEach(function (item) { - var url = item.ref - var hash - if (url.includes('#')) { - hash = url.substring(url.indexOf('#') + 1) - url = url.replace('#' + hash, '') - } - var doc = store[url] - var metadata = item.matchData.metadata - var hits = highlightHit(metadata, hash, doc) - searchResultDataset.appendChild(createSearchResultItem(doc, item, hits)) - }) - } - - function createSearchResultItem (doc, item, hits) { - var documentTitle = document.createElement('div') - documentTitle.classList.add('search-result-document-title') - documentTitle.innerText = doc.title - var documentHit = document.createElement('div') - documentHit.classList.add('search-result-document-hit') - var documentHitLink = document.createElement('a') - documentHitLink.href = siteRootPath + item.ref - documentHit.appendChild(documentHitLink) - hits.forEach(function (hit) { - documentHitLink.appendChild(hit) - }) - var searchResultItem = document.createElement('div') - searchResultItem.classList.add('search-result-item') - searchResultItem.appendChild(documentTitle) - searchResultItem.appendChild(documentHit) - searchResultItem.addEventListener('mousedown', function (e) { - e.preventDefault() - }) - return searchResultItem - } - - function createNoResult (text) { - var searchResultItem = document.createElement('div') - searchResultItem.classList.add('search-result-item') - var documentHit = document.createElement('div') - documentHit.classList.add('search-result-document-hit') - var message = document.createElement('strong') - message.innerText = 'No results found for query "' + text + '"' - documentHit.appendChild(message) - searchResultItem.appendChild(documentHit) - return searchResultItem - } - - function clearSearchResults (reset) { - if (reset === true) searchInput.value = '' - searchResult.innerHTML = '' - } - - function search (index, text) { - // execute an exact match search - var result = index.search(text) - if (result.length > 0) { - return result - } - // no result, use a begins with search - result = index.search(text + '*') - if (result.length > 0) { - return result - } - // no result, use a contains search - result = index.search('*' + text + '*') - return result - } - - function searchIndex (index, store, text) { - clearSearchResults(false) - if (text.trim() === '') { - return - } - var result = search(index, text) - var searchResultDataset = document.createElement('div') - searchResultDataset.classList.add('search-result-dataset') - searchResult.appendChild(searchResultDataset) - if (result.length > 0) { - createSearchResult(result, store, searchResultDataset) - } else { - searchResultDataset.appendChild(createNoResult(text)) - } - } - - function confineEvent (e) { - e.stopPropagation() - } - - function debounce (func, wait, immediate) { - var timeout - return function () { - var context = this - var args = arguments - var later = function () { - timeout = null - if (!immediate) func.apply(context, args) - } - var callNow = immediate && !timeout - clearTimeout(timeout) - timeout = setTimeout(later, wait) - if (callNow) func.apply(context, args) - } - } - - function initSearch (lunr, data) { - var index = Object.assign({ index: lunr.Index.load(data.index), store: data.store }) - var debug = 'URLSearchParams' in globalScope && new URLSearchParams(globalScope.location.search).has('lunr-debug') - searchInput.addEventListener( - 'keydown', - debounce(function (e) { - if (e.key === 'Escape' || e.key === 'Esc') return clearSearchResults(true) - try { - var query = searchInput.value - if (!query) return clearSearchResults() - searchIndex(index.index, index.store, searchInput.value) - } catch (err) { - if (debug) console.debug('Invalid search query: ' + query + ' (' + err.message + ')') - } - }, 100) - ) - searchInput.addEventListener('click', confineEvent) - searchResult.addEventListener('click', confineEvent) - document.documentElement.addEventListener('click', clearSearchResults) - } - - globalScope.initSearch = initSearch -})(typeof globalThis !== 'undefined' ? globalThis : window) diff --git a/pr-preview/pr-110/_/js/site.js b/pr-preview/pr-110/_/js/site.js deleted file mode 100644 index c3e14757e..000000000 --- a/pr-preview/pr-110/_/js/site.js +++ /dev/null @@ -1,6 +0,0 @@ -!function(){"use strict";var e,o,r,s=/^sect(\d)$/,i=document.querySelector(".nav-container"),a=document.querySelector(".nav-toggle"),c=i.querySelector(".nav"),l=(a.addEventListener("click",function(e){if(a.classList.contains("is-active"))return u(e);v(e);var e=document.documentElement,t=(e.classList.add("is-clipped--nav"),a.classList.add("is-active"),i.classList.add("is-active"),c.getBoundingClientRect()),n=window.innerHeight-Math.round(t.top);Math.round(t.height)!==n&&(c.style.height=n+"px");e.addEventListener("click",u)}),i.addEventListener("click",v),i.querySelector("[data-panel=menu]"));function t(){var e,t,n=window.location.hash;if(n&&(n.indexOf("%")&&(n=decodeURIComponent(n)),!(e=l.querySelector('.nav-link[href="'+n+'"]')))){n=document.getElementById(n.slice(1));if(n)for(var i=n,a=document.querySelector("article.doc");(i=i.parentNode)&&i!==a;){var c=i.id;if((c=c||(c=s.test(i.className))&&(i.firstElementChild||{}).id)&&(e=l.querySelector('.nav-link[href="#'+c+'"]')))break}}if(e)t=e.parentNode;else{if(!r)return;e=(t=r).querySelector(".nav-link")}t!==o&&(h(l,".nav-item.is-active").forEach(function(e){e.classList.remove("is-active","is-current-path","is-current-page")}),t.classList.add("is-current-page"),d(o=t),p(l,e))}function d(e){for(var t,n=e.parentNode;!(t=n.classList).contains("nav-menu");)"LI"===n.tagName&&t.contains("nav-item")&&t.add("is-active","is-current-path"),n=n.parentNode;e.classList.add("is-active")}function n(){var e,t,n,i;this.classList.toggle("is-active")&&(e=parseFloat(window.getComputedStyle(this).marginTop),t=this.getBoundingClientRect(),n=l.getBoundingClientRect(),0<(i=(t.bottom-n.top-n.height+e).toFixed()))&&(l.scrollTop+=Math.min((t.top-n.top-e).toFixed(),i))}function u(e){v(e);e=document.documentElement;e.classList.remove("is-clipped--nav"),a.classList.remove("is-active"),i.classList.remove("is-active"),e.removeEventListener("click",u)}function v(e){e.stopPropagation()}function p(e,t){var n=e.getBoundingClientRect(),i=n.height,a=window.getComputedStyle(c);"sticky"===a.position&&(i-=n.top-parseFloat(a.top)),e.scrollTop=Math.max(0,.5*(t.getBoundingClientRect().height-i)+t.offsetTop)}function h(e,t){return[].slice.call(e.querySelectorAll(t))}l&&(e=i.querySelector("[data-panel=explore]"),o=l.querySelector(".is-current-page"),(r=o)?(d(o),p(l,o.querySelector(".nav-link"))):l.scrollTop=0,h(l,".nav-item-toggle").forEach(function(e){var t=e.parentElement,e=(e.addEventListener("click",n.bind(t)),function(e,t){e=e.nextElementSibling;return(!e||!t||e[e.matches?"matches":"msMatchesSelector"](t))&&e}(e,".nav-text"));e&&(e.style.cursor="pointer",e.addEventListener("click",n.bind(t)))}),e&&e.querySelector(".context").addEventListener("click",function(){h(c,"[data-panel]").forEach(function(e){e.classList.toggle("is-active")})}),l.addEventListener("mousedown",function(e){1":"")+".sect"+c);r.push("h"+(i+1)+"[id]")}else r.push("h1[id].sect0");n.push(r.join(">"))}m=n.join(","),f=d.parentNode;var a,s=[].slice.call((f||document).querySelectorAll(m));if(!s.length)return e.parentNode.removeChild(e);var l={},u=s.reduce(function(e,t){var o=document.createElement("a"),n=(o.textContent=t.textContent,l[o.href="#"+t.id]=o,document.createElement("li"));return n.dataset.level=parseInt(t.nodeName.slice(1),10)-1,n.appendChild(o),e.appendChild(n),e},document.createElement("ul")),f=e.querySelector(".toc-menu"),m=(f||((f=document.createElement("div")).className="toc-menu"),document.createElement("h3")),e=(m.textContent=e.dataset.title||"Contents",f.appendChild(m),f.appendChild(u),!document.getElementById("toc")&&d.querySelector("h1.page ~ :not(.is-before-toc)"));e&&((m=document.createElement("aside")).className="toc embedded",m.appendChild(f.cloneNode(!0)),e.parentNode.insertBefore(m,e)),window.addEventListener("load",function(){p(),window.addEventListener("scroll",p)})}}function p(){var n,i,t,e=window.pageYOffset,o=1.15*h(document.documentElement,"fontSize"),r=d.offsetTop;e&&window.innerHeight+e+2>=document.documentElement.scrollHeight?(a=Array.isArray(a)?a:Array(a||0),n=[],i=s.length-1,s.forEach(function(e,t){var o="#"+e.id;t===i||e.getBoundingClientRect().top+h(e,"paddingTop")>r?(n.push(o),a.indexOf(o)<0&&l[o].classList.add("is-active")):~a.indexOf(o)&&l[a.shift()].classList.remove("is-active")}),u.scrollTop=u.scrollHeight-u.offsetHeight,a=1r)return!0;t="#"+e.id}),t?t!==a&&(a&&l[a].classList.remove("is-active"),(e=l[t]).classList.add("is-active"),u.scrollHeight>u.offsetHeight&&(u.scrollTop=Math.max(0,e.offsetTop+e.offsetHeight-u.offsetHeight)),a=t):a&&(l[a].classList.remove("is-active"),a=void 0))}function h(e,t){return parseFloat(window.getComputedStyle(e)[t])}}(); -!function(){"use strict";var o=document.querySelector("article.doc"),n=document.querySelector(".toolbar"),i="scrollTo"in document.documentElement;function c(e){return e&&(~e.indexOf("%")?decodeURIComponent(e):e).slice(1)}function r(e){if(e){if(e.altKey||e.ctrlKey)return;window.location.hash="#"+this.id,e.preventDefault()}var t=function e(t,n){return o.contains(t)?e(t.offsetParent,t.offsetTop+n):n}(this,0)-n.getBoundingClientRect().bottom;!1===e&&i?window.scrollTo({left:0,top:t,behavior:"instant"}):window.scrollTo(0,t)}window.addEventListener("load",function e(t){var n;(n=c(window.location.hash))&&(n=document.getElementById(n))&&(r.call(n,!1),setTimeout(r.bind(n,!1),250)),window.removeEventListener("load",e)}),Array.prototype.slice.call(document.querySelectorAll('a[href^="#"]')).forEach(function(e){var t;(t=c(e.hash))&&(t=document.getElementById(t))&&e.addEventListener("click",r.bind(t))})}(); -!function(){"use strict";var t,e=document.querySelector(".page-versions .version-menu-toggle");e&&(t=document.querySelector(".page-versions"),e.addEventListener("click",function(e){t.classList.toggle("is-active"),e.stopPropagation()}),document.documentElement.addEventListener("click",function(){t.classList.remove("is-active")}))}(); -!function(){"use strict";var t=document.querySelector(".navbar-burger");t&&t.addEventListener("click",function(t){t.stopPropagation(),document.documentElement.classList.toggle("is-clipped--navbar"),this.classList.toggle("is-active");t=document.getElementById(this.dataset.target);{var e;t.classList.toggle("is-active")&&(t.style.maxHeight="",e=window.innerHeight-Math.round(t.getBoundingClientRect().top),parseInt(window.getComputedStyle(t).maxHeight,10)!==e)&&(t.style.maxHeight=e+"px")}}.bind(t))}(); -!function(){"use strict";var o=/^\$ (\S[^\\\n]*(\\\n(?!\$ )[^\\\n]*)*)(?=\n|$)/gm,s=/( ) *\\\n *|\\\n( ?) */g,l=/ +$/gm,e=(document.getElementById("site-script")||{dataset:{}}).dataset,d=null==e.uiRootPath?".":e.uiRootPath,r=e.svgAs,p=window.navigator.clipboard;[].slice.call(document.querySelectorAll(".doc pre.highlight, .doc .literalblock pre")).forEach(function(e){var t,n,a,c;if(e.classList.contains("highlight"))(i=(t=e.querySelector("code")).dataset.lang)&&"console"!==i&&((a=document.createElement("span")).className="source-lang",a.appendChild(document.createTextNode(i)));else{if(!e.innerText.startsWith("$ "))return;var i=e.parentNode.parentNode;i.classList.remove("literalblock"),i.classList.add("listingblock"),e.classList.add("highlightjs","highlight"),(t=document.createElement("code")).className="language-console hljs",t.dataset.lang="console",t.appendChild(e.firstChild),e.appendChild(t)}(i=document.createElement("div")).className="source-toolbox",a&&i.appendChild(a),p&&((n=document.createElement("button")).className="copy-button",n.setAttribute("title","Copy to clipboard"),"svg"===r?((a=document.createElementNS("http://www.w3.org/2000/svg","svg")).setAttribute("class","copy-icon"),(c=document.createElementNS("http://www.w3.org/2000/svg","use")).setAttribute("href",d+"/img/octicons-16.svg#icon-clippy"),a.appendChild(c),n.appendChild(a)):((c=document.createElement("img")).src=d+"/img/octicons-16.svg#view-clippy",c.alt="copy icon",c.className="copy-icon",n.appendChild(c)),(a=document.createElement("span")).className="copy-toast",a.appendChild(document.createTextNode("Copied!")),n.appendChild(a),i.appendChild(n)),e.parentNode.appendChild(i),n&&n.addEventListener("click",function(e){var t=e.innerText.replace(l,"");"console"===e.dataset.lang&&t.startsWith("$ ")&&(t=function(e){var t,n=[];for(;t=o.exec(e);)n.push(t[1].replace(s,"$1$2"));return n.join(" && ")}(t));window.navigator.clipboard.writeText(t).then(function(){this.classList.add("clicked"),this.offsetHeight,this.classList.remove("clicked")}.bind(this),function(){})}.bind(n,t))})}(); \ No newline at end of file diff --git a/pr-preview/pr-110/_/js/teradata.min.js b/pr-preview/pr-110/_/js/teradata.min.js deleted file mode 100644 index 8e45cc240..000000000 --- a/pr-preview/pr-110/_/js/teradata.min.js +++ /dev/null @@ -1 +0,0 @@ -var module=module||{};function hljsDefineTeradataSql(e){const t=e.regex,r=e.COMMENT("--","$"),a=["true","false","unknown"],n=["bigint","binary","blob","boolean","char","character","clob","date","dec","decfloat","decimal","float","int","integer","interval","nchar","nclob","national","numeric","real","row","smallint","time","timestamp","varchar","varying","varbinary","array","varray","byte","varbyte","blob","char","varchar","clob","avro","csv","date","time","timestamp","st_geometry","mbr","byteint","json","byteint","smallint","integer","bigint","decimal","numeric","float","real","number","td_anytype","variant_type","distinct","structured","xml","period(date)","period(time)","period(timestamp)"],o=["abs","acos","array_agg","asin","atan","avg","cast","ceil","ceiling","coalesce","corr","cos","cosh","count","covar_pop","covar_samp","cume_dist","dense_rank","deref","element","exp","extract","first_value","floor","json_array","json_arrayagg","json_exists","json_object","json_objectagg","json_query","json_table","json_table_primitive","json_value","lag","last_value","lead","listagg","ln","log","log10","lower","max","min","mod","nth_value","ntile","nullif","percent_rank","percentile_cont","percentile_disc","position","position_regex","power","rank","regr_avgx","regr_avgy","regr_count","regr_intercept","regr_r2","regr_slope","regr_sxx","regr_sxy","regr_syy","row_number","sin","sinh","sqrt","stddev_pop","stddev_samp","substring","substring_regex","sum","tan","tanh","translate","translate_regex","treat","trim","trim_array","unnest","upper","value_of","var_pop","var_samp","width_bucket","agggeom","agggeomintersection","agggeomunion","array_add","array_agg","array_avg","array_compare","array_concat","array_count_distinct","array_div","array_eq","array_ge","array_get","array_gt","array_le","array_lt","array_max","array_min","array_mod","array_mul","array_ne","array_sub","array_sum","array_to_json","array_update","array_update_stride","ascii","as_shredtb","as_shred_generate_sql","as_shred_gettables","avrocontainersplit","avro_check","bitand","bitnot","bitor","bitxor","bson_check","calcmatrix","calcmatrix_contract","camset","camset_l","cardinality","ceil","ceiling","chr","countset","createdataset","createxml","csv","csvld","csv_to_avro","csv_to_json","dataset_keys","dataset_publish","dataset_table","datasize","daynumber_of_calendar","daynumber_of_month","daynumber_of_week","daynumber_of_year","dayoccurrence_of_month","dbqldecodeobj","decamset","decamset_l","decode","editdistance","empty_blob","empty_clob","floor","from_bytes","from_mgrs","fsysshowblocks","fsysshowblocks_contract","fsysshowinner","fsysshowwhere","fsysshowwhere_contract","geojsonfromgeom","geometrytorows","geomfromgeojson","geosequencefromrows","geosequencetorows","getbit","getcurrentpxyroles","getpsfversion","getquerybandvaluesf","greatest","initcap","instr","jsongetvalue","jsonmetadata","json_agg","json_check","json_compose","json_compress","json_decompress","json_keys","json_publish","json_shred_gensqls","json_shred_gettables","json_table","last_day","least","length","lpad","ltrim","lzcomp","lzcomp_l","lzdecomp","lzdecomp_l","monthnumber_of_calendar","monthnumber_of_quarter","monthnumber_of_year","months_between","next_day","ngram","numfpfns","numtodsinterval","numtoyminterval","nvl","nvl2","nvp","nvp2json","oadd_months","ocount","odelete","oexists","oextend","ofirst","olast","olimit","onext","oprior","oreplace","otranslate","otrim","polygonsplit","qbreservednamevalues","qgexecuteforeignquery","qgexecuteforeignquerycontract","qginitiatorexport","qginitiatorexportcontract","qginitiatorimport","qginitiatorimportcontract","qgremoteexport","qgremoteexportcontract","qgremoteimport","qgremoteimportcontract","quarternumber_of_calendar","quarternumber_of_year","regexp_instr","regexp_replace","regexp_similar","regexp_split_to_table","regexp_substr","regexp_substr_gpl","reverse","rotateleft","rotateright","round","rpad","rtrim","schemaequal","schemamatch","script","setbit","shiftleft","shiftright","sign","snappy_compress","snappy_decompress","strtok","strtok_split_to_table","subbitstr","tdampcopy","tdampcopy_contract","td_array2p","td_awtdpscache","td_awtdpscachedump","td_awtdpscachehash","td_dbqlful","td_dbqlparam","td_filerrows","td_friday","td_gettimebucket","td_get_cod_limits","td_left","td_lz_compress","td_lz_decompress","td_monday","td_month_begin","td_month_end","td_normalize_meet","td_normalize_overlap","td_normalize_overlap_meet","td_quarter_begin","td_quarter_end","td_right","td_saturday","td_sequenced_avg","td_sequenced_count","td_sequenced_sum","td_spatialdistancekey","td_spatialindexkey","td_spatialmbbkey","td_sum_normalize_meet","td_sum_normalize_overlap","td_sum_normalize_overlap_meet","td_sunday","td_thursday","td_tuesday","td_tunable","td_unpivot","td_unpivot_contract","td_wednesday","td_week_begin","td_week_end","td_year_begin","td_year_end","tessellate","tessellate_search","to_byte","to_bytes","to_char","to_date","to_dsinterval","to_mgrs","to_number","to_timestamp","to_timestamp_tz","to_yminterval","transunicodetoutf8","transutf8tounicode","trunc","trycast","ts_compress","ts_decompress","unnest","weeknumber_of_calendar","weeknumber_of_month","weeknumber_of_quarter","weeknumber_of_year","xmlagg","xmlclientfmttxt","xmlcomment","xmlconcat","xmldocument","xmlelement","xmlforest","xmlnormalize","xmlpadkey","xmlparse","xmlpi","xmlpublishtable","xmlpublish_gensql","xmlpublish_gen_canonical_sql","xmlquery","xmlserialize","xmlsplit","xmltable","xmltext","xmltransform","xmlvalidate","xslt_shredtb","xslt_shred_gencanonical_sql","xslt_shred_generate_sql","xslt_shred_gettables","xslt_xml2sql","yearnumber_of_calendar"],s=["create table","insert into","primary key","foreign key","not null","alter table","add constraint","grouping sets","on overflow","character set","respect nulls","ignore nulls","nulls first","nulls last","depth first","breadth first"],i=o,l=["abs","acos","all","allocate","alter","and","any","are","array","array_agg","array_max_cardinality","as","asensitive","asin","asymmetric","at","atan","atomic","authorization","avg","begin","begin_frame","begin_partition","between","bigint","binary","blob","boolean","both","by","call","called","cardinality","cascaded","case","cast","ceil","ceiling","char","char_length","character","character_length","check","classifier","clob","close","coalesce","collate","collect","column","commit","condition","connect","constraint","contains","convert","copy","corr","corresponding","cos","cosh","count","covar_pop","covar_samp","create","cross","cube","cume_dist","current","current_catalog","current_date","current_default_transform_group","current_path","current_role","current_row","current_schema","current_time","current_timestamp","current_path","current_role","current_transform_group_for_type","current_user","cursor","cycle","date","day","deallocate","dec","decimal","decfloat","declare","default","define","delete","dense_rank","deref","describe","deterministic","disconnect","distinct","double","drop","dynamic","each","element","else","empty","end","end_frame","end_partition","end-exec","equals","escape","every","except","exec","execute","exists","exp","external","extract","false","fetch","filter","first_value","float","floor","for","foreign","frame_row","free","from","full","function","fusion","get","global","grant","group","grouping","groups","having","hold","hour","identity","in","indicator","initial","inner","inout","insensitive","insert","int","integer","intersect","intersection","interval","into","is","join","json_array","json_arrayagg","json_exists","json_object","json_objectagg","json_query","json_table","json_table_primitive","json_value","lag","language","large","last_value","lateral","lead","leading","left","like","like_regex","listagg","ln","local","localtime","localtimestamp","log","log10","lower","match","match_number","match_recognize","matches","max","member","merge","method","min","minute","mod","modifies","module","month","multiset","national","natural","nchar","nclob","new","no","none","normalize","not","nth_value","ntile","null","nullif","numeric","octet_length","occurrences_regex","of","offset","old","omit","on","one","only","open","or","order","out","outer","over","overlaps","overlay","parameter","partition","pattern","per","percent","percent_rank","percentile_cont","percentile_disc","period","portion","position","position_regex","power","precedes","precision","prepare","primary","procedure","ptf","range","rank","reads","real","recursive","ref","references","referencing","regr_avgx","regr_avgy","regr_count","regr_intercept","regr_r2","regr_slope","regr_sxx","regr_sxy","regr_syy","release","result","return","returns","revoke","right","rollback","rollup","row","row_number","rows","running","savepoint","scope","scroll","search","second","seek","select","sensitive","session_user","set","show","similar","sin","sinh","skip","smallint","some","specific","specifictype","sql","sqlexception","sqlstate","sqlwarning","sqrt","start","static","stddev_pop","stddev_samp","submultiset","subset","substring","substring_regex","succeeds","sum","symmetric","system","system_time","system_user","table","tablesample","tan","tanh","then","time","timestamp","timezone_hour","timezone_minute","to","trailing","translate","translate_regex","translation","treat","trigger","trim","trim_array","true","truncate","uescape","union","unique","unknown","unnest","update","upper","user","using","value","values","value_of","var_pop","var_samp","varbinary","varchar","varying","versioning","when","whenever","where","width_bucket","window","with","within","without","year","abort","abortsession","abs","access_lock","account","acos","acosh","add","add_months","admin","after","aggregate","all","alter","amp","and","ansidate","any","as","asc","asin","asinh","at","atan","atan2","atanh","atomic","authorization","ave","average","avg","before","begin","between","bigint","binary","blob","both","bt","but","by","byte","bytes","call","case","case_n","casespecific","cast","cd","char","char_length","char2hexint","character","character_length","characters","chars","check","checkpoint","class","clob","close","cluster","cm","coalesce","collation","collect","column","comment","commit","compress","connect","constraint","constructor","consume","contains","continue","convert_table_header","corr","cos","cosh","count","covar_pop","covar_samp","create","cross","cs","csum","ct","ctcontrol","cube","current","current_date","current_role","current_time","current_timestamp","current_user","cursor","cv","cycle","database","datablocksize","date","dateform","day","deallocate","dec","decimal","declare","default","deferred","degrees","del","delete","desc","deterministic","diagnostic","disabled","distinct","do","domain","double","drop","dual","dump","dynamic","each","echo","else","elseif","enabled","end","eq","equals","error","errorfiles","errortables","escape","et","except","exec","execute","exists","exit","exp","expand","expanding","explain","external","extract","fallback","fastexport","fetch","first","float","for","foreign","format","found","freespace","from","full","function","ge","generated","get","give","grant","graphic","group","grouping","gt","handler","hash","hashamp","hashbakamp","hashbucket","hashrow","having","help","hour","identity","id2bigint","if","immediate","in","inconsistent","index","initiate","inner","inout","input","ins","insert","instance","instead","int","integer","integerdate","intersect","interval","into","is","iterate","jar","join","journal","key","kurtosis","language","large","le","leading","leave","left","like","limit","ln","loading","local","locator","lock","locking","log","logging","logon","long","loop","lower","lt","macro","map","mavg","max","maximum","mcharacters","mdiff","merge","method","min","mindex","minimum","minus","minute","mlinreg","mload","mod","mode","modifies","modify","monitor","monresource","monsession","month","msubstr","msum","multiset","named","natural","ne","new","new_table","next","no","none","nontemporal","normalize","nosync","not","nowait","null","nullif","nullifzero","number","numeric","object","objects","octet_length","of","off","old","old_table","on","only","open","option","or","order","ordering","out","outer","over","overlaps","override","parameter","password","percent","percent_rank","perm","permanent","plan_directive","position","precision","prepare","preserve","primary","privileges","procedure","profile","protection","public","qualified","qualify","quantile","queue","radians","random","range_n","rank","reads","real","recursive","references","referencing","regr_avgx","regr_avgy","regr_count","regr_intercept","regr_r2","regr_slope","regr_sxx","regr_sxy","regr_syy","relative","release","rename","repeat","replace","replcontrol","replication","request","resignal","restart","restore","result","resume","ret","retrieve","return","returns","revalidate","revoke","right","rights","role","rollback","rollforward","rollup","row","row_number","rowid","rows","sample","sampleid","scroll","second","sel","select","session","set","setresrate","sets","setsessrate","show","signal","sin","sinh","skew","smallint","some","soundex","specific","spool","sql","sqlexception","sqltext","sqlwarning","sqrt","ss","start","startup","statement","statistics","stddev_pop","stddev_samp","stepinfo","string_cs","subscriber","substr","substring","sum","summary","suspend","table","tan","tanh","tbl_cs","td_anytype","td_authid","td_host","td_rowloadid","td_valist","temporary","terminate","then","threshold","time","timestamp","timezone_hour","timezone_minute","title","to","top","trace","trailing","transaction","transactiontime","transform","translate","translate_chk","trigger","trim","type","uc","udtcastas","udtcastlparen","udtmethod","udttype","udtusage","uescape","undefined","undo","union","unique","until","until_changed","until_closed","upd","update","upper","uppercase","user","using","validtime","value","values","var_pop","var_samp","varbyte","varchar","vargraphic","variant_type","varying","view","volatile","when","where","while","width_bucket","with","without","work","xmlplan","year","zeroifnull","zone","add","asc","collation","desc","final","first","last","view"].filter((e=>!o.includes(e))),c={begin:t.concat(/\b/,t.either(...i),/\s*\(/),relevance:0,keywords:{built_in:i}};return{name:"Teradata SQL",case_insensitive:!0,illegal:/[{}]|<\//,keywords:{$pattern:/\b[\w\.]+/,keyword:function(e,{exceptions:t,when:r}={}){const a=r;return t=t||[],e.map((e=>e.match(/\|\d+$/)||t.includes(e)?e:a(e)?`${e}|0`:e))}(l,{when:e=>e.length<3}),literal:a,type:n,built_in:["current_catalog","current_date","current_default_transform_group","current_path","current_role","current_schema","current_transform_group_for_type","current_user","session_user","system_time","system_user","current_time","localtime","current_timestamp","localtimestamp"]},contains:[{begin:t.either(...s),relevance:0,keywords:{$pattern:/[\w\.]+/,keyword:l.concat(s),literal:a,type:n}},{className:"type",begin:t.either("double precision","large object","with timezone","without timezone","with data","time with time zone","timestamp with time zone","interval year","interval year to month","interval month","interval day","interval day to hour","interval day to minute","interval day to second","interval hour","interval hour to minute","interval hour to second","interval minute","interval minute to second","interval second","period(timestamp with time zone)","period(time with time zone)")},c,{className:"variable",begin:/@[a-z0-9]+/},{className:"string",variants:[{begin:/'/,end:/'/,contains:[{begin:/''/}]}]},{begin:/'/,end:/'/,contains:[{begin:/''/}]},e.C_NUMBER_MODE,e.C_BLOCK_COMMENT_MODE,r,{className:"operator",begin:/[-+*/=%^~]|&&?|\|\|?|!=?|<(?:=>?|<|>)?|>[>=]?/,relevance:0}]}}module.exports=function(e){e.registerLanguage("teradata-sql",hljsDefineTeradataSql)},module.exports.definer=hljsDefineTeradataSql; diff --git a/pr-preview/pr-110/_/js/vendor/highlight.js b/pr-preview/pr-110/_/js/vendor/highlight.js deleted file mode 100644 index f0be71469..000000000 --- a/pr-preview/pr-110/_/js/vendor/highlight.js +++ /dev/null @@ -1 +0,0 @@ -!function(){function e(e){return{aliases:["adoc"],contains:[e.COMMENT("^/{4,}\\n","\\n/{4,}$",{relevance:10}),e.COMMENT("^//","$",{relevance:0}),{className:"title",begin:"^\\.\\w.*$"},{begin:"^[=\\*]{4,}\\n",end:"\\n^[=\\*]{4,}$",relevance:10},{className:"section",relevance:10,variants:[{begin:"^(={1,5}) .+?( \\1)?$"},{begin:"^[^\\[\\]\\n]+?\\n[=\\-~\\^\\+]{2,}$"}]},{className:"meta",begin:"^:.+?:",end:"\\s",excludeEnd:!0,relevance:10},{className:"meta",begin:"^\\[.+?\\]$",relevance:0},{className:"quote",begin:"^_{4,}\\n",end:"\\n_{4,}$",relevance:10},{className:"code",begin:"^[\\-\\.]{4,}\\n",end:"\\n[\\-\\.]{4,}$",relevance:10},{begin:"^\\+{4,}\\n",end:"\\n\\+{4,}$",contains:[{begin:"<",end:">",subLanguage:"xml",relevance:0}],relevance:10},{className:"bullet",begin:"^(\\*+|\\-+|\\.+|[^\\n]+?::)\\s+"},{className:"symbol",begin:"^(NOTE|TIP|IMPORTANT|WARNING|CAUTION):\\s+",relevance:10},{className:"strong",begin:"\\B\\*(?![\\*\\s])",end:"(\\n{2}|\\*)",contains:[{begin:"\\\\*\\w",relevance:0}]},{className:"emphasis",begin:"\\B'(?!['\\s])",end:"(\\n{2}|')",contains:[{begin:"\\\\'\\w",relevance:0}],relevance:0},{className:"emphasis",begin:"_(?![_\\s])",end:"(\\n{2}|_)",relevance:0},{className:"string",variants:[{begin:"``.+?''"},{begin:"`.+?'"}]},{className:"code",begin:"(`.+?`|\\+.+?\\+)",relevance:0},{className:"code",begin:"^[ \\t]",end:"$",relevance:0},{begin:"^'{3,}[ \\t]*$",relevance:10},{begin:"(link:)?(http|https|ftp|file|irc|image:?):\\S+\\[.*?\\]",returnBegin:!0,contains:[{begin:"(link|image:?):",relevance:0},{className:"link",begin:"\\w",end:"[^\\[]+",relevance:0},{className:"string",begin:"\\[",end:"\\]",excludeBegin:!0,excludeEnd:!0,relevance:0}],relevance:10}]}}function n(e){var n={className:"variable",variants:[{begin:/\$[\w\d#@][\w\d_]*/},{begin:/\$\{(.*?)}/}]},a={className:"string",begin:/"/,end:/"/,contains:[e.BACKSLASH_ESCAPE,n,{className:"variable",begin:/\$\(/,end:/\)/,contains:[e.BACKSLASH_ESCAPE]}]};return{aliases:["sh","zsh"],lexemes:/\b-?[a-z\._]+\b/,keywords:{keyword:"if then else elif fi for while in do done case esac function",literal:"true false",built_in:"break cd continue eval exec exit export getopts hash pwd readonly return shift test times trap umask unset alias bind builtin caller command declare echo enable help let local logout mapfile printf read readarray source type typeset ulimit unalias set shopt autoload bg bindkey bye cap chdir clone comparguments compcall compctl compdescribe compfiles compgroups compquote comptags comptry compvalues dirs disable disown echotc echoti emulate fc fg float functions getcap getln history integer jobs kill limit log noglob popd print pushd pushln rehash sched setcap setopt stat suspend ttyctl unfunction unhash unlimit unsetopt vared wait whence where which zcompile zformat zftp zle zmodload zparseopts zprof zpty zregexparse zsocket zstyle ztcp",_:"-ne -eq -lt -gt -f -d -e -s -l -a"},contains:[{className:"meta",begin:/^#![^\n]+sh\s*$/,relevance:10},{className:"function",begin:/\w[\w\d_]*\s*\(\s*\)\s*\{/,returnBegin:!0,contains:[e.inherit(e.TITLE_MODE,{begin:/\w[\w\d_]*/})],relevance:0},e.HASH_COMMENT_MODE,a,{className:"",begin:/\\"/},{className:"string",begin:/'/,end:/'/},n]}}function a(e){var n={begin:u="["+(u="a-zA-Z_\\-!.?+*=<>&#'")+"]["+u+"0-9/;:]*",relevance:0},a={className:"number",begin:"[-+]?\\d+(\\.\\d+)?",relevance:0},t=e.inherit(e.QUOTE_STRING_MODE,{illegal:null}),i=e.COMMENT(";","$",{relevance:0}),s={className:"literal",begin:/\b(true|false|nil)\b/},r={begin:"[\\[\\{]",end:"[\\]\\}]"},l={className:"comment",begin:"\\^"+u},o=e.COMMENT("\\^\\{","\\}"),c={className:"symbol",begin:"[:]{1,2}"+u},d={begin:"\\(",end:"\\)"},g={endsWithParent:!0,relevance:0},u={keywords:{"builtin-name":"def defonce cond apply if-not if-let if not not= = < > <= >= == + / * - rem quot neg? pos? delay? symbol? keyword? true? false? integer? empty? coll? list? set? ifn? fn? associative? sequential? sorted? counted? reversible? number? decimal? class? distinct? isa? float? rational? reduced? ratio? odd? even? char? seq? vector? string? map? nil? contains? zero? instance? not-every? not-any? libspec? -> ->> .. . inc compare do dotimes mapcat take remove take-while drop letfn drop-last take-last drop-while while intern condp case reduced cycle split-at split-with repeat replicate iterate range merge zipmap declare line-seq sort comparator sort-by dorun doall nthnext nthrest partition eval doseq await await-for let agent atom send send-off release-pending-sends add-watch mapv filterv remove-watch agent-error restart-agent set-error-handler error-handler set-error-mode! error-mode shutdown-agents quote var fn loop recur throw try monitor-enter monitor-exit defmacro defn defn- macroexpand macroexpand-1 for dosync and or when when-not when-let comp juxt partial sequence memoize constantly complement identity assert peek pop doto proxy defstruct first rest cons defprotocol cast coll deftype defrecord last butlast sigs reify second ffirst fnext nfirst nnext defmulti defmethod meta with-meta ns in-ns create-ns import refer keys select-keys vals key val rseq name namespace promise into transient persistent! conj! assoc! dissoc! pop! disj! use class type num float double short byte boolean bigint biginteger bigdec print-method print-dup throw-if printf format load compile get-in update-in pr pr-on newline flush read slurp read-line subvec with-open memfn time re-find re-groups rand-int rand mod locking assert-valid-fdecl alias resolve ref deref refset swap! reset! set-validator! compare-and-set! alter-meta! reset-meta! commute get-validator alter ref-set ref-history-count ref-min-history ref-max-history ensure sync io! new next conj set! to-array future future-call into-array aset gen-class reduce map filter find empty hash-map hash-set sorted-map sorted-map-by sorted-set sorted-set-by vec vector seq flatten reverse assoc dissoc list disj get union difference intersection extend extend-type extend-protocol int nth delay count concat chunk chunk-buffer chunk-append chunk-first chunk-rest max min dec unchecked-inc-int unchecked-inc unchecked-dec-inc unchecked-dec unchecked-negate unchecked-add-int unchecked-add unchecked-subtract-int unchecked-subtract chunk-next chunk-cons chunked-seq? prn vary-meta lazy-seq spread list* str find-keyword keyword symbol gensym force rationalize"},lexemes:u,className:"name",begin:u,starts:g},n=[d,t,l,o,i,c,r,a,s,n];return d.contains=[e.COMMENT("comment",""),u,g],g.contains=n,r.contains=n,o.contains=[r],{aliases:["clj"],illegal:/\S/,contains:[d,t,l,o,i,c,r,a,s]}}function t(e){function n(e){return"(?:"+e+")?"}var a="decltype\\(auto\\)",t="[a-zA-Z_]\\w*::",i={className:"keyword",begin:"\\b[a-z\\d_]*_t\\b"},s={className:"string",variants:[{begin:'(u8?|U|L)?"',end:'"',illegal:"\\n",contains:[e.BACKSLASH_ESCAPE]},{begin:"(u8?|U|L)?'(\\\\(x[0-9A-Fa-f]{2}|u[0-9A-Fa-f]{4,8}|[0-7]{3}|\\S)|.)",end:"'",illegal:"."},{begin:/(?:u8?|U|L)?R"([^()\\ ]{0,16})\((?:.|\n)*?\)\1"/}]},r={className:"number",variants:[{begin:"\\b(0b[01']+)"},{begin:"(-?)\\b([\\d']+(\\.[\\d']*)?|\\.[\\d']+)(u|U|l|L|ul|UL|f|F|b|B)"},{begin:"(-?)(\\b0[xX][a-fA-F0-9']+|(\\b[\\d']+(\\.[\\d']*)?|\\.[\\d']+)([eE][-+]?[\\d']+)?)"}],relevance:0},l={className:"meta",begin:/#\s*[a-z]+\b/,end:/$/,keywords:{"meta-keyword":"if else elif endif define undef warning error line pragma _Pragma ifdef ifndef include"},contains:[{begin:/\\\n/,relevance:0},e.inherit(s,{className:"meta-string"}),{className:"meta-string",begin:/<.*?>/,end:/$/,illegal:"\\n"},e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE]},o={className:"title",begin:n(t)+e.IDENT_RE,relevance:0},t=n(t)+e.IDENT_RE+"\\s*\\(",c={keyword:"int float while private char char8_t char16_t char32_t catch import module export virtual operator sizeof dynamic_cast|10 typedef const_cast|10 const for static_cast|10 union namespace unsigned long volatile static protected bool template mutable if public friend do goto auto void enum else break extern using asm case typeid wchar_tshort reinterpret_cast|10 default double register explicit signed typename try this switch continue inline delete alignas alignof constexpr consteval constinit decltype concept co_await co_return co_yield requires noexcept static_assert thread_local restrict final override atomic_bool atomic_char atomic_schar atomic_uchar atomic_short atomic_ushort atomic_int atomic_uint atomic_long atomic_ulong atomic_llong atomic_ullong new throw return and and_eq bitand bitor compl not not_eq or or_eq xor xor_eq",built_in:"std string wstring cin cout cerr clog stdin stdout stderr stringstream istringstream ostringstream auto_ptr deque list queue stack vector map set bitset multiset multimap unordered_set unordered_map unordered_multiset unordered_multimap array shared_ptr abort terminate abs acos asin atan2 atan calloc ceil cosh cos exit exp fabs floor fmod fprintf fputs free frexp fscanf future isalnum isalpha iscntrl isdigit isgraph islower isprint ispunct isspace isupper isxdigit tolower toupper labs ldexp log10 log malloc realloc memchr memcmp memcpy memset modf pow printf putchar puts scanf sinh sin snprintf sprintf sqrt sscanf strcat strchr strcmp strcpy strcspn strlen strncat strncmp strncpy strpbrk strrchr strspn strstr tanh tan vfprintf vprintf vsprintf endl initializer_list unique_ptr _Bool complex _Complex imaginary _Imaginary",literal:"true false nullptr NULL"},d=[i,e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,r,s],g={variants:[{begin:/=/,end:/;/},{begin:/\(/,end:/\)/},{beginKeywords:"new throw return else",end:/;/}],keywords:c,contains:d.concat([{begin:/\(/,end:/\)/,keywords:c,contains:d.concat(["self"]),relevance:0}]),relevance:0},a={className:"function",begin:"((decltype\\(auto\\)|(?:[a-zA-Z_]\\w*::)?[a-zA-Z_]\\w*(?:<.*?>)?)[\\*&\\s]+)+"+t,returnBegin:!0,end:/[{;=]/,excludeEnd:!0,keywords:c,illegal:/[^\w\s\*&:<>]/,contains:[{begin:a,keywords:c,relevance:0},{begin:t,returnBegin:!0,contains:[o],relevance:0},{className:"params",begin:/\(/,end:/\)/,keywords:c,relevance:0,contains:[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,s,r,i,{begin:/\(/,end:/\)/,keywords:c,relevance:0,contains:["self",e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,s,r,i]}]},i,e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,l]};return{aliases:["c","cc","h","c++","h++","hpp","hh","hxx","cxx"],keywords:c,illegal:"",keywords:c,contains:["self",i]},{begin:e.IDENT_RE+"::",keywords:c},{className:"class",beginKeywords:"class struct",end:/[{;:]/,contains:[{begin://,contains:["self"]},e.TITLE_MODE]}]),exports:{preprocessor:l,strings:s,keywords:c}}}function i(e){var n={keyword:"abstract as base bool break byte case catch char checked const continue decimal default delegate do double enum event explicit extern finally fixed float for foreach goto if implicit in int interface internal is lock long object operator out override params private protected public readonly ref sbyte sealed short sizeof stackalloc static string struct switch this try typeof uint ulong unchecked unsafe ushort using virtual void volatile while add alias ascending async await by descending dynamic equals from get global group into join let nameof on orderby partial remove select set value var when where yield",literal:"null false true"},a={className:"number",variants:[{begin:"\\b(0b[01']+)"},{begin:"(-?)\\b([\\d']+(\\.[\\d']*)?|\\.[\\d']+)(u|U|l|L|ul|UL|f|F|b|B)"},{begin:"(-?)(\\b0[xX][a-fA-F0-9']+|(\\b[\\d']+(\\.[\\d']*)?|\\.[\\d']+)([eE][-+]?[\\d']+)?)"}],relevance:0},t={className:"string",begin:'@"',end:'"',contains:[{begin:'""'}]},i=e.inherit(t,{illegal:/\n/}),s={className:"subst",begin:"{",end:"}",keywords:n},r=e.inherit(s,{illegal:/\n/}),l={className:"string",begin:/\$"/,end:'"',illegal:/\n/,contains:[{begin:"{{"},{begin:"}}"},e.BACKSLASH_ESCAPE,r]},o={className:"string",begin:/\$@"/,end:'"',contains:[{begin:"{{"},{begin:"}}"},{begin:'""'},s]},c=e.inherit(o,{illegal:/\n/,contains:[{begin:"{{"},{begin:"}}"},{begin:'""'},r]}),s=(s.contains=[o,l,t,e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,a,e.C_BLOCK_COMMENT_MODE],r.contains=[c,l,i,e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,a,e.inherit(e.C_BLOCK_COMMENT_MODE,{illegal:/\n/})],{variants:[o,l,t,e.APOS_STRING_MODE,e.QUOTE_STRING_MODE]}),r=e.IDENT_RE+"(<"+e.IDENT_RE+"(\\s*,\\s*"+e.IDENT_RE+")*>)?(\\[\\])?";return{aliases:["csharp","c#"],keywords:n,illegal:/::/,contains:[e.COMMENT("///","$",{returnBegin:!0,contains:[{className:"doctag",variants:[{begin:"///",relevance:0},{begin:"\x3c!--|--\x3e"},{begin:""}]}]}),e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,{className:"meta",begin:"#",end:"$",keywords:{"meta-keyword":"if else elif endif define undef warning error line region endregion pragma checksum"}},s,a,{beginKeywords:"class interface",end:/[{;=]/,illegal:/[^\s:,]/,contains:[e.TITLE_MODE,e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE]},{beginKeywords:"namespace",end:/[{;=]/,illegal:/[^\s:]/,contains:[e.inherit(e.TITLE_MODE,{begin:"[a-zA-Z](\\.?\\w)*"}),e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE]},{className:"meta",begin:"^\\s*\\[",excludeBegin:!0,end:"\\]",excludeEnd:!0,contains:[{className:"meta-string",begin:/"/,end:/"/}]},{beginKeywords:"new return throw await else",relevance:0},{className:"function",begin:"("+r+"\\s+)+"+e.IDENT_RE+"\\s*\\(",returnBegin:!0,end:/\s*[{;=]/,excludeEnd:!0,keywords:n,contains:[{begin:e.IDENT_RE+"\\s*\\(",returnBegin:!0,contains:[e.TITLE_MODE],relevance:0},{className:"params",begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,keywords:n,relevance:0,contains:[s,a,e.C_BLOCK_COMMENT_MODE]},e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE]}]}}function s(e){var n={className:"attribute",begin:/\S/,end:":",excludeEnd:!0,starts:{endsWithParent:!0,excludeEnd:!0,contains:[{begin:/[\w-]+\(/,returnBegin:!0,contains:[{className:"built_in",begin:/[\w-]+/},{begin:/\(/,end:/\)/,contains:[e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,e.CSS_NUMBER_MODE]}]},e.CSS_NUMBER_MODE,e.QUOTE_STRING_MODE,e.APOS_STRING_MODE,e.C_BLOCK_COMMENT_MODE,{className:"number",begin:"#[0-9A-Fa-f]+"},{className:"meta",begin:"!important"}]}};return{case_insensitive:!0,illegal:/[=\/|'\$]/,contains:[e.C_BLOCK_COMMENT_MODE,{className:"selector-id",begin:/#[A-Za-z0-9_-]+/},{className:"selector-class",begin:/\.[A-Za-z0-9_-]+/},{className:"selector-attr",begin:/\[/,end:/\]/,illegal:"$",contains:[e.APOS_STRING_MODE,e.QUOTE_STRING_MODE]},{className:"selector-pseudo",begin:/:(:)?[a-zA-Z0-9\_\-\+\(\)"'.]+/},{begin:"@(page|font-face)",lexemes:"@[a-z-]+",keywords:"@page @font-face"},{begin:"@",end:"[{;]",illegal:/:/,returnBegin:!0,contains:[{className:"keyword",begin:/@\-?\w[\w]*(\-\w+)*/},{begin:/\s/,endsWithParent:!0,excludeEnd:!0,relevance:0,keywords:"and or not only",contains:[{begin:/[a-z-]+:/,className:"attribute"},e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,e.CSS_NUMBER_MODE]}]},{className:"selector-tag",begin:"[a-zA-Z-][a-zA-Z0-9_-]*",relevance:0},{begin:"{",end:"}",illegal:/\S/,contains:[e.C_BLOCK_COMMENT_MODE,{begin:/(?:[A-Z\_\.\-]+|--[a-zA-Z0-9_-]+)\s*:/,returnBegin:!0,end:";",endsWithParent:!0,contains:[n]}]}]}}function r(e){return{aliases:["patch"],contains:[{className:"meta",relevance:10,variants:[{begin:/^@@ +\-\d+,\d+ +\+\d+,\d+ +@@$/},{begin:/^\*\*\* +\d+,\d+ +\*\*\*\*$/},{begin:/^\-\-\- +\d+,\d+ +\-\-\-\-$/}]},{className:"comment",variants:[{begin:/Index: /,end:/$/},{begin:/={3,}/,end:/$/},{begin:/^\-{3}/,end:/$/},{begin:/^\*{3} /,end:/$/},{begin:/^\+{3}/,end:/$/},{begin:/^\*{15}$/}]},{className:"addition",begin:"^\\+",end:"$"},{className:"deletion",begin:"^\\-",end:"$"},{className:"addition",begin:"^\\!",end:"$"}]}}function l(e){return{aliases:["docker"],case_insensitive:!0,keywords:"from maintainer expose env arg user onbuild stopsignal",contains:[e.HASH_COMMENT_MODE,e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,e.NUMBER_MODE,{beginKeywords:"run cmd entrypoint volume add copy workdir label healthcheck shell",starts:{end:/[^\\]$/,subLanguage:"bash"}}],illegal:"/}]}]}]},s={className:"string",begin:"~[A-Z](?="+s+")",contains:[{begin:/"/,end:/"/},{begin:/'/,end:/'/},{begin:/\//,end:/\//},{begin:/\|/,end:/\|/},{begin:/\(/,end:/\)/},{begin:/\[/,end:/\]/},{begin:/\{/,end:/\}/},{begin:/\/}]},r={className:"string",contains:[e.BACKSLASH_ESCAPE,t],variants:[{begin:/"""/,end:/"""/},{begin:/'''/,end:/'''/},{begin:/~S"""/,end:/"""/,contains:[]},{begin:/~S"/,end:/"/,contains:[]},{begin:/~S'''/,end:/'''/,contains:[]},{begin:/~S'/,end:/'/,contains:[]},{begin:/'/,end:/'/},{begin:/"/,end:/"/}]},l={className:"function",beginKeywords:"def defp defmacro",end:/\B\b/,contains:[e.inherit(e.TITLE_MODE,{begin:n,endsParent:!0})]},o=e.inherit(l,{className:"class",beginKeywords:"defimpl defmodule defprotocol defrecord",end:/\bdo\b|$|;/}),s=[r,s,i,e.HASH_COMMENT_MODE,o,l,{begin:"::"},{className:"symbol",begin:":(?![\\s:])",contains:[r,{begin:"[a-zA-Z_]\\w*[!?=]?|[-+~]\\@|<<|>>|=~|===?|<=>|[<>]=?|\\*\\*|[-/+%^&*~`|]|\\[\\]=?"}],relevance:0},{className:"symbol",begin:n+":(?!:)",relevance:0},{className:"number",begin:"(\\b0o[0-7_]+)|(\\b0b[01_]+)|(\\b0x[0-9a-fA-F_]+)|(-?\\b[1-9][0-9_]*(.[0-9_]+([eE][-+]?[0-9]+)?)?)",relevance:0},{className:"variable",begin:"(\\$\\W)|((\\$|\\@\\@?)(\\w+))"},{begin:"->"},{begin:"("+e.RE_STARTERS_RE+")\\s*",contains:[e.HASH_COMMENT_MODE,{className:"regexp",illegal:"\\n",contains:[e.BACKSLASH_ESCAPE,t],variants:[{begin:"/",end:"/[a-z]*"},{begin:"%r\\[",end:"\\][a-z]*"}]}],relevance:0}];return{lexemes:n,keywords:a,contains:t.contains=s}}function c(e){var n={keyword:"break default func interface select case map struct chan else goto package switch const fallthrough if range type continue for import return var go defer bool byte complex64 complex128 float32 float64 int8 int16 int32 int64 string uint8 uint16 uint32 uint64 int uint uintptr rune",literal:"true false iota nil",built_in:"append cap close complex copy imag len make new panic print println real recover delete"};return{aliases:["golang"],keywords:n,illegal:"|<-"}]}}function u(e){var n="false synchronized int abstract float private char boolean var static null if const for true while long strictfp finally protected import native final void enum else break transient catch instanceof byte super volatile case assert short package default double public try this switch continue throws protected public private module requires exports do",a={className:"number",begin:"\\b(0[bB]([01]+[01_]+[01]+|[01]+)|0[xX]([a-fA-F0-9]+[a-fA-F0-9_]+[a-fA-F0-9]+|[a-fA-F0-9]+)|(([\\d]+[\\d_]+[\\d]+|[\\d]+)(\\.([\\d]+[\\d_]+[\\d]+|[\\d]+))?|\\.([\\d]+[\\d_]+[\\d]+|[\\d]+))([eE][-+]?\\d+)?)[lLfF]?",relevance:0};return{aliases:["jsp"],keywords:n,illegal:/<\/|#/,contains:[e.COMMENT("/\\*\\*","\\*/",{relevance:0,contains:[{begin:/\w+@/,relevance:0},{className:"doctag",begin:"@[A-Za-z]+"}]}),e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,{className:"class",beginKeywords:"class interface",end:/[{;=]/,excludeEnd:!0,keywords:"class interface",illegal:/[:"\[\]]/,contains:[{beginKeywords:"extends implements"},e.UNDERSCORE_TITLE_MODE]},{beginKeywords:"new throw return else",relevance:0},{className:"function",begin:"([À-ʸa-zA-Z_$][À-ʸa-zA-Z_$0-9]*(<[À-ʸa-zA-Z_$][À-ʸa-zA-Z_$0-9]*(\\s*,\\s*[À-ʸa-zA-Z_$][À-ʸa-zA-Z_$0-9]*)*>)?\\s+)+"+e.UNDERSCORE_IDENT_RE+"\\s*\\(",returnBegin:!0,end:/[{;=]/,excludeEnd:!0,keywords:n,contains:[{begin:e.UNDERSCORE_IDENT_RE+"\\s*\\(",returnBegin:!0,relevance:0,contains:[e.UNDERSCORE_TITLE_MODE]},{className:"params",begin:/\(/,end:/\)/,keywords:n,relevance:0,contains:[e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,e.C_NUMBER_MODE,e.C_BLOCK_COMMENT_MODE]},e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE]},a,{className:"meta",begin:"@[A-Za-z]+"}]}}function _(e){var n="<>",a="",t=/<[A-Za-z0-9\\._:-]+/,i=/\/[A-Za-z0-9\\._:-]+>|\/>/,s="[A-Za-z$_][0-9A-Za-z$_]*",r={keyword:"in of if for while finally var new function do return void else break catch instanceof with throw case default try this switch continue typeof delete let yield const export super debugger as async await static import from as",literal:"true false null undefined NaN Infinity",built_in:"eval isFinite isNaN parseFloat parseInt decodeURI decodeURIComponent encodeURI encodeURIComponent escape unescape Object Function Boolean Error EvalError InternalError RangeError ReferenceError StopIteration SyntaxError TypeError URIError Number Math Date String RegExp Array Float32Array Float64Array Int16Array Int32Array Int8Array Uint16Array Uint32Array Uint8Array Uint8ClampedArray ArrayBuffer DataView JSON Intl arguments require module console window document Symbol Set Map WeakSet WeakMap Proxy Reflect Promise"},l={className:"number",variants:[{begin:"\\b(0[bB][01]+)n?"},{begin:"\\b(0[oO][0-7]+)n?"},{begin:e.C_NUMBER_RE+"n?"}],relevance:0},o={className:"subst",begin:"\\$\\{",end:"\\}",keywords:r,contains:[]},c={begin:"html`",end:"",starts:{end:"`",returnEnd:!1,contains:[e.BACKSLASH_ESCAPE,o],subLanguage:"xml"}},d={begin:"css`",end:"",starts:{end:"`",returnEnd:!1,contains:[e.BACKSLASH_ESCAPE,o],subLanguage:"css"}},g={className:"string",begin:"`",end:"`",contains:[e.BACKSLASH_ESCAPE,o]},o=(o.contains=[e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,c,d,g,l,e.REGEXP_MODE],o.contains.concat([e.C_BLOCK_COMMENT_MODE,e.C_LINE_COMMENT_MODE]));return{aliases:["js","jsx","mjs","cjs"],keywords:r,contains:[{className:"meta",relevance:10,begin:/^\s*['"]use (strict|asm)['"]/},{className:"meta",begin:/^#!/,end:/$/},e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,c,d,g,e.C_LINE_COMMENT_MODE,e.COMMENT("/\\*\\*","\\*/",{relevance:0,contains:[{className:"doctag",begin:"@[A-Za-z]+",contains:[{className:"type",begin:"\\{",end:"\\}",relevance:0},{className:"variable",begin:s+"(?=\\s*(-)|$)",endsParent:!0,relevance:0},{begin:/(?=[^\n])\s/,relevance:0}]}]}),e.C_BLOCK_COMMENT_MODE,l,{begin:/[{,\n]\s*/,relevance:0,contains:[{begin:s+"\\s*:",returnBegin:!0,relevance:0,contains:[{className:"attr",begin:s,relevance:0}]}]},{begin:"("+e.RE_STARTERS_RE+"|\\b(case|return|throw)\\b)\\s*",keywords:"return throw case",contains:[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,e.REGEXP_MODE,{className:"function",begin:"(\\(.*?\\)|"+s+")\\s*=>",returnBegin:!0,end:"\\s*=>",contains:[{className:"params",variants:[{begin:s},{begin:/\(\s*\)/},{begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,keywords:r,contains:o}]}]},{className:"",begin:/\s/,end:/\s*/,skip:!0},{variants:[{begin:n,end:a},{begin:t,end:i}],subLanguage:"xml",contains:[{begin:t,end:i,skip:!0,contains:["self"]}]}],relevance:0},{className:"function",beginKeywords:"function",end:/\{/,excludeEnd:!0,contains:[e.inherit(e.TITLE_MODE,{begin:s}),{className:"params",begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,contains:o}],illegal:/\[|%/},{begin:/\$[(.]/},e.METHOD_GUARD,{className:"class",beginKeywords:"class",end:/[{;=]/,excludeEnd:!0,illegal:/[:"\[\]]/,contains:[{beginKeywords:"extends"},e.UNDERSCORE_TITLE_MODE]},{beginKeywords:"constructor get set",end:/\{/,excludeEnd:!0}],illegal:/#(?!!)/}}function m(e){var n={literal:"true false null"},a=[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE],t=[e.QUOTE_STRING_MODE,e.C_NUMBER_MODE],i={end:",",endsWithParent:!0,excludeEnd:!0,contains:t,keywords:n},s={begin:"{",end:"}",contains:[{className:"attr",begin:/"/,end:/"/,contains:[e.BACKSLASH_ESCAPE],illegal:"\\n"},e.inherit(i,{begin:/:/})].concat(a),illegal:"\\S"},e={begin:"\\[",end:"\\]",contains:[e.inherit(i)],illegal:"\\S"};return t.push(s,e),a.forEach(function(e){t.push(e)}),{contains:t,keywords:n,illegal:"\\S"}}function b(e){var n={keyword:"abstract as val var vararg get set class object open private protected public noinline crossinline dynamic final enum if else do while for when throw try catch finally import package is in fun override companion reified inline lateinit init interface annotation data sealed internal infix operator out by constructor super tailrec where const inner suspend typealias external expect actual trait volatile transient native default",built_in:"Byte Short Char Int Long Boolean Float Double Void Unit Nothing",literal:"true false null"},a={className:"symbol",begin:e.UNDERSCORE_IDENT_RE+"@"},t={className:"subst",begin:"\\${",end:"}",contains:[e.C_NUMBER_MODE]},i={className:"string",variants:[{begin:'"""',end:'"""(?=[^"])',contains:[i={className:"variable",begin:"\\$"+e.UNDERSCORE_IDENT_RE},t]},{begin:"'",end:"'",illegal:/\n/,contains:[e.BACKSLASH_ESCAPE]},{begin:'"',end:'"',illegal:/\n/,contains:[e.BACKSLASH_ESCAPE,i,t]}]},t=(t.contains.push(i),{className:"meta",begin:"@(?:file|property|field|get|set|receiver|param|setparam|delegate)\\s*:(?:\\s*"+e.UNDERSCORE_IDENT_RE+")?"}),s={className:"meta",begin:"@"+e.UNDERSCORE_IDENT_RE,contains:[{begin:/\(/,end:/\)/,contains:[e.inherit(i,{className:"meta-string"})]}]},r={className:"number",begin:"\\b(0[bB]([01]+[01_]+[01]+|[01]+)|0[xX]([a-fA-F0-9]+[a-fA-F0-9_]+[a-fA-F0-9]+|[a-fA-F0-9]+)|(([\\d]+[\\d_]+[\\d]+|[\\d]+)(\\.([\\d]+[\\d_]+[\\d]+|[\\d]+))?|\\.([\\d]+[\\d_]+[\\d]+|[\\d]+))([eE][-+]?\\d+)?)[lLfF]?",relevance:0},l=e.COMMENT("/\\*","\\*/",{contains:[e.C_BLOCK_COMMENT_MODE]}),o={variants:[{className:"type",begin:e.UNDERSCORE_IDENT_RE},{begin:/\(/,end:/\)/,contains:[]}]},c=o;return c.variants[1].contains=[o],o.variants[1].contains=[c],{aliases:["kt"],keywords:n,contains:[e.COMMENT("/\\*\\*","\\*/",{relevance:0,contains:[{className:"doctag",begin:"@[A-Za-z]+"}]}),e.C_LINE_COMMENT_MODE,l,{className:"keyword",begin:/\b(break|continue|return|this)\b/,starts:{contains:[{className:"symbol",begin:/@\w+/}]}},a,t,s,{className:"function",beginKeywords:"fun",end:"[(]|$",returnBegin:!0,excludeEnd:!0,keywords:n,illegal:/fun\s+(<.*>)?[^\s\(]+(\s+[^\s\(]+)\s*=/,relevance:5,contains:[{begin:e.UNDERSCORE_IDENT_RE+"\\s*\\(",returnBegin:!0,relevance:0,contains:[e.UNDERSCORE_TITLE_MODE]},{className:"type",begin://,keywords:"reified",relevance:0},{className:"params",begin:/\(/,end:/\)/,endsParent:!0,keywords:n,relevance:0,contains:[{begin:/:/,end:/[=,\/]/,endsWithParent:!0,contains:[o,e.C_LINE_COMMENT_MODE,l],relevance:0},e.C_LINE_COMMENT_MODE,l,t,s,i,e.C_NUMBER_MODE]},l]},{className:"class",beginKeywords:"class interface trait",end:/[:\{(]|$/,excludeEnd:!0,illegal:"extends implements",contains:[{beginKeywords:"public protected internal private constructor"},e.UNDERSCORE_TITLE_MODE,{className:"type",begin://,excludeBegin:!0,excludeEnd:!0,relevance:0},{className:"type",begin:/[,:]\s*/,end:/[<\(,]|$/,excludeBegin:!0,returnEnd:!0},t,s]},i,{className:"meta",begin:"^#!/usr/bin/env",end:"$",illegal:"\n"},r]}}function p(e){var n="\\[=*\\[",a="\\]=*\\]",t={begin:n,end:a,contains:["self"]},i=[e.COMMENT("--(?!"+n+")","$"),e.COMMENT("--"+n,a,{contains:[t],relevance:10})];return{lexemes:e.UNDERSCORE_IDENT_RE,keywords:{literal:"true false nil",keyword:"and break do else elseif end for goto if in local not or repeat return then until while",built_in:"_G _ENV _VERSION __index __newindex __mode __call __metatable __tostring __len __gc __add __sub __mul __div __mod __pow __concat __unm __eq __lt __le assert collectgarbage dofile error getfenv getmetatable ipairs load loadfile loadstringmodule next pairs pcall print rawequal rawget rawset require select setfenvsetmetatable tonumber tostring type unpack xpcall arg selfcoroutine resume yield status wrap create running debug getupvalue debug sethook getmetatable gethook setmetatable setlocal traceback setfenv getinfo setupvalue getlocal getregistry getfenv io lines write close flush open output type read stderr stdin input stdout popen tmpfile math log max acos huge ldexp pi cos tanh pow deg tan cosh sinh random randomseed frexp ceil floor rad abs sqrt modf asin min mod fmod log10 atan2 exp sin atan os exit setlocale date getenv difftime remove time clock tmpname rename execute package preload loadlib loaded loaders cpath config path seeall string sub upper len gfind rep find match char dump gmatch reverse byte format gsub lower table setn insert getn foreachi maxn foreach concat sort remove"},contains:i.concat([{className:"function",beginKeywords:"function",end:"\\)",contains:[e.inherit(e.TITLE_MODE,{begin:"([_a-zA-Z]\\w*\\.)*([_a-zA-Z]\\w*:)?[_a-zA-Z]\\w*"}),{className:"params",begin:"\\(",endsWithParent:!0,contains:i}].concat(i)},e.C_NUMBER_MODE,e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,{className:"string",begin:n,end:a,contains:[t],relevance:5}])}}function f(e){return{aliases:["md","mkdown","mkd"],contains:[{className:"section",variants:[{begin:"^#{1,6}",end:"$"},{begin:"^.+?\\n[=-]{2,}$"}]},{begin:"<",end:">",subLanguage:"xml",relevance:0},{className:"bullet",begin:"^\\s*([*+-]|(\\d+\\.))\\s+"},{className:"strong",begin:"[*_]{2}.+?[*_]{2}"},{className:"emphasis",variants:[{begin:"\\*.+?\\*"},{begin:"_.+?_",relevance:0}]},{className:"quote",begin:"^>\\s+",end:"$"},{className:"code",variants:[{begin:"^```\\w*\\s*$",end:"^```[ ]*$"},{begin:"`.+?`"},{begin:"^( {4}|\\t)",end:"$",relevance:0}]},{begin:"^[-\\*]{3,}",end:"$"},{begin:"\\[.+?\\][\\(\\[].*?[\\)\\]]",returnBegin:!0,contains:[{className:"string",begin:"\\[",end:"\\]",excludeBegin:!0,returnEnd:!0,relevance:0},{className:"link",begin:"\\]\\(",end:"\\)",excludeBegin:!0,excludeEnd:!0},{className:"symbol",begin:"\\]\\[",end:"\\]",excludeBegin:!0,excludeEnd:!0}],relevance:10},{begin:/^\[[^\n]+\]:/,returnBegin:!0,contains:[{className:"symbol",begin:/\[/,end:/\]/,excludeBegin:!0,excludeEnd:!0},{className:"link",begin:/:\s*/,end:/$/,excludeBegin:!0}]}]}}function E(e){var n={keyword:"rec with let in inherit assert if else then",literal:"true false or and null",built_in:"import abort baseNameOf dirOf isNull builtins map removeAttrs throw toString derivation"},a={className:"subst",begin:/\$\{/,end:/}/,keywords:n},e=[e.NUMBER_MODE,e.HASH_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,{className:"string",contains:[a],variants:[{begin:"''",end:"''"},{begin:'"',end:'"'}]},{begin:/[a-zA-Z0-9-_]+(\s*=)/,returnBegin:!0,relevance:0,contains:[{className:"attr",begin:/\S+/}]}];return{aliases:["nixos"],keywords:n,contains:a.contains=e}}function N(e){return{disableAutodetect:!0}}function h(e){var n=/[a-zA-Z@][a-zA-Z0-9_]*/,a="@interface @class @protocol @implementation";return{aliases:["mm","objc","obj-c"],keywords:{keyword:"int float while char export sizeof typedef const struct for union unsigned long volatile static bool mutable if do return goto void enum else break extern asm case short default double register explicit signed typename this switch continue wchar_t inline readonly assign readwrite self @synchronized id typeof nonatomic super unichar IBOutlet IBAction strong weak copy in out inout bycopy byref oneway __strong __weak __block __autoreleasing @private @protected @public @try @property @end @throw @catch @finally @autoreleasepool @synthesize @dynamic @selector @optional @required @encode @package @import @defs @compatibility_alias __bridge __bridge_transfer __bridge_retained __bridge_retain __covariant __contravariant __kindof _Nonnull _Nullable _Null_unspecified __FUNCTION__ __PRETTY_FUNCTION__ __attribute__ getter setter retain unsafe_unretained nonnull nullable null_unspecified null_resettable class instancetype NS_DESIGNATED_INITIALIZER NS_UNAVAILABLE NS_REQUIRES_SUPER NS_RETURNS_INNER_POINTER NS_INLINE NS_AVAILABLE NS_DEPRECATED NS_ENUM NS_OPTIONS NS_SWIFT_UNAVAILABLE NS_ASSUME_NONNULL_BEGIN NS_ASSUME_NONNULL_END NS_REFINED_FOR_SWIFT NS_SWIFT_NAME NS_SWIFT_NOTHROW NS_DURING NS_HANDLER NS_ENDHANDLER NS_VALUERETURN NS_VOIDRETURN",literal:"false true FALSE TRUE nil YES NO NULL",built_in:"BOOL dispatch_once_t dispatch_queue_t dispatch_sync dispatch_async dispatch_once"},lexemes:n,illegal:"/,end:/$/,illegal:"\\n"},e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE]},{className:"class",begin:"("+a.split(" ").join("|")+")\\b",end:"({|$)",excludeEnd:!0,keywords:a,lexemes:n,contains:[e.UNDERSCORE_TITLE_MODE]},{begin:"\\."+e.UNDERSCORE_IDENT_RE,relevance:0}]}}function v(e){var n="getpwent getservent quotemeta msgrcv scalar kill dbmclose undef lc ma syswrite tr send umask sysopen shmwrite vec qx utime local oct semctl localtime readpipe do return format read sprintf dbmopen pop getpgrp not getpwnam rewinddir qqfileno qw endprotoent wait sethostent bless s|0 opendir continue each sleep endgrent shutdown dump chomp connect getsockname die socketpair close flock exists index shmgetsub for endpwent redo lstat msgctl setpgrp abs exit select print ref gethostbyaddr unshift fcntl syscall goto getnetbyaddr join gmtime symlink semget splice x|0 getpeername recv log setsockopt cos last reverse gethostbyname getgrnam study formline endhostent times chop length gethostent getnetent pack getprotoent getservbyname rand mkdir pos chmod y|0 substr endnetent printf next open msgsnd readdir use unlink getsockopt getpriority rindex wantarray hex system getservbyport endservent int chr untie rmdir prototype tell listen fork shmread ucfirst setprotoent else sysseek link getgrgid shmctl waitpid unpack getnetbyname reset chdir grep split require caller lcfirst until warn while values shift telldir getpwuid my getprotobynumber delete and sort uc defined srand accept package seekdir getprotobyname semop our rename seek if q|0 chroot sysread setpwent no crypt getc chown sqrt write setnetent setpriority foreach tie sin msgget map stat getlogin unless elsif truncate exec keys glob tied closedirioctl socket readlink eval xor readline binmode setservent eof ord bind alarm pipe atan2 getgrent exp time push setgrent gt lt or ne m|0 break given say state when",a={className:"subst",begin:"[$@]\\{",end:"\\}",keywords:n},t={begin:"->{",end:"}"},i={variants:[{begin:/\$\d/},{begin:/[\$%@](\^\w\b|#\w+(::\w+)*|{\w+}|\w+(::\w*)*)/},{begin:/[\$%@][^\s\w{]/,relevance:0}]},s=[e.BACKSLASH_ESCAPE,a,i],i=[i,e.HASH_COMMENT_MODE,e.COMMENT("^\\=\\w","\\=cut",{endsWithParent:!0}),t,{className:"string",contains:s,variants:[{begin:"q[qwxr]?\\s*\\(",end:"\\)",relevance:5},{begin:"q[qwxr]?\\s*\\[",end:"\\]",relevance:5},{begin:"q[qwxr]?\\s*\\{",end:"\\}",relevance:5},{begin:"q[qwxr]?\\s*\\|",end:"\\|",relevance:5},{begin:"q[qwxr]?\\s*\\<",end:"\\>",relevance:5},{begin:"qw\\s+q",end:"q",relevance:5},{begin:"'",end:"'",contains:[e.BACKSLASH_ESCAPE]},{begin:'"',end:'"'},{begin:"`",end:"`",contains:[e.BACKSLASH_ESCAPE]},{begin:"{\\w+}",contains:[],relevance:0},{begin:"-?\\w+\\s*\\=\\>",contains:[],relevance:0}]},{className:"number",begin:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",relevance:0},{begin:"(\\/\\/|"+e.RE_STARTERS_RE+"|\\b(split|return|print|reverse|grep)\\b)\\s*",keywords:"split return print reverse grep",relevance:0,contains:[e.HASH_COMMENT_MODE,{className:"regexp",begin:"(s|tr|y)/(\\\\.|[^/])*/(\\\\.|[^/])*/[a-z]*",relevance:10},{className:"regexp",begin:"(m|qr)?/",end:"/[a-z]*",contains:[e.BACKSLASH_ESCAPE],relevance:0}]},{className:"function",beginKeywords:"sub",end:"(\\s*\\(.*?\\))?[;{]",excludeEnd:!0,relevance:5,contains:[e.TITLE_MODE]},{begin:"-\\w\\b",relevance:0},{begin:"^__DATA__$",end:"^__END__$",subLanguage:"mojolicious",contains:[{begin:"^@@.*",end:"$",className:"comment"}]}];return a.contains=i,{aliases:["pl","pm"],lexemes:/[\w\.]+/,keywords:n,contains:t.contains=i}}function y(e){var n={begin:"\\$+[a-zA-Z_-ÿ][a-zA-Z0-9_-ÿ]*"},a={className:"meta",begin:/<\?(php)?|\?>/},t={className:"string",contains:[e.BACKSLASH_ESCAPE,a],variants:[{begin:'b"',end:'"'},{begin:"b'",end:"'"},e.inherit(e.APOS_STRING_MODE,{illegal:null}),e.inherit(e.QUOTE_STRING_MODE,{illegal:null})]},i={variants:[e.BINARY_NUMBER_MODE,e.C_NUMBER_MODE]};return{aliases:["php","php3","php4","php5","php6","php7"],case_insensitive:!0,keywords:"and include_once list abstract global private echo interface as static endswitch array null if endwhile or const for endforeach self var while isset public protected exit foreach throw elseif include __FILE__ empty require_once do xor return parent clone use __CLASS__ __LINE__ else break print eval new catch __METHOD__ case exception default die require __FUNCTION__ enddeclare final try switch continue endfor endif declare unset true false trait goto instanceof insteadof __DIR__ __NAMESPACE__ yield finally",contains:[e.HASH_COMMENT_MODE,e.COMMENT("//","$",{contains:[a]}),e.COMMENT("/\\*","\\*/",{contains:[{className:"doctag",begin:"@[A-Za-z]+"}]}),e.COMMENT("__halt_compiler.+?;",!1,{endsWithParent:!0,keywords:"__halt_compiler",lexemes:e.UNDERSCORE_IDENT_RE}),{className:"string",begin:/<<<['"]?\w+['"]?$/,end:/^\w+;?$/,contains:[e.BACKSLASH_ESCAPE,{className:"subst",variants:[{begin:/\$\w+/},{begin:/\{\$/,end:/\}/}]}]},a,{className:"keyword",begin:/\$this\b/},n,{begin:/(::|->)+[a-zA-Z_\x7f-\xff][a-zA-Z0-9_\x7f-\xff]*/},{className:"function",beginKeywords:"function",end:/[;{]/,excludeEnd:!0,illegal:"\\$|\\[|%",contains:[e.UNDERSCORE_TITLE_MODE,{className:"params",begin:"\\(",end:"\\)",contains:["self",n,e.C_BLOCK_COMMENT_MODE,t,i]}]},{className:"class",beginKeywords:"class interface",end:"{",excludeEnd:!0,illegal:/[:\(\$"]/,contains:[{beginKeywords:"extends implements"},e.UNDERSCORE_TITLE_MODE]},{beginKeywords:"namespace",end:";",illegal:/[\.']/,contains:[e.UNDERSCORE_TITLE_MODE]},{beginKeywords:"use",end:";",contains:[e.UNDERSCORE_TITLE_MODE]},{begin:"=>"},t,i]}}function w(e){var n="[ \\t\\f]*",a="("+n+"[:=]"+n+"|[ \\t\\f]+)",t="([^\\\\\\W:= \\t\\f\\n]|\\\\.)+",i="([^\\\\:= \\t\\f\\n]|\\\\.)+",s={end:a,relevance:0,starts:{className:"string",end:/$/,relevance:0,contains:[{begin:"\\\\\\n"}]}};return{case_insensitive:!0,illegal:/\S/,contains:[e.COMMENT("^\\s*[!#]","$"),{begin:t+a,returnBegin:!0,contains:[{className:"attr",begin:t,endsParent:!0,relevance:0}],starts:s},{begin:i+a,returnBegin:!0,relevance:0,contains:[{className:"meta",begin:i,endsParent:!0,relevance:0}],starts:s},{className:"attr",relevance:0,begin:i+n+"$"}]}}function O(e){var n=e.COMMENT("#","$"),a="([A-Za-z_]|::)(\\w|::)*",t=e.inherit(e.TITLE_MODE,{begin:a}),a={className:"variable",begin:"\\$"+a},i={className:"string",contains:[e.BACKSLASH_ESCAPE,a],variants:[{begin:/'/,end:/'/},{begin:/"/,end:/"/}]};return{aliases:["pp"],contains:[n,a,i,{beginKeywords:"class",end:"\\{|;",illegal:/=/,contains:[t,n]},{beginKeywords:"define",end:/\{/,contains:[{className:"section",begin:e.IDENT_RE,endsParent:!0}]},{begin:e.IDENT_RE+"\\s+\\{",returnBegin:!0,end:/\S/,contains:[{className:"keyword",begin:e.IDENT_RE},{begin:/\{/,end:/\}/,keywords:{keyword:"and case default else elsif false if in import enherits node or true undef unless main settings $string ",literal:"alias audit before loglevel noop require subscribe tag owner ensure group mode name|0 changes context force incl lens load_path onlyif provider returns root show_diff type_check en_address ip_address realname command environment hour monute month monthday special target weekday creates cwd ogoutput refresh refreshonly tries try_sleep umask backup checksum content ctime force ignore links mtime purge recurse recurselimit replace selinux_ignore_defaults selrange selrole seltype seluser source souirce_permissions sourceselect validate_cmd validate_replacement allowdupe attribute_membership auth_membership forcelocal gid ia_load_module members system host_aliases ip allowed_trunk_vlans description device_url duplex encapsulation etherchannel native_vlan speed principals allow_root auth_class auth_type authenticate_user k_of_n mechanisms rule session_owner shared options device fstype enable hasrestart directory present absent link atboot blockdevice device dump pass remounts poller_tag use message withpath adminfile allow_virtual allowcdrom category configfiles flavor install_options instance package_settings platform responsefile status uninstall_options vendor unless_system_user unless_uid binary control flags hasstatus manifest pattern restart running start stop allowdupe auths expiry gid groups home iterations key_membership keys managehome membership password password_max_age password_min_age profile_membership profiles project purge_ssh_keys role_membership roles salt shell uid baseurl cost descr enabled enablegroups exclude failovermethod gpgcheck gpgkey http_caching include includepkgs keepalive metadata_expire metalink mirrorlist priority protect proxy proxy_password proxy_username repo_gpgcheck s3_enabled skip_if_unavailable sslcacert sslclientcert sslclientkey sslverify mounted",built_in:"architecture augeasversion blockdevices boardmanufacturer boardproductname boardserialnumber cfkey dhcp_servers domain ec2_ ec2_userdata facterversion filesystems ldom fqdn gid hardwareisa hardwaremodel hostname id|0 interfaces ipaddress ipaddress_ ipaddress6 ipaddress6_ iphostnumber is_virtual kernel kernelmajversion kernelrelease kernelversion kernelrelease kernelversion lsbdistcodename lsbdistdescription lsbdistid lsbdistrelease lsbmajdistrelease lsbminordistrelease lsbrelease macaddress macaddress_ macosx_buildversion macosx_productname macosx_productversion macosx_productverson_major macosx_productversion_minor manufacturer memoryfree memorysize netmask metmask_ network_ operatingsystem operatingsystemmajrelease operatingsystemrelease osfamily partitions path physicalprocessorcount processor processorcount productname ps puppetversion rubysitedir rubyversion selinux selinux_config_mode selinux_config_policy selinux_current_mode selinux_current_mode selinux_enforced selinux_policyversion serialnumber sp_ sshdsakey sshecdsakey sshrsakey swapencrypted swapfree swapsize timezone type uniqueid uptime uptime_days uptime_hours uptime_seconds uuid virtual vlans xendomains zfs_version zonenae zones zpool_version"},relevance:0,contains:[i,n,{begin:"[a-zA-Z_]+\\s*=>",returnBegin:!0,end:"=>",contains:[{className:"attr",begin:e.IDENT_RE}]},{className:"number",begin:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",relevance:0},a]}],relevance:0}]}}function M(e){var n={keyword:"and elif is global as in if from raise for except finally print import pass return exec else break not with class assert yield try while continue del or def lambda async await nonlocal|10",built_in:"Ellipsis NotImplemented",literal:"False None True"},a={className:"meta",begin:/^(>>>|\.\.\.) /},t={className:"subst",begin:/\{/,end:/\}/,keywords:n,illegal:/#/},i={begin:/\{\{/,relevance:0},i={className:"string",contains:[e.BACKSLASH_ESCAPE],variants:[{begin:/(u|b)?r?'''/,end:/'''/,contains:[e.BACKSLASH_ESCAPE,a],relevance:10},{begin:/(u|b)?r?"""/,end:/"""/,contains:[e.BACKSLASH_ESCAPE,a],relevance:10},{begin:/(fr|rf|f)'''/,end:/'''/,contains:[e.BACKSLASH_ESCAPE,a,i,t]},{begin:/(fr|rf|f)"""/,end:/"""/,contains:[e.BACKSLASH_ESCAPE,a,i,t]},{begin:/(u|r|ur)'/,end:/'/,relevance:10},{begin:/(u|r|ur)"/,end:/"/,relevance:10},{begin:/(b|br)'/,end:/'/},{begin:/(b|br)"/,end:/"/},{begin:/(fr|rf|f)'/,end:/'/,contains:[e.BACKSLASH_ESCAPE,i,t]},{begin:/(fr|rf|f)"/,end:/"/,contains:[e.BACKSLASH_ESCAPE,i,t]},e.APOS_STRING_MODE,e.QUOTE_STRING_MODE]},s={className:"number",relevance:0,variants:[{begin:e.BINARY_NUMBER_RE+"[lLjJ]?"},{begin:"\\b(0o[0-7]+)[lLjJ]?"},{begin:e.C_NUMBER_RE+"[lLjJ]?"}]},r={className:"params",begin:/\(/,end:/\)/,contains:["self",a,s,i,e.HASH_COMMENT_MODE]};return t.contains=[i,s,a],{aliases:["py","gyp","ipython"],keywords:n,illegal:/(<\/|->|\?)|=>/,contains:[a,s,{beginKeywords:"if",relevance:0},i,e.HASH_COMMENT_MODE,{variants:[{className:"function",beginKeywords:"def"},{className:"class",beginKeywords:"class"}],end:/:/,illegal:/[${=;\n,]/,contains:[e.UNDERSCORE_TITLE_MODE,r,{begin:/->/,endsWithParent:!0,keywords:"None"}]},{className:"meta",begin:/^[\t ]*@/,end:/$/},{begin:/\b(print|exec)\(/}]}}function x(e){var n="[a-zA-Z_]\\w*[!?=]?|[-+~]\\@|<<|>>|=~|===?|<=>|[<>]=?|\\*\\*|[-/+%^&*~`|]|\\[\\]=?",a={keyword:"and then defined module in return redo if BEGIN retry end for self when next until do begin unless END rescue else break undef not super class case require yield alias while ensure elsif or include attr_reader attr_writer attr_accessor",literal:"true false nil"},t={className:"doctag",begin:"@[A-Za-z]+"},i={begin:"#<",end:">"},t=[e.COMMENT("#","$",{contains:[t]}),e.COMMENT("^\\=begin","^\\=end",{contains:[t],relevance:10}),e.COMMENT("^__END__","\\n$")],s={className:"subst",begin:"#\\{",end:"}",keywords:a},r={className:"string",contains:[e.BACKSLASH_ESCAPE,s],variants:[{begin:/'/,end:/'/},{begin:/"/,end:/"/},{begin:/`/,end:/`/},{begin:"%[qQwWx]?\\(",end:"\\)"},{begin:"%[qQwWx]?\\[",end:"\\]"},{begin:"%[qQwWx]?{",end:"}"},{begin:"%[qQwWx]?<",end:">"},{begin:"%[qQwWx]?/",end:"/"},{begin:"%[qQwWx]?%",end:"%"},{begin:"%[qQwWx]?-",end:"-"},{begin:"%[qQwWx]?\\|",end:"\\|"},{begin:/\B\?(\\\d{1,3}|\\x[A-Fa-f0-9]{1,2}|\\u[A-Fa-f0-9]{4}|\\?\S)\b/},{begin:/<<[-~]?'?(\w+)(?:.|\n)*?\n\s*\1\b/,returnBegin:!0,contains:[{begin:/<<[-~]?'?/},{begin:/\w+/,endSameAsBegin:!0,contains:[e.BACKSLASH_ESCAPE,s]}]}]},l={className:"params",begin:"\\(",end:"\\)",endsParent:!0,keywords:a},r=[r,i,{className:"class",beginKeywords:"class module",end:"$|;",illegal:/=/,contains:[e.inherit(e.TITLE_MODE,{begin:"[A-Za-z_]\\w*(::\\w+)*(\\?|\\!)?"}),{begin:"<\\s*",contains:[{begin:"("+e.IDENT_RE+"::)?"+e.IDENT_RE}]}].concat(t)},{className:"function",beginKeywords:"def",end:"$|;",contains:[e.inherit(e.TITLE_MODE,{begin:n}),l].concat(t)},{begin:e.IDENT_RE+"::"},{className:"symbol",begin:e.UNDERSCORE_IDENT_RE+"(\\!|\\?)?:",relevance:0},{className:"symbol",begin:":(?!\\s)",contains:[r,{begin:n}],relevance:0},{className:"number",begin:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",relevance:0},{begin:"(\\$\\W)|((\\$|\\@\\@?)(\\w+))"},{className:"params",begin:/\|/,end:/\|/,keywords:a},{begin:"("+e.RE_STARTERS_RE+"|unless)\\s*",keywords:"unless",contains:[i,{className:"regexp",contains:[e.BACKSLASH_ESCAPE,s],illegal:/\n/,variants:[{begin:"/",end:"/[a-z]*"},{begin:"%r{",end:"}[a-z]*"},{begin:"%r\\(",end:"\\)[a-z]*"},{begin:"%r!",end:"![a-z]*"},{begin:"%r\\[",end:"\\][a-z]*"}]}].concat(t),relevance:0}].concat(t);return s.contains=r,{aliases:["rb","gemspec","podspec","thor","irb"],keywords:a,illegal:/\/\*/,contains:t.concat([{begin:/^\s*=>/,starts:{end:"$",contains:l.contains=r}},{className:"meta",begin:"^([>?]>|[\\w#]+\\(\\w+\\):\\d+:\\d+>|(\\w+-)?\\d+\\.\\d+\\.\\d(p\\d+)?[^>]+>)",starts:{end:"$",contains:r}}]).concat(r)}}function C(e){var n="([ui](8|16|32|64|128|size)|f(32|64))?",a="drop i8 i16 i32 i64 i128 isize u8 u16 u32 u64 u128 usize f32 f64 str char bool Box Option Result String Vec Copy Send Sized Sync Drop Fn FnMut FnOnce ToOwned Clone Debug PartialEq PartialOrd Eq Ord AsRef AsMut Into From Default Iterator Extend IntoIterator DoubleEndedIterator ExactSizeIterator SliceConcatExt ToString assert! assert_eq! bitflags! bytes! cfg! col! concat! concat_idents! debug_assert! debug_assert_eq! env! panic! file! format! format_args! include_bin! include_str! line! local_data_key! module_path! option_env! print! println! select! stringify! try! unimplemented! unreachable! vec! write! writeln! macro_rules! assert_ne! debug_assert_ne!";return{aliases:["rs"],keywords:{keyword:"abstract as async await become box break const continue crate do dyn else enum extern false final fn for if impl in let loop macro match mod move mut override priv pub ref return self Self static struct super trait true try type typeof unsafe unsized use virtual where while yield",literal:"true false Some None Ok Err",built_in:a},lexemes:e.IDENT_RE+"!?",illegal:""}]}}function S(e){var n={className:"subst",variants:[{begin:"\\$[A-Za-z0-9_]+"},{begin:"\\${",end:"}"}]},n={className:"string",variants:[{begin:'"',end:'"',illegal:"\\n",contains:[e.BACKSLASH_ESCAPE]},{begin:'"""',end:'"""',relevance:10},{begin:'[a-z]+"',end:'"',illegal:"\\n",contains:[e.BACKSLASH_ESCAPE,n]},{className:"string",begin:'[a-z]+"""',end:'"""',contains:[n],relevance:10}]},a={className:"type",begin:"\\b[A-Z][A-Za-z0-9_]*",relevance:0},t={className:"title",begin:/[^0-9\n\t "'(),.`{}\[\]:;][^\n\t "'(),.`{}\[\]:;]+|[^0-9\n\t "'(),.`{}\[\]:;=]/,relevance:0};return{keywords:{literal:"true false null",keyword:"type yield lazy override def with val var sealed abstract private trait object if forSome for while throw finally protected extends import final return else break new catch super class case package default try this match continue throws implicit"},contains:[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,n,{className:"symbol",begin:"'\\w[\\w\\d_]*(?!')"},a,{className:"function",beginKeywords:"def",end:/[:={\[(\n;]/,excludeEnd:!0,contains:[t]},{className:"class",beginKeywords:"class object trait type",end:/[:={\[\n;]/,excludeEnd:!0,contains:[{beginKeywords:"extends with",relevance:10},{begin:/\[/,end:/\]/,excludeBegin:!0,excludeEnd:!0,relevance:0,contains:[a]},{className:"params",begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,relevance:0,contains:[a]},t]},e.C_NUMBER_MODE,{className:"meta",begin:"@[A-Za-z]+"}]}}function T(e){return{aliases:["console"],contains:[{className:"meta",begin:"^\\s{0,3}[/\\w\\d\\[\\]()@-]*[>%$#]",starts:{end:"$",subLanguage:"bash"}}]}}function k(e){var n=e.COMMENT("--","$");return{case_insensitive:!0,illegal:/[<>{}*]/,contains:[{beginKeywords:"begin end start commit rollback savepoint lock alter create drop rename call delete do handler insert load replace select truncate update set show pragma grant merge describe use explain help declare prepare execute deallocate release unlock purge reset change stop analyze cache flush optimize repair kill install uninstall checksum restore check backup revoke comment values with",end:/;/,endsWithParent:!0,lexemes:/[\w\.]+/,keywords:{keyword:"as abort abs absolute acc acce accep accept access accessed accessible account acos action activate add addtime admin administer advanced advise aes_decrypt aes_encrypt after agent aggregate ali alia alias all allocate allow alter always analyze ancillary and anti any anydata anydataset anyschema anytype apply archive archived archivelog are as asc ascii asin assembly assertion associate asynchronous at atan atn2 attr attri attrib attribu attribut attribute attributes audit authenticated authentication authid authors auto autoallocate autodblink autoextend automatic availability avg backup badfile basicfile before begin beginning benchmark between bfile bfile_base big bigfile bin binary_double binary_float binlog bit_and bit_count bit_length bit_or bit_xor bitmap blob_base block blocksize body both bound bucket buffer_cache buffer_pool build bulk by byte byteordermark bytes cache caching call calling cancel capacity cascade cascaded case cast catalog category ceil ceiling chain change changed char_base char_length character_length characters characterset charindex charset charsetform charsetid check checksum checksum_agg child choose chr chunk class cleanup clear client clob clob_base clone close cluster_id cluster_probability cluster_set clustering coalesce coercibility col collate collation collect colu colum column column_value columns columns_updated comment commit compact compatibility compiled complete composite_limit compound compress compute concat concat_ws concurrent confirm conn connec connect connect_by_iscycle connect_by_isleaf connect_by_root connect_time connection consider consistent constant constraint constraints constructor container content contents context contributors controlfile conv convert convert_tz corr corr_k corr_s corresponding corruption cos cost count count_big counted covar_pop covar_samp cpu_per_call cpu_per_session crc32 create creation critical cross cube cume_dist curdate current current_date current_time current_timestamp current_user cursor curtime customdatum cycle data database databases datafile datafiles datalength date_add date_cache date_format date_sub dateadd datediff datefromparts datename datepart datetime2fromparts day day_to_second dayname dayofmonth dayofweek dayofyear days db_role_change dbtimezone ddl deallocate declare decode decompose decrement decrypt deduplicate def defa defau defaul default defaults deferred defi defin define degrees delayed delegate delete delete_all delimited demand dense_rank depth dequeue des_decrypt des_encrypt des_key_file desc descr descri describ describe descriptor deterministic diagnostics difference dimension direct_load directory disable disable_all disallow disassociate discardfile disconnect diskgroup distinct distinctrow distribute distributed div do document domain dotnet double downgrade drop dumpfile duplicate duration each edition editionable editions element ellipsis else elsif elt empty enable enable_all enclosed encode encoding encrypt end end-exec endian enforced engine engines enqueue enterprise entityescaping eomonth error errors escaped evalname evaluate event eventdata events except exception exceptions exchange exclude excluding execu execut execute exempt exists exit exp expire explain explode export export_set extended extent external external_1 external_2 externally extract failed failed_login_attempts failover failure far fast feature_set feature_value fetch field fields file file_name_convert filesystem_like_logging final finish first first_value fixed flash_cache flashback floor flush following follows for forall force foreign form forma format found found_rows freelist freelists freepools fresh from from_base64 from_days ftp full function general generated get get_format get_lock getdate getutcdate global global_name globally go goto grant grants greatest group group_concat group_id grouping grouping_id groups gtid_subtract guarantee guard handler hash hashkeys having hea head headi headin heading heap help hex hierarchy high high_priority hosts hour hours http id ident_current ident_incr ident_seed identified identity idle_time if ifnull ignore iif ilike ilm immediate import in include including increment index indexes indexing indextype indicator indices inet6_aton inet6_ntoa inet_aton inet_ntoa infile initial initialized initially initrans inmemory inner innodb input insert install instance instantiable instr interface interleaved intersect into invalidate invisible is is_free_lock is_ipv4 is_ipv4_compat is_not is_not_null is_used_lock isdate isnull isolation iterate java join json json_exists keep keep_duplicates key keys kill language large last last_day last_insert_id last_value lateral lax lcase lead leading least leaves left len lenght length less level levels library like like2 like4 likec limit lines link list listagg little ln load load_file lob lobs local localtime localtimestamp locate locator lock locked log log10 log2 logfile logfiles logging logical logical_reads_per_call logoff logon logs long loop low low_priority lower lpad lrtrim ltrim main make_set makedate maketime managed management manual map mapping mask master master_pos_wait match matched materialized max maxextents maximize maxinstances maxlen maxlogfiles maxloghistory maxlogmembers maxsize maxtrans md5 measures median medium member memcompress memory merge microsecond mid migration min minextents minimum mining minus minute minutes minvalue missing mod mode model modification modify module monitoring month months mount move movement multiset mutex name name_const names nan national native natural nav nchar nclob nested never new newline next nextval no no_write_to_binlog noarchivelog noaudit nobadfile nocheck nocompress nocopy nocycle nodelay nodiscardfile noentityescaping noguarantee nokeep nologfile nomapping nomaxvalue nominimize nominvalue nomonitoring none noneditionable nonschema noorder nopr nopro noprom nopromp noprompt norely noresetlogs noreverse normal norowdependencies noschemacheck noswitch not nothing notice notnull notrim novalidate now nowait nth_value nullif nulls num numb numbe nvarchar nvarchar2 object ocicoll ocidate ocidatetime ociduration ociinterval ociloblocator ocinumber ociref ocirefcursor ocirowid ocistring ocitype oct octet_length of off offline offset oid oidindex old on online only opaque open operations operator optimal optimize option optionally or oracle oracle_date oradata ord ordaudio orddicom orddoc order ordimage ordinality ordvideo organization orlany orlvary out outer outfile outline output over overflow overriding package pad parallel parallel_enable parameters parent parse partial partition partitions pascal passing password password_grace_time password_lock_time password_reuse_max password_reuse_time password_verify_function patch path patindex pctincrease pctthreshold pctused pctversion percent percent_rank percentile_cont percentile_disc performance period period_add period_diff permanent physical pi pipe pipelined pivot pluggable plugin policy position post_transaction pow power pragma prebuilt precedes preceding precision prediction prediction_cost prediction_details prediction_probability prediction_set prepare present preserve prior priority private private_sga privileges procedural procedure procedure_analyze processlist profiles project prompt protection public publishingservername purge quarter query quick quiesce quota quotename radians raise rand range rank raw read reads readsize rebuild record records recover recovery recursive recycle redo reduced ref reference referenced references referencing refresh regexp_like register regr_avgx regr_avgy regr_count regr_intercept regr_r2 regr_slope regr_sxx regr_sxy reject rekey relational relative relaylog release release_lock relies_on relocate rely rem remainder rename repair repeat replace replicate replication required reset resetlogs resize resource respect restore restricted result result_cache resumable resume retention return returning returns reuse reverse revoke right rlike role roles rollback rolling rollup round row row_count rowdependencies rowid rownum rows rtrim rules safe salt sample save savepoint sb1 sb2 sb4 scan schema schemacheck scn scope scroll sdo_georaster sdo_topo_geometry search sec_to_time second seconds section securefile security seed segment select self semi sequence sequential serializable server servererror session session_user sessions_per_user set sets settings sha sha1 sha2 share shared shared_pool short show shrink shutdown si_averagecolor si_colorhistogram si_featurelist si_positionalcolor si_stillimage si_texture siblings sid sign sin size size_t sizes skip slave sleep smalldatetimefromparts smallfile snapshot some soname sort soundex source space sparse spfile split sql sql_big_result sql_buffer_result sql_cache sql_calc_found_rows sql_small_result sql_variant_property sqlcode sqldata sqlerror sqlname sqlstate sqrt square standalone standby start starting startup statement static statistics stats_binomial_test stats_crosstab stats_ks_test stats_mode stats_mw_test stats_one_way_anova stats_t_test_ stats_t_test_indep stats_t_test_one stats_t_test_paired stats_wsr_test status std stddev stddev_pop stddev_samp stdev stop storage store stored str str_to_date straight_join strcmp strict string struct stuff style subdate subpartition subpartitions substitutable substr substring subtime subtring_index subtype success sum suspend switch switchoffset switchover sync synchronous synonym sys sys_xmlagg sysasm sysaux sysdate sysdatetimeoffset sysdba sysoper system system_user sysutcdatetime table tables tablespace tablesample tan tdo template temporary terminated tertiary_weights test than then thread through tier ties time time_format time_zone timediff timefromparts timeout timestamp timestampadd timestampdiff timezone_abbr timezone_minute timezone_region to to_base64 to_date to_days to_seconds todatetimeoffset trace tracking transaction transactional translate translation treat trigger trigger_nestlevel triggers trim truncate try_cast try_convert try_parse type ub1 ub2 ub4 ucase unarchived unbounded uncompress under undo unhex unicode uniform uninstall union unique unix_timestamp unknown unlimited unlock unnest unpivot unrecoverable unsafe unsigned until untrusted unusable unused update updated upgrade upped upper upsert url urowid usable usage use use_stored_outlines user user_data user_resources users using utc_date utc_timestamp uuid uuid_short validate validate_password_strength validation valist value values var var_samp varcharc vari varia variab variabl variable variables variance varp varraw varrawc varray verify version versions view virtual visible void wait wallet warning warnings week weekday weekofyear wellformed when whene whenev wheneve whenever where while whitespace window with within without work wrapped xdb xml xmlagg xmlattributes xmlcast xmlcolattval xmlelement xmlexists xmlforest xmlindex xmlnamespaces xmlpi xmlquery xmlroot xmlschema xmlserialize xmltable xmltype xor year year_to_month years yearweek",literal:"true false null unknown",built_in:"array bigint binary bit blob bool boolean char character date dec decimal float int int8 integer interval number numeric real record serial serial8 smallint text time timestamp tinyint varchar varchar2 varying void"},contains:[{className:"string",begin:"'",end:"'",contains:[{begin:"''"}]},{className:"string",begin:'"',end:'"',contains:[{begin:'""'}]},{className:"string",begin:"`",end:"`"},e.C_NUMBER_MODE,e.C_BLOCK_COMMENT_MODE,n,e.HASH_COMMENT_MODE]},e.C_BLOCK_COMMENT_MODE,n,e.HASH_COMMENT_MODE]}}function A(e){var n={keyword:"#available #colorLiteral #column #else #elseif #endif #file #fileLiteral #function #if #imageLiteral #line #selector #sourceLocation _ __COLUMN__ __FILE__ __FUNCTION__ __LINE__ Any as as! as? associatedtype associativity break case catch class continue convenience default defer deinit didSet do dynamic dynamicType else enum extension fallthrough false fileprivate final for func get guard if import in indirect infix init inout internal is lazy left let mutating nil none nonmutating open operator optional override postfix precedence prefix private protocol Protocol public repeat required rethrows return right self Self set static struct subscript super switch throw throws true try try! try? Type typealias unowned var weak where while willSet",literal:"true false nil",built_in:"abs advance alignof alignofValue anyGenerator assert assertionFailure bridgeFromObjectiveC bridgeFromObjectiveCUnconditional bridgeToObjectiveC bridgeToObjectiveCUnconditional c contains count countElements countLeadingZeros debugPrint debugPrintln distance dropFirst dropLast dump encodeBitsAsWords enumerate equal fatalError filter find getBridgedObjectiveCType getVaList indices insertionSort isBridgedToObjectiveC isBridgedVerbatimToObjectiveC isUniquelyReferenced isUniquelyReferencedNonObjC join lazy lexicographicalCompare map max maxElement min minElement numericCast overlaps partition posix precondition preconditionFailure print println quickSort readLine reduce reflect reinterpretCast reverse roundUpToAlignment sizeof sizeofValue sort split startsWith stride strideof strideofValue swap toString transcode underestimateCount unsafeAddressOf unsafeBitCast unsafeDowncast unsafeUnwrap unsafeReflect withExtendedLifetime withObjectAtPlusZero withUnsafePointer withUnsafePointerToObject withUnsafeMutablePointer withUnsafeMutablePointers withUnsafePointer withUnsafePointers withVaList zip"},a=e.COMMENT("/\\*","\\*/",{contains:["self"]}),t={className:"subst",begin:/\\\(/,end:"\\)",keywords:n,contains:[]},i={className:"string",contains:[e.BACKSLASH_ESCAPE,t],variants:[{begin:/"""/,end:/"""/},{begin:/"/,end:/"/}]},s={className:"number",begin:"\\b([\\d_]+(\\.[\\deE_]+)?|0x[a-fA-F0-9_]+(\\.[a-fA-F0-9p_]+)?|0b[01_]+|0o[0-7_]+)\\b",relevance:0};return t.contains=[s],{keywords:n,contains:[i,e.C_LINE_COMMENT_MODE,a,{className:"type",begin:"\\b[A-Z][\\wÀ-ʸ']*[!?]"},{className:"type",begin:"\\b[A-Z][\\wÀ-ʸ']*",relevance:0},s,{className:"function",beginKeywords:"func",end:"{",excludeEnd:!0,contains:[e.inherit(e.TITLE_MODE,{begin:/[A-Za-z$_][0-9A-Za-z$_]*/}),{begin://},{className:"params",begin:/\(/,end:/\)/,endsParent:!0,keywords:n,contains:["self",s,i,e.C_BLOCK_COMMENT_MODE,{begin:":"}],illegal:/["']/}],illegal:/\[|%/},{className:"class",beginKeywords:"struct protocol class extension enum",keywords:n,end:"\\{",excludeEnd:!0,contains:[e.inherit(e.TITLE_MODE,{begin:/[A-Za-z$_][\u00C0-\u02B80-9A-Za-z$_]*/})]},{className:"meta",begin:"(@discardableResult|@warn_unused_result|@exported|@lazy|@noescape|@NSCopying|@NSManaged|@objc|@objcMembers|@convention|@required|@noreturn|@IBAction|@IBDesignable|@IBInspectable|@IBOutlet|@infix|@prefix|@postfix|@autoclosure|@testable|@available|@nonobjc|@NSApplicationMain|@UIApplicationMain|@dynamicMemberLookup|@propertyWrapper)"},{beginKeywords:"import",end:/$/,contains:[e.C_LINE_COMMENT_MODE,a]}]}}function R(e){var n={className:"symbol",begin:"&[a-z]+;|&#[0-9]+;|&#x[a-f0-9]+;"},a={begin:"\\s",contains:[{className:"meta-keyword",begin:"#?[a-z_][a-z1-9_-]+",illegal:"\\n"}]},t=e.inherit(a,{begin:"\\(",end:"\\)"}),i=e.inherit(e.APOS_STRING_MODE,{className:"meta-string"}),s=e.inherit(e.QUOTE_STRING_MODE,{className:"meta-string"}),r={endsWithParent:!0,illegal:/`]+/}]}]}]};return{aliases:["html","xhtml","rss","atom","xjb","xsd","xsl","plist","wsf","svg"],case_insensitive:!0,contains:[{className:"meta",begin:"",relevance:10,contains:[a,s,i,t,{begin:"\\[",end:"\\]",contains:[{className:"meta",begin:"",contains:[a,t,s,i]}]}]},e.COMMENT("\x3c!--","--\x3e",{relevance:10}),{begin:"<\\!\\[CDATA\\[",end:"\\]\\]>",relevance:10},n,{className:"meta",begin:/<\?xml/,end:/\?>/,relevance:10},{begin:/<\?(php)?/,end:/\?>/,subLanguage:"php",contains:[{begin:"/\\*",end:"\\*/",skip:!0},{begin:'b"',end:'"',skip:!0},{begin:"b'",end:"'",skip:!0},e.inherit(e.APOS_STRING_MODE,{illegal:null,className:null,contains:null,skip:!0}),e.inherit(e.QUOTE_STRING_MODE,{illegal:null,className:null,contains:null,skip:!0})]},{className:"tag",begin:")",end:">",keywords:{name:"style"},contains:[r],starts:{end:"",returnEnd:!0,subLanguage:["css","xml"]}},{className:"tag",begin:")",end:">",keywords:{name:"script"},contains:[r],starts:{end:"<\/script>",returnEnd:!0,subLanguage:["actionscript","javascript","handlebars","xml"]}},{className:"tag",begin:"",contains:[{className:"name",begin:/[^\/><\s]+/,relevance:0},r]}]}}function B(e){var n="true false yes no null",a={className:"string",relevance:0,variants:[{begin:/'/,end:/'/},{begin:/"/,end:/"/},{begin:/\S+/}],contains:[e.BACKSLASH_ESCAPE,{className:"template-variable",variants:[{begin:"{{",end:"}}"},{begin:"%{",end:"}"}]}]};return{case_insensitive:!0,aliases:["yml","YAML","yaml"],contains:[{className:"attr",variants:[{begin:"\\w[\\w :\\/.-]*:(?=[ \t]|$)"},{begin:'"\\w[\\w :\\/.-]*":(?=[ \t]|$)'},{begin:"'\\w[\\w :\\/.-]*':(?=[ \t]|$)"}]},{className:"meta",begin:"^---s*$",relevance:10},{className:"string",begin:"[\\|>]([0-9]?[+-])?[ ]*\\n( *)[\\S ]+\\n(\\2[\\S ]+\\n?)*"},{begin:"<%[%=-]?",end:"[%-]?%>",subLanguage:"ruby",excludeBegin:!0,excludeEnd:!0,relevance:0},{className:"type",begin:"!"+e.UNDERSCORE_IDENT_RE},{className:"type",begin:"!!"+e.UNDERSCORE_IDENT_RE},{className:"meta",begin:"&"+e.UNDERSCORE_IDENT_RE+"$"},{className:"meta",begin:"\\*"+e.UNDERSCORE_IDENT_RE+"$"},{className:"bullet",begin:"\\-(?=[ ]|$)",relevance:0},e.HASH_COMMENT_MODE,{beginKeywords:n,keywords:{literal:n}},{className:"number",begin:e.C_NUMBER_RE+"\\b"},a]}}var D,L,I={};D=function(t){var a,g=[],s=Object.keys,w=Object.create(null),r=Object.create(null),O=!0,n=/^(no-?highlight|plain|text)$/i,l=/\blang(?:uage)?-([\w-]+)\b/i,i=/((^(<[^>]+>|\t|)+|(?:\n)))/gm,M="",x="Could not find the language '{}', did you forget to load/include a language module?",C={classPrefix:"hljs-",tabReplace:null,useBR:!1,languages:void 0},o="of and for in not or if then".split(" ");function S(e){return e.replace(/&/g,"&").replace(//g,">")}function u(e){return e.nodeName.toLowerCase()}function c(e){return n.test(e)}function d(e){var n,a={},t=Array.prototype.slice.call(arguments,1);for(n in e)a[n]=e[n];return t.forEach(function(e){for(n in e)a[n]=e[n]}),a}function _(e){var i=[];return function e(n,a){for(var t=n.firstChild;t;t=t.nextSibling)3===t.nodeType?a+=t.nodeValue.length:1===t.nodeType&&(i.push({event:"start",offset:a,node:t}),a=e(t,a),u(t).match(/br|hr|img|input/)||i.push({event:"stop",offset:a,node:t}));return a}(e,0),i}function m(e,n,a){var t=0,i="",s=[];function r(){return e.length&&n.length?e[0].offset!==n[0].offset?e[0].offset"}function o(e){i+=""}function c(e){("start"===e.event?l:o)(e.node)}for(;e.length||n.length;){var d=r();if(i+=S(a.substring(t,d[0].offset)),t=d[0].offset,d===e){for(s.reverse().forEach(o);c(d.splice(0,1)[0]),(d=r())===e&&d.length&&d[0].offset===t;);s.reverse().forEach(l)}else"start"===d[0].event?s.push(d[0].node):s.pop(),c(d.splice(0,1)[0])}return i+S(a.substr(t))}function b(n){return n.variants&&!n.cached_variants&&(n.cached_variants=n.variants.map(function(e){return d(n,{variants:null},e)})),n.cached_variants||(function e(n){return!!n&&(n.endsWithParent||e(n.starts))}(n)?[d(n,{starts:n.starts?d(n.starts):null})]:Object.isFrozen(n)?[d(n)]:[n])}function p(e){if(a&&!e.langApiRestored){for(var n in e.langApiRestored=!0,a)e[n]&&(e[a[n]]=e[n]);(e.contains||[]).concat(e.variants||[]).forEach(p)}}function f(n,t){var i={};return"string"==typeof n?a("keyword",n):s(n).forEach(function(e){a(e,n[e])}),i;function a(a,e){(e=t?e.toLowerCase():e).split(" ").forEach(function(e){var n,e=e.split("|");i[e[0]]=[a,(n=e[0],(e=e[1])?Number(e):function(e){return-1!=o.indexOf(e.toLowerCase())}(n)?0:1)]})}}function T(t){function d(e){return e&&e.source||e}function g(e,n){return new RegExp(d(e),"m"+(t.case_insensitive?"i":"")+(n?"g":""))}function i(i){var s={},r=[],l={},a=1;function e(e,n){s[a]=e,r.push([e,n]),a+=new RegExp(n.toString()+"|").exec("").length-1+1}for(var n=0;n')+n+(a?"":M)):n:""}function r(){var e,n,a,t,i;if(!m.keywords)return S(E);for(a="",m.lexemesRe.lastIndex=e=0,n=m.lexemesRe.exec(E);n;)a+=S(E.substring(e,n.index)),t=m,i=n,i=_.case_insensitive?i[0].toLowerCase():i[0],(t=t.keywords.hasOwnProperty(i)&&t.keywords[i])?(N+=t[1],a+=s(t[0],S(n[0]))):a+=S(n[0]),e=m.lexemesRe.lastIndex,n=m.lexemesRe.exec(E);return a+S(E.substr(e))}function l(){var e,n;p+=null!=m.subLanguage?(n="string"==typeof m.subLanguage)&&!w[m.subLanguage]?S(E):(e=n?k(m.subLanguage,E,!0,b[m.subLanguage]):A(E,m.subLanguage.length?m.subLanguage:void 0),0")+'"');if("end"===n.type){e=d(n);if(null!=e)return e}return E+=a,a.length}var _=R(n);if(!_)throw console.error(x.replace("{}",n)),new Error('Unknown language: "'+n+'"');T(_);for(var m=a||_,b={},p="",f=m;f!==_;f=f.parent)f.className&&(p=s(f.className,"",!0)+p);var E="",N=0;try{for(var h,v,y=0;;){if(m.terminators.lastIndex=y,!(h=m.terminators.exec(i)))break;v=u(i.substring(y,h.index),h),y=h.index+v}for(u(i.substr(y)),f=m;f.parent;f=f.parent)f.className&&(p+=M);return{relevance:N,value:p,illegal:!1,language:n,top:m}}catch(e){if(e.message&&-1!==e.message.indexOf("Illegal"))return{illegal:!0,relevance:0,value:S(i)};if(O)return{relevance:0,value:S(i),language:n,top:m,errorRaised:e};throw e}}function A(a,e){e=e||C.languages||s(w);var t={relevance:0,value:S(a)},i=t;return e.filter(R).filter(y).forEach(function(e){var n=k(e,a,!1);n.language=e,n.relevance>i.relevance&&(i=n),n.relevance>t.relevance&&(i=t,t=n)}),i.language&&(t.second_best=i),t}function E(e){return C.tabReplace||C.useBR?e.replace(i,function(e,n){return C.useBR&&"\n"===e?"
":C.tabReplace?n.replace(/\t/g,C.tabReplace):""}):e}function N(e){var n,a,t,i,s=function(e){var n,a,t,i,s,r=e.className+" ";if(r+=e.parentNode?e.parentNode.className:"",a=l.exec(r))return(s=R(a[1]))||(console.warn(x.replace("{}",a[1])),console.warn("Falling back to no-highlight mode for this block.",e)),s?a[1]:"no-highlight";for(n=0,t=(r=r.split(/\s+/)).length;n/g,"\n"):a=e,i=a.textContent,n=s?k(s,i,!0):A(i),(a=_(a)).length&&((t=document.createElement("div")).innerHTML=n.value,n.value=m(a,_(t),i)),n.value=E(n.value),e.innerHTML=n.value,e.className=(a=e.className,t=s,i=n.language,t=t?r[t]:i,i=[a.trim()],a.match(/\bhljs\b/)||i.push("hljs"),-1===a.indexOf(t)&&i.push(t),i.join(" ").trim()),e.result={language:n.language,re:n.relevance},n.second_best&&(e.second_best={language:n.second_best.language,re:n.second_best.relevance}))}function h(){var e;h.called||(h.called=!0,e=document.querySelectorAll("pre code"),g.forEach.call(e,N))}var v={disableAutodetect:!0};function R(e){return e=(e||"").toLowerCase(),w[e]||w[r[e]]}function y(e){e=R(e);return e&&!e.disableAutodetect}return t.highlight=k,t.highlightAuto=A,t.fixMarkup=E,t.highlightBlock=N,t.configure=function(e){C=d(C,e)},t.initHighlighting=h,t.initHighlightingOnLoad=function(){window.addEventListener("DOMContentLoaded",h,!1),window.addEventListener("load",h,!1)},t.registerLanguage=function(n,e){var a;try{a=e(t)}catch(e){if(console.error("Language definition for '{}' could not be registered.".replace("{}",n)),!O)throw e;console.error(e),a=v}p(w[n]=a),a.rawDefinition=e.bind(null,t),a.aliases&&a.aliases.forEach(function(e){r[e]=n})},t.listLanguages=function(){return s(w)},t.getLanguage=R,t.requireLanguage=function(e){var n=R(e);if(n)return n;throw new Error("The '{}' language is required, but not loaded.".replace("{}",e))},t.autoDetection=y,t.inherit=d,t.debugMode=function(){O=!1},t.IDENT_RE="[a-zA-Z]\\w*",t.UNDERSCORE_IDENT_RE="[a-zA-Z_]\\w*",t.NUMBER_RE="\\b\\d+(\\.\\d+)?",t.C_NUMBER_RE="(-?)(\\b0[xX][a-fA-F0-9]+|(\\b\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)",t.BINARY_NUMBER_RE="\\b(0b[01]+)",t.RE_STARTERS_RE="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|-|-=|/=|/|:|;|<<|<<=|<=|<|===|==|=|>>>=|>>=|>=|>>>|>>|>|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~",t.BACKSLASH_ESCAPE={begin:"\\\\[\\s\\S]",relevance:0},t.APOS_STRING_MODE={className:"string",begin:"'",end:"'",illegal:"\\n",contains:[t.BACKSLASH_ESCAPE]},t.QUOTE_STRING_MODE={className:"string",begin:'"',end:'"',illegal:"\\n",contains:[t.BACKSLASH_ESCAPE]},t.PHRASAL_WORDS_MODE={begin:/\b(a|an|the|are|I'm|isn't|don't|doesn't|won't|but|just|should|pretty|simply|enough|gonna|going|wtf|so|such|will|you|your|they|like|more)\b/},t.COMMENT=function(e,n,a){e=t.inherit({className:"comment",begin:e,end:n,contains:[]},a||{});return e.contains.push(t.PHRASAL_WORDS_MODE),e.contains.push({className:"doctag",begin:"(?:TODO|FIXME|NOTE|BUG|XXX):",relevance:0}),e},t.C_LINE_COMMENT_MODE=t.COMMENT("//","$"),t.C_BLOCK_COMMENT_MODE=t.COMMENT("/\\*","\\*/"),t.HASH_COMMENT_MODE=t.COMMENT("#","$"),t.NUMBER_MODE={className:"number",begin:t.NUMBER_RE,relevance:0},t.C_NUMBER_MODE={className:"number",begin:t.C_NUMBER_RE,relevance:0},t.BINARY_NUMBER_MODE={className:"number",begin:t.BINARY_NUMBER_RE,relevance:0},t.CSS_NUMBER_MODE={className:"number",begin:t.NUMBER_RE+"(%|em|ex|ch|rem|vw|vh|vmin|vmax|cm|mm|in|pt|pc|px|deg|grad|rad|turn|s|ms|Hz|kHz|dpi|dpcm|dppx)?",relevance:0},t.REGEXP_MODE={className:"regexp",begin:/\//,end:/\/[gimuy]*/,illegal:/\n/,contains:[t.BACKSLASH_ESCAPE,{begin:/\[/,end:/\]/,relevance:0,contains:[t.BACKSLASH_ESCAPE]}]},t.TITLE_MODE={className:"title",begin:t.IDENT_RE,relevance:0},t.UNDERSCORE_TITLE_MODE={className:"title",begin:t.UNDERSCORE_IDENT_RE,relevance:0},t.METHOD_GUARD={begin:"\\.\\s*"+t.UNDERSCORE_IDENT_RE,relevance:0},[t.BACKSLASH_ESCAPE,t.APOS_STRING_MODE,t.QUOTE_STRING_MODE,t.PHRASAL_WORDS_MODE,t.COMMENT,t.C_LINE_COMMENT_MODE,t.C_BLOCK_COMMENT_MODE,t.HASH_COMMENT_MODE,t.NUMBER_MODE,t.C_NUMBER_MODE,t.BINARY_NUMBER_MODE,t.CSS_NUMBER_MODE,t.REGEXP_MODE,t.TITLE_MODE,t.UNDERSCORE_TITLE_MODE,t.METHOD_GUARD].forEach(function(e){!function n(a){Object.freeze(a);var t="function"==typeof a;Object.getOwnPropertyNames(a).forEach(function(e){!a.hasOwnProperty(e)||null===a[e]||"object"!=typeof a[e]&&"function"!=typeof a[e]||t&&("caller"===e||"callee"===e||"arguments"===e)||Object.isFrozen(a[e])||n(a[e])});return a}(e)}),t},L="object"==typeof window&&window||"object"==typeof self&&self,void 0===I||I.nodeType?L&&(L.hljs=D({}),"function"==typeof define)&&define.amd&&define([],function(){return L.hljs}):D(I);!function(){"use strict";I.registerLanguage("asciidoc",e),I.registerLanguage("bash",n),I.registerLanguage("clojure",a),I.registerLanguage("cpp",t),I.registerLanguage("cs",i),I.registerLanguage("css",s),I.registerLanguage("diff",r),I.registerLanguage("dockerfile",l),I.registerLanguage("elixir",o),I.registerLanguage("go",c),I.registerLanguage("groovy",d),I.registerLanguage("haskell",g),I.registerLanguage("java",u),I.registerLanguage("javascript",_),I.registerLanguage("json",m),I.registerLanguage("kotlin",b),I.registerLanguage("lua",p),I.registerLanguage("markdown",f),I.registerLanguage("nix",E),I.registerLanguage("none",N),I.registerLanguage("objectivec",h),I.registerLanguage("perl",v),I.registerLanguage("php",y),I.registerLanguage("properties",w),I.registerLanguage("puppet",O),I.registerLanguage("python",M),I.registerLanguage("ruby",x),I.registerLanguage("rust",C),I.registerLanguage("scala",S),I.registerLanguage("shell",T),I.registerLanguage("sql",k),I.registerLanguage("swift",A),I.registerLanguage("xml",R),I.registerLanguage("yaml",B),[].slice.call(document.querySelectorAll("pre code.hljs[data-lang]")).forEach(function(e){I.highlightBlock(e)})}()}(); \ No newline at end of file diff --git a/pr-preview/pr-110/_/js/vendor/lunr.js b/pr-preview/pr-110/_/js/vendor/lunr.js deleted file mode 100644 index 3f2f2cc62..000000000 --- a/pr-preview/pr-110/_/js/vendor/lunr.js +++ /dev/null @@ -1,6 +0,0 @@ -/** - * lunr - http://lunrjs.com - A bit like Solr, but much smaller and not as bright - 2.3.7 - * Copyright (C) 2019 Oliver Nightingale - * @license MIT - */ -!function(){var e=function(t){var r=new e.Builder;return r.pipeline.add(e.trimmer,e.stopWordFilter,e.stemmer),r.searchPipeline.add(e.stemmer),t.call(r,r),r.build()};e.version="2.3.7",e.utils={},e.utils.warn=function(e){return function(t){e.console&&console.warn&&console.warn(t)}}(this),e.utils.asString=function(e){return void 0===e||null===e?"":e.toString()},e.utils.clone=function(e){if(null===e||void 0===e)return e;for(var t=Object.create(null),r=Object.keys(e),i=0;i0){var c=e.utils.clone(r)||{};c.position=[a,l],c.index=s.length,s.push(new e.Token(i.slice(a,o),c))}a=o+1}}return s},e.tokenizer.separator=/[\s\-]+/,e.Pipeline=function(){this._stack=[]},e.Pipeline.registeredFunctions=Object.create(null),e.Pipeline.registerFunction=function(t,r){r in this.registeredFunctions&&e.utils.warn("Overwriting existing registered function: "+r),t.label=r,e.Pipeline.registeredFunctions[t.label]=t},e.Pipeline.warnIfFunctionNotRegistered=function(t){var r=t.label&&t.label in this.registeredFunctions;r||e.utils.warn("Function is not registered with pipeline. This may cause problems when serialising the index.\n",t)},e.Pipeline.load=function(t){var r=new e.Pipeline;return t.forEach(function(t){var i=e.Pipeline.registeredFunctions[t];if(!i)throw new Error("Cannot load unregistered function: "+t);r.add(i)}),r},e.Pipeline.prototype.add=function(){var t=Array.prototype.slice.call(arguments);t.forEach(function(t){e.Pipeline.warnIfFunctionNotRegistered(t),this._stack.push(t)},this)},e.Pipeline.prototype.after=function(t,r){e.Pipeline.warnIfFunctionNotRegistered(r);var i=this._stack.indexOf(t);if(i==-1)throw new Error("Cannot find existingFn");i+=1,this._stack.splice(i,0,r)},e.Pipeline.prototype.before=function(t,r){e.Pipeline.warnIfFunctionNotRegistered(r);var i=this._stack.indexOf(t);if(i==-1)throw new Error("Cannot find existingFn");this._stack.splice(i,0,r)},e.Pipeline.prototype.remove=function(e){var t=this._stack.indexOf(e);t!=-1&&this._stack.splice(t,1)},e.Pipeline.prototype.run=function(e){for(var t=this._stack.length,r=0;r1&&(se&&(r=n),s!=e);)i=r-t,n=t+Math.floor(i/2),s=this.elements[2*n];return s==e?2*n:s>e?2*n:sa?l+=2:o==a&&(t+=r[u+1]*i[l+1],u+=2,l+=2);return t},e.Vector.prototype.similarity=function(e){return this.dot(e)/this.magnitude()||0},e.Vector.prototype.toArray=function(){for(var e=new Array(this.elements.length/2),t=1,r=0;t0){var o,a=s.str.charAt(0);a in s.node.edges?o=s.node.edges[a]:(o=new e.TokenSet,s.node.edges[a]=o),1==s.str.length&&(o["final"]=!0),n.push({node:o,editsRemaining:s.editsRemaining,str:s.str.slice(1)})}if(0!=s.editsRemaining){if("*"in s.node.edges)var u=s.node.edges["*"];else{var u=new e.TokenSet;s.node.edges["*"]=u}if(0==s.str.length&&(u["final"]=!0),n.push({node:u,editsRemaining:s.editsRemaining-1,str:s.str}),s.str.length>1&&n.push({node:s.node,editsRemaining:s.editsRemaining-1,str:s.str.slice(1)}),1==s.str.length&&(s.node["final"]=!0),s.str.length>=1){if("*"in s.node.edges)var l=s.node.edges["*"];else{var l=new e.TokenSet;s.node.edges["*"]=l}1==s.str.length&&(l["final"]=!0),n.push({node:l,editsRemaining:s.editsRemaining-1,str:s.str.slice(1)})}if(s.str.length>1){var c,h=s.str.charAt(0),d=s.str.charAt(1);d in s.node.edges?c=s.node.edges[d]:(c=new e.TokenSet,s.node.edges[d]=c),1==s.str.length&&(c["final"]=!0),n.push({node:c,editsRemaining:s.editsRemaining-1,str:h+s.str.slice(2)})}}}return i},e.TokenSet.fromString=function(t){for(var r=new e.TokenSet,i=r,n=0,s=t.length;n=e;t--){var r=this.uncheckedNodes[t],i=r.child.toString();i in this.minimizedNodes?r.parent.edges[r["char"]]=this.minimizedNodes[i]:(r.child._str=i,this.minimizedNodes[i]=r.child),this.uncheckedNodes.pop()}},e.Index=function(e){this.invertedIndex=e.invertedIndex,this.fieldVectors=e.fieldVectors,this.tokenSet=e.tokenSet,this.fields=e.fields,this.pipeline=e.pipeline},e.Index.prototype.search=function(t){return this.query(function(r){var i=new e.QueryParser(t,r);i.parse()})},e.Index.prototype.query=function(t){for(var r=new e.Query(this.fields),i=Object.create(null),n=Object.create(null),s=Object.create(null),o=Object.create(null),a=Object.create(null),u=0;u1?this._b=1:this._b=e},e.Builder.prototype.k1=function(e){this._k1=e},e.Builder.prototype.add=function(t,r){var i=t[this._ref],n=Object.keys(this._fields);this._documents[i]=r||{},this.documentCount+=1;for(var s=0;s=this.length)return e.QueryLexer.EOS;var t=this.str.charAt(this.pos);return this.pos+=1,t},e.QueryLexer.prototype.width=function(){return this.pos-this.start},e.QueryLexer.prototype.ignore=function(){this.start==this.pos&&(this.pos+=1),this.start=this.pos},e.QueryLexer.prototype.backup=function(){this.pos-=1},e.QueryLexer.prototype.acceptDigitRun=function(){var t,r;do t=this.next(),r=t.charCodeAt(0);while(r>47&&r<58);t!=e.QueryLexer.EOS&&this.backup()},e.QueryLexer.prototype.more=function(){return this.pos1&&(t.backup(),t.emit(e.QueryLexer.TERM)),t.ignore(),t.more())return e.QueryLexer.lexText},e.QueryLexer.lexEditDistance=function(t){return t.ignore(),t.acceptDigitRun(),t.emit(e.QueryLexer.EDIT_DISTANCE),e.QueryLexer.lexText},e.QueryLexer.lexBoost=function(t){return t.ignore(),t.acceptDigitRun(),t.emit(e.QueryLexer.BOOST),e.QueryLexer.lexText},e.QueryLexer.lexEOS=function(t){t.width()>0&&t.emit(e.QueryLexer.TERM)},e.QueryLexer.termSeparator=e.tokenizer.separator,e.QueryLexer.lexText=function(t){for(;;){var r=t.next();if(r==e.QueryLexer.EOS)return e.QueryLexer.lexEOS;if(92!=r.charCodeAt(0)){if(":"==r)return e.QueryLexer.lexField;if("~"==r)return t.backup(),t.width()>0&&t.emit(e.QueryLexer.TERM),e.QueryLexer.lexEditDistance;if("^"==r)return t.backup(),t.width()>0&&t.emit(e.QueryLexer.TERM),e.QueryLexer.lexBoost;if("+"==r&&1===t.width())return t.emit(e.QueryLexer.PRESENCE),e.QueryLexer.lexText;if("-"==r&&1===t.width())return t.emit(e.QueryLexer.PRESENCE),e.QueryLexer.lexText;if(r.match(e.QueryLexer.termSeparator))return e.QueryLexer.lexTerm}else t.escapeCharacter()}},e.QueryParser=function(t,r){this.lexer=new e.QueryLexer(t),this.query=r,this.currentClause={},this.lexemeIdx=0},e.QueryParser.prototype.parse=function(){this.lexer.run(),this.lexemes=this.lexer.lexemes;for(var t=e.QueryParser.parseClause;t;)t=t(this);return this.query},e.QueryParser.prototype.peekLexeme=function(){return this.lexemes[this.lexemeIdx]},e.QueryParser.prototype.consumeLexeme=function(){var e=this.peekLexeme();return this.lexemeIdx+=1,e},e.QueryParser.prototype.nextClause=function(){var e=this.currentClause;this.query.clause(e),this.currentClause={}},e.QueryParser.parseClause=function(t){var r=t.peekLexeme();if(void 0!=r)switch(r.type){case e.QueryLexer.PRESENCE:return e.QueryParser.parsePresence;case e.QueryLexer.FIELD:return e.QueryParser.parseField;case e.QueryLexer.TERM:return e.QueryParser.parseTerm;default:var i="expected either a field or a term, found "+r.type;throw r.str.length>=1&&(i+=" with value '"+r.str+"'"),new e.QueryParseError(i,r.start,r.end)}},e.QueryParser.parsePresence=function(t){var r=t.consumeLexeme();if(void 0!=r){switch(r.str){case"-":t.currentClause.presence=e.Query.presence.PROHIBITED;break;case"+":t.currentClause.presence=e.Query.presence.REQUIRED;break;default:var i="unrecognised presence operator'"+r.str+"'";throw new e.QueryParseError(i,r.start,r.end)}var n=t.peekLexeme();if(void 0==n){var i="expecting term or field, found nothing";throw new e.QueryParseError(i,r.start,r.end)}switch(n.type){case e.QueryLexer.FIELD:return e.QueryParser.parseField;case e.QueryLexer.TERM:return e.QueryParser.parseTerm;default:var i="expecting term or field, found '"+n.type+"'";throw new e.QueryParseError(i,n.start,n.end)}}},e.QueryParser.parseField=function(t){var r=t.consumeLexeme();if(void 0!=r){if(t.query.allFields.indexOf(r.str)==-1){var i=t.query.allFields.map(function(e){return"'"+e+"'"}).join(", "),n="unrecognised field '"+r.str+"', possible fields: "+i;throw new e.QueryParseError(n,r.start,r.end)}t.currentClause.fields=[r.str];var s=t.peekLexeme();if(void 0==s){var n="expecting term, found nothing";throw new e.QueryParseError(n,r.start,r.end)}switch(s.type){case e.QueryLexer.TERM:return e.QueryParser.parseTerm;default:var n="expecting term, found '"+s.type+"'";throw new e.QueryParseError(n,s.start,s.end)}}},e.QueryParser.parseTerm=function(t){var r=t.consumeLexeme();if(void 0!=r){t.currentClause.term=r.str.toLowerCase(),r.str.indexOf("*")!=-1&&(t.currentClause.usePipeline=!1);var i=t.peekLexeme();if(void 0==i)return void t.nextClause();switch(i.type){case e.QueryLexer.TERM:return t.nextClause(),e.QueryParser.parseTerm;case e.QueryLexer.FIELD:return t.nextClause(),e.QueryParser.parseField;case e.QueryLexer.EDIT_DISTANCE:return e.QueryParser.parseEditDistance;case e.QueryLexer.BOOST:return e.QueryParser.parseBoost;case e.QueryLexer.PRESENCE:return t.nextClause(),e.QueryParser.parsePresence;default:var n="Unexpected lexeme type '"+i.type+"'";throw new e.QueryParseError(n,i.start,i.end)}}},e.QueryParser.parseEditDistance=function(t){var r=t.consumeLexeme();if(void 0!=r){var i=parseInt(r.str,10);if(isNaN(i)){var n="edit distance must be numeric";throw new e.QueryParseError(n,r.start,r.end)}t.currentClause.editDistance=i;var s=t.peekLexeme();if(void 0==s)return void t.nextClause();switch(s.type){case e.QueryLexer.TERM:return t.nextClause(),e.QueryParser.parseTerm;case e.QueryLexer.FIELD:return t.nextClause(),e.QueryParser.parseField;case e.QueryLexer.EDIT_DISTANCE:return e.QueryParser.parseEditDistance;case e.QueryLexer.BOOST:return e.QueryParser.parseBoost;case e.QueryLexer.PRESENCE:return t.nextClause(),e.QueryParser.parsePresence;default:var n="Unexpected lexeme type '"+s.type+"'";throw new e.QueryParseError(n,s.start,s.end)}}},e.QueryParser.parseBoost=function(t){var r=t.consumeLexeme();if(void 0!=r){var i=parseInt(r.str,10);if(isNaN(i)){var n="boost must be numeric";throw new e.QueryParseError(n,r.start,r.end)}t.currentClause.boost=i;var s=t.peekLexeme();if(void 0==s)return void t.nextClause();switch(s.type){case e.QueryLexer.TERM:return t.nextClause(),e.QueryParser.parseTerm;case e.QueryLexer.FIELD:return t.nextClause(),e.QueryParser.parseField;case e.QueryLexer.EDIT_DISTANCE:return e.QueryParser.parseEditDistance;case e.QueryLexer.BOOST:return e.QueryParser.parseBoost;case e.QueryLexer.PRESENCE:return t.nextClause(),e.QueryParser.parsePresence;default:var n="Unexpected lexeme type '"+s.type+"'";throw new e.QueryParseError(n,s.start,s.end)}}},function(e,t){"function"==typeof define&&define.amd?define(t):"object"==typeof exports?module.exports=t():e.lunr=t()}(this,function(){return e})}(); diff --git a/pr-preview/pr-110/_/webfonts/Inter/Inter-Regular.ttf b/pr-preview/pr-110/_/webfonts/Inter/Inter-Regular.ttf deleted file mode 100644 index 8d4eebf20..000000000 Binary files a/pr-preview/pr-110/_/webfonts/Inter/Inter-Regular.ttf and /dev/null differ diff --git a/pr-preview/pr-110/_/webfonts/Inter/Inter-SemiBold.ttf b/pr-preview/pr-110/_/webfonts/Inter/Inter-SemiBold.ttf deleted file mode 100644 index c6aeeb16a..000000000 Binary files a/pr-preview/pr-110/_/webfonts/Inter/Inter-SemiBold.ttf and /dev/null differ diff --git a/pr-preview/pr-110/_/webfonts/fa-brands-400.eot b/pr-preview/pr-110/_/webfonts/fa-brands-400.eot deleted file mode 100644 index cba6c6cce..000000000 Binary files a/pr-preview/pr-110/_/webfonts/fa-brands-400.eot and /dev/null differ diff --git a/pr-preview/pr-110/_/webfonts/fa-brands-400.svg b/pr-preview/pr-110/_/webfonts/fa-brands-400.svg deleted file mode 100644 index b9881a43b..000000000 --- a/pr-preview/pr-110/_/webfonts/fa-brands-400.svg +++ /dev/null @@ -1,3717 +0,0 @@ - - - - -Created by FontForge 20201107 at Wed Aug 4 12:25:29 2021 - By Robert Madole -Copyright (c) Font Awesome - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/_/webfonts/fa-brands-400.ttf b/pr-preview/pr-110/_/webfonts/fa-brands-400.ttf deleted file mode 100644 index 8d75dedda..000000000 Binary files a/pr-preview/pr-110/_/webfonts/fa-brands-400.ttf and /dev/null differ diff --git a/pr-preview/pr-110/_/webfonts/fa-brands-400.woff b/pr-preview/pr-110/_/webfonts/fa-brands-400.woff deleted file mode 100644 index 3375bef09..000000000 Binary files a/pr-preview/pr-110/_/webfonts/fa-brands-400.woff and /dev/null differ diff --git a/pr-preview/pr-110/_/webfonts/fa-brands-400.woff2 b/pr-preview/pr-110/_/webfonts/fa-brands-400.woff2 deleted file mode 100644 index 402f81c0b..000000000 Binary files a/pr-preview/pr-110/_/webfonts/fa-brands-400.woff2 and /dev/null differ diff --git a/pr-preview/pr-110/_/webfonts/fa-regular-400.eot b/pr-preview/pr-110/_/webfonts/fa-regular-400.eot deleted file mode 100644 index a4e598936..000000000 Binary files a/pr-preview/pr-110/_/webfonts/fa-regular-400.eot and /dev/null differ diff --git a/pr-preview/pr-110/_/webfonts/fa-regular-400.svg b/pr-preview/pr-110/_/webfonts/fa-regular-400.svg deleted file mode 100644 index 463af27c0..000000000 --- a/pr-preview/pr-110/_/webfonts/fa-regular-400.svg +++ /dev/null @@ -1,801 +0,0 @@ - - - - -Created by FontForge 20201107 at Wed Aug 4 12:25:29 2021 - By Robert Madole -Copyright (c) Font Awesome - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/_/webfonts/fa-regular-400.ttf b/pr-preview/pr-110/_/webfonts/fa-regular-400.ttf deleted file mode 100644 index 7157aafba..000000000 Binary files a/pr-preview/pr-110/_/webfonts/fa-regular-400.ttf and /dev/null differ diff --git a/pr-preview/pr-110/_/webfonts/fa-regular-400.woff b/pr-preview/pr-110/_/webfonts/fa-regular-400.woff deleted file mode 100644 index ad077c6be..000000000 Binary files a/pr-preview/pr-110/_/webfonts/fa-regular-400.woff and /dev/null differ diff --git a/pr-preview/pr-110/_/webfonts/fa-regular-400.woff2 b/pr-preview/pr-110/_/webfonts/fa-regular-400.woff2 deleted file mode 100644 index 56328948b..000000000 Binary files a/pr-preview/pr-110/_/webfonts/fa-regular-400.woff2 and /dev/null differ diff --git a/pr-preview/pr-110/_/webfonts/fa-solid-900.eot b/pr-preview/pr-110/_/webfonts/fa-solid-900.eot deleted file mode 100644 index e99417197..000000000 Binary files a/pr-preview/pr-110/_/webfonts/fa-solid-900.eot and /dev/null differ diff --git a/pr-preview/pr-110/_/webfonts/fa-solid-900.svg b/pr-preview/pr-110/_/webfonts/fa-solid-900.svg deleted file mode 100644 index 00296e959..000000000 --- a/pr-preview/pr-110/_/webfonts/fa-solid-900.svg +++ /dev/null @@ -1,5034 +0,0 @@ - - - - -Created by FontForge 20201107 at Wed Aug 4 12:25:29 2021 - By Robert Madole -Copyright (c) Font Awesome - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/_/webfonts/fa-solid-900.ttf b/pr-preview/pr-110/_/webfonts/fa-solid-900.ttf deleted file mode 100644 index 25abf389e..000000000 Binary files a/pr-preview/pr-110/_/webfonts/fa-solid-900.ttf and /dev/null differ diff --git a/pr-preview/pr-110/_/webfonts/fa-solid-900.woff b/pr-preview/pr-110/_/webfonts/fa-solid-900.woff deleted file mode 100644 index 23ee66344..000000000 Binary files a/pr-preview/pr-110/_/webfonts/fa-solid-900.woff and /dev/null differ diff --git a/pr-preview/pr-110/_/webfonts/fa-solid-900.woff2 b/pr-preview/pr-110/_/webfonts/fa-solid-900.woff2 deleted file mode 100644 index 2217164f0..000000000 Binary files a/pr-preview/pr-110/_/webfonts/fa-solid-900.woff2 and /dev/null differ diff --git a/pr-preview/pr-110/_attachments/Studio-Express-InstallGuide.pdf b/pr-preview/pr-110/_attachments/Studio-Express-InstallGuide.pdf deleted file mode 100644 index 4a50319eb..000000000 Binary files a/pr-preview/pr-110/_attachments/Studio-Express-InstallGuide.pdf and /dev/null differ diff --git a/pr-preview/pr-110/_attachments/vantage-with-python-libraries.ipynb b/pr-preview/pr-110/_attachments/vantage-with-python-libraries.ipynb deleted file mode 100755 index 51a1eb546..000000000 --- a/pr-preview/pr-110/_attachments/vantage-with-python-libraries.ipynb +++ /dev/null @@ -1,232 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "e1cfad31-1ff2-4583-97e0-c118d702bf90", - "metadata": {}, - "source": [ - "# Connect to Vantage Using Python Libraries\n", - "There are many ways to call Teradata Vantage from a Python notebook. Since Vantage comes with a Python driver that is compliant with `PEP-249 Python Database API Specification 2.0` the Teradata driver will work with any library that supports `PEP-249`. In this demo notebook we will focus on `Pandas` and `ipython-sql`.\n", - "\n", - "## Teradata Python driver with Pandas\n", - "First, we install required python libraries:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "65b5c42f-af87-492b-984f-59caf506248a", - "metadata": {}, - "outputs": [], - "source": [ - "import sys\n", - "!{sys.executable} -m pip install teradatasqlalchemy" - ] - }, - { - "cell_type": "markdown", - "id": "f25bc766-4d7d-4fc7-be4b-e9a4201e4d3b", - "metadata": {}, - "source": [ - "We now import pandas and define the db connection string. In this case, we are running the notebook in Docker. \n", - "We also have a Vantage Express running in a VM on the same host machine. `host.docker.internal` allows us to reference the host IP that will forward traffic to the Vantage Express VM." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "ef1c4976-1644-4036-8b43-ec9ec8b917ca", - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "db_connection_string = \"teradatasql://dbc:dbc@host.docker.internal/dbc\"" - ] - }, - { - "cell_type": "markdown", - "id": "04179e4a-de3e-4831-8531-087d3c378607", - "metadata": {}, - "source": [ - "We can now use the connection string with pandas `read_sql` function:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "6700a5d8-607c-4f63-ae08-23b3209accf3", - "metadata": {}, - "outputs": [], - "source": [ - "pd.read_sql(\"SELECT * FROM dbc.dbcinfo\", con = db_connection_string)" - ] - }, - { - "cell_type": "markdown", - "id": "7c03df90-e533-4f55-9df5-ac671f1bebc1", - "metadata": {}, - "source": [ - "## Teradata Python driver with ipython-sql\n", - "First, we install the required python libraries:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "cf873361-3466-4811-b99f-f3b0d9489416", - "metadata": {}, - "outputs": [], - "source": [ - "import sys\n", - "!{sys.executable} -m pip install ipython-sql teradatasqlalchemy" - ] - }, - { - "cell_type": "markdown", - "id": "fc6a3fd7-7edc-4f8a-bb86-c469ca14c061", - "metadata": {}, - "source": [ - "We load `sql` magic from `ipython-sql` library and connect to teradata. In this case, we are running the notebook in Docker. \n", - "We also have a Vantage Express running in a VM on the same host machine. `host.docker.internal` allows us to reference the host IP that will forward traffic to the Vantage Express VM." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "87e6a1ce-fc5a-41d9-bb1b-912bd5dec424", - "metadata": {}, - "outputs": [], - "source": [ - "%load_ext sql\n", - "%sql teradatasql://dbc:dbc@host.docker.internal/dbc" - ] - }, - { - "cell_type": "markdown", - "id": "ba15de25-8d1b-4450-9925-3a2aa8d8901d", - "metadata": {}, - "source": [ - "This is how we can run an SQL query. Note how `%%sql` indicates that the cell will contain SQL." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "cb1e92f7-1c16-4afa-ba55-3318362eae4f", - "metadata": {}, - "outputs": [], - "source": [ - "%%sql\n", - "SELECT * FROM dbc.dbcinfo" - ] - }, - { - "cell_type": "markdown", - "id": "d9191d60-d369-4331-b207-07937bfab5e0", - "metadata": {}, - "source": [ - "It's also possible to assign the result of a query to a variable and then drop it to a Pandas dataframe." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "8fe293c6-8dc5-4b37-b03e-13860938c72d", - "metadata": {}, - "outputs": [], - "source": [ - "result = %sql SELECT * FROM dbc.dbcinfo\n", - "result.DataFrame()" - ] - }, - { - "cell_type": "markdown", - "id": "8a16b6bc-7c98-4ebe-aff0-55914005a5ea", - "metadata": {}, - "source": [ - "Here is how you can plot using `matplotlib` directly on the result object:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "b5626902-66db-4418-99f0-811efb3d70f0", - "metadata": {}, - "outputs": [], - "source": [ - "result = %sql SELECT count(*), UserName FROM dbc.EventLog GROUP BY UserName\n", - "%matplotlib inline\n", - "result.pie()" - ] - }, - { - "cell_type": "markdown", - "id": "e23e94e7-9515-40ed-aeef-3e63740639a1", - "metadata": {}, - "source": [ - "Results can be written to a csv file:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "1fdb44e9-2c0f-4a5e-aa2d-e953b224bb7f", - "metadata": {}, - "outputs": [], - "source": [ - "result = %sql SELECT count(*), UserName FROM dbc.EventLog GROUP BY UserName\n", - "result.csv(filename='log-aggregates.csv')" - ] - }, - { - "cell_type": "markdown", - "id": "c44e6b50-2026-4a23-b8a9-b7c51edba100", - "metadata": {}, - "source": [ - "If you happen to have a variable that you want to use in a query, then `sql` magic supports variable substitution:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "27e8622c-88a2-41ae-8443-5e031b4bb428", - "metadata": {}, - "outputs": [], - "source": [ - "name='TDWM'" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "5673b0ba-3347-4398-b449-e60dc555eb9a", - "metadata": {}, - "outputs": [], - "source": [ - "%%sql\n", - "SELECT count(*) FROM dbc.Eventlog where UserName = '{name}'" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.6" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/pr-preview/pr-110/_attachments/vbox-install.ps1 b/pr-preview/pr-110/_attachments/vbox-install.ps1 deleted file mode 100644 index 933e297fd..000000000 --- a/pr-preview/pr-110/_attachments/vbox-install.ps1 +++ /dev/null @@ -1,59 +0,0 @@ -$vmName = If([System.Environment]::GetEnvironmentVariable('VM_NAME')) {[System.Environment]::GetEnvironmentVariable('VM_NAME')} Else {"Vantage Express"} -$diskDir = [System.Environment]::GetEnvironmentVariable('VM_IMAGE_DIR') -$disk1 = Get-ChildItem -Path $diskDir -Recurse -Filter "*disk1*" -$disk2 = Get-ChildItem -Path $diskDir -Recurse -Filter "*disk2*" -$disk3 = Get-ChildItem -Path $diskDir -Recurse -Filter "*disk3*" - -#make sure ssh is enabled -Add-WindowsCapability -Online -Name OpenSSH.Client* - -#add virtualbox bin to the path -$env:Path += ";C:\Program Files\Oracle\VirtualBox;c:\windows\system32\OpenSSH\" - -Invoke-Expression "vboxmanage createvm --name `"$vmName`" --register --ostype openSUSE_64" -Invoke-Expression "vboxmanage modifyvm `"$vmName`" --ioapic on --memory 6000 --vram 128 --nic1 nat --graphicscontroller vmsvga --usb on --mouse usbtablet --clipboard-mode bidirectional --draganddrop bidirectional" -Invoke-Expression "vboxmanage storagectl `"$vmName`" --name 'SATA Controller' --add sata --controller IntelAhci" -Invoke-Expression "vboxmanage storageattach `"$vmName`" --storagectl 'SATA Controller' --port 0 --device 0 --type hdd --medium `"$($disk1.FullName)`"" -Invoke-Expression "vboxmanage storageattach `"$vmName`" --storagectl 'SATA Controller' --port 1 --device 0 --type hdd --medium `"$($disk2.FullName)`"" -Invoke-Expression "vboxmanage storageattach `"$vmName`" --storagectl 'SATA Controller' --port 2 --device 0 --type hdd --medium `"$($disk3.FullName)`"" -# this operation is necessary to work around a bug in `storageattach --type dvddrive --medium additions` -Invoke-Expression "vboxmanage storageattach `"$vmName`" --storagectl 'SATA Controller' --port 3 --medium emptydrive" -Invoke-Expression "vboxmanage storageattach `"$vmName`" --storagectl 'SATA Controller' --port 3 --type dvddrive --medium additions" -Invoke-Expression "vboxmanage modifyvm `"$vmName`" --natpf1 `"tdssh,tcp,,4422,,22`"" -Invoke-Expression "vboxmanage modifyvm `"$vmName`" --natpf1 `"tddb,tcp,,1025,,1025`"" -Invoke-Expression "vboxmanage startvm `"$vmName`" --type headless" - -#advance through grub options to speed things up -Invoke-Expression "vboxmanage controlvm `"$vmName`" keyboardputscancode 1c 1c" - -$n = 1 -DO { - Write-Host "Attempting to ssh into the vm. Attempt $n. This might take a minute." - Invoke-Expression "ssh -p 4422 -o StrictHostKeyChecking=no root@localhost 'mount /dev/cdrom /media/dvd; /media/dvd/VBoxLinuxAdditions.run; echo `$?'" - if($lastexitcode -eq '0') { - break - } - - Write-Host "Waiting 10 seconds before the next attempt." - $n++ - Start-Sleep -s 10 -} Until ($n -ge 10) - -Invoke-Expression "vboxmanage controlvm `"$vmName`" acpipowerbutton" - -$n = 1 -DO { - Write-Host "Checking if the vm is still running. Attempt $n. This might take a minute." - $result = Invoke-Expression "vboxmanage showvminfo `"$vmName`"" - if(-Not (Select-String -InputObject $result -pattern "running" -quiet)) { - break - } - - Write-Host "Waiting 10 seconds before the next attempt." - $n++ - Start-Sleep -s 10 -} Until ($n -ge 10) - -Invoke-Expression "vboxmanage startvm `"$vmName`"" -#advance through grub options to speed things up -Invoke-Expression "vboxmanage controlvm `"$vmName`" keyboardputscancode 1c 1c" diff --git a/pr-preview/pr-110/_attachments/vbox-install.sh b/pr-preview/pr-110/_attachments/vbox-install.sh deleted file mode 100644 index d786b0372..000000000 --- a/pr-preview/pr-110/_attachments/vbox-install.sh +++ /dev/null @@ -1,45 +0,0 @@ -#!/usr/bin/env bash - -DEFAULT_VM_NAME="Vantage Express" -VM_NAME="${VM_NAME:-$DEFAULT_VM_NAME}" -vboxmanage createvm --name "$VM_NAME" --register --ostype openSUSE_64 -vboxmanage modifyvm "$VM_NAME" --ioapic on --memory 6000 --vram 128 --nic1 nat --graphicscontroller vmsvga --usb on --mouse usbtablet --clipboard-mode bidirectional --draganddrop bidirectional -vboxmanage storagectl "$VM_NAME" --name "SATA Controller" --add sata --controller IntelAhci -vboxmanage storageattach "$VM_NAME" --storagectl "SATA Controller" --port 0 --device 0 --type hdd --medium "$(find $VM_IMAGE_DIR -name '*disk1*')" -vboxmanage storageattach "$VM_NAME" --storagectl "SATA Controller" --port 1 --device 0 --type hdd --medium "$(find $VM_IMAGE_DIR -name '*disk2*')" -vboxmanage storageattach "$VM_NAME" --storagectl "SATA Controller" --port 2 --device 0 --type hdd --medium "$(find $VM_IMAGE_DIR -name '*disk3*')" -# this operation is necessary to work around a bug in `storageattach --type dvddrive --medium additions` -vboxmanage storageattach "$VM_NAME" --storagectl "SATA Controller" --port 3 --medium emptydrive -vboxmanage storageattach "$VM_NAME" --storagectl "SATA Controller" --port 3 --type dvddrive --medium additions -vboxmanage modifyvm "$VM_NAME" --natpf1 "tdssh,tcp,,4422,,22" -vboxmanage modifyvm "$VM_NAME" --natpf1 "tddb,tcp,,1025,,1025" -vboxmanage startvm "$VM_NAME" --type headless - -#advance through grub options to speed things up -vboxmanage controlvm "$VM_NAME" keyboardputscancode 1c 1c - -n=1 -until [ "$n" -ge 10 ] -do - echo "Attempting to ssh into the vm. Attempt $n. This might take a minute." - ssh -p 4422 -o StrictHostKeyChecking=no root@localhost 'mount /dev/cdrom /media/dvd; /media/dvd/VBoxLinuxAdditions.run; echo $?' && break - n=$((n+1)) - echo "Waiting 10 seconds before the next attempt." - sleep 10 -done - -vboxmanage controlvm "$VM_NAME" acpipowerbutton - -n=1 -until [ "$n" -ge 10 ] -do - echo "Checking if the vm is still running. Attempt $n. This might take a minute." - vboxmanage showvminfo "$VM_NAME" | grep -c "running" | grep 0 && break - n=$((n+1)) - echo "Waiting 10 seconds before the next attempt." - sleep 10 -done - -vboxmanage startvm "$VM_NAME" -#advance through grub options to speed things up -vboxmanage controlvm "$VM_NAME" keyboardputscancode 1c 1c diff --git a/pr-preview/pr-110/_images/anypoint.import.projects.png b/pr-preview/pr-110/_images/anypoint.import.projects.png deleted file mode 100644 index ba9e77a14..000000000 Binary files a/pr-preview/pr-110/_images/anypoint.import.projects.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/banking.model.png b/pr-preview/pr-110/_images/banking.model.png deleted file mode 100644 index a3cc6b501..000000000 Binary files a/pr-preview/pr-110/_images/banking.model.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/browser.copy.curl.png b/pr-preview/pr-110/_images/browser.copy.curl.png deleted file mode 100644 index 71c085f19..000000000 Binary files a/pr-preview/pr-110/_images/browser.copy.curl.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/browser.network.png b/pr-preview/pr-110/_images/browser.network.png deleted file mode 100644 index 06cb7985a..000000000 Binary files a/pr-preview/pr-110/_images/browser.network.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/csv.aggregation.png b/pr-preview/pr-110/_images/csv.aggregation.png deleted file mode 100644 index da62a935e..000000000 Binary files a/pr-preview/pr-110/_images/csv.aggregation.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/csv.data.import.png b/pr-preview/pr-110/_images/csv.data.import.png deleted file mode 100644 index e8b0e6905..000000000 Binary files a/pr-preview/pr-110/_images/csv.data.import.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/csv.foreign.table.select.png b/pr-preview/pr-110/_images/csv.foreign.table.select.png deleted file mode 100644 index 1d974b92b..000000000 Binary files a/pr-preview/pr-110/_images/csv.foreign.table.select.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/csv.result.png b/pr-preview/pr-110/_images/csv.result.png deleted file mode 100644 index c3adb1016..000000000 Binary files a/pr-preview/pr-110/_images/csv.result.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/csv.schema.png b/pr-preview/pr-110/_images/csv.schema.png deleted file mode 100644 index 847e6b680..000000000 Binary files a/pr-preview/pr-110/_images/csv.schema.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/diag-280ab8290137be73ca03012b0274cfa35160a364.svg b/pr-preview/pr-110/_images/diag-280ab8290137be73ca03012b0274cfa35160a364.svg deleted file mode 100644 index 3559b6800..000000000 --- a/pr-preview/pr-110/_images/diag-280ab8290137be73ca03012b0274cfa35160a364.svg +++ /dev/null @@ -1,121 +0,0 @@ - - - - - - - - - -customers - - -customers - - -id   - [int] - - -name   - [varchar] - - -surname   - [varchar] - - -email   - [varchar] - - - -orders - - -orders - - -id   - [int] - - -customer_id   - [int] - - -order_date   - [varchar] - - -status   - [varchar] - - - -customers--orders - -0..N -1 - - - -order_products - - -order_products - - -order_id    - [int] - - -product_id   - [int] - - -quantity   - [int] - - - -orders--order_products - -0..N -1 - - - -products - - -products - - -id   - [int] - - -name   - [varchar] - - -category   - [varchar] - - -unit_price   - [varchar] - - - -products--order_products - -0..N -1 - - - diff --git a/pr-preview/pr-110/_images/diag-b0140f114a499a0a6a1334b4db839c8893062ed7.svg b/pr-preview/pr-110/_images/diag-b0140f114a499a0a6a1334b4db839c8893062ed7.svg deleted file mode 100644 index d026eb6c9..000000000 --- a/pr-preview/pr-110/_images/diag-b0140f114a499a0a6a1334b4db839c8893062ed7.svg +++ /dev/null @@ -1,133 +0,0 @@ - - - - - - - - - -dim_customers - - -dim_customers - - -customer_id   - [int] - - -first_name   - [varchar] - - -last_name   - [varchar] - - -email   - [varchar] - - - -fct_order_details - - -fct_order_details - - -order_id   - [int] - - -product_id   - [int] - - -customer_id   - [int] - - -order_date   - [varchar] - - -unit_price   - [varchar] - - -quantity   - [int] - - -amount   - [varchar] - - - -dim_customers--fct_order_details - -0..N -1 - - - -dim_orders - - -dim_orders - - -order_id   - [int] - - -order_date   - [varchar] - - -order_status   - [varchar] - - - -dim_orders--fct_order_details - -0..N -1 - - - -dim_products - - -dim_products - - -product_id   - [int] - - -product_name   - [varchar] - - -product_category   - [varchar] - - -price_dollars   - [varchar] - - - -dim_products--fct_order_details - -0..N -1 - - - diff --git a/pr-preview/pr-110/_images/diag-cfb2d5cb8c33c037d82e57adbd8d36445946ce00.svg b/pr-preview/pr-110/_images/diag-cfb2d5cb8c33c037d82e57adbd8d36445946ce00.svg deleted file mode 100644 index a640ee294..000000000 --- a/pr-preview/pr-110/_images/diag-cfb2d5cb8c33c037d82e57adbd8d36445946ce00.svg +++ /dev/null @@ -1,101 +0,0 @@ - - - - - - - - - -dimension: customers - - -dimension: customers - - -customer_id   - [int] - - -first_name   - [varchar] - - -last_name   - [varchar] - - -email   - [varchar] - - -first_order   - [date] - - -most_recent_order   - [date] - - -number_of_orders   - [int] - - -total_order_amount   - [int] - - - -fact: orders - - -fact: orders - - -order_id   - [int] - - -customer_id   - [int] - - -order_date   - [date] - - -status   - [varchar] - - -amount   - [int] - - -credit_card_amount   - [int] - - -coupon_amount   - [int] - - -bank_transfer_amount   - [int] - - -gift_card_amount   - [int] - - - -dimension: customers--fact: orders - -0..N -1 - - - diff --git a/pr-preview/pr-110/_images/diag-f4281ff8ede0df7faea97f80936093e7b4a0bd21.svg b/pr-preview/pr-110/_images/diag-f4281ff8ede0df7faea97f80936093e7b4a0bd21.svg deleted file mode 100644 index cf3c00a8c..000000000 --- a/pr-preview/pr-110/_images/diag-f4281ff8ede0df7faea97f80936093e7b4a0bd21.svg +++ /dev/null @@ -1,95 +0,0 @@ - - - - - - - - - -customers - - -customers - - -id   - [int] - - -first_name   - [varchar] - - -last_name   - [varchar] - - -email   - [varchar] - - - -orders - - -orders - - -id   - [int] - - -user_id   - [int] - - -order_date   - [date] - - -status   - [varchar] - - - -customers--orders - -0..N -1 - - - -payments - - -payments - - -id   - [int] - - -order_id   - [int] - - -payment_method   - [int] - - -amount   - [int] - - - -orders--payments - -0..N -1 - - - diff --git a/pr-preview/pr-110/_images/flow.png b/pr-preview/pr-110/_images/flow.png deleted file mode 100644 index 4f5a69cb6..000000000 Binary files a/pr-preview/pr-110/_images/flow.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/getting-started-vbox/start-vm.png b/pr-preview/pr-110/_images/getting-started-vbox/start-vm.png deleted file mode 100644 index eccba9004..000000000 Binary files a/pr-preview/pr-110/_images/getting-started-vbox/start-vm.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/gettingstarteddemo.ipynb.png b/pr-preview/pr-110/_images/gettingstarteddemo.ipynb.png deleted file mode 100644 index d81bb0a7f..000000000 Binary files a/pr-preview/pr-110/_images/gettingstarteddemo.ipynb.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/icons/arrow_drop_down.svg b/pr-preview/pr-110/_images/icons/arrow_drop_down.svg deleted file mode 100644 index 670ad8f64..000000000 --- a/pr-preview/pr-110/_images/icons/arrow_drop_down.svg +++ /dev/null @@ -1 +0,0 @@ - \ No newline at end of file diff --git a/pr-preview/pr-110/_images/icons/external-symbol.svg b/pr-preview/pr-110/_images/icons/external-symbol.svg deleted file mode 100644 index 564123c50..000000000 --- a/pr-preview/pr-110/_images/icons/external-symbol.svg +++ /dev/null @@ -1,3 +0,0 @@ - - - diff --git a/pr-preview/pr-110/_images/insert-guest-additions-dvd.png b/pr-preview/pr-110/_images/insert-guest-additions-dvd.png deleted file mode 100644 index 6426d36ea..000000000 Binary files a/pr-preview/pr-110/_images/insert-guest-additions-dvd.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/new.connection.hr.png b/pr-preview/pr-110/_images/new.connection.hr.png deleted file mode 100644 index e8ab30d07..000000000 Binary files a/pr-preview/pr-110/_images/new.connection.hr.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/run-vantage/boot-manager-menu.png b/pr-preview/pr-110/_images/run-vantage/boot-manager-menu.png deleted file mode 100644 index f564cdcb0..000000000 Binary files a/pr-preview/pr-110/_images/run-vantage/boot-manager-menu.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/run-vantage/grub-menu.png b/pr-preview/pr-110/_images/run-vantage/grub-menu.png deleted file mode 100644 index b2ca241a0..000000000 Binary files a/pr-preview/pr-110/_images/run-vantage/grub-menu.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/run-vantage/new.connection.png b/pr-preview/pr-110/_images/run-vantage/new.connection.png deleted file mode 100644 index 1c16cf504..000000000 Binary files a/pr-preview/pr-110/_images/run-vantage/new.connection.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/run-vantage/new.connection.profile.png b/pr-preview/pr-110/_images/run-vantage/new.connection.profile.png deleted file mode 100644 index 45f655281..000000000 Binary files a/pr-preview/pr-110/_images/run-vantage/new.connection.profile.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/run-vantage/okay-the-security-popup.png b/pr-preview/pr-110/_images/run-vantage/okay-the-security-popup.png deleted file mode 100644 index 1e9fbaaaa..000000000 Binary files a/pr-preview/pr-110/_images/run-vantage/okay-the-security-popup.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/run-vantage/start-gnome-terminal.png b/pr-preview/pr-110/_images/run-vantage/start-gnome-terminal.png deleted file mode 100644 index 68dad8eba..000000000 Binary files a/pr-preview/pr-110/_images/run-vantage/start-gnome-terminal.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/run-vantage/start-teradata-studio-express.png b/pr-preview/pr-110/_images/run-vantage/start-teradata-studio-express.png deleted file mode 100644 index 7fc230ecb..000000000 Binary files a/pr-preview/pr-110/_images/run-vantage/start-teradata-studio-express.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/run-vantage/vm.login.png b/pr-preview/pr-110/_images/run-vantage/vm.login.png deleted file mode 100644 index 8177ead59..000000000 Binary files a/pr-preview/pr-110/_images/run-vantage/vm.login.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/run-vantage/wait-for-gui.png b/pr-preview/pr-110/_images/run-vantage/wait-for-gui.png deleted file mode 100644 index d93247832..000000000 Binary files a/pr-preview/pr-110/_images/run-vantage/wait-for-gui.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/run.query.button.png b/pr-preview/pr-110/_images/run.query.button.png deleted file mode 100644 index 8c61399ca..000000000 Binary files a/pr-preview/pr-110/_images/run.query.button.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/segment.flow.diagram.png b/pr-preview/pr-110/_images/segment.flow.diagram.png deleted file mode 100644 index bb241e11d..000000000 Binary files a/pr-preview/pr-110/_images/segment.flow.diagram.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/select.import.option.png b/pr-preview/pr-110/_images/select.import.option.png deleted file mode 100644 index 545fd7729..000000000 Binary files a/pr-preview/pr-110/_images/select.import.option.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/select.results.png b/pr-preview/pr-110/_images/select.results.png deleted file mode 100644 index 5ff0f624e..000000000 Binary files a/pr-preview/pr-110/_images/select.results.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/teradata-vantage-architecture-concepts/teradata_architecture_major_components.png b/pr-preview/pr-110/_images/teradata-vantage-architecture-concepts/teradata_architecture_major_components.png deleted file mode 100644 index a7f1d69b0..000000000 Binary files a/pr-preview/pr-110/_images/teradata-vantage-architecture-concepts/teradata_architecture_major_components.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/teradata-vantage-architecture-concepts/teradata_data_distribution.png b/pr-preview/pr-110/_images/teradata-vantage-architecture-concepts/teradata_data_distribution.png deleted file mode 100644 index d7dea8873..000000000 Binary files a/pr-preview/pr-110/_images/teradata-vantage-architecture-concepts/teradata_data_distribution.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/teradata-vantage-architecture-concepts/teradata_parallelism.png b/pr-preview/pr-110/_images/teradata-vantage-architecture-concepts/teradata_parallelism.png deleted file mode 100644 index 05b2524bb..000000000 Binary files a/pr-preview/pr-110/_images/teradata-vantage-architecture-concepts/teradata_parallelism.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/teradata-vantage-architecture-concepts/teradata_retrieval_architecture.png b/pr-preview/pr-110/_images/teradata-vantage-architecture-concepts/teradata_retrieval_architecture.png deleted file mode 100644 index c043e6d9c..000000000 Binary files a/pr-preview/pr-110/_images/teradata-vantage-architecture-concepts/teradata_retrieval_architecture.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/utm.drives.png b/pr-preview/pr-110/_images/utm.drives.png deleted file mode 100644 index 0178b8b53..000000000 Binary files a/pr-preview/pr-110/_images/utm.drives.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/utm.final.png b/pr-preview/pr-110/_images/utm.final.png deleted file mode 100644 index 78d7511d3..000000000 Binary files a/pr-preview/pr-110/_images/utm.final.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/utm.hardware.png b/pr-preview/pr-110/_images/utm.hardware.png deleted file mode 100644 index a2b8b64e4..000000000 Binary files a/pr-preview/pr-110/_images/utm.hardware.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/utm.network.png b/pr-preview/pr-110/_images/utm.network.png deleted file mode 100644 index 96607e08d..000000000 Binary files a/pr-preview/pr-110/_images/utm.network.png and /dev/null differ diff --git a/pr-preview/pr-110/_images/vantage-with-ipython-sql.ipynb.png b/pr-preview/pr-110/_images/vantage-with-ipython-sql.ipynb.png deleted file mode 100644 index e03cfc28a..000000000 Binary files a/pr-preview/pr-110/_images/vantage-with-ipython-sql.ipynb.png and /dev/null differ diff --git a/pr-preview/pr-110/advanced-dbt.html b/pr-preview/pr-110/advanced-dbt.html deleted file mode 100644 index 14fb4bfa2..000000000 --- a/pr-preview/pr-110/advanced-dbt.html +++ /dev/null @@ -1,2858 +0,0 @@ - - - - - - Advanced dbt use cases with Teradata Vantage :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Advanced dbt use cases with Teradata Vantage

-

Author: Daniel Herrera
-Last updated: May 22th, 2023

-
-

Overview

-
-
-

This project showcases the integration of dbt with Teradata Vantage from an advanced user perspective. -If you are new to data engineering with dbt we recommend that you start with our introductory project.

-
-
-

The advanced use cases showcased in the demo are the following:

-
-
-
    -
  • -

    Incremental materializations

    -
  • -
  • -

    Utility macros

    -
  • -
  • -

    Optimizing table/view creations with Teradata-specific modifiers

    -
  • -
-
-
-

The application of these concepts is illustrated through the ELT process of teddy_retailers, a fictional store.

-
-
-
-
-

Prerequisites

-
-
-
    -
  • -

    Access to a Teradata Vantage instance.

    -
    - - - - - -
    - - -If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. -
    -
    -
  • -
  • -

    Python 3.7, 3.8, 3.9 or 3.10 installed.

    -
  • -
  • -

    A database client for running database commands, an example of the configuration of one such client is presented in this tutorial..

    -
  • -
-
-
-
-
-

Demo project setup

-
-
-
    -
  1. -

    Clone the tutorial repository and cd into the project directory:

    -
    -
    -
    git clone https://github.com/Teradata/teddy_retailers_dbt-dev teddy_retailers
    -cd teddy_retailers
    -
    -
    -
  2. -
  3. -

    Create a new python environment to manage dbt and its dependencies. Confirm that the Python Version you are using to create the environment is within the supported versions listed above.

    -
    -
    -
    python -m venv env
    -
    -
    -
  4. -
  5. -

    Activate the python environment according to your operating system.

    -
    -
    -
    source env/bin/activate
    -
    -
    -
    -

    for Mac, Linux, or

    -
    -
    -
    -
    env\Scripts\activate
    -
    -
    -
    -

    for Windows

    -
    -
  6. -
  7. -

    Install the dbt-teradata module. The core dbt module is included as a dependency so you don’t have to install it separately:

    -
    -
    -
    pip install dbt-teradata
    -
    -
    -
  8. -
  9. -

    Install the project’s dependencies dbt-utils and teradata-utils. This can be done through the following command:

    -
    -
    -
    dbt deps
    -
    -
    -
  10. -
-
-
-
-
-

Data warehouse setup

-
-
-

The demo project assumes that the source data is already loaded into your data warehouse, this mimics the way that dbt is used in a production environment. -To achieve this objective we provide public datasets available in Google Cload Platform (GCP), and scripts to load those datasets into your mock data warehouse.

-
-
-
    -
  1. -

    Create or select a working database. The dbt profile in the project points to a database called teddy_retailers. You can change the schema value to point to an existing database in your Teradata Vantage instance or you can create the teddy_retailers database running the following script in your database client:

    -
    -
    -
    CREATE DATABASE teddy_retailers
    -AS PERMANENT = 110e6,
    -    SPOOL = 220e6;
    -
    -
    -
  2. -
  3. -

    Load Initial data set. -To load the initial data set into the data warehouse, the required scripts are available in the references/inserts/create_data.sql path of the project. -You can execute these scripts by copying and pasting them into your database client. For guidance on running these scripts in your specific case please consult your database client’s documentation.

    -
  4. -
-
-
-
-
-

Configure dbt

-
-
-

We will now configure dbt to connect to your Vantage database. -Create the file $HOME/.dbt/profiles.yml with the following content. Adjust <host>, <user>, <password> to match your Teradata Vantage instance. -If you have already used dbt before in your environment you only need to add a profile for the project in your home’s directory .dbt/profiles.yml file. -If the directory .dbt doesn’t exist in your system yet you will need to create it and add the profiles.yml to manage your dbt profiles.

-
-
-
-
teddy_retailers:
-  outputs:
-    dev:
-      type: teradata
-      host: <host>
-      user: <user>
-      password: <password>
-      logmech: TD2
-      schema: teddy_retailers
-      tmode: ANSI
-      threads: 1
-      timeout_seconds: 300
-      priority: interactive
-      retries: 1
-  target: dev
-
-
-
-

Now, that we have the profile file in place, we can validate the setup:

-
-
-
-
dbt debug
-
-
-
-

If the debug command returned errors, you likely have an issue with the content of profiles.yml.

-
-
-
-
-

About the Teddy Retailers warehouse

-
-
-

As mentioned, teddy_retailers is a fictional store. -Through dbt driven transformations we transform source data ingested from the`teddy_retailers` transactional database into a star schema ready for analytics.

-
-
-

The data models

-
-

The source data consists of the following tables customers, orders, products, and order_products, according to the following Entity Relations Diagram:

-
-
-
-Diagram -
-
-
-

Using dbt, we leverage the source data tables to construct the following dimensional model, which is optimized for analytics tools.

-
-
-
-Diagram -
-
-
-
-

The sources

-
-
    -
  • -

    For Teddy Retailers, the orders and order_products sources are periodically updated by the organization’s ELT (Extract, Load, Transform) process.

    -
  • -
  • -

    The updated data only includes the latest changes rather than the entire dataset due to its large volume.

    -
  • -
  • -

    To address this challenge, it is necessary to capture these incremental updates while preserving the previously available data.

    -
  • -
-
-
-
-
-
-

The dbt models

-
-
-

The schema.yml file in the project’s models directory specifies the sources for our models. These sources align with the data we loaded from GCP using our SQL scripts.

-
-
-

Staging area

-
-

The staging area models are merely ingesting the data from each of the sources and renaming each field, if appropiate. -In the schema.yml of this directory we define basic integrity checks for the primary keys.

-
-
-
-

Core area

-
-

The following advanced dbt concepts are applied in the models at this stage:

-
-
-

Incremental materializations

-
-

The schema.yml file in this directory specifies that the materializations of the two models we are building are incremental. -We employ different strategies for these models:

-
-
-
    -
  • -

    For the all_orders model, we utilize the delete+insert strategy. This strategy is implemented because there may be changes in the status of an order that are included in the data updates.

    -
  • -
  • -

    For the all_order_products model, we employ the default append strategy. This approach is chosen because the same combination of order_id and product_id may appear multiple times in the sources. -This indicates that a new quantity of the same product has been added or removed from a specific order.

    -
  • -
-
-
-
-

Macro assisted assertions

-
-

Within the all_order_products model, we have included an assertion with the help of a macro to test and guarantee that the resulting model encompasses a unique combination of order_id and product_id. This combination denotes the latest quantity of products of a specific type per order.

-
-
-
-

Teradata modifiers

-
-

For both the all_order and all_order_products models, we have incorporated Teradata Modifiers to enhance tracking of these two core models. -To facilitate collecting statistics, we have added a post_hook that instructs the database connector accordingly. Additionally, we have created an index on the order_id column within the all_orders table.

-
-
-
-
-
-
-

Running transformations

-
-
-

Create dimensional model with baseline data

-
-

By executing dbt, we generate the dimensional model using the baseline data.

-
-
-
-
dbt run
-
-
-
-

This will create both our core and dimensional models using the baseline data.

-
-
-
-

Test the data

-
-

We can run our defined test by executing:

-
-
-
-
dbt test
-
-
-
-
-

Running sample queries

-
-

You can find sample business intelligence queries in the references/query path of the project. These queries allow you to analyze the factual data based on dimensions such as customers, orders, and products.

-
-
-
-

Mocking the ELT process

-
-

The scripts for loading updates into the source data set can be found in the references/inserts/update_data.sql path of the project.

-
-
-

After updating the data sources, you can proceed with the aforementioned steps: running dbt, testing the data, and executing sample queries. This will allow you to visualize the variations and incremental updates in the data.

-
-
-
-
-
-

Summary

-
-
-

In this tutorial, we explored the utilization of advanced dbt concepts with Teradata Vantage. -The sample project showcased the transformation of source data into a dimensional data mart. -Throughout the project, we implemented several advanced dbt concepts, including incremental materializations, utility macros, and Teradata modifiers.

-
-
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.database.picker.png b/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.database.picker.png deleted file mode 100644 index c4e958b60..000000000 Binary files a/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.database.picker.png and /dev/null differ diff --git a/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.elements.png b/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.elements.png deleted file mode 100644 index dabf473c1..000000000 Binary files a/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.elements.png and /dev/null differ diff --git a/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.get.data.menu.png b/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.get.data.menu.png deleted file mode 100644 index 011eb9633..000000000 Binary files a/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.get.data.menu.png and /dev/null differ diff --git a/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.icon.png b/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.icon.png deleted file mode 100644 index 347f21a34..000000000 Binary files a/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.icon.png and /dev/null differ diff --git a/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.ldap.png b/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.ldap.png deleted file mode 100644 index ea8556860..000000000 Binary files a/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.ldap.png and /dev/null differ diff --git a/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.navigator.png b/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.navigator.png deleted file mode 100644 index acde67caf..000000000 Binary files a/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.navigator.png and /dev/null differ diff --git a/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.overview.blocks.png b/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.overview.blocks.png deleted file mode 100644 index f611891f5..000000000 Binary files a/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.overview.blocks.png and /dev/null differ diff --git a/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.publish.png b/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.publish.png deleted file mode 100644 index cbc98b112..000000000 Binary files a/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.publish.png and /dev/null differ diff --git a/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.report.png b/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.report.png deleted file mode 100644 index 462568701..000000000 Binary files a/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.report.png and /dev/null differ diff --git a/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.server.connect.png b/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.server.connect.png deleted file mode 100644 index 17f82fae5..000000000 Binary files a/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.server.connect.png and /dev/null differ diff --git a/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.splash.screen.png b/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.splash.screen.png deleted file mode 100644 index 964d8ce7d..000000000 Binary files a/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.splash.screen.png and /dev/null differ diff --git a/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.success.png b/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.success.png deleted file mode 100644 index 8247465c1..000000000 Binary files a/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.success.png and /dev/null differ diff --git a/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.workspace.png b/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.workspace.png deleted file mode 100644 index 067d768e5..000000000 Binary files a/pr-preview/pr-110/business-intelligence/_images/connect-power-bi/power.bi.workspace.png and /dev/null differ diff --git a/pr-preview/pr-110/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html b/pr-preview/pr-110/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html deleted file mode 100644 index 617898d07..000000000 --- a/pr-preview/pr-110/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html +++ /dev/null @@ -1,2804 +0,0 @@ - - - - - - Create Vizualizations in Power BI using Vantage :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Create Vizualizations in Power BI using Vantage

-

Author: Kevin Bogusch, Paul Ibberson
-Last updated: January 14th, 2022

-
-

Overview

-
-
- - - - - -
- - -This guide includes content from both Microsoft and Teradata product documentation. -
-
-
-

This article describes the process to connect your Power BI Desktop to Teradata Vantage for creating reports and dramatic visualizations of your data. Power BI supports Teradata Vantage as a data source and can use the underlying data just like any other data source in Power BI Desktop.

-
-
-

Power BI is a collection of software services, applications, and connectors that work together to turn your unrelated sources of data into coherent, visually immersive, and interactive insights.

-
-
-
Power BI consists of:
- -
-
-
-Power BI elements -
-
-
-

These three elements—Power BI Desktop, the Power BI service, and the mobile apps—are designed to let people create, share, and consume business insights in the way that serves them, or their role, most effectively.

-
-
-
-Power BI overview blocks -
-
-
-

A fourth element, Power BI Report Server, allows you to publish Power BI reports to an on-premises report server, after creating them in Power BI Desktop.

-
-
-

Power BI Desktop supports Vantage as a 3rd party data source not as a ‘native’ data source. Instead, published reports on Power BI service will need to use the on-premises data gateway component to access Vantage.

-
-
-

This getting started guide will show you how to connect to a Teradata Vantage. Power BI Desktop Teradata connector uses the .NET Data Provider for Teradata. You need to install the driver on computers that use the Power BI Desktop. The .NET Data Provider for Teradata single installation supports both 32-bit or 64-bit Power BI Desktop application.

-
-
-
-
-

Prerequisites

-
-
-

You are expected to be familiar with Azure services, Teradata Vantage, and Power BI Desktop.

-
-
-

You will need the following accounts and system.

-
-
-
    -
  • -

    The Power BI Desktop is a free application for Windows. (Power BI Desktop is not available for Macs. You could run it in a virtual machine, such as Parallels or VMware Fusion, or in Apple’s Boot Camp, but that is beyond the scope of this article.)

    -
  • -
  • -

    A Teradata Vantage instance with a user and password. The user must have permission to data that can be used by Power BI Desktop. Vantage must be accessible from Power BI Desktop.

    -
    - - - - - -
    - - -If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. -
    -
    -
  • -
  • -

    The .NET Data Provider for Teradata.

    -
  • -
-
-
-
-
-

Getting Started

-
-
-

Install Power BI Desktop

-
-

You can install Power BI Desktop from the Microsoft Store or download the installer and run it directly.

-
-
-
-

Install the .NET Data Provider for Teradata

-
-

Download and install the latest version of the .NET Data Provider for Teradata.

-
-
-

Note that there are multiple files available for download. You want the file that starts with “tdnetdp”.

-
-
-
-

Connect to Teradata Vantage

-
-
    -
  • -

    Run Power BI Desktop, which has a yellow icon.

    -
  • -
-
-
-
-Power BI icon -
-
-
-
    -
  • -

    If the opening (splash) screen is showing, click on Get data.

    -
  • -
-
-
-
-Power BI splash screen -
-
-
-

Otherwise, if you are in the main form of Power BI, ensure that you are on the Home ribbon and click on Get data. Click on More….

-
-
-
-Power BI Get Data menu -
-
-
-
    -
  • -

    Click on Database on the left.

    -
  • -
  • -

    Scroll the list on the right until you see Teradata database. Click on Teradata database, and then click on the Connect button.

    -
  • -
-
-
-

(“Teradata database” and “Teradata Vantage” are synonymous in this article.)

-
-
-
-Power BI Database picker -
-
-
-
    -
  • -

    In the window that appears, enter the name or IP address of your Vantage system into the text box. You can choose to Import data directly into Power BI data model, or connect directly to the data source using DirectQuery and click OK.

    -
  • -
-
-
-
-Power BI server connection -
-
-
-

(Click Advanced options to submit hand-crafted SQL statement.)

-
-
-

For credentials, you have the option of connecting with your Windows login or Database username defined in Vantage, which is more common. Select the appropriate authentication method and enter in your username and password. Click Connect.

-
-
-

You also have the option of authenticating with an LDAP server. This option is hidden by default.

-
-
-

If you set the environment variable, PBI_EnableTeradataLdap, to true, then the LDAP authentication method will become available.

-
-
-
-Power BI LDAP connection -
-
-
-

Do note that LDAP is not supported with the on-premises data gateway, which is used for reports that are published to the Power BI service. If you need LDAP authentication and are using the on-premises data gateway, you will need to submit an incident to Microsoft and request support.

-
- -
-

Once you have connected to the Vantage system, Power BI Desktop remembers the credentials for future connections to the system. You can modify these credentials by going to File > Options and settings > Data source settings.

-
-
-

The Navigator window appears after a successful connection. It displays the data available on the Vantage system. You can select one or more elements to use in Power BI Desktop.

-
-
-
-Power BI Navigator -
-
-
-

You preview a table by clicking on its name. If you want to load it into Power BI Desktop, ensure that you click the checkbox next to the table name.

-
-
-

You can Load the selected table, which brings it into Power BI Desktop. You can also Edit the query, which opens a query editor so you can filter and refine the set of data you want to load.

-
-
-

Edit may be called Transform data, depending upon the version of Power BI Desktop that you have.

-
-
-

For information on joining tables, see Create and Manage Relationships in Power BI Desktop feature.

-
-
-

To publish your report, click Publish on Home ribbon in Power BI Desktop.

-
-
-
-Power BI Publish -
-
-
-

Power BI Desktop will prompt you to save your report. Choose My workspace and click Select.

-
-
-
-Power BI publish to my workspace -
-
-
-

Once report has been published, click Got it to close. You may also click the link, which has the report name in the link.

-
-
-
-Power BI successfully published -
-
-
-

This is an example of a report created in Power BI Desktop.

-
-
-
-Power BI Report -
-
-
-
-
-
-

Next steps

-
-
-

You can combine data from many sources with Power BI Desktop. Look at the following links for more information.

-
- -
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image1.wmf b/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image1.wmf deleted file mode 100644 index 0fafe3580..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image1.wmf and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image10.png b/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image10.png deleted file mode 100644 index 00918066a..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image10.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image11.png b/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image11.png deleted file mode 100644 index 9b700fd8e..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image11.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image12.png b/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image12.png deleted file mode 100644 index 733f9cb2b..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image12.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image13.png b/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image13.png deleted file mode 100644 index acf01ae29..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image13.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image14.png b/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image14.png deleted file mode 100644 index c51700387..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image14.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image15.png b/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image15.png deleted file mode 100644 index 3eb1b859d..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image15.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image16.png b/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image16.png deleted file mode 100644 index 67d7b50ba..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image16.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image17.png b/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image17.png deleted file mode 100644 index 832845c07..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image17.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image18.png b/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image18.png deleted file mode 100644 index 86f6dbf4f..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image18.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image19.png b/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image19.png deleted file mode 100644 index c6d63cf64..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image19.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image2.png b/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image2.png deleted file mode 100644 index b8dfb1371..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image2.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image20.png b/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image20.png deleted file mode 100644 index 183de648a..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image20.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image21.png b/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image21.png deleted file mode 100644 index b359c44a2..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image21.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image22.png b/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image22.png deleted file mode 100644 index 7cfd35474..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image22.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image23.png b/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image23.png deleted file mode 100644 index d645ec260..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image23.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image24.png b/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image24.png deleted file mode 100644 index d0531eba3..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image24.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image25.png b/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image25.png deleted file mode 100644 index c2c3b85ec..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image25.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image26.png b/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image26.png deleted file mode 100644 index ef54a7aa7..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image26.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image27.png b/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image27.png deleted file mode 100644 index 4d8396b4d..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image27.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image28.png b/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image28.png deleted file mode 100644 index 4c185dbc0..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image28.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image3.png b/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image3.png deleted file mode 100644 index 26a1c5374..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image3.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image4.png b/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image4.png deleted file mode 100644 index 3a841281a..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image4.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image5.png b/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image5.png deleted file mode 100644 index c5f16aa44..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image5.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image6.png b/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image6.png deleted file mode 100644 index ac3374293..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image6.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image7.png b/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image7.png deleted file mode 100644 index 7346beb27..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image7.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image8.png b/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image8.png deleted file mode 100644 index 62fa1c159..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image8.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image9.png b/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image9.png deleted file mode 100644 index 30e7317a5..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/connect-azure-data-share-to-teradata-vantage/image9.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-jupyter-extensions-with-google-vertex-ai/vertex.create.notebook.startupscript.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-jupyter-extensions-with-google-vertex-ai/vertex.create.notebook.startupscript.png deleted file mode 100644 index 2f8b74d14..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-jupyter-extensions-with-google-vertex-ai/vertex.create.notebook.startupscript.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-jupyter-extensions-with-google-vertex-ai/vertex.custom.container.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-jupyter-extensions-with-google-vertex-ai/vertex.custom.container.png deleted file mode 100644 index e683e374d..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-jupyter-extensions-with-google-vertex-ai/vertex.custom.container.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-jupyter-extensions-with-google-vertex-ai/vertex.open.notebook.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-jupyter-extensions-with-google-vertex-ai/vertex.open.notebook.png deleted file mode 100644 index 9d3f58e8c..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-jupyter-extensions-with-google-vertex-ai/vertex.open.notebook.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-jupyter-extensions-with-sagemaker/sagemaker.notebook.create.lifecycle.config.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-jupyter-extensions-with-sagemaker/sagemaker.notebook.create.lifecycle.config.png deleted file mode 100644 index dcf67cee3..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-jupyter-extensions-with-sagemaker/sagemaker.notebook.create.lifecycle.config.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-jupyter-extensions-with-sagemaker/sagemaker.notebook.create.notebook.instance.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-jupyter-extensions-with-sagemaker/sagemaker.notebook.create.notebook.instance.png deleted file mode 100644 index 3fa775e8e..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-jupyter-extensions-with-sagemaker/sagemaker.notebook.create.notebook.instance.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-jupyter-extensions-with-sagemaker/sagemaker.notebook.notebook.inservice.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-jupyter-extensions-with-sagemaker/sagemaker.notebook.notebook.inservice.png deleted file mode 100644 index 67cddb7d1..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-jupyter-extensions-with-sagemaker/sagemaker.notebook.notebook.inservice.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-jupyter-extensions-with-sagemaker/sagemaker.notebook.start.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-jupyter-extensions-with-sagemaker/sagemaker.notebook.start.png deleted file mode 100644 index f8d20945d..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-jupyter-extensions-with-sagemaker/sagemaker.notebook.start.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image1.wmf b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image1.wmf deleted file mode 100644 index 0fafe3580..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image1.wmf and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image10.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image10.png deleted file mode 100644 index 9e146b8c0..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image10.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image11.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image11.png deleted file mode 100644 index c8e2bdb1b..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image11.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image12.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image12.png deleted file mode 100644 index e10fc25eb..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image12.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image13.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image13.png deleted file mode 100644 index 6e50d0f5e..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image13.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image14.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image14.png deleted file mode 100644 index a7a0ddd64..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image14.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image15.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image15.png deleted file mode 100644 index 3d24a0fa0..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image15.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image16.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image16.png deleted file mode 100644 index 33c18a726..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image16.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image17.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image17.png deleted file mode 100644 index f69ead40f..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image17.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image18.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image18.png deleted file mode 100644 index 2cd35c180..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image18.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image19.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image19.png deleted file mode 100644 index a4f29b8ed..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image19.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image2.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image2.png deleted file mode 100644 index 2f16ec1f8..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image2.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image20.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image20.png deleted file mode 100644 index bdb1c7eda..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image20.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image21.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image21.png deleted file mode 100644 index f279c7f2d..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image21.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image22.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image22.png deleted file mode 100644 index d321e7aa5..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image22.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image23.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image23.png deleted file mode 100644 index f9e68e15e..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image23.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image24.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image24.png deleted file mode 100644 index e4896b6f1..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image24.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image25.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image25.png deleted file mode 100644 index c643b2fa7..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image25.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image26.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image26.png deleted file mode 100644 index c970b7594..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image26.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image27.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image27.png deleted file mode 100644 index d24b12218..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image27.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image28.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image28.png deleted file mode 100644 index ea0ec6c1e..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image28.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image29.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image29.png deleted file mode 100644 index 55df058a9..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image29.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image3.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image3.png deleted file mode 100644 index e9e1522ef..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image3.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image30.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image30.png deleted file mode 100644 index 5bffd82b6..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image30.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image4.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image4.png deleted file mode 100644 index 7c2a07601..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image4.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image41.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image41.png deleted file mode 100644 index 3efd7ba2c..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image41.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image42.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image42.png deleted file mode 100644 index 331ab3a3c..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image42.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image43.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image43.png deleted file mode 100644 index 1e354d0a1..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image43.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image44.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image44.png deleted file mode 100644 index 924567752..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image44.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image45.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image45.png deleted file mode 100644 index 6e85e73fb..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image45.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image46.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image46.png deleted file mode 100644 index a7da8023f..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image46.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image5.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image5.png deleted file mode 100644 index e25c3fd5d..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image5.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image6.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image6.png deleted file mode 100644 index adc0e7e4c..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image6.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image7.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image7.png deleted file mode 100644 index e8d7d24d0..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image7.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image8.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image8.png deleted file mode 100644 index 0071e67b2..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image8.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image9.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image9.png deleted file mode 100644 index c4913ea3b..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-to-salesforce-using-amazon-appflow/image9.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-with-google-cloud-data-catalog/image1.wmf b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-with-google-cloud-data-catalog/image1.wmf deleted file mode 100644 index 0fafe3580..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-with-google-cloud-data-catalog/image1.wmf and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-with-google-cloud-data-catalog/image2.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-with-google-cloud-data-catalog/image2.png deleted file mode 100644 index 41ea223fc..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-with-google-cloud-data-catalog/image2.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-with-google-cloud-data-catalog/image3.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-with-google-cloud-data-catalog/image3.png deleted file mode 100644 index e14b447e9..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-with-google-cloud-data-catalog/image3.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-with-google-cloud-data-catalog/image4.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-with-google-cloud-data-catalog/image4.png deleted file mode 100644 index ddc007b46..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-with-google-cloud-data-catalog/image4.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-with-google-cloud-data-catalog/image5.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-with-google-cloud-data-catalog/image5.png deleted file mode 100644 index a71549fc5..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-with-google-cloud-data-catalog/image5.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-with-google-cloud-data-catalog/image6.png b/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-with-google-cloud-data-catalog/image6.png deleted file mode 100644 index 651e420a7..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/integrate-teradata-vantage-with-google-cloud-data-catalog/image6.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/attach.endpoint.configuration.png b/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/attach.endpoint.configuration.png deleted file mode 100644 index f58fb5a01..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/attach.endpoint.configuration.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/choose.an.algorithm.png b/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/choose.an.algorithm.png deleted file mode 100644 index 6879f3a38..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/choose.an.algorithm.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/container.definition.1.png b/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/container.definition.1.png deleted file mode 100644 index ad95830a7..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/container.definition.1.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/create.endpoint.configuration.png b/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/create.endpoint.configuration.png deleted file mode 100644 index 216dba588..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/create.endpoint.configuration.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/create.endpoint.png b/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/create.endpoint.png deleted file mode 100644 index 29554f15a..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/create.endpoint.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/create.iam.role.png b/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/create.iam.role.png deleted file mode 100644 index 4b491c898..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/create.iam.role.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/create.notebook.png b/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/create.notebook.png deleted file mode 100644 index 342bfab49..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/create.notebook.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/create.training.job.png b/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/create.training.job.png deleted file mode 100644 index 6bf7c467d..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/create.training.job.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/input.data.configuration.png b/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/input.data.configuration.png deleted file mode 100644 index 0b00b53fc..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/input.data.configuration.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/open.notebook.instance.png b/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/open.notebook.instance.png deleted file mode 100644 index 1290dd2ff..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/open.notebook.instance.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/output.data.configuration.png b/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/output.data.configuration.png deleted file mode 100644 index b81f35193..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/output.data.configuration.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/resource.configuration.png b/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/resource.configuration.png deleted file mode 100644 index 37c7b1c9a..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/resource.configuration.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/select.endpoint.configuration.png b/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/select.endpoint.configuration.png deleted file mode 100644 index efcf6d65b..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/select.endpoint.configuration.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/start.new.file.png b/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/start.new.file.png deleted file mode 100644 index 09b9e8364..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/sagemaker-with-teradata-vantage/start.new.file.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image1.wmf b/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image1.wmf deleted file mode 100644 index 0fafe3580..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image1.wmf and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image10.png b/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image10.png deleted file mode 100644 index 32d98c19d..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image10.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image11.png b/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image11.png deleted file mode 100644 index a546f9d23..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image11.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image12.png b/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image12.png deleted file mode 100644 index 1972489bd..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image12.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image13.png b/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image13.png deleted file mode 100644 index 139f569b4..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image13.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image14.png b/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image14.png deleted file mode 100644 index b6f86f44b..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image14.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image15.png b/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image15.png deleted file mode 100644 index 167170001..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image15.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image16.png b/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image16.png deleted file mode 100644 index 6846ca85c..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image16.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image17.png b/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image17.png deleted file mode 100644 index 3488786a4..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image17.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image18.png b/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image18.png deleted file mode 100644 index 40ab58077..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image18.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image19.png b/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image19.png deleted file mode 100644 index 2a8900c07..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image19.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image2.png b/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image2.png deleted file mode 100644 index ac948cdac..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image2.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image20.png b/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image20.png deleted file mode 100644 index e584a5f27..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image20.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image21.png b/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image21.png deleted file mode 100644 index e30f97529..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image21.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image22.png b/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image22.png deleted file mode 100644 index 218ed0977..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image22.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image23.png b/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image23.png deleted file mode 100644 index a6c560757..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image23.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image24.png b/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image24.png deleted file mode 100644 index 1ed1a8e52..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image24.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image25.png b/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image25.png deleted file mode 100644 index 829e6a76f..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image25.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image26.png b/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image26.png deleted file mode 100644 index d75e9e67f..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image26.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image27.png b/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image27.png deleted file mode 100644 index cc6af35b9..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image27.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image28.png b/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image28.png deleted file mode 100644 index 6813315bb..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image28.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image3.png b/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image3.png deleted file mode 100644 index 26e835ecc..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image3.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image4.png b/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image4.png deleted file mode 100644 index ac3cc6c8d..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image4.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image5.png b/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image5.png deleted file mode 100644 index 038549ecb..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image5.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image6.png b/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image6.png deleted file mode 100644 index 99c3c2b7a..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image6.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image7.png b/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image7.png deleted file mode 100644 index 7deb2e121..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image7.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image8.png b/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image8.png deleted file mode 100644 index c8386281d..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image8.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image9.png b/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image9.png deleted file mode 100644 index a16c7ec23..000000000 Binary files a/pr-preview/pr-110/cloud-guides/_images/use-teradata-vantage-with-azure-machine-learning-studio/image9.png and /dev/null differ diff --git a/pr-preview/pr-110/cloud-guides/connect-azure-data-share-to-teradata-vantage.html b/pr-preview/pr-110/cloud-guides/connect-azure-data-share-to-teradata-vantage.html deleted file mode 100644 index b834a9f28..000000000 --- a/pr-preview/pr-110/cloud-guides/connect-azure-data-share-to-teradata-vantage.html +++ /dev/null @@ -1,3518 +0,0 @@ - - - - - - Connect Azure Data Share to Teradata Vantage :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Connect Azure Data Share to Teradata Vantage

-

Author: Rupal Shah
-Last updated: February 14th, 2022

-
-

Overview

-
-
-

This article describes the process to share an Azure Blob Storage dataset from one user to another using Azure Data Share service and then query it with Teradata Vantage leveraging Native Object Store (NOS) capability. We will create and use a storage account and data share account for both users.

-
-
-

This is a diagram of the workflow.

-
-
-

image

-
-
-

About Azure Data Share

-
-

Azure Data Share enables organizations to simply and securely share data with multiple customers and partners. Both the data provider and data consumer must have an Azure subscription to share and receive data. Azure Data Share currently offers snapshot-based sharing and in-place sharing. Today, Azure Data Share supported data stores include Azure Blob Storage, Azure Data Lake Storage Gen1 and Gen2, Azure SQL Database, Azure Synapse Analytics and Azure Data Explorer. Once a dataset share has been sent using Azure Data Share, the data consumer is able to receive that data in a data store of their choice like Azure Blob Storage and then use Teradata Vantage to explore and analyze the data.

-
-
-

For more information see documentation.

-
-
-
-

About Teradata Vantage

-
-

Vantage is the modern cloud platform that unifies data warehouses, data lakes, and analytics into a single connected ecosystem.

-
-
-

Vantage combines descriptive, predictive, prescriptive analytics, autonomous decision-making, ML functions, and visualization tools into a unified, integrated platform that uncovers real-time business intelligence at scale, no matter where the data resides.

-
-
-

Vantage enables companies to start small and elastically scale compute or storage, paying only for what they use, harnessing low-cost object stores and integrating their analytic workloads.

-
-
-

Vantage supports R, Python, Teradata Studio, and any other SQL-based tools. You can deploy Vantage across public clouds, on-premises, on optimized or commodity infrastructure, or as-a-service.

-
-
-

Teradata Vantage Native Object Store (NOS) can be used to explore data in external object stores, like Azure Blob Storage, using standard SQL. No special object storage-side compute infrastructure is required to use NOS. You can explore data located in an Blob Storage container by simply creating a NOS table definition that points to your container. With NOS, you can quickly import data from Blob Storage or even join it other tables in the database.

-
-
-

Alternatively, the Teradata Parallel Transporter (TPT) utility can be used to import data from Blob Storage to Teradata Vantage in bulk fashion. Once loaded, data can be efficiently queried within Vantage.

-
-
-

For more information see documentation.

-
-
-
-
-
-

Prerequisites

-
-
-
    -
  • -

    Access to a Teradata Vantage instance.

    -
  • -
-
-
- - - - - -
- - -If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. -
-
-
- -
-
-
-
-

Procedure

-
-
-

Once you have met the prerequisites, follow these steps:

-
-
-
    -
  1. -

    Create a Azure Blob Storage account and container

    -
  2. -
  3. -

    Create a Data Share Account

    -
  4. -
  5. -

    Create a share

    -
  6. -
  7. -

    Accept and receive data using Data Share

    -
  8. -
  9. -

    Configure NOS access to Blob Storage

    -
  10. -
  11. -

    Query the dataset in Blob Storage

    -
  12. -
  13. -

    Load data from Blob Storage into Vantage (optional)

    -
  14. -
-
-
-

Create an Azure Blob Storage Account and Container

-
-
    -
  • -

    Open the Azure portal in a browser (Chrome, Firefox, and Safari work well) and follow the steps in create a storage account in a resource group called myProviderStorage_rg in this article.

    -
  • -
  • -

    Enter a storage name and connectivity method. We will use myproviderstorage and public endpoint in this article.

    -
    - - - - - -
    - - -We suggest that you use the same location for all services you create. -
    -
    -
  • -
  • -

    Select Review + create, then Create.

    -
  • -
  • -

    Go to resource and click Containers to create container.

    -
  • -
  • -

    Click the + Container button.

    -
  • -
  • -

    Enter a container name. We will use providerdata in this article.

    -
    -

    image

    -
    -
  • -
  • -

    Click Create.

    -
  • -
-
-
-
-

Create a Data Share Account

-
-

We will create a Data Share account for the provider sharing the dataset.

-
-
-

Follow the Create an Azure Data Share Account steps to create resource in a resource group called myDataShareProvider_rg in this article.

-
-
-
    -
  • -

    In Basics tab, enter a data share account name. We will use mydatashareprovider in this article.

    -
    -

    image

    -
    -
    - - - - - -
    - - -We suggest that you use the same location for all services you create. -
    -
    -
  • -
  • -

    Select Review + create, then Create.

    -
  • -
  • -

    When the deployment is complete, select Go to resource.

    -
  • -
-
-
-
-

Create a Share

-
-
    -
  • -

    Navigate to your Data Share Overview page and follow the steps in Create a share.

    -
  • -
  • -

    Select Start sharing your data.

    -
  • -
  • -

    Select + Create.

    -
  • -
  • -

    In Details tab, enter a share name and share type. We will use WeatherData and Snapshot in this article.

    -
    -

    image

    -
    -
  • -
-
-
- - - - - -
- - -
Snapshot share
-
-

Choose snapshot sharing to provide copy of the data to the recipient.

-
-
-

Supported data store: Azure Blob Storage, Azure Data Lake Storage Gen1, Azure Data Lake Storage Gen2, Azure SQL Database, Azure Synapse Analytics (formerly SQL DW)

-
-
-
-
- - - - - -
- - -
In-place share
-
-

Choose in-place sharing to provide access to data at its source.

-
-
-

Supported data store: Azure Data Explorer

-
-
-
-
-
    -
  • -

    Click Continue.

    -
  • -
  • -

    In Datasets tab, click Add datasets

    -
  • -
  • -

    Select Azure Blob Storage

    -
    -

    image

    -
    -
  • -
  • -

    Click Next.

    -
  • -
  • -

    Enter Storage account providing the dataset. We will use myproviderstorage in this article.

    -
    -

    image

    -
    -
  • -
  • -

    Click Next.

    -
  • -
  • -

    Double-click container to choose the dataset. We will use providerdata and onpoint_history_postal-code_hour.csv file in this article.

    -
    -

    image

    -
    -
  • -
-
-
-

Figure 6 Select Storage container and dataset

-
-
- - - - - -
- - -Azure Data Share can share at the folder and file level. Use Azure Blob Storage resource to upload a file. -
-
-
-
    -
  • -

    Click Next.

    -
  • -
  • -

    Enter a Dataset name that the consumer will see for the folder and dataset. We will use the default names but delete the providerdata folder this article. Click Add datasets.

    -
    -

    image

    -
    -
  • -
  • -

    Click Add datasets.

    -
    -

    Dataset added to Sent Shares

    -
    -
  • -
  • -

    Click Continue.

    -
  • -
  • -

    In Recipients tab, click Add recipient email address to send share notification.

    -
  • -
  • -

    Enter email address for consumer.

    -
    -

    Add recipient email address

    -
    -
  • -
-
-
- - - - - -
- - -Set Share expiration for amount of time share is valid for consumer to accept. -
-
-
-
    -
  • -

    Click Continue.

    -
  • -
  • -

    In Settings tab, set Snapshot schedule. We use default unchecked this article.

    -
    -

    Set Snapshot schedule

    -
    -
  • -
  • -

    Click Continue.

    -
  • -
  • -

    In Review + Create tab, click Create.

    -
    -

    Review + Create

    -
    -
  • -
  • -

    Your Azure Data Share has now been created and the recipient of your Data Share is now ready to accept your invitation.

    -
    -

    Data Share ready and invitation sent to recipient

    -
    -
  • -
-
-
-
-

Accept and Receive Data Using Azure Data Share

-
-

In this article, the recipient/consumer is going to receive the data into their Azure Blob storage account.

-
-
-

Similar to the Data Share Provider, ensure that all pre-requisites are complete for the Consumer before accepting a data share invitation.

-
-
-
    -
  • -

    Azure Subscription: If you don’t have one, create a https://azure.microsoft.com/free/[free account] before you begin.

    -
  • -
  • -

    Azure Blob Storage account and container: create resource group called myConsumerStorage_rg and create account name myconsumerstorage and container consumerdata.

    -
  • -
  • -

    Azure Data Share account: create resource group called myDataShareConsumer_rg and create a data share account name called mydatashareconsumer to accept the data.

    -
  • -
-
- -
-

Open invitation

-
-
    -
  • -

    In your email, an invitation from Microsoft Azure with a subject titled "Azure Data Share invitation from yourdataprovider@domain.com. Click on the View invitation to see your invitation in Azure.

    -
    -

    Data Share email invitation to recipient

    -
    -
  • -
  • -

    This action opens your browser to the list of Data Share invitations.

    -
    -

    Data Share invitations

    -
    -
  • -
  • -

    Select the share you would like to view. We will select WeatherData in this article.

    -
  • -
-
-
-
-

Accept invitation

-
-
    -
  • -

    Under Target Data Share Account, select the Subscription and Resource Group that you would like to deployed your Data Share into or you can create a new Data Share here.

    -
    - - - - - -
    - - -f provider required a Terms of Use acceptance, a dialog box would appear and you’ll be required to check the box to indicate you agree to the terms of use. -
    -
    -
  • -
  • -

    Enter the Resource group and Data share account. We will use myDataShareConsumer_rg and mydatashareconsumer account this article.

    -
    -

    Target Data Share account

    -
    -
  • -
  • -

    Select Accept and configure and a share subscription will be created.

    -
  • -
-
-
-
-

Configure received share

-
-
    -
  • -

    Select Datasets tab. Check the box next to the dataset you’d like to assign a destination to. Select + Map to target to choose a target data store.

    -
    -

    Select Dataset and Map to target

    -
    -
  • -
  • -

    Select a target data store type and path that you’d like the data to land in. We will use consumers Azure Blob Storage account myconsumerstorage and container consumerdata for our snapshot example in this article.

    -
    - - - - - -
    - - -Azure Data Share provides open and flexible data sharing, including the ability to share from and to different data stores. Check supported data sources that can accept snapshot and in place sharing. -
    -
    -
    -

    Map datasets to target

    -
    -
  • -
  • -

    Click on Map to target.

    -
  • -
  • -

    Once mapping is complete, for snapshot-based sharing click on Details tab and click Trigger snapshot for Full or Incremental. We will select full copy since this is your first time receiving data from your provider.

    -
    -

    Trigger full or incremental snapshot

    -
    -
  • -
  • -

    When the last run status is successful, go to target data store to view the received data. Select Datasets, and click on the link in the Target Path.

    -
    -

    Dataset and target path to view shared data

    -
    -
  • -
-
-
-
-
-

Configure NOS Access to Azure Blob Storage

-
-

Native Object Store (NOS) can directly read data in Azure Blob Storage, which allows you to explore and analyze data in Blob Storage without explicitly loading the data.

-
-
-

Create a foreign table definition

-
-

A foreign table definition allows data in Blob Storage to be easily referenced within the Advanced SQL Engine and makes the data available in a structured, relational format.

-
-
- - - - - -
- - -NOS supports data in CSV, JSON, and Parquet formats. -
-
-
-
    -
  • -

    Login to your Vantage system with Teradata Studio.

    -
  • -
  • -

    Create an AUTHORIZATION object to access your Blob Storage container with the following SQL command.

    -
    -
    -
    CREATE AUTHORIZATION DefAuth_AZ
    -AS DEFINER TRUSTED
    -USER 'myconsumerstorage' /* Storage Account Name */
    -PASSWORD '*****************' /* Storage Account Access Key or SAS Token */
    -
    -
    -
    -
      -
    • -

      Replace the string for USER with your Storage Account Name.

      -
    • -
    • -

      Replace the string for PASSWORD with your Storage Account Access Key or SAS Token.

      -
    • -
    -
    -
  • -
  • -

    Create a foreign table definition for the CSV file on Blob Storage with the following SQL command.

    -
    -
    -
    CREATE MULTISET FOREIGN TABLE WeatherData,
    -EXTERNAL SECURITY DEFINER TRUSTED DefAuth_AZ (
    -  Location VARCHAR(2048) CHARACTER SET UNICODE CASESPECIFIC,
    -  Payload DATASET INLINE LENGTH 64000 STORAGE FORMAT CSV
    -)
    -USING (
    -  LOCATION ('/AZ/myconsumerstorage.blob.core.windows.net/consumerdata/')
    -)
    -
    -
    -
    - - - - - -
    - - -At a minimum, the foreign table definition must include a table name (WeatherData) and a location clause, which points to the object store data. -
    -
    -
    -

    The LOCATION requires a storage account name and container name. You will need to replace this with your own storage account and container name.

    -
    -
    -

    If the object doesn’t have a standard extension (e.g. “.json”, “.csv”, “.parquet”), then the Location…Payload columns definition phrase is also needed, and the LOCATION phase need to include the file name. For example: LOCATION (AZ/<storage account name>.blob.core.windows.net/<container>/<filename>).

    -
    -
    -

    Foreign tables are always defined as No Primary Index (NoPI) tables.

    -
    -
  • -
-
-
-
-
-

Query the Dataset in Azure Blob Storage

-
-

Run the following SQL command to query the dataset.

-
-
-
-
SELECT * FROM WeatherData SAMPLE 10;
-
-
-
-

The foreign table only contains two columns: Location and Payload. Location is the address in the object store system. The data itself is represented in the payload column, with the payload value within each record in the foreign table representing a single CSV row.

-
-
-

WeatherData table

-
-
-

Run the following SQL command to focus on the data in the object.

-
-
-
-
SELECT payload..* FROM WeatherData SAMPLE 10;
-
-
-
-

WeatherData table payload

-
-
-

Create a View

-
-

Views can simplify the names associated with the payload attributes, can make it easier to code SQL against the object data, and can hide the Location references in the foreign table.

-
-
- - - - - -
- - -Vantage foreign tables use the .. (double dot or double period) operator to separate the object name from the column name. -
-
-
-
    -
  • -

    Run the following SQL command to create a view.

    -
    -
    -
    REPLACE VIEW WeatherData_view AS (
    -  SELECT
    -    CAST(payload..postal_code AS VARCHAR(10)) Postal_code,
    -    CAST(payload..country AS CHAR(2)) Country,
    -    CAST(payload..time_valid_utc AS TIMESTAMP(0) FORMAT 'YYYY-MM-DDBHH:MI:SS') Time_Valid_UTC,
    -    CAST(payload..doy_utc AS INTEGER) DOY_UTC,
    -    CAST(payload..hour_utc AS INTEGER) Hour_UTC,
    -    CAST(payload..time_valid_lcl AS TIMESTAMP(0) FORMAT 'YYYY-MM-DDBHH:MI:SS') Time_Valid_LCL,
    -    CAST(payload..dst_offset_minutes AS INTEGER) DST_Offset_Minutes,
    -    CAST(payload..temperature_air_2m_f AS DECIMAL(4,1)) Temperature_Air_2M_F,
    -    CAST(payload..temperature_wetbulb_2m_f AS DECIMAL(3,1)) Temperature_Wetbulb_2M_F,
    -    CAST(payload..temperature_dewpoint_2m_f AS DECIMAL(3,1)) Temperature_Dewpoint_2M_F,
    -    CAST(payload..temperature_feelslike_2m_f AS DECIMAL(4,1)) Temperature_Feelslike_2M_F,
    -    CAST(payload..temperature_windchill_2m_f AS DECIMAL(4,1)) Temperature_Windchill_2M_F,
    -    CAST(payload..temperature_heatindex_2m_f AS DECIMAL(4,1)) Temperature_Heatindex_2M_F,
    -    CAST(payload..humidity_relative_2m_pct AS DECIMAL(3,1)) Humidity_Relative_2M_Pct,
    -    CAST(payload..humidity_specific_2m_gpkg AS DECIMAL(3,1)) Humdity_Specific_2M_GPKG,
    -    CAST(payload..pressure_2m_mb AS DECIMAL(5,1)) Pressure_2M_Mb,
    -    CAST(payload..pressure_tendency_2m_mb AS DECIMAL(2,1)) Pressure_Tendency_2M_Mb,
    -    CAST(payload..pressure_mean_sea_level_mb AS DECIMAL(5,1)) Pressure_Mean_Sea_Level_Mb,
    -    CAST(payload..wind_speed_10m_mph AS DECIMAL(3,1)) Wind_Speed_10M_MPH,
    -    CAST(payload..wind_direction_10m_deg AS DECIMAL(4,1)) Wind_Direction_10M_Deg,
    -    CAST(payload..wind_speed_80m_mph AS DECIMAL(3,1)) Wind_Speed_80M_MPH,
    -    CAST(payload..wind_direction_80m_deg AS DECIMAL(4,1)) Wind_Direction_80M_Deg,
    -    CAST(payload..wind_speed_100m_mph AS DECIMAL(3,1)) Wind_Speed_100M_MPH,
    -    CAST(payload..wind_direction_100m_deg AS DECIMAL(4,1)) Wind_Direction_100M_Deg,
    -    CAST(payload..precipitation_in AS DECIMAL(3,2)) Precipitation_in,
    -    CAST(payload..snowfall_in AS DECIMAL(3,2)) Snowfall_in,
    -    CAST(payload..cloud_cover_pct AS INTEGER) Cloud_Cover_Pct,
    -    CAST(payload..radiation_solar_total_wpm2 AS DECIMAL(5,1)) Radiation_Solar_Total_WPM2
    -  FROM WeatherData
    -)
    -
    -
    -
  • -
  • -

    Run the following SQL command to validate the view.

    -
    -
    -
    SELECT * FROM WeatherData_view SAMPLE 10;
    -
    -
    -
    -

    WeatherData_view

    -
    -
  • -
-
-
-

Now that you have created a view, you can easily reference the object store data in a query and combine it with other tables, both relational tables in Vantage as well as foreign tables in an object store. This allows you to leverage the full analytic capabilities of Vantage on 100% of the data, no matter where the data is located.

-
-
-
-
-

Load Data from Blob Storage into Vantage (optional)

-
-

Having a persistent copy of the Blob Storage data can be useful when repetitive access of the same data is expected. NOS does not automatically make a persistent copy of the Blob Storage data. Each time you reference a foreign table, Vantage will fetch the data from Blob Storage. (Some data may be cached, but this depends on the size of the data in Blob Storage and other active workloads in Vantage.)

-
-
-

In addition, you may be charged network fees for data transferred from Blob Storage. If you will be referencing the data in Blob Storage multiple times, you may reduce your cost by loading it into Vantage, even temporarily.

-
-
-

You can select among the approaches below to load the data into Vantage.

-
-
-

Create the table and load the data in a single statement

-
-

You can use a single statement to both create the table and load the data. You can choose the desired attributes from the foreign table payload and what they will be called in the relational table.

-
-
-

A CREATE TABLE AS … WITH DATA statement can be used with the foreign table definition as the source table.

-
-
-
    -
  • -

    Run the following SQL command to create the relational table and load the data.

    -
    -
    -
    CREATE MULTISET TABLE WeatherData_temp AS (
    -  SELECT
    -    CAST(payload..postal_code AS VARCHAR(10)) Postal_code,
    -    CAST(payload..country AS CHAR(2)) Country,
    -    CAST(payload..time_valid_utc AS TIMESTAMP(0) FORMAT 'YYYY-MM-DDBHH:MI:SS') Time_Valid_UTC,
    -    CAST(payload..doy_utc AS INTEGER) DOY_UTC,
    -    CAST(payload..hour_utc AS INTEGER) Hour_UTC,
    -    CAST(payload..time_valid_lcl AS TIMESTAMP(0) FORMAT 'YYYY-MM-DDBHH:MI:SS') Time_Valid_LCL,
    -    CAST(payload..dst_offset_minutes AS INTEGER) DST_Offset_Minutes,
    -    CAST(payload..temperature_air_2m_f AS DECIMAL(4,1)) Temperature_Air_2M_F,
    -    CAST(payload..temperature_wetbulb_2m_f AS DECIMAL(3,1)) Temperature_Wetbulb_2M_F,
    -    CAST(payload..temperature_dewpoint_2m_f AS DECIMAL(3,1)) Temperature_Dewpoint_2M_F,
    -    CAST(payload..temperature_feelslike_2m_f AS DECIMAL(4,1)) Temperature_Feelslike_2M_F,
    -    CAST(payload..temperature_windchill_2m_f AS DECIMAL(4,1)) Temperature_Windchill_2M_F,
    -    CAST(payload..temperature_heatindex_2m_f AS DECIMAL(4,1)) Temperature_Heatindex_2M_F,
    -    CAST(payload..humidity_relative_2m_pct AS DECIMAL(3,1)) Humidity_Relative_2M_Pct,
    -    CAST(payload..humidity_specific_2m_gpkg AS DECIMAL(3,1)) Humdity_Specific_2M_GPKG,
    -    CAST(payload..pressure_2m_mb AS DECIMAL(5,1)) Pressure_2M_Mb,
    -    CAST(payload..pressure_tendency_2m_mb AS DECIMAL(2,1)) Pressure_Tendency_2M_Mb,
    -    CAST(payload..pressure_mean_sea_level_mb AS DECIMAL(5,1)) Pressure_Mean_Sea_Level_Mb,
    -    CAST(payload..wind_speed_10m_mph AS DECIMAL(3,1)) Wind_Speed_10M_MPH,
    -    CAST(payload..wind_direction_10m_deg AS DECIMAL(4,1)) Wind_Direction_10M_Deg,
    -    CAST(payload..wind_speed_80m_mph AS DECIMAL(3,1)) Wind_Speed_80M_MPH,
    -    CAST(payload..wind_direction_80m_deg AS DECIMAL(4,1)) Wind_Direction_80M_Deg,
    -    CAST(payload..wind_speed_100m_mph AS DECIMAL(3,1)) Wind_Speed_100M_MPH,
    -    CAST(payload..wind_direction_100m_deg AS DECIMAL(4,1)) Wind_Direction_100M_Deg,
    -    CAST(payload..precipitation_in AS DECIMAL(3,2)) Precipitation_in,
    -    CAST(payload..snowfall_in AS DECIMAL(3,2)) Snowfall_in,
    -    CAST(payload..cloud_cover_pct AS INTEGER) Cloud_Cover_Pct,
    -    CAST(payload..radiation_solar_total_wpm2 AS DECIMAL(5,1)) Radiation_Solar_Total_WPM2
    -  FROM
    -    WeatherData
    -  WHERE
    -    Postal_Code = '36101'
    -)
    -WITH DATA
    -NO PRIMARY INDEX
    -
    -
    -
  • -
  • -

    Run the following SQL command to validate the contents of the table.

    -
    -
    -
    SELECT * FROM WeatherData_temp SAMPLE 10;
    -
    -
    -
    -

    Weather data

    -
    -
  • -
-
-
-
-

Create the table and load the data in multiple statements

-
-

You can also use multiple statements to first create the relational table and then load the data. An advantage of this choice is that you can perform multiple loads, possibly selecting different data or loading in smaller increments if the object is very large.

-
-
-
    -
  • -

    Run the following SQL command to create the relational table.

    -
    -
    -
    CREATE MULTISET TABLE WeatherData_temp (
    -  Postal_code VARCHAR(10),
    -  Country CHAR(2),
    -  Time_Valid_UTC TIMESTAMP(0) FORMAT 'YYYY-MM-DDBHH:MI:SS',
    -  DOY_UTC INTEGER,
    -  Hour_UTC INTEGER,
    -  Time_Valid_LCL TIMESTAMP(0) FORMAT 'YYYY-MM-DDBHH:MI:SS',
    -  DST_Offset_Minutes INTEGER,
    -  Temperature_Air_2M_F DECIMAL(4,1),
    -  Temperature_Wetbulb_2M_F DECIMAL(3,1),
    -  Temperature_Dewpoint_2M_F DECIMAL(3,1),
    -  Temperature_Feelslike_2M_F DECIMAL(4,1),
    -  Temperature_Windchill_2M_F DECIMAL(4,1),
    -  Temperature_Heatindex_2M_F DECIMAL(4,1),
    -  Humidity_Relative_2M_Pct DECIMAL(3,1),
    -  Humdity_Specific_2M_GPKG DECIMAL(3,1),
    -  Pressure_2M_Mb DECIMAL(5,1),
    -  Pressure_Tendency_2M_Mb DECIMAL(2,1),
    -  Pressure_Mean_Sea_Level_Mb DECIMAL(5,1),
    -  Wind_Speed_10M_MPH DECIMAL(3,1),
    -  Wind_Direction_10M_Deg DECIMAL(4,1),
    -  Wind_Speed_80M_MPH DECIMAL(3,1),
    -  Wind_Direction_80M_Deg DECIMAL(4,1),
    -  Wind_Speed_100M_MPH DECIMAL(3,1),
    -  Wind_Direction_100M_Deg DECIMAL(4,1),
    -  Precipitation_in DECIMAL(3,2),
    -  Snowfall_in DECIMAL(3,2),
    -  Cloud_Cover_Pct INTEGER,
    -  Radiation_Solar_Total_WPM2 DECIMAL(5,1)
    -)
    -UNIQUE PRIMARY INDEX ( Postal_Code, Time_Valid_UTC )
    -
    -
    -
  • -
  • -

    Run the following SQL to load the data into the table.

    -
    -
    -
    INSERT INTO WeatherData_temp
    -  SELECT
    -    CAST(payload..postal_code AS VARCHAR(10)) Postal_code,
    -    CAST(payload..country AS CHAR(2)) Country,
    -    CAST(payload..time_valid_utc AS TIMESTAMP(0) FORMAT 'YYYY-MM-DDBHH:MI:SS') Time_Valid_UTC,
    -    CAST(payload..doy_utc AS INTEGER) DOY_UTC,
    -    CAST(payload..hour_utc AS INTEGER) Hour_UTC,
    -    CAST(payload..time_valid_lcl AS TIMESTAMP(0) FORMAT 'YYYY-MM-DDBHH:MI:SS') Time_Valid_LCL,
    -    CAST(payload..dst_offset_minutes AS INTEGER) DST_Offset_Minutes,
    -    CAST(payload..temperature_air_2m_f AS DECIMAL (4,1)) Temperature_Air_2M_F,
    -    CAST(payload..temperature_wetbulb_2m_f AS DECIMAL(3,1)) Temperature_Wetbulb_2M_F,
    -    CAST(payload..temperature_dewpoint_2m_f AS DECIMAL(3,1)) Temperature_Dewpoint_2M_F,
    -    CAST(payload..temperature_feelslike_2m_f AS DECIMAL(4,1)) Temperature_Feelslike_2M_F,
    -    CAST(payload..temperature_windchill_2m_f AS DECIMAL(4,1)) Temperature_Windchill_2M_F,
    -    CAST(payload..temperature_heatindex_2m_f AS DECIMAL(4,1)) Temperature_Heatindex_2M_F,
    -    CAST(payload..humidity_relative_2m_pct AS DECIMAL(3,1)) Humidity_Relative_2M_Pct,
    -    CAST(payload..humidity_specific_2m_gpkg AS DECIMAL(3,1)) Humdity_Specific_2M_GPKG,
    -    CAST(payload..pressure_2m_mb AS DECIMAL(5,1)) Pressure_2M_Mb,
    -    CAST(payload..pressure_tendency_2m_mb AS DECIMAL(2,1)) Pressure_Tendency_2M_Mb,
    -    CAST(payload..pressure_mean_sea_level_mb AS DECIMAL(5,1)) Pressure_Mean_Sea_Level_Mb,
    -    CAST(payload..wind_speed_10m_mph AS DECIMAL(3,1)) Wind_Speed_10M_MPH,
    -    CAST(payload..wind_direction_10m_deg AS DECIMAL(4,1)) Wind_Direction_10M_Deg,
    -    CAST(payload..wind_speed_80m_mph AS DECIMAL(3,1)) Wind_Speed_80M_MPH,
    -    CAST(payload..wind_direction_80m_deg AS DECIMAL(4,1)) Wind_Direction_80M_Deg,
    -    CAST(payload..wind_speed_100m_mph AS DECIMAL(3,1)) Wind_Speed_100M_MPH,
    -    CAST(payload..wind_direction_100m_deg AS DECIMAL(4,1)) Wind_Direction_100M_Deg,
    -    CAST(payload..precipitation_in AS DECIMAL(3,2)) Precipitation_in,
    -    CAST(payload..snowfall_in AS DECIMAL(3,2)) Snowfall_in,
    -    CAST(payload..cloud_cover_pct AS INTEGER) Cloud_Cover_Pct,
    -    CAST(payload..radiation_solar_total_wpm2 AS DECIMAL(5,1)) Radiation_Solar_Total_WPM2
    -  FROM
    -    WeatherData
    -  WHERE
    -    Postal_Code = '30301'
    -
    -
    -
  • -
  • -

    Run the following SQL command to validate the contents of the table.

    -
    -
    -
    SELECT * FROM WeatherData_temp SAMPLE 10;
    -
    -
    -
    -

    WeatherData_temp

    -
    -
  • -
-
-
-
-

READ_NOS - An alternative method to foreign tables

-
-

An alternative to defining a foreign table is to use the READ_NOS table operator. This table operator allows you to access data directly from an object store without first creating a foreign table, or to view a list of the keys associated with all the objects specified by a Location clause.

-
-
-

You can use the READ_NOS table operator to explore the data in an object.

-
-
-
    -
  • -

    Run the following command to explore the data in an object.

    -
    -
    -
    SELECT
    -  TOP 5 payload..*
    -FROM
    -  READ_NOS (
    -    ON (SELECT CAST( NULL AS DATASET STORAGE FORMAT CSV))
    -    USING
    -      LOCATION ('/AZ/myconsumerstorage.blob.core.windows.net/consumerdata')
    -      ACCESS_ID('myconsumerstorage')
    -      ACCESS_KEY('*****')
    -  ) AS THE_TABLE
    -  ORDER BY 1
    -
    -
    -
    -
      -
    • -

      The LOCATION requires a storage account name and container name. This is highlighted above in yellow. You will need to replace this with your own storage account and container name.

      -
    • -
    • -

      Replace the string for ACCESS_ID with your Storage Account Name.

      -
    • -
    • -

      Replace the string for ACCES_KEY with your Storage Account Access Key or SAS Token

      -
    • -
    -
    -
    -

    READ_NOS

    -
    -
  • -
-
-
-

You can also leverage the READ_NOS table operator to get the length (size) of the object.

-
-
-
    -
  • -

    Run the following SQL command to view the size of the object.

    -
    -
    -
    SELECT
    -  location(CHAR(120)), ObjectLength
    -FROM
    -  READ_NOS (
    -    ON (SELECT CAST( NULL AS DATASET STORAGE FORMAT CSV))
    -    USING
    -      LOCATION ('/AZ/myconsumerstorage.blob.core.windows.net/consumerdata')
    -      ACCESS_ID('myconsumerstorage')
    -      ACCESS_KEY('*****')
    -      RETURNTYPE('NOSREAD_KEYS')
    -  ) AS THE_TABLE
    -ORDER BY 1
    -
    -
    -
    -
      -
    • -

      Replace the values for LOCATION, ACCESS_ID, and ACCESS_KEY.

      -
    • -
    -
    -
    -

    READ_NOS object length

    -
    -
  • -
-
-
-

You can substitute the NOS_READ table operator for a foreign table definition in the above section for loading the data into a relational table.

-
-
-
-
CREATE MULTISET TABLE WeatherData_temp AS (
-  SELECT
-    CAST(payload..postal_code AS VARCHAR(10)) Postal_code,
-    CAST(payload..country AS CHAR(2)) Country,
-    CAST(payload..time_valid_utc AS TIMESTAMP(0) FORMAT 'YYYY-MM-DDBHH:MI:SS') Time_Valid_UTC,
-    CAST(payload..doy_utc AS INTEGER) DOY_UTC,
-    CAST(payload..hour_utc AS INTEGER) Hour_UTC,
-    CAST(payload..time_valid_lcl AS TIMESTAMP(0) FORMAT 'YYYY-MM-DDBHH:MI:SS') Time_Valid_LCL,
-    CAST(payload..dst_offset_minutes AS INTEGER) DST_Offset_Minutes,
-    CAST(payload..temperature_air_2m_f AS DECIMAL (4,1)) Temperature_Air_2M_F,
-    CAST(payload..temperature_wetbulb_2m_f AS DECIMAL(3,1)) Temperature_Wetbulb_2M_F,
-    CAST(payload..temperature_dewpoint_2m_f AS DECIMAL(3,1)) Temperature_Dewpoint_2M_F,
-    CAST(payload..temperature_feelslike_2m_f AS DECIMAL(4,1)) Temperature_Feelslike_2M_F,
-    CAST(payload..temperature_windchill_2m_f AS DECIMAL(4,1)) Temperature_Windchill_2M_F,
-    CAST(payload..temperature_heatindex_2m_f AS DECIMAL(4,1)) Temperature_Heatindex_2M_F,
-    CAST(payload..humidity_relative_2m_pct AS DECIMAL(3,1)) Humidity_Relative_2M_Pct,
-    CAST(payload..humidity_specific_2m_gpkg AS DECIMAL(3,1)) Humdity_Specific_2M_GPKG,
-    CAST(payload..pressure_2m_mb AS DECIMAL(5,1)) Pressure_2M_Mb,
-    CAST(payload..pressure_tendency_2m_mb AS DECIMAL(2,1)) Pressure_Tendency_2M_Mb,
-    CAST(payload..pressure_mean_sea_level_mb AS DECIMAL(5,1)) Pressure_Mean_Sea_Level_Mb,
-    CAST(payload..wind_speed_10m_mph AS DECIMAL(3,1)) Wind_Speed_10M_MPH,
-    CAST(payload..wind_direction_10m_deg AS DECIMAL(4,1)) Wind_Direction_10M_Deg,
-    CAST(payload..wind_speed_80m_mph AS DECIMAL(3,1)) Wind_Speed_80M_MPH,
-    CAST(payload..wind_direction_80m_deg AS DECIMAL(4,1)) Wind_Direction_80M_Deg,
-    CAST(payload..wind_speed_100m_mph AS DECIMAL(3,1)) Wind_Speed_100M_MPH,
-    CAST(payload..wind_direction_100m_deg AS DECIMAL(4,1)) Wind_Direction_100M_Deg,
-    CAST(payload..precipitation_in AS DECIMAL(3,2)) Precipitation_in,
-    CAST(payload..snowfall_in AS DECIMAL(3,2)) Snowfall_in,
-    CAST(payload..cloud_cover_pct AS INTEGER) Cloud_Cover_Pct,
-    CAST(payload..radiation_solar_total_wpm2 AS DECIMAL(5,1)) Radiation_Solar_Total_WPM2
-  FROM
-    READ_NOS (
-      ON (SELECT CAST( NULL AS DATASET STORAGE FORMAT CSV))
-      USING
-        LOCATION ('/AZ/myconsumerstorage.blob.core.windows.net/consumerdata')
-        ACCESS_ID('myconsumerstorage')
-        ACCESS_KEY('*****')
-    ) AS THE_TABLE
-  WHERE
-    Postal_Code = '36101'
-)
-WITH DATA
-
-
-
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html b/pr-preview/pr-110/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html deleted file mode 100644 index 5962468ae..000000000 --- a/pr-preview/pr-110/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html +++ /dev/null @@ -1,2799 +0,0 @@ - - - - - - Integrate Teradata Jupyter extensions with Google Vertex AI :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Integrate Teradata Jupyter extensions with Google Vertex AI

-

Author: Hailing Jiang
-Last updated: June 28th, 2022

-
-
-
- - - - - -
- - -This how-to shows you how to add Teradata Extensions to a Jupyter Notebooks environment. A hosted version of Jupyter Notebooks integrated with Teradata Extensions and analytics tools is available for functional testing for free at https://clearscape.teradata.com. -
-
-
-
-
-

Overview

-
-
-

Teradata Jupyter extensions provide Teradata SQL kernel and several UI extensions to allow users to easily access and navigate Teradata database from Jupyter envioronment. Google Vertex AI is Google Cloud’s new unified ML platform. Vertex AI Workbench provides a Jupyter-base development environment for the entire data science workflow. This article describes how to integate our Jupyter extensions with Vertex AI Workbench so that Vertex AI users can take advantage of our Teradata extensions in their ML pipeline.

-
-
-

Vertex AI workbench supports two types of notebooks: managed notebooks and user-managed notebooks. Here we will focus on user-managed notebooks. We will show two ways to integrate our Jupyter extensions with user-managed notebooks: use startup script to install our kernel and extensions or use custom container.

-
-
-
-
-

Prerequisites

-
-
-
    -
  • -

    Access to a Teradata Vantage instance

    -
    - - - - - -
    - - -If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. -
    -
    -
  • -
  • -

    Google Cloud account with Vertex AI enabled

    -
  • -
  • -

    Google cloud storage to store startup scripts and Teradata Jupyter extension package

    -
  • -
-
-
-
-
-

Integration

-
-
-

There are two ways to run Teradata Jupyter Extensions in Vertex AI:

-
- -
-

These two integration methods are described below.

-
-
-

Use startup script

-
-

When we create a new notebook instance, we can specify a startup script. This script runs only once after the instance is created. Here are the steps:

-
-
-
    -
  1. -

    Download Teradata Jupyter extensions package

    -
    -

    Go to Vantage Modules for Jupyter page to download the Teradata Jupyter extensions package bundle Linux version.

    -
    -
  2. -
  3. -

    Upload the package to a Google Cloud storage bucket

    -
  4. -
  5. -

    Write a startup script and upload it to cloud storage bucket

    -
    -

    Below is a sample script. It fetches Teradata Jupyter extension package from cloud storage bucket and installs Teradata SQL kernel and extensions.

    -
    -
    -
    -
    #! /bin/bash
    -
    -cd /home/jupyter
    -mkdir teradata
    -cd teradata
    -gsutil cp gs://teradata-jupyter/* .
    -unzip teradatasql*.zip
    -
    -# Install Teradata kernel
    -cp teradatakernel /usr/local/bin
    -
    -jupyter kernelspec install ./teradatasql --prefix=/opt/conda
    -
    -# Install Teradata extensions
    -pip install --find-links . teradata_preferences_prebuilt
    -pip install --find-links . teradata_connection_manager_prebuilt
    -pip install --find-links . teradata_sqlhighlighter_prebuilt
    -pip install --find-links . teradata_resultset_renderer_prebuilt
    -pip install --find-links . teradata_database_explorer_prebuilt
    -
    -# PIP install the Teradata Python library
    -pip install teradataml
    -
    -# Install Teradata R library (optional, uncomment this line only if you use an environment that supports R)
    -#Rscript -e "install.packages('tdplyr',repos=c('https://r-repo.teradata.com','https://cloud.r-project.org'))"
    -
    -
    -
  6. -
  7. -

    Create a new notebook and add the startup script from cloud storage bucket

    -
    -

    create a new notebook with startup script

    -
    -
  8. -
  9. -

    It may take a few minutes for the notebook creation process to complete. When it is done, click on Open notebook.

    -
    -

    Open notebook

    -
    -
  10. -
-
-
-
-

Use custom container

-
-

Another option is to provide a custom container when creating a notebook.

-
-
-
    -
  1. -

    Download Teradata Jupyter extensions package

    -
    -

    Go to Vantage Modules for Jupyter page to download the Teradata Jupyter extensions package bundle Linux version.

    -
    -
  2. -
  3. -

    Copy this package to your work directory and unzip it

    -
  4. -
  5. -

    Build custom Docker image

    -
    -

    The custom container must expose a service on port 8080. It is recommended to create a container derived from a Google Deep Learning Containers image, because those images are already configured to be compatible with user-managed notebooks.

    -
    -
    -

    Below is a sample Dockerfile you can use to build a Docker image with Teradata SQL kernel and extensions installed:

    -
    -
    -
    -
    # Use one of the deep learning images as base image
    -# if you need both Python and R, use one of the R images
    -FROM gcr.io/deeplearning-platform-release/r-cpu:latest
    -
    -USER root
    -
    -##############################################################
    -# Install kernel and copy supporting files
    -##############################################################
    -
    -# Copy the kernel
    -COPY ./teradatakernel /usr/local/bin
    -
    -RUN chmod 755 /usr/local/bin/teradatakernel
    -
    -# Copy directory with kernel.json file into image
    -COPY ./teradatasql teradatasql/
    -
    -# Copy notebooks and licenses
    -COPY ./notebooks/ /home/jupyter
    -COPY ./license.txt /home/jupyter
    -COPY ./ThirdPartyLicenses/ /home/jupyter
    -
    -# Install the kernel file to /opt/conda jupyter lab instance
    -RUN jupyter kernelspec install ./teradatasql --prefix=/opt/conda
    -
    -##############################################################
    -# Install Teradata extensions
    -##############################################################
    -
    -RUN pip install --find-links . teradata_preferences_prebuilt && \
    -    pip install --find-links . teradata_connection_manager_prebuilt && \
    -    pip install --find-links . teradata_sqlhighlighter_prebuilt && \
    -    pip install --find-links . teradata_resultset_renderer_prebuilt && \
    -    pip install --find-links . teradata_database_explorer_prebuilt
    -
    -# Give back ownership of /opt/conda to jovyan
    -RUN chown -R jupyter:users /opt/conda
    -
    -# PIP install the Teradata Python libraries
    -RUN pip install teradataml
    -
    -# Install Teradata R library (optional, include it only if you use a base image that supports R)
    -RUN Rscript -e "install.packages('tdplyr',repos=c('https://r-repo.teradata.com','https://cloud.r-project.org'))"
    -
    -
    -
  6. -
  7. -

    In your work directory (where you unzipped Teradata Jupyter extensions package), run docker build to build the image:

    -
    -
    -
    docker build -f Dockerfile imagename:imagetag .
    -
    -
    -
  8. -
  9. -

    Push the docker image to Google container registry or artifact registry

    -
    -

    Please refer to the following documentations to push docker image to registry:

    -
    - -
  10. -
  11. -

    Create a new notebook

    -
    -

    In Environment section, set custom container field to the location of your newly created custom container:

    -
    -
    -

    Open notebook

    -
    -
  12. -
-
-
-
-
- -
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html b/pr-preview/pr-110/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html deleted file mode 100644 index 7b3055117..000000000 --- a/pr-preview/pr-110/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html +++ /dev/null @@ -1,2725 +0,0 @@ - - - - - - Integrate Teradata Jupyter extensions with SageMaker notebook instance :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Integrate Teradata Jupyter extensions with SageMaker notebook instance

-

Author: Hailing Jiang
-Last updated: September 27th, 2022

-
-
-
- - - - - -
- - -This how-to shows you how to add Teradata Extensions to a Jupyter Notebooks environment. A hosted version of Jupyter Notebooks integrated with Teradata Extensions and analytics tools is available for functional testing for free at https://clearscape.teradata.com. -
-
-
-
-
-

Overview

-
-
-

Teradata Jupyter extensions provide Teradata SQL kernel and several UI extensions to allow users to easily access and navigate Teradata database from Jupyter envioronment. This article describes how to integate our Jupyter extensions with SageMaker notebook instance.

-
-
-
-
-

Prerequisites

-
-
-
    -
  • -

    Access to a Teradata Vantage instance

    -
    - - - - - -
    - - -If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. -
    -
    -
  • -
  • -

    AWS account

    -
  • -
  • -

    AWS S3 bucket to store lifecycle configuration scripts and Teradata Jupyter extension package

    -
  • -
-
-
-
-
-

Integration

-
-
-

SageMaker supports customization of notebook instances using lifecycle configuration scripts. Below we will demo how to use lifecycle configuration scripts to install our Jupyter kernel and extensions in a notebook instance.

-
-
-

Steps to integrate with notebook instance

-
-
    -
  1. -

    Download Teradata Jupyter extensions package

    -
    -

    Download Linux version from https://downloads.teradata.com/download/tools/vantage-modules-for-jupyter and upload it to an S3 bucket. This zipped package contains Teradata Jupyter kernel and extensions. Each extension has 2 files, the one with "_prebuilt" in the name is prebuilt extension which can be installed using PIP, the other one is source extension that needs to be installed using "jupyter labextension". It is recommended to use prebuilt extensions.

    -
    -
  2. -
  3. -

    Create a lifecycle configuration for notebook instance

    -
    -

    create a lifecycle configuration for notebook instance

    -
    -
    -

    Here are sample scripts that fetches the Teradata package from S3 bucket and installs Jupyter kernel and extensions. Note that on-create.sh creates a custom conda env that persists on notebook instance’s EBS volume so that the installation will not get lost after notebook restarts. on-start.sh installs Teradata kernel and extensions to the custom conda env.

    -
    -
    -

    on-create.sh

    -
    -
    -
    -
    #!/bin/bash
    -
    -set -e
    -
    -# This script installs a custom, persistent installation of conda on the Notebook Instance's EBS volume, and ensures
    -# that these custom environments are available as kernels in Jupyter.
    -
    -
    -sudo -u ec2-user -i <<'EOF'
    -unset SUDO_UID
    -# Install a separate conda installation via Miniconda
    -WORKING_DIR=/home/ec2-user/SageMaker/custom-miniconda
    -mkdir -p "$WORKING_DIR"
    -wget https://repo.anaconda.com/miniconda/Miniconda3-4.6.14-Linux-x86_64.sh -O "$WORKING_DIR/miniconda.sh"
    -bash "$WORKING_DIR/miniconda.sh" -b -u -p "$WORKING_DIR/miniconda"
    -rm -rf "$WORKING_DIR/miniconda.sh"
    -# Create a custom conda environment
    -source "$WORKING_DIR/miniconda/bin/activate"
    -KERNEL_NAME="teradatasql"
    -
    -PYTHON="3.8"
    -conda create --yes --name "$KERNEL_NAME" python="$PYTHON"
    -conda activate "$KERNEL_NAME"
    -pip install --quiet ipykernel
    -
    -EOF
    -
    -
    -
    -

    on-start.sh

    -
    -
    -
    -
    #!/bin/bash
    -
    -set -e
    -
    -# This script installs Teradata Jupyter kernel and extensions.
    -
    -
    -sudo -u ec2-user -i <<'EOF'
    -unset SUDO_UID
    -
    -WORKING_DIR=/home/ec2-user/SageMaker/custom-miniconda
    -
    -source "$WORKING_DIR/miniconda/bin/activate" teradatasql
    -
    -# fetch Teradata Jupyter extensions package from S3 and unzip it
    -mkdir -p "$WORKING_DIR/teradata"
    -aws s3 cp s3://sagemaker-teradata-bucket/teradatasqllinux_3.3.0-ec06172022.zip "$WORKING_DIR/teradata"
    -cd "$WORKING_DIR/teradata"
    -
    -unzip -o teradatasqllinux_3.3.0-ec06172022.zip
    -
    -# install Teradata kernel
    -cp teradatakernel /home/ec2-user/anaconda3/condabin
    -jupyter kernelspec install --user ./teradatasql
    -
    -# install Teradata Jupyter extensions
    -source /home/ec2-user/anaconda3/bin/activate JupyterSystemEnv
    -
    -pip install teradata_connection_manager_prebuilt-3.3.0.tar.gz
    -pip install teradata_database_explorer_prebuilt-3.3.0.tar.gz
    -pip install teradata_preferences_prebuilt-3.3.0.tar.gz
    -pip install teradata_resultset_renderer_prebuilt-3.3.0.tar.gz
    -pip install teradata_sqlhighlighter_prebuilt-3.3.0.tar.gz
    -
    -conda deactivate
    -EOF
    -
    -
    -
  4. -
  5. -

    Create a notebook instance. Please select 'Amazon Linux 2, Jupyter Lab3' for Platform identifier and select the lifecycle configuration created in step 2 for Lifecycle configuration.

    -
    -

    Create notebook instance

    -
    -
    -

    You might also need to add vpc, subnet and security group in 'Network' section to gain access to Teradata databases.

    -
    -
  6. -
  7. -

    Wait until notebook instance Status turns 'InService', click 'Open JupyterLab' to open the notebook.

    -
    -

    Open notebook

    -
    -
  8. -
-
-
-

Access the demo notebooks to get usage tips

-
-
-

+ -access demo notebooks

-
-
-
-
-
-

Further reading

-
- -
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html b/pr-preview/pr-110/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html deleted file mode 100644 index b40906377..000000000 --- a/pr-preview/pr-110/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html +++ /dev/null @@ -1,3525 +0,0 @@ - - - - - - Connect Teradata Vantage to Salesforce using Amazon Appflow :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Connect Teradata Vantage to Salesforce using Amazon Appflow

-

Author: Wenjie Tehan
-Last updated: February 14th, 2022

-
-

Overview

-
-
-

This how-to describes the process to migrate data between Salesforce and Teradata Vantage. It contains two use cases:

-
-
-
    -
  1. -

    Retrieve customer information from Salesforce, and combine it with order and shipping information from Vantage to derive analytical insights.

    -
  2. -
  3. -

    Update newleads table on Vantage with the Salesforce data, then add the new lead(s) back to Salesforce using AppFlow.

    -
  4. -
-
-
-

Diagram Description automatically generated

-
-
-

Amazon AppFlow transfers the customer account data from Salesforce to Amazon S3. Vantage then uses Native Object Store (NOS) read functionality to join the data in Amazon S3 with data in Vantage with a single query.

-
-
-

The account information is used to update the newleads table on Vantage. Once the table is updated, Vantage writes it back to the Amazon S3 bucket with NOS Write. A Lambda function is triggered upon arrival of the new lead data file to convert the data file from Parquet format to CSV format, and AppFlow then inserts the new lead(s) back into Salesforce.

-
-
-
-
-

About Amazon AppFlow

-
-
-

Amazon AppFlow is a fully managed integration service that enables users to securely transfer data between Software-as-a-Service (SaaS) applications like Salesforce, Marketo, Slack, and ServiceNow, and AWS services like Amazon S3 and Amazon Redshift. AppFlow automatically encrypts data in motion, and allows users to restrict data from flowing over the public internet for SaaS applications that are integrated with AWS PrivateLink, reducing exposure to security threats.

-
-
-

As of today, Amazon AppFlow has 16 sources to choose from, and can send the data to four destinations.

-
-
-
-
-

About Teradata Vantage

-
-
-

Teradata Vantage is the connected multi-cloud data platform for enterprise analytics, solving data challenges from start to scale.

-
-
-

Vantage enables companies to start small and elastically scale compute or storage, paying only for what they use, harnessing low-cost object stores and integrating their analytic workloads. Vantage supports R, Python, Teradata Studio, and any other SQL-based tools.

-
-
-

Vantage combines descriptive, predictive, prescriptive analytics, autonomous decision-making, ML functions, and visualization tools into a unified, integrated platform that uncovers real-time business intelligence at scale, no matter where the data resides.

-
-
-

Teradata Vantage Native Object Store (NOS) can be used to explore data in external object stores, like Amazon S3, using standard SQL. No special object storage-side compute infrastructure is required to use NOS. Users can explore data located in an Amazon S3 bucket by simply creating a NOS table definition that points to your bucket. With NOS, you can quickly import data from Amazon S3 or even join it with other tables in the Vantage database.

-
-
-
-
-

Prerequisites

-
-
-

You are expected to be familiar with Amazon AppFlow service and Teradata Vantage.

-
-
-

You will need the following accounts, and systems:

-
-
-
    -
  • -

    Access to a Teradata Vantage instance.

    -
    - - - - - -
    - - -If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. -
    -
    -
  • -
  • -

    An AWS account with the role that can create and run flows.

    -
  • -
  • -

    An Amazon S3 bucket to store Salesforce data (i.e., ptctsoutput)

    -
  • -
  • -

    An Amazon S3 bucket to store raw Vantage data (Parquet file) (i.e., vantageparquet). This bucket needs to have policy to allow Amazon AppFlow access

    -
  • -
  • -

    An Amazon S3 bucket to store converted Vantage data (CSV file) (i.e., vantagecsv)

    -
  • -
  • -

    A Salesforce account that satisfies the following requirements:

    -
    -
      -
    • -

      Your Salesforce account must be enabled for API access. API access is enabled by default for Enterprise, Unlimited, Developer, and Performance editions.

      -
    • -
    • -

      Your Salesforce account must allow you to install connected apps. If this is disabled, contact your Salesforce administrator. After you create a Salesforce connection in Amazon AppFlow, verify that the connected app named "Amazon AppFlow Embedded Login App" is installed in your Salesforce account.

      -
    • -
    • -

      The refresh token policy for the "Amazon AppFlow Embedded Login App" must be set to "Refresh token is valid until revoked". Otherwise, your flows will fail when your refresh token expires.

      -
    • -
    • -

      You must enable Change Data Capture in Salesforce to use event-driven flow triggers. From Setup, enter "Change Data Capture" in Quick Find.

      -
    • -
    • -

      If your Salesforce app enforces IP address restrictions, you must whitelist the addresses used by Amazon AppFlow. For more information, see https://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html[AWS IP address ranges] in the Amazon Web Services General Reference.

      -
    • -
    • -

      If you are transferring over 1 million Salesforce records, you cannot choose any Salesforce compound field. Amazon AppFlow uses Salesforce Bulk APIs for the transfer, which does not allow transfer of compound fields.

      -
    • -
    • -

      To create private connections using AWS PrivateLink, you must enable both "Manager Metadata" and "Manage External Connections" user permissions in your Salesforce account. Private connections are currently available in the us-east-1 and us-west-2 AWS Regions.

      -
    • -
    • -

      Some Salesforce objects can’t be updated, such as history objects. For these objects, Amazon AppFlow does not support incremental export (the "Transfer new data only" option) for schedule-triggered flows. Instead, you can choose the "Transfer all data" option and then select the appropriate filter to limit the records you transfer.

      -
    • -
    -
    -
  • -
-
-
-
-
-

Procedure

-
-
-

Once you have met the prerequisites, follow these steps:

-
-
-
    -
  1. -

    Create a Salesforce to Amazon S3 Flow

    -
  2. -
  3. -

    Exploring Data using NOS

    -
  4. -
  5. -

    Export Vantage Data to Amazon S3 using NOS

    -
  6. -
  7. -

    Create an Amazon S3 to Salesforce Flow

    -
  8. -
-
-
-

Create a Salesforce to Amazon S3 Flow

-
-

This step creates a flow using Amazon AppFlow. For this example, we’re using a Salesforce developer account to connect to Salesforce.

-
-
-

Go to AppFlow console, sign in with your AWS login credentials and click Create flow. Make sure you are in the right region, and the bucket is created to store Salesforce data.

-
-
-

A screenshot of a social media post Description automatically generated

-
-
-

Step 1: Specify flow details

-
-

This step provides basic information for your flow.

-
-
-

Fill in Flow name (i.e. salesforce) and Flow description (optional), leave Customize encryption settings (advanced) unchecked. Click Next.

-
-
-
-

Step 2: Configure flow

-
-

This step provides information about the source and destination for your flow. For this example, we will be using Salesforce as the source, and Amazon S3 as the destination.

-
-
-
    -
  • -

    For Source name, choose Salesforce, then Create new connection for Choose Salesforce connection.

    -
    -

    A screenshot of a cell phone Description automatically generated

    -
    -
  • -
  • -

    Use default for Salesforce environment and Data encryption. Give your connection a name (i.e. salesforce) and click Continue.

    -
    -

    A screenshot of a cell phone Description automatically generated

    -
    -
  • -
  • -

    At the salesforce login window, enter your Username and Password. Click Log In

    -
    -

    A screenshot of a cell phone Description automatically generated

    -
    -
  • -
  • -

    Click Allow to allow AppFlow to access your salesforce data and information.

    -
    -

    A screenshot of a cell phone Description automatically generated

    -
    -
  • -
  • -

    Back at the AppFlow Configure flow window, use Salesforce objects, and choose Account to be the Salesforce object.

    -
    -

    A screenshot of a cell phone Description automatically generated

    -
    -
    -

    A screenshot of a cell phone Description automatically generated

    -
    -
  • -
  • -

    Use Amazon S3 as Destination name. Pick the bucket you created earlier where you want the data to be stored (i.e., ptctsoutput).

    -
    -

    A screenshot of a cell phone Description automatically generated

    -
    -
  • -
  • -

    Flow trigger is Run on demand. Click Next.

    -
    -

    A screenshot of a cell phone Description automatically generated

    -
    -
  • -
-
-
-
-

Step 3: Map data fields

-
-

This step determines how data is transferred from the source to the destination.

-
-
-
    -
  • -

    Use Manually map fields as Mapping method

    -
  • -
  • -

    For simplicity, choose Map all fields directly for Source to destination filed mapping.

    -
    -

    A screenshot of a cell phone Description automatically generated

    -
    -
    -

    Once you click on "Map all fields directly", all the fields will show under Mapped fields. Click on the checkbox for the field(s) you want to Add formula (concatenates), Modify values (mask or truncate field values), or Remove selected mappings.

    -
    -
    -

    For this example, no checkbox will be ticked.

    -
    -
  • -
  • -

    For Validations, add in a condition to ignore the record that contains no "Billing Address" (optional). Click Next.

    -
    -

    A screenshot of a cell phone Description automatically generated

    -
    -
  • -
-
-
-
-

Step 4: Add filters

-
-

You can specify a filter to determine which records to transfer. For this example, add a condition to filter out the records that are deleted (optional). Click Next.

-
-
-

A screenshot of a cell phone Description automatically generated

-
-
-
-

Step 5. Review and create

-
-

Review all the information you just entered. Modify if necessary. Click Create flow.

-
-
-

A message of successful flow creation will be displayed with the flow information once the flow is created,

-
-
-

A screenshot of a cell phone Description automatically generated

-
-
-
-

Run flow

-
-

Click Run flow on the upper right corner.

-
-
-

Upon completion of the flow run, message will be displayed to indicate a successful run.

-
-
-

Message example:

-
-
-

image

-
-
-

Click the link to the bucket to view data. Salesforce data will be in JSON format.

-
-
-
-

Change data file properties

-
-

By default, Salesforce data is encrypted. We need to remove the encryption for NOS to access it.

-
-
-

Click on the data file in your Amazon S3 bucket, then click the Properties tab.

-
-
-

A screenshot of a social media post Description automatically generated

-
-
-

Click on the AWS-KMS from Encryption and change it from AWS-KMS encryption to None. Click Save.

-
-
-

A screenshot of a social media post Description automatically generated

-
-
-
-
-

Exploring Data Using NOS

-
-

Native Object Store has built in functionalities to explore and analyze data in Amazon S3. This section lists a few commonly used functions of NOS.

-
-
-

Create Foreign Table

-
-

Foreign table allows the external data to be easily referenced within the Vantage Advanced SQL Engine and makes the data available in a structured relational format.

-
-
-

To create a foreign table, first login to Teradata Vantage system with your credentials. Create AUTHORIZATION object with access keys for Amazon S3 bucket access. Authorization object enhances security by establishing control over who is allowed to use a foreign table to access Amazon S3 data.

-
-
-
-
CREATE AUTHORIZATION DefAuth_S3
-AS DEFINER TRUSTED
-USER 'A*****************' /* AccessKeyId */
-PASSWORD '********'; /* SecretAccessKey */
-
-
-
-

"USER" is the AccessKeyId for your AWS account, and "PASSWORD" is the SecretAccessKey.

-
-
-

Create a foreign table against the JSON file on Amazon S3 using following command.

-
-
-
-
CREATE MULTISET FOREIGN TABLE salesforce,
-EXTERNAL SECURITY DEFINER TRUSTED DefAuth_S3
-(
-  Location VARCHAR(2048) CHARACTER SET UNICODE CASESPECIFIC,
-  Payload JSON(8388096) INLINE LENGTH 32000 CHARACTER SET UNICODE
-)
-USING
-(
-  LOCATION ('/S3/s3.amazonaws.com/ptctstoutput/salesforce/1ce190bc-25a9-4493-99ad-7497b497a0d0/903790813-2020-08-21T21:02:25')
-);
-
-
-
-

At a minimum, the foreign table definition must include a table name and location clause (highlighted in yellow) which points to the object store data. The Location requires a top-level single name, referred to as a "bucket" in Amazon.

-
-
-

If the file name doesn’t have standard extension (.json, .csv, .parquet) at the end, the Location and Payload columns definition is also required (highlighted in turquoise) to indicate the type of the data file.

-
-
-

Foreign tables are always defined as No Primary Index (NoPI) tables.

-
-
-

Once foreign table’s created, you can query the content of the Amazon S3 data set by doing "Select" on the foreign table.

-
-
-
-
SELECT * FROM salesforce;
-SELECT payload.* FROM salesforce;
-
-
-
-

The foreign table only contains two columns: Location and Payload. Location is the address in the object store system. The data itself is represented in the payload column, with the payload value within each record in the foreign table representing a single JSON object and all its name-value pairs.

-
-
-

Sample output from "SELECT * FROM salesforce;".

-
-
-

A picture containing monitor Description automatically generated

-
-
-

Sample output form "SELECT payload.* FROM salesforce;".

-
-
-

A screenshot of a cell phone Description automatically generated

-
-
-
-

JSON_KEYS Table Operator

-
-

JSON data may contain different attributes in different records. To determine the full list of possible attributes in a data store, use JSON_KEYS:

-
-
-
-
|SELECT DISTINCT * FROM JSON_KEYS (ON (SELECT payload FROM salesforce)) AS j;
-
-
-
-

Partial Output:

-
-
-

A screenshot of a cell phone Description automatically generated

-
-
-
-

Create View

-
-

Views can simplify the names associated with the payload attributes, make it easier to code executable SQL against object store data, and hide the Location references in the foreign table to make it look like normal columns.

-
-
-

Following is a sample create view statement with the attributes discovered from the JSON_KEYS table operator above.

-
-
-
-
REPLACE VIEW salesforceView AS (
-  SELECT
-    CAST(payload.Id AS VARCHAR(20)) Customer_ID,
-    CAST(payload."Name" AS VARCHAR(100)) Customer_Name,
-    CAST(payload.AccountNumber AS VARCHAR(10)) Acct_Number,
-    CAST(payload.BillingStreet AS VARCHAR(20)) Billing_Street,
-    CAST(payload.BillingCity AS VARCHAR(20)) Billing_City,
-    CAST(payload.BillingState AS VARCHAR(10)) Billing_State,
-    CAST(payload.BillingPostalCode AS VARCHAR(5)) Billing_Post_Code,
-    CAST(payload.BillingCountry AS VARCHAR(20)) Billing_Country,
-    CAST(payload.Phone AS VARCHAR(15)) Phone,
-    CAST(payload.Fax AS VARCHAR(15)) Fax,
-    CAST(payload.ShippingStreet AS VARCHAR(20)) Shipping_Street,
-    CAST(payload.ShippingCity AS VARCHAR(20)) Shipping_City,
-    CAST(payload.ShippingState AS VARCHAR(10)) Shipping_State,
-    CAST(payload.ShippingPostalCode AS VARCHAR(5)) Shipping_Post_Code,
-    CAST(payload.ShippingCountry AS VARCHAR(20)) Shipping_Country,
-    CAST(payload.Industry AS VARCHAR(50)) Industry,
-    CAST(payload.Description AS VARCHAR(200)) Description,
-    CAST(payload.NumberOfEmployees AS VARCHAR(10)) Num_Of_Employee,
-    CAST(payload.CustomerPriority__c AS VARCHAR(10)) Priority,
-    CAST(payload.Rating AS VARCHAR(10)) Rating,
-    CAST(payload.SLA__c AS VARCHAR(10)) SLA,
-    CAST(payload.AnnualRevenue AS VARCHAR(10)) Annual_Revenue,
-    CAST(payload."Type" AS VARCHAR(20)) Customer_Type,
-    CAST(payload.Website AS VARCHAR(100)) Customer_Website,
-    CAST(payload.LastActivityDate AS VARCHAR(50)) Last_Activity_Date
-  FROM salesforce
-);
-
-
-
-
-
SELECT * FROM salesforceView;
-
-
-
-

Partial output:

-
-
-

A picture containing computer Description automatically generated

-
-
-
-

READ_NOS Table Operator

-
-

READ_NOS table operator can be used to sample and explore a percent of the data without having first defined a foreign table, or to view a list of the keys associated with all the objects specified by a Location clause.

-
-
-
-
SELECT top 5 payload.*
-FROM READ_NOS (
- ON (SELECT CAST(NULL AS JSON CHARACTER SET Unicode))
-USING
-LOCATION ('/S3/s3.amazonaws.com/ptctstoutput/salesforce/1ce190bc-25a9-4493-99ad-7497b497a0d0/903790813-2020-08-21T21:02:25')
- ACCESS_ID ('A**********') /* AccessKeyId */
- ACCESS_KEY ('***********') /* SecretAccessKey */
- ) AS D
-GROUP BY 1;
-
-
-
-

Output:

-
-
-

A screenshot of a cell phone Description automatically generated

-
-
-
-

Join Amazon S3 Data to In-Database Tables

-
-

Foreign table can be joined with a table(s) in Vantage for further analysis. For example, ordering and shipping information are in Vantage in these three tables – Orders, Order_Items and Shipping_Address.

-
-
-

DDL for Orders:

-
-
-
-
CREATE TABLE Orders (
-  Order_ID INT NOT NULL,
-  Customer_ID VARCHAR(20) CHARACTER SET LATIN CASESPECIFIC,
-  Order_Status INT,
-  -- Order status: 1 = Pending; 2 = Processing; 3 = Rejected; 4 = Completed
-  Order_Date DATE NOT NULL,
-  Required_Date DATE NOT NULL,
-  Shipped_Date DATE,
-  Store_ID INT NOT NULL,
-  Staff_ID INT NOT NULL
-) Primary Index (Order_ID);
-
-
-
-

DDL for Order_Items:

-
-
-
-
CREATE TABLE Order_Items(
-  Order_ID INT NOT NULL,
-  Item_ID INT,
-  Product_ID INT NOT NULL,
-  Quantity INT NOT NULL,
-  List_Price DECIMAL (10, 2) NOT NULL,
-  Discount DECIMAL (4, 2) NOT NULL DEFAULT 0
-) Primary Index (Order_ID, Item_ID);
-
-
-
-

DDL for Shipping_Address:

-
-
-
-
CREATE TABLE Shipping_Address (
-  Customer_ID VARCHAR(20) CHARACTER SET LATIN CASESPECIFIC NOT NULL,
-  Street VARCHAR(100) CHARACTER SET LATIN CASESPECIFIC,
-  City VARCHAR(20) CHARACTER SET LATIN CASESPECIFIC,
-  State VARCHAR(15) CHARACTER SET LATIN CASESPECIFIC,
-  Postal_Code VARCHAR(10) CHARACTER SET LATIN CASESPECIFIC,
-  Country VARCHAR(20) CHARACTER SET LATIN CASESPECIFIC
-) Primary Index (Customer_ID);
-
-
-
-

And the tables have following data:

-
-
-

Orders:

-
-
-

image

-
-
-

Order_Items:

-
-
-

image

-
-
-

Shipping_Address:

-
-
-

image

-
-
-

By joining the salesforce foreign table to the established database table Orders, Order_Items and Shipping_Address, we can retrieve customer’s order information with customer’s shipping information.

-
-
-
-
SELECT
-  s.payload.Id as Customer_ID,
-  s.payload."Name" as Customer_Name,
-  s.payload.AccountNumber as Acct_Number,
-  o.Order_ID as Order_ID,
-  o.Order_Status as Order_Status,
-  o.Order_Date as Order_Date,
-  oi.Item_ID as Item_ID,
-  oi.Product_ID as Product_ID,
-  sa.Street as Shipping_Street,
-  sa.City as Shipping_City,
-  sa.State as Shipping_State,
-  sa.Postal_Code as Shipping_Postal_Code,
-  sa.Country as Shipping_Country
-FROM
-  salesforce s, Orders o, Order_Items oi, Shipping_Address sa
-WHERE
-  s.payload.Id = o.Customer_ID
-  AND o.Customer_ID = sa.Customer_ID
-  AND o.Order_ID = oi.Order_ID
-ORDER BY 1;
-
-
-
-

Results:

-
-
-

image

-
-
-
-

Import Amazon S3 Data to Vantage

-
-

Having a persistent copy of the Amazon S3 data can be useful when repetitive access of the same data is expected. NOS foreign table does not automatically make a persistent copy of the Amazon S3 data. A few approaches to capture the data in the database are described below:

-
-
-

A "CREATE TABLE AS … WITH DATA" statement can be used with the foreign table definition acting as the source table. Use this approach you can selectively choose which attributes within the foreign table payload that you want to include in the target table, and what the relational table columns will be named.

-
-
-
-
CREATE TABLE salesforceVantage AS (
-  SELECT
-    CAST(payload.Id AS VARCHAR(20)) Customer_ID,
-    CAST(payload."Name" AS VARCHAR(100)) Customer_Name,
-    CAST(payload.AccountNumber AS VARCHAR(10)) Acct_Number,
-    CAST(payload.BillingStreet AS VARCHAR(20)) Billing_Street,
-    CAST(payload.BillingCity AS VARCHAR(20)) Billing_City,
-    CAST(payload.BillingState AS VARCHAR(10)) Billing_State,
-    CAST(payload.BillingPostalCode AS VARCHAR(5)) Billing_Post_Code,
-    CAST(payload.BillingCountry AS VARCHAR(20)) Billing_Country,
-    CAST(payload.Phone AS VARCHAR(15)) Phone,
-    CAST(payload.Fax AS VARCHAR(15)) Fax,
-    CAST(payload.ShippingStreet AS VARCHAR(20)) Shipping_Street,
-    CAST(payload.ShippingCity AS VARCHAR(20)) Shipping_City,
-    CAST(payload.ShippingState AS VARCHAR(10)) Shipping_State,
-    CAST(payload.ShippingPostalCode AS VARCHAR(5)) Shipping_Post_Code,
-    CAST(payload.ShippingCountry AS VARCHAR(20)) Shipping_Country,
-    CAST(payload.Industry AS VARCHAR(50)) Industry,
-    CAST(payload.Description AS VARCHAR(200)) Description,
-    CAST(payload.NumberOfEmployees AS INT) Num_Of_Employee,
-    CAST(payload.CustomerPriority__c AS VARCHAR(10)) Priority,
-    CAST(payload.Rating AS VARCHAR(10)) Rating,
-    CAST(payload.SLA__c AS VARCHAR(10)) SLA,
-    CAST(payload."Type" AS VARCHAR(20)) Customer_Type,
-    CAST(payload.Website AS VARCHAR(100)) Customer_Website,
-    CAST(payload.AnnualRevenue AS VARCHAR(10)) Annual_Revenue,
-    CAST(payload.LastActivityDate AS DATE) Last_Activity_Date
-  FROM salesforce)
-WITH DATA
-NO PRIMARY INDEX;
-
-
-
-
    -
  • -

    SELECT* * FROM salesforceVantage; partial results:

    -
  • -
-
-
-

A screenshot of a computer Description automatically generated

-
-
-

An alternative to using foreign table is to use the READ_NOS table operator. This table operator allows you to access data directly from an object store without first building a foreign table. Combining READ_NOS with a CREATE TABLE AS clause to build a persistent version of the data in the database.

-
-
-
-
CREATE TABLE salesforceReadNOS AS (
- SELECT
-    CAST(payload.Id AS VARCHAR(20)) Customer_ID,
-    CAST(payload."Name" AS VARCHAR(100)) Customer_Name,
-    CAST(payload.AccountNumber AS VARCHAR(10)) Acct_Number,
-    CAST(payload.BillingStreet AS VARCHAR(20)) Billing_Street,
-    CAST(payload.BillingCity AS VARCHAR(20)) Billing_City,
-    CAST(payload.BillingState AS VARCHAR(10)) Billing_State,
-    CAST(payload.BillingPostalCode AS VARCHAR(5)) Billing_Post_Code,
-    CAST(payload.BillingCountry AS VARCHAR(20)) Billing_Country,
-    CAST(payload.Phone AS VARCHAR(15)) Phone,
-    CAST(payload.Fax AS VARCHAR(15)) Fax,
-    CAST(payload.ShippingStreet AS VARCHAR(20)) Shipping_Street,
-    CAST(payload.ShippingCity AS VARCHAR(20)) Shipping_City,
-    CAST(payload.ShippingState AS VARCHAR(10)) Shipping_State,
-    CAST(payload.ShippingPostalCode AS VARCHAR(5)) Shipping_Post_Code,
-    CAST(payload.ShippingCountry AS VARCHAR(20)) Shipping_Country,
-    CAST(payload.Industry AS VARCHAR(50)) Industry,
-    CAST(payload.Description AS VARCHAR(200)) Description,
-    CAST(payload.NumberOfEmployees AS INT) Num_Of_Employee,
-    CAST(payload.CustomerPriority__c AS VARCHAR(10)) Priority,
-    CAST(payload.Rating AS VARCHAR(10)) Rating,
-    CAST(payload.SLA__c AS VARCHAR(10)) SLA,
-    CAST(payload."Type" AS VARCHAR(20)) Customer_Type,
-    CAST(payload.Website AS VARCHAR(100)) Customer_Website,
-    CAST(payload.AnnualRevenue AS VARCHAR(10)) Annual_Revenue,
-    CAST(payload.LastActivityDate AS DATE) Last_Activity_Date
-  FROM READ_NOS (
-    ON (SELECT CAST(NULL AS JSON CHARACTER SET Unicode))
-    USING
-      LOCATION ('/S3/s3.amazonaws.com/ptctstoutput/salesforce/1ce190bc-25a9-4493-99ad-7497b497a0d0/903790813-2020-08-21T21:02:25')
-      ACCESS_ID ('A**********') /* AccessKeyId */
-      ACCESS_KEY ('***********') /* SecretAccessKey */
-  ) AS D
-) WITH DATA;
-
-
-
-

Results from the salesforceReadNOS table:

-
-
-
-
SELECT * FROM salesforceReadNOS;
-
-
-
-

A picture containing large

-
-
-

Another way of placing Amazon S3 data into a relational table is by "INSERT SELECT". Using this approach, the foreign table is the source table, while a newly created permanent table is the table to be inserted into. Contrary to the READ_NOS example above, this approach does require the permanent table be created beforehand.

-
-
-

One advantage of the INSERT SELECT method is that you can change the target table’s attributes. For example, you can specify that the target table be MULTISET or not, or you can choose a different primary index.

-
-
-
-
CREATE TABLE salesforcePerm, FALLBACK ,
-NO BEFORE JOURNAL,
-NO AFTER JOURNAL,
-CHECKSUM = DEFAULT,
-DEFAULT MERGEBLOCKRATIO,
-MAP = TD_MAP1
-(
-  Customer_Id VARCHAR(20) CHARACTER SET LATIN NOT CASESPECIFIC,
-  Customer_Name VARCHAR(100) CHARACTER SET LATIN NOT CASESPECIFIC,
-  Acct_Number VARCHAR(10) CHARACTER SET LATIN NOT CASESPECIFIC,
-  Billing_Street VARCHAR(20) CHARACTER SET LATIN NOT CASESPECIFIC,
-  Billing_City VARCHAR(20) CHARACTER SET LATIN NOT CASESPECIFIC,
-  Billing_State VARCHAR(10) CHARACTER SET LATIN NOT CASESPECIFIC,
-  Billing_Post_Code VARCHAR(5) CHARACTER SET LATIN NOT CASESPECIFIC,
-  Billing_Country VARCHAR(20) CHARACTER SET LATIN NOT CASESPECIFIC,
-  Phone VARCHAR(15) CHARACTER SET LATIN NOT CASESPECIFIC,
-  Fax VARCHAR(15) CHARACTER SET LATIN NOT CASESPECIFIC,
-  Shipping_Street VARCHAR(20) CHARACTER SET LATIN NOT CASESPECIFIC,
-  Shipping_City VARCHAR(20) CHARACTER SET LATIN NOT CASESPECIFIC,
-  Shipping_State VARCHAR(10) CHARACTER SET LATIN NOT CASESPECIFIC,
-  Shipping_Post_Code VARCHAR(5) CHARACTER SET LATIN NOT CASESPECIFIC,
-  Shipping_Country VARCHAR(20) CHARACTER SET LATIN NOT CASESPECIFIC,
-  Industry VARCHAR(50) CHARACTER SET LATIN NOT CASESPECIFIC,
-  Description VARCHAR(200) CHARACTER SET LATIN NOT CASESPECIFIC,
-  Num_Of_Employee INT,
-  Priority VARCHAR(10) CHARACTER SET LATIN NOT CASESPECIFIC,
-  Rating VARCHAR(10) CHARACTER SET LATIN NOT CASESPECIFIC,
-  SLA VARCHAR(10) CHARACTER SET LATIN NOT CASESPECIFIC,
-  Customer_Type VARCHAR(20) CHARACTER SET LATIN NOT CASESPECIFIC,
-  Customer_Website VARCHAR(100) CHARACTER SET LATIN NOT CASESPECIFIC,
-  Annual_Revenue VARCHAR(10) CHARACTER SET LATIN NOT CASESPECIFIC,
-  Last_Activity_Date DATE
-) PRIMARY INDEX (Customer_ID);
-
-
-
-
-
INSERT INTO salesforcePerm
-  SELECT
-    CAST(payload.Id AS VARCHAR(20)) Customer_ID,
-    CAST(payload."Name" AS VARCHAR(100)) Customer_Name,
-    CAST(payload.AccountNumber AS VARCHAR(10)) Acct_Number,
-    CAST(payload.BillingStreet AS VARCHAR(20)) Billing_Street,
-    CAST(payload.BillingCity AS VARCHAR(20)) Billing_City,
-    CAST(payload.BillingState AS VARCHAR(10)) Billing_State,
-    CAST(payload.BillingPostalCode AS VARCHAR(5)) Billing_Post_Code,
-    CAST(payload.BillingCountry AS VARCHAR(20)) Billing_Country,
-    CAST(payload.Phone AS VARCHAR(15)) Phone,
-    CAST(payload.Fax AS VARCHAR(15)) Fax,
-    CAST(payload.ShippingStreet AS VARCHAR(20)) Shipping_Street,
-    CAST(payload.ShippingCity AS VARCHAR(20)) Shipping_City,
-    CAST(payload.ShippingState AS VARCHAR(10)) Shipping_State,
-    CAST(payload.ShippingPostalCode AS VARCHAR(5)) Shipping_Post_Code,
-    CAST(payload.ShippingCountry AS VARCHAR(20)) Shipping_Country,
-    CAST(payload.Industry AS VARCHAR(50)) Industry,
-    CAST(payload.Description AS VARCHAR(200)) Description,
-    CAST(payload.NumberOfEmployees AS INT) Num_Of_Employee,
-    CAST(payload.CustomerPriority__c AS VARCHAR(10)) Priority,
-    CAST(payload.Rating AS VARCHAR(10)) Rating,
-    CAST(payload.SLA__c AS VARCHAR(10)) SLA,
-    CAST(payload."Type" AS VARCHAR(20)) Customer_Type,
-    CAST(payload.Website AS VARCHAR(100)) Customer_Website,
-    CAST(payload.AnnualRevenue AS VARCHAR(10)) Annual_Revenue,
-    CAST(payload.LastActivityDate AS DATE) Last_Activity_Date
-  FROM salesforce;
-
-
-
-
-
SELECT * FROM salesforcePerm;
-
-
-
-

Sample results:

-
-
-

A picture containing people Description automatically generated

-
-
-
-
-

Export Vantage Data to Amazon S3 Using NOS

-
-

I have a newleads table with 1 row in it on Vantage system.

-
-
-

image

-
-
-

Note there’s no address information for this lead. Let’s use the account information retrieved from Salesforce to update newleads table

-
-
-
-
UPDATE nl
-FROM
-  newleads AS nl,
-  salesforceReadNOS AS srn
-SET
-  Street = srn.Billing_Street,
-  City = srn.Billing_City,
-  State = srn.Billing_State,
-  Post_Code = srn.Billing_Post_Code,
-  Country = srn.Billing_Country
-  WHERE Account_ID = srn.Acct_Number;
-
-
-
-

Now the new lead has address information.

-
-
-

image

-
-
-

Write the new lead information into S3 bucket using WRITE_NOS.

-
-
-
-
SELECT * FROM WRITE_NOS (
-ON (
-  SELECT
-    Account_ID,
-    Last_Name,
-    First_Name,
-    Company,
-    Cust_Title,
-    Email,
-    Status,
-    Owner_ID,
-    Street,
-    City,
-    State,
-    Post_Code,
-    Country
-  FROM newleads
-)
-USING
-  LOCATION ('/s3/vantageparquet.s3.amazonaws.com/')
-  AUTHORIZATION ('{"Access_ID":"A*****","Access_Key":"*****"}')
-  COMPRESSION ('SNAPPY')
-  NAMING ('DISCRETE')
-  INCLUDE_ORDERING ('FALSE')
-  STOREDAS ('CSV')
-) AS d;
-
-
-
-

Where Access_ID is the AccessKeyID, and Access_Key is the SecretAccessKey to the bucket.

-
-
-
-

Create an Amazon S3 to Salesforce Flow

-
-

Repeat Step 1 to create a flow using Amazon S3 as source and Salesforce as destination.

-
-
-

Step 1. Specify flow details

-
-

This step provides basic information for your flow.

-
-
-

Fill in Flow name (i.e., vantage2sf) and Flow description (optional), leave Customize encryption settings (advanced) unchecked. Click Next.

-
-
-
-

Step 2. Configure flow

-
-

This step provides information about the source and destination for your flow. For this example, we will be using Amazon S3 as the source, and Salesforce as the destination.

-
-
-
    -
  • -

    For Source details, choose Amazon S3, then choose the bucket where you wrote your CSV file to (i.e. vantagecsv)

    -
  • -
  • -

    For Destination details, choose Salesforce, use the connection you created in Step 1 from the drop-down list for Choose Salesforce connection, and Lead as Choose Salesforce object.

    -
  • -
  • -

    For Error handling, use the default Stop the current flow run.

    -
  • -
  • -

    Flow trigger is Run on demand. Click Next.

    -
  • -
-
-
-
-

Step 3. Map data fields

-
-

This step determines how data is transferred from the source to the destination.

-
-
-
    -
  • -

    Use Manually map fields as Mapping method

    -
  • -
  • -

    Use Insert new records (default) as Destination record preference

    -
  • -
  • -

    For Source to destination filed mapping, use the following mapping

    -
    -

    Graphical user interface

    -
    -
    -

    image

    -
    -
  • -
  • -

    Click Next.

    -
  • -
-
-
-
-

Step 4. Add filters

-
-

You can specify a filter to determine which records to transfer. For this example, no filter is added. Click Next.

-
-
-
-

Step 5. Review and create

-
-

Review all the information you just entered. Modify if necessary. Click Create flow.

-
-
-

A message of successful flow creation will be displayed with the flow information once the flow is created,

-
-
-
-

Run flow

-
-

Click Run flow on the upper right corner.

-
-
-

Upon completion of the flow run, message will be displayed to indicate a successful run.

-
-
-

Message example:

-
-
-

image

-
-
-

Browse to the Salesforce page, new lead Tom Johnson has been added.

-
-
-

Graphical user interface

-
-
-
-
-
-
-

Cleanup (Optional)

-
-
-

Once you are done with the Salesforce data, to avoid incurring charges to your AWS account (i.e., AppFlow, Amazon S3, Vantage and VM) for the resources used, follow these steps:

-
-
-
    -
  1. -

    AppFlow:

    -
    -
      -
    • -

      Delete the "Connections" you created for the flow

      -
    • -
    • -

      Delete the flows

      -
    • -
    -
    -
  2. -
  3. -

    Amazon S3 bucket and file:

    -
    -
      -
    • -

      Go to the Amazon S3 buckets where the Vantage data file is stored, and delete the file(s)

      -
    • -
    • -

      If there are no need to keep the buckets, delete the buckets

      -
    • -
    -
    -
  4. -
  5. -

    Teradata Vantage Instance

    -
    -
      -
    • -

      Stop/Terminate the instance if no longer needed

      -
    • -
    -
    -
  6. -
-
-
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html b/pr-preview/pr-110/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html deleted file mode 100644 index 380672622..000000000 --- a/pr-preview/pr-110/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html +++ /dev/null @@ -1,2912 +0,0 @@ - - - - - - Integrate Teradata Vantage with Google Cloud Data Catalog :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Integrate Teradata Vantage with Google Cloud Data Catalog

-

Author: Wenjie Tehan
-Last updated: February 14th, 2022

-
-

Overview

-
-
-

This article describes the process to connect Teradata Vantage with Google Cloud Data Catalog using the Data Catalog Teradata Connector on GitHub, and then explore the metadata of the Vantage tables via Data Catalog.

-
-
-

Diagram Description automatically generated

-
-
-
    -
  • -

    Scrape: Connect to Teradata Vantage and retrieve all the available metadata

    -
  • -
  • -

    Prepare: Transform metadata in Data Catalog entities and create Tags

    -
  • -
  • -

    Ingest: Send the Data Catalog entities to the Google Cloud project

    -
  • -
-
-
-

About Google Cloud Data Catalog

-
-

Google Cloud Data Catalog is a fully managed data discovery and metadata management service. Data Catalog can catalog the native metadata on data assets. Data Catalog is serverless, and provides a central catalog to capture both technical metadata as well as business metadata in a structured format.

-
-
-
-

About Teradata Vantage

-
-

Vantage is the modern cloud platform that unifies data warehouses, data lakes, and analytics into a single connected ecosystem.

-
-
-

Vantage combines descriptive, predictive, prescriptive analytics, autonomous decision-making, ML functions, and visualization tools into a unified, integrated platform that uncovers real-time business intelligence at scale, no matter where the data resides.

-
-
-

Vantage enables companies to start small and elastically scale compute or storage, paying only for what they use, harnessing low-cost object stores and integrating their analytic workloads.

-
-
-

Vantage supports R, Python, Teradata Studio, and any other SQL-based tools. You can deploy Vantage across public clouds, on-premises, on optimized or commodity infrastructure, or as-a-service.

-
-
-

See the documentation for more information on Teradata Vantage.

-
-
-
-
-
-

Prerequisites

-
-
- -
-
-
-
-

Procedure

-
-
-
    -
  1. -

    Enable Data Catalog APIs

    -
  2. -
  3. -

    Install Teradata Data Catalog Connector

    -
  4. -
  5. -

    Run

    -
  6. -
  7. -

    Explore Teradata Vantage metadata with Data Catalog

    -
  8. -
-
-
-

Enable Data Catalog API

-
-
    -
  • -

    Logon to Google console, choose APIs & Services from the Navigation menu, then click on Library. Make sure your project is selected on the top menu bar.

    -
    -

    Graphical user interface

    -
    -
  • -
  • -

    Put Data Catalog in the search box and click on Google Cloud Data Catalog API, click ENABLE

    -
    -

    Graphical user interface

    -
    -
  • -
-
-
-
-

Install Teradata Data Catalog Connector

-
-

A Teradata Data Catalog connector is available on GitHub. This connector is written in Python.

-
-
-
    -
  • -

    Run following command to authorize gcloud to access the Cloud Platform with Google user credentials.

    -
    -
    -
    gcloud auth login
    -
    -
    -
  • -
  • -

    Choose your Google account when the Google login page opens up and click Allow on the next page.

    -
  • -
  • -

    Next, set up default project if you haven’t already done so

    -
    -
    -
    gcloud config set project <project id>
    -
    -
    -
  • -
-
-
-

Install virtualenv

-
-

We recommend you install the Teradata Data Catalog Connector in an isolated Python environment. To do so, install virtualenv first:

-
-
-
-
    -
  • -

    Windows

    -
  • -
  • -

    MacOS

    -
  • -
  • -

    Linux

    -
  • -
-
-
-
-
-

Run in Powershell as Administrator:

-
-
-
-
pip install virtualenv
-virtualenv --python python3.6 <your-env>
-<your-env>\Scripts\activate
-
-
-
-
-
-
-
pip install virtualenv
-virtualenv --python python3.6 <your-env>
-source <your-env>/bin/activate
-
-
-
-
-
-
-
pip install virtualenv
-virtualenv --python python3.6 <your-env>
-source <your-env>/bin/activate
-
-
-
-
-
-
-
-

Install Data Catalog Teradata Connector

-
-
-
    -
  • -

    Windows

    -
  • -
  • -

    MacOS

    -
  • -
  • -

    Linux

    -
  • -
-
-
-
-
-
-
pip.exe install google-datacatalog-teradata-connector
-
-
-
-
-
-
-
pip install google-datacatalog-teradata-connector
-
-
-
-
-
-
-
pip install google-datacatalog-teradata-connector
-
-
-
-
-
-
-
-

Set environment variables

-
-
-
export GOOGLE_APPLICATION_CREDENTIALS=<google_credentials_file>
-export TERADATA2DC_DATACATALOG_PROJECT_ID=<google_cloud_project_id>
-export TERADATA2DC_DATACATALOG_LOCATION_ID=<google_cloud_location_id>
-export TERADATA2DC_TERADATA_SERVER=<teradata_server>
-export TERADATA2DC_TERADATA_USERNAME=<teradata_username>
-export TERADATA2DC_TERADATA_PASSWORD=<teradata_password>
-
-
-
-

Where <google_credential_file> is the key for your service account (json file).

-
-
-
-
-

Run

-
-

Execute google-datacatalog-teradata-connector command to establish entry point to Vantage database.

-
-
-
-
google-datacatalog-teradata-connector \
-  --datacatalog-project-id=$TERADATA2DC_DATACATALOG_PROJECT_ID \
-  --datacatalog-location-id=$TERADATA2DC_DATACATALOG_LOCATION_ID \
-  --teradata-host=$TERADATA2DC_TERADATA_SERVER \
-  --teradata-user=$TERADATA2DC_TERADATA_USERNAME \
-  --teradata-pass=$TERADATA2DC_TERADATA_PASSWORD
-
-
-
-

Sample output from the google-datacatalog-teradata-connector command:

-
-
-
-
INFO:root:
-==============Starting CLI===============
-INFO:root:This SQL connector does not implement the user defined datacatalog-entry-resource-url-prefix
-INFO:root:This SQL connector uses the default entry resoure URL
-
-============Start teradata-to-datacatalog===========
-
-==============Scrape metadata===============
-INFO:root:Scrapping metadata from connection_args
-
-1 table containers ready to be ingested...
-
-==============Prepare metadata===============
-
---> database: Gcpuser
-37 tables ready to be ingested...
-
-==============Ingest metadata===============
-
-DEBUG:google.auth._default:Checking /Users/Teradata/Apps/Cloud/GCP/teradata2dc-credentials.json for explicit credentials as part of auth process...
-INFO:root:Starting to clean up the catalog...
-DEBUG:google.auth.transport.requests:Making request: POST https://oauth2.googleapis.com/token
-DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): oauth2.googleapis.com:443
-DEBUG:urllib3.connectionpool:https://oauth2.googleapis.com:443 "POST /token HTTP/1.1" 200 None
-INFO:root:0 entries that match the search query exist in Data Catalog!
-INFO:root:Looking for entries to be deleted...
-INFO:root:0 entries will be deleted.
-
-Starting to ingest custom metadata...
-
-DEBUG:google.auth._default:Checking /Users/Teradata/Apps/Cloud/GCP/teradata2dc-credentials.json for explicit credentials as part of auth process...
-INFO:root:Starting the ingestion flow...
-DEBUG:google.auth.transport.requests:Making request: POST https://oauth2.googleapis.com/token
-DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): oauth2.googleapis.com:443
-DEBUG:urllib3.connectionpool:https://oauth2.googleapis.com:443 "POST /token HTTP/1.1" 200 None
-INFO:root:Tag Template created: projects/partner-integration-lab/locations/us-west1/tagTemplates/teradata_database_metadata
-INFO:root:Tag Template created: projects/partner-integration-lab/locations/us-west1/tagTemplates/teradata_table_metadata
-INFO:root:Tag Template created: projects/partner-integration-lab/locations/us-west1/tagTemplates/teradata_column_metadata
-INFO:root:Entry Group created: projects/partner-integration-lab/locations/us-west1/entryGroups/teradata
-INFO:root:1/38
-INFO:root:Entry does not exist: projects/partner-integration-lab/locations/us-west1/entryGroups/teradata/entries/gcpuser
-INFO:root:Entry created: projects/partner-integration-lab/locations/us-west1/entryGroups/teradata/entries/gcpuser
-INFO:root: ^ [database] 34.105.107.155/gcpuser
-INFO:root:Starting the upsert tags step
-INFO:root:Processing Tag from Template: projects/partner-integration-lab/locations/us-west1/tagTemplates/teradata_database_metadata ...
-INFO:root:Tag created: projects/partner-integration-lab/locations/us-west1/entryGroups/teradata/entries/gcpuser/tags/CWHNiGQeQmPT
-INFO:root:2/38
-INFO:root:Entry does not exist: projects/partner-integration-lab/locations/us-west1/entryGroups/teradata/entries/gcpuser_Categories
-INFO:root:Entry created: projects/partner-integration-lab/locations/us-west1/entryGroups/teradata/entries/gcpuser_Categories
-INFO:root: ^ [table] 34.105.107.155/gcpuser/Categories
-INFO:root:Starting the upsert tags step
-INFO:root:Processing Tag from Template: projects/partner-integration-lab/locations/us-west1/tagTemplates/teradata_table_metadata ...
-INFO:root:Tag created: projects/partner-integration-lab/locations/us-west1/entryGroups/teradata/entries/gcpuser_Categories/tags/Ceij5G9t915o
-INFO:root:38/38
-INFO:root:Entry does not exist: projects/partner-integration-lab/locations/us-west1/entryGroups/teradata/entries/gcpuser_tablesv_instantiated_latest
-INFO:root:Entry created: projects/partner-integration-lab/locations/us-west1/entryGroups/teradata/entries/gcpuser_tablesv_instantiated_latest
-INFO:root: ^ [table] 34.105.107.155/gcpuser/tablesv_instantiated_latest
-INFO:root:Starting the upsert tags step
-INFO:root:Processing Tag from Template: projects/partner-integration-lab/locations/us-west1/tagTemplates/teradata_table_metadata ...
-INFO:root:Tag created: projects/partner-integration-lab/locations/us-west1/entryGroups/teradata/entries/gcpuser_tablesv_instantiated_latest/tags/Ceij5G9t915o
-INFO:root:
-============End teradata-to-datacatalog============
-
-
-
-
-

Explore Teradata Vantage metadata with Data Catalog

-
-
    -
  • -

    Go to Data Catalog console, click on the project (i.e. partner-integration-lab) under Projects. The Teradata tables are showing on the right panel.

    -
    -

    Graphical user interface

    -
    -
  • -
  • -

    Click on the table to your interest (i.e. CITY_LEVEL_TRANS), and you’ll see the metadata about this table:

    -
    -

    Graphical user interface

    -
    -
  • -
-
-
-
-
-
-

Cleanup (optional)

-
-
- -
-
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/cloud-guides/sagemaker-with-teradata-vantage.html b/pr-preview/pr-110/cloud-guides/sagemaker-with-teradata-vantage.html deleted file mode 100644 index 3aecc5008..000000000 --- a/pr-preview/pr-110/cloud-guides/sagemaker-with-teradata-vantage.html +++ /dev/null @@ -1,2848 +0,0 @@ - - - - - - Use AWS SageMaker with Teradata Vantage :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Use AWS SageMaker with Teradata Vantage

-

Author: Wenjie Tehan
-Last updated: February 8th, 2022

-
-

Overview

-
-
-

This how-to will help you to integrate Amazon SageMaker with Teradata Vantage. The approach this guide explains is one of many potential approaches to integrate with the service.

-
-
-

Amazon SageMaker provides a fully managed Machine Learning Platform. There are two use cases for Amazon SageMaker and Teradata:

-
-
-
    -
  1. -

    Data resides on Teradata Vantage and Amazon SageMaker will be used for both the Model definition and subsequent scoring. Under this use case Teradata will provide data into the Amazon S3 environment so that Amazon SageMaker can consume training and test data sets for the purpose of model development. Teradata would further make data available via Amazon S3 for subsequent scoring by Amazon SageMaker. Under this model Teradata is a data repository only.

    -
  2. -
  3. -

    Data resides on Teradata Vantage and Amazon SageMaker will be used for the Model definition, and Teradata for the subsequent scoring. Under this use case Teradata will provide data into the Amazon S3 environment so that Amazon SageMaker can consume training and test data sets for the purpose of model development. Teradata will need to import the Amazon SageMaker model into a Teradata table for subsequent scoring by Teradata Vantage. Under this model Teradata is a data repository and a scoring engine.

    -
  4. -
-
-
-

The first use case is discussed in this document.

-
-
-

Amazon SageMaker consumes training and test data from an Amazon S3 bucket. This article describes how you can load Teradata analytics data sets into an Amazon S3 bucket. The data can then available to Amazon SageMaker to build and train machine learning models and deploy them into a production environment.

-
-
-
-
-

Prerequisites

-
-
-
    -
  • -

    Access to a Teradata Vantage instance.

    -
    - - - - - -
    - - -If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. -
    -
    -
  • -
  • -

    IAM permission to access Amazon S3 bucket, and to use Amazon SageMaker service.

    -
  • -
  • -

    An Amazon S3 bucket to store training data.

    -
  • -
-
-
-
-
-

Load data

-
-
-

Amazon SageMaker trains data from an Amazon S3 bucket. Following are the steps to load training data from Vantage to an Amazon S3 bucket:

-
-
-
    -
  1. -

    Go to Amazon SageMaker console and create a notebook instance. See Amazon SageMaker Developer Guide for instructions on how to create a notebook instance:

    -
    -
    -Create notebook instance -
    -
    -
  2. -
  3. -

    Open your notebook instance:

    -
    -
    -Open notebook instance -
    -
    -
  4. -
  5. -

    Start a new file by clicking on New → conda_python3:

    -
    -
    -Start new file -
    -
    -
  6. -
  7. -

    Install Teradata Python library:

    -
    -
    -
    !pip install teradataml
    -
    -
    -
  8. -
  9. -

    In a new cell and import additional libraries:

    -
    -
    -
    import teradataml as tdml
    -from teradataml import create_context, get_context, remove_context
    -from teradataml.dataframe.dataframe import DataFrame
    -import pandas as pd
    -import boto3, os
    -
    -
    -
  10. -
  11. -

    In a new cell, connect to Teradata Vantage. Replace <hostname>, <database user name>, <database password> to match your Vantage environment:

    -
    -
    -
    create_context(host = '<hostname>', username = '<database user name>', password = '<database password>')
    -
    -
    -
  12. -
  13. -

    Retrieve data rom the table where the training dataset resides using TeradataML DataFrame API:

    -
    -
    -
    train_data = tdml.DataFrame('table_with_training_data')
    -trainDF = train_data.to_pandas()
    -
    -
    -
  14. -
  15. -

    Write data to a local file:

    -
    -
    -
    trainFileName = 'train.csv'
    -trainDF.to_csv(trainFileName, header=None, index=False)
    -
    -
    -
  16. -
  17. -

    Upload the file to Amazon S3:

    -
    -
    -
    bucket = 'sagedemo'
    -prefix = 'sagemaker/train'
    -
    -trainFile = open(trainFileName, 'rb')
    -boto3.Session().resource('s3').Bucket(bucket).Object(os.path.join(prefix, localFile)).upload_fileobj(trainFile)
    -
    -
    -
  18. -
-
-
-
-
-

Train the model

-
-
-
    -
  1. -

    Select Training jobs on the left menu under Training, then click on Create training job:

    -
    -
    -Create training job -
    -
    -
  2. -
  3. -

    At the Create training job window, fill in the Job name (e.g. xgboost-bank) and Create a new role for the IAM role. Choose Any S3 bucket for the Amazon S3 buckets and Create role:

    -
    -
    -Create IAM role -
    -
    -
  4. -
  5. -

    Back in the Create training job window, use XGBoost as the algorithm:

    -
    -
    -Choose an algorithm -
    -
    -
  6. -
  7. -

    Use the default ml.m4.xlarge instance type, and 30GB of additional storage volume per instance. This is a short training job, shouldn’t take more than 10 minutes.

    -
    -
    -Resource configuration -
    -
    -
  8. -
  9. -

    Fill in following hyperparameters and leave everything else as default:

    -
    -
    -
    num_round=100
    -silent=0
    -eta=0.2
    -gamma=4
    -max_depth=5
    -min_child_weight=6
    -subsample=0.8
    -objective='binary:logistic'
    -
    -
    -
  10. -
  11. -

    For Input data configuration, enter the Amazon S3 bucket where you stored your training data. Input mode is File. Content type is csv. S3 location is where the file uploaded to:

    -
    -
    -Input data configuration -
    -
    -
  12. -
  13. -

    For Output data configuration, enter path where the output data will be stored:

    -
    -
    -Output data configuration -
    -
    -
  14. -
  15. -

    Leave everything else as default, and click on “Create training job”. Detail instructions on how to configure the training job can be found in Amazon SageMaker Developer Guide.

    -
  16. -
-
-
-

Once the training job’s created, Amazon SageMaker launches the ML instances to train the model, and stores the resulting model artifacts and other output in the Output data configuration (path/<training job name>/output by default).

-
-
-
-
-

Deploy the model

-
-
-

After you train your model, deploy it using a persistent endpoint

-
-
-

Create a model

-
-
    -
  1. -

    Select Models under Inference from the left panel, then Create model. Fill in the model name (e.g. xgboost-bank), and choose the IAM role you created from the previous step.

    -
  2. -
  3. -

    For Container definition 1, use 433757028032.dkr.ecr.us-west-2.amazonaws.com/xgboost:latest as Location of inference code image. Location of model artifacts is the output path of your training job

    -
    -
    -Container definition 1 -
    -
    -
  4. -
  5. -

    Leave everything else as default, then Create model.

    -
  6. -
-
-
-
-

Create an endpoint configuration

-
-
    -
  1. -

    Select the model you just created, then click on Create endpoint configuration:

    -
    -
    -Create endpoint configuration -
    -
    -
  2. -
  3. -

    Fill in the name (e.g. xgboost-bank) and use default for everything else. The model name and training job should be automatically populated for you. Click on Create endpoint configuration.

    -
  4. -
-
-
-
-

Create endpoint

-
-
    -
  1. -

    Select InferenceModels from the left panel, select the model again, and click on Create endpoint this time:

    -
    -
    -Create endpoint -
    -
    -
  2. -
  3. -

    Fill in the name (e.g. xgboost-bank), and select Use an existing endpoint configuration: -image::sagemaker-with-teradata-vantage/attach.endpoint.configuration.png[Attach endpoint configuration]

    -
  4. -
  5. -

    Select the endpoint configuration created from last step, and click on Select endpoint configuration:

    -
    -
    -Select endpoint configuration -
    -
    -
  6. -
  7. -

    Leave everything else as default and click on Create endpoint.

    -
  8. -
-
-
-

Now the model is deployed to the endpoint and can be used by client applications.

-
-
-
-
-
-

Summary

-
-
-

This how-to demonstrated how to extract training data from Vantage and use it to train a model in Amazon SageMaker. The solution used a Jupyter notebook to extract data from Vantage and write it to an S3 bucket. A SageMaker training job read data from the S3 bucket and produced a model. The model was deployed to AWS as a service endpoint.

-
-
-
-
-

Further reading

-
- -
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html b/pr-preview/pr-110/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html deleted file mode 100644 index 4ba82bb95..000000000 --- a/pr-preview/pr-110/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html +++ /dev/null @@ -1,2878 +0,0 @@ - - - - - - Use Teradata Vantage with Azure Machine Learning Studio :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Use Teradata Vantage with Azure Machine Learning Studio

-

Author: Rupal Shah
-Last updated: February 14th, 2022

-
-

Overview

-
-
-

Azure Machine Learning (ML) Studio is a collaborative, drag-and-drop tool you can use to build, test, and deploy predictive analytics solutions on your data. ML Studio can consume data from Azure Blob Storage. This getting started guide will show how you can copy Teradata Vantage data sets to a Blob Storage using ML Studio 'built-in' Jupter Notebook feature. The data can then be used by ML Studio to build and train machine learning models and deploy them into a production environment.

-
-
-

image

-
-
-
-
-

Prerequisites

-
-
- -
-
-
-
-

Procedure

-
-
-

Initial setup

-
-
    -
  • -

    During ML Studio workspace creation, you may need to create 'new' storage account unless you have one in current availability locations and choose DEVTEST Standard for Web service plan for this getting started guide. Logon to Azure portal, open your storage account and create a container if one does not exist already.

    -
    -

    image

    -
    -
  • -
  • -

    Copy your storage account name and key to notepad which we will use for Python3 Notebook to access your Azure Blob Storage account.

    -
    -

    image

    -
    -
  • -
  • -

    Finally, open Configuration property and set 'Secure transfer required' to Disabled to allow ML Studio Import Data module to access blob storage account.

    -
    -

    image

    -
    -
  • -
-
-
-
-

Load data

-
-

To get the data to ML Studio, we first need to load data from Teradata Vantage to a Azure Blob Storage. We will create a ML Jupyter Notebook, install Python packages to connect to Teradata and save data to Azure Blob Storage,

-
-
-

Logon to Azure portal, go to to your ML Studio workspace and Launch Machine Learning Studio and Sign In.

-
-
-
    -
  1. -

    You should see the following screen and click on Notebooks, ensure you are in the right region/ workspace and click on Notebook New

    -
    -

    image

    -
    -
  2. -
  3. -

    Choose Python3 and name your notebook instance

    -
    -

    image

    -
    -
  4. -
  5. -

    In your jupyter notebook instance, install Teradata Vantage Python package for Advanced Analytics:

    -
    -
    -
    pip install teradataml
    -
    -
    -
    - - - - - -
    - - -There is no validation between Microsoft Azure ML Studio and Teradata Vantage Python package. -
    -
    -
  6. -
  7. -

    Install Microsoft Azure Storage Blob Client Library for Python:

    -
    -
    -
    !pip install azure-storage-blob
    -
    -
    -
  8. -
  9. -

    Import the following libraries:

    -
    -
    -
    import teradataml as tdml
    -from teradataml import create_context, get_context, remove_context
    -from teradataml.dataframe.dataframe import DataFrame
    -import pandas as pd
    -from azure.storage.blob import (BlockBlobService)
    -
    -
    -
  10. -
  11. -

    Connect to Teradata using command:

    -
    -
    -
    create_context(host = '<hostname>', username = '<database user name>', password = '<password>')
    -
    -
    -
  12. -
  13. -

    Retrieve Data using Teradata Python DataFrame module:

    -
    -
    -
    train_data = DataFrame.from_table("<table_name>")
    -
    -
    -
  14. -
  15. -

    Convert Teradata DataFrame to Panda DataFrame:

    -
    -
    -
    trainDF = train_data.to_pandas()
    -
    -
    -
  16. -
  17. -

    Convert data to CSV:

    -
    -
    -
    trainDF = trainDF.to_csv(head=True,index=False)
    -
    -
    -
  18. -
  19. -

    Assign variables for Azue Blob Storage account name, key and container name:

    -
    -
    -
    accountName="<account_name>"
    -accountKey="<account_key>"
    -containerName="mldata"
    -
    -
    -
  20. -
  21. -

    Upload file to Azure Blob Storage:

    -
    -
    -
    blobService = BlockBlobService(account_name=accountName, account_key=accountKey)
    -blobService.create_blob_from_text(containerNAme, 'vTargetMail.csv', trainDF)
    -
    -
    -
  22. -
  23. -

    Logon to Azure portal, open blob storage account to view uploaded file:

    -
    -

    image

    -
    -
  24. -
-
-
-
-

Train the model

-
-

We will use the existing Analyze data with Azure Machine Learning article to build a predictive machine learning model based on data from Azure Blob Storage. We will build a targeted marketing campaign for Adventure Works, the bike shop, by predicting if a customer is likely to buy a bike or not.

-
-
-

Import data

-
-

The data is on Azure Blob Storage file called vTargetMail.csv which we copied in the section above.

-
-
-

1.. Sign into Azure Machine Learning studio and click on Experiments. -2.. Click +NEW on the bottom left of the screen and select Blank Experiment. -3.. Enter a name for your experiment: Targeted Marketing. -4.. Drag Import data module under Data Input and output from the modules pane into the canvas. -5.. Specify the details of your Azure Blob Storage (account name, key and container name) in the Properties pane.

-
-
-

Run the experiment by clicking Run under the experiment canvas.

-
-
-

image

-
-
-

After the experiment finishes running successfully, click the output port at the bottom of the Import Data module and select Visualize to see the imported data.

-
-
-

image

-
-
-
-

Clean the data

-
-

To clean the data, drop some columns that are not relevant for the model. To do this:

-
-
-
    -
  1. -

    Drag Select Columns in Dataset module under Data Transformation < Manipulation into the canvas. Connect this module to the Import Data module.

    -
  2. -
  3. -

    Click Launch column selector in Properties pane to specify which columns you wish to drop.

    -
    -

    image

    -
    -
  4. -
  5. -

    Exclude two columns: CustomerAlternateKey and GeographyKey.

    -
    -

    image

    -
    -
  6. -
-
-
-
-

Build the model

-
-

We will split the data 80-20: 80% to train a machine learning model and 20% to test the model. We will make use of the "Two-Class" algorithms for this binary classification problem.

-
-
-
    -
  1. -

    Drag SplitData module into the canvas and connect with 'Select Columns in DataSet'.

    -
  2. -
  3. -

    In the properties pane, enter 0.8 for Fraction of rows in the first output dataset.

    -
    -

    image

    -
    -
  4. -
  5. -

    Search and drag Two-Class Boosted Decision Tree module into the canvas.

    -
  6. -
  7. -

    Search and drag Train Model module into the canvas and specify inputs by connecting it to the Two-Class Boosted Decision Tree (ML algorithm) and Split Data (data to train the algorithm on) modules.

    -
    -

    image

    -
    -
  8. -
  9. -

    Then, click Launch column selector in the Properties pane. Select the BikeBuyer column as the column to predict.

    -
    -

    image

    -
    -
  10. -
-
-
-
-

Score the model

-
-

Now, we will test how the model performs on test data. We will compare the algorithm of our choice with a different algorithm to see which performs better.

-
-
-
    -
  1. -

    Drag Score Model module into the canvas and connect it to Train Model and Split Data modules.

    -
    -

    image

    -
    -
  2. -
  3. -

    Search and drag Two-Class Bayes Point Machine into the experiment canvas. We will compare how this algorithm performs in comparison to the Two-Class Boosted Decision Tree.

    -
  4. -
  5. -

    Copy and Paste the modules Train Model and Score Model in the canvas.

    -
  6. -
  7. -

    Search and drag Evaluate Model module into the canvas to compare the two algorithms.

    -
  8. -
  9. -

    Run the experiment.

    -
    -

    image

    -
    -
  10. -
  11. -

    Click the output port at the bottom of the Evaluate Model module and click Visualize.

    -
    -

    image

    -
    -
  12. -
-
-
-

The metrics provided are the ROC curve, precision-recall diagram and lift curve. Looking at these metrics, we can see that the first model performed better than the second one. To look at the what the first model predicted, click on output port of the Score Model and click Visualize.

-
-
-

image

-
-
-

You will see two more columns added to your test dataset. -1. Scored Probabilities: the likelihood that a customer is a bike buyer. -2. Scored Labels: the classification done by the model - bike buyer (1) or not (0). This probability threshold for labeling is set to 50% and can be adjusted.

-
-
-

Comparing the column BikeBuyer (actual) with the Scored Labels (prediction), you can see how well the model has performed. As next steps, you can use this model to make predictions for new customers and publish this model as a web service or write results back to SQL Data Warehouse.

-
-
-
-
-
-
-

Further reading

-
-
- -
-
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/connectors/database/example-configuration.html b/pr-preview/pr-110/connectors/database/example-configuration.html deleted file mode 100644 index 971287125..000000000 --- a/pr-preview/pr-110/connectors/database/example-configuration.html +++ /dev/null @@ -1,9 +0,0 @@ - - - - - - -Redirect Notice -

Redirect Notice

-

The page you requested has been relocated to https://quickstarts.teradata.com/mule-teradata-connector/examples-configuration.html.

diff --git a/pr-preview/pr-110/connectors/database/reference.html b/pr-preview/pr-110/connectors/database/reference.html deleted file mode 100644 index f081ea1b5..000000000 --- a/pr-preview/pr-110/connectors/database/reference.html +++ /dev/null @@ -1,9 +0,0 @@ - - - - - - -Redirect Notice -

Redirect Notice

-

The page you requested has been relocated to https://quickstarts.teradata.com/mule-teradata-connector/reference.html.

diff --git a/pr-preview/pr-110/connectors/database/release-notes.html b/pr-preview/pr-110/connectors/database/release-notes.html deleted file mode 100644 index cec2a502b..000000000 --- a/pr-preview/pr-110/connectors/database/release-notes.html +++ /dev/null @@ -1,9 +0,0 @@ - - - - - - -Redirect Notice -

Redirect Notice

-

The page you requested has been relocated to https://quickstarts.teradata.com/mule-teradata-connector/release-notes.html.

diff --git a/pr-preview/pr-110/connectors/db/example-configuration.html b/pr-preview/pr-110/connectors/db/example-configuration.html deleted file mode 100644 index 971287125..000000000 --- a/pr-preview/pr-110/connectors/db/example-configuration.html +++ /dev/null @@ -1,9 +0,0 @@ - - - - - - -Redirect Notice -

Redirect Notice

-

The page you requested has been relocated to https://quickstarts.teradata.com/mule-teradata-connector/examples-configuration.html.

diff --git a/pr-preview/pr-110/connectors/db/reference.html b/pr-preview/pr-110/connectors/db/reference.html deleted file mode 100644 index f081ea1b5..000000000 --- a/pr-preview/pr-110/connectors/db/reference.html +++ /dev/null @@ -1,9 +0,0 @@ - - - - - - -Redirect Notice -

Redirect Notice

-

The page you requested has been relocated to https://quickstarts.teradata.com/mule-teradata-connector/reference.html.

diff --git a/pr-preview/pr-110/connectors/db/release-notes.html b/pr-preview/pr-110/connectors/db/release-notes.html deleted file mode 100644 index cec2a502b..000000000 --- a/pr-preview/pr-110/connectors/db/release-notes.html +++ /dev/null @@ -1,9 +0,0 @@ - - - - - - -Redirect Notice -

Redirect Notice

-

The page you requested has been relocated to https://quickstarts.teradata.com/mule-teradata-connector/release-notes.html.

diff --git a/pr-preview/pr-110/create-parquet-files-in-object-storage.html b/pr-preview/pr-110/create-parquet-files-in-object-storage.html deleted file mode 100644 index b66bc4949..000000000 --- a/pr-preview/pr-110/create-parquet-files-in-object-storage.html +++ /dev/null @@ -1,2737 +0,0 @@ - - - - - - Create Parquet files in object storage :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Create Parquet files in object storage

-

Author: Obed Vega
-Last updated: August 2nd, 2022

-
-

Overview

-
-
-

Native Object Storage (NOS) is a Vantage feature that allows you to query data stored in files such as CSV, JSON, and Parquet format datasets. -These datasets are located on external S3-compatible object storage such as AWS S3, Google GCS, Azure Blob or on-prem implementations. -It’s useful in scenarios where you want to explore data without building a data pipeline to bring it into Vantage. This tutorial demonstrates how to export data from Vantage to object storage using the Parquet file format.

-
-
-
-
-

Prerequisites

-
-
-

You need access to a Teradata Vantage instance. NOS is enabled in all Vantage editions from Vantage Express through Developer, DYI to Vantage as a Service starting from version 17.10.

-
-
- - - - - -
- - -This tutorial is based on s3 aws object storage. You will need your own s3 bucket with write permissions to complete the tutorial. -
-
-
- - - - - -
- - -If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. -
-
-
-
-
-

Create a Parquet file with WRITE_NOS function

-
-
-

WRITE_NOS allows you to extract selected or all columns from a database table or from derived results and write to external object storage, such as Amazon S3, Azure Blob storage, Azure Data Lake Storage Gen2, and Google Cloud Storage. This functionality stores data in Parquet format.

-
-
-

You can find more documentation about WRITE_NOS functionality in the NOS documentation.

-
-
-

You will need access to a database where you can execute WRITE_NOS function. If you don’t have such a database, run the following commands:

-
-
-
-
CREATE USER db AS PERM=10e7, PASSWORD=db;
-
--- Don't forget to give the proper access rights
-GRANT EXECUTE FUNCTION on TD_SYSFNLIB.READ_NOS to db;
-GRANT EXECUTE FUNCTION on TD_SYSFNLIB.WRITE_NOS to db;
-
-
-
- - - - - -
- - -If you would like to learn more about setting up users and their privileges, checkout the NOS documentation. -
-
-
-
    -
  1. -

    Let’s first create a table on your Teradata Vantage instance:

    -
    -
    -
    CREATE SET TABLE db.parquet_table ,FALLBACK ,
    -     NO BEFORE JOURNAL,
    -     NO AFTER JOURNAL,
    -     CHECKSUM = DEFAULT,
    -     DEFAULT MERGEBLOCKRATIO,
    -     MAP = TD_MAP1
    -     (
    -      column1 SMALLINT NOT NULL,
    -      column2 DATE FORMAT 'YY/MM/DD' NOT NULL,
    -      column3 DECIMAL(10,2))
    -PRIMARY INDEX ( column1 );
    -
    -
    -
  2. -
  3. -

    Populate your table with example data:

    -
    -
    -
    INSERT INTO db.parquet_table (1,'2022/01/01',1.1);
    -INSERT INTO db.parquet_table (2,'2022/01/02',2.2);
    -INSERT INTO db.parquet_table (3,'2022/01/03',3.3);
    -
    -
    -
    -

    Your table should now look like this:

    -
    -
    -
    -
    column1   column2       column3
    --------  --------  ------------
    -      1  22/01/01          1.10
    -      2  22/01/02          2.20
    -      3  22/01/03          3.30
    -
    -
    -
  4. -
  5. -

    Create the parquet file with WRITE_NOS. Don’t forget to replace <BUCKET_NAME> with the name of your s3 bucket. Also,replace <YOUR-ACCESS-KEY-ID> and <YOUR-SECRET-ACCESS-KEY> with your access key and secret.

    -
    - - - - - -
    - - -Check your cloud provider docs how to create credentials to access object storage. For example, for AWS check out How do I create an AWS access key? -
    -
    -
    -
    -
    SELECT * FROM WRITE_NOS (
    -ON ( SELECT * FROM db.parquet_table)
    -USING
    -LOCATION('/s3/<BUCKET_NAME>.s3.amazonaws.com/parquet_file_on_NOS.parquet')
    -AUTHORIZATION('{"ACCESS_ID":"<YOUR-ACCESS-KEY-ID>",
    -"ACCESS_KEY":"<YOUR-SECRET-ACCESS-KEY>"}')
    -STOREDAS('PARQUET')
    -MAXOBJECTSIZE('16MB')
    -COMPRESSION('SNAPPY')
    -INCLUDE_ORDERING('TRUE')
    -INCLUDE_HASHBY('TRUE')
    -) as d;
    -
    -
    -
    -

    Now you have created a parquet file in your object storage bucket. Now to easily query your file you need to follow step number 4.

    -
    -
  6. -
  7. -

    Create a NOS-backed foreign table. Don’t forget to replace <BUCKET_NAME> with the name of your s3 bucket. Also,replace <YOUR-ACCESS-KEY-ID> and <YOUR-SECRET-ACCESS-KEY> with your access key and secret:

    -
    -
    -
    CREATE MULTISET FOREIGN TABLE db.parquet_table_to_read_file_on_NOS
    -, EXTERNAL SECURITY DEFINER TRUSTED CEPH_AUTH,
    -MAP = TD_MAP1
    -(
    -  Location VARCHAR(2048) CHARACTER SET UNICODE CASESPECIFIC
    -  , col1 SMALLINT
    -  , col2 DATE
    -  , col3 DECIMAL(10,2)
    -
    -)
    -USING (
    -    LOCATION ('/s3/<BUCKET_NAME>.s3.amazonaws.com/parquet_file_on_NOS.parquet')
    -    AUTHORIZATION('{"ACCESS_ID":"<YOUR-ACCESS-KEY-ID>",
    -    "ACCESS_KEY":"<YOUR-SECRET-ACCESS-KEY>"}')
    -    STOREDAS ('PARQUET')
    -)NO PRIMARY INDEX;
    -
    -
    -
  8. -
  9. -

    Now you are ready to Query your parquet file on NOS, let’s try the following query:

    -
    -
    -
    SELECT col1, col2, col3 FROM db.parquet_table_to_read_file_on_NOS;
    -
    -
    -
    -

    The data returned from the query should look something like this:

    -
    -
    -
    -
      col1      col2          col3
    -------  --------  ------------
    -     1  22/01/01          1.10
    -     2  22/01/02          2.20
    -     3  22/01/03          3.30
    -
    -
    -
  10. -
-
-
-
-
-

Summary

-
-
-

In this tutorial we have learned how to export data from Vantage to a parquet file on object storage using Native Object Storage (NOS). NOS supports reading and importing data stored in CSV, JSON and Parquet formats. NOS can also export data from Vantage to object storage.

-
-
-
-
-

Further reading

-
- -
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/dbt.html b/pr-preview/pr-110/dbt.html deleted file mode 100644 index 2d994c63b..000000000 --- a/pr-preview/pr-110/dbt.html +++ /dev/null @@ -1,2766 +0,0 @@ - - - - - - dbt with Teradata Vantage :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

dbt with Teradata Vantage

-

Author: Adam Tworkiewicz
-Last updated: July 12th, 2023

-
-

Overview

-
-
-

This tutorial demonstrates how to use dbt (Data Build Tool) with Teradata Vantage. It’s based on the original dbt Jaffle Shop tutorial. A couple of models have been adjusted to the SQL dialect supported by Vantage.

-
-
-
-
-

Prerequisites

-
-
-
    -
  • -

    Access to a Teradata Vantage instance.

    -
    - - - - - -
    - - -If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. -
    -
    -
  • -
  • -

    Python 3.7, 3.8, 3.9, 3.10 or 3.11 installed.

    -
  • -
-
-
-
-
-

Install dbt

-
-
-
    -
  1. -

    Clone the tutorial repository and cd into the project directory:

    -
    -
    -
    git clone https://github.com/Teradata/jaffle_shop-dev.git jaffle_shop
    -cd jaffle_shop
    -
    -
    -
  2. -
  3. -

    Create a new python environment to manage dbt and its dependencies. Activate the environment:

    -
    -
    -
    python3 -m venv env
    -source env/bin/activate
    -
    -
    -
  4. -
  5. -

    Install dbt-teradata module and its dependencies. The core dbt module is included as a dependency so you don’t have to install it separately:

    -
    -
    -
    pip install dbt-teradata
    -
    -
    -
  6. -
-
-
-
-
-

Configure dbt

-
-
-

We will now configure dbt to connect to your Vantage database. Create file $HOME/.dbt/profiles.yml with the following content. Adjust <host>, <user>, <password> to match your Teradata instance.

-
-
- - - - - -
- - -
Database setup
-
-

The following dbt profile points to a database called jaffle_shop. You can change schema value to point to an existing database in your Teradata Vantage instance or you can create jaffle_shop database:

-
-
-
-
CREATE DATABASE jaffle_shop
-AS PERMANENT = 110e6,
-    SPOOL = 220e6;
-
-
-
-
-
-
-
jaffle_shop:
-  outputs:
-    dev:
-      type: teradata
-      host: <host>
-      user: <user>
-      password: <password>
-      logmech: TD2
-      schema: jaffle_shop
-      tmode: ANSI
-      threads: 1
-      timeout_seconds: 300
-      priority: interactive
-      retries: 1
-  target: dev
-
-
-
-

Now, that we have the profile file in place, we can validate the setup:

-
-
-
-
dbt debug
-
-
-
-

If the debug command returned errors, you likely have an issue with the content of profiles.yml.

-
-
-
-
-

About the Jaffle Shop warehouse

-
-
-

jaffle_shop is a fictional e-commerce store. This dbt project transforms raw data from an app database into a dimensional model with customer and order data ready for analytics.

-
-
-

The raw data from the app consists of customers, orders, and payments, with the following entity-relationship diagram:

-
-
-
-Diagram -
-
-
-

dbt takes these raw data table and builds the following dimensional model, which is more suitable for analytics tools:

-
-
-
-Diagram -
-
-
-
-
-

Run dbt

-
-
-

Create raw data tables

-
-

In real life, we will be getting raw data from platforms like Segment, Stitch, Fivetran or another ETL tool. In our case, we will use dbt’s seed functionality to create tables from csv files. The csv files are located in ./data directory. Each csv file will produce one table. dbt will inspect the files and do type inference to decide what data types to use for columns.

-
-
-

Let’s create the raw data tables:

-
-
-
-
dbt seed
-
-
-
-

You should now see 3 tables in your jaffle_shop database: raw_customers, raw_orders, raw_payments. The tables should be populated with data from the csv files.

-
-
-
-

Create the dimensional model

-
-

Now that we have the raw tables, we can instruct dbt to create the dimensional model:

-
-
-
-
dbt run
-
-
-
-

So what exactly happened here? dbt created additional tables using CREATE TABLE/VIEW FROM SELECT SQL. In the first transformation, dbt took raw tables and built denormalized join tables called customer_orders, order_payments, customer_payments. You will find the definitions of these tables in ./marts/core/intermediate. -In the second step, dbt created dim_customers and fct_orders tables. These are the dimensional model tables that we want to expose to our BI tool.

-
-
-
-

Test the data

-
-

dbt applied multiple transformations to our data. How can we ensure that the data in the dimensional model is correct? dbt allows us to define and execute tests against the data. The tests are defined in ./marts/core/schema.yml. The file describes each column in all relationships. Each column can have multiple tests configured under tests key. For example, we expect that fct_orders.order_id column will contain unique, non-null values. To validate that the data in the produced tables satisfies the test conditions run:

-
-
-
-
dbt test
-
-
-
-
-

Generate documentation

-
-

Our model consists of just a few tables. Imagine a scenario where where we have many more sources of data and a much more complex dimensional model. We could also have an intermediate zone between the raw data and the dimensional model that follows the Data Vault 2.0 principles. Would it not be useful, if we had the inputs, transformations and outputs documented somehow? dbt allows us to generate documentation from its configuration files:

-
-
-
-
dbt docs generate
-
-
-
-

This will produce html files in ./target directory.

-
-
-

You can start your own server to browse the documentation. The following command will start a server and open up a browser tab with the docs' landing page:

-
-
-
-
dbt docs serve
-
-
-
-
-
-
-

Summary

-
-
-

This tutorial demonstrated how to use dbt with Teradata Vantage. The sample project takes raw data and produces a dimensional data mart. We used multiple dbt commands to populate tables from csv files (dbt seed), create models (dbt run), test the data (dbt test), and generate and serve model documentation (dbt docs generate, dbt docs serve).

-
-
-
-
-

Further reading

-
- -
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/elt/_images/diag-c365fead725d8cbab9e27dd9a9ac27395ace0f2b.svg b/pr-preview/pr-110/elt/_images/diag-c365fead725d8cbab9e27dd9a9ac27395ace0f2b.svg deleted file mode 100644 index 8bdd610b7..000000000 --- a/pr-preview/pr-110/elt/_images/diag-c365fead725d8cbab9e27dd9a9ac27395ace0f2b.svg +++ /dev/null @@ -1 +0,0 @@ -JSON TransformationRaw JSON DataNormalized ViewsDimensional ModelingDimensionandFact Tables \ No newline at end of file diff --git a/pr-preview/pr-110/elt/_images/diag-cfb2d5cb8c33c037d82e57adbd8d36445946ce00.svg b/pr-preview/pr-110/elt/_images/diag-cfb2d5cb8c33c037d82e57adbd8d36445946ce00.svg deleted file mode 100644 index a640ee294..000000000 --- a/pr-preview/pr-110/elt/_images/diag-cfb2d5cb8c33c037d82e57adbd8d36445946ce00.svg +++ /dev/null @@ -1,101 +0,0 @@ - - - - - - - - - -dimension: customers - - -dimension: customers - - -customer_id   - [int] - - -first_name   - [varchar] - - -last_name   - [varchar] - - -email   - [varchar] - - -first_order   - [date] - - -most_recent_order   - [date] - - -number_of_orders   - [int] - - -total_order_amount   - [int] - - - -fact: orders - - -fact: orders - - -order_id   - [int] - - -customer_id   - [int] - - -order_date   - [date] - - -status   - [varchar] - - -amount   - [int] - - -credit_card_amount   - [int] - - -coupon_amount   - [int] - - -bank_transfer_amount   - [int] - - -gift_card_amount   - [int] - - - -dimension: customers--fact: orders - -0..N -1 - - - diff --git a/pr-preview/pr-110/elt/_images/diag-f4281ff8ede0df7faea97f80936093e7b4a0bd21.svg b/pr-preview/pr-110/elt/_images/diag-f4281ff8ede0df7faea97f80936093e7b4a0bd21.svg deleted file mode 100644 index cf3c00a8c..000000000 --- a/pr-preview/pr-110/elt/_images/diag-f4281ff8ede0df7faea97f80936093e7b4a0bd21.svg +++ /dev/null @@ -1,95 +0,0 @@ - - - - - - - - - -customers - - -customers - - -id   - [int] - - -first_name   - [varchar] - - -last_name   - [varchar] - - -email   - [varchar] - - - -orders - - -orders - - -id   - [int] - - -user_id   - [int] - - -order_date   - [date] - - -status   - [varchar] - - - -customers--orders - -0..N -1 - - - -payments - - -payments - - -id   - [int] - - -order_id   - [int] - - -payment_method   - [int] - - -amount   - [int] - - - -orders--payments - -0..N -1 - - - diff --git a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte-dbt/dbt_debug.png b/pr-preview/pr-110/elt/_images/getting-started-with-airbyte-dbt/dbt_debug.png deleted file mode 100644 index c6371d6f4..000000000 Binary files a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte-dbt/dbt_debug.png and /dev/null differ diff --git a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte-dbt/dbt_docs_generate.png b/pr-preview/pr-110/elt/_images/getting-started-with-airbyte-dbt/dbt_docs_generate.png deleted file mode 100644 index a7f964655..000000000 Binary files a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte-dbt/dbt_docs_generate.png and /dev/null differ diff --git a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte-dbt/dbt_docs_serve.png b/pr-preview/pr-110/elt/_images/getting-started-with-airbyte-dbt/dbt_docs_serve.png deleted file mode 100644 index 332a1d391..000000000 Binary files a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte-dbt/dbt_docs_serve.png and /dev/null differ diff --git a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte-dbt/dbt_init_database_name.png b/pr-preview/pr-110/elt/_images/getting-started-with-airbyte-dbt/dbt_init_database_name.png deleted file mode 100644 index 26daeff83..000000000 Binary files a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte-dbt/dbt_init_database_name.png and /dev/null differ diff --git a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte-dbt/dbt_init_project_name.png b/pr-preview/pr-110/elt/_images/getting-started-with-airbyte-dbt/dbt_init_project_name.png deleted file mode 100644 index 140e8841e..000000000 Binary files a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte-dbt/dbt_init_project_name.png and /dev/null differ diff --git a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte-dbt/dbt_run.png b/pr-preview/pr-110/elt/_images/getting-started-with-airbyte-dbt/dbt_run.png deleted file mode 100644 index 544201bd4..000000000 Binary files a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte-dbt/dbt_run.png and /dev/null differ diff --git a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte-dbt/dbt_test.png b/pr-preview/pr-110/elt/_images/getting-started-with-airbyte-dbt/dbt_test.png deleted file mode 100644 index 5c8f87118..000000000 Binary files a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte-dbt/dbt_test.png and /dev/null differ diff --git a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte-dbt/raw_data_vantage_dbeaver.png b/pr-preview/pr-110/elt/_images/getting-started-with-airbyte-dbt/raw_data_vantage_dbeaver.png deleted file mode 100644 index 79f2f94ef..000000000 Binary files a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte-dbt/raw_data_vantage_dbeaver.png and /dev/null differ diff --git a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/close_airbyte_connection.png b/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/close_airbyte_connection.png deleted file mode 100644 index 26c8d4ac7..000000000 Binary files a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/close_airbyte_connection.png and /dev/null differ diff --git a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/configuring_destination_teradata_airbyte.png b/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/configuring_destination_teradata_airbyte.png deleted file mode 100644 index 5150ff9bc..000000000 Binary files a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/configuring_destination_teradata_airbyte.png and /dev/null differ diff --git a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/configuring_source_gsheet_airbyte.png b/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/configuring_source_gsheet_airbyte.png deleted file mode 100644 index 35c45ebf2..000000000 Binary files a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/configuring_source_gsheet_airbyte.png and /dev/null differ diff --git a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/create_first_connection.png b/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/create_first_connection.png deleted file mode 100644 index 62630a71e..000000000 Binary files a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/create_first_connection.png and /dev/null differ diff --git a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/data_sync_summary.png b/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/data_sync_summary.png deleted file mode 100644 index 5af214d37..000000000 Binary files a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/data_sync_summary.png and /dev/null differ diff --git a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/data_sync_validation_in_teradata.png b/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/data_sync_validation_in_teradata.png deleted file mode 100644 index 969301351..000000000 Binary files a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/data_sync_validation_in_teradata.png and /dev/null differ diff --git a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/delete_airbyte_connection.png b/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/delete_airbyte_connection.png deleted file mode 100644 index bc5822180..000000000 Binary files a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/delete_airbyte_connection.png and /dev/null differ diff --git a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/namespaces_in_destination.png b/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/namespaces_in_destination.png deleted file mode 100644 index 2a8cdb403..000000000 Binary files a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/namespaces_in_destination.png and /dev/null differ diff --git a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/replication_frequency_24hr.png b/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/replication_frequency_24hr.png deleted file mode 100644 index 9984ee586..000000000 Binary files a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/replication_frequency_24hr.png and /dev/null differ diff --git a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/replication_frequency_cron_expression.png b/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/replication_frequency_cron_expression.png deleted file mode 100644 index af94e8734..000000000 Binary files a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/replication_frequency_cron_expression.png and /dev/null differ diff --git a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/sample_employees_payrate_google_sheets.png b/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/sample_employees_payrate_google_sheets.png deleted file mode 100644 index 70fab27a2..000000000 Binary files a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/sample_employees_payrate_google_sheets.png and /dev/null differ diff --git a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/specify_preferences.png b/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/specify_preferences.png deleted file mode 100644 index c1db5f29a..000000000 Binary files a/pr-preview/pr-110/elt/_images/getting-started-with-airbyte/specify_preferences.png and /dev/null differ diff --git a/pr-preview/pr-110/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html b/pr-preview/pr-110/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html deleted file mode 100644 index 8120e812c..000000000 --- a/pr-preview/pr-110/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html +++ /dev/null @@ -1,2968 +0,0 @@ - - - - - - Transforming External Data Loaded via Airbyte in Teradata Vantage Using dbt :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Transforming External Data Loaded via Airbyte in Teradata Vantage Using dbt

-

Author: Krutik Pathak
-Last updated: July 27, 2023

-
-

Overview

-
-
-

This tutorial demonstrates how to use dbt (Data Build Tool) to transform external data load through Airbyte (an Open-Source Extract Load tool) in Teradata Vantage.

-
-
-

This tutorial is based on the original dbt Jaffle Shop tutorial with a small change, instead of using the dbt seed command, the Jaffle Shop dataset is loaded from Google Sheets into Teradata Vantage using Airbyte. Data loaded through airbyte is contained in JSON columns as can be seen in the picture below:

-
-
-
-Raw data in Teradata Vantage -
-
-
-
-
-

Prerequisites

-
-
- -
-
-
-
-

Sample Data Loading

-
-
- -
-
- - - - - -
- - -
-

When you configure a Teradata destination in Airbyte, it will ask for a Default Schema. For this demonstration we have set the Default Schema as airbyte_jaffle_shop.

-
-
-
-
-
-
-

Install dbt

-
-
-
    -
  • -

    Create a new python environment to manage dbt and its dependencies. Activate the environment:

    -
    -
    -
    python3 -m venv env
    -source env/bin/activate
    -
    -
    -
    - - - - - -
    - - -
    -

    You can activate the virtual environment in Windows executing the corresponding batch file ./myenv/Scripts/activate.

    -
    -
    -
    -
  • -
  • -

    Install dbt-teradata module and its dependencies. The core dbt module is included as a dependency so you don’t have to install it separately:

    -
    -
    -
    pip install dbt-teradata
    -
    -
    -
  • -
-
-
-
-
-

Configure dbt

-
-
-
    -
  • -

    Initialize a dbt project.

    -
    -
    -
    dbt init
    -
    -
    -
    -

    The dbt project wizard will ask you for a project name and database management system to use in the project. In this demo we define the project name as dbt_airbyte_demo. Since we are using the dbt-teradata connector, the only database management system available is Teradata.

    -
    -
    -
    -Project name prompt -
    -
    -
    -
    -Database name prompt -
    -
    -
  • -
  • -

    Configure the profiles.yml file located in the $HOME/.dbt directory. If the profiles.yml file is not present, you can create a new one.

    -
  • -
  • -

    Adjust server, username, password to match your Teradata instance’s HOST, Username, Password respectively.

    -
  • -
  • -

    In this configuration, schema stands for the database that contains the sample data, in our case that is the default schema that we defined in Airbyte airbyte_jaffle_shop.

    -
    -
    -
    dbt_airbyte_demo:
    -  target: dev
    -  outputs:
    -    dev:
    -      type: teradata
    -      server: <host>
    -      schema: airbyte_jaffle_shop
    -      username: <user>
    -      password: <password>
    -      tmode: ANSI
    -
    -
    -
  • -
  • -

    Once the profiles.yml file is ready, we can validate the setup. Go to the dbt project folder and run the command:

    -
    -
    -
    dbt debug
    -
    -
    -
    -

    If the debug command returned errors, you likely have an issue with the content of profiles.yml. If the setup is correct, you will get message All checks passed!

    -
    -
    -
    -dbt debug output -
    -
    -
  • -
-
-
-
-
-

The Jaffle Shop dbt Project

-
-
-

jaffle_shop is a fictional restaurant that takes orders online. The data of this business consists of tables for customers, orders and `payments`that follow the entity relations diagram below:

-
-
-
-Diagram -
-
-
-

The data in the source system is normalized. A dimensional model based on the same data, more suitable for analytics tools, is presented below:

-
-
-
-Diagram -
-
-
-
-
-

dbt Transformations

-
-
- - - - - -
- - -
-

The complete dbt project encompassing the transformations detailed below is located at Jaffle Project with Airbyte.

-
-
-
-
-

The reference dbt project performs two types of transformations.

-
-
-
    -
  • -

    First, it transforms the raw data (in JSON format), loaded from Google Sheets via Airbyte, into staging views. At this stage the data is normalized.

    -
  • -
  • -

    Next, it transforms the normalized views into a dimensional model ready for analytics.

    -
  • -
-
-
-

The following diagram shows the transformation steps in Teradata Vantage using dbt:

-
-
-
-Diagram -
-
-
-

As in all dbt projects, the folder models contains the data models that the project materializes as tables, or views, according to the corresponding configurations at the project, or individual model level.

-
-
-

The models can be organized into different folders according to their purpose in the organization of the data warehouse/lake. Common folder layouts include a folder for staging, a folder for core, and a folder for marts. This structure can be simplified without affecting the workings of dbt.

-
-
-

Staging Models

-
-

In the original dbt Jaffle Shop tutorial the project’s data is loaded from csv files located in the ./data folder through dbt’s seed command. The seed command is commonly used to load data from tables, however, this command is not designed to perform data loading.

-
-
-

In this demo we are assuming a more typical setup in which a tool designed for data loading, Airbyte, was used to load data into the datawarehouse/lake. -Data loaded through Airbyte though is represented as raw JSON strings. From these raw data we are creating normalized staging views. We perform this task through the following staging models.

-
-
-
    -
  • -

    The stg_customers model creates the normalized staging view for customers from the _airbyte_raw_customers table.

    -
  • -
  • -

    The stg_orders model creates the normalized view for orders from the _airbyte_raw_orders table

    -
  • -
  • -

    The stg_payments model creates the normalized view for payments from the _airbyte_raw_payments table.

    -
  • -
-
-
- - - - - -
- - -
-

As the method of extracting JSON strings remains consistent across all staging models, we will provide a detailed explanation for the transformations using just one of these models as an example.

-
-
-
-
-

Below an example of transforming raw JSON data into a view through the stg_orders.sql model :

-
-
-
-
WITH source AS (
-    SELECT * FROM {{ source('airbyte_jaffle_shop', '_airbyte_raw_orders')}}
-),
-
-flattened_json_data AS (
-  SELECT
-    _airbyte_data.JSONExtractValue('$.id') AS order_id,
-    _airbyte_data.JSONExtractValue('$.user_id') AS customer_id,
-    _airbyte_data.JSONExtractValue('$.order_date') AS order_date,
-    _airbyte_data.JSONExtractValue('$.status') AS status
-  FROM source
-)
-
-
-SELECT * FROM flattened_json_data
-
-
-
-
    -
  • -

    In this model the source is defined as the raw table _airbyte_raw_orders.

    -
  • -
  • -

    This raw table columns contains both metadata, and the actual ingested data. The data column is called _airbyte_data.

    -
  • -
  • -

    This column is of Teradata JSON type. This type supports the method JSONExtractValue for retrieving scalar values from the JSON object.

    -
  • -
  • -

    In this model we are retrieving each of the attributes of interest and adding meaningful aliases in order to materialize a view.

    -
  • -
-
-
-
-

Dimensional Models (Marts)

-
-

Building a Dimensional Model is a two step process:

-
-
-
    -
  • -

    First, we take the normalized views in stg_orders, stg_customers, stg_payments and build denormalized intermediate join tables customer_orders, order_payments, customer_payments. You will find the definitions of these tables in ./models/marts/core/intermediate.

    -
  • -
  • -

    In the second step, we create the dim_customers and fct_orders models. These constitute the dimensional model tables that we want to expose to our BI tool. You will find the definitions of these tables in ./models/marts/core.

    -
  • -
-
-
-
-

Executing Transformations

-
-

For executing the transformations defined in the dbt project we run:

-
-
-
-
dbt run
-
-
-
-

You will get the status of each model as given below:

-
-
-
-dbt run output -
-
-
-
-

Model Testing

-
-

To ensure that the data in the dimensional model is correct, dbt allows us to define and execute tests against the data.

-
-
-

The tests are defined in ./models/marts/core/schema.yml and ./models/staging/schema.yml. Each column can have multiple tests configured under the tests key.

-
-
-
    -
  • -

    For example, we expect that fct_orders.order_id column will contain unique, non-null values.

    -
  • -
-
-
-

To validate that the data in the produced tables satisfies the test conditions run:

-
-
-
-
dbt test
-
-
-
-

If the data in the models satisfies all the test cases, the result of this command will be as below:

-
-
-
-dbt test output -
-
-
-
-

Generate Documentation

-
-

Our model consists of just a few tables. In a scenario with more sources of data, and a more complex dimensional model, documenting the data lineage and what is the purpose of each of the intermediate models is very important.

-
-
-

Generating this type of documentation with dbt is very straight forward.

-
-
-
-
dbt docs generate
-
-
-
-

This will produce html files in the ./target directory.

-
-
-

You can start your own server to browse the documentation. The following command will start a server and open up a browser tab with the docs' landing page:

-
-
-
-
dbt docs serve
-
-
-
-

Lineage Graph

-
-
-dbt lineage graph -
-
-
-
-
-
-
-

Summary

-
-
-

This tutorial demonstrated how to use dbt to transform raw JSON data loaded through Airbyte into dimensional model in Teradata Vantage. The sample project takes raw JSON data loaded in Teradata Vantage, creates normalized views and finally produces a dimensional data mart. We used dbt to transform JSON into Normalized views and multiple dbt commands to create models (dbt run), test the data (dbt test), and generate and serve model documentation (dbt docs generate, dbt docs serve).

-
-
-
-
-

Further reading

-
- -
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html b/pr-preview/pr-110/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html deleted file mode 100644 index 58752b3c5..000000000 --- a/pr-preview/pr-110/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html +++ /dev/null @@ -1,2907 +0,0 @@ - - - - - - Use Airbyte to load data from external sources to Teradata Vantage :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Use Airbyte to load data from external sources to Teradata Vantage

-

Author: Krutik Pathak
-Last updated: June 9th, 2023

-
-

Overview

-
-
-

This tutorial showcases how to use Airbyte (an open-source Extract Load Transform tool) with Teradata Vantage. We work with a very simple end-to-end setup to load data from Google Sheets to Teradata Vantage using Airbyte.

-
-
-
-Sample Employees Payrate Google Sheets -
-
-
-
    -
  • -

    Source: Google Sheets

    -
  • -
  • -

    Destination: Teradata Vantage

    -
  • -
-
-
-
-
-

Prerequisites

-
-
- -
-
-
-
-

Launch Airbyte Open Source

-
-
-
    -
  • -

    Clone the Airbyte Open Source repository and go to the airbyte directory.

    -
    -
    -
    git clone --depth 1 https://github.com/airbytehq/airbyte.git
    -cd airbyte
    -
    -
    -
  • -
-
-
-

Make Sure to have Docker Desktop running before running the shell script run-ab-platform.

-
-
-
    -
  • -

    Run the shell script run-ab-platform as

    -
    -
    -
    ./run-ab-platform.sh
    -
    -
    -
    - - - - - -
    - - -
    -

    You can run the above commands with git bash in Windows. Please refer to the Airbyte Local Deployment for more details.

    -
    -
    -
    -
  • -
  • -

    Log in to the web app http://localhost:8000/ by entering the default credentials found in the .env file included in the repository.

    -
    -
    -
    BASIC_AUTH_USERNAME=airbyte
    -BASIC_AUTH_PASSWORD=password
    -
    -
    -
  • -
-
-
-

When logging in for the first time, Airbyte will prompt you to provide your email address and specify your preferences for product improvements. Enter your preferences and click on "Get started."

-
-
-
-Specify Preferences -
-
-
-

Once Airbyte Open Source is launched you will see a connections dashboard. If you launched Airbyte Open Source for the first time, it would not show any connections.

-
-
-
-
-

Airbyte Configuration

-
-
-

Setting the Source Connection

-
-
    -
  • -

    You can either click "Create your first connection" or click on the top right corner to initiate the new connection workflow on Airbyte’s Connections dashboard.

    -
  • -
-
-
-
-Dashboard to create first connection -
-
-
-
    -
  • -

    Airbyte will ask you for the Source, you can select from an existing source (if you have set it up already) or you can set up a new source, in this case we select Google Sheets.

    -
  • -
  • -

    For authentication we are using Service Account Key Authentication which uses a service account key in JSON format. Toggle from the default OAuth to Service Account Key Authentication. To authenticate your Google account via Service Account Key Authentication, enter your Google Cloud service account key in JSON format.
    -Make sure the Service Account has the Project Viewer permission. If your spreadsheet is viewable by anyone with its link, no further action is needed. If not, give your Service account access to your spreadsheet.

    -
  • -
  • -

    Add the link to the source spreadsheet as Spreadsheet Link.

    -
  • -
-
-
-
-Configuring the source in Airbyte -
-
-
- - - - - -
- - - -
-
-
-
    -
  • -

    Click Set up source, if the configuration is correct, you will get the message All connection tests passed!

    -
  • -
-
-
-
-

Setting the Destination Connection

-
-
    -
  • -

    Assuming you want to create a fresh new connection with Teradata Vantage, Select Teradata Vantage as the destination type under the "Set up the destination" section.

    -
  • -
  • -

    Add the Host, User, and Password. These are the same as the Host, Username, and Password respectively, used by your Clearscape Analytics Environment.

    -
  • -
  • -

    Provide a default schema name appropriate to your specific context. Here we have provided gsheet_airbyte_td.

    -
  • -
-
-
- - - - - -
- - -
-

If you do not provide a Default Schema, you will get an error stating "Connector failed while creating schema". Make sure you provide appropriate name in the Default Schema.

-
-
-
-
-
-Configuring the destination Teradata in Airbyte -
-
-
-
    -
  • -

    Click Set up destination, if the configuration is correct, you will get the message All connection tests passed!

    -
  • -
-
-
- - - - - -
- - -
-

You might get a configuration check failed error. Make sure your Teradata Vantage instance is running properly before making a connection through Airbyte.

-
-
-
-
-
-

Configuring Data Sync

-
-

A namespace is a group of streams (tables) in a source or destination. A schema in a relational database system is an example of a namespace. In a source, the namespace is the location from where the data is replicated to the destination. In a destination, the namespace is the location where the replicated data is stored in the destination. -For more details please refer to Airbyte Namespace.

-
-
-
-Namespaces in the destination -
-
-
-

In our example the destination is a database, so the namespace is the default schema gsheet_airbyte_td we defined when we configured the destination. The stream name is a table that is mirroring the name of the spreadsheet in the source, which is sample_employee_payrate in this case. Since we are using the single spreadsheet connector, it only supports one stream (the active spreadsheet).

-
-
-

Other type of sources and destinations might have a different layout. In this example, Google sheets, as source, does not support a namespace. -In our example, we have used <destination schema> as the Namespace of the destination, this is the default namespace assigned by Airbyte based on the Default Schema we declared in the destination settings. The database gsheet_airbyte_td will be created in our Teradata Vantage Instance.

-
-
- - - - - -
- - -
-

We use the term "schema", as it is the term used by Airbyte. In a Teradata context the term "database" is the equivalent.

-
-
-
-
-

Replication Frequency

-
-

It shows how often data should sync to destination. You can select every hour, 2 hours, 3 hours etc. In our case we used every 24 hours.

-
-
-
-Replication Frequency 24 hours -
-
-
-

You can also use a Cron expression to specify the time when the sync should run. In the example below, we set the Cron expression to run the sync on every Wednesday at 12:43 PM (US/Pacific) time.

-
-
-
-Replication Frequency Cron Expression -
-
-
-
-
-

Data Sync Validation

-
-

Airbyte tracks synchronization attempts in the "Sync History" section of the Status tab.

-
-
-
-Data Sync Summary -
-
-
-

Next, you can go to the ClearScape Analytics Experience and run a Jupyter notebook, notebooks in ClearScape Analytics Experience are configured to run Teradata SQL queries, to verify if the database gsheet_airbyte_td, streams (tables) and complete data is present.

-
-
-
-Data Sync Validation in Teradata -
-
-
-
-
%connect local
-
-
-
-
-
SELECT  DatabaseName, TableName, CreateTimeStamp, LastAlterTimeStamp
-FROM    DBC.TablesV
-WHERE   DatabaseName = 'gsheet_airbyte_td'
-ORDER BY    TableName;
-
-
-
-
-
DATABASE gsheet_airbyte_td;
-
-
-
-
-
SELECT * FROM _airbyte_raw_sample_employee_payrate;
-
-
-
-

The stream (table) name in destination is prefixed with _airbyte_raw_ because Normalization and Transformation are not supported for this connection, and we only have the raw table. Each stream (table) contains 3 columns:

-
-
-
    -
  1. -

    _airbyte_ab_id: a uuid assigned by Airbyte to each event that is processed. The column type in Teradata is VARCHAR(256).

    -
  2. -
  3. -

    _airbyte_emitted_at: a timestamp representing when the event was pulled from the data source. The column type in Teradata is TIMESTAMP(6).

    -
  4. -
  5. -

    _airbyte_data: a json blob representing the event data. The column type in Teradata is JSON.

    -
  6. -
-
-
-

Here in the _airbyte_data column, we see 9 rows, the same as we have in the source Google sheet, and the data is in JSON format which can be transformed further as needed.

-
-
-
-

Close and delete the connection

-
-
    -
  • -

    You can close the connection in Airbyte by disabling the connection. This will stop the data sync process.

    -
  • -
-
-
-
-Close Airbyte Connection -
-
-
-
    -
  • -

    You can also delete the connection.

    -
  • -
-
-
-
-Delete Airbyte Connection -
-
-
-
-

Summary

-
-

This tutorial demonstrated how to extract data from a source system like Google sheets and use the Airbyte ELT tool to load the data into the Teradata Vantage Instance. We saw the end-to-end data flow and complete configuration steps for running Airbyte Open Source locally, and configuring the source and destination connections. We also discussed about the available data sync configurations based on replication frequency. We validated the results in the destination using Cloudscape Analytics Experience and finally we saw the methods to pause and delete the Airbyte connection.

-
-
- -
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/fastload.html b/pr-preview/pr-110/fastload.html deleted file mode 100644 index 97c32d4bd..000000000 --- a/pr-preview/pr-110/fastload.html +++ /dev/null @@ -1,2918 +0,0 @@ - - - - - - Run large bulkloads efficiently with Fastload :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Run large bulkloads efficiently with Fastload

-

Author: Adam Tworkiewicz
-Last updated: April 6th, 2022

-
-
-
- - - - - -
- - -
Deprecation notice
-
-

This how-to describes Fastload utility. The utility has been deprecated. For new implementations consider using Teradata Parallel Transporter (TPT).

-
-
-
-
-
-
-

Overview

-
-
-

We often have a need to move large volumes of data into Vantage. Teradata offers Fastload utility that can efficiently load large amounts of data into Teradata Vantage. This how-to demonstrates how to use Fastload. In this scenario, we will load over 300k records, over 40MB of data, in a couple of seconds.

-
-
-
-
-

Prerequisites

-
-
-
    -
  • -

    Access to a Teradata Vantage instance.

    -
    - - - - - -
    - - -If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. -
    -
    -
  • -
  • -

    Download Teradata Tools and Utilities (TTU) - supported platforms: Windows, MacOS, Linux (requires registration).

    -
  • -
-
-
-
-
-

Install TTU

-
-
-
-
    -
  • -

    Windows

    -
  • -
  • -

    MacOS

    -
  • -
  • -

    Linux

    -
  • -
-
-
-
-
-

Unzip the downloaded file and run setup.exe.

-
-
-
-
-

Unzip the downloaded file and run TeradataToolsAndUtilitiesXX.XX.XX.pkg.

-
-
-
-
-

Unzip the downloaded file, go to the unzipped directory and run:

-
-
-
-
./setup.sh a
-
-
-
-
-
-
-
-
-

Get Sample data

-
-
-

We will be working with the US tax fillings for nonprofit organizations. Nonprofit tax filings are public data. The US Internal Revenue Service publishes them in S3 bucket. Let’s grab a summary of filings for 2020: https://s3.amazonaws.com/irs-form-990/index_2020.csv. You can use your browser, wget or curl to save the file locally.

-
-
-
-
-

Create a database

-
-
-

Let’s create a database in Vantage. Use your favorite SQL tool to run the following query:

-
-
-
-
CREATE DATABASE irs
-AS PERMANENT = 120e6, -- 120MB
-    SPOOL = 120e6; -- 120MB
-
-
-
-
-
-

Run Fastload

-
-
-

We will now run Fastload. Fastload is a command-line tool that is very efficient in uploading large amounts of data into Vantage. Fastload, in order to be fast, has several restrictions in place. It can only populate empty tables, no inserts to already populated tables are supported. It doesn’t support tables with secondary indices. Also, it won’t insert duplicate records, even if a table is a MULTISET table. For the full list of restrictions check out Teradata® Fastload Reference.

-
-
-

Fastload has its own scripting language. The language allows you to prepare the database with arbitrary SQL commands, declare the input source and define how the data should be inserted into Vantage. The tool supports both interactive and batch mode. In this section, we are going to use the interactive mode.

-
-
-

Let’s start Fastload in the interactive mode:

-
-
-
-
fastload
-
-
-
-

First, let’s log in to a Vantage database. I’ve a Vantage Express running locally, so I’ll use localhost as the hostname and dbc for username and password:

-
-
-
-
LOGON localhost/dbc,dbc;
-
-
-
-

Now, that we are logged in, I’m going to prepare the database. I’m switching to irs database and making sure that the target table irs_returns and error tables (more about error tables later) do not exist:

-
-
-
-
DATABASE irs;
-DROP TABLE irs_returns;
-DROP TABLE irs_returns_err1;
-DROP TABLE irs_returns_err2;
-
-
-
-

I’ll now create an empty table that can hold the data elements from the csv file.

-
-
-
-
CREATE MULTISET TABLE irs_returns (
-    return_id INT,
-    filing_type VARCHAR(5) CHARACTER SET LATIN NOT CASESPECIFIC,
-    ein INT,
-    tax_period INT,
-    sub_date VARCHAR(100) CHARACTER SET LATIN NOT CASESPECIFIC,
-    taxpayer_name VARCHAR(100) CHARACTER SET LATIN NOT CASESPECIFIC,
-    return_type VARCHAR(5) CHARACTER SET LATIN NOT CASESPECIFIC,
-    dln BIGINT,
-    object_id BIGINT
-)
-PRIMARY INDEX ( return_id );
-
-
-
-

Now, that the target table has been prepared, we can start loading the data. ERRORFILES directive defines error files. The error files are really tables that Fastload creates. The first table contains information about data conversion and other issues. The second table keeps track of data uniqueness issues, e.g. primary key violations.

-
-
-
-
BEGIN LOADING irs_returns
-    ERRORFILES irs_returns_err1, irs_returns_err2;
-
-
-
-

We instruct Fastload to save a checkpoint every 10k rows. It’s useful in case we have to restart our job. It will be able to resume from the last checkpoint.

-
-
-
-
    CHECKPOINT 10000;
-
-
-
-

We also need to tell Fastload to skip the first row in the CSV file as start at record 2. That’s because the first row contains column headers.

-
-
-
-
    RECORD 2;
-
-
-
-

Fastload also needs to know that it’s a comma-separated file:

-
-
-
-
    SET RECORD VARTEXT ",";
-
-
-
-

DEFINE block specifies what columns we should expect:

-
-
-
-
    DEFINE in_return_id (VARCHAR(19)),
-    in_filing_type (VARCHAR(5)),
-    in_ein (VARCHAR(19)),
-    in_tax_period (VARCHAR(19)),
-    in_sub_date (VARCHAR(22)),
-    in_taxpayer_name (VARCHAR(100)),
-    in_return_type (VARCHAR(5)),
-    in_dln (VARCHAR(19)),
-    in_object_id (VARCHAR(19)),
-
-
-
-

DEFINE block also has FILE attribute that points to the file with the data. Replace FILE = /tmp/index_2020.csv; with your location of index_2020.csv file:

-
-
-
-
    FILE = /tmp/index_2020.csv;
-
-
-
-

Finally, we define the INSERT statement that will put data into the database and we close off LOADING block:

-
-
-
-
    INSERT INTO irs_returns (
-        return_id,
-        filing_type,
-        ein,
-        tax_period,
-        sub_date,
-        taxpayer_name,
-        return_type,
-        dln,
-        object_id
-    ) VALUES (
-        :in_return_id,
-        :in_filing_type,
-        :in_ein,
-        :in_tax_period,
-        :in_sub_date,
-        :in_taxpayer_name,
-        :in_return_type,
-        :in_dln,
-        :in_object_id
-    );
-END LOADING;
-
-
-
-

Once the job has finished, we are logging off from the database to clean things up.

-
-
-
-
LOGOFF;
-
-
-
-

Here is what the entire script looks like:

-
-
-
-
LOGON localhost/dbc,dbc;
-
-DATABASE irs;
-DROP TABLE irs_returns;
-DROP TABLE irs_returns_err1;
-DROP TABLE irs_returns_err2;
-
-CREATE MULTISET TABLE irs_returns (
-    return_id INT,
-    filing_type VARCHAR(5) CHARACTER SET LATIN NOT CASESPECIFIC,
-    ein INT,
-    tax_period INT,
-    sub_date VARCHAR(100) CHARACTER SET LATIN NOT CASESPECIFIC,
-    taxpayer_name VARCHAR(100) CHARACTER SET LATIN NOT CASESPECIFIC,
-    return_type VARCHAR(5) CHARACTER SET LATIN NOT CASESPECIFIC,
-    dln BIGINT,
-    object_id BIGINT
-)
-PRIMARY INDEX ( return_id );
-
-BEGIN LOADING irs_returns
-  ERRORFILES irs_returns_err1, irs_returns_err2;
-  CHECKPOINT 10000;
-  RECORD 2;
-  SET RECORD VARTEXT ",";
-
-  DEFINE in_return_id (VARCHAR(19)),
-    in_filing_type (VARCHAR(5)),
-    in_ein (VARCHAR(19)),
-    in_tax_period (VARCHAR(19)),
-    in_sub_date (VARCHAR(22)),
-    in_taxpayer_name (VARCHAR(100)),
-    in_return_type (VARCHAR(5)),
-    in_dln (VARCHAR(19)),
-    in_object_id (VARCHAR(19)),
-    FILE = /tmp/index_2020.csv;
-
-  INSERT INTO irs_returns (
-      return_id,
-      filing_type,
-      ein,
-      tax_period,
-      sub_date,
-      taxpayer_name,
-      return_type,
-      dln,
-      object_id
-  ) VALUES (
-      :in_return_id,
-      :in_filing_type,
-      :in_ein,
-      :in_tax_period,
-      :in_sub_date,
-      :in_taxpayer_name,
-      :in_return_type,
-      :in_dln,
-      :in_object_id
-  );
-END LOADING;
-
-LOGOFF;
-
-
-
-
-
-

Batch mode

-
-
-

To run our example in batch mode, simply save all instructions in a single file and run:

-
-
-
-
fastload < file_with_instruction.fastload
-
-
-
-
-
-

Fastload vs. NOS

-
-
-

In our case, the file is in an S3 bucket. That means, that we can use Native Object Storage (NOS) to ingest the data:

-
-
-
-
-- create an S3-backed foreign table
-CREATE FOREIGN TABLE irs_returns_nos
-    USING ( LOCATION('/s3/s3.amazonaws.com/irs-form-990/index_2020.csv') );
-
--- load the data into a native table
-CREATE MULTISET TABLE irs_returns_nos_native
-    (RETURN_ID, FILING_TYPE, EIN, TAX_PERIOD, SUB_DATE, TAXPAYER_NAME)
-AS (
-    SELECT RETURN_ID, FILING_TYPE, EIN, TAX_PERIOD, SUB_DATE, TAXPAYER_NAME FROM irs_returns_nos
-) WITH DATA
-NO PRIMARY INDEX;
-
-
-
-

The NOS solution is convenient as it doesn’t depend on additional tools. It can be implemented using only SQL. It performs well, especially for Vantage deployments with a high number of AMPs as NOS tasks are delegated to AMPs and run in parallel. Also, splitting the data in object storage into multiple files may further improve performance.

-
-
-
-
-

Summary

-
-
-

This how-to demonstrated how to ingest large amounts of data into Vantage. We loaded hundreds of thousands or records into Vantage in a couple of seconds using Fastload.

-
-
-
-
-

Further reading

-
- -
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/geojson-to-vantage.html b/pr-preview/pr-110/geojson-to-vantage.html deleted file mode 100644 index abdde786f..000000000 --- a/pr-preview/pr-110/geojson-to-vantage.html +++ /dev/null @@ -1,2997 +0,0 @@ - - - - - - Use geographic reference data with Vantage :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Use geographic reference data with Vantage

-

Author: Rémi Turpaud
-Last updated: Feb ember 14th, 2022

-
-

Overview

-
-
-

This post demonstrates how you can leverage any geographic dataset in GeoJson format and use it for geospatial analytics in Teradata Vantage, with just a few lines of code.

-
-
-

Today we be gathering reference geographical data (official maps, points of interest, etc…​) form public sources and use it to support our day to day analytics.

-
-
-

You will learn two methods to get your GeoJson data into Teradata Vantage:

-
-
-
    -
  1. -

    Load it as a single document and use native ClearScape analytics functions to parse it into a table usable for analytics.

    -
  2. -
  3. -

    Lightly transform it in native Python as we load it into Vantage to produce an analytics ready dataset.

    -
  4. -
-
-
-

The first method is a straig forward ELT pattern for semi-structured format processing in Vantage with a single SQL statement, the second one involves some lightweight preparation in (pure) Python and may allow more flexibility (for example to add early quality checks or optimize the load of large documents).

-
-
-
-
-

Prerequisites

-
-
-

You will need:

-
-
-
    -
  • -

    Access to a Teradata Vantage instance.

    -
    - - - - - -
    - - -If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. -
    -
    -
  • -
  • -

    A Python 3 interpreter

    -
  • -
  • -

    A SQL Client

    -
  • -
-
-
-
-
-

Option 1: Load a GeoJson document into Vantage

-
-
-

Here we will load a GeoJson document as a single Character Large OBject (CLOB) into the Vantage Data Store and use a single SQL statement, backed by ClearScape Analytics native functions, to parse this document into a usable structure for geospatial analytics.

-
-
-

Get and load the GeoJson document

-
-

The http://geojson.xyz/ website is a fantastic source for open geographical data in GeoJson format. We will load the "Populated Places" dataset that provides with a list of over 1000 significant world cities.

-
-
-

Open you favourite Python 3 interpreter and make sure you have the following packages installed:

-
-
-
    -
  • -

    wget

    -
  • -
  • -

    teradatasql

    -
  • -
  • -

    getpass

    -
  • -
-
-
-

Download and read the cities dataset:

-
-
-
-
import wget
-world_cities=wget.download('https://d2ad6b4ur7yvpq.cloudfront.net/naturalearth-3.3.0/ne_50m_populated_places.geojson')
-with open(world_cities) as geo_json:
-    jmap = jmap = geo_json.read()
-
-
-
-
-

Load the GeoJson document in Vantage

-
-

Modify this code as needed with your Vantage host name, user name and specify an advanced login mechanism if any (eg. LDAP, Kerberos…​) with the logmech parameter if you need to. -All the connection parameters are documented on the teradatasql PyPi page there: https://pypi.org/project/teradatasql/

-
-
-

The code below simply creates a Vantage connection, and opens a cursor creating a table and loading it with our file.

-
-
-
-
import teradatasql
-import getpass
-tdhost='<Your-Vantage-System-HostName-Here>'
-tdUser='<Your-Vantage-User-Name-Here>'
-
-# Create a connection to Teradata Vantage
-con = teradatasql.connect(None, host=tdhost, user=tdUser, password=getpass.getpass())
-
-# Create a table named geojson_src and load the JSON map into it as a single CLOB
-with con.cursor () as cur:
-    cur.execute ("create table geojson_src (geojson_nm VARCHAR(32), geojson_clob CLOB CHARACTER SET UNICODE);")
-    r=cur.execute ("insert into geojson_src (?, ?)", ['cities',jmap])
-
-
-
-
-

Use the map from Vantage

-
-

Now open your favourite SQL client and connect to your Vantage system.

-
-
-

We will use ClearScape analytics JSON functions to parse our GeoJson document and extract the most relevant properties and the geometry itself (the coordinates of the city) for each feature (each feature representing a city in this example). -We then use the GeomFromGeoJSON function to cast our geometry as a native Vantage geometry data type (ST_GEOMETRY).

-
-
-

For user convenience, will wrap all this SQL code in a view:

-
-
-
-
REPLACE VIEW cities_geo AS
-SEL city_name, country_name, region_name, code_country_isoa3, GeomFromGeoJSON(geom, 4326) city_coord
-FROM JSON_Table
-(ON (
-    SEL
-     geojson_nm id
-    ,cast(geojson_clob as JSON) jsonCol
-    FROM geojson_src where geojson_nm='cities'
-)
-USING rowexpr('$.features[*]')
-               colexpr('[ {"jsonpath" : "$.geometry",
-                           "type" : "VARCHAR(32000)"},
-                          {"jsonpath" : "$.properties.NAME",
-                           "type" : "VARCHAR(50)"},
-                          {"jsonpath" : "$.properties.SOV0NAME",
-                           "type" : "VARCHAR(50)"},
-                          {"jsonpath" : "$.properties.ADM1NAME",
-                           "type" : "VARCHAR(50)"},
-                          {"jsonpath" : "$.properties.SOV_A3",
-                           "type" : "VARCHAR(50)"}]')
-) AS JT(id, geom, city_name, country_name, region_name, code_country_isoa3);
-
-
-
-

That’s all, you can now view the prepared geometry data as a table, ready to enrich your analytics:

-
-
-
-
SEL TOP 5 * FROM cities_geo;
-
-
-
-

Result:

-
- ------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
city_namecountry_nameregion_namecode_country_isoa3city_coord

Potenza

Italy

Basilicata

ITA

POINT (15.798996495640267 40.642002130098206)

Mariehamn

Finland

Finström

ALD

POINT (19.949004471869102 60.096996184895431)

Ramallah

Indeterminate

PSE

POINT (35.206209378189556 31.902944751424059)

Poitier

French Republic

Poitou-Charentes

FRA

POINT (0.333276528534554 46.583292255736581)

Clermont-Ferrand

French Republic

Auvergne

FRA

POINT (3.080008095928406 45.779982115759424)

-
-

Calculate the distance between two cities:

-
-
-
-
SEL b.city_coord.ST_SphericalDistance(l.city_coord)
-FROM
-(SEL city_coord FROM cities_geo WHERE city_name='Bordeaux') b
-CROSS JOIN (SEL city_coord FROM cities_geo WHERE city_name='Lvov') l
-
-
-
-

Result:

-
- --- - - - - - - - - -

city_coord.ST_SPHERICALDISTANCE(city_coord)

1.9265006861079421e+06

-
-
-
-
-

Option 2: Prepare a GeoJson document with Python and load it into Vantage

-
-
-

The previous example demonstrated how to load a complete document as a large object into Teradata Vantage and use built in analytic functions to parse it into a usable dataset.

-
-
-

This is convenient but limited: we need to parse this document every time we need to use it, as the original document is not directly usable for analytics, JSON documents are currently limited to 16MB in Vantage and it may be inconvenient to fix data quality or formatting issues within the document stored as a CLOB.

-
-
-

In this example, we will parse our JSON document using the Python json package and load it as a table that can be used directly and efficiently for analysis.

-
-
-

Python json and list manipulation functions, along with the Teradata SQL driver for Python make this process really simple and efficient.

-
-
-

For this example, we will use the boundaries of the world countries available on https://datahub.io.

-
-
-

Let’s get into it.

-
-
-

Open you favourite Python 3 interpreter and make sure you have the following packages installed:

-
-
-
    -
  • -

    wget

    -
  • -
  • -

    teradatasql

    -
  • -
  • -

    getpass

    -
  • -
-
-
-

Get and load the GeoJson document

-
-
-
import wget
-countries_geojson=wget.download('https://datahub.io/core/geo-countries/r/countries.geojson')
-
-
-
-
-

Open the GeoJson file and type it as a dictionary

-
-

import json -with open(countries_geojson) as geo_json: - countries_json = json.load(geo_json)

-
-
-
-

[Optional] Check the content of the file

-
-

The good thing about loading this JSON in memory, if you are using an interactive Python terminal, is that you can now explore the document to understand its structure. For example

-
-
-
-
print(countries_json.keys())
-print(countries_json['type'])
-print(countries_json['features'][0]['properties'].keys())
-print(countries_json['features'][0]['geometry']['coordinates'])
-
-
-
-

What we have here is a collection of GeoFeatures (as earlier).

-
-
-

We will now lightly model this data in a Vantage table, for that:

-
-
-
    -
  • -

    We will load each feature as a raw.

    -
  • -
  • -

    We will extract the properties that look interesting for immediate analysis (in our example, the country name and ISO code).

    -
  • -
  • -

    We will extract the geometry itself and load it as a separate column.

    -
  • -
-
-
-

To load a set of rows with a teradatasql cursor, we need to represent each row as an array (or tuples) of values, and the complete dataset as an array of all the row-arrays. -This is fairly easy to do as a list comprehension

-
-
-

For example:

-
-
-
-
[(f['properties']['ADMIN'], f['properties']['ISO_A3'], f['geometry']) for f in countries_json['features'][:1]]
-
-
-
-

NB: Not featured here, but recommended for richer datasets, consider loading the entire and original feature payload as a separate column (this is a JSON document). This will allow you to go back to the original record and extract new properties that you may have missed during your first analysis but have become relevant, directly in SQL and without having to reload the file entirely.

-
-
-
-

Create a Vantage connection and load our file in a staging table

-
-

Modify this code as needed with your Vantage host name, user name and specify an advanced login mechanism if any (eg. LDAP, Kerberos…​) with the logmech parameter if you need to. -All the connection parameters are documented on the teradatasql PyPi page there: https://pypi.org/project/teradatasql/

-
-
-

The code below simply creates a Vantage connection, and opens a cursor creating a table and loading it with our list.

-
-
-
-
import teradatasql
-import getpass
-tdhost='<Your-Vantage-System-HostName-Here>'
-tdUser='<Your-Vantage-User-Name-Here>'
-
-# Create a connection to Teradata Vantage
-con = teradatasql.connect(None, host=tdhost, user=tdUser, password=tdPassword)
-
-# Create a table and load our country names, codes, and geometries.
-with con.cursor () as cur:
-    cur.execute ("create table stg_countries_map (country_nm VARCHAR(32), ISO_A3_cd VARCHAR(32), boundaries_geo CLOB CHARACTER SET UNICODE);")
-    r=cur.execute ("insert into stg_countries_map (?, ?, ?)", [(f['properties']['ADMIN'], f['properties']['ISO_A3'], str(f['geometry'])) for f in countries_json['features']])
-
-
-
-
-

Create and our geography refernce table

-
-

The code below performs the table creation from the Python interpreter, you can also run the sql statement defined below in your prefered SQL client you might as well simply define this logic as a SQL view to avoid having to refresh this table.

-
-
-

We will use ClearScape analytics the GeomFromGeoJSON function to cast our geometry as a native Vantage geometry data type (ST_GEOMETRY).

-
-
-
-
# Now create our final reference table, casting the geometry CLOB as a ST_GEOMETRY object
-sql='''
-CREATE TABLE ref_countries_map AS
-(
-SEL
-ISO_A3_cd
-,country_nm
-,GeomFromGeoJSON(boundaries_geo, 4326) boundaries_geo
-FROM stg_countries_map
-) WITH DATA
-'''
-
-WITH con.cursor () AS cur:
-    cur.execute (sql)
-
-
-
-
-

Use your data

-
-

That’s all, you may now query your tables using your favourite SQL client and Teradata’s excellent Geospatial data types and analytic functions.

-
-
-

For example, using the two datasets we have loaded during this tutorial, check in what countries are

-
-
-
-
SEL cty.city_name, cty.city_coord, ctry.country_nm
-FROM cities_geo cty
-LEFT JOIN ref_countries_map ctry
-	ON ctry.boundaries_geo.ST_Contains(cty.city_coord)=1
-WHERE cty.city_name LIKE 'a%'
-
-
- ----- - - - - - - - - - - - - - - - - - - - - - - -

city_name

city_coord

country_nm

Acapulco

POINT (-99.915979046410712 16.849990864016206)

Mexico -Aosta

POINT (7.315002595706176 45.737001067072299)

Italy -Ancona

POINT (13.499940550397127 43.600373554552903)

Italy -Albany

POINT (117.891604776075155 -35.016946595501224)

Australia

-
-
-
-
-

Summary

-
-
-

Note that none of the above code does not implement any control procedure or checks to, for example, manage the state of the target tables, manage locking, control error codes, etc…​ This is meant to be a demonstrations of the available features to acquire and use geospatial reference data.

-
-
-

Consider using SQLAlchemy ORM if you are defining your pipeline in Python, dbt, or your favorite ELT and orchestration toolset to create your products you can operationalize.

-
-
-

You now can know how to get any open geographic dataset and use it to augment your analytics with Teradata Vantage!

-
-
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/getting.started.utm.html b/pr-preview/pr-110/getting.started.utm.html deleted file mode 100644 index 99022e1c8..000000000 --- a/pr-preview/pr-110/getting.started.utm.html +++ /dev/null @@ -1,2956 +0,0 @@ - - - - - - Run Vantage Express on UTM :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Run Vantage Express on UTM

-

Author: Adam Tworkiewicz
-Last updated: January 9th, 2023

-
-

Overview

-
-
-

This how-to shows how to gain access to a Teradata database by running it on your local machine. There are many ways to install Teradata. This document optimizes for the lowest time to first query without spending money on cloud resources. Once you finish the steps you will have a working Teradata Vantage Express database on your computer.

-
-
- - - - - -
- - -Starting with version 17.20, Vantage Express includes the following analytics packages: Vantage Analytics Library, Bring Your Own Model (BYOM), API Integration with AWS SageMaker. -
-
-
-
-
-

Prerequisites

-
-
-
    -
  1. -

    A Mac computer. Both Intel and M1/2 chips are supported.

    -
    - - - - - -
    - - -Vantage Express runs on x86 architecture. When you run the VM on M1/2 chips, UTM has to emulate x86. This is significantly slower then virtualization. If you determine that Vantage Express on M1/M2 is too slow for your needs, consider running Vantage Express in the cloud: AWS, Azure, Google Cloud. -
    -
    -
  2. -
  3. -

    30GB of disk space and enough CPU and RAM to be able to dedicate at least one core and 4GB RAM to the virtual machine.

    -
  4. -
  5. -

    Admin rights to be able to install and run the software.

    -
    - - - - - -
    - - -No admin rights on your local machine? Have a look at how to run Vantage Express in AWS, Azure, Google Cloud. -
    -
    -
  6. -
-
-
-
-
-

Installation

-
-
-

Download required software

-
-
    -
  1. -

    The latest version of Vantage Express. If you have not used the Teradata downloads website before, you will need to register.

    -
  2. -
  3. -

    The latest version of UTM.

    -
  4. -
-
-
-
-

Run UTM installer

-
-
    -
  1. -

    Install UTM by running the installer and accepting the default values.

    -
  2. -
-
-
-
-

Run Vantage Express

-
-
    -
  1. -

    Go to the directory where you downloaded Vantage Express and unzip the downloaded file.

    -
  2. -
  3. -

    Start UTM, click on the + sign and select Virtualize (for Intel Macs) or Emulate (for M1 Macs).

    -
  4. -
  5. -

    On Operating System screen select Other.

    -
  6. -
  7. -

    On Other screen select Skip ISO Boot.

    -
  8. -
  9. -

    On Hardware screen allocate at least 4GB of memory and at least 1 CPU core. We recommend 10GB RAM and 2 CPUs.

    -
    -
    -UTM Hardware -
    -
    -
  10. -
  11. -

    On Storage screen accept the defaults by clicking Next.

    -
  12. -
  13. -

    On Shared Direct screen click Next.

    -
  14. -
  15. -

    On Summary screen check Open VM Settings and click Save.

    -
  16. -
  17. -

    Go through the setup wizard. You only need to adjust the following tabs:

    -
    -
      -
    • -

      QEMU - disable UEFI Boot option

      -
    • -
    • -

      Network - expose ssh (22) and Vantage (1025) ports on the host computer:

      -
      -
      -UTM Network -
      -
      -
    • -
    -
    -
  18. -
  19. -

    Map drives:

    -
    -
      -
    • -

      Delete the default IDE Drive.

      -
    • -
    • -

      Map the 3 Vantage Express drives by importing the disk files from the downloaded VM zip file. Make sure you map them in the right order, -disk1, -disk2, -disk3 . The first disk is bootable and contains the database itself. Disks 2 and 3 are so called pdisks and contain data. As you import the files UTM will automatically convert them fro vmdk into qcow2 format. Make sure that each disk is configured using the IDE interface:

      -
      -
      -UTM Drives -
      -
      -
      -

      Once you are done mapping all 3 drives, your configuration should look like this:

      -
      -
      -
      -UTM Drives Final -
      -
      -
    • -
    -
    -
  20. -
  21. -

    Save the configuration and start the VM.

    -
  22. -
  23. -

    Press ENTER to select the highlighted LINUX boot partition.

    -
    -
    -Boot Manager Menu -
    -
    -
  24. -
  25. -

    On the next screen, press ENTER again to select the default SUSE Linux kernel.

    -
    -
    -Grub Menu -
    -
    -
  26. -
  27. -

    After completing the bootup sequence a terminal login prompt as shown in the screenshot below will appear. Don’t enter anything in the terminal. Wait till the system starts the GUI.

    -
    -
    -Wait for GUI -
    -
    -
  28. -
  29. -

    After a while the following prompt will appear - assuming that you did not enter anything after the command login prompt above. Press okay button in the screen below.

    -
    -
    -OK Security Popup -
    -
    -
  30. -
  31. -

    Once the VM is up, you will see its desktop environment. When prompted for username/password enter root for both.

    -
    -
    -VM Login -
    -
    -
  32. -
  33. -

    The database is configured to autostart with the VM. To confirm that the database has started go to the virtual desktop and start Gnome Terminal.

    -
    -
    -Start Gnome Terminal -
    -
    -
  34. -
  35. -

    In the terminal execute pdestate command that will inform you if Vantage has already started:

    -
    - - - - - -
    - - -To paste into Gnome Terminal press SHIFT+CTRL+V. -
    -
    -
    -
    -
    watch pdestate -a
    -
    -
    -
    -

    You want to wait till you see the following message:

    -
    -
    -
    -
    PDE state is RUN/STARTED.
    -DBS state is 5: Logons are enabled - The system is quiescent
    -
    -
    -
    -See examples of messages that pdestate returns when the database is still initializing. -
    -
    -
    -
    PDE state is DOWN/HARDSTOP.
    -
    -PDE state is START/NETCONFIG.
    -
    -PDE state is START/GDOSYNC.
    -
    -PDE state is START/TVSASTART.
    -
    -PDE state is START/READY.
    -PDE state is RUN/STARTED.
    -
    -DBS state is 1/1: DBS Startup - Initializing DBS Vprocs
    -PDE state is RUN/STARTED.
    -
    -DBS state is 1/5: DBS Startup - Voting for Transaction Recovery
    -PDE state is RUN/STARTED.
    -
    -DBS state is 1/4: DBS Startup - Starting PE Partitions
    -PDE state is RUN/STARTED.
    -
    -
    -
    -
  36. -
  37. -

    Now that the database is up, go back to the virtual desktop and launch Teradata Studio Express.

    -
    -
    -Start Teradata Studio Express -
    -
    -
  38. -
  39. -

    When you first start it you will be offered a tour. Once you close the tour, you will see a wizard window to add a new connection. Select Teradata:

    -
    -
    -New Connection Profile -
    -
    -
  40. -
  41. -

    On the next screen, connect to the database on your localhost using dbc for the username and password:

    -
    -
    -New Connection -
    -
    -
  42. -
-
-
-
-

Run sample queries

-
-
    -
  1. -

    We will now run some queries in the VM. To avoid copy/paste issues between the host and the VM, we will open this quick start in the VM. Go to the virtual desktop, start Firefox and point it to this quick start.

    -
  2. -
  3. -

    Once in Teradata Studio Express, go to Query Development perspective (go to the top menu and select WindowQuery Development).

    -
  4. -
  5. -

    Connect using the previously created connection profile by double-clicking on Database ConnectionsNew Teradata.

    -
  6. -
  7. -

    Using dbc user, we will create a new database called HR. Copy/paste this query and run it by hitting the run query button (Run Query Button) or pressing F5 key:

    -
    -
    -
    CREATE DATABASE HR
    -AS PERMANENT = 60e6, -- 60MB
    -    SPOOL = 120e6; -- 120MB
    -
    -
    -
    - -
    -
    Were you able to run the query? - - -
    -
    -
    - -
  8. -
  9. -

    Let’s create a sample table and insert some data and query it. We will first create a table to hold employee information:

    -
    -
    -
    CREATE SET TABLE HR.Employees (
    -   GlobalID INTEGER,
    -   FirstName VARCHAR(30),
    -   LastName VARCHAR(30),
    -   DateOfBirth DATE FORMAT 'YYYY-MM-DD',
    -   JoinedDate DATE FORMAT 'YYYY-MM-DD',
    -   DepartmentCode BYTEINT
    -)
    -UNIQUE PRIMARY INDEX ( GlobalID );
    -
    -
    -
  10. -
  11. -

    Now, let’s insert a record:

    -
    -
    -
    INSERT INTO HR.Employees (
    -   GlobalID,
    -   FirstName,
    -   LastName,
    -   DateOfBirth,
    -   JoinedDate,
    -   DepartmentCode
    -)
    -VALUES (
    -   101,
    -   'Adam',
    -   'Tworkowski',
    -   '1980-01-05',
    -   '2004-08-01',
    -   01
    -);
    -
    -
    -
  12. -
  13. -

    Finally, let’s see if we can retrieve the data:

    -
    -
    -
    SELECT * FROM HR.Employees;
    -
    -
    -
    -

    You should get the following results:

    -
    -
    -
    -
    GlobalID  FirstName  LastName   DateOfBirth  JoinedDate  DepartmentCode
    ---------  ---------  ---------- -----------  ----------  --------------
    -     101  Adam       Tworkowski  1980-01-05  2004-08-01               1
    -
    -
    -
  14. -
-
-
-
-
-
-

Summary

-
-
-

In this guide we have covered how to quickly create a working Teradata environment. We used Teradata Vantage Express in a VM running on VMware. In the same VM, we ran Teradata Studio Express to issue queries. We installed all software locally and didn’t have to pay for cloud resources.

-
-
-
-
-

Next steps

- -
-
-

Further reading

-
- -
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/getting.started.vbox.html b/pr-preview/pr-110/getting.started.vbox.html deleted file mode 100644 index 7c6c02375..000000000 --- a/pr-preview/pr-110/getting.started.vbox.html +++ /dev/null @@ -1,2955 +0,0 @@ - - - - - - Run Vantage Express on VirtualBox :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Run Vantage Express on VirtualBox

-

Author: Adam Tworkiewicz
-Last updated: January 9th, 2023

-
-

Overview

-
-
-

This how-to shows how to gain access to a Teradata database by running it on your local machine. There are many ways to install Teradata. This document optimizes for the lowest time to first query without spending money on cloud resources. Once you finish the steps you will have a working Teradata Vantage Express database on your computer.

-
-
- - - - - -
- - -Starting with version 17.20, Vantage Express includes the following analytics packages: Vantage Analytics Library, Bring Your Own Model (BYOM), API Integration with AWS SageMaker. -
-
-
-
-
-

Prerequisites

-
-
-
    -
  1. -

    A computer using one of the following operating systems: Windows 10, Linux or Intel-based MacOS.

    -
    - - - - - -
    - - -For M1/M2 MacOS systems, see Run Vantage Express on UTM. -
    -
    -
  2. -
  3. -

    30GB of disk space and enough CPU and RAM to be able to dedicate at least one core and 6GB RAM to the virtual machine.

    -
  4. -
  5. -

    Admin rights to be able to install and run the software.

    -
  6. -
-
-
-
-
-

Installation

-
-
-

Download required software

-
-
    -
  1. -

    The latest version of Vantage Express VirtualBox Open Virtual Appliance (OVA).

    -
    - - - - - -
    - - -If you have not used the Teradata Downloads website before, you will need to register first. -
    -
    -
  2. -
  3. -

    VirtualBox, version 6.1.

    -
    - - - - - -
    - - -You can also install VirtualBox using brew and other package managers. -
    -
    -
  4. -
-
-
-
-

Run installers

-
-
    -
  1. -

    Install VirtualBox by running the installer and accepting the default values.

    -
  2. -
-
-
- - - - - -
- - -VirtualBox includes functionality that requires elevated privileges. When you start VirtualBox for the first time, you will be asked to confirm this elevated access. You may also need to reboot your machine to activate the VirtualBox kernel plugin. -
-
-
-
-

Run Vantage Express

-
-
    -
  1. -

    Start VirtualBox.

    -
  2. -
  3. -

    Go to File → Import Appliance…​ menu.

    -
  4. -
  5. -

    In File field, select the downloaded OVA file.

    -
  6. -
  7. -

    On the next screen, accept the defaults and click on Import.

    -
  8. -
  9. -

    Back in the main VirtualBox panel, start the Vantage Express appliance double clicking on VM Vantage 17.20.

    -
    -
    -Start VM -
    -
    -
  10. -
  11. -

    Press ENTER to select the highlighted LINUX boot partition.

    -
    -
    -Boot Manager Menu -
    -
    -
  12. -
  13. -

    On the next screen, press ENTER again to select the default SUSE Linux kernel.

    -
    -
    -Grub Menu -
    -
    -
  14. -
  15. -

    After completing the bootup sequence a terminal login prompt as shown in the screenshot below will appear. Don’t enter anything in the terminal. Wait till the system starts the GUI.

    -
    -
    -Wait for GUI -
    -
    -
  16. -
  17. -

    After a while the following prompt will appear - assuming that you did not enter anything after the command login prompt above. Press okay button in the screen below.

    -
    -
    -OK Security Popup -
    -
    -
  18. -
  19. -

    Once the VM is up, you will see its desktop environment. When prompted for username/password enter root for both.

    -
    -
    -VM Login -
    -
    -
  20. -
  21. -

    The database is configured to autostart with the VM. To confirm that the database has started go to the virtual desktop and start Gnome Terminal.

    -
    -
    -Start Gnome Terminal -
    -
    -
  22. -
  23. -

    In the terminal execute pdestate command that will inform you if Vantage has already started:

    -
    - - - - - -
    - - -To paste into Gnome Terminal press SHIFT+CTRL+V. -
    -
    -
    -
    -
    watch pdestate -a
    -
    -
    -
    -

    You want to wait till you see the following message:

    -
    -
    -
    -
    PDE state is RUN/STARTED.
    -DBS state is 5: Logons are enabled - The system is quiescent
    -
    -
    -
    -See examples of messages that pdestate returns when the database is still initializing. -
    -
    -
    -
    PDE state is DOWN/HARDSTOP.
    -
    -PDE state is START/NETCONFIG.
    -
    -PDE state is START/GDOSYNC.
    -
    -PDE state is START/TVSASTART.
    -
    -PDE state is START/READY.
    -PDE state is RUN/STARTED.
    -
    -DBS state is 1/1: DBS Startup - Initializing DBS Vprocs
    -PDE state is RUN/STARTED.
    -
    -DBS state is 1/5: DBS Startup - Voting for Transaction Recovery
    -PDE state is RUN/STARTED.
    -
    -DBS state is 1/4: DBS Startup - Starting PE Partitions
    -PDE state is RUN/STARTED.
    -
    -
    -
    -
  24. -
  25. -

    Now that the database is up, go back to the virtual desktop and launch Teradata Studio Express.

    -
    -
    -Start Teradata Studio Express -
    -
    -
  26. -
  27. -

    When you first start it you will be offered a tour. Once you close the tour, you will see a wizard window to add a new connection. Select Teradata:

    -
    -
    -New Connection Profile -
    -
    -
  28. -
  29. -

    On the next screen, connect to the database on your localhost using dbc for the username and password:

    -
    -
    -New Connection -
    -
    -
  30. -
-
-
-
-

Run sample queries

-
-
    -
  1. -

    Once in Teradata Studio Express, go to Query Development perspective (go to the top menu and select WindowQuery Development).

    -
  2. -
  3. -

    Connect using the previously created connection profile by double-clicking on Database ConnectionsNew Teradata.

    -
  4. -
  5. -

    Using dbc user, we will create a new database called HR. Copy/paste this query and run it by hitting the run query button (Run Query Button) or pressing F5 key:

    -
    -
    -
    CREATE DATABASE HR
    -AS PERMANENT = 60e6, -- 60MB
    -    SPOOL = 120e6; -- 120MB
    -
    -
    -
    - -
    -
    Were you able to run the query? - - -
    -
    -
    - -
  6. -
  7. -

    Let’s create a sample table and insert some data and query it. We will first create a table to hold employee information:

    -
    -
    -
    CREATE SET TABLE HR.Employees (
    -   GlobalID INTEGER,
    -   FirstName VARCHAR(30),
    -   LastName VARCHAR(30),
    -   DateOfBirth DATE FORMAT 'YYYY-MM-DD',
    -   JoinedDate DATE FORMAT 'YYYY-MM-DD',
    -   DepartmentCode BYTEINT
    -)
    -UNIQUE PRIMARY INDEX ( GlobalID );
    -
    -
    -
  8. -
  9. -

    Now, let’s insert a record:

    -
    -
    -
    INSERT INTO HR.Employees (
    -   GlobalID,
    -   FirstName,
    -   LastName,
    -   DateOfBirth,
    -   JoinedDate,
    -   DepartmentCode
    -)
    -VALUES (
    -   101,
    -   'Adam',
    -   'Tworkowski',
    -   '1980-01-05',
    -   '2004-08-01',
    -   01
    -);
    -
    -
    -
  10. -
  11. -

    Finally, let’s see if we can retrieve the data:

    -
    -
    -
    SELECT * FROM HR.Employees;
    -
    -
    -
    -

    You should get the following results:

    -
    -
    -
    -
    GlobalID  FirstName  LastName   DateOfBirth  JoinedDate  DepartmentCode
    ---------  ---------  ---------- -----------  ----------  --------------
    -     101  Adam       Tworkowski  1980-01-05  2004-08-01               1
    -
    -
    -
  12. -
-
-
-
-
-
-

Updating VirtualBox Guest Extensions

-
-
-

VirtualBox Guest Extensions is a piece of software that runs in a VM. It makes the VM run faster on VirtualBox. It also improves the resolution of the VM screen and its responsiveness to resizing. It implements two-way clipboard, and drag and drop between the host and the guest. VirtualBox Guest Extensions in the VM needs to match the version of your VirtualBox install. You will likely have to update VirtualBox Guest Extensions for optimal performance.

-
-
-

To update VirtualBox Guest Extensions:

-
-
-
    -
  1. -

    Insert the VirtualBox Guest Extensions DVD by clicking on SATA Port 3: [Optical Drive] in Storage section:

    -
    -
    -Insert Guest Additions DVD -
    -
    -
  2. -
  3. -

    Back in the VM window, start the Gnome Terminal application.

    -
  4. -
  5. -

    Run the following command in the terminal:

    -
    -
    -
    mount /dev/cdrom /media/dvd; /media/dvd/VBoxLinuxAdditions.run
    -
    -
    -
  6. -
-
-
-
-
-

Summary

-
-
-

In this guide we have covered how to quickly create a working Teradata environment. We used Teradata Vantage Express in a VM running on VMware. In the same VM, we ran Teradata Studio Express to issue queries. We installed all software locally and didn’t have to pay for cloud resources.

-
-
-
-
-

Next steps

- -
-
-

Further reading

-
- -
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/getting.started.vmware.html b/pr-preview/pr-110/getting.started.vmware.html deleted file mode 100644 index fe7ab2096..000000000 --- a/pr-preview/pr-110/getting.started.vmware.html +++ /dev/null @@ -1,2904 +0,0 @@ - - - - - - Run Vantage Express on VMware :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Run Vantage Express on VMware

-

Author: Adam Tworkiewicz
-Last updated: January 9th, 2023

-
-

Overview

-
-
-

This how-to shows how to gain access to a Teradata database by running it on your local machine. There are many ways to install Teradata. This document optimizes for the lowest time to first query without spending money on cloud resources. Once you finish the steps you will have a working Teradata Vantage Express database on your computer.

-
-
- - - - - -
- - -Starting with version 17.20, Vantage Express includes the following analytics packages: Vantage Analytics Library, Bring Your Own Model (BYOM), API Integration with AWS SageMaker. -
-
-
-
-
-

Prerequisites

-
-
-
    -
  1. -

    A computer using one of the following operating systems: Windows, Linux or Intel-based MacOS.

    -
    - - - - - -
    - - -For M1/M2 MacOS systems, see Run Vantage Express on UTM. -
    -
    -
  2. -
  3. -

    30GB of disk space and enough CPU and RAM to be able to dedicate at least one core and 6GB RAM to the virtual machine.

    -
  4. -
  5. -

    Admin rights to be able to install and run the software.

    -
  6. -
-
-
-
-
-

Installation

-
-
-

Download required software

-
-
    -
  1. -

    The latest version of Vantage Express. If you have not used the Teradata downloads website before, you will need to register.

    -
  2. -
  3. -

    VMware Workstation Player.

    -
    - - - - - -
    - - -Commercial organizations require commercial licenses to use VMware Workstation Player. If you don’t want to acquire VMware licenses you can run Vantage Express on VirtualBox. -
    -
    -
    - - - - - -
    - - -VMware doesn’t offer VMware Workstation Player for MacOS. If you are on a Mac, you will need to install VMware Fusion instead. It’s a paid product but VMware offers a free 30-day trial. Alternatively, you can run Vantage Express on VirtualBox or UTM. -
    -
    -
  4. -
  5. -

    On Windows, you will also need 7zip to unzip Vantage Express.

    -
  6. -
-
-
-
-

Run installers

-
-
    -
  1. -

    Install VMware Player or VMware Fusion by running the installer and accepting the default values.

    -
  2. -
  3. -

    If on Windows, install 7zip.

    -
  4. -
-
-
-
-

Run Vantage Express

-
-
    -
  1. -

    Go to the directory where you downloaded Vantage Express and unzip the downloaded file.

    -
  2. -
  3. -

    Double-click on the .vmx file. This will start the VM image in VMware Player/Fusion.

    -
  4. -
  5. -

    Press ENTER to select the highlighted LINUX boot partition.

    -
    -
    -Boot Manager Menu -
    -
    -
  6. -
  7. -

    On the next screen, press ENTER again to select the default SUSE Linux kernel.

    -
    -
    -Grub Menu -
    -
    -
  8. -
  9. -

    After completing the bootup sequence a terminal login prompt as shown in the screenshot below will appear. Don’t enter anything in the terminal. Wait till the system starts the GUI.

    -
    -
    -Wait for GUI -
    -
    -
  10. -
  11. -

    After a while the following prompt will appear - assuming that you did not enter anything after the command login prompt above. Press okay button in the screen below.

    -
    -
    -OK Security Popup -
    -
    -
  12. -
  13. -

    Once the VM is up, you will see its desktop environment. When prompted for username/password enter root for both.

    -
    -
    -VM Login -
    -
    -
  14. -
  15. -

    The database is configured to autostart with the VM. To confirm that the database has started go to the virtual desktop and start Gnome Terminal.

    -
    -
    -Start Gnome Terminal -
    -
    -
  16. -
  17. -

    In the terminal execute pdestate command that will inform you if Vantage has already started:

    -
    - - - - - -
    - - -To paste into Gnome Terminal press SHIFT+CTRL+V. -
    -
    -
    -
    -
    watch pdestate -a
    -
    -
    -
    -

    You want to wait till you see the following message:

    -
    -
    -
    -
    PDE state is RUN/STARTED.
    -DBS state is 5: Logons are enabled - The system is quiescent
    -
    -
    -
    -See examples of messages that pdestate returns when the database is still initializing. -
    -
    -
    -
    PDE state is DOWN/HARDSTOP.
    -
    -PDE state is START/NETCONFIG.
    -
    -PDE state is START/GDOSYNC.
    -
    -PDE state is START/TVSASTART.
    -
    -PDE state is START/READY.
    -PDE state is RUN/STARTED.
    -
    -DBS state is 1/1: DBS Startup - Initializing DBS Vprocs
    -PDE state is RUN/STARTED.
    -
    -DBS state is 1/5: DBS Startup - Voting for Transaction Recovery
    -PDE state is RUN/STARTED.
    -
    -DBS state is 1/4: DBS Startup - Starting PE Partitions
    -PDE state is RUN/STARTED.
    -
    -
    -
    -
  18. -
  19. -

    Now that the database is up, go back to the virtual desktop and launch Teradata Studio Express.

    -
    -
    -Start Teradata Studio Express -
    -
    -
  20. -
  21. -

    When you first start it you will be offered a tour. Once you close the tour, you will see a wizard window to add a new connection. Select Teradata:

    -
    -
    -New Connection Profile -
    -
    -
  22. -
  23. -

    On the next screen, connect to the database on your localhost using dbc for the username and password:

    -
    -
    -New Connection -
    -
    -
  24. -
-
-
-
-

Run sample queries

-
-
    -
  1. -

    We will now run some queries in the VM. To avoid copy/paste issues between the host and the VM, we will open this quick start in the VM. Go to the virtual desktop, start Firefox and point it to this quick start.

    -
  2. -
  3. -

    Once in Teradata Studio Express, go to Query Development perspective (go to the top menu and select WindowQuery Development).

    -
  4. -
  5. -

    Connect using the previously created connection profile by double-clicking on Database ConnectionsNew Teradata.

    -
  6. -
  7. -

    Using dbc user, we will create a new database called HR. Copy/paste this query and run it by hitting the run query button (Run Query Button) or pressing F5 key:

    -
    -
    -
    CREATE DATABASE HR
    -AS PERMANENT = 60e6, -- 60MB
    -    SPOOL = 120e6; -- 120MB
    -
    -
    -
    - -
    -
    Were you able to run the query? - - -
    -
    -
    - -
  8. -
  9. -

    Let’s create a sample table and insert some data and query it. We will first create a table to hold employee information:

    -
    -
    -
    CREATE SET TABLE HR.Employees (
    -   GlobalID INTEGER,
    -   FirstName VARCHAR(30),
    -   LastName VARCHAR(30),
    -   DateOfBirth DATE FORMAT 'YYYY-MM-DD',
    -   JoinedDate DATE FORMAT 'YYYY-MM-DD',
    -   DepartmentCode BYTEINT
    -)
    -UNIQUE PRIMARY INDEX ( GlobalID );
    -
    -
    -
  10. -
  11. -

    Now, let’s insert a record:

    -
    -
    -
    INSERT INTO HR.Employees (
    -   GlobalID,
    -   FirstName,
    -   LastName,
    -   DateOfBirth,
    -   JoinedDate,
    -   DepartmentCode
    -)
    -VALUES (
    -   101,
    -   'Adam',
    -   'Tworkowski',
    -   '1980-01-05',
    -   '2004-08-01',
    -   01
    -);
    -
    -
    -
  12. -
  13. -

    Finally, let’s see if we can retrieve the data:

    -
    -
    -
    SELECT * FROM HR.Employees;
    -
    -
    -
    -

    You should get the following results:

    -
    -
    -
    -
    GlobalID  FirstName  LastName   DateOfBirth  JoinedDate  DepartmentCode
    ---------  ---------  ---------- -----------  ----------  --------------
    -     101  Adam       Tworkowski  1980-01-05  2004-08-01               1
    -
    -
    -
  14. -
-
-
-
-
-
-

Summary

-
-
-

In this guide we have covered how to quickly create a working Teradata environment. We used Teradata Vantage Express in a VM running on VMware. In the same VM, we ran Teradata Studio Express to issue queries. We installed all software locally and didn’t have to pay for cloud resources.

-
-
-
-
-

Next steps

- -
-
-

Further reading

-
- -
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/index.html b/pr-preview/pr-110/index.html deleted file mode 100644 index 6763c8e13..000000000 --- a/pr-preview/pr-110/index.html +++ /dev/null @@ -1,3019 +0,0 @@ - - - - - - Main :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
-
-
-
-
Getting Started
-
Get quickly up to speed with Teradata Vantage. Learn about features. Find how-tos for common tasks. Explore sample source code.
- -
Prefer structured learning? Explore courses at Teradata University.
-
-
-
- -
-
-
-
Getting access to Teradata Vantage
- -
Tutorials
- -
How-tos
-
- - - - - - - - - - - - - - -
-
Sample source code
- -
-
-
- - - - - - - -
- Didn’t find what you were looking for? - - Contribute or request a topic - - request - contribute -
-
-
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/install-teradata-studio-on-mac-m1-m2.html b/pr-preview/pr-110/install-teradata-studio-on-mac-m1-m2.html deleted file mode 100644 index 3cc693047..000000000 --- a/pr-preview/pr-110/install-teradata-studio-on-mac-m1-m2.html +++ /dev/null @@ -1,2566 +0,0 @@ - - - - - - Use Teradata Studio/Express on Apple Mac M1/M2 :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Use Teradata Studio/Express on Apple Mac M1/M2

-

Author: Satish Chinthanippu
-Last updated: August 14th, 2023

-
-

Overview

-
-
-

This how-to goes through the installation of Teradata Studio and Teradata Studio Express on Apple Mac M1/M2 machines.

-
-
-
-
-

Steps to follow

-
-
-
    -
  1. -

    Install and enable Rosetta binary translator. Follow the Apple Mac Rosetta Installation Guide.

    -
  2. -
  3. -

    Download and Install a x86 64-bit based JDK 11 from your preferred vendor. For example, you can download x86 64-bit JDK 11 from Azul

    -
  4. -
  5. -

    Download the latest Teradata Studio or Teradata Studio Express release from the Teradata Downloads page:

    - -
  6. -
  7. -

    Install the Teradata Studio/Teradata Studio Express. Refer to Teradata Studio and Teradata Studio Express Installation Guide for details.

    -
  8. -
-
-
-
-
-

Summary

-
-
-

Apple has introduced ARM-based processors in Apple MAC M1/M2 machines. Intel x64-based applications won’t work by default on ARM-based processors. Teradata Studio or Teradata Studio Express also doesn’t work by default as the current Studio macOS build is an intel x64-based application. This how-to demonstrates how to install Intel x64-based JDK and Teradata Studio or Teradata Studio Express on Apple Mac M1/M2.

-
-
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/jdbc.html b/pr-preview/pr-110/jdbc.html deleted file mode 100644 index 796b39bae..000000000 --- a/pr-preview/pr-110/jdbc.html +++ /dev/null @@ -1,2620 +0,0 @@ - - - - - - Connect to Vantage using JDBC :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Connect to Vantage using JDBC

-

Author: Adam Tworkiewicz
-Last updated: November 14th, 2022

-
-

Overview

-
-
-

This how-to demonstrates how to connect to Teradata Vantage using JDBC using a sample Java application: https://github.com/Teradata/jdbc-sample-app.

-
-
-
-
-

Prerequisites

-
-
-
    -
  • -

    Access to a Teradata Vantage instance.

    -
    - - - - - -
    - - -If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. -
    -
    -
  • -
  • -

    JDK

    -
  • -
  • -

    Maven

    -
  • -
-
-
-
-
-

Add dependency to your maven project

-
-
-

Add the Teradata JDBC driver as a dependency to your Maven POM XML file:

-
- -
-
-
-

Code to send a query

-
-
- - - - - -
- - -This step assumes that your Vantage database is available on localhost on port 1025. If you are running Vantage Express on your laptop, you need to expose the port from the VM to the host machine. Refer to your virtualization software documentation how to forward ports. -
-
-
-

The project is set up. All that is left, is to load the driver, pass connection and authentication parameters and run a query:

-
- -
-
-
-

Run the tests

-
-
-

Run the tests:

-
-
-
-
mvn test
-
-
-
-
-
-

Summary

-
-
-

This how-to demonstrated how to connect to Teradata Vantage using JDBC. It described a sample Java application with Maven as the build tool that uses the Teradata JDBC driver to send SQL queries to Teradata Vantage.

-
-
-
-
-

Further reading

-
- -
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/jupyter-demos/_images/gcp-vertex-ai-pipelines-vantage-byom-housing-example/pipeline1.png b/pr-preview/pr-110/jupyter-demos/_images/gcp-vertex-ai-pipelines-vantage-byom-housing-example/pipeline1.png deleted file mode 100644 index f91c39a79..000000000 Binary files a/pr-preview/pr-110/jupyter-demos/_images/gcp-vertex-ai-pipelines-vantage-byom-housing-example/pipeline1.png and /dev/null differ diff --git a/pr-preview/pr-110/jupyter-demos/_images/gcp-vertex-ai-pipelines-vantage-byom-housing-example/pipeline2.png b/pr-preview/pr-110/jupyter-demos/_images/gcp-vertex-ai-pipelines-vantage-byom-housing-example/pipeline2.png deleted file mode 100644 index 1898446ac..000000000 Binary files a/pr-preview/pr-110/jupyter-demos/_images/gcp-vertex-ai-pipelines-vantage-byom-housing-example/pipeline2.png and /dev/null differ diff --git a/pr-preview/pr-110/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html b/pr-preview/pr-110/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html deleted file mode 100644 index 343307154..000000000 --- a/pr-preview/pr-110/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html +++ /dev/null @@ -1,18069 +0,0 @@ - - - - - - Google Cloud Vertex AI Pipelines Vantage BYOM Housing Example :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Google Cloud Vertex AI Pipelines Vantage BYOM Housing Example

- - - - - -vertex_pipelines_housing_example-BYOM - - - - - - - - - - - - - - - - - - - - -
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/jupyter-demos/index.html b/pr-preview/pr-110/jupyter-demos/index.html deleted file mode 100644 index 02f2d3b85..000000000 --- a/pr-preview/pr-110/jupyter-demos/index.html +++ /dev/null @@ -1,3155 +0,0 @@ - - - - - - Jupyter Notebook Demos :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Jupyter Notebook Demos

-
-
-
-
-
Telco
- -
Automotive
- -
Healthcare
- -
Government
- -
Retail
- -
-
-
- - - - - - - -
- Didn’t find a demo you were looking for? - - Contribute or request a demo - - request - contribute -
-
-
-
-
-
- - - -
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/jupyter.html b/pr-preview/pr-110/jupyter.html deleted file mode 100644 index 3714f80a6..000000000 --- a/pr-preview/pr-110/jupyter.html +++ /dev/null @@ -1,2781 +0,0 @@ - - - - - - Use Vantage from a Jupyter notebook :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Use Vantage from a Jupyter notebook

-

Author: Adam Tworkiewicz
-Last updated: November 10th, 2022

-
-
-
- - - - - -
- - -This how-to shows you how to add Teradata Extensions to a Jupyter Notebooks environment. A hosted version of Jupyter Notebooks integrated with Teradata Extensions and analytics tools is available for functional testing for free at https://clearscape.teradata.com. -
-
-
-
-
-

Overview

-
-
-

In this how-to we will go through the steps for connecting to Teradata Vantage from a Jupyter notebook.

-
-
- - - - - -
- - -If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. -
-
-
-
-
-

Options

-
-
-

There are a couple of ways to connect to Vantage from a Jupyter Notebook:

-
-
-
    -
  1. -

    Use python or R libraries in a regular Python/R kernel notebook - this option works well when you are in a restricted environment that doesn’t allow you to spawn your own Docker images. Also, it’s useful in traditional datascience scenarios when you have to mix SQL and Python/R in a notebook. If you are proficient with Jupyter and have your own set of preferred libraries and extensions, start with this option.

    -
  2. -
  3. -

    Use the Teradata Jupyter Docker image - the Teradata Jupyter Docker image bundles the Teradata SQL kernel (more on this later), teradataml and tdplyr libraries, python and R drivers. It also contains Jupyter extensions that allow you to manage Teradata connections, explore objects in Vantage database. It’s convenient when you work a lot with SQL or would find a visual Navigator helpful. If you are new to Jupyter or if you prefer to get a currated assembly of libraries and extensions, start with this option.

    -
  4. -
-
-
-

Teradata libraries

-
-

This option uses a regular Jupyter Lab notebook. We will see how to load the Teradata Python driver and use it from Python code. We will also examine ipython-sql extension that adds support for SQL-only cells.

-
-
-
    -
  1. -

    We start with a plain Jupyter Lab notebook. Here, I’m using docker but any method of starting a notebook, including Jupyter Hub, Google Cloud AI Platform Notebooks, AWS SageMaker Notebooks, Azure ML Notebooks will do.

    -
    -
    -
    docker run --rm -p 8888:8888 -e JUPYTER_ENABLE_LAB=yes \
    -  -v "${PWD}":/home/jovyan/work jupyter/datascience-notebook
    -
    -
    -
  2. -
  3. -

    Docker logs will display the url that you need to go to:

    -
    -
    -
    Entered start.sh with args: jupyter lab
    -Executing the command: jupyter lab
    -....
    -To access the server, open this file in a browser:
    -    file:///home/jovyan/.local/share/jupyter/runtime/jpserver-7-open.html
    -Or copy and paste one of these URLs:
    -    http://d5c2323ae5db:8888/lab?token=5fb43e674367c6895e8c2404188aa550b5c7bdf96f5b4a3a
    -  or http://127.0.0.1:8888/lab?token=5fb43e674367c6895e8c2404188aa550b5c7bdf96f5b4a3a
    -
    -
    -
  4. -
  5. -

    We will open a new notebook and create a cell to install the required libraries:

    -
    - - - - - -
    - - -I’ve published a notebook with all the cells described below on GitHub: https://github.com/Teradata/quickstarts/blob/main/modules/ROOT/attachments/vantage-with-python-libraries.ipynb -
    -
    -
    -
    -
    import sys
    -!{sys.executable} -m pip install teradatasqlalchemy
    -
    -
    -
  6. -
  7. -

    Now, we will import Pandas and define the connection string to connect to Teradata. Since I’m running my notebook in Docker on my local machine and I want to connect to a local Vantage Express VM, I’m using host.docker.internal DNS name provided by Docker to reference the IP of my machine.

    -
    -
    -
    import pandas as pd
    -# Define the db connection string. Pandas uses SQLAlchemy connection strings.
    -# For Teradata Vantage, it's teradatasql://username:password@host/database_name .
    -# See https://pypi.org/project/teradatasqlalchemy/ for details.
    -db_connection_string = "teradatasql://dbc:dbc@host.docker.internal/dbc"
    -
    -
    -
  8. -
  9. -

    I can now call Pandas to query Vantage and move the result to a Pandas dataframe:

    -
    -
    -
    pd.read_sql("SELECT * FROM dbc.dbcinfo", con = db_connection_string)
    -
    -
    -
  10. -
  11. -

    The syntax above is concise but it can get tedious if all you need is to explore data in Vantage. We will use ipython-sql and its %%sql magic to create SQL-only cells. We start with importing the required libraries.

    -
    -
    -
    import sys
    -!{sys.executable} -m pip install ipython-sql teradatasqlalchemy
    -
    -
    -
  12. -
  13. -

    We load ipython-sql and define the db connection string:

    -
    -
    -
    %load_ext sql
    -# Define the db connection string. The sql magic uses SQLAlchemy connection strings.
    -# For Teradata Vantage, it's teradatasql://username:password@host/database_name .
    -# See https://pypi.org/project/teradatasqlalchemy/ for details.
    -%sql teradatasql://dbc:dbc@host.docker.internal/dbc
    -
    -
    -
  14. -
  15. -

    We can now use %sql and %%sql magic. Let’s say we want to explore data in a table. We can create a cell that says:

    -
    -
    -
    %%sql
    -SELECT * FROM dbc.dbcinfo
    -
    -
    -
  16. -
  17. -

    If we want to move the data to a Pandas frame, we can say:

    -
    -
    -
    result = %sql SELECT * FROM dbc.dbcinfo
    -result.DataFrame()
    -
    -
    -
  18. -
-
-
-

There are many other features that ipython-sql provides, including variable substitution, plotting with matplotlib, writting results to a local csv file or back to the database. See the demo notebook for examples and ipython-sql github repo for a complete reference.

-
-
-
-

Teradata Jupyter Docker image

-
-

The Teradata Jupyter Docker image builds on jupyter/datascience-notebook Docker image. It adds the Teradata SQL kernel, Teradata Python and R libraries, Jupyter extensions to make you productive while interacting with Teradata Vantage. The image also contains sample notebooks that demonstrate how to use the SQL kernel and Teradata libraries.

-
-
-

The SQL kernel and Teradata Jupyter extensions are useful for people that spend a lot of time with the SQL interface. Think about it as a notebook experience that, in many cases, is more convenient than using Teradata Studio. The Teradata Jupyter Docker image doesn’t try to replace Teradata Studio. It doesn’t have all the features. It’s designed for people who need a lightweight, web-based interface and enjoy the notebook UI.

-
-
-

The Teradata Jupyter Docker image can be used when you want to run Jupyter locally or you have a place where you can run custom Jupyter docker images. The steps below demonstrate how to use the image locally.

-
-
-
    -
  1. -

    Run the image:

    -
    - - - - - -
    - - -By passing -e "accept_license=Y you accept the license agreement for Teradata Jupyter Extensions. -
    -
    -
    -
    -
    docker volume create notebooks
    -docker run -e "accept_license=Y" -p :8888:8888 \
    -  -v notebooks:/home/jovyan/JupyterLabRoot \
    -  teradata/jupyterlab-extensions
    -
    -
    -
  2. -
  3. -

    Docker logs will display the url that you need to go to. For example, this is what I’ve got:

    -
    -
    -
    Starting JupyterLab ...
    -Docker Build ID = 3.2.0-ec02012022
    -Using unencrypted HTTP
    -
    -Enter this URL in your browser:  http://localhost:8888?token=96a3ab874a03779c400966bf492fe270c2221cdcc74b61ed
    -
    -* Or enter this token when prompted by Jupyter: 96a3ab874a03779c400966bf492fe270c2221cdcc74b61ed
    -* If you used a different port to run your Docker, replace 8888 with your port number
    -
    -
    -
  4. -
  5. -

    Open up the URL and use the file explorer to open the following notebook: jupyterextensions → notebooks → sql → GettingStartedDemo.ipynb.

    -
  6. -
  7. -

    Go through the demo of the Teradata SQL Kernel:

    -
    -
    -GettingStartedDemo.ipynb screenshot -
    -
    -
  8. -
-
-
-
-
-
-

Summary

-
-
-

This quick start covered different options to connect to Teradata Vantage from a Jupyter Notebook. We learned about the Teradata Jupyter Docker image that bundles multiple Teradata Python and R libraries. It also provides an SQL kernel, database object explorer and connection management. These features are useful when you spend a lot of time with the SQL interface. For more traditional data science scenarios, we explored the standalone Teradata Python driver and integration through the ipython sql extension.

-
-
-
-
-

Further reading

-
- -
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/local.jupyter.hub.html b/pr-preview/pr-110/local.jupyter.hub.html deleted file mode 100644 index 392fd8899..000000000 --- a/pr-preview/pr-110/local.jupyter.hub.html +++ /dev/null @@ -1,2790 +0,0 @@ - - - - - - Deploy Teradata Jupyter extensions to JupyterHub :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Deploy Teradata Jupyter extensions to JupyterHub

-

Author: Hailing Jiang
-Last updated: November 17th, 2021

-
-

Overview

-
-
-

For customers who have their own JupyterHub clusters, there are two options to integrate Teradata Jupyter extensions into the existing clusters:

-
-
-
    -
  1. -

    Use Teradata Jupyter Docker image.

    -
  2. -
  3. -

    Customize an existing Docker image to include Teradata extensions.

    -
  4. -
-
-
-

This page contains detailed instructions on the two options. Instructions are based on the assumption that the customer JupyterHub deployment is based on Zero to JupyterHub with Kubernetes.

-
-
- - - - - -
- - -If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. -
-
-
-
-
-

Use Teradata Jupyter Docker image

-
-
-

Teradata provides a ready-to-run Docker image that builds on the jupyter/datascience-notebook image. It bundles the Teradata SQL kernel, Teradata Python and R libraries and drivers and Teradata extensions for Jupyter to make you productive while interacting with Teradata database. The image also contains sample notebooks that demonstrate how to use the SQL kernel, extensions and Teradata libraries.

-
-
-

You can use this image in the following ways:

-
-
-
    -
  • -

    Start a personal Jupyter Notebook server in a local Docker container

    -
  • -
  • -

    Run JupyterLab servers for a team using JupyterHub

    -
  • -
-
-
-

For instructions to start a personal JupyterLab server in a local Docker container, please see installation guide. This section will focus on how to use the  Teradata Jupyter Docker image in a customer’s existing JupyterHub environment.

-
-
-

Install Teradata Jupyter Docker image in your registry

-
-
    -
  1. -

    Go to Vantage Modules for Jupyter page and download the Docker image. It is a tarball with name in this format teradatajupyterlabext_VERSION.tar.gz.

    -
  2. -
  3. -

    Load the image:

    -
    -
    -
    docker load -i teradatajupyterlabext_VERSION.tar.gz
    -
    -
    -
  4. -
  5. -

    Push the image to your Docker registry:

    -
    -
    -
    docker push
    -
    -
    -
    - - - - - -
    - - -
    -

    You may want to consider changing the name of the loaded image for simplicity:

    -
    -
    -
    -
    docker tag OLD_IMAGE_NAME NEW_IMAGE_NAME
    -
    -
    -
    -
    -
  6. -
-
-
-
-

Use Teradata Jupyter Docker image in JupyterHub

-
-
    -
  1. -

    To use the Teradata Jupyter Docker image directly in your JupyterHub cluster, modify the override file as described in herein the JupyterHub documentation. Replace REGISTRY_URL and VERSION with appropriate values from the step above:

    -
    -
    -
    singleuser:
    -  image:
    -  name: REGISTRY_URL/teradatajupyterlabext_VERSION
    -  tag: latest
    -
    -
    -
  2. -
  3. -

    Apply the changes to the cluster as described in JupyterHub documentation.

    -
    - - - - - -
    - - -You can use multiple profiles to allow users to select which image they want to use when they log in to JupyterHub. For detailed instructions and examples on configuring multiple profiles, please see JupyterHub documentation. -
    -
    -
  4. -
-
-
-
-

Customize Teradata Jupyter Docker image

-
-

If your users need some packages or notebooks that are not bundled in the Teradata Jupyter Docker image, we recommend that you use Teradata image as a base image and build a new one on top of it.

-
-
-

Here is an example Dockerfile that builds on top of Teradata image and adds additional packages and notebooks. Use the Dockerfile to build a new Docker image, push the image to a designated registry, modify override file as shown above to use the new image as singleuser image, apply the changes to the cluster as described above. Replace REGISTRY_URL and VERSION with appropriate values:

-
-
-
-
FROM REGISTRY_URL/teradatajupyterlabext_VERSION:latest
-
-# install additional packages
-RUN pip install --no-cache-dir astropy
-
-# copy notebooks
-COPY notebooks/. /tmp/JupyterLabRoot/DemoNotebooks/
-
-
-
-
-
-
-

Customize an existing Docker image to include Teradata extensions

-
-
-

If you prefer, you can include the Teradata SQL kernel and extensions into into an existing image you are currently using.

-
-
-
    -
  1. -

    Go to Vantage Modules for Jupyter page to download the zipped Teradata Jupyter extensions package bundle.  Assuming your existing -docker image is Linux based, you will want to use the Linux version of the download.  Otherwise, download for the platform you are using.  The .zip file contains the Teradata SQL Kernel, extensions and sample -notebooks.

    -
  2. -
  3. -

    Unzip the bundle file to your working directory.

    -
  4. -
  5. -

    Below is an example Dockerfile to add Teradata Jupyter extensions to your existing Docker image. Use the Dockerfile to build a new Docker image, push the image to a designated registry, modify override file as shown above to use the new image as singleuser image, apply the changes to the cluster:

    -
    -
    -
    FROM REGISTRY_URL/your-existing-image:tag
    -ENV NB_USER=jovyan \
    -  HOME=/home/jovyan \
    -  EXT_DIR=/opt/teradata/jupyterext/packages
    -
    -USER root
    -
    -##############################################################
    -# Install kernel and copy supporting files
    -##############################################################
    -
    -# Copy the kernel
    -COPY ./teradatakernel /usr/local/bin
    -RUN chmod 755 /usr/local/bin/teradatakernel
    -
    -# Copy directory with kernel.json file into image
    -COPY ./teradatasql teradatasql/
    -
    -##############################################################
    -# Switch to user jovyan to copy the notebooks and license files.
    -##############################################################
    -
    -USER $NB_USER
    -
    -# Copy notebooks
    -COPY ./notebooks/ /tmp/JupyterLabRoot/TeradataSampleNotebooks/
    -
    -# Copy license files
    -COPY ./ThirdPartyLicenses /tmp/JupyterLabRoot/ThirdPartyLicenses/
    -
    -USER root
    -
    -# Install the kernel file to /opt/conda jupyter lab instance
    -RUN jupyter kernelspec install ./teradatasql --prefix=/opt/conda
    -
    -##############################################################
    -# Install Teradata extensions
    -##############################################################
    -
    -COPY ./teradata_*.tgz $EXT_DIR
    -
    -WORKDIR $EXT_DIR
    -
    -RUN jupyter labextension install --no-build teradata_database* && \
    -  jupyter labextension install --no-build teradata_resultset* && \
    -  jupyter labextension install --no-build teradata_sqlhighlighter* && \
    -  jupyter labextension install --no-build teradata_connection_manager* && \
    -  jupyter labextension install --no-build teradata_preferences* && \
    -  jupyter lab build --dev-build=False --minimize=False && \
    -  rm -rf *
    -
    -WORKDIR $HOME
    -
    -# Give back ownership of /opt/conda to  jovyan
    -RUN chown -R jovyan:users /opt/conda
    -
    -# Jupyter will create .local directory
    -RUN rm -rf $HOME/.local
    -
    -
    -
  6. -
  7. -

    You can optionally install Teradata package for Python and Teradata package for R. See the following pages for details:

    - -
  8. -
-
-
-
-
-

Further reading

-
- -
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/ml.html b/pr-preview/pr-110/ml.html deleted file mode 100644 index 2866f81f9..000000000 --- a/pr-preview/pr-110/ml.html +++ /dev/null @@ -1,2812 +0,0 @@ - - - - - - Train ML models in Vantage :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Train ML models in Vantage

-

Author: Adam Tworkiewicz
-Last updated: September 12th, 2021

-
-

Overview

-
-
-

There are situations when you want to quickly validate a machine learning model idea. You have a model type in mind. You don’t want to operationalize with an ML pipeline just yet. You just want to test out if the relationship you had in mind exists. Also, sometimes even your production deployment doesn’t require constant relearning with MLops. In such cases, you can use Vantage Analytics Library (VAL) and multiple ML model types it supports.

-
-
-
-
-

Prerequisites

-
-
-

You need access to a Teradata Vantage instance.

-
-
- - - - - -
- - -If you need a new instance of Vantage, you can install a free version called Vantage Express in the cloud on Google Cloud, Azure, and AWS. You can also run Vantage Express on your local machine using VMware, VirtualBox, or UTM. -
-
-
-
-
-

Install Vantage Analytics Library

-
-
-

Support for ML in Vantage requires Vantage Analytics Library (VAL). In this section, we will install VAL and load some sample data.

-
-
-
    -
  1. -

    VAL is distributed as an rpm file. Go to Teradata Downloads and download the VAL rpm to your local machine.

    -
  2. -
  3. -

    Upload the file to your Vantage install. If you are running Vantage Express locally, you have many ways to do it:

    -
    -
      -
    • -

      If you installed Vantage Express on VirtualBox, you should be able to drag & drop the file to the VM’s desktop. You can also use scp by connecting to port 4422, e.g.:

      -
      -
      -
      scp -P 4422 ~/Downloads/VAL-2.0.0.3-1.x86_64.rpm root@localhost:/root/Desktop
      -
      -
      -
    • -
    • -

      If you use VMware and you have enabled drag & drop, you should be able to drag and drop the file to the VM’s desktop.

      -
    • -
    • -

      If you have SSH access to your Vantage nodes, you can use scp to upload the binary, e.g.:

      -
      -
      -
      scp ~/Downloads/VAL-2.0.0.3-1.x86_64.rpm root@vantage.server.name:/tmp/
      -
      -
      -
    • -
    -
    -
  4. -
  5. -

    We will now create a new database where VAL functions and procedures will be installed. You could install VAL in a global location such as SYSLIB, but installing VAL in a specific database will make it easier to start over if things go wrong. -Let’s create a database called val and grant appropriate permissions to our user. Please edit to match your database name and user id:

    -
    -
    -
    CREATE DATABASE val
    -AS PERMANENT = 60e6, -- 60MB
    -    SPOOL = 120e6; -- 120MB
    -
    -GRANT CREATE FUNCTION ON val to dbc;
    -GRANT ALTER FUNCTION ON val to dbc;
    -GRANT EXECUTE PROCEDURE on SQLJ.REMOVE_JAR to dbc;
    -GRANT EXECUTE PROCEDURE on SQLJ.INSTALL_JAR to dbc;
    -GRANT EXECUTE PROCEDURE on SQLJ.REPLACE_JAR to dbc;
    -GRANT CREATE EXTERNAL PROCEDURE ON val to dbc;
    -
    -
    -
  6. -
  7. -

    Open Gnome Terminal in the VM and start the installation process. Adjust the rpm path as necessary:

    -
    -
    -
    rpm -Uvh --nodeps ~/Desktop/VAL-2.0.0.3-1.x86_64.rpm
    -
    -
    -
  8. -
  9. -

    The install wizard will ask you for the hostname, user id, and password. If you are running the install on your Vantage Express VM, the values are:

    -
    -
      -
    • -

      Hostname: localhost

      -
    • -
    • -

      Userid: dbc

      -
    • -
    • -

      Password: dbc

      -
    • -
    • -

      Account string: leave empty, press ENTER

      -
    • -
    • -

      BTEQ or FASTLOAD command: leave empty, press ENTER

      -
    • -
    -
    -
  10. -
  11. -

    The wizard will ask you to choose which part of VAL you want to install. -We want to start with installing td_analyze procedure, i.e. option 1. Once you select option 1, the script will ask for the database name where td_analyze will be installed. Enter val and press ENTER.

    -
  12. -
  13. -

    While still in the wizard, install option 5, i.e. Tutorial Tables. These are sample tables with data that we are going to use to build a sample model.

    -
  14. -
-
-
-
-
-

Sample data

-
-
-

Now, that we have VAL and sample tables loaded, let’s explore the data. It’s a simplistic, fictitious dataset of banking customers (1K-ish rows), Accounts (10K-ish rows) and Transactions (100K-ish rows). They are related to each other in the following ways:

-
-
-
-Banking Model -
-
-
-

In later parts of this how-to we are going to explore if we can build a model that predicts average monthly balance that a banking customer has on their credit card based on all non-credit card related variables in the tables.

-
-
-
-
-

Create a linear regression model

-
-
-

Let’s start by creating a wide table (Analytic Data Set, or ADS) that joins the three tables above.

-
-
- - - - - -
- - -You must have CREATE TABLE permissions on the Database where the Vantage Analytic Library is installed. -
-
-
-
-
-- Switch to val database.
-DATABASE val;
-
--- Create the ADS.
-CREATE TABLE VAL_ADS AS (
-    SELECT
-        T1.cust_id  AS cust_id
-       ,MIN(T1.income) AS tot_income
-       ,MIN(T1.age) AS tot_age
-       ,MIN(T1.years_with_bank) AS tot_cust_years
-       ,MIN(T1.nbr_children) AS tot_children
-       ,CASE WHEN MIN(T1.marital_status) = 1 THEN 1 ELSE 0 END AS single_ind
-       ,CASE WHEN MIN(T1.gender) = 'F' THEN 1 ELSE 0 END AS female_ind
-       ,CASE WHEN MIN(T1.marital_status) = 2 THEN 1 ELSE 0 END AS married_ind
-       ,CASE WHEN MIN(T1.marital_status) = 3 THEN 1 ELSE 0 END AS separated_ind
-       ,MAX(CASE WHEN T1.state_code = 'CA' THEN 1 ELSE 0 END) AS ca_resident_ind
-       ,MAX(CASE WHEN T1.state_code = 'NY' THEN 1 ELSE 0 END) AS ny_resident_ind
-       ,MAX(CASE WHEN T1.state_code = 'TX' THEN 1 ELSE 0 END) AS tx_resident_ind
-       ,MAX(CASE WHEN T1.state_code = 'IL' THEN 1 ELSE 0 END) AS il_resident_ind
-       ,MAX(CASE WHEN T1.state_code = 'AZ' THEN 1 ELSE 0 END) AS az_resident_ind
-       ,MAX(CASE WHEN T1.state_code = 'OH' THEN 1 ELSE 0 END) AS oh_resident_ind
-       ,MAX(CASE WHEN T2.acct_type = 'CK' THEN 1 ELSE 0 END) AS ck_acct_ind
-       ,MAX(CASE WHEN T2.acct_type = 'SV' THEN 1 ELSE 0 END) AS sv_acct_ind
-       ,MAX(CASE WHEN T2.acct_type = 'CC' THEN 1 ELSE 0 END) AS cc_acct_ind
-       ,AVG(CASE WHEN T2.acct_type = 'CK' THEN T2.starting_balance+T2.ending_balance ELSE 0 END) AS ck_avg_bal
-       ,AVG(CASE WHEN T2.acct_type = 'SV' THEN T2.starting_balance+T2.ending_balance ELSE 0 END) AS sv_avg_bal
-       ,AVG(CASE WHEN T2.acct_type = 'CC' THEN T2.starting_balance+T2.ending_balance ELSE 0 END) AS cc_avg_bal
-       ,AVG(CASE WHEN T2.acct_type = 'CK' THEN T3.principal_amt+T3.interest_amt ELSE 0 END) AS ck_avg_tran_amt
-       ,AVG(CASE WHEN T2.acct_type = 'SV' THEN T3.principal_amt+T3.interest_amt ELSE 0 END) AS sv_avg_tran_amt
-       ,AVG(CASE WHEN T2.acct_type = 'CC' THEN T3.principal_amt+T3.interest_amt ELSE 0 END) AS cc_avg_tran_amt
-       ,COUNT(CASE WHEN ((EXTRACT(MONTH FROM T3.tran_date) + 2) / 3) = 1 THEN T3.tran_id ELSE NULL END) AS q1_trans_cnt
-       ,COUNT(CASE WHEN ((EXTRACT(MONTH FROM T3.tran_date) + 2) / 3) = 2 THEN T3.tran_id ELSE NULL END) AS q2_trans_cnt
-       ,COUNT(CASE WHEN ((EXTRACT(MONTH FROM T3.tran_date) + 2) / 3) = 3 THEN T3.tran_id ELSE NULL END) AS q3_trans_cnt
-       ,COUNT(CASE WHEN ((EXTRACT(MONTH FROM T3.tran_date) + 2) / 3) = 4 THEN T3.tran_id ELSE NULL END) AS q4_trans_cnt
-    FROM Customer AS T1
-        LEFT OUTER JOIN Accounts AS T2
-            ON T1.cust_id = T2.cust_id
-        LEFT OUTER JOIN Transactions AS T3
-            ON T2.acct_nbr = T3.acct_nbr
-GROUP BY T1.cust_id) WITH DATA UNIQUE PRIMARY INDEX (cust_id);
-
-
-
-

We will now build a linear regression model that takes parameters from the dataset and tries to predict the monthly credit card balance.

-
-
-

We call td_analyze and tell it we want a linear model. The input is in table VAL_ADS and consists of multiple columns. The dependent variable is cc_avg_bal. We want the model to be written to val database in table called LINEAR_REGRESSION_DEMO:

-
-
-
-
call td_analyze('linear',
-  'database=val;
-  tablename=VAL_ADS;
-  columns=tot_age,tot_income,tot_cust_years,tot_children,single_ind,female_ind,married_ind,separated_ind,ck_acct_ind,sv_acct_ind,sv_avg_bal,ck_avg_bal,ca_resident_ind,ny_resident_ind,tx_resident_ind,il_resident_ind,az_resident_ind,oh_resident_ind;
-  dependent=cc_avg_bal;
-  outputdatabase=val;
-  outputtablename=linear_regression_demo');
-
-
-
-

The procedure creates several output tables. For now, we don’t have to analyze what is in the tables. Let’s see how we can use the newly created model to perform scoring.

-
-
-
-
-

Scoring

-
-
-

Let’s use the model to perform predictions and evaluate the scores. To do this, we call td_analyze with linearscore parameter. We point to the input table (VAL_ADS), the model tables (prefix linear_regression_demo) and define the target table (linear_regression_score) in val database:

-
-
-
-
call td_analyze('linearscore',
-  'database=val;
-  tablename=VAL_ADS;
-  modeldatabase=val;
-  modeltablename=linear_regression_demo;
-  outputdatabase=val;
-  outputtablename=linear_regression_score;
-  predicted=estimate;
-  retain=cc_avg_bal;
-  scoringmethod=scoreandevaluate;');
-
-
-
-

As a result, we get linear_regression_score table that contains the real balance, the predicted balance and the difference between these two. Let’s have a look at a sample:

-
-
-
-
SELECT * FROM linear_regression_score SAMPLE 10;
-
-
-
-

You will see results similar to:

-
-
-
-
cust_id|cc_avg_bal        |estimate          |Residual           |
--------+------------------+------------------+-------------------+
-1362498|               0.0| 284.7057772484358| -284.7057772484358|
-1362828|           1184.35|463.74177458594215|  720.6082254140578|
-1362839| 2933.135802469136| 982.9240031182255| 1950.2117993509103|
-1362986| 500.9148148148148| 881.4116539412856| -380.4968391264708|
-1362511|235.85941489361701|294.35369563202846|-58.494280738411426|
-1363134|               0.0|430.27950420065997|-430.27950420065997|
-1363481|               0.0| 411.2359958542745| -411.2359958542745|
-1362644| 209.3304347826087|279.75770904482033| -70.42727426221163|
-1363141|               0.0| 550.1681921045503| -550.1681921045503|
-1363290|               0.0|120.35348558871233|-120.35348558871233|
-
-
-
-
-
-

Summary

-
-
-

In this quick start we have learned how to create ML models in SQL. The method used Vantage Analytics Library (VAL). We were able to build a linear regression model and run predictions using the model. We have done that using SQL without any coding.

-
-
-
-
-

Further reading

-
- -
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/modelops/_attachments/BYOM_v6.ipynb b/pr-preview/pr-110/modelops/_attachments/BYOM_v6.ipynb deleted file mode 100644 index 40c186975..000000000 --- a/pr-preview/pr-110/modelops/_attachments/BYOM_v6.ipynb +++ /dev/null @@ -1,1088 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## BYOM In-Vantage Scoring with PMML and ONNX\n", - "\n", - "In this notebook, we will show you how to work with the Bring Your Own Model (BYOM) pattern and BYOM In-Vantage Scoring. This pattern allows you to use whatever data science platform you want to perform model development and experimentation. You can use the vast majority of popular data science libraries and transformations. The only constraint is that you can convert it to one of the following open formats\n", - "\n", - "- ONNX\n", - "- PMML\n", - "- H2O (MOJO)\n", - "- H2O (Driverless AI)\n", - "\n", - "ONNX is become more popular by the day. It is a very efficient model format which was created and is maintained by Microsoft and its adoption by other companies and libraries as the standard open format is incresingly rapidly. While the name suggests it is primarily related to neural networks, it can be used with most sklearn libraries and algorithms. \n", - "\n", - "\n", - "In this example, we will show you how you can develop in a notebook or other third-party tooling, produce a model and convert it to both `onnx` and `pmml` formats for deploying in Vantage with ModelOps." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "import pandas as pd\n", - "import getpass\n", - "\n", - "from teradataml import (\n", - " create_context, \n", - " remove_context,\n", - " get_context,\n", - " get_connection,\n", - " DataFrame,\n", - " retrieve_byom,\n", - " PMMLPredict,\n", - " configure)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Host: tdprd.td.teradata.com\n", - "Username: wf250003\n", - "Password: ········\n", - "VAL DB: TRNG_XSP\n", - "BYOM DB: TRNG_BYOM\n" - ] - }, - { - "data": { - "text/plain": [ - "Engine(teradatasql://wf250003:***@tdprd.td.teradata.com/?LOGDATA=%2A%2A%2A&LOGMECH=%2A%2A%2A)" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "host = input(\"Host: \")\n", - "username = input(\"Username: \")\n", - "password = getpass.getpass(\"Password: \")\n", - "val_db = input(\"VAL DB: \")\n", - "byom_db = input(\"BYOM DB: \")\n", - "\n", - "# configure byom/val installation\n", - "configure.val_install_location = val_db\n", - "configure.byom_install_location = byom_db\n", - "\n", - "# by default we assume your are using your user database. change as required\n", - "database = username\n", - "\n", - "create_context(host=host, username=username, password=password, logmech=\"TDNEGO\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Pipeline(steps=[('scaler', MinMaxScaler()),\n", - " ('xgb',\n", - " XGBClassifier(base_score=0.5, booster='gbtree', callbacks=None,\n", - " colsample_bylevel=1, colsample_bynode=1,\n", - " colsample_bytree=1, early_stopping_rounds=None,\n", - " enable_categorical=False, eta=0.2,\n", - " eval_metric=None, gamma=0, gpu_id=-1,\n", - " grow_policy='depthwise', importance_type=None,\n", - " interaction_constraints='',\n", - " learning_rate=0.200000003, max_bin=256,\n", - " max_cat_to_onehot=4, max_delta_step=0,\n", - " max_depth=6, max_leaves=0, min_child_weight=1,\n", - " missing=nan, monotone_constraints='()',\n", - " n_estimators=100, n_jobs=0, num_parallel_tree=1,\n", - " predictor='auto', random_state=0, reg_alpha=0, ...))])" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from xgboost import XGBClassifier\n", - "from sklearn.preprocessing import MinMaxScaler\n", - "from sklearn.pipeline import Pipeline\n", - "\n", - "\n", - "train_pdf = DataFrame.from_query(\"\"\"\n", - "SELECT \n", - " F.*, D.hasdiabetes \n", - "FROM pima_patient_features F\n", - "JOIN pima_patient_diagnoses D\n", - " ON F.patientid = D.patientid \n", - " WHERE F.patientid MOD 5 <> 0\n", - "\"\"\").to_pandas(all_rows=True)\n", - "\n", - "features = [\"NumTimesPrg\", \"Age\", \"PlGlcConc\", \"BloodP\", \"SkinThick\", \"TwoHourSerIns\", \"BMI\", \"DiPedFunc\"]\n", - "target = \"HasDiabetes\"\n", - "\n", - "# split data into X and y\n", - "X_train = train_pdf[features]\n", - "y_train = train_pdf[target]\n", - "\n", - "model = Pipeline([('scaler', MinMaxScaler()),\n", - " ('xgb', XGBClassifier(eta=0.2, max_depth=6))])\n", - "\n", - "model.fit(X_train, y_train)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Convert the model to PMML\n", - "\n", - "You can use the sklearn2pmml or the nyoka python libraries to convert to pmml. The nyoka is a python only package and so it is preferrable. " - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "from nyoka import xgboost_to_pmml\n", - "\n", - "xgboost_to_pmml(pipeline=model, col_names=features, target_name=target, pmml_f_name=\"model.pmml\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Convert the model to ONNX\n", - "\n", - "We can also convert the model to onnx format. This is a bit more involved as the client libraries for converting from sklearn/xgboost to onnx are not yet as mature.\n", - "\n", - "```\n", - "pip install onnx==1.10.2 skl2onnx==1.11.2 onnxruntime==1.9.0 protobuf==3.20.1 onnxmltools==1.7.0\n", - "```" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "from skl2onnx import to_onnx\n", - "from skl2onnx import convert_sklearn, to_onnx, update_registered_converter\n", - "from skl2onnx.common.shape_calculator import (\n", - " calculate_linear_classifier_output_shapes,\n", - " calculate_linear_regressor_output_shapes)\n", - "from onnxmltools.convert.xgboost.operator_converters.XGBoost import convert_xgboost\n", - "from onnxmltools.convert import convert_xgboost as convert_xgboost_booster\n", - "\n", - "update_registered_converter(\n", - " XGBClassifier, 'XGBoostXGBClassifier',\n", - " calculate_linear_classifier_output_shapes, convert_xgboost,\n", - " options={'nocl': [True, False], 'zipmap': [True, False, 'columns']})\n", - "\n", - "\n", - "model_onnx = to_onnx(model, X_train.astype(np.float32), target_opset=15)\n", - "with open(\"model.onnx\", \"wb\") as f:\n", - " f.write(model_onnx.SerializeToString())\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Import into ModelOps to Operationalize\n", - "\n", - "Go to the ModelOps UI and import this as a new model version. Then follow the workflow to deploy. Note that you can also import programatically via the ModelOps Python SDK. \n", - "\n", - "You may be wondering why you can't just directly insert the onnx or pmml model directly into the database table. And the answer is you can. However, with ModelOps, you get full governance around this model deployment, including data drift and model monitoring and alerting. \n", - "\n", - "\n", - "### View Published Models\n", - "\n", - "Once deployed via ModelOps, we can view the models published to vantage by querying the table they are published to. Note this information is available via the AOA APIs also.\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
model_versionmodel_idmodel_typeproject_iddeployed_atmodel
09de00f0d-060c-4737-b0a3-531768363ced2354a903-601b-5f72-b014-8983306005b4PMML414bec4e-c677-4f2e-a370-0076e57918ea2022-07-20 11:02:35.470b'<?xml version=\"1.0\" encoding=\"UTF-8\"?>\\n<PMML xmlns=\"http://www.dmg.org/PMML-4_4\" version=\"4.4\">\\n <Header copyright=\"Copyright (c) 2018 Software AG\" description=\"Default Description\">\\n <Application name=\"Nyoka\" version=\"4.3.0\"/>\\n ...
15761d5c1-bf57-456b-8076-c3062be0b5442354a903-601b-5f72-b014-8983306005b4PMML414bec4e-c677-4f2e-a370-0076e57918ea2022-07-18 07:04:19.430b'<?xml version=\"1.0\" encoding=\"UTF-8\"?>\\n<PMML xmlns=\"http://www.dmg.org/PMML-4_4\" version=\"4.4\">\\n <Header copyright=\"Copyright (c) 2018 Software AG\" description=\"Default Description\">\\n <Application name=\"Nyoka\" version=\"4.3.0\"/>\\n ...
\n", - "
" - ], - "text/plain": [ - " model_version model_id \\\n", - "0 9de00f0d-060c-4737-b0a3-531768363ced 2354a903-601b-5f72-b014-8983306005b4 \n", - "1 5761d5c1-bf57-456b-8076-c3062be0b544 2354a903-601b-5f72-b014-8983306005b4 \n", - "\n", - " model_type project_id deployed_at \\\n", - "0 PMML 414bec4e-c677-4f2e-a370-0076e57918ea 2022-07-20 11:02:35.470 \n", - "1 PMML 414bec4e-c677-4f2e-a370-0076e57918ea 2022-07-18 07:04:19.430 \n", - "\n", - " model \n", - "0 b'\\n\\n
\\n \\n ... \n", - "1 b'\\n\\n
\\n \\n ... " - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pd.options.display.max_colwidth = 250\n", - "pd.read_sql(\"SELECT TOP 2 * FROM aoa_byom_models\", get_connection())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## On-Demand Scoring" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
PatientIdpredictionjson_report
05451{\"probability_0\":0.015597303259093032,\"probability_1\":0.984402696740907,\"predicted_HasDiabetes\":1}
12650{\"probability_0\":0.8621357683534957,\"probability_1\":0.1378642316465043,\"predicted_HasDiabetes\":0}
2400{\"probability_0\":0.574482742227689,\"probability_1\":0.425517257772311,\"predicted_HasDiabetes\":0}
33850{\"probability_0\":0.9902272802038437,\"probability_1\":0.009772719796156322,\"predicted_HasDiabetes\":0}
401{\"probability_0\":0.0950635688096706,\"probability_1\":0.9049364311903294,\"predicted_HasDiabetes\":1}
56000{\"probability_0\":0.9499693357624215,\"probability_1\":0.050030664237578494,\"predicted_HasDiabetes\":0}
65300{\"probability_0\":0.9729698349887085,\"probability_1\":0.02703016501129154,\"predicted_HasDiabetes\":0}
71201{\"probability_0\":0.11393098981414929,\"probability_1\":0.8860690101858507,\"predicted_HasDiabetes\":1}
86500{\"probability_0\":0.9820752256818963,\"probability_1\":0.0179247743181037,\"predicted_HasDiabetes\":0}
9800{\"probability_0\":0.9819309856605802,\"probability_1\":0.01806901433941982,\"predicted_HasDiabetes\":0}
\n", - "
" - ], - "text/plain": [ - " PatientId prediction \\\n", - "0 545 1 \n", - "1 265 0 \n", - "2 40 0 \n", - "3 385 0 \n", - "4 0 1 \n", - "5 600 0 \n", - "6 530 0 \n", - "7 120 1 \n", - "8 650 0 \n", - "9 80 0 \n", - "\n", - " json_report \n", - "0 {\"probability_0\":0.015597303259093032,\"probability_1\":0.984402696740907,\"predicted_HasDiabetes\":1} \n", - "1 {\"probability_0\":0.8621357683534957,\"probability_1\":0.1378642316465043,\"predicted_HasDiabetes\":0} \n", - "2 {\"probability_0\":0.574482742227689,\"probability_1\":0.425517257772311,\"predicted_HasDiabetes\":0} \n", - "3 {\"probability_0\":0.9902272802038437,\"probability_1\":0.009772719796156322,\"predicted_HasDiabetes\":0} \n", - "4 {\"probability_0\":0.0950635688096706,\"probability_1\":0.9049364311903294,\"predicted_HasDiabetes\":1} \n", - "5 {\"probability_0\":0.9499693357624215,\"probability_1\":0.050030664237578494,\"predicted_HasDiabetes\":0} \n", - "6 {\"probability_0\":0.9729698349887085,\"probability_1\":0.02703016501129154,\"predicted_HasDiabetes\":0} \n", - "7 {\"probability_0\":0.11393098981414929,\"probability_1\":0.8860690101858507,\"predicted_HasDiabetes\":1} \n", - "8 {\"probability_0\":0.9820752256818963,\"probability_1\":0.0179247743181037,\"predicted_HasDiabetes\":0} \n", - "9 {\"probability_0\":0.9819309856605802,\"probability_1\":0.01806901433941982,\"predicted_HasDiabetes\":0} " - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model_version=\"1dbe5430-f8c5-4d32-b26c-a02476cba510\"\n", - "\n", - "model = DataFrame.from_query(f\"\"\"\n", - "SELECT * FROM aoa_byom_models \n", - " WHERE model_version='{model_version}'\n", - "\"\"\")\n", - "\n", - "\n", - "preds = PMMLPredict(\n", - " modeldata=model,\n", - " newdata=DataFrame.from_query(\"SELECT * FROM pima_patient_features WHERE patientid MOD 5 = 0\"),\n", - " accumulate=['PatientId'])\n", - "\n", - "preds.result.to_pandas().head(10)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
PatientIdpredictionjson_report
010{\"probability_0\":0.9850747504768098,\"probability_1\":0.014925249523190227,\"predicted_HasDiabetes\":0}
130{\"probability_0\":0.9945255942085638,\"probability_1\":0.005474405791436156,\"predicted_HasDiabetes\":0}
281{\"probability_0\":0.05020155260184678,\"probability_1\":0.9497984473981532,\"predicted_HasDiabetes\":1}
391{\"probability_0\":0.28263442350828416,\"probability_1\":0.7173655764917158,\"predicted_HasDiabetes\":1}
4131{\"probability_0\":0.08177880479006427,\"probability_1\":0.9182211952099357,\"predicted_HasDiabetes\":1}
5171{\"probability_0\":0.23832592730256774,\"probability_1\":0.7616740726974323,\"predicted_HasDiabetes\":1}
6191{\"probability_0\":0.37077762620144294,\"probability_1\":0.629222373798557,\"predicted_HasDiabetes\":1}
7261{\"probability_0\":0.18449399225529128,\"probability_1\":0.8155060077447087,\"predicted_HasDiabetes\":1}
8431{\"probability_0\":0.006277949339332567,\"probability_1\":0.9937220506606674,\"predicted_HasDiabetes\":1}
9440{\"probability_0\":0.7477334297352949,\"probability_1\":0.25226657026470506,\"predicted_HasDiabetes\":0}
\n", - "
" - ], - "text/plain": [ - " PatientId prediction \\\n", - "0 1 0 \n", - "1 3 0 \n", - "2 8 1 \n", - "3 9 1 \n", - "4 13 1 \n", - "5 17 1 \n", - "6 19 1 \n", - "7 26 1 \n", - "8 43 1 \n", - "9 44 0 \n", - "\n", - " json_report \n", - "0 {\"probability_0\":0.9850747504768098,\"probability_1\":0.014925249523190227,\"predicted_HasDiabetes\":0} \n", - "1 {\"probability_0\":0.9945255942085638,\"probability_1\":0.005474405791436156,\"predicted_HasDiabetes\":0} \n", - "2 {\"probability_0\":0.05020155260184678,\"probability_1\":0.9497984473981532,\"predicted_HasDiabetes\":1} \n", - "3 {\"probability_0\":0.28263442350828416,\"probability_1\":0.7173655764917158,\"predicted_HasDiabetes\":1} \n", - "4 {\"probability_0\":0.08177880479006427,\"probability_1\":0.9182211952099357,\"predicted_HasDiabetes\":1} \n", - "5 {\"probability_0\":0.23832592730256774,\"probability_1\":0.7616740726974323,\"predicted_HasDiabetes\":1} \n", - "6 {\"probability_0\":0.37077762620144294,\"probability_1\":0.629222373798557,\"predicted_HasDiabetes\":1} \n", - "7 {\"probability_0\":0.18449399225529128,\"probability_1\":0.8155060077447087,\"predicted_HasDiabetes\":1} \n", - "8 {\"probability_0\":0.006277949339332567,\"probability_1\":0.9937220506606674,\"predicted_HasDiabetes\":1} \n", - "9 {\"probability_0\":0.7477334297352949,\"probability_1\":0.25226657026470506,\"predicted_HasDiabetes\":0} " - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "query = f\"\"\"\n", - "SELECT * FROM {byom_db}.PMMLPredict (\n", - " ON (SELECT * FROM pima_patient_features WHERE patientid MOD 5 = 0) AS DataTable\n", - " ON (SELECT * FROM aoa_byom_models \n", - " WHERE model_version='{model_version}') AS ModelTable DIMENSION\n", - " USING\n", - " Accumulate ('patientid')\n", - ") AS td;\n", - "\"\"\"\n", - "\n", - "pd.read_sql(query, get_connection()).head(10)" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
PatientIdjson_report
0545{\"output_probability\":[{\"0\":0.013714135,\"1\":0.98628587}],\"output_label\":[1]}
1265{\"output_probability\":[{\"0\":0.78800213,\"1\":0.21199787}],\"output_label\":[0]}
2600{\"output_probability\":[{\"0\":0.9766014,\"1\":0.023398578}],\"output_label\":[0]}
3530{\"output_probability\":[{\"0\":0.97246957,\"1\":0.027530432}],\"output_label\":[0]}
45{\"output_probability\":[{\"0\":0.9863973,\"1\":0.013602674}],\"output_label\":[0]}
5305{\"output_probability\":[{\"0\":0.8996898,\"1\":0.10031021}],\"output_label\":[0]}
620{\"output_probability\":[{\"0\":0.94164395,\"1\":0.058356047}],\"output_label\":[0]}
7570{\"output_probability\":[{\"0\":0.96782416,\"1\":0.03217584}],\"output_label\":[0]}
860{\"output_probability\":[{\"0\":0.994561,\"1\":0.0054389834}],\"output_label\":[0]}
9610{\"output_probability\":[{\"0\":0.9871934,\"1\":0.012806594}],\"output_label\":[0]}
\n", - "
" - ], - "text/plain": [ - " PatientId \\\n", - "0 545 \n", - "1 265 \n", - "2 600 \n", - "3 530 \n", - "4 5 \n", - "5 305 \n", - "6 20 \n", - "7 570 \n", - "8 60 \n", - "9 610 \n", - "\n", - " json_report \n", - "0 {\"output_probability\":[{\"0\":0.013714135,\"1\":0.98628587}],\"output_label\":[1]} \n", - "1 {\"output_probability\":[{\"0\":0.78800213,\"1\":0.21199787}],\"output_label\":[0]} \n", - "2 {\"output_probability\":[{\"0\":0.9766014,\"1\":0.023398578}],\"output_label\":[0]} \n", - "3 {\"output_probability\":[{\"0\":0.97246957,\"1\":0.027530432}],\"output_label\":[0]} \n", - "4 {\"output_probability\":[{\"0\":0.9863973,\"1\":0.013602674}],\"output_label\":[0]} \n", - "5 {\"output_probability\":[{\"0\":0.8996898,\"1\":0.10031021}],\"output_label\":[0]} \n", - "6 {\"output_probability\":[{\"0\":0.94164395,\"1\":0.058356047}],\"output_label\":[0]} \n", - "7 {\"output_probability\":[{\"0\":0.96782416,\"1\":0.03217584}],\"output_label\":[0]} \n", - "8 {\"output_probability\":[{\"0\":0.994561,\"1\":0.0054389834}],\"output_label\":[0]} \n", - "9 {\"output_probability\":[{\"0\":0.9871934,\"1\":0.012806594}],\"output_label\":[0]} " - ] - }, - "execution_count": 54, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "query = f\"\"\"\n", - "SELECT td.* FROM {byom_db}.ONNXPredict (\n", - " ON (SELECT * FROM pima_patient_features WHERE patientid MOD 5 = 0) AS DataTable\n", - " ON (SELECT * FROM aoa_byom_models \n", - " WHERE model_version='onnx-test') AS ModelTable DIMENSION\n", - " USING\n", - " Accumulate ('patientid')\n", - ") AS td;\n", - "\"\"\"\n", - "\n", - "pd.read_sql(query, get_connection()).head(10)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Custom BYOM Evaluation Logic\n", - "\n", - "You can define custom evaluation logic for BYOM models in ModelOps. This allows you to define your own charts, metrics etc that are to be created and captured as part of evaluation / comparison." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "from aoa.stats.stats import _capture_stats, _NpEncoder\n", - "import json\n", - "import logging\n", - "import sys\n", - "\n", - "logging.basicConfig(stream=sys.stdout, level=logging.INFO)\n", - "\n", - "\n", - "train_df = DataFrame.from_query(\"\"\"\n", - "SELECT \n", - " F.*, D.hasdiabetes \n", - "FROM pima_patient_features F\n", - "JOIN pima_patient_diagnoses D\n", - " ON F.patientid = D.patientid \n", - " WHERE F.patientid MOD 5 <> 0\n", - "\"\"\")\n", - "\n", - "data_stats = _capture_stats(df=train_df,\n", - " features=features,\n", - " targets=[target],\n", - " categorical=[target],\n", - " feature_metadata_fqtn=f\"{database}.aoa_feature_metadata\")\n", - "\n", - "with open(\"data_stats.json\", 'w+') as f:\n", - " json.dump(data_stats, f, indent=2, cls=_NpEncoder)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn import metrics\n", - "from teradataml import (\n", - " get_context,\n", - " DataFrame,\n", - " PMMLPredict,\n", - " configure\n", - ")\n", - "from aoa import (\n", - " record_evaluation_stats,\n", - " aoa_create_context,\n", - " store_byom_tmp,\n", - " ModelContext\n", - ")\n", - "\n", - "import os\n", - "import json\n", - "\n", - "\n", - "def plot_confusion_matrix(cf, img_filename):\n", - " import itertools\n", - " import matplotlib.pyplot as plt\n", - " plt.imshow(cf, cmap=plt.cm.Blues, interpolation='nearest')\n", - " plt.colorbar()\n", - " plt.title('Confusion Matrix')\n", - " plt.xlabel('Predicted')\n", - " plt.ylabel('Actual')\n", - " plt.xticks([0, 1], ['0', '1'])\n", - " plt.yticks([0, 1], ['0', '1'])\n", - "\n", - " thresh = cf.max() / 2.\n", - " for i, j in itertools.product(range(cf.shape[0]), range(cf.shape[1])):\n", - " plt.text(j, i, format(cf[i, j], 'd'), horizontalalignment='center',\n", - " color='white' if cf[i, j] > thresh else 'black')\n", - "\n", - " fig = plt.gcf()\n", - " fig.savefig(img_filename, dpi=500)\n", - " plt.clf()\n", - "\n", - "\n", - "def evaluate(context: ModelContext, **kwargs):\n", - " aoa_create_context()\n", - "\n", - " \n", - " # this evaluation.py can hanlde both onnx and pmml. usually, you would only need to support one but for \n", - " # demo purposes, we will show with both as we produce both onnx and pmml in this notebook.\n", - " \n", - " import glob\n", - " for file_name in glob.glob(f\"{context.artifact_input_path}/model.*\"):\n", - " model_type = file_name.split(\".\")[-1]\n", - " \n", - " with open(f\"{context.artifact_input_path}/model.{model_type}\", \"rb\") as f:\n", - " model_bytes = f.read()\n", - " \n", - " model = store_byom_tmp(get_context(), \"byom_models_tmp\", context.model_version, model_bytes)\n", - "\n", - " target_name = context.dataset_info.target_names[0]\n", - "\n", - " if model_type.upper() == \"ONNX\":\n", - " byom_target_sql = \"CAST(CAST(json_report AS JSON).JSONExtractValue('$.output_label[0]') AS INT)\"\n", - " mldb = os.environ.get(\"AOA_BYOM_INSTALL_DB\", \"MLDB\")\n", - "\n", - " query = f\"\"\"\n", - " SELECT sc.{context.dataset_info.entity_key}, {target_name}, sc.json_report\n", - " FROM {mldb}.ONNXPredict(\n", - " ON ({context.dataset_info.sql}) AS DataTable\n", - " ON (SELECT model_version as model_id, model FROM byom_models_tmp) AS ModelTable DIMENSION\n", - " USING\n", - " Accumulate('{context.dataset_info.entity_key}', '{target_name}')\n", - " ) sc;\n", - " \"\"\"\n", - "\n", - " predictions_df = DataFrame.from_query(query)\n", - " \n", - " elif model_type.upper() == \"PMML\":\n", - " byom_target_sql = \"CAST(CAST(json_report AS JSON).JSONExtractValue('$.predicted_HasDiabetes') AS INT)\"\n", - " \n", - " pmml = PMMLPredict(\n", - " modeldata=model,\n", - " newdata=DataFrame.from_query(context.dataset_info.sql),\n", - " accumulate=[context.dataset_info.entity_key, target_name])\n", - " \n", - " predictions_df = pmml.result\n", - "\n", - " predictions_df.to_sql(table_name=\"predictions_tmp\", if_exists=\"replace\", temporary=True)\n", - "\n", - " metrics_df = DataFrame.from_query(f\"\"\"\n", - " SELECT \n", - " HasDiabetes as y_test, \n", - " {byom_target_sql} as y_pred\n", - " FROM predictions_tmp\n", - " \"\"\")\n", - " metrics_df = metrics_df.to_pandas()\n", - "\n", - " y_pred = metrics_df[[\"y_pred\"]]\n", - " y_test = metrics_df[[\"y_test\"]]\n", - "\n", - " evaluation = {\n", - " 'Accuracy': '{:.2f}'.format(metrics.accuracy_score(y_test, y_pred)),\n", - " 'Recall': '{:.2f}'.format(metrics.recall_score(y_test, y_pred)),\n", - " 'Precision': '{:.2f}'.format(metrics.precision_score(y_test, y_pred)),\n", - " 'f1-score': '{:.2f}'.format(metrics.f1_score(y_test, y_pred))\n", - " }\n", - "\n", - " with open(f\"{context.artifact_output_path}/metrics.json\", \"w+\") as f:\n", - " json.dump(evaluation, f)\n", - "\n", - " # create confusion matrix plot\n", - " cf = metrics.confusion_matrix(y_test, y_pred)\n", - "\n", - " plot_confusion_matrix(cf, f\"{context.artifact_output_path}/confusion_matrix\")\n", - "\n", - " # calculate stats if training stats exist\n", - " if os.path.exists(f\"{context.artifact_input_path}/data_stats.json\"):\n", - " record_evaluation_stats(features_df=DataFrame.from_query(context.dataset_info.sql),\n", - " predicted_df=DataFrame(\"predictions_tmp\"),\n", - " context=context)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO:aoa.util.connections:teradataml context already exists. Skipping create_context.\n", - "INFO:aoa.stats.stats:Computing evaluation dataset statistics\n", - "{'Accuracy': '0.75', 'Recall': '0.67', 'Precision': '0.67', 'f1-score': '0.67'}\n" - ] - }, - { - "data": { - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from aoa import ModelContext, DatasetInfo\n", - "\n", - "# Define the ModelContext to test with. The ModelContext is created and managed automatically by ModelOps \n", - "# when it executes your code via CLI / UI. However, for testing in the notebook, you can define as follows\n", - "\n", - "# define the evaluation dataset \n", - "sql = \"\"\"\n", - "SELECT \n", - " F.*, D.hasdiabetes \n", - "FROM PIMA_PATIENT_FEATURES F \n", - "JOIN PIMA_PATIENT_DIAGNOSES D\n", - "ON F.patientid = D.patientid\n", - " WHERE D.patientid MOD 5 = 0\n", - "\"\"\"\n", - "\n", - "feature_metadata = {\n", - " \"database\": database,\n", - " \"table\": \"aoa_feature_metadata\"\n", - "}\n", - "\n", - "entity_key = \"PatientId\"\n", - "target_names = [\"HasDiabetes\"]\n", - "feature_names = [\"NumTimesPrg\", \"PlGlcConc\", \"BloodP\", \"SkinThick\", \"TwoHourSerIns\", \"BMI\", \"DiPedFunc\", \"Age\"]\n", - "\n", - "dataset_info = DatasetInfo(sql=sql,\n", - " entity_key=entity_key,\n", - " feature_names=feature_names,\n", - " target_names=target_names,\n", - " feature_metadata=feature_metadata)\n", - "\n", - "ctx = ModelContext(hyperparams={},\n", - " dataset_info=dataset_info,\n", - " artifact_output_path=\"/tmp\",\n", - " artifact_input_path=\"./\",\n", - " model_version=\"v1\",\n", - " model_table=\"aoa_model_v1\")\n", - "\n", - "\n", - "# drop volatile table from session if executing multiple times\n", - "try:\n", - " get_context().execute(f\"DROP TABLE byom_models_tmp\")\n", - "except: \n", - " pass\n", - "\n", - "evaluate(context=ctx)\n", - "\n", - "# view evaluation results\n", - "with open(f\"{ctx.artifact_output_path}/metrics.json\") as f:\n", - " print(json.load(f))" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "
PatientIdHasDiabetesjson_report
3900{\"probability_0\":0.8534884407791314,\"probability_1\":0.1465115592208686,\"predicted_HasDiabetes\":0}
5750{\"probability_0\":0.5411704893844536,\"probability_1\":0.4588295106155465,\"predicted_HasDiabetes\":0}
7401{\"probability_0\":0.18309459019075702,\"probability_1\":0.816905409809243,\"predicted_HasDiabetes\":1}
2900{\"probability_0\":0.9275644263007603,\"probability_1\":0.0724355736992397,\"predicted_HasDiabetes\":0}
4300{\"probability_0\":0.9993898309624312,\"probability_1\":6.101690375688237E-4,\"predicted_HasDiabetes\":0}
4100{\"probability_0\":0.7306026985110992,\"probability_1\":0.26939730148890084,\"predicted_HasDiabetes\":0}
4600{\"probability_0\":0.7245463351662919,\"probability_1\":0.27545366483370815,\"predicted_HasDiabetes\":0}
3250{\"probability_0\":0.6100536262346685,\"probability_1\":0.3899463737653314,\"predicted_HasDiabetes\":0}
3601{\"probability_0\":0.014436294801631777,\"probability_1\":0.9855637051983682,\"predicted_HasDiabetes\":1}
5601{\"probability_0\":0.681609701643378,\"probability_1\":0.3183902983566221,\"predicted_HasDiabetes\":0}
" - ], - "text/plain": [ - " PatientId HasDiabetes json_report\n", - "0 725 0 {\"probability_0\":0.7656401654913679,\"probability_1\":0.23435983450863204,\"predicted_HasDiabetes\":0}\n", - "1 575 0 {\"probability_0\":0.5411704893844536,\"probability_1\":0.4588295106155465,\"predicted_HasDiabetes\":0}\n", - "2 740 1 {\"probability_0\":0.18309459019075702,\"probability_1\":0.816905409809243,\"predicted_HasDiabetes\":1}\n", - "3 145 0 {\"probability_0\":0.9954274192406505,\"probability_1\":0.004572580759349547,\"predicted_HasDiabetes\":0}\n", - "4 290 0 {\"probability_0\":0.9275644263007603,\"probability_1\":0.0724355736992397,\"predicted_HasDiabetes\":0}\n", - "5 410 0 {\"probability_0\":0.7306026985110992,\"probability_1\":0.26939730148890084,\"predicted_HasDiabetes\":0}\n", - "6 415 1 {\"probability_0\":0.37542607752957524,\"probability_1\":0.6245739224704248,\"predicted_HasDiabetes\":1}\n", - "7 570 0 {\"probability_0\":0.9871590600678464,\"probability_1\":0.012840939932153675,\"predicted_HasDiabetes\":0}\n", - "8 700 0 {\"probability_0\":0.9828242945003008,\"probability_1\":0.017175705499699205,\"predicted_HasDiabetes\":0}\n", - "9 465 0 {\"probability_0\":0.9821548641078263,\"probability_1\":0.01784513589217372,\"predicted_HasDiabetes\":0}" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "DataFrame.from_query(\"SELECT PatientId, HasDiabetes, json_report FROM predictions_tmp\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python [conda env:py39]", - "language": "python", - "name": "conda-env-py39-py" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/pr-preview/pr-110/modelops/_attachments/BYOM_v7.ipynb b/pr-preview/pr-110/modelops/_attachments/BYOM_v7.ipynb deleted file mode 100644 index 40c186975..000000000 --- a/pr-preview/pr-110/modelops/_attachments/BYOM_v7.ipynb +++ /dev/null @@ -1,1088 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## BYOM In-Vantage Scoring with PMML and ONNX\n", - "\n", - "In this notebook, we will show you how to work with the Bring Your Own Model (BYOM) pattern and BYOM In-Vantage Scoring. This pattern allows you to use whatever data science platform you want to perform model development and experimentation. You can use the vast majority of popular data science libraries and transformations. The only constraint is that you can convert it to one of the following open formats\n", - "\n", - "- ONNX\n", - "- PMML\n", - "- H2O (MOJO)\n", - "- H2O (Driverless AI)\n", - "\n", - "ONNX is become more popular by the day. It is a very efficient model format which was created and is maintained by Microsoft and its adoption by other companies and libraries as the standard open format is incresingly rapidly. While the name suggests it is primarily related to neural networks, it can be used with most sklearn libraries and algorithms. \n", - "\n", - "\n", - "In this example, we will show you how you can develop in a notebook or other third-party tooling, produce a model and convert it to both `onnx` and `pmml` formats for deploying in Vantage with ModelOps." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "import pandas as pd\n", - "import getpass\n", - "\n", - "from teradataml import (\n", - " create_context, \n", - " remove_context,\n", - " get_context,\n", - " get_connection,\n", - " DataFrame,\n", - " retrieve_byom,\n", - " PMMLPredict,\n", - " configure)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Host: tdprd.td.teradata.com\n", - "Username: wf250003\n", - "Password: ········\n", - "VAL DB: TRNG_XSP\n", - "BYOM DB: TRNG_BYOM\n" - ] - }, - { - "data": { - "text/plain": [ - "Engine(teradatasql://wf250003:***@tdprd.td.teradata.com/?LOGDATA=%2A%2A%2A&LOGMECH=%2A%2A%2A)" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "host = input(\"Host: \")\n", - "username = input(\"Username: \")\n", - "password = getpass.getpass(\"Password: \")\n", - "val_db = input(\"VAL DB: \")\n", - "byom_db = input(\"BYOM DB: \")\n", - "\n", - "# configure byom/val installation\n", - "configure.val_install_location = val_db\n", - "configure.byom_install_location = byom_db\n", - "\n", - "# by default we assume your are using your user database. change as required\n", - "database = username\n", - "\n", - "create_context(host=host, username=username, password=password, logmech=\"TDNEGO\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Pipeline(steps=[('scaler', MinMaxScaler()),\n", - " ('xgb',\n", - " XGBClassifier(base_score=0.5, booster='gbtree', callbacks=None,\n", - " colsample_bylevel=1, colsample_bynode=1,\n", - " colsample_bytree=1, early_stopping_rounds=None,\n", - " enable_categorical=False, eta=0.2,\n", - " eval_metric=None, gamma=0, gpu_id=-1,\n", - " grow_policy='depthwise', importance_type=None,\n", - " interaction_constraints='',\n", - " learning_rate=0.200000003, max_bin=256,\n", - " max_cat_to_onehot=4, max_delta_step=0,\n", - " max_depth=6, max_leaves=0, min_child_weight=1,\n", - " missing=nan, monotone_constraints='()',\n", - " n_estimators=100, n_jobs=0, num_parallel_tree=1,\n", - " predictor='auto', random_state=0, reg_alpha=0, ...))])" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from xgboost import XGBClassifier\n", - "from sklearn.preprocessing import MinMaxScaler\n", - "from sklearn.pipeline import Pipeline\n", - "\n", - "\n", - "train_pdf = DataFrame.from_query(\"\"\"\n", - "SELECT \n", - " F.*, D.hasdiabetes \n", - "FROM pima_patient_features F\n", - "JOIN pima_patient_diagnoses D\n", - " ON F.patientid = D.patientid \n", - " WHERE F.patientid MOD 5 <> 0\n", - "\"\"\").to_pandas(all_rows=True)\n", - "\n", - "features = [\"NumTimesPrg\", \"Age\", \"PlGlcConc\", \"BloodP\", \"SkinThick\", \"TwoHourSerIns\", \"BMI\", \"DiPedFunc\"]\n", - "target = \"HasDiabetes\"\n", - "\n", - "# split data into X and y\n", - "X_train = train_pdf[features]\n", - "y_train = train_pdf[target]\n", - "\n", - "model = Pipeline([('scaler', MinMaxScaler()),\n", - " ('xgb', XGBClassifier(eta=0.2, max_depth=6))])\n", - "\n", - "model.fit(X_train, y_train)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Convert the model to PMML\n", - "\n", - "You can use the sklearn2pmml or the nyoka python libraries to convert to pmml. The nyoka is a python only package and so it is preferrable. " - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "from nyoka import xgboost_to_pmml\n", - "\n", - "xgboost_to_pmml(pipeline=model, col_names=features, target_name=target, pmml_f_name=\"model.pmml\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Convert the model to ONNX\n", - "\n", - "We can also convert the model to onnx format. This is a bit more involved as the client libraries for converting from sklearn/xgboost to onnx are not yet as mature.\n", - "\n", - "```\n", - "pip install onnx==1.10.2 skl2onnx==1.11.2 onnxruntime==1.9.0 protobuf==3.20.1 onnxmltools==1.7.0\n", - "```" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "from skl2onnx import to_onnx\n", - "from skl2onnx import convert_sklearn, to_onnx, update_registered_converter\n", - "from skl2onnx.common.shape_calculator import (\n", - " calculate_linear_classifier_output_shapes,\n", - " calculate_linear_regressor_output_shapes)\n", - "from onnxmltools.convert.xgboost.operator_converters.XGBoost import convert_xgboost\n", - "from onnxmltools.convert import convert_xgboost as convert_xgboost_booster\n", - "\n", - "update_registered_converter(\n", - " XGBClassifier, 'XGBoostXGBClassifier',\n", - " calculate_linear_classifier_output_shapes, convert_xgboost,\n", - " options={'nocl': [True, False], 'zipmap': [True, False, 'columns']})\n", - "\n", - "\n", - "model_onnx = to_onnx(model, X_train.astype(np.float32), target_opset=15)\n", - "with open(\"model.onnx\", \"wb\") as f:\n", - " f.write(model_onnx.SerializeToString())\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Import into ModelOps to Operationalize\n", - "\n", - "Go to the ModelOps UI and import this as a new model version. Then follow the workflow to deploy. Note that you can also import programatically via the ModelOps Python SDK. \n", - "\n", - "You may be wondering why you can't just directly insert the onnx or pmml model directly into the database table. And the answer is you can. However, with ModelOps, you get full governance around this model deployment, including data drift and model monitoring and alerting. \n", - "\n", - "\n", - "### View Published Models\n", - "\n", - "Once deployed via ModelOps, we can view the models published to vantage by querying the table they are published to. Note this information is available via the AOA APIs also.\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
model_versionmodel_idmodel_typeproject_iddeployed_atmodel
09de00f0d-060c-4737-b0a3-531768363ced2354a903-601b-5f72-b014-8983306005b4PMML414bec4e-c677-4f2e-a370-0076e57918ea2022-07-20 11:02:35.470b'<?xml version=\"1.0\" encoding=\"UTF-8\"?>\\n<PMML xmlns=\"http://www.dmg.org/PMML-4_4\" version=\"4.4\">\\n <Header copyright=\"Copyright (c) 2018 Software AG\" description=\"Default Description\">\\n <Application name=\"Nyoka\" version=\"4.3.0\"/>\\n ...
15761d5c1-bf57-456b-8076-c3062be0b5442354a903-601b-5f72-b014-8983306005b4PMML414bec4e-c677-4f2e-a370-0076e57918ea2022-07-18 07:04:19.430b'<?xml version=\"1.0\" encoding=\"UTF-8\"?>\\n<PMML xmlns=\"http://www.dmg.org/PMML-4_4\" version=\"4.4\">\\n <Header copyright=\"Copyright (c) 2018 Software AG\" description=\"Default Description\">\\n <Application name=\"Nyoka\" version=\"4.3.0\"/>\\n ...
\n", - "
" - ], - "text/plain": [ - " model_version model_id \\\n", - "0 9de00f0d-060c-4737-b0a3-531768363ced 2354a903-601b-5f72-b014-8983306005b4 \n", - "1 5761d5c1-bf57-456b-8076-c3062be0b544 2354a903-601b-5f72-b014-8983306005b4 \n", - "\n", - " model_type project_id deployed_at \\\n", - "0 PMML 414bec4e-c677-4f2e-a370-0076e57918ea 2022-07-20 11:02:35.470 \n", - "1 PMML 414bec4e-c677-4f2e-a370-0076e57918ea 2022-07-18 07:04:19.430 \n", - "\n", - " model \n", - "0 b'\\n\\n
\\n \\n ... \n", - "1 b'\\n\\n
\\n \\n ... " - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pd.options.display.max_colwidth = 250\n", - "pd.read_sql(\"SELECT TOP 2 * FROM aoa_byom_models\", get_connection())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## On-Demand Scoring" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
PatientIdpredictionjson_report
05451{\"probability_0\":0.015597303259093032,\"probability_1\":0.984402696740907,\"predicted_HasDiabetes\":1}
12650{\"probability_0\":0.8621357683534957,\"probability_1\":0.1378642316465043,\"predicted_HasDiabetes\":0}
2400{\"probability_0\":0.574482742227689,\"probability_1\":0.425517257772311,\"predicted_HasDiabetes\":0}
33850{\"probability_0\":0.9902272802038437,\"probability_1\":0.009772719796156322,\"predicted_HasDiabetes\":0}
401{\"probability_0\":0.0950635688096706,\"probability_1\":0.9049364311903294,\"predicted_HasDiabetes\":1}
56000{\"probability_0\":0.9499693357624215,\"probability_1\":0.050030664237578494,\"predicted_HasDiabetes\":0}
65300{\"probability_0\":0.9729698349887085,\"probability_1\":0.02703016501129154,\"predicted_HasDiabetes\":0}
71201{\"probability_0\":0.11393098981414929,\"probability_1\":0.8860690101858507,\"predicted_HasDiabetes\":1}
86500{\"probability_0\":0.9820752256818963,\"probability_1\":0.0179247743181037,\"predicted_HasDiabetes\":0}
9800{\"probability_0\":0.9819309856605802,\"probability_1\":0.01806901433941982,\"predicted_HasDiabetes\":0}
\n", - "
" - ], - "text/plain": [ - " PatientId prediction \\\n", - "0 545 1 \n", - "1 265 0 \n", - "2 40 0 \n", - "3 385 0 \n", - "4 0 1 \n", - "5 600 0 \n", - "6 530 0 \n", - "7 120 1 \n", - "8 650 0 \n", - "9 80 0 \n", - "\n", - " json_report \n", - "0 {\"probability_0\":0.015597303259093032,\"probability_1\":0.984402696740907,\"predicted_HasDiabetes\":1} \n", - "1 {\"probability_0\":0.8621357683534957,\"probability_1\":0.1378642316465043,\"predicted_HasDiabetes\":0} \n", - "2 {\"probability_0\":0.574482742227689,\"probability_1\":0.425517257772311,\"predicted_HasDiabetes\":0} \n", - "3 {\"probability_0\":0.9902272802038437,\"probability_1\":0.009772719796156322,\"predicted_HasDiabetes\":0} \n", - "4 {\"probability_0\":0.0950635688096706,\"probability_1\":0.9049364311903294,\"predicted_HasDiabetes\":1} \n", - "5 {\"probability_0\":0.9499693357624215,\"probability_1\":0.050030664237578494,\"predicted_HasDiabetes\":0} \n", - "6 {\"probability_0\":0.9729698349887085,\"probability_1\":0.02703016501129154,\"predicted_HasDiabetes\":0} \n", - "7 {\"probability_0\":0.11393098981414929,\"probability_1\":0.8860690101858507,\"predicted_HasDiabetes\":1} \n", - "8 {\"probability_0\":0.9820752256818963,\"probability_1\":0.0179247743181037,\"predicted_HasDiabetes\":0} \n", - "9 {\"probability_0\":0.9819309856605802,\"probability_1\":0.01806901433941982,\"predicted_HasDiabetes\":0} " - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model_version=\"1dbe5430-f8c5-4d32-b26c-a02476cba510\"\n", - "\n", - "model = DataFrame.from_query(f\"\"\"\n", - "SELECT * FROM aoa_byom_models \n", - " WHERE model_version='{model_version}'\n", - "\"\"\")\n", - "\n", - "\n", - "preds = PMMLPredict(\n", - " modeldata=model,\n", - " newdata=DataFrame.from_query(\"SELECT * FROM pima_patient_features WHERE patientid MOD 5 = 0\"),\n", - " accumulate=['PatientId'])\n", - "\n", - "preds.result.to_pandas().head(10)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
PatientIdpredictionjson_report
010{\"probability_0\":0.9850747504768098,\"probability_1\":0.014925249523190227,\"predicted_HasDiabetes\":0}
130{\"probability_0\":0.9945255942085638,\"probability_1\":0.005474405791436156,\"predicted_HasDiabetes\":0}
281{\"probability_0\":0.05020155260184678,\"probability_1\":0.9497984473981532,\"predicted_HasDiabetes\":1}
391{\"probability_0\":0.28263442350828416,\"probability_1\":0.7173655764917158,\"predicted_HasDiabetes\":1}
4131{\"probability_0\":0.08177880479006427,\"probability_1\":0.9182211952099357,\"predicted_HasDiabetes\":1}
5171{\"probability_0\":0.23832592730256774,\"probability_1\":0.7616740726974323,\"predicted_HasDiabetes\":1}
6191{\"probability_0\":0.37077762620144294,\"probability_1\":0.629222373798557,\"predicted_HasDiabetes\":1}
7261{\"probability_0\":0.18449399225529128,\"probability_1\":0.8155060077447087,\"predicted_HasDiabetes\":1}
8431{\"probability_0\":0.006277949339332567,\"probability_1\":0.9937220506606674,\"predicted_HasDiabetes\":1}
9440{\"probability_0\":0.7477334297352949,\"probability_1\":0.25226657026470506,\"predicted_HasDiabetes\":0}
\n", - "
" - ], - "text/plain": [ - " PatientId prediction \\\n", - "0 1 0 \n", - "1 3 0 \n", - "2 8 1 \n", - "3 9 1 \n", - "4 13 1 \n", - "5 17 1 \n", - "6 19 1 \n", - "7 26 1 \n", - "8 43 1 \n", - "9 44 0 \n", - "\n", - " json_report \n", - "0 {\"probability_0\":0.9850747504768098,\"probability_1\":0.014925249523190227,\"predicted_HasDiabetes\":0} \n", - "1 {\"probability_0\":0.9945255942085638,\"probability_1\":0.005474405791436156,\"predicted_HasDiabetes\":0} \n", - "2 {\"probability_0\":0.05020155260184678,\"probability_1\":0.9497984473981532,\"predicted_HasDiabetes\":1} \n", - "3 {\"probability_0\":0.28263442350828416,\"probability_1\":0.7173655764917158,\"predicted_HasDiabetes\":1} \n", - "4 {\"probability_0\":0.08177880479006427,\"probability_1\":0.9182211952099357,\"predicted_HasDiabetes\":1} \n", - "5 {\"probability_0\":0.23832592730256774,\"probability_1\":0.7616740726974323,\"predicted_HasDiabetes\":1} \n", - "6 {\"probability_0\":0.37077762620144294,\"probability_1\":0.629222373798557,\"predicted_HasDiabetes\":1} \n", - "7 {\"probability_0\":0.18449399225529128,\"probability_1\":0.8155060077447087,\"predicted_HasDiabetes\":1} \n", - "8 {\"probability_0\":0.006277949339332567,\"probability_1\":0.9937220506606674,\"predicted_HasDiabetes\":1} \n", - "9 {\"probability_0\":0.7477334297352949,\"probability_1\":0.25226657026470506,\"predicted_HasDiabetes\":0} " - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "query = f\"\"\"\n", - "SELECT * FROM {byom_db}.PMMLPredict (\n", - " ON (SELECT * FROM pima_patient_features WHERE patientid MOD 5 = 0) AS DataTable\n", - " ON (SELECT * FROM aoa_byom_models \n", - " WHERE model_version='{model_version}') AS ModelTable DIMENSION\n", - " USING\n", - " Accumulate ('patientid')\n", - ") AS td;\n", - "\"\"\"\n", - "\n", - "pd.read_sql(query, get_connection()).head(10)" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
PatientIdjson_report
0545{\"output_probability\":[{\"0\":0.013714135,\"1\":0.98628587}],\"output_label\":[1]}
1265{\"output_probability\":[{\"0\":0.78800213,\"1\":0.21199787}],\"output_label\":[0]}
2600{\"output_probability\":[{\"0\":0.9766014,\"1\":0.023398578}],\"output_label\":[0]}
3530{\"output_probability\":[{\"0\":0.97246957,\"1\":0.027530432}],\"output_label\":[0]}
45{\"output_probability\":[{\"0\":0.9863973,\"1\":0.013602674}],\"output_label\":[0]}
5305{\"output_probability\":[{\"0\":0.8996898,\"1\":0.10031021}],\"output_label\":[0]}
620{\"output_probability\":[{\"0\":0.94164395,\"1\":0.058356047}],\"output_label\":[0]}
7570{\"output_probability\":[{\"0\":0.96782416,\"1\":0.03217584}],\"output_label\":[0]}
860{\"output_probability\":[{\"0\":0.994561,\"1\":0.0054389834}],\"output_label\":[0]}
9610{\"output_probability\":[{\"0\":0.9871934,\"1\":0.012806594}],\"output_label\":[0]}
\n", - "
" - ], - "text/plain": [ - " PatientId \\\n", - "0 545 \n", - "1 265 \n", - "2 600 \n", - "3 530 \n", - "4 5 \n", - "5 305 \n", - "6 20 \n", - "7 570 \n", - "8 60 \n", - "9 610 \n", - "\n", - " json_report \n", - "0 {\"output_probability\":[{\"0\":0.013714135,\"1\":0.98628587}],\"output_label\":[1]} \n", - "1 {\"output_probability\":[{\"0\":0.78800213,\"1\":0.21199787}],\"output_label\":[0]} \n", - "2 {\"output_probability\":[{\"0\":0.9766014,\"1\":0.023398578}],\"output_label\":[0]} \n", - "3 {\"output_probability\":[{\"0\":0.97246957,\"1\":0.027530432}],\"output_label\":[0]} \n", - "4 {\"output_probability\":[{\"0\":0.9863973,\"1\":0.013602674}],\"output_label\":[0]} \n", - "5 {\"output_probability\":[{\"0\":0.8996898,\"1\":0.10031021}],\"output_label\":[0]} \n", - "6 {\"output_probability\":[{\"0\":0.94164395,\"1\":0.058356047}],\"output_label\":[0]} \n", - "7 {\"output_probability\":[{\"0\":0.96782416,\"1\":0.03217584}],\"output_label\":[0]} \n", - "8 {\"output_probability\":[{\"0\":0.994561,\"1\":0.0054389834}],\"output_label\":[0]} \n", - "9 {\"output_probability\":[{\"0\":0.9871934,\"1\":0.012806594}],\"output_label\":[0]} " - ] - }, - "execution_count": 54, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "query = f\"\"\"\n", - "SELECT td.* FROM {byom_db}.ONNXPredict (\n", - " ON (SELECT * FROM pima_patient_features WHERE patientid MOD 5 = 0) AS DataTable\n", - " ON (SELECT * FROM aoa_byom_models \n", - " WHERE model_version='onnx-test') AS ModelTable DIMENSION\n", - " USING\n", - " Accumulate ('patientid')\n", - ") AS td;\n", - "\"\"\"\n", - "\n", - "pd.read_sql(query, get_connection()).head(10)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Custom BYOM Evaluation Logic\n", - "\n", - "You can define custom evaluation logic for BYOM models in ModelOps. This allows you to define your own charts, metrics etc that are to be created and captured as part of evaluation / comparison." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "from aoa.stats.stats import _capture_stats, _NpEncoder\n", - "import json\n", - "import logging\n", - "import sys\n", - "\n", - "logging.basicConfig(stream=sys.stdout, level=logging.INFO)\n", - "\n", - "\n", - "train_df = DataFrame.from_query(\"\"\"\n", - "SELECT \n", - " F.*, D.hasdiabetes \n", - "FROM pima_patient_features F\n", - "JOIN pima_patient_diagnoses D\n", - " ON F.patientid = D.patientid \n", - " WHERE F.patientid MOD 5 <> 0\n", - "\"\"\")\n", - "\n", - "data_stats = _capture_stats(df=train_df,\n", - " features=features,\n", - " targets=[target],\n", - " categorical=[target],\n", - " feature_metadata_fqtn=f\"{database}.aoa_feature_metadata\")\n", - "\n", - "with open(\"data_stats.json\", 'w+') as f:\n", - " json.dump(data_stats, f, indent=2, cls=_NpEncoder)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn import metrics\n", - "from teradataml import (\n", - " get_context,\n", - " DataFrame,\n", - " PMMLPredict,\n", - " configure\n", - ")\n", - "from aoa import (\n", - " record_evaluation_stats,\n", - " aoa_create_context,\n", - " store_byom_tmp,\n", - " ModelContext\n", - ")\n", - "\n", - "import os\n", - "import json\n", - "\n", - "\n", - "def plot_confusion_matrix(cf, img_filename):\n", - " import itertools\n", - " import matplotlib.pyplot as plt\n", - " plt.imshow(cf, cmap=plt.cm.Blues, interpolation='nearest')\n", - " plt.colorbar()\n", - " plt.title('Confusion Matrix')\n", - " plt.xlabel('Predicted')\n", - " plt.ylabel('Actual')\n", - " plt.xticks([0, 1], ['0', '1'])\n", - " plt.yticks([0, 1], ['0', '1'])\n", - "\n", - " thresh = cf.max() / 2.\n", - " for i, j in itertools.product(range(cf.shape[0]), range(cf.shape[1])):\n", - " plt.text(j, i, format(cf[i, j], 'd'), horizontalalignment='center',\n", - " color='white' if cf[i, j] > thresh else 'black')\n", - "\n", - " fig = plt.gcf()\n", - " fig.savefig(img_filename, dpi=500)\n", - " plt.clf()\n", - "\n", - "\n", - "def evaluate(context: ModelContext, **kwargs):\n", - " aoa_create_context()\n", - "\n", - " \n", - " # this evaluation.py can hanlde both onnx and pmml. usually, you would only need to support one but for \n", - " # demo purposes, we will show with both as we produce both onnx and pmml in this notebook.\n", - " \n", - " import glob\n", - " for file_name in glob.glob(f\"{context.artifact_input_path}/model.*\"):\n", - " model_type = file_name.split(\".\")[-1]\n", - " \n", - " with open(f\"{context.artifact_input_path}/model.{model_type}\", \"rb\") as f:\n", - " model_bytes = f.read()\n", - " \n", - " model = store_byom_tmp(get_context(), \"byom_models_tmp\", context.model_version, model_bytes)\n", - "\n", - " target_name = context.dataset_info.target_names[0]\n", - "\n", - " if model_type.upper() == \"ONNX\":\n", - " byom_target_sql = \"CAST(CAST(json_report AS JSON).JSONExtractValue('$.output_label[0]') AS INT)\"\n", - " mldb = os.environ.get(\"AOA_BYOM_INSTALL_DB\", \"MLDB\")\n", - "\n", - " query = f\"\"\"\n", - " SELECT sc.{context.dataset_info.entity_key}, {target_name}, sc.json_report\n", - " FROM {mldb}.ONNXPredict(\n", - " ON ({context.dataset_info.sql}) AS DataTable\n", - " ON (SELECT model_version as model_id, model FROM byom_models_tmp) AS ModelTable DIMENSION\n", - " USING\n", - " Accumulate('{context.dataset_info.entity_key}', '{target_name}')\n", - " ) sc;\n", - " \"\"\"\n", - "\n", - " predictions_df = DataFrame.from_query(query)\n", - " \n", - " elif model_type.upper() == \"PMML\":\n", - " byom_target_sql = \"CAST(CAST(json_report AS JSON).JSONExtractValue('$.predicted_HasDiabetes') AS INT)\"\n", - " \n", - " pmml = PMMLPredict(\n", - " modeldata=model,\n", - " newdata=DataFrame.from_query(context.dataset_info.sql),\n", - " accumulate=[context.dataset_info.entity_key, target_name])\n", - " \n", - " predictions_df = pmml.result\n", - "\n", - " predictions_df.to_sql(table_name=\"predictions_tmp\", if_exists=\"replace\", temporary=True)\n", - "\n", - " metrics_df = DataFrame.from_query(f\"\"\"\n", - " SELECT \n", - " HasDiabetes as y_test, \n", - " {byom_target_sql} as y_pred\n", - " FROM predictions_tmp\n", - " \"\"\")\n", - " metrics_df = metrics_df.to_pandas()\n", - "\n", - " y_pred = metrics_df[[\"y_pred\"]]\n", - " y_test = metrics_df[[\"y_test\"]]\n", - "\n", - " evaluation = {\n", - " 'Accuracy': '{:.2f}'.format(metrics.accuracy_score(y_test, y_pred)),\n", - " 'Recall': '{:.2f}'.format(metrics.recall_score(y_test, y_pred)),\n", - " 'Precision': '{:.2f}'.format(metrics.precision_score(y_test, y_pred)),\n", - " 'f1-score': '{:.2f}'.format(metrics.f1_score(y_test, y_pred))\n", - " }\n", - "\n", - " with open(f\"{context.artifact_output_path}/metrics.json\", \"w+\") as f:\n", - " json.dump(evaluation, f)\n", - "\n", - " # create confusion matrix plot\n", - " cf = metrics.confusion_matrix(y_test, y_pred)\n", - "\n", - " plot_confusion_matrix(cf, f\"{context.artifact_output_path}/confusion_matrix\")\n", - "\n", - " # calculate stats if training stats exist\n", - " if os.path.exists(f\"{context.artifact_input_path}/data_stats.json\"):\n", - " record_evaluation_stats(features_df=DataFrame.from_query(context.dataset_info.sql),\n", - " predicted_df=DataFrame(\"predictions_tmp\"),\n", - " context=context)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO:aoa.util.connections:teradataml context already exists. Skipping create_context.\n", - "INFO:aoa.stats.stats:Computing evaluation dataset statistics\n", - "{'Accuracy': '0.75', 'Recall': '0.67', 'Precision': '0.67', 'f1-score': '0.67'}\n" - ] - }, - { - "data": { - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from aoa import ModelContext, DatasetInfo\n", - "\n", - "# Define the ModelContext to test with. The ModelContext is created and managed automatically by ModelOps \n", - "# when it executes your code via CLI / UI. However, for testing in the notebook, you can define as follows\n", - "\n", - "# define the evaluation dataset \n", - "sql = \"\"\"\n", - "SELECT \n", - " F.*, D.hasdiabetes \n", - "FROM PIMA_PATIENT_FEATURES F \n", - "JOIN PIMA_PATIENT_DIAGNOSES D\n", - "ON F.patientid = D.patientid\n", - " WHERE D.patientid MOD 5 = 0\n", - "\"\"\"\n", - "\n", - "feature_metadata = {\n", - " \"database\": database,\n", - " \"table\": \"aoa_feature_metadata\"\n", - "}\n", - "\n", - "entity_key = \"PatientId\"\n", - "target_names = [\"HasDiabetes\"]\n", - "feature_names = [\"NumTimesPrg\", \"PlGlcConc\", \"BloodP\", \"SkinThick\", \"TwoHourSerIns\", \"BMI\", \"DiPedFunc\", \"Age\"]\n", - "\n", - "dataset_info = DatasetInfo(sql=sql,\n", - " entity_key=entity_key,\n", - " feature_names=feature_names,\n", - " target_names=target_names,\n", - " feature_metadata=feature_metadata)\n", - "\n", - "ctx = ModelContext(hyperparams={},\n", - " dataset_info=dataset_info,\n", - " artifact_output_path=\"/tmp\",\n", - " artifact_input_path=\"./\",\n", - " model_version=\"v1\",\n", - " model_table=\"aoa_model_v1\")\n", - "\n", - "\n", - "# drop volatile table from session if executing multiple times\n", - "try:\n", - " get_context().execute(f\"DROP TABLE byom_models_tmp\")\n", - "except: \n", - " pass\n", - "\n", - "evaluate(context=ctx)\n", - "\n", - "# view evaluation results\n", - "with open(f\"{ctx.artifact_output_path}/metrics.json\") as f:\n", - " print(json.load(f))" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "
PatientIdHasDiabetesjson_report
3900{\"probability_0\":0.8534884407791314,\"probability_1\":0.1465115592208686,\"predicted_HasDiabetes\":0}
5750{\"probability_0\":0.5411704893844536,\"probability_1\":0.4588295106155465,\"predicted_HasDiabetes\":0}
7401{\"probability_0\":0.18309459019075702,\"probability_1\":0.816905409809243,\"predicted_HasDiabetes\":1}
2900{\"probability_0\":0.9275644263007603,\"probability_1\":0.0724355736992397,\"predicted_HasDiabetes\":0}
4300{\"probability_0\":0.9993898309624312,\"probability_1\":6.101690375688237E-4,\"predicted_HasDiabetes\":0}
4100{\"probability_0\":0.7306026985110992,\"probability_1\":0.26939730148890084,\"predicted_HasDiabetes\":0}
4600{\"probability_0\":0.7245463351662919,\"probability_1\":0.27545366483370815,\"predicted_HasDiabetes\":0}
3250{\"probability_0\":0.6100536262346685,\"probability_1\":0.3899463737653314,\"predicted_HasDiabetes\":0}
3601{\"probability_0\":0.014436294801631777,\"probability_1\":0.9855637051983682,\"predicted_HasDiabetes\":1}
5601{\"probability_0\":0.681609701643378,\"probability_1\":0.3183902983566221,\"predicted_HasDiabetes\":0}
" - ], - "text/plain": [ - " PatientId HasDiabetes json_report\n", - "0 725 0 {\"probability_0\":0.7656401654913679,\"probability_1\":0.23435983450863204,\"predicted_HasDiabetes\":0}\n", - "1 575 0 {\"probability_0\":0.5411704893844536,\"probability_1\":0.4588295106155465,\"predicted_HasDiabetes\":0}\n", - "2 740 1 {\"probability_0\":0.18309459019075702,\"probability_1\":0.816905409809243,\"predicted_HasDiabetes\":1}\n", - "3 145 0 {\"probability_0\":0.9954274192406505,\"probability_1\":0.004572580759349547,\"predicted_HasDiabetes\":0}\n", - "4 290 0 {\"probability_0\":0.9275644263007603,\"probability_1\":0.0724355736992397,\"predicted_HasDiabetes\":0}\n", - "5 410 0 {\"probability_0\":0.7306026985110992,\"probability_1\":0.26939730148890084,\"predicted_HasDiabetes\":0}\n", - "6 415 1 {\"probability_0\":0.37542607752957524,\"probability_1\":0.6245739224704248,\"predicted_HasDiabetes\":1}\n", - "7 570 0 {\"probability_0\":0.9871590600678464,\"probability_1\":0.012840939932153675,\"predicted_HasDiabetes\":0}\n", - "8 700 0 {\"probability_0\":0.9828242945003008,\"probability_1\":0.017175705499699205,\"predicted_HasDiabetes\":0}\n", - "9 465 0 {\"probability_0\":0.9821548641078263,\"probability_1\":0.01784513589217372,\"predicted_HasDiabetes\":0}" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "DataFrame.from_query(\"SELECT PatientId, HasDiabetes, json_report FROM predictions_tmp\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python [conda env:py39]", - "language": "python", - "name": "conda-env-py39-py" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/pr-preview/pr-110/modelops/_attachments/ModelOps_BYOM_files_v6.zip b/pr-preview/pr-110/modelops/_attachments/ModelOps_BYOM_files_v6.zip deleted file mode 100644 index c2feea759..000000000 Binary files a/pr-preview/pr-110/modelops/_attachments/ModelOps_BYOM_files_v6.zip and /dev/null differ diff --git a/pr-preview/pr-110/modelops/_attachments/ModelOps_BYOM_files_v7.zip b/pr-preview/pr-110/modelops/_attachments/ModelOps_BYOM_files_v7.zip deleted file mode 100644 index 5f01472cc..000000000 Binary files a/pr-preview/pr-110/modelops/_attachments/ModelOps_BYOM_files_v7.zip and /dev/null differ diff --git a/pr-preview/pr-110/modelops/_attachments/ModelOps_Data_files_v6.zip b/pr-preview/pr-110/modelops/_attachments/ModelOps_Data_files_v6.zip deleted file mode 100644 index 54843e045..000000000 Binary files a/pr-preview/pr-110/modelops/_attachments/ModelOps_Data_files_v6.zip and /dev/null differ diff --git a/pr-preview/pr-110/modelops/_attachments/ModelOps_Data_files_v7.zip b/pr-preview/pr-110/modelops/_attachments/ModelOps_Data_files_v7.zip deleted file mode 100644 index 93902f2ca..000000000 Binary files a/pr-preview/pr-110/modelops/_attachments/ModelOps_Data_files_v7.zip and /dev/null differ diff --git a/pr-preview/pr-110/modelops/_attachments/ModelOps_Operationalize_v6.ipynb b/pr-preview/pr-110/modelops/_attachments/ModelOps_Operationalize_v6.ipynb deleted file mode 100755 index d9efd7c49..000000000 --- a/pr-preview/pr-110/modelops/_attachments/ModelOps_Operationalize_v6.ipynb +++ /dev/null @@ -1,732 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Overview\n", - "\n", - "Once we have finished experiementation and found a good model, we want to operationalize it. \n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import logging\n", - "import sys\n", - "logging.basicConfig(stream=sys.stdout, level=logging.INFO)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Host: tdprd.td.teradata.com\n", - "Username: wf250003\n", - "Password: ········\n" - ] - } - ], - "source": [ - "from teradataml import create_context\n", - "import getpass\n", - "\n", - "host = input(\"Host: \")\n", - "username = input(\"Username: \")\n", - "password = getpass.getpass(\"Password: \")\n", - "val_db = input(\"VAL DB: \")\n", - "byom_db = input(\"BYOM DB: \")\n", - "\n", - "# configure byom/val installation\n", - "configure.val_install_location = val_db\n", - "configure.byom_install_location = byom_db\n", - "\n", - "# by default we assume your are using your user database. change as required\n", - "database = username\n", - "\n", - "create_context(host=host, username=username, password=password, logmech=\"TDNEGO\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Define Training Function\n", - "\n", - "The training function takes the following shape\n", - "\n", - "```python\n", - "def train(context: ModelContext, **kwargs):\n", - " aoa_create_context()\n", - " \n", - " # your training code\n", - " \n", - " # save your model\n", - " joblib.dump(model, f\"{context.artifact_output_path}/model.joblib\")\n", - " \n", - " record_training_stats(...)\n", - "```\n", - "\n", - "You can execute this from the CLI or directly within the notebook as shown." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# %%writefile ../model_modules/training.py\n", - "\n", - "from xgboost import XGBClassifier\n", - "from sklearn.preprocessing import MinMaxScaler\n", - "from sklearn.pipeline import Pipeline\n", - "from nyoka import xgboost_to_pmml\n", - "from teradataml import DataFrame\n", - "from aoa import (\n", - " record_training_stats,\n", - " save_plot,\n", - " aoa_create_context,\n", - " ModelContext\n", - ")\n", - "\n", - "import joblib\n", - "\n", - "\n", - "def train(context: ModelContext, **kwargs):\n", - " aoa_create_context()\n", - "\n", - " feature_names = context.dataset_info.feature_names\n", - " target_name = context.dataset_info.target_names[0]\n", - "\n", - " # read training dataset from Teradata and convert to pandas\n", - " train_df = DataFrame.from_query(context.dataset_info.sql)\n", - " train_pdf = train_df.to_pandas(all_rows=True)\n", - "\n", - " # split data into X and y\n", - " X_train = train_pdf[feature_names]\n", - " y_train = train_pdf[target_name]\n", - "\n", - " print(\"Starting training...\")\n", - "\n", - " # fit model to training data\n", - " model = Pipeline([('scaler', MinMaxScaler()),\n", - " ('xgb', XGBClassifier(eta=context.hyperparams[\"eta\"],\n", - " max_depth=context.hyperparams[\"max_depth\"]))])\n", - "\n", - " model.fit(X_train, y_train)\n", - "\n", - " print(\"Finished training\")\n", - "\n", - " # export model artefacts\n", - " joblib.dump(model, f\"{context.artifact_output_path}/model.joblib\")\n", - "\n", - " # we can also save as pmml so it can be used for In-Vantage scoring etc.\n", - " xgboost_to_pmml(pipeline=model, col_names=feature_names, target_name=target_name,\n", - " pmml_f_name=f\"{context.artifact_output_path}/model.pmml\")\n", - "\n", - " print(\"Saved trained model\")\n", - "\n", - " from xgboost import plot_importance\n", - " model[\"xgb\"].get_booster().feature_names = feature_names\n", - " plot_importance(model[\"xgb\"].get_booster(), max_num_features=10)\n", - " save_plot(\"feature_importance.png\", context=context)\n", - "\n", - " feature_importance = model[\"xgb\"].get_booster().get_score(importance_type=\"weight\")\n", - "\n", - " record_training_stats(train_df,\n", - " features=feature_names,\n", - " predictors=[target_name],\n", - " categorical=[target_name],\n", - " importance=feature_importance,\n", - " context=context)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO:aoa.util.connections:teradataml context already exists. Skipping create_context.\n", - "Starting training...\n", - "Finished training\n", - "Saved trained model\n", - "INFO:aoa.stats.stats:Computing training dataset statistics\n" - ] - }, - { - "data": { - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from aoa import ModelContext, DatasetInfo\n", - "from teradataml import configure\n", - "\n", - "# Define the ModelContext to test with. The ModelContext is created and managed automatically by ModelOps \n", - "# when it executes your code via CLI / UI. However, for testing in the notebook, you can define as follows\n", - "\n", - "# define the training dataset \n", - "sql = \"\"\"\n", - "SELECT \n", - " F.*, D.hasdiabetes\n", - "FROM PIMA_PATIENT_FEATURES F \n", - "JOIN PIMA_PATIENT_DIAGNOSES D\n", - "ON F.patientid = D.patientid\n", - " WHERE D.patientid MOD 5 <> 0\n", - "\"\"\"\n", - "\n", - "feature_metadata = {\n", - " \"database\": database,\n", - " \"table\": \"aoa_feature_metadata\"\n", - "}\n", - "hyperparams = {\"max_depth\": 5, \"eta\": 0.2}\n", - "\n", - "entity_key = \"PatientId\"\n", - "target_names = [\"HasDiabetes\"]\n", - "feature_names = [\"NumTimesPrg\", \"PlGlcConc\", \"BloodP\", \"SkinThick\", \"TwoHourSerIns\", \"BMI\", \"DiPedFunc\", \"Age\"]\n", - " \n", - "dataset_info = DatasetInfo(sql=sql,\n", - " entity_key=entity_key,\n", - " feature_names=feature_names,\n", - " target_names=target_names,\n", - " feature_metadata=feature_metadata)\n", - "\n", - "\n", - "ctx = ModelContext(hyperparams=hyperparams,\n", - " dataset_info=dataset_info,\n", - " artifact_output_path=\"/tmp\",\n", - " model_version=\"v1\",\n", - " model_table=\"aoa_model_v1\")\n", - "\n", - "train(context=ctx)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Define Evaluation Function\n", - "\n", - "The evaluation function takes the following shape\n", - "\n", - "```python\n", - "def evaluate(context: ModelContext, **kwargs):\n", - " aoa_create_context()\n", - "\n", - " # read your model\n", - " model = joblib.load(f\"{context.artifact_input_path}/model.joblib\")\n", - " \n", - " # your evaluation logic\n", - " \n", - " record_evaluation_stats(...)\n", - "```\n", - "\n", - "You can execute this from the CLI or directly within the notebook as shown." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "# %%writefile ../model_modules/evaluation.py\n", - "\n", - "from sklearn import metrics\n", - "from teradataml import DataFrame, copy_to_sql\n", - "from aoa import (\n", - " record_evaluation_stats,\n", - " save_plot,\n", - " aoa_create_context,\n", - " ModelContext\n", - ")\n", - "\n", - "import joblib\n", - "import json\n", - "import numpy as np\n", - "import pandas as pd\n", - "\n", - "\n", - "def evaluate(context: ModelContext, **kwargs):\n", - "\n", - " aoa_create_context()\n", - "\n", - " model = joblib.load(f\"{context.artifact_input_path}/model.joblib\")\n", - "\n", - " feature_names = context.dataset_info.feature_names\n", - " target_name = context.dataset_info.target_names[0]\n", - "\n", - " test_df = DataFrame.from_query(context.dataset_info.sql)\n", - " test_pdf = test_df.to_pandas(all_rows=True)\n", - "\n", - " X_test = test_pdf[feature_names]\n", - " y_test = test_pdf[target_name]\n", - "\n", - " print(\"Scoring\")\n", - " y_pred = model.predict(X_test)\n", - "\n", - " y_pred_tdf = pd.DataFrame(y_pred, columns=[target_name])\n", - " y_pred_tdf[\"PatientId\"] = test_pdf[\"PatientId\"].values\n", - "\n", - " evaluation = {\n", - " 'Accuracy': '{:.2f}'.format(metrics.accuracy_score(y_test, y_pred)),\n", - " 'Recall': '{:.2f}'.format(metrics.recall_score(y_test, y_pred)),\n", - " 'Precision': '{:.2f}'.format(metrics.precision_score(y_test, y_pred)),\n", - " 'f1-score': '{:.2f}'.format(metrics.f1_score(y_test, y_pred))\n", - " }\n", - "\n", - " with open(f\"{context.artifact_output_path}/metrics.json\", \"w+\") as f:\n", - " json.dump(evaluation, f)\n", - "\n", - " metrics.plot_confusion_matrix(model, X_test, y_test)\n", - " save_plot('Confusion Matrix', context=context)\n", - "\n", - " metrics.plot_roc_curve(model, X_test, y_test)\n", - " save_plot('ROC Curve', context=context)\n", - "\n", - " # xgboost has its own feature importance plot support but lets use shap as explainability example\n", - " import shap\n", - "\n", - " shap_explainer = shap.TreeExplainer(model['xgb'])\n", - " shap_values = shap_explainer.shap_values(X_test)\n", - "\n", - " shap.summary_plot(shap_values, X_test, feature_names=feature_names,\n", - " show=False, plot_size=(12, 8), plot_type='bar')\n", - " save_plot('SHAP Feature Importance', context=context)\n", - "\n", - " feature_importance = pd.DataFrame(list(zip(feature_names, np.abs(shap_values).mean(0))),\n", - " columns=['col_name', 'feature_importance_vals'])\n", - " feature_importance = feature_importance.set_index(\"col_name\").T.to_dict(orient='records')[0]\n", - "\n", - " predictions_table = \"predictions_tmp\"\n", - " copy_to_sql(df=y_pred_tdf, table_name=predictions_table, index=False, if_exists=\"replace\", temporary=True)\n", - "\n", - " record_evaluation_stats(features_df=test_df,\n", - " predicted_df=DataFrame.from_query(f\"SELECT * FROM {predictions_table}\"),\n", - " importance=feature_importance,\n", - " context=context)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO:aoa.util.connections:teradataml context already exists. Skipping create_context.\n", - "Scoring\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", - "ntree_limit is deprecated, use `iteration_range` or model slicing instead.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO:aoa.stats.stats:Computing evaluation dataset statistics\n" - ] - }, - { - "data": { - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Define the ModelContext to test with. The ModelContext is created and managed automatically by ModelOps \n", - "# when it executes your code via CLI / UI. However, for testing in the notebook, you can define as follows\n", - "\n", - "# define the evaluation dataset \n", - "sql = \"\"\"\n", - "SELECT \n", - " F.*, D.hasdiabetes \n", - "FROM PIMA_PATIENT_FEATURES F \n", - "JOIN PIMA_PATIENT_DIAGNOSES D\n", - "ON F.patientid = D.patientid\n", - " WHERE D.patientid MOD 5 = 0\n", - "\"\"\"\n", - "\n", - "dataset_info = DatasetInfo(sql=sql,\n", - " entity_key=entity_key,\n", - " feature_names=feature_names,\n", - " target_names=target_names,\n", - " feature_metadata=feature_metadata)\n", - "\n", - "ctx = ModelContext(hyperparams=hyperparams,\n", - " dataset_info=dataset_info,\n", - " artifact_output_path=\"/tmp\",\n", - " artifact_input_path=\"/tmp\",\n", - " model_version=\"v1\",\n", - " model_table=\"aoa_model_v1\")\n", - "\n", - "evaluate(context=ctx)\n", - "\n", - "# view evaluation results\n", - "with open(f\"{ctx.artifact_output_path}/metrics.json\") as f:\n", - " print(json.load(f))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Define Scoring Function\n", - "\n", - "The scoring function takes the following shape\n", - "\n", - "```python\n", - "def score(context: ModelContext, **kwargs):\n", - " aoa_create_context()\n", - "\n", - " # read your model\n", - " model = joblib.load(f\"{context.artifact_input_path}/model.joblib\")\n", - " \n", - " # your evaluation logic\n", - " \n", - " record_scoring_stats(...)\n", - "```\n", - "\n", - "You can execute this from the CLI or directly within the notebook as shown." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "# %%writefile ../model_modules/scoring.py\n", - "\n", - "from teradataml import copy_to_sql, DataFrame\n", - "from aoa import (\n", - " record_scoring_stats,\n", - " aoa_create_context,\n", - " ModelContext\n", - ")\n", - "\n", - "import joblib\n", - "import pandas as pd\n", - "\n", - "\n", - "def score(context: ModelContext, **kwargs):\n", - "\n", - " aoa_create_context()\n", - "\n", - " model = joblib.load(f\"{context.artifact_input_path}/model.joblib\")\n", - "\n", - " feature_names = context.dataset_info.feature_names\n", - " target_name = context.dataset_info.target_names[0]\n", - " entity_key = context.dataset_info.entity_key\n", - "\n", - " features_tdf = DataFrame.from_query(context.dataset_info.sql)\n", - " features_pdf = features_tdf.to_pandas(all_rows=True)\n", - "\n", - " print(\"Scoring\")\n", - " predictions_pdf = model.predict(features_pdf[feature_names])\n", - "\n", - " print(\"Finished Scoring\")\n", - "\n", - " # store the predictions\n", - " predictions_pdf = pd.DataFrame(predictions_pdf, columns=[target_name])\n", - " predictions_pdf[entity_key] = features_pdf.index.values\n", - " # add job_id column so we know which execution this is from if appended to predictions table\n", - " predictions_pdf[\"job_id\"] = context.job_id\n", - "\n", - " # teradataml doesn't match column names on append.. and so to match / use same table schema as for byom predict\n", - " # example (see README.md), we must add empty json_report column and change column order manually (v17.0.0.4)\n", - " # CREATE MULTISET TABLE pima_patient_predictions\n", - " # (\n", - " # job_id VARCHAR(255), -- comes from airflow on job execution\n", - " # PatientId BIGINT, -- entity key as it is in the source data\n", - " # HasDiabetes BIGINT, -- if model automatically extracts target\n", - " # json_report CLOB(1048544000) CHARACTER SET UNICODE -- output of\n", - " # )\n", - " # PRIMARY INDEX ( job_id );\n", - " predictions_pdf[\"json_report\"] = \"\"\n", - " predictions_pdf = predictions_pdf[[\"job_id\", entity_key, target_name, \"json_report\"]]\n", - "\n", - " copy_to_sql(df=predictions_pdf,\n", - " schema_name=context.dataset_info.predictions_database,\n", - " table_name=context.dataset_info.predictions_table,\n", - " index=False,\n", - " if_exists=\"append\")\n", - " \n", - " print(\"Saved predictions in Teradata\")\n", - "\n", - " # calculate stats\n", - " predictions_df = DataFrame.from_query(f\"\"\"\n", - " SELECT \n", - " * \n", - " FROM {context.dataset_info.get_predictions_metadata_fqtn()} \n", - " WHERE job_id = '{context.job_id}'\n", - " \"\"\")\n", - "\n", - " record_scoring_stats(features_df=features_tdf, predicted_df=predictions_df, context=context)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO:aoa.util.connections:teradataml context already exists. Skipping create_context.\n", - "Scoring\n", - "Finished Scoring\n", - "Saved predictions in Teradata\n", - "INFO:aoa.stats.stats:Computing scoring dataset statistics\n", - "WARNING:aoa.stats.metrics:Publishing scoring metrics is not enabled\n" - ] - } - ], - "source": [ - "# Define the ModelContext to test with. The ModelContext is created and managed automatically by ModelOps \n", - "# when it executes your code via CLI / UI. However, for testing in the notebook, you can define as follows\n", - "\n", - "# define the scoring dataset \n", - "\n", - "sql = \"\"\"\n", - "SELECT \n", - " F.*\n", - "FROM PIMA_PATIENT_FEATURES F \n", - " WHERE F.patientid MOD 5 = 0\n", - "\"\"\"\n", - "\n", - "# where to store predictions\n", - "predictions = {\n", - " \"database\": database,\n", - " \"table\": \"pima_patient_predictions_tmp\"\n", - "}\n", - "\n", - "import uuid\n", - "job_id=str(uuid.uuid4())\n", - "\n", - "dataset_info = DatasetInfo(sql=sql,\n", - " entity_key=entity_key,\n", - " feature_names=feature_names,\n", - " target_names=target_names,\n", - " feature_metadata=feature_metadata,\n", - " predictions=predictions)\n", - "\n", - "ctx = ModelContext(hyperparams=hyperparams,\n", - " dataset_info=dataset_info,\n", - " artifact_output_path=\"/tmp\",\n", - " artifact_input_path=\"/tmp\",\n", - " model_version=\"v1\",\n", - " model_table=\"aoa_model_v1\",\n", - " job_id=job_id)\n", - "\n", - "score(context=ctx)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "
job_idPatientIdHasDiabetesjson_report
2d16fcf4-78e3-4801-a052-a9c224814b853601
2d16fcf4-78e3-4801-a052-a9c224814b85451
2d16fcf4-78e3-4801-a052-a9c224814b854900
2d16fcf4-78e3-4801-a052-a9c224814b856601
2d16fcf4-78e3-4801-a052-a9c224814b85301
2d16fcf4-78e3-4801-a052-a9c224814b852201
2d16fcf4-78e3-4801-a052-a9c224814b853551
2d16fcf4-78e3-4801-a052-a9c224814b855600
2d16fcf4-78e3-4801-a052-a9c224814b854600
2d16fcf4-78e3-4801-a052-a9c224814b853250
" - ], - "text/plain": [ - " job_id PatientId HasDiabetes json_report\n", - "0 2d16fcf4-78e3-4801-a052-a9c224814b85 360 1 \n", - "1 2d16fcf4-78e3-4801-a052-a9c224814b85 45 1 \n", - "2 2d16fcf4-78e3-4801-a052-a9c224814b85 490 0 \n", - "3 2d16fcf4-78e3-4801-a052-a9c224814b85 660 1 \n", - "4 2d16fcf4-78e3-4801-a052-a9c224814b85 30 1 \n", - "5 2d16fcf4-78e3-4801-a052-a9c224814b85 220 1 \n", - "6 2d16fcf4-78e3-4801-a052-a9c224814b85 355 1 \n", - "7 2d16fcf4-78e3-4801-a052-a9c224814b85 560 0 \n", - "8 2d16fcf4-78e3-4801-a052-a9c224814b85 460 0 \n", - "9 2d16fcf4-78e3-4801-a052-a9c224814b85 325 0 " - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "DataFrame.from_query(f\"SELECT * FROM {database}.pima_patient_predictions_tmp\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Define Model Metadata\n", - "\n", - "Finally, create the configuration files.\n", - "\n", - "Requirements file with the dependencies and versions\n", - "\n", - "```\n", - "%%writefile ../model_modules/requirements.txt\n", - "xgboost==0.90\n", - "scikit-learn==0.24.2\n", - "shap==0.36.0\n", - "matplotlib==3.3.1\n", - "teradataml==17.0.0.4\n", - "nyoka==4.3.0\n", - "aoa==6.0.0\n", - "```\n", - "\n", - "The hyper parameter configuration (defaults)\n", - "```\n", - "%%writefile ../config.json\n", - "{\n", - " \"hyperParameters\": {\n", - " \"eta\": 0.2,\n", - " \"max_depth\": 6\n", - " }\n", - "}\n", - "```" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python [conda env:py39]", - "language": "python", - "name": "conda-env-py39-py" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/pr-preview/pr-110/modelops/_attachments/ModelOps_Operationalize_v7.ipynb b/pr-preview/pr-110/modelops/_attachments/ModelOps_Operationalize_v7.ipynb deleted file mode 100755 index d9efd7c49..000000000 --- a/pr-preview/pr-110/modelops/_attachments/ModelOps_Operationalize_v7.ipynb +++ /dev/null @@ -1,732 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Overview\n", - "\n", - "Once we have finished experiementation and found a good model, we want to operationalize it. \n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import logging\n", - "import sys\n", - "logging.basicConfig(stream=sys.stdout, level=logging.INFO)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Host: tdprd.td.teradata.com\n", - "Username: wf250003\n", - "Password: ········\n" - ] - } - ], - "source": [ - "from teradataml import create_context\n", - "import getpass\n", - "\n", - "host = input(\"Host: \")\n", - "username = input(\"Username: \")\n", - "password = getpass.getpass(\"Password: \")\n", - "val_db = input(\"VAL DB: \")\n", - "byom_db = input(\"BYOM DB: \")\n", - "\n", - "# configure byom/val installation\n", - "configure.val_install_location = val_db\n", - "configure.byom_install_location = byom_db\n", - "\n", - "# by default we assume your are using your user database. change as required\n", - "database = username\n", - "\n", - "create_context(host=host, username=username, password=password, logmech=\"TDNEGO\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Define Training Function\n", - "\n", - "The training function takes the following shape\n", - "\n", - "```python\n", - "def train(context: ModelContext, **kwargs):\n", - " aoa_create_context()\n", - " \n", - " # your training code\n", - " \n", - " # save your model\n", - " joblib.dump(model, f\"{context.artifact_output_path}/model.joblib\")\n", - " \n", - " record_training_stats(...)\n", - "```\n", - "\n", - "You can execute this from the CLI or directly within the notebook as shown." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# %%writefile ../model_modules/training.py\n", - "\n", - "from xgboost import XGBClassifier\n", - "from sklearn.preprocessing import MinMaxScaler\n", - "from sklearn.pipeline import Pipeline\n", - "from nyoka import xgboost_to_pmml\n", - "from teradataml import DataFrame\n", - "from aoa import (\n", - " record_training_stats,\n", - " save_plot,\n", - " aoa_create_context,\n", - " ModelContext\n", - ")\n", - "\n", - "import joblib\n", - "\n", - "\n", - "def train(context: ModelContext, **kwargs):\n", - " aoa_create_context()\n", - "\n", - " feature_names = context.dataset_info.feature_names\n", - " target_name = context.dataset_info.target_names[0]\n", - "\n", - " # read training dataset from Teradata and convert to pandas\n", - " train_df = DataFrame.from_query(context.dataset_info.sql)\n", - " train_pdf = train_df.to_pandas(all_rows=True)\n", - "\n", - " # split data into X and y\n", - " X_train = train_pdf[feature_names]\n", - " y_train = train_pdf[target_name]\n", - "\n", - " print(\"Starting training...\")\n", - "\n", - " # fit model to training data\n", - " model = Pipeline([('scaler', MinMaxScaler()),\n", - " ('xgb', XGBClassifier(eta=context.hyperparams[\"eta\"],\n", - " max_depth=context.hyperparams[\"max_depth\"]))])\n", - "\n", - " model.fit(X_train, y_train)\n", - "\n", - " print(\"Finished training\")\n", - "\n", - " # export model artefacts\n", - " joblib.dump(model, f\"{context.artifact_output_path}/model.joblib\")\n", - "\n", - " # we can also save as pmml so it can be used for In-Vantage scoring etc.\n", - " xgboost_to_pmml(pipeline=model, col_names=feature_names, target_name=target_name,\n", - " pmml_f_name=f\"{context.artifact_output_path}/model.pmml\")\n", - "\n", - " print(\"Saved trained model\")\n", - "\n", - " from xgboost import plot_importance\n", - " model[\"xgb\"].get_booster().feature_names = feature_names\n", - " plot_importance(model[\"xgb\"].get_booster(), max_num_features=10)\n", - " save_plot(\"feature_importance.png\", context=context)\n", - "\n", - " feature_importance = model[\"xgb\"].get_booster().get_score(importance_type=\"weight\")\n", - "\n", - " record_training_stats(train_df,\n", - " features=feature_names,\n", - " predictors=[target_name],\n", - " categorical=[target_name],\n", - " importance=feature_importance,\n", - " context=context)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO:aoa.util.connections:teradataml context already exists. Skipping create_context.\n", - "Starting training...\n", - "Finished training\n", - "Saved trained model\n", - "INFO:aoa.stats.stats:Computing training dataset statistics\n" - ] - }, - { - "data": { - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from aoa import ModelContext, DatasetInfo\n", - "from teradataml import configure\n", - "\n", - "# Define the ModelContext to test with. The ModelContext is created and managed automatically by ModelOps \n", - "# when it executes your code via CLI / UI. However, for testing in the notebook, you can define as follows\n", - "\n", - "# define the training dataset \n", - "sql = \"\"\"\n", - "SELECT \n", - " F.*, D.hasdiabetes\n", - "FROM PIMA_PATIENT_FEATURES F \n", - "JOIN PIMA_PATIENT_DIAGNOSES D\n", - "ON F.patientid = D.patientid\n", - " WHERE D.patientid MOD 5 <> 0\n", - "\"\"\"\n", - "\n", - "feature_metadata = {\n", - " \"database\": database,\n", - " \"table\": \"aoa_feature_metadata\"\n", - "}\n", - "hyperparams = {\"max_depth\": 5, \"eta\": 0.2}\n", - "\n", - "entity_key = \"PatientId\"\n", - "target_names = [\"HasDiabetes\"]\n", - "feature_names = [\"NumTimesPrg\", \"PlGlcConc\", \"BloodP\", \"SkinThick\", \"TwoHourSerIns\", \"BMI\", \"DiPedFunc\", \"Age\"]\n", - " \n", - "dataset_info = DatasetInfo(sql=sql,\n", - " entity_key=entity_key,\n", - " feature_names=feature_names,\n", - " target_names=target_names,\n", - " feature_metadata=feature_metadata)\n", - "\n", - "\n", - "ctx = ModelContext(hyperparams=hyperparams,\n", - " dataset_info=dataset_info,\n", - " artifact_output_path=\"/tmp\",\n", - " model_version=\"v1\",\n", - " model_table=\"aoa_model_v1\")\n", - "\n", - "train(context=ctx)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Define Evaluation Function\n", - "\n", - "The evaluation function takes the following shape\n", - "\n", - "```python\n", - "def evaluate(context: ModelContext, **kwargs):\n", - " aoa_create_context()\n", - "\n", - " # read your model\n", - " model = joblib.load(f\"{context.artifact_input_path}/model.joblib\")\n", - " \n", - " # your evaluation logic\n", - " \n", - " record_evaluation_stats(...)\n", - "```\n", - "\n", - "You can execute this from the CLI or directly within the notebook as shown." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "# %%writefile ../model_modules/evaluation.py\n", - "\n", - "from sklearn import metrics\n", - "from teradataml import DataFrame, copy_to_sql\n", - "from aoa import (\n", - " record_evaluation_stats,\n", - " save_plot,\n", - " aoa_create_context,\n", - " ModelContext\n", - ")\n", - "\n", - "import joblib\n", - "import json\n", - "import numpy as np\n", - "import pandas as pd\n", - "\n", - "\n", - "def evaluate(context: ModelContext, **kwargs):\n", - "\n", - " aoa_create_context()\n", - "\n", - " model = joblib.load(f\"{context.artifact_input_path}/model.joblib\")\n", - "\n", - " feature_names = context.dataset_info.feature_names\n", - " target_name = context.dataset_info.target_names[0]\n", - "\n", - " test_df = DataFrame.from_query(context.dataset_info.sql)\n", - " test_pdf = test_df.to_pandas(all_rows=True)\n", - "\n", - " X_test = test_pdf[feature_names]\n", - " y_test = test_pdf[target_name]\n", - "\n", - " print(\"Scoring\")\n", - " y_pred = model.predict(X_test)\n", - "\n", - " y_pred_tdf = pd.DataFrame(y_pred, columns=[target_name])\n", - " y_pred_tdf[\"PatientId\"] = test_pdf[\"PatientId\"].values\n", - "\n", - " evaluation = {\n", - " 'Accuracy': '{:.2f}'.format(metrics.accuracy_score(y_test, y_pred)),\n", - " 'Recall': '{:.2f}'.format(metrics.recall_score(y_test, y_pred)),\n", - " 'Precision': '{:.2f}'.format(metrics.precision_score(y_test, y_pred)),\n", - " 'f1-score': '{:.2f}'.format(metrics.f1_score(y_test, y_pred))\n", - " }\n", - "\n", - " with open(f\"{context.artifact_output_path}/metrics.json\", \"w+\") as f:\n", - " json.dump(evaluation, f)\n", - "\n", - " metrics.plot_confusion_matrix(model, X_test, y_test)\n", - " save_plot('Confusion Matrix', context=context)\n", - "\n", - " metrics.plot_roc_curve(model, X_test, y_test)\n", - " save_plot('ROC Curve', context=context)\n", - "\n", - " # xgboost has its own feature importance plot support but lets use shap as explainability example\n", - " import shap\n", - "\n", - " shap_explainer = shap.TreeExplainer(model['xgb'])\n", - " shap_values = shap_explainer.shap_values(X_test)\n", - "\n", - " shap.summary_plot(shap_values, X_test, feature_names=feature_names,\n", - " show=False, plot_size=(12, 8), plot_type='bar')\n", - " save_plot('SHAP Feature Importance', context=context)\n", - "\n", - " feature_importance = pd.DataFrame(list(zip(feature_names, np.abs(shap_values).mean(0))),\n", - " columns=['col_name', 'feature_importance_vals'])\n", - " feature_importance = feature_importance.set_index(\"col_name\").T.to_dict(orient='records')[0]\n", - "\n", - " predictions_table = \"predictions_tmp\"\n", - " copy_to_sql(df=y_pred_tdf, table_name=predictions_table, index=False, if_exists=\"replace\", temporary=True)\n", - "\n", - " record_evaluation_stats(features_df=test_df,\n", - " predicted_df=DataFrame.from_query(f\"SELECT * FROM {predictions_table}\"),\n", - " importance=feature_importance,\n", - " context=context)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO:aoa.util.connections:teradataml context already exists. Skipping create_context.\n", - "Scoring\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", - "ntree_limit is deprecated, use `iteration_range` or model slicing instead.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO:aoa.stats.stats:Computing evaluation dataset statistics\n" - ] - }, - { - "data": { - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Define the ModelContext to test with. The ModelContext is created and managed automatically by ModelOps \n", - "# when it executes your code via CLI / UI. However, for testing in the notebook, you can define as follows\n", - "\n", - "# define the evaluation dataset \n", - "sql = \"\"\"\n", - "SELECT \n", - " F.*, D.hasdiabetes \n", - "FROM PIMA_PATIENT_FEATURES F \n", - "JOIN PIMA_PATIENT_DIAGNOSES D\n", - "ON F.patientid = D.patientid\n", - " WHERE D.patientid MOD 5 = 0\n", - "\"\"\"\n", - "\n", - "dataset_info = DatasetInfo(sql=sql,\n", - " entity_key=entity_key,\n", - " feature_names=feature_names,\n", - " target_names=target_names,\n", - " feature_metadata=feature_metadata)\n", - "\n", - "ctx = ModelContext(hyperparams=hyperparams,\n", - " dataset_info=dataset_info,\n", - " artifact_output_path=\"/tmp\",\n", - " artifact_input_path=\"/tmp\",\n", - " model_version=\"v1\",\n", - " model_table=\"aoa_model_v1\")\n", - "\n", - "evaluate(context=ctx)\n", - "\n", - "# view evaluation results\n", - "with open(f\"{ctx.artifact_output_path}/metrics.json\") as f:\n", - " print(json.load(f))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Define Scoring Function\n", - "\n", - "The scoring function takes the following shape\n", - "\n", - "```python\n", - "def score(context: ModelContext, **kwargs):\n", - " aoa_create_context()\n", - "\n", - " # read your model\n", - " model = joblib.load(f\"{context.artifact_input_path}/model.joblib\")\n", - " \n", - " # your evaluation logic\n", - " \n", - " record_scoring_stats(...)\n", - "```\n", - "\n", - "You can execute this from the CLI or directly within the notebook as shown." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "# %%writefile ../model_modules/scoring.py\n", - "\n", - "from teradataml import copy_to_sql, DataFrame\n", - "from aoa import (\n", - " record_scoring_stats,\n", - " aoa_create_context,\n", - " ModelContext\n", - ")\n", - "\n", - "import joblib\n", - "import pandas as pd\n", - "\n", - "\n", - "def score(context: ModelContext, **kwargs):\n", - "\n", - " aoa_create_context()\n", - "\n", - " model = joblib.load(f\"{context.artifact_input_path}/model.joblib\")\n", - "\n", - " feature_names = context.dataset_info.feature_names\n", - " target_name = context.dataset_info.target_names[0]\n", - " entity_key = context.dataset_info.entity_key\n", - "\n", - " features_tdf = DataFrame.from_query(context.dataset_info.sql)\n", - " features_pdf = features_tdf.to_pandas(all_rows=True)\n", - "\n", - " print(\"Scoring\")\n", - " predictions_pdf = model.predict(features_pdf[feature_names])\n", - "\n", - " print(\"Finished Scoring\")\n", - "\n", - " # store the predictions\n", - " predictions_pdf = pd.DataFrame(predictions_pdf, columns=[target_name])\n", - " predictions_pdf[entity_key] = features_pdf.index.values\n", - " # add job_id column so we know which execution this is from if appended to predictions table\n", - " predictions_pdf[\"job_id\"] = context.job_id\n", - "\n", - " # teradataml doesn't match column names on append.. and so to match / use same table schema as for byom predict\n", - " # example (see README.md), we must add empty json_report column and change column order manually (v17.0.0.4)\n", - " # CREATE MULTISET TABLE pima_patient_predictions\n", - " # (\n", - " # job_id VARCHAR(255), -- comes from airflow on job execution\n", - " # PatientId BIGINT, -- entity key as it is in the source data\n", - " # HasDiabetes BIGINT, -- if model automatically extracts target\n", - " # json_report CLOB(1048544000) CHARACTER SET UNICODE -- output of\n", - " # )\n", - " # PRIMARY INDEX ( job_id );\n", - " predictions_pdf[\"json_report\"] = \"\"\n", - " predictions_pdf = predictions_pdf[[\"job_id\", entity_key, target_name, \"json_report\"]]\n", - "\n", - " copy_to_sql(df=predictions_pdf,\n", - " schema_name=context.dataset_info.predictions_database,\n", - " table_name=context.dataset_info.predictions_table,\n", - " index=False,\n", - " if_exists=\"append\")\n", - " \n", - " print(\"Saved predictions in Teradata\")\n", - "\n", - " # calculate stats\n", - " predictions_df = DataFrame.from_query(f\"\"\"\n", - " SELECT \n", - " * \n", - " FROM {context.dataset_info.get_predictions_metadata_fqtn()} \n", - " WHERE job_id = '{context.job_id}'\n", - " \"\"\")\n", - "\n", - " record_scoring_stats(features_df=features_tdf, predicted_df=predictions_df, context=context)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO:aoa.util.connections:teradataml context already exists. Skipping create_context.\n", - "Scoring\n", - "Finished Scoring\n", - "Saved predictions in Teradata\n", - "INFO:aoa.stats.stats:Computing scoring dataset statistics\n", - "WARNING:aoa.stats.metrics:Publishing scoring metrics is not enabled\n" - ] - } - ], - "source": [ - "# Define the ModelContext to test with. The ModelContext is created and managed automatically by ModelOps \n", - "# when it executes your code via CLI / UI. However, for testing in the notebook, you can define as follows\n", - "\n", - "# define the scoring dataset \n", - "\n", - "sql = \"\"\"\n", - "SELECT \n", - " F.*\n", - "FROM PIMA_PATIENT_FEATURES F \n", - " WHERE F.patientid MOD 5 = 0\n", - "\"\"\"\n", - "\n", - "# where to store predictions\n", - "predictions = {\n", - " \"database\": database,\n", - " \"table\": \"pima_patient_predictions_tmp\"\n", - "}\n", - "\n", - "import uuid\n", - "job_id=str(uuid.uuid4())\n", - "\n", - "dataset_info = DatasetInfo(sql=sql,\n", - " entity_key=entity_key,\n", - " feature_names=feature_names,\n", - " target_names=target_names,\n", - " feature_metadata=feature_metadata,\n", - " predictions=predictions)\n", - "\n", - "ctx = ModelContext(hyperparams=hyperparams,\n", - " dataset_info=dataset_info,\n", - " artifact_output_path=\"/tmp\",\n", - " artifact_input_path=\"/tmp\",\n", - " model_version=\"v1\",\n", - " model_table=\"aoa_model_v1\",\n", - " job_id=job_id)\n", - "\n", - "score(context=ctx)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\t\n", - "\t\n", - "
job_idPatientIdHasDiabetesjson_report
2d16fcf4-78e3-4801-a052-a9c224814b853601
2d16fcf4-78e3-4801-a052-a9c224814b85451
2d16fcf4-78e3-4801-a052-a9c224814b854900
2d16fcf4-78e3-4801-a052-a9c224814b856601
2d16fcf4-78e3-4801-a052-a9c224814b85301
2d16fcf4-78e3-4801-a052-a9c224814b852201
2d16fcf4-78e3-4801-a052-a9c224814b853551
2d16fcf4-78e3-4801-a052-a9c224814b855600
2d16fcf4-78e3-4801-a052-a9c224814b854600
2d16fcf4-78e3-4801-a052-a9c224814b853250
" - ], - "text/plain": [ - " job_id PatientId HasDiabetes json_report\n", - "0 2d16fcf4-78e3-4801-a052-a9c224814b85 360 1 \n", - "1 2d16fcf4-78e3-4801-a052-a9c224814b85 45 1 \n", - "2 2d16fcf4-78e3-4801-a052-a9c224814b85 490 0 \n", - "3 2d16fcf4-78e3-4801-a052-a9c224814b85 660 1 \n", - "4 2d16fcf4-78e3-4801-a052-a9c224814b85 30 1 \n", - "5 2d16fcf4-78e3-4801-a052-a9c224814b85 220 1 \n", - "6 2d16fcf4-78e3-4801-a052-a9c224814b85 355 1 \n", - "7 2d16fcf4-78e3-4801-a052-a9c224814b85 560 0 \n", - "8 2d16fcf4-78e3-4801-a052-a9c224814b85 460 0 \n", - "9 2d16fcf4-78e3-4801-a052-a9c224814b85 325 0 " - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "DataFrame.from_query(f\"SELECT * FROM {database}.pima_patient_predictions_tmp\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Define Model Metadata\n", - "\n", - "Finally, create the configuration files.\n", - "\n", - "Requirements file with the dependencies and versions\n", - "\n", - "```\n", - "%%writefile ../model_modules/requirements.txt\n", - "xgboost==0.90\n", - "scikit-learn==0.24.2\n", - "shap==0.36.0\n", - "matplotlib==3.3.1\n", - "teradataml==17.0.0.4\n", - "nyoka==4.3.0\n", - "aoa==6.0.0\n", - "```\n", - "\n", - "The hyper parameter configuration (defaults)\n", - "```\n", - "%%writefile ../config.json\n", - "{\n", - " \"hyperParameters\": {\n", - " \"eta\": 0.2,\n", - " \"max_depth\": 6\n", - " }\n", - "}\n", - "```" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python [conda env:py39]", - "language": "python", - "name": "conda-env-py39-py" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/pr-preview/pr-110/modelops/_attachments/ModelOps_Training_v6.ipynb b/pr-preview/pr-110/modelops/_attachments/ModelOps_Training_v6.ipynb deleted file mode 100755 index fb62f9d9c..000000000 --- a/pr-preview/pr-110/modelops/_attachments/ModelOps_Training_v6.ipynb +++ /dev/null @@ -1,467 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "f6008b6e", - "metadata": {}, - "source": [ - "## Setup\n", - "\n", - "\n", - "Ensure you have the following packages and python libraries installed \n", - "\n", - "```code\n", - "pip install teradataml==17.0.0.4 aoa==6.1.0 pandas==1.1.5\n", - "```\n", - "\n", - "The remainder of the notebook runs through the following steps\n", - "\n", - "- Connect to Vantage\n", - "- Create DDLs\n", - "- Import Data\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "0528bd6a", - "metadata": {}, - "outputs": [ - { - "name": "stdin", - "output_type": "stream", - "text": [ - "Host: tdprd.td.teradata.com\n", - "Username: wf250003\n", - "Password: ···········\n" - ] - } - ], - "source": [ - "from teradataml import create_context\n", - "import getpass\n", - "import logging\n", - "import sys\n", - "import urllib\n", - "\n", - "logging.basicConfig(stream=sys.stdout, level=logging.INFO)\n", - "\n", - "\n", - "host = input(\"Host:\")\n", - "username = input(\"Username:\")\n", - "password = getpass.getpass(\"Password:\")\n", - "\n", - "\n", - "engine = create_context(host=host, username=username, password=urllib.parse.quote(password), logmech=\"TDNEGO\")" - ] - }, - { - "cell_type": "markdown", - "id": "4eed19e0", - "metadata": {}, - "source": [ - "### Create DDLs\n", - "\n", - "Create the following tables \n", - "\n", - "- aoa_feature_metadata \n", - "- aoa_byom_models\n", - "- pima_patient_predictions\n", - "\n", - "`aoa_feature_metadata` is used to store the profiling metadata for the features so that we can consistently compute the data drift and model drift statistics. This table can also be created via the CLI by executing \n", - "\n", - "```bash\n", - "aoa feature create-stats-table -m .\n", - "```\n", - "\n", - "`pima_patient_predictions` is used for storing the predictions of the model scoring for the demo use case" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "9875d156", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from aoa import create_features_stats_table\n", - "from teradataml import get_context\n", - "\n", - "# Note: assuming we are using user database for training. If another database (e.g. datalab) is being used, please update.\n", - "# Also note, if a shared datalab is being used, only one user should execute the following DDL/DML commands\n", - "database = username\n", - "\n", - "create_features_stats_table(f\"{database}.aoa_feature_metadata\")\n", - "\n", - "get_context().execute(f\"\"\"\n", - "CREATE MULTISET TABLE {database}.aoa_byom_models\n", - " (\n", - " model_version VARCHAR(255),\n", - " model_id VARCHAR(255),\n", - " model_type VARCHAR(255),\n", - " project_id VARCHAR(255),\n", - " deployed_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,\n", - " model BLOB(2097088000)\n", - " )\n", - " UNIQUE PRIMARY INDEX ( model_version );\n", - "\"\"\")\n", - "\n", - "get_context().execute(f\"\"\"\n", - "CREATE MULTISET TABLE {database}.pima_patient_predictions\n", - " (\n", - " job_id VARCHAR(255),\n", - " PatientId BIGINT,\n", - " HasDiabetes BIGINT,\n", - " json_report CLOB(1048544000) CHARACTER SET UNICODE\n", - " )\n", - " PRIMARY INDEX ( job_id );\n", - "\"\"\")" - ] - }, - { - "cell_type": "markdown", - "id": "b237d537", - "metadata": {}, - "source": [ - "### Import Data\n", - "\n", - "Create and import the data for the following two tables\n", - "\n", - "- pima_patient_features\n", - "- pima_patient_diagnoses\n", - "- aoa_feature_metadata\n", - "\n", - "`pima_patient_features` contains the features related to the patients medical history.\n", - "\n", - "`pima_patient_diagnoses` contains the diabetes diagnostic results for the patients.\n", - "\n", - "`aoa_feature_metadata` contains the feature statistics data for the `pima_patient_features` and `pima_patient_diagnoses`\n", - "\n", - "Note the `pima_patient_feature` can be populated via the CLI by executing \n", - "\n", - "```bash\n", - "aoa feature compute-stats -s .PIMA -m . -t continuous -c numtimesprg,plglcconc,bloodp,skinthick,twohourserins,bmi,dipedfunc,age \n", - "```" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "07461699", - "metadata": {}, - "outputs": [], - "source": [ - "from teradataml import copy_to_sql, DataFrame\n", - "from teradatasqlalchemy.types import *\n", - "import pandas as pd\n", - "\n", - "df = pd.read_csv(\"data/pima_patient_features.csv\")\n", - "copy_to_sql(df=df, \n", - " table_name=\"pima_patient_features\", \n", - " schema_name=database,\n", - " primary_index=\"PatientId\", \n", - " if_exists=\"replace\", \n", - " types={\n", - " \"PatientId\": INTEGER,\n", - " \"NumTimesPrg\": INTEGER, \n", - " \"PlGlcConc\": INTEGER,\n", - " \"BloodP\": INTEGER,\n", - " \"SkinThick\": INTEGER,\n", - " \"TwoHourSerIns\": INTEGER,\n", - " \"BMI\": FLOAT,\n", - " \"DiPedFunc\": FLOAT,\n", - " \"Age\": INTEGER\n", - " })\n", - "\n", - "df = pd.read_csv(\"data/pima_patient_diagnoses.csv\")\n", - "copy_to_sql(df=df, \n", - " table_name=\"pima_patient_diagnoses\", \n", - " schema_name=database,\n", - " primary_index=\"PatientId\", \n", - " if_exists=\"replace\", \n", - " types={\n", - " \"PatientId\": INTEGER,\n", - " \"HasDiabetes\": INTEGER\n", - " })\n", - "\n", - "# we can compute this from the CLI also - but lets import pre-computed for now.\n", - "df = pd.read_csv(\"data/aoa_feature_metadata.csv\")\n", - "copy_to_sql(df=df, \n", - " table_name=\"aoa_feature_metadata\", \n", - " schema_name=database,\n", - " if_exists=\"append\")\n" - ] - }, - { - "cell_type": "markdown", - "id": "2b0cdd53", - "metadata": {}, - "source": [ - "## ModelOps UI\n", - "\n", - "#### Add Project\n", - "\n", - "- create project\n", - " - Details\n", - " - Name: Demo {your-name}\n", - " - Description: ModelOps Demo\n", - " - Group: {your-name}\n", - " - Path: https://github.com/Teradata/modelops-demo-models \n", - " - Credentials: No Credentials\n", - " - Branch: master\n", - " - Save And Continue\n", - " - Service Connection\n", - " - Skip for now\n", - " - Personal Connection\n", - " - Name: Vantage Personal {your-name}\n", - " - Description: Vantage Demo Env\n", - " - Host: {your-host}\n", - " - Database: {your-db}\n", - " - VAL Database: {your-val-db}\n", - " - BYOM Database: (your-byom-db}\n", - " - Login Mech: TDNEGO\n", - " - Username/Password\n", - " \n", - " \n", - "#### Add Datasets\n", - "\n", - "- create dataset template\n", - " - Catalog\n", - " - Name: PIMA\n", - " - Description: PIMA Diabetes\n", - " - Feature Catalog: Vantage\n", - " - Database: {your-db}\n", - " - Table: aoa_feature_metadata\n", - " - Features\n", - " - Query: `SELECT * FROM {your-db}.pima_patient_features`\n", - " - Entity Key: PatientId\n", - " - Features: NumTimesPrg, PlGlcConc, BloodP, SkinThick, TwoHourSerIns, BMI, DiPedFunc, Age\n", - " - Entity & Target\n", - " - Query: `SELECT * FROM {your-db}.pima_patient_diagnoses`\n", - " - Entity Key: PatientId\n", - " - Target: HasDiabetes\n", - " - Predictions\n", - " - Database: {your-db}\n", - " - Table: pima_patient_predictions\n", - " - Entity Selection: `SELECT * FROM pima_patient_features WHERE patientid MOD 5 = 0`\n", - " - BYOM Target Column: `CAST(CAST(json_report AS JSON).JSONExtractValue('$.predicted_HasDiabetes') AS INT)`\n", - " \n", - " \n", - "- create training dataset\n", - " - Basic\n", - " - Name: Train\n", - " - Description: Training dataset\n", - " - Scope: Training\n", - " - Entity & Target\n", - " - Query: `SELECT * FROM {your-db}.pima_patient_diagnoses WHERE patientid MOD 5 <> 0`\n", - " \n", - "- create evaluation dataset\n", - " - Basic\n", - " - Name: Evaluate\n", - " - Description: Evaluation dataset\n", - " - Scope: Evaluation\n", - " - Entity & Target\n", - " - Query: `SELECT * FROM {your-db}.pima_patient_diagnoses WHERE patientid MOD 5 = 0`\n", - " \n", - "\n", - "#### Model Lifecycle\n", - "\n", - "- Python Diabetes Prediction\n", - " - Train\n", - " - Evaluate\n", - " - Review evaluation report\n", - " - Approve \n", - " - Deploy \n", - " - Deployments/executions\n", - " - Retire\n", - "- R Diabetes Prediction\n", - " - Train\n", - " - Evaluate\n", - " - Review evaluation report\n", - " - Approve \n", - " - Deploy \n", - " - Deployments/executions\n", - " - Retire\n", - "- BYOM Diabetes Prediction\n", - " - Run BYOM Notebook \n", - " - Define BYOM Model \n", - " - Import Version\n", - " - Evaluate\n", - " - Review evaluation report\n", - " - Approve \n", - " - Deploy \n", - " - Deployments/executions\n", - " - Retire" - ] - }, - { - "cell_type": "markdown", - "id": "17a64068", - "metadata": {}, - "source": [ - "#### View Predictions\n", - "\n", - "In the next version of ModelOps, you will be able to view the predictions that follow the standard pattern directly via the UI. However, for now, we can view it here. As the same predictions table contains the predictions for all the jobs, we filter by the `airflow_job_id`. You can find this id in the UI under deployment executions." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "904b2fb9", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
job_idPatientIdHasDiabetesjson_report
\n", - "
" - ], - "text/plain": [ - "Empty DataFrame\n", - "Columns: [job_id, PatientId, HasDiabetes, json_report]\n", - "Index: []" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import pandas as pd\n", - "from teradataml import get_connection\n", - "\n", - "pd.options.display.max_colwidth = 250\n", - "\n", - "airflow_job_id = \"5761d5c1-bf57-456b-8076-c3062be0b544-scheduled__2022-07-11T00:00:00+00:00\"\n", - "\n", - "pd.read_sql(f\"SELECT TOP 5 * FROM pima_patient_predictions WHERE job_id='{airflow_job_id}'\", get_connection())" - ] - }, - { - "cell_type": "markdown", - "id": "d479c9cb", - "metadata": {}, - "source": [ - "## CLI \n", - "\n", - "\n", - "```bash\n", - "pip install aoa==6.1.0\n", - "```\n", - "\n", - "##### Copy CLI Config\n", - "\n", - "```\n", - "Copy the CLI config from ModelOps UI -> Session Details -> CLI config\n", - "```\n", - "\n", - "##### Add Dataset Connection\n", - "\n", - "```bash\n", - "aoa connection add\n", - "```\n", - "\n", - "##### List Feature Metadata\n", - "\n", - "```bash\n", - "aoa feature list-stats -m {your-db}.aoa_feature_metadata\n", - "```\n", - "\n", - "##### Clone Project\n", - "\n", - "```bash\n", - "aoa clone \n", - "```\n", - "\n", - "```bash\n", - "cd modelops-demo-models\n", - "```\n", - "\n", - "##### Install Model Dependencies\n", - "\n", - "```bash\n", - "pip install -r model_definitions/python-diabetes/model_modules/requirements.txt\n", - "```\n", - "\n", - "##### Train Model\n", - "\n", - "```bash\n", - "aoa run\n", - "```\n", - "\n", - "##### Add Model\n", - "\n", - "```bash\n", - "aoa add\n", - "```\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "b63bd4d5", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.10" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/pr-preview/pr-110/modelops/_attachments/ModelOps_Training_v7.ipynb b/pr-preview/pr-110/modelops/_attachments/ModelOps_Training_v7.ipynb deleted file mode 100644 index dc93b2d16..000000000 --- a/pr-preview/pr-110/modelops/_attachments/ModelOps_Training_v7.ipynb +++ /dev/null @@ -1,410 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "dcc29d47", - "metadata": {}, - "source": [ - "## Setup\n", - "\n", - "The remainder of the notebook runs through the following steps\n", - "\n", - "- Connect to Vantage\n", - "- Create DDLs\n", - "- Import Data\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "426c443a", - "metadata": {}, - "outputs": [], - "source": [ - "%pip install teradataml==17.20.0.3 aoa==7.0.1 pandas==1.1.5" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "8a780585", - "metadata": {}, - "outputs": [], - "source": [ - "from teradataml import create_context\n", - "import getpass\n", - "import logging\n", - "import sys\n", - "import urllib\n", - "\n", - "logging.basicConfig(stream=sys.stdout, level=logging.INFO)\n", - "\n", - "\n", - "host = input(\"Host:\")\n", - "username = input(\"Username:\")\n", - "password = getpass.getpass(\"Password:\")\n", - "database = input(\"Database (defaults to user):\")\n", - "\n", - "if not database:\n", - " database = username\n", - "\n", - "\n", - "engine = create_context(host=host, \n", - " username=username, \n", - " password=urllib.parse.quote(password), \n", - " logmech=\"TDNEGO\",\n", - " database=database)" - ] - }, - { - "cell_type": "markdown", - "id": "88d3dff4", - "metadata": {}, - "source": [ - "### Create DDLs\n", - "\n", - "Create the following tables \n", - "\n", - "- aoa_statistics_metadata \n", - "- aoa_byom_models\n", - "- pima_patient_predictions\n", - "\n", - "`aoa_statistics_metadata` is used to store the profiling metadata for the features so that we can consistently compute the data drift and model drift statistics. This table can also be created via the CLI by executing \n", - "\n", - "```bash\n", - "aoa feature create-stats-table -e -m .\n", - "```\n", - "\n", - "`pima_patient_predictions` is used for storing the predictions of the model scoring for the demo use case" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "769f5cfe", - "metadata": {}, - "outputs": [], - "source": [ - "from aoa import create_features_stats_table\n", - "from teradataml import get_context\n", - "\n", - "# Note: assuming we are using user database for training. If another database (e.g. datalab) is being used, please update.\n", - "# Also note, if a shared datalab is being used, only one user should execute the following DDL/DML commands\n", - "database = username\n", - "\n", - "create_features_stats_table(f\"{database}.aoa_statistics_metadata\")\n", - "\n", - "get_context().execute(f\"\"\"\n", - "CREATE MULTISET TABLE {database}.aoa_byom_models\n", - " (\n", - " model_version VARCHAR(255),\n", - " model_id VARCHAR(255),\n", - " model_type VARCHAR(255),\n", - " project_id VARCHAR(255),\n", - " deployed_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,\n", - " model BLOB(2097088000)\n", - " )\n", - " UNIQUE PRIMARY INDEX ( model_version );\n", - "\"\"\")\n", - "\n", - "get_context().execute(f\"\"\"\n", - "CREATE MULTISET TABLE {database}.pima_patient_predictions\n", - " (\n", - " job_id VARCHAR(255),\n", - " PatientId BIGINT,\n", - " HasDiabetes BIGINT,\n", - " json_report CLOB(1048544000) CHARACTER SET UNICODE\n", - " )\n", - " PRIMARY INDEX ( job_id );\n", - "\"\"\")" - ] - }, - { - "cell_type": "markdown", - "id": "520b92c2", - "metadata": {}, - "source": [ - "### Import Data\n", - "\n", - "Create and import the data for the following two tables\n", - "\n", - "- pima_patient_features\n", - "- pima_patient_diagnoses\n", - "- aoa_statistics_metadata\n", - "\n", - "`pima_patient_features` contains the features related to the patients medical history.\n", - "\n", - "`pima_patient_diagnoses` contains the diabetes diagnostic results for the patients.\n", - "\n", - "`aoa_statistics_metadata` contains the feature statistics metadata for the `pima_patient_features` and `pima_patient_diagnoses`\n", - "\n", - "Note the `pima_patient_feature` can be populated via the CLI by executing \n", - "\n", - "Compute the statistics metadata for the continuous variables\n", - "```bash\n", - "aoa feature compute-stats \\\n", - " -s . \\\n", - " -m . \\\n", - " -t continuous -c numtimesprg,plglcconc,bloodp,skinthick,twohourserins,bmi,dipedfunc,age\n", - "```\n", - "\n", - "Compute the statistics metadata for the categorical variables\n", - "```bash\n", - "aoa feature compute-stats \\\n", - " -s . \\\n", - " -m . \\\n", - " -t categorical -c hasdiabetes\n", - "```" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "9dca7bd3", - "metadata": {}, - "outputs": [], - "source": [ - "from teradataml import copy_to_sql, DataFrame\n", - "from teradatasqlalchemy.types import *\n", - "import pandas as pd\n", - "\n", - "df = pd.read_csv(\"data/pima_patient_features.csv\")\n", - "copy_to_sql(df=df, \n", - " table_name=\"pima_patient_features\", \n", - " schema_name=database,\n", - " primary_index=\"PatientId\", \n", - " if_exists=\"replace\", \n", - " types={\n", - " \"PatientId\": INTEGER,\n", - " \"NumTimesPrg\": INTEGER, \n", - " \"PlGlcConc\": INTEGER,\n", - " \"BloodP\": INTEGER,\n", - " \"SkinThick\": INTEGER,\n", - " \"TwoHourSerIns\": INTEGER,\n", - " \"BMI\": FLOAT,\n", - " \"DiPedFunc\": FLOAT,\n", - " \"Age\": INTEGER\n", - " })\n", - "\n", - "df = pd.read_csv(\"data/pima_patient_diagnoses.csv\")\n", - "copy_to_sql(df=df, \n", - " table_name=\"pima_patient_diagnoses\", \n", - " schema_name=database,\n", - " primary_index=\"PatientId\", \n", - " if_exists=\"replace\", \n", - " types={\n", - " \"PatientId\": INTEGER,\n", - " \"HasDiabetes\": INTEGER\n", - " })\n", - "\n", - "# we can compute this from the CLI also - but lets import pre-computed for now.\n", - "df = pd.read_csv(\"data/aoa_statistics_metadata.csv\")\n", - "copy_to_sql(df=df, \n", - " table_name=\"aoa_statistics_metadata\", \n", - " schema_name=database,\n", - " if_exists=\"append\")\n" - ] - }, - { - "cell_type": "markdown", - "id": "97d65765", - "metadata": {}, - "source": [ - "## ModelOps UI\n", - "\n", - "#### Add Project\n", - "\n", - "- create project\n", - " - Details\n", - " - Name: Demo {your-name}\n", - " - Description: ModelOps Demo\n", - " - Group: {your-name}\n", - " - Path: https://github.com/Teradata/modelops-demo-models \n", - " - Credentials: No Credentials\n", - " - Branch: master\n", - " - Save And Continue\n", - " - Service Connection\n", - " - Skip for now\n", - " - Personal Connection\n", - " - Name: Vantage Personal {your-name}\n", - " - Description: Vantage Demo Env\n", - " - Host: {your-host}\n", - " - Database: {your-db}\n", - " - VAL Database: {your-val-db}\n", - " - BYOM Database: (your-byom-db}\n", - " - Login Mech: TDNEGO\n", - " - Username/Password\n", - " \n", - " \n", - "#### Add Datasets\n", - "\n", - "- create dataset template\n", - " - Catalog\n", - " - Name: PIMA\n", - " - Description: PIMA Diabetes\n", - " - Feature Catalog: Vantage\n", - " - Database: {your-db}\n", - " - Table: aoa_statistics_metadata\n", - " - Features\n", - " - Query: `SELECT * FROM {your-db}.pima_patient_features`\n", - " - Entity Key: PatientId\n", - " - Features: NumTimesPrg, PlGlcConc, BloodP, SkinThick, TwoHourSerIns, BMI, DiPedFunc, Age\n", - " - Entity & Target\n", - " - Query: `SELECT * FROM {your-db}.pima_patient_diagnoses`\n", - " - Entity Key: PatientId\n", - " - Target: HasDiabetes\n", - " - Predictions\n", - " - Database: {your-db}\n", - " - Table: pima_patient_predictions\n", - " - Entity Selection: `SELECT * FROM pima_patient_features WHERE patientid MOD 5 = 0`\n", - " \n", - " \n", - "- create training dataset\n", - " - Basic\n", - " - Name: Train\n", - " - Description: Training dataset\n", - " - Scope: Training\n", - " - Entity & Target\n", - " - Query: `SELECT * FROM {your-db}.pima_patient_diagnoses WHERE patientid MOD 5 <> 0`\n", - " \n", - "- create evaluation dataset\n", - " - Basic\n", - " - Name: Evaluate\n", - " - Description: Evaluation dataset\n", - " - Scope: Evaluation\n", - " - Entity & Target\n", - " - Query: `SELECT * FROM {your-db}.pima_patient_diagnoses WHERE patientid MOD 5 = 0`\n", - " \n", - "\n", - "#### Model Lifecycle\n", - "\n", - "- Python Diabetes Prediction\n", - " - Train\n", - " - Evaluate\n", - " - Review evaluation report\n", - " - Approve \n", - " - Deploy \n", - " - Deployments/executions\n", - " - Retire\n", - "- R Diabetes Prediction\n", - " - Train\n", - " - Evaluate\n", - " - Review evaluation report\n", - " - Approve \n", - " - Deploy \n", - " - Deployments/executions\n", - " - Retire\n", - "- BYOM Diabetes Prediction\n", - " - Run BYOM Notebook \n", - " - Define BYOM Model \n", - " - Import Version\n", - " - Evaluate\n", - " - Review evaluation report\n", - " - Approve \n", - " - Deploy \n", - " - Deployments/executions\n", - " - Retire" - ] - }, - { - "cell_type": "markdown", - "id": "be1b4671", - "metadata": {}, - "source": [ - "#### View Predictions\n", - "\n", - "In the UI, select a deployment from the deployments left hand navigation. Go to the Jobs tab and on the right hand side for each job execution, you can select \"View Predictions\". This will show you a sample of the predictions for that particular job execution.\n", - "\n", - "Note, your predictions table must have a `job_id` column which matches to the execution job id. If using BYOM, this is done automatically. For you own `scoring.py`, checkout the demo models." - ] - }, - { - "cell_type": "markdown", - "id": "6b812b27", - "metadata": {}, - "source": [ - "## CLI \n", - "\n", - "\n", - "```bash\n", - "pip install aoa>=7.0.0rc3\n", - "```\n", - "\n", - "##### Copy CLI Config\n", - "\n", - "```\n", - "Copy the CLI config from ModelOps UI -> Session Details -> CLI config\n", - "```\n", - "\n", - "##### Add Dataset Connection\n", - "\n", - "```bash\n", - "aoa connection add\n", - "```\n", - "\n", - "##### List Feature Metadata\n", - "\n", - "```bash\n", - "aoa feature list-stats -m {your-db}.aoa_feature_metadata\n", - "```\n", - "\n", - "##### Clone Project\n", - "\n", - "```bash\n", - "aoa clone \n", - "```\n", - "\n", - "```bash\n", - "cd modelops-demo-models\n", - "```\n", - "\n", - "##### Install Model Dependencies\n", - "\n", - "```bash\n", - "pip install -r model_definitions/python-diabetes/model_modules/requirements.txt\n", - "```\n", - "\n", - "##### Train Model\n", - "\n", - "```bash\n", - "aoa run\n", - "```\n", - "\n", - "##### Add Model\n", - "\n", - "```bash\n", - "aoa add\n", - "```\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "99270257", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.6" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/pr-preview/pr-110/modelops/_images/BYOM.png b/pr-preview/pr-110/modelops/_images/BYOM.png deleted file mode 100644 index 9b1bf00f9..000000000 Binary files a/pr-preview/pr-110/modelops/_images/BYOM.png and /dev/null differ diff --git a/pr-preview/pr-110/modelops/_images/ModelOps_Healthcheck.png b/pr-preview/pr-110/modelops/_images/ModelOps_Healthcheck.png deleted file mode 100644 index 22d9a4736..000000000 Binary files a/pr-preview/pr-110/modelops/_images/ModelOps_Healthcheck.png and /dev/null differ diff --git a/pr-preview/pr-110/modelops/_images/modelops-git.png b/pr-preview/pr-110/modelops/_images/modelops-git.png deleted file mode 100644 index e4d7ab343..000000000 Binary files a/pr-preview/pr-110/modelops/_images/modelops-git.png and /dev/null differ diff --git a/pr-preview/pr-110/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html b/pr-preview/pr-110/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html deleted file mode 100644 index bd160e552..000000000 --- a/pr-preview/pr-110/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html +++ /dev/null @@ -1,2992 +0,0 @@ - - - - - - ModelOps - Import and Deploy your first BYOM Model :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

ModelOps - Import and Deploy your first BYOM Model

-

Author: Pablo Escobar de la Oliva
-Last updated: May 29th, 2023

-
-

Overview

-
-
-

This is a how-to for people who are new to ClearScape Analytics ModelOps. In the tutorial, you will be able to create a new project in ModelOps, upload the required data to Vantage, and track the full lifecycle of an imported Diabetes demo model using BYOM mechanisms.

-
-
-
-
-

Prerequisites

-
-
-
    -
  • -

    Access to a Teradata Vantage instance with ClearScape Analytics (includes ModelOps)

    -
  • -
  • -

    Ability to run Jupyter notebooks

    -
  • -
-
-
- - - - - -
- - -If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. -
-
-
-

Files needed

-
-
-

Let’s start by downloading the needed files for this tutorial. Download these 4 attachments and upload them in your Notebook filesystem. Select the files depending on your version of ModelOps:

-
-
-

ModelOps version 6 (October 2022):

-
- - - - -
-

Alternatively you can git clone following repos

-
-
-
-
git clone https://github.com/willfleury/modelops-getting-started
-git clone https://github.com/Teradata/modelops-demo-models/
-
-
-
-

ModelOps version 7 (April 2023):

-
- - - - -
-
-
git clone -b v7 https://github.com/willfleury/modelops-getting-started.git
-git clone https://github.com/Teradata/modelops-demo-models/
-
-
-
-

Setting up the Database and Jupyter environment

-
-
-

Follow the ModelOps_Training Jupyter Notebook to setup the database, tables and libraries needed for the demo.

-
-
-
-
-

Understand where we are in the Methodology

-
-
-
-ModelOps Methodology BYOM screenshot -
-
-
-
-
-

Create a new Project or use an existing one

-
-
-

Add a new Project

-
-
- -
-
-

Here you can test the git connection. If is green then save and continue. Skip the service connection settings for now.

-
-
-

When creating a new project, ModelOps will ask you for a new connection.

-
-
-
-
-

Create a Personal Connection

-
-
-

Personal connection

-
-
-
    -
  • -

    Name: Vantage personal your-name

    -
  • -
  • -

    Description: Vantage demo env

    -
  • -
  • -

    Host: tdprd.td.teradata.com (internal for teradata transcend only)

    -
  • -
  • -

    Database: your-db

    -
  • -
  • -

    VAL Database: TRNG_XSP (internal for teradata transcend only)

    -
  • -
  • -

    BYOM Database: TRNG_BYOM (internal for teradata transcend only)

    -
  • -
  • -

    Login Mech: TDNEGO

    -
  • -
  • -

    Username/Password

    -
  • -
-
-
-
-
-

Validate permissions in SQL database for VAL and BYOM

-
-
-

You can check the permissions with the new healthcheck panel in the connections panel

-
-
-
-ModelOps Healtcheck screenshot -
-
-
-
-
-

Add dataset to identify Vantage tables for BYOM evaluation and scoring

-
-
-

Let’s create a new dataset template, then 1 dataset for training and 2 datasets for evaluation so we can monitor model quality metrics with 2 different datasets

-
-
-

Add datasets

-
-
-
    -
  • -

    create dataset template

    -
  • -
  • -

    Catalog

    -
  • -
  • -

    Name: PIMA

    -
  • -
  • -

    Description: PIMA Diabetes

    -
  • -
  • -

    Feature Catalog: Vantage

    -
  • -
  • -

    Database: your-db

    -
  • -
  • -

    Table: aoa_feature_metadata

    -
  • -
-
-
-

Features -Query:

-
-
-
-
SELECT * FROM {your-db}.pima_patient_features
-
-
-
-

Entity Key: PatientId -Features: NumTimesPrg, PlGlcConc, BloodP, SkinThick, TwoHourSerIns, BMI, DiPedFunc, Age

-
-
-

Entity & Target -Query:

-
-
-
-
SELECT * FROM {your-db}.pima_patient_diagnoses
-
-
-
-

Entity Key: PatientId -Target: HasDiabetes

-
-
-

Predictions

-
-
-
    -
  • -

    Database: your-db

    -
  • -
  • -

    Table: pima_patient_predictions

    -
  • -
-
-
-

Entity selection:

-
-
-

Query:

-
-
-
-
SELECT * FROM pima_patient_features WHERE patientid MOD 5 = 0
-
-
-
-

Only for v6 (in v7 you will define this in the BYOM no code screen): BYOM Target Column: CAST(CAST(json_report AS JSON).JSONExtractValue('$.predicted_HasDiabetes') AS INT)

-
-
-
-
-

Create training dataset

-
-
-

Basic

-
-
-
    -
  • -

    Name: Train

    -
  • -
  • -

    Description: Training dataset

    -
  • -
  • -

    Scope: Training

    -
  • -
  • -

    Entity & Target

    -
  • -
-
-
-

Query:

-
-
-
-
SELECT * FROM {your-db}.pima_patient_diagnoses WHERE patientid MOD 5 = 1
-
-
-
-
-
-

Create evaluation dataset 1

-
-
-

Basic

-
-
-
    -
  • -

    Name: Evaluate

    -
  • -
  • -

    Description: Evaluation dataset

    -
  • -
  • -

    Scope: Evaluation

    -
  • -
  • -

    Entity & Target

    -
  • -
-
-
-

Query:

-
-
-
-
SELECT * FROM {your-db}.pima_patient_diagnoses WHERE patientid MOD 5 = 2
-
-
-
-
-
-

Create evaluation dataset 2

-
-
-

Basic

-
-
-
    -
  • -

    Name: Evaluate

    -
  • -
  • -

    Description: Evaluation dataset

    -
  • -
  • -

    Scope: Evaluation

    -
  • -
  • -

    Entity & Target

    -
  • -
-
-
-

Query:

-
-
-
-
SELECT * FROM {your-db}.pima_patient_diagnoses WHERE patientid MOD 5 = 3
-
-
-
-
-
-

Model Lifecycle for a new BYOM

-
-
-

Download and unzip the files needed, links are at the top of the tutorial. For PMML file you can also download a PMML generated in the training of a GIT model.

-
-
-
    -
  • -

    BYOM.ipynb

    -
  • -
  • -

    model.pmml

    -
  • -
  • -

    requirements.txt

    -
  • -
  • -

    evaluation.py

    -
  • -
  • -

    data_stats.json

    -
  • -
  • -

    init.py

    -
  • -
-
-
-

Define BYOM Model with Evaluation and Monitoring

-
-
-
    -
  • -

    Import Version

    -
  • -
  • -

    for v7 - BYOM no code is available - You can enable automated evaluation and data drift monitoring. -In Monitoring page use BYOM Target Column: CAST(CAST(json_report AS JSON).JSONExtractValue('$.predicted_HasDiabetes') AS INT)

    -
  • -
  • -

    Evaluate

    -
  • -
  • -

    Review evaluation report, including dataset statistics

    -
  • -
  • -

    Approve

    -
  • -
  • -

    Deploy in Vantage - Engine, Publish, Schedule. Scoring dataset is required -Use your connection and select a database. e.g "aoa_byom_models"

    -
  • -
  • -

    Deployments/executions

    -
  • -
  • -

    Evaluate again with dataset2 - to monitor model metrics behavior

    -
  • -
  • -

    Monitor Model Drift - Data and Metrics

    -
  • -
  • -

    for v7 - Review your predictions directly from Deployments → Job page

    -
  • -
  • -

    Open BYOM notebook to execute the PMML predict from SQL code

    -
  • -
  • -

    Retire

    -
  • -
-
-
-
-
-

Summary

-
-
-

In this quick start we have learned how to follow a full lifecycle of BYOM models into ModelOps and how to deploy it into Vantage. Then how we can schedule a batch scoring or test restful or on-demand scorings and start monitoring on Data Drift and Model Quality metrics.

-
-
-
-
-

Further reading

-
-
-
    -
  • -

    link:https://docs.teradata.com/search/documents?query=ModelOps&sort=last_update&virtual-field=title_only&content-lang=

    -
  • -
-
-
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html b/pr-preview/pr-110/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html deleted file mode 100644 index a1eb9137d..000000000 --- a/pr-preview/pr-110/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html +++ /dev/null @@ -1,3103 +0,0 @@ - - - - - - ModelOps - Import and Deploy your first GIT Model :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

ModelOps - Import and Deploy your first GIT Model

-

Author: Pablo Escobar de la Oliva
-Last updated: May 29th, 2022

-
-

Overview

-
-
-

This is a how-to for people who are new to ClearScape Analytics ModelOps. In the tutorial, you will be able to create a new project in ModelOps, upload the required data to Vantage, and track the full lifecycle of a demo model using code templates and following the methodology for GIT models in ModelOps.

-
-
-
-
-

Prerequisites

-
-
-
    -
  • -

    Access to a Teradata Vantage instance with ClearScape Analytics (includes ModelOps)

    -
  • -
  • -

    Ability to run Jupyter notebooks

    -
  • -
-
-
- - - - - -
- - -If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. -
-
-
-

Files needed

-
-
-

Let’s start by downloading the needed files for this tutorial. Download these 4 attachments and upload them in your Notebook filesystem. Select the files depending on your version of ModelOps:

-
-
-

ModelOps version 6 (October 2022):

-
- - - - -
-

Alternatively you can git clone following repos

-
-
-
-
git clone https://github.com/willfleury/modelops-getting-started
-git clone https://github.com/Teradata/modelops-demo-models/
-
-
-
-

ModelOps version 7 (April 2023):

-
- - - - -
-
-
git clone -b v7 https://github.com/willfleury/modelops-getting-started.git
-git clone https://github.com/Teradata/modelops-demo-models/
-
-
-
-

Setting up the database and Jupyter environment

-
-
-

Follow the ModelOps_Training Jupyter Notebook to setup the database, tables and libraries needed for the demo.

-
-
-
-
-

Understand where we are in the Methodology

-
-
-
-ModelOps Methodology GIT screenshot -
-
-
-
-
-

Create a new Project or use an existing one

-
-
-

Add a new Project

-
-
- -
-
-

Here you can test the git connection. If is green then save and continue. Skip the service connection settings for now.

-
-
-

When creating a new project, ModelOps will ask you for a new connection.

-
-
-
-
-

Create a Personal Connection

-
-
-

Personal connection

-
-
-
    -
  • -

    Name: Vantage personal your-name

    -
  • -
  • -

    Description: Vantage demo env

    -
  • -
  • -

    Host: tdprd.td.teradata.com (internal for teradata transcend only)

    -
  • -
  • -

    Database: your-db

    -
  • -
  • -

    VAL Database: TRNG_XSP (internal for teradata transcend only)

    -
  • -
  • -

    BYOM Database: TRNG_BYOM (internal for teradata transcend only)

    -
  • -
  • -

    Login Mech: TDNEGO

    -
  • -
  • -

    Username/Password

    -
  • -
-
-
-
-
-

Validate permissions in SQL database for VAL and BYOM

-
-
-

You can check the permissions with the new healthcheck panel in the connections panel

-
-
-
-ModelOps Healtcheck screenshot -
-
-
-
-
-

Add dataset to identify Vantage tables for BYOM evaluation and scoring

-
-
-

Let’s create a new dataset template, then 1 dataset for training and 2 datasets for evaluation so we can monitor model quality metrics with 2 different datasets

-
-
-

Add datasets

-
-
-
    -
  • -

    create dataset template

    -
  • -
  • -

    Catalog

    -
  • -
  • -

    Name: PIMA

    -
  • -
  • -

    Description: PIMA Diabetes

    -
  • -
  • -

    Feature Catalog: Vantage

    -
  • -
  • -

    Database: your-db

    -
  • -
  • -

    Table: aoa_feature_metadata

    -
  • -
-
-
-

Features -Query:

-
-
-
-
SELECT * FROM {your-db}.pima_patient_features
-
-
-
-

Entity Key: PatientId -Features: NumTimesPrg, PlGlcConc, BloodP, SkinThick, TwoHourSerIns, BMI, DiPedFunc, Age

-
-
-

Entity & Target -Query:

-
-
-
-
SELECT * FROM {your-db}.pima_patient_diagnoses
-
-
-
-

Entity Key: PatientId -Target: HasDiabetes

-
-
-

Predictions

-
-
-
    -
  • -

    Database: your-db

    -
  • -
  • -

    Table: pima_patient_predictions

    -
  • -
-
-
-

Entity selection:

-
-
-

Query:

-
-
-
-
SELECT * FROM pima_patient_features WHERE patientid MOD 5 = 0
-
-
-
-

Only for v6 (in v7 you will define this in the BYOM no code screen): BYOM Target Column: CAST(CAST(json_report AS JSON).JSONExtractValue('$.predicted_HasDiabetes') AS INT)

-
-
-
-
-

Create training dataset

-
-
-

Basic

-
-
-
    -
  • -

    Name: Train

    -
  • -
  • -

    Description: Training dataset

    -
  • -
  • -

    Scope: Training

    -
  • -
  • -

    Entity & Target

    -
  • -
-
-
-

Query:

-
-
-
-
SELECT * FROM {your-db}.pima_patient_diagnoses WHERE patientid MOD 5 = 1
-
-
-
-
-
-

Create evaluation dataset 1

-
-
-

Basic

-
-
-
    -
  • -

    Name: Evaluate

    -
  • -
  • -

    Description: Evaluation dataset

    -
  • -
  • -

    Scope: Evaluation

    -
  • -
  • -

    Entity & Target

    -
  • -
-
-
-

Query:

-
-
-
-
SELECT * FROM {your-db}.pima_patient_diagnoses WHERE patientid MOD 5 = 2
-
-
-
-
-
-

Create evaluation dataset 2

-
-
-

Basic

-
-
-
    -
  • -

    Name: Evaluate

    -
  • -
  • -

    Description: Evaluation dataset

    -
  • -
  • -

    Scope: Evaluation

    -
  • -
  • -

    Entity & Target

    -
  • -
-
-
-

Query:

-
-
-
-
SELECT * FROM {your-db}.pima_patient_diagnoses WHERE patientid MOD 5 = 3
-
-
-
-
-
-

Prepare code templates

-
-
-

For Git Models we need to fill the code templates available when adding a new model.

-
-
-

These code scripts will be stored in the git repository under: model_definitions/your-model/model_modules/

-
-
-
    -
  • -

    init.py : this an empty file required for python modules

    -
  • -
  • -

    training.py: this script contains train function

    -
  • -
-
-
-
-
def train(context: ModelContext, **kwargs):
-    aoa_create_context()
-
-    # your training code
-
-    # save your model
-    joblib.dump(model, f"{context.artifact_output_path}/model.joblib")
-
-    record_training_stats(...)
-
-
-
-

Review the Operationalize notebook to see how you can execute this from CLI or from notebook as an alternative to ModelOps UI.

-
-
-
    -
  • -

    evaluation.py: this script contains evaluate function

    -
  • -
-
-
-
-
def evaluate(context: ModelContext, **kwargs):
-    aoa_create_context()
-
-    # read your model
-    model = joblib.load(f"{context.artifact_input_path}/model.joblib")
-
-    # your evaluation logic
-
-    record_evaluation_stats(...)
-
-
-
-

Review the Operationalize notebook to see how you can execute this from CLI or from notebook as an alternative to ModelOps UI.

-
-
-
    -
  • -

    scoring.py: this script contains score function

    -
  • -
-
-
-
-
def score(context: ModelContext, **kwargs):
-    aoa_create_context()
-
-    # read your model
-    model = joblib.load(f"{context.artifact_input_path}/model.joblib")
-
-    # your evaluation logic
-
-    record_scoring_stats(...)
-
-
-
-

Review the Operationalize notebook to see how you can execute this from CLI or from notebook as an alternative to ModelOps UI.

-
-
-
    -
  • -

    requirements.txt: this file contains the library names and versions required for your code scripts. Example:

    -
  • -
-
-
-
-
%%writefile ../model_modules/requirements.txt
-xgboost==0.90
-scikit-learn==0.24.2
-shap==0.36.0
-matplotlib==3.3.1
-teradataml==17.0.0.4
-nyoka==4.3.0
-aoa==6.0.0
-
-
-
-
    -
  • -

    config.json: this file located in the parent folder (your-model folder) contains default hyper-parameters

    -
  • -
-
-
-
-
%%writefile ../config.json
-{
-   "hyperParameters": {
-      "eta": 0.2,
-      "max_depth": 6
-   }
-}
-
-
-
-

Go and review the code scripts for the demo model in the repository: https://github.com/Teradata/modelops-demo-models/

-
-
-

Go into model_definitions→python-diabetes→model_modules

-
-
-
-
-

Model Lifecycle for a new GIT

-
-
-
    -
  • -

    Open Project to see models available from GIT

    -
  • -
  • -

    Train a new model version

    -
  • -
  • -

    see how CommitID from code repository is tracked

    -
  • -
  • -

    Evaluate

    -
  • -
  • -

    Review evaluation report, including dataset statistics and model metrics

    -
  • -
  • -

    Compare with other model versions

    -
  • -
  • -

    Approve

    -
  • -
  • -

    Deploy in Vantage - Engine, Publish, Schedule. Scoring dataset is required -Use your connection and select a database. e.g "aoa_byom_models"

    -
  • -
  • -

    Deploy in Docker Batch - Engine, Publish, Schedule. Scoring dataset is required -Use your connection and select a database. e.g "aoa_byom_models"

    -
  • -
  • -

    Deploy in Restful Batch - Engine, Publish, Schedule. Scoring dataset is required -Use your connection and select a database. e.g "aoa_byom_models"

    -
  • -
  • -

    Deployments/executions

    -
  • -
  • -

    Evaluate again with dataset2 - to monitor model metrics behavior

    -
  • -
  • -

    Monitor Model Drift - data and metrics

    -
  • -
  • -

    Open BYOM notebook to execute the PMML predict from SQL code when deployed in Vantage

    -
  • -
  • -

    Test Restful from ModelOps UI or from curl command

    -
  • -
  • -

    Retire deployments

    -
  • -
-
-
-
-
-

Summary

-
-
-

In this quick start we have learned how to follow a full lifecycle of GIT models into ModelOps and how to deploy it into Vantage or into Docker containers for Edge deployments. Then how we can schedule a batch scoring or test restful or on-demand scorings and start monitoring on Data Drift and Model Quality metrics.

-
-
-
-
-

Further reading

-
-
-
    -
  • -

    link:https://docs.teradata.com/search/documents?query=ModelOps&sort=last_update&virtual-field=title_only&content-lang=

    -
  • -
-
-
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/modelops/using-feast-feature-store-with-teradata-vantage.html b/pr-preview/pr-110/modelops/using-feast-feature-store-with-teradata-vantage.html deleted file mode 100644 index 1ac848a1b..000000000 --- a/pr-preview/pr-110/modelops/using-feast-feature-store-with-teradata-vantage.html +++ /dev/null @@ -1,2876 +0,0 @@ - - - - - - Using Teradata with FEAST :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Using Teradata with FEAST

-

Author: Mohammmad Taha Wahab , Mohammad Harris Mansur and Will Fleury
-Last updated: January 5th, 2023

-
-

Introduction

-
-
-

Feast’s connector for Teradata is a complete implementation with support for all features and uses teradata as an online and offline store.

-
-
-
-
-

Prerequisites

-
-
-

You need access to a Teradata Vantage instance.

-
-
- - - - - -
- - -If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. -
-
-
-
-
-

Overview

-
-
-

This how-to assumes you know Feast terminology. If you need a refresher check out the official FEAST documentation

-
-
-

This document demonstrates how developers can integrate Teradata’s offline and online store with Feast. Teradata’s offline stores allow users to use any underlying data store as their offline feature store. Features can be retrieved from the offline store for model training and can be materialized into the online feature store for use during model inference.

-
-
-

On the other hand, online stores are used to serve features at low latency. The materialize command can be used to load feature values from the data sources (or offline stores) into the online store

-
-
-

The feast-teradata library adds support for Teradata as

-
-
-
    -
  • -

    OfflineStore

    -
  • -
  • -

    OnlineStore

    -
  • -
-
-
-

Additionally, using Teradata as the registry (catalog) is already supported via the registry_type: sql and included in our examples. This means that everything is located in Teradata. However, depending on the requirements, installation, etc, this can be mixed and matched with other systems as appropriate.

-
-
-
-
-

Getting Started

-
-
-

To get started, install the feast-teradata library

-
-
-
-
pip install feast-teradata
-
-
-
-

Let’s create a simple feast setup with Teradata using the standard drivers' dataset. Note that you cannot use feast init as this command only works for templates that are part of the core feast library. We intend on getting this library merged into feast core eventually but for now, you will need to use the following cli command for this specific task. All other feast cli commands work as expected.

-
-
-
-
feast-td init-repo
-
-
-
-

This will then prompt you for the required information for the Teradata system and upload the example dataset. Let’s assume you used the repo name demo when running the above command. You can find the repository files along with a file called test_workflow.py. Running this test_workflow.py will execute a complete workflow for the feast with Teradata as the Registry, OfflineStore, and OnlineStore.

-
-
-
-
demo/
-    feature_repo/
-        driver_repo.py
-        feature_store.yml
-    test_workflow.py
-
-
-
-

From within the demo/feature_repo directory, execute the following feast command to apply (import/update) the repo definition into the registry. You will be able to see the registry metadata tables in the teradata database after running this command.

-
-
-
-
feast apply
-
-
-
-

To see the registry information in the feast UI, run the following command. Note the --registry_ttl_sec is important as by default it polls every 5 seconds.

-
-
-
-
feast ui --registry_ttl_sec=120
-
-
-
-
-
-

Offline Store Config

-
-
-
-
project: <name of project>
-registry: <registry>
-provider: local
-offline_store:
-   type: feast_teradata.offline.teradata.TeradataOfflineStore
-   host: <db host>
-   database: <db name>
-   user: <username>
-   password: <password>
-   log_mech: <connection mechanism>
-
-
-
-
-
-

Repo Definition

-
-
-

Below is an example of definition.py which elaborates how -to set the entity, source connector, and feature view.

-
-
-

Now to explain the different components:

-
-
-
    -
  • -

    TeradataSource: Data Source for features stored in Teradata (Enterprise or Lake) or accessible via a Foreign Table from Teradata (NOS, QueryGrid)

    -
  • -
  • -

    Entity: A collection of semantically related features

    -
  • -
  • -

    Feature View: A feature view is a group of feature data from a specific data source. Feature views allow you to consistently define features and their data sources, enabling the reuse of feature groups across a project

    -
  • -
-
-
-
-
driver = Entity(name="driver", join_keys=["driver_id"])
-project_name = yaml.safe_load(open("feature_store.yaml"))["project"]
-
-driver_stats_source = TeradataSource(
-    database=yaml.safe_load(open("feature_store.yaml"))["offline_store"]["database"],
-    table=f"{project_name}_feast_driver_hourly_stats",
-    timestamp_field="event_timestamp",
-    created_timestamp_column="created",
-)
-
-driver_stats_fv = FeatureView(
-    name="driver_hourly_stats",
-    entities=[driver],
-    ttl=timedelta(weeks=52 * 10),
-    schema=[
-        Field(name="driver_id", dtype=Int64),
-        Field(name="conv_rate", dtype=Float32),
-        Field(name="acc_rate", dtype=Float32),
-        Field(name="avg_daily_trips", dtype=Int64),
-    ],
-    source=driver_stats_source,
-    tags={"team": "driver_performance"},
-)
-
-
-
-
-
-

Offline Store Usage

-
-
-

There are two different ways to test your offline store as explained below. But first, there are a few mandatory steps to follow:

-
-
-

Now, let’s batch-read some features for training, using only entities (population) for which we have seen an event in the last 60 days. The predicates (filter) used can be on anything relevant for the entity (population) selection for the given training dataset. The event_timestamp is only for example purposes.

-
-
-
-
from feast import FeatureStore
-store = FeatureStore(repo_path="feature_repo")
-training_df = store.get_historical_features(
-    entity_df=f"""
-            SELECT
-                driver_id,
-                event_timestamp
-            FROM demo_feast_driver_hourly_stats
-            WHERE event_timestamp BETWEEN (CURRENT_TIMESTAMP - INTERVAL '60' DAY) AND CURRENT_TIMESTAMP
-        """,
-    features=[
-        "driver_hourly_stats:conv_rate",
-        "driver_hourly_stats:acc_rate",
-        "driver_hourly_stats:avg_daily_trips"
-    ],
-).to_df()
-print(training_df.head())
-
-
-
-

The feast-teradata library allows you to use the complete set of feast APIs and functionality. Please refer to the official feast quickstart for more details on the various things you can do.

-
-
-
-
-

Online Store

-
-
-

Feast materializes data to online stores for low-latency lookup at model inference time. Typically, key-value stores are used for online stores, however, relational databases can be used for this purpose as well.

-
-
-

Users can develop their own online stores by creating a class that implements the contract in the OnlineStore class.

-
-
-
-
-

Online Store Config

-
-
-
-
project: <name of project>
-registry: <registry>
-provider: local
-offline_store:
-   type: feast_teradata.offline.teradata.TeradataOfflineStore
-   host: <db host>
-   database: <db name>
-   user: <username>
-   password: <password>
-   log_mech: <connection mechanism>
-
-
-
-
-
-

Online Store Usage

-
-
-

There are a few mandatory steps to follow before we can test the online store:

-
-
-

The command materialize_incremental is used to incrementally materialize features in the online store. If there are no new features to be added, this command will essentially not be doing anything. With feast materialize_incremental, the start time is either now — ttl (the ttl that we defined in our feature views) or the time of the most recent materialization. If you’ve materialized features at least once, then subsequent materializations will only fetch features that weren’t present in the store at the time of the previous materializations.

-
-
-
-
CURRENT_TIME=$(date +'%Y-%m-%dT%H:%M:%S')
-feast materialize-incremental $CURRENT_TIME
-
-
-
-

Next, while fetching the online features, we have two parameters features and entity_rows. The features parameter is a list and can take any number of features that are present in the df_feature_view. The example above shows all 4 features present but these can be less than 4 as well. Secondly, the entity_rows parameter is also a list and takes a dictionary of the form {feature_identifier_column: value_to_be_fetched}. In our case, the column driver_id is used to uniquely identify the different rows of the entity driver. We are currently fetching values of the features where driver_id is equal to 5. We can also fetch multiple such rows using the format: [{driver_id: val_1}, {driver_id: val_2}, .., {driver_id: val_n}] [{driver_id: val_1}, {driver_id: val_2}, .., {driver_id: val_n}]

-
-
-
-
entity_rows = [
-        {
-            "driver_id": 1001,
-        },
-        {
-            "driver_id": 1002,
-        },
-    ]
-features_to_fetch = [
-            "driver_hourly_stats:acc_rate",
-            "driver_hourly_stats:conv_rate",
-            "driver_hourly_stats:avg_daily_trips"
-        ]
-returned_features = store.get_online_features(
-    features=features_to_fetch,
-    entity_rows=entity_rows,
-).to_dict()
-for key, value in sorted(returned_features.items()):
-    print(key, " : ", value)
-
-
-
-
-
-

How to set SQL Registry

-
-
-

Another important thing is the SQL Registry. We first make a path variable that uses the username, password, database name, etc. to make a connection string which it then uses to establish a connection to Teradata’s Database.

-
-
-
-
path = 'teradatasql://'+ teradata_user +':' + teradata_password + '@'+host + '/?database=' + teradata_database + '&LOGMECH=' + teradata_log_mech
-
-
-
-

It will create the following table in your database:

-
-
-
    -
  • -

    Entities (entity_name,project_id,last_updated_timestamp,entity_proto)

    -
  • -
  • -

    Data_sources (data_source_name,project_id,last_updated_timestamp,data_source_proto)

    -
  • -
  • -

    Feature_views (feature_view_name,project_id,last_updated_timestamp,materialized_intervals,feature_view_proto,user_metadata)

    -
  • -
  • -

    Request_feature_views (feature_view_name,project_id,last_updated_timestamp,feature_view_proto,user_metadata)

    -
  • -
  • -

    Stream_feature_views (feature_view_name,project_id,last_updated_timestamp,feature_view_proto,user_metadata)

    -
  • -
  • -

    managed_infra (infra_name, project_id, last_updated_timestamp, infra_proto)

    -
  • -
  • -

    validation_references (validation_reference_name, project_id, last_updated_timestamp, validation_reference_proto)

    -
  • -
  • -

    saved_datasets (saved_dataset_name, project_id, last_updated_timestamp, saved_dataset_proto)

    -
  • -
  • -

    feature_services (feature_service_name, project_id, last_updated_timestamp, feature_service_proto)

    -
  • -
  • -

    on_demand_feature_views (feature_view_name, project_id, last_updated_timestamp, feature_view_proto, user_metadata)

    -
  • -
-
-
-

Additionally, if you want to see a complete (but not real-world), end-to-end example workflow example, see the demo/test_workflow.py script. This is used for testing the complete feast functionality.

-
-
-

An Enterprise Feature Store accelerates the value-gaining process in crucial stages of data analysis. It enhances productivity and reduces the time taken to introduce products in the market. By integrating Teradata with Feast, it enables the use of Teradata’s highly efficient parallel processing within a Feature Store, thereby enhancing performance.

-
-
-
-
-

Further reading

-
- -
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/mule-teradata-connector/_images/teradata-global-configuration.png b/pr-preview/pr-110/mule-teradata-connector/_images/teradata-global-configuration.png deleted file mode 100644 index e71bc6e56..000000000 Binary files a/pr-preview/pr-110/mule-teradata-connector/_images/teradata-global-configuration.png and /dev/null differ diff --git a/pr-preview/pr-110/mule-teradata-connector/_images/teradata-operations.png b/pr-preview/pr-110/mule-teradata-connector/_images/teradata-operations.png deleted file mode 100644 index 7b4d9f89a..000000000 Binary files a/pr-preview/pr-110/mule-teradata-connector/_images/teradata-operations.png and /dev/null differ diff --git a/pr-preview/pr-110/mule-teradata-connector/examples-configuration.html b/pr-preview/pr-110/mule-teradata-connector/examples-configuration.html deleted file mode 100644 index fb374c42d..000000000 --- a/pr-preview/pr-110/mule-teradata-connector/examples-configuration.html +++ /dev/null @@ -1,2774 +0,0 @@ - - - - - - Using Anypoint Studio to Configure Teradata Connector - Mule 4 :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Using Anypoint Studio to Configure Teradata Connector - Mule 4

-

Author: Tan Nguyen
-Last updated: February 13th, 2023

-
-
-
-

Anypoint Studio (Studio) editors help you design and update your Mule applications, properties, and configuration files.

-
-
-

To add and configure a connector in Studio:

-
- -
-

When you run the connector, you can view the app log to check for problems, as described in View the App Log.

-
-
-

If you are new to configuring connectors in Studio, see Using Anypoint Studio to Configure a Connector. If, after reading this topic, you need additional information about the connector fields, see the Teradata Connector Reference.

-
-
-
-
-

Create a Mule Project

-
-
-

In Studio, create a new Mule project in which to add and configure the connector:

-
-
-
    -
  1. -

    In Studio, select File > New > Mule Project.

    -
  2. -
  3. -

    Enter a name for your Mule project and click Finish.

    -
  4. -
-
-
-
-
-

Add the Connector to Your Mule Project

-
-
-

Add Teradata Connector to your Mule project to automatically populate the XML code with the connector’s namespace and schema location and to add the required dependencies to the project’s pom.xml file:

-
-
-
    -
  1. -

    In the Mule Palette view, click (X) Search in Exchange.

    -
  2. -
  3. -

    In the Add Dependencies to Project window, type teradata in the search field.

    -
  4. -
  5. -

    Click Teradata Connector in Available modules.

    -
  6. -
  7. -

    Click Add.

    -
  8. -
  9. -

    Click Finish.

    -
  10. -
-
-
-

Adding a connector to a Mule project in Studio does not make that connector available to other projects in your Studio workspace.

-
-
-
-
-

Configure a Source

-
-
-

A source initiates a flow when a specified condition is met. -You can configure one of these input sources to use with Teradata Connector:

-
-
-
    -
  • -

    Teradata > On Table Row
    -Initiates a flow by selecting from a table at a regular interval and generates one message per obtained row

    -
  • -
  • -

    HTTP > Listener
    -Initiates a flow each time it receives a request on the configured host and port

    -
  • -
  • -

    Scheduler
    -Initiates a flow when a time-based condition is met

    -
  • -
-
-
-

For example, to configure an On Table Row source, follow these steps:

-
-
-
    -
  1. -

    In the Mule Palette view, select Teradata > On Table Row.

    -
  2. -
  3. -

    Drag On Table Row to the Studio canvas.

    -
  4. -
  5. -

    In the On Table Row configuration screen, optionally change the value of the Display Name field.

    -
  6. -
  7. -

    Click the plus sign (+) next to the Connector configuration field to configure a global element that can be used by all instances of the source in the app.

    -
  8. -
  9. -

    In the Teradata Config window, on the General tab, specify the database connection information for the connector.

    -
  10. -
  11. -

    On the Transactions tab, optionally specify the transaction isolation, or XA transactions, when connecting to the database.

    -
  12. -
  13. -

    On the Advanced tab, optionally specify connection pooling and reconnection information, including a reconnection strategy.

    -
  14. -
  15. -

    Click Test Connection to confirm that Mule can connect with the specified database.

    -
  16. -
  17. -

    Click OK to close the window.

    -
  18. -
  19. -

    In the On Table Row configuration screen, in Table, specify the name of the table to select from.

    -
  20. -
-
-
-
-
-

Add a Connector Operation to the Flow

-
-
-

When you add a connector operation to your flow, you immediately define a specific operation for that connector to perform.

-
-
-

To add an operation for Teradata Connector, follow these steps:

-
-
-
    -
  1. -

    In the Mule Palette view, select Teradata Connector and then select the desired operation.

    -
  2. -
  3. -

    Drag the operation onto the Studio canvas and to the right of the input source.

    -
  4. -
-
-
-

The following screenshot shows the Teradata Connector operations in the Mule Palette view of Anypoint Studio:

-
-
-
-Teradata Connector Operations -
-
Figure 1. Teradata Connector Operations
-
-
-
-
-

Configure a Global Element for the Connector

-
-
-

When you configure a connector, it’s best to configure a global element that all instances of that connector in the app can use.

-
-
-

To configure the global element for Teradata Connector, follow these steps:

-
-
-
    -
  1. -

    Select the operation in the Studio canvas.

    -
  2. -
  3. -

    In the configuration screen for the operation, click the plus sign (+) next to the Connector configuration field to access the global element configuration fields.

    -
  4. -
  5. -

    In the Teradata Config window, on the General tab, specify the database connection information for the connector.

    -
  6. -
  7. -

    On the Transactions tab, optionally specify the transaction isolation, or XA transactions, when connecting to the database.

    -
  8. -
  9. -

    On the Advanced tab, optionally specify connection pooling and reconnection information, including a reconnection strategy.

    -
  10. -
  11. -

    Click Test Connection to confirm that Mule can connect with the specified database.

    -
  12. -
  13. -

    Click OK.

    -
  14. -
-
-
-

The following screenshot shows the Teradata Connector Global Element Configuration window in Anypoint Studio:

-
-
-
-Teradata Connector Global Element Configuration -
-
Figure 2. Teradata Connector Global Element Configuration
-
-
-
-
-

View the App Log

-
-
-

To check for problems, you can view the app log as follows:

-
-
-
    -
  • -

    If you’re running the app from Anypoint Platform, the output is visible in the Anypoint Studio console window.

    -
  • -
  • -

    If you’re running the app using Mule from the command line, the app log is visible in your OS console.

    -
  • -
-
-
-

Unless the log file path is customized in the app’s log file (log4j2.xml), you can also view the app log in the default location MULE_HOME/logs/<app-name>.log.

-
-
-
-
-

See Also

-
- -
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/mule-teradata-connector/index.html b/pr-preview/pr-110/mule-teradata-connector/index.html deleted file mode 100644 index 9e2e8e085..000000000 --- a/pr-preview/pr-110/mule-teradata-connector/index.html +++ /dev/null @@ -1,2640 +0,0 @@ - - - - - - Teradata Connector - Mule 4 :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Teradata Connector - Mule 4

-

Author: Tan Nguyen
-Last updated: February 10th, 2023

-
-
-
-

Anypoint Connector for Teradata (Teradata Connector) establishes communication between your Mule app and a Teradata Vantage database, enabling you to connect with your Teradata Vantage instance to load data and run SQL queries in Teradata Vantage tables.

-
- - -
-
-
-

Before You Begin

-
-
-

To use this connector, you must be familiar with:

-
-
-
    -
  • -

    Teradata Vantage SQL

    -
  • -
  • -

    Anypoint Connectors

    -
  • -
  • -

    Mule runtime engine (Mule)

    -
  • -
  • -

    Elements and global elements in a Mule flow

    -
  • -
  • -

    Anypoint Studio (Studio)

    -
  • -
-
-
-

Before creating an app, you must have:

-
-
-
    -
  • -

    Anypoint Studio version 7.5 or later

    -
  • -
  • -

    Credentials to access the Teradata Vantage target resource

    -
  • -
-
-
- - - - - -
- - -If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. -
-
-
-
-
-

Common Use Cases for the Connector

-
-
-

Teradata Connector enables you to:

-
-
-
    -
  • -

    Perform predefined queries, dynamically constructed queries, and template queries that are self-sufficient and customizable.

    -
  • -
  • -

    Use a source listener operation to read from a database in the data source section of a flow.

    -
  • -
  • -

    Execute other operations to read and write to a database anywhere in the process section.

    -
  • -
  • -

    Run a single bulk update to perform multiple SQL requests.

    -
  • -
  • -

    Make Data Definition Language (DDL) requests.

    -
  • -
  • -

    Execute stored procedures and SQL scripts.

    -
  • -
-
-
-

The Teradata Connector supports:

-
-
-
    -
  • -

    Connection pooling

    -
  • -
  • -

    Auto reconnects after timeouts

    -
  • -
-
-
-
-
-

Examples

-
-
-

After you complete the prerequisites, you can try the examples and configure the connector using Anypoint Studio.

-
- -
-
-
-

See Also

- -
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/mule-teradata-connector/reference.html b/pr-preview/pr-110/mule-teradata-connector/reference.html deleted file mode 100644 index cc123b2ed..000000000 --- a/pr-preview/pr-110/mule-teradata-connector/reference.html +++ /dev/null @@ -1,7786 +0,0 @@ - - - - - - Teradata Connector Reference - Mule 4 :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Teradata Connector Reference - Mule 4

-

Author: Tan Nguyen
-Last updated: February 10th, 2023

-
-
-
-

Anypoint Connector for Teradata (Teradata Connector) establishes communication between your Mule app and a Teradata Vantage database, enabling you to connect with your Teradata Vantage instance to load data and run SQL queries in Teradata Vantage tables.

-
- -
-
-
-

Configurations

-
-
-
-

Default Configuration

-
-

Use these parameters to configure the default configuration.

-
-
-

Parameters

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
NameTypeDescriptionDefault ValueRequired

Name

-

String

-
-

The name for this configuration. Connectors reference the configuration with this name.

-
-

x

-

Connection

-

The connection types to provide to this configuration.

-
-

x

-

Expiration Policy

-

Configures the minimum amount of time that a dynamic configuration instance can remain idle before Mule considers it eligible for expiration. This does not mean that the platform expires the instance at the exact moment that it becomes eligible. Mule purges the instances as appropriate.

-
-
-
-

Connection Types

-
-
Data Source Reference Connection
-
-

Configure the connection provider implementation that creates database connections from a referenced data source.

-
-
-

When you use a provider’s custom type in a Data Source Reference Connection, define the type inside the Column Types form of the Advanced section in the Database config.

-
-
-
Parameters
- ------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
NameTypeDescriptionDefault ValueRequired

Pooling Profile

-

Provides a way to configure database connection pooling

-

Column Types

-

Array of Column Type

-
-

Specifies non-standard column types

-

Reconnection

-

When the application is deployed, a connectivity test is performed on all connectors. If set to true, deployment fails if the test doesn’t pass after exhausting the associated reconnection strategy.

-
-
-
-
-
Teradata Connection
-
-
Parameters
- ------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
NameTypeDescriptionDefault ValueRequired

Pooling Profile

-

Provides a way to configure database connection pooling

-

Column Types

-

Array of Column Type

-
-

Specifies non-standard column types

-

Transaction Isolation

-

Enumeration, one of:

-
-
-
    -
  • -

    NONE

    -
  • -
  • -

    READ_COMMITTED

    -
  • -
  • -

    READ_UNCOMMITTED

    -
  • -
  • -

    REPEATABLE_READ

    -
  • -
  • -

    SERIALIZABLE

    -
  • -
  • -

    NOT_CONFIGURED

    -
  • -
-
-

The transaction isolation level to set on the driver when connecting the database

-
-

NOT_CONFIGURED

-

Use XA Transactions

-

Boolean

-
-

Indicates whether or not the created datasource must support XA transactions

-
-

false

-

URL

-

String

-
-

JDBC URL to use to connect to the database

-
-

x

-

User

-

String

-
-

Database username

-

Password

-

String

-
-

Database password

-

Reconnection

-

When the application is deployed, a connectivity test is performed on all connectors. If set to true, deployment fails if the test doesn’t pass after exhausting the associated reconnection strategy.

-
-
-
-
-
-
-
-
-

Operations

-
-
- - - - - -
- - -To specify an SQL function in an SQL query in an operation, specify the SQL function in the {fn function()} format. For example, the SQL function CURRENT_TIMESTAMP is specified as {fn CURRENT_TIMESTAMP()}. -
-
- -
-
-
-

Associated Sources

-
-
- -
-
-

Bulk Delete

-
-

<db:bulk-delete>

-
-
-

This operation allows delete operations to execute at various times using different parameter bindings and a single database statement. This improves performance compared to executing a single delete operation at various times.

-
-
-

Parameters

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
NameTypeDescriptionDefault ValueRequired

Configuration

-

String

-
-

The name of the configuration to use

-
-

x

-

Input Parameters

-

Array of Object

-
-

Specifies a list of maps, which contain the parameter names as keys and the value the parameter is bound to, and in which every list item represents a row to insert.

-
-

#[payload]

-

Transactional Action

-

Enumeration, one of:

-
-
-
    -
  • -

    ALWAYS_JOIN

    -
  • -
  • -

    JOIN_IF_POSSIBLE

    -
  • -
  • -

    NOT_SUPPORTED

    -
  • -
-
-

The type of joining action that operations can take regarding transactions

-
-

JOIN_IF_POSSIBLE

-

Query Timeout

-

Number

-
-

Indicates the minimum amount of time before the JDBC driver attempts to cancel a running statement. By default, no timeout is used.

-
-

0

-

Query Timeout Unit

-

Enumeration, one of:

-
-
-
    -
  • -

    NANOSECONDS

    -
  • -
  • -

    MICROSECONDS

    -
  • -
  • -

    MILLISECONDS

    -
  • -
  • -

    SECONDS

    -
  • -
  • -

    MINUTES

    -
  • -
  • -

    HOURS

    -
  • -
  • -

    DAYS

    -
  • -
-
-

A time unit that qualifies the #queryTimeout. Values specified in nanoseconds, microseconds, or milliseconds are rounded to seconds.

-
-

SECONDS

-

Fetch Size

-

Number

-
-

Indicates how many rows to fetch from the database when rows are read from a ResultSet. This property is required when streaming is true, in which case a default value of 10 is used.

-

Max Rows

-

Number

-
-

Sets the limit for the maximum number of rows that any ResultSet object generated by this message processor can contain for the given number. If the limit is exceeded, the excess rows are silently dropped.

-

SQL Query Text

-

String

-
-

The text of the SQL query to execute

-
-

x

-

Parameter Types

-

Array of Parameter Type

-
-

This parameter allows you to optionally specify the type of one or more of the parameters in the query. If a value is provided, you’re not required to reference all of the parameters; but you cannot reference a parameter that is not present in the input values.

-

Target Variable

-

String

-
-

The name of a variable to store the operation’s output

-

Target Value

-

String

-
-

An expression to evaluate against the operation’s output and store the expression outcome in the target variable

-
-

#[payload]

-

Reconnection Strategy

- -
-

A retry strategy in case of connectivity errors

-
-
-
-

Output

- ---- - - - - - - -

Type

Array of Number

-
-
-
-

For Configurations

- -
-

Throws

-
-
    -
  • -

    DB:CONNECTIVITY

    -
  • -
  • -

    DB:QUERY_EXECUTION

    -
  • -
  • -

    DB:RETRY_EXHAUSTED

    -
  • -
  • -

    DB:BAD_SQL_SYNTAX

    -
  • -
-
-
-
-
-

Bulk Insert

-
-

<db:bulk-insert>

-
-
-

This operation allows inserts to execute at various times using different parameter bindings and a single database statement. This improves performance compared to executing a single insert operation at various times.

-
-
-

Parameters

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
NameTypeDescriptionDefault ValueRequired

Configuration

-

String

-
-

The name of the configuration to use

-
-

x

-

Input Parameters

-

Array of Object

-
-

A list of maps in which every list item represents a row to be inserted, and the map contains the parameter names as keys and the value the parameter is bound to.

-
-

#[payload]

-

Transactional Action

-

Enumeration, one of:

-
-
-
    -
  • -

    ALWAYS_JOIN

    -
  • -
  • -

    JOIN_IF_POSSIBLE

    -
  • -
  • -

    NOT_SUPPORTED

    -
  • -
-
-

The type of joining action that operations can take regarding transactions.

-
-

JOIN_IF_POSSIBLE

-

Query Timeout

-

Number

-
-

Indicates the minimum amount of time before the JDBC driver attempts to cancel a running statement. No timeout is used by default.

-
-

0

-

Query Timeout Unit

-

Enumeration, one of:

-
-
-
    -
  • -

    NANOSECONDS

    -
  • -
  • -

    MICROSECONDS

    -
  • -
  • -

    MILLISECONDS

    -
  • -
  • -

    SECONDS

    -
  • -
  • -

    MINUTES

    -
  • -
  • -

    HOURS

    -
  • -
  • -

    DAYS

    -
  • -
-
-

A TimeUnit that qualifies the #queryTimeout. Values specified in nanoseconds, microseconds, or milliseconds are rounded to seconds.

-
-

SECONDS

-

Fetch Size

-

Number

-
-

Indicates how many rows to fetch from the database when rows are read from a resultSet. This property is required when streaming is true; in that case a default value (10) is used.

-

Max Rows

-

Number

-
-

Sets the limit for the maximum number of rows that any ResultSet object generated by this message processor can contain for the given number. If the limit is exceeded, the excess rows are silently dropped.

-

SQL Query Text

-

String

-
-

The text of the SQL query to execute

-
-

x

-

Parameter Types

-

Array of Parameter Type

-
-

Allows you to optionally specify the type of one or more of the parameters in the query. If provided, you’re not required to reference all of the parameters, but you cannot reference a parameter not present in the input values

-

Target Variable

-

String

-
-

The name of a variable to store the operation’s output.

-

Target Value

-

String

-
-

An expression to evaluate against the operation’s output and store the expression outcome in the target variable

-
-

#[payload]

-

Reconnection Strategy

- -
-

A retry strategy in case of connectivity errors.

-
-
-
-

Output

- ---- - - - - - - -

Type

Array of Number

-
-
-
-

For Configurations

- -
-

Throws

-
-
    -
  • -

    DB:CONNECTIVITY

    -
  • -
  • -

    DB:QUERY_EXECUTION

    -
  • -
  • -

    DB:RETRY_EXHAUSTED

    -
  • -
  • -

    DB:BAD_SQL_SYNTAX

    -
  • -
-
-
-
-
-

Bulk Update

-
-

<db:bulk-update>

-
-
-

This operation allows updates to execute at various times using different parameter bindings and a single database statement. This improves performance compared to executing one single update operation at various times.

-
-
-

Parameters

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
NameTypeDescriptionDefault ValueRequired

Configuration

-

String

-
-

The name of the configuration to use

-
-

x

-

Input Parameters

-

Array of Object

-
-

Specifies a list of maps, which contain the parameter names as keys and the value the parameter is bound to, and in which every list item represents a row to insert.

-
-

#[payload]

-

Transactional Action

-

Enumeration, one of:

-
-
-
    -
  • -

    ALWAYS_JOIN

    -
  • -
  • -

    JOIN_IF_POSSIBLE

    -
  • -
  • -

    NOT_SUPPORTED

    -
  • -
-
-

The type of joining action that operations can take regarding transactions.

-
-

JOIN_IF_POSSIBLE

-

Query Timeout

-

Number

-
-

Indicates the minimum amount of time before the JDBC driver attempts to cancel a running statement. By default, no timeout is used.

-
-

0

-

Query Timeout Unit

-

Enumeration, one of:

-
-
-
    -
  • -

    NANOSECONDS

    -
  • -
  • -

    MICROSECONDS

    -
  • -
  • -

    MILLISECONDS

    -
  • -
  • -

    SECONDS

    -
  • -
  • -

    MINUTES

    -
  • -
  • -

    HOURS

    -
  • -
  • -

    DAYS

    -
  • -
-
-

A time unit that qualifies the #queryTimeout. Values specified in nanoseconds, microseconds, or milliseconds are rounded to seconds.

-
-

SECONDS

-

Fetch Size

-

Number

-
-

Indicates how many rows to fetch from the database when rows are read from a ResultSet.

-
-

10

-

Max Rows

-

Number

-
-

Sets the limit for the maximum number of rows that any ResultSet object generated by this message processor can contain for the given number. If the limit is exceeded, the excess rows are silently dropped.

-

SQL Query Text

-

String

-
-

The text of the SQL query to execute

-
-

x

-

Parameter Types

-

Array of Parameter Type

-
-

Allows you to optionally specify the type of one or more of the parameters in the query. If provided, you’re not required to reference all of the parameters; but you cannot reference a parameter that is not present in the input values.

-

Target Variable

-

String

-
-

The name of a variable to store the operation’s output

-

Target Value

-

String

-
-

An expression to evaluate against the operation’s output and store the expression outcome in the target variable

-
-

#[payload]

-

Reconnection Strategy

- -
-

A retry strategy in case of connectivity errors

-
-
-
-

Output

- ---- - - - - - - -

Type

Array of Number

-
-
-
-

For Configurations

- -
-

Throws

-
-
    -
  • -

    DB:CONNECTIVITY

    -
  • -
  • -

    DB:QUERY_EXECUTION

    -
  • -
  • -

    DB:RETRY_EXHAUSTED

    -
  • -
  • -

    DB:BAD_SQL_SYNTAX

    -
  • -
-
-
-
-
-

Delete

-
-

<db:delete>

-
-
-

This operation deletes data in a database.

-
-
-

Parameters

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
NameTypeDescriptionDefault ValueRequired

Configuration

-

String

-
-

The name of the configuration to use

-
-

x

-

Transactional Action

-

Enumeration, one of:

-
-
-
    -
  • -

    ALWAYS_JOIN

    -
  • -
  • -

    JOIN_IF_POSSIBLE

    -
  • -
  • -

    NOT_SUPPORTED

    -
  • -
-
-

The type of joining action that operations can take regarding transactions

-
-

JOIN_IF_POSSIBLE

-

Query Timeout

-

Number

-
-

Indicates the minimum amount of time before the JDBC driver attempts to cancel a running statement. By default, no timeout is used.

-
-

0

-

Query Timeout Unit

-

Enumeration, one of:

-
-
-
    -
  • -

    NANOSECONDS

    -
  • -
  • -

    MICROSECONDS

    -
  • -
  • -

    MILLISECONDS

    -
  • -
  • -

    SECONDS

    -
  • -
  • -

    MINUTES

    -
  • -
  • -

    HOURS

    -
  • -
  • -

    DAYS

    -
  • -
-
-

A time unit that qualifies the #queryTimeout. Values specified in nanoseconds, microseconds, or milliseconds are rounded to seconds.

-
-

SECONDS

-

Fetch Size

-

Number

-
-

Indicates how many rows to fetch from the database when rows are read from a ResultSet.

-
-

10

-

Max Rows

-

Number

-
-

Sets the limit for the maximum number of rows that any ResultSet object generated by this message processor can contain for the given number. If the limit is exceeded, the excess rows are silently dropped.

-

SQL Query Text

-

String

-
-

The text of the SQL query to execute

-
-

x

-

Parameter Types

-

Array of Parameter Type

-
-

Allows you to optionally specify the type of one or more of the parameters in the query. If a value is provided, you’re not required to reference all of the parameters; but you cannot reference a parameter that is not present in the input values.

-

Input Parameters

-

Object

-
-

A map in which keys are the name of an input parameter to set on the JDBC prepared statement. Each parameter should be referenced in the SQL text using a colon prefix (for example, where id = :myParamName). The map’s values contain the actual assignation for each parameter.

-

Target Variable

-

String

-
-

The name of a variable to store the operation’s output

-

Target Value

-

String

-
-

An expression to evaluate against the operation’s output and store the expression outcome in the target variable

-
-

#[payload]

-

Reconnection Strategy

- -
-

A retry strategy in case of connectivity errors

-
-
-
-

Output

- ---- - - - - - - -

Type

Number

-
-
-
-

For Configurations

- -
-

Throws

-
-
    -
  • -

    DB:CONNECTIVITY

    -
  • -
  • -

    DB:QUERY_EXECUTION

    -
  • -
  • -

    DB:RETRY_EXHAUSTED

    -
  • -
  • -

    DB:BAD_SQL_SYNTAX

    -
  • -
-
-
-
-
-

Execute DDL

-
-

<db:execute-ddl>

-
-
-

This operation allows execution of DDL queries against a database.

-
-
-

Parameters

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
NameTypeDescriptionDefault ValueRequired

Configuration

-

String

-
-

The name of the configuration to use

-
-

x

-

SQL Query Text

-

String

-
-

The text of the SQL query to execute

-
-

x

-

Transactional Action

-

Enumeration, one of:

-
-
-
    -
  • -

    ALWAYS_JOIN

    -
  • -
  • -

    JOIN_IF_POSSIBLE

    -
  • -
  • -

    NOT_SUPPORTED

    -
  • -
-
-

The type of joining action that operations can take regarding transactions

-
-

JOIN_IF_POSSIBLE

-

Query Timeout

-

Number

-
-

Indicates the minimum amount of time before the JDBC driver attempts to cancel a running statement. By default, no timeout is used.

-
-

0

-

Query Timeout Unit

-

Enumeration, one of:

-
-
-
    -
  • -

    NANOSECONDS

    -
  • -
  • -

    MICROSECONDS

    -
  • -
  • -

    MILLISECONDS

    -
  • -
  • -

    SECONDS

    -
  • -
  • -

    MINUTES

    -
  • -
  • -

    HOURS

    -
  • -
  • -

    DAYS

    -
  • -
-
-

A time unit that qualifies the #queryTimeout. Values specified in nanoseconds, microseconds, or milliseconds are rounded to seconds.

-
-

SECONDS

-

Fetch Size

-

Number

-
-

Indicates how many rows to fetch from the database when rows are read from a ResultSet.

-
-

10

-

Max Rows

-

Number

-
-

Sets the limit for the maximum number of rows that any ResultSet object generated by this message processor can contain for the given number. If the limit is exceeded, the excess rows are silently dropped.

-

Target Variable

-

String

-
-

The name of a variable to store the operation’s output

-

Target Value

-

String

-
-

An expression to evaluate against the operation’s output and store the expression outcome in the target variable

-
-

#[payload]

-

Reconnection Strategy

- -
-

A retry strategy in case of connectivity errors

-
-
-
-

Output

- ---- - - - - - - -

Type

Number

-
-
-
-

For Configurations

- -
-

Throws

-
-
    -
  • -

    DB:CONNECTIVITY

    -
  • -
  • -

    DB:QUERY_EXECUTION

    -
  • -
  • -

    DB:RETRY_EXHAUSTED

    -
  • -
  • -

    DB:BAD_SQL_SYNTAX

    -
  • -
-
-
-
-
-

Execute Script

-
-

<db:execute-script>

-
-
-

This operation executes an SQL script in a single database statement. The script is executed as provided by the user, without any parameter binding.

-
-
-

Parameters

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
NameTypeDescriptionDefault ValueRequired

Configuration

-

String

-
-

The name of the configuration to use

-
-

x

-

Transactional Action

-

Enumeration, one of:

-
-
-
    -
  • -

    ALWAYS_JOIN

    -
  • -
  • -

    JOIN_IF_POSSIBLE

    -
  • -
  • -

    NOT_SUPPORTED

    -
  • -
-
-

The type of joining action that operations can take for transactions.

-
-

JOIN_IF_POSSIBLE

-

SQL Query Text

-

String

-
-

The text of the SQL query to execute

-

Script Path

-

String

-
-

Specifies the location of a file to load. The file can point to a resource on the classpath, or on a disk.

-

Query Timeout

-

Number

-
-

Indicates the minimum amount of time before the JDBC driver attempts to cancel a running statement. By default, no timeout is used.

-
-

0

-

Query Timeout Unit

-

Enumeration, one of:

-
-
-
    -
  • -

    NANOSECONDS

    -
  • -
  • -

    MICROSECONDS

    -
  • -
  • -

    MILLISECONDS

    -
  • -
  • -

    SECONDS

    -
  • -
  • -

    MINUTES

    -
  • -
  • -

    HOURS

    -
  • -
  • -

    DAYS

    -
  • -
-
-

A time unit that qualifies the #queryTimeout. Values specified in nanoseconds, microseconds, or milliseconds are rounded to seconds.

-
-

SECONDS

-

Fetch Size

-

Number

-
-

Indicates how many rows to fetch from the database when rows are read from a ResultSet.

-
-

10

-

Max Rows

-

Number

-
-

Sets the limit for the maximum number of rows that any ResultSet object generated by this message processor can contain for the given number. If the limit is exceeded, the excess rows are silently dropped.

-

Target Variable

-

String

-
-

The name of a variable to store the operation’s output

-

Target Value

-

String

-
-

An expression to evaluate against the operation’s output and store the expression outcome in the target variable

-
-

#[payload]

-

Reconnection Strategy

- -
-

A retry strategy in case of connectivity errors

-
-
-
-

Output

- ---- - - - - - - -

Type

Array of Number

-
-
-
-

For Configurations

- -
-

Throws

-
-
    -
  • -

    DB:CONNECTIVITY

    -
  • -
  • -

    DB:QUERY_EXECUTION

    -
  • -
  • -

    DB:RETRY_EXHAUSTED

    -
  • -
  • -

    DB:BAD_SQL_SYNTAX

    -
  • -
-
-
-
-
-

Insert

-
-

<db:insert>

-
-
-

This operation inserts data into a database.

-
-
-

Parameters

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
NameTypeDescriptionDefault ValueRequired

Configuration

-

String

-
-

The name of the configuration to use

-
-

x

-

Transactional Action

-

Enumeration, one of:

-
-
-
    -
  • -

    ALWAYS_JOIN

    -
  • -
  • -

    JOIN_IF_POSSIBLE

    -
  • -
  • -

    NOT_SUPPORTED

    -
  • -
-
-

The type of joining action that operations can take regarding transactions

-
-

JOIN_IF_POSSIBLE

-

Query Timeout

-

Number

-
-

Indicates the minimum amount of time before the JDBC driver attempts to cancel a running statement. By default, no timeout is used.

-
-

0

-

Query Timeout Unit

-

Enumeration, one of:

-
-
-
    -
  • -

    NANOSECONDS

    -
  • -
  • -

    MICROSECONDS

    -
  • -
  • -

    MILLISECONDS

    -
  • -
  • -

    SECONDS

    -
  • -
  • -

    MINUTES

    -
  • -
  • -

    HOURS

    -
  • -
  • -

    DAYS

    -
  • -
-
-

A time unit that qualifies the #queryTimeout. Values specified in nanoseconds, microseconds, or milliseconds are rounded to seconds.

-
-

SECONDS

-

Fetch Size

-

Number

-
-

Indicates how many rows to fetch from the database when rows are read from a ResultSet.

-
-

10

-

Max Rows

-

Number

-
-

Sets the limit for the maximum number of rows that any ResultSet object generated by this message processor can contain for the given number. If the limit is exceeded, the excess rows are silently dropped.

-

SQL Query Text

-

String

-
-

The text of the SQL query to execute

-
-

x

-

Parameter Types

-

Array of Parameter Type

-
-

Allows you to optionally specify the type of one or more of the parameters in the query. If provided, you’re not required to reference all of the parameters; but you cannot reference a parameter that is not present in the input values.

-

Input Parameters

-

Object

-
-

A map in which keys are the name of an input parameter to be set on the JDBC prepared statement. Each parameter should be referenced in the SQL text using a colon prefix (E.g: where id = :myParamName)). The map’s values contain the actual assignation for each parameter.

-

Auto Generate Keys

-

Boolean

-
-

Indicates when to make auto-generated keys available for retrieval.

-
-

false

-

Auto Generated Keys Column Indexes

-

Array of Number

-
-

List of column indexes that indicates which auto-generated keys to make available for retrieval

-

Auto Generated Keys Column Names

-

Array of String

-
-

List of column names that indicates which auto-generated keys to make available for retrieval

-

Target Variable

-

String

-
-

The name of a variable to store the operation’s output

-

Target Value

-

String

-
-

An expression to evaluate against the operation’s output and store the expression outcome in the target variable

-
-

#[payload]

-

Reconnection Strategy

- -
-

A retry strategy in case of connectivity errors

-
-
-
-

Output

- ---- - - - - - - -

Type

Statement Result

-
-
-
-

For Configurations

- -
-

Throws

-
-
    -
  • -

    DB:CONNECTIVITY

    -
  • -
  • -

    DB:QUERY_EXECUTION

    -
  • -
  • -

    DB:RETRY_EXHAUSTED

    -
  • -
  • -

    DB:BAD_SQL_SYNTAX

    -
  • -
-
-
-
-
-

Select

-
-

<db:select>

-
-
-

This operation queries data from a database. To prevent loading all the results at once, which can lead to performance and memory issues, results are automatically streamed. This means that pages of fetchSize rows are loaded when needed. If this operation is performed inside a transaction (that is, within a Try scope component) and that transaction is closed before consuming the data, accessing the results that haven’t been loaded will fail.

-
-
-

Parameters

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
NameTypeDescriptionDefault ValueRequired

Configuration

-

String

-
-

The name of the configuration to use

-
-

x

-

Transactional Action

-

Enumeration, one of:

-
-
-
    -
  • -

    ALWAYS_JOIN

    -
  • -
  • -

    JOIN_IF_POSSIBLE

    -
  • -
  • -

    NOT_SUPPORTED

    -
  • -
-
-

The type of joining action that operations can take regarding transactions

-
-

JOIN_IF_POSSIBLE

-

Streaming Strategy

- -
-

Configure to use repeatable streams

-

Query Timeout

-

Number

-
-

Indicates the minimum amount of time before the JDBC driver attempts to cancel a running statement. By default, no timeout is used.

-
-

0

-

Query Timeout Unit

-

Enumeration, one of:

-
-
-
    -
  • -

    NANOSECONDS

    -
  • -
  • -

    MICROSECONDS

    -
  • -
  • -

    MILLISECONDS

    -
  • -
  • -

    SECONDS

    -
  • -
  • -

    MINUTES

    -
  • -
  • -

    HOURS

    -
  • -
  • -

    DAYS

    -
  • -
-
-

A time unit that qualifies the #queryTimeout. Values specified in nanoseconds, microseconds, or milliseconds are rounded to seconds.

-
-

SECONDS

-

Fetch Size

-

Number

-
-

Indicates how many rows to fetch from the database when rows are read from a ResultSet.

-
-

10

-

Max Rows

-

Number

-
-

Sets the limit for the maximum number of rows that any ResultSet object generated by this message processor can contain for the given number. If the limit is exceeded, the excess rows are silently dropped.

-

SQL Query Text

-

String

-
-

The text of the SQL query to execute

-
-

x

-

Parameter Types

-

Array of Parameter Type

-
-

Allows you to optionally specify the type of one or more of the parameters in the query. If provided, you’re not required to reference all of the parameters; but you cannot reference a parameter that is not present in the input values.

-

Input Parameters

-

Object

-
-

A map in which keys are the name of an input parameter to be set on the JDBC prepared statement. Each parameter should be referenced in the SQL text using a colon prefix (for example: where id = :myParamName)). The map’s values will contain the actual assignation for each parameter.

-

Target Variable

-

String

-
-

The name of a variable to store the operation’s output.

-

Target Value

-

String

-
-

An expression to evaluate against the operation’s output and store the expression outcome in the target variable

-
-

#[payload]

-

Reconnection Strategy

- -
-

A retry strategy in case of connectivity errors.

-
-
-
-

Output

- ---- - - - - - - -

Type

Array of Object

-
-
-
-

For Configurations

- -
-
-

Working with Pooling Profiles

-
-

When working with pooling profiles and the Select operation, the connection remains open until one of the following occurs:

-
-
-
    -
  • -

    The flow execution ends

    -
  • -
  • -

    The content of the streams are consumed completely

    -
  • -
  • -

    The connection is the transaction key.

    -
  • -
-
-
- - - - - -
- - -Because LOBs are treated as streams, the connection remains open until the flow execution ends, or until the content is consumed before the flow completes, in which case the best approach is taken to close the related connection. -
-
-
-

This behavior occurs because the result set the operation generates can have a stream or be part of an ongoing transaction.

-
-
-

Throws

-
-
    -
  • -

    DB:BAD_SQL_SYNTAX

    -
  • -
  • -

    DB:CONNECTIVITY

    -
  • -
  • -

    DB:QUERY_EXECUTION

    -
  • -
-
-
-
-
-

Query Single

-
-

<db:query-single>

-
-
-

This operation selects a single data record from a database. If you provide an SQL query that returns more than one row, then only the first record is processed and returned. This operation does not use streaming, which means that immediately after performing the Query Single operation, the complete content of the selected record is loaded into memory.

-
-
-

Parameters

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
NameTypeDescriptionDefault ValueRequired

Configuration

-

String

-
-

The name of the configuration to use

-
-

x

-

Transactional Action

-

Enumeration, one of:

-
-
-
    -
  • -

    ALWAYS_JOIN

    -
  • -
  • -

    JOIN_IF_POSSIBLE

    -
  • -
  • -

    NOT_SUPPORTED

    -
  • -
-
-

The type of join action that operations can take regarding transactions

-
-

JOIN_IF_POSSIBLE

-

Streaming Strategy

- -
-

Configure to use repeatable streams

-

Query Timeout

-

Number

-
-

Indicates the minimum amount of time before the JDBC driver attempts to cancel a running statement. By default, no timeout is used.

-
-

0

-

Query Timeout Unit

-

Enumeration, one of:

-
-
-
    -
  • -

    NANOSECONDS

    -
  • -
  • -

    MICROSECONDS

    -
  • -
  • -

    MILLISECONDS

    -
  • -
  • -

    SECONDS

    -
  • -
  • -

    MINUTES

    -
  • -
  • -

    HOURS

    -
  • -
  • -

    DAYS

    -
  • -
-
-

A time unit that qualifies the #queryTimeout. Values specified in nanoseconds, microseconds, or milliseconds are rounded to seconds.

-
-

SECONDS

-

Fetch Size

-

Number

-
-

Indicates how many rows to fetch from the database when rows are read from a ResultSet.

-
-

10

-

Max Rows

-

Number

-
-

The maximum number of rows that any ResultSet object generated by this message processor can contain. If the limit is exceeded, the excess rows are silently dropped.

-

SQL Query Text

-

String

-
-

The text of the SQL query to execute

-
-

x

-

Parameter Types

-

Array of Parameter Type

-
-

Enables you to optionally specify the type of one or more of the parameters in the query. If provided, you’re not required to reference all of the parameters; but you cannot reference a parameter that is not present in the input values.

-

Input Parameters

-

Object

-
-

A map in which keys are the name of an input parameter to be set on the JDBC prepared statement. Each parameter should be referenced in the SQL text using a colon prefix (for example: where id = :myParamName)). The map’s values will contain the actual assignation for each parameter.

-

Target Variable

-

String

-
-

Name of the variable in which to store the operation’s output

-

Target Value

-

String

-
-

Expression that evaluates the operation’s output. The expression outcome is stored in the target variable.

-
-

#[payload]

-

Reconnection Strategy

- -
-

A retry strategy in case of connectivity errors.

-
-
-
-

Output

- ---- - - - - - - -

Type

Object

-
-
-
-

For Configurations

- -
-
-

Working with Pooling Profiles

-
-

When working with pooling profiles and the Query Single operation, the connection returns to the pool immediately after the operation is performed.

-
-
-

Throws

-
-
    -
  • -

    DB:BAD_SQL_SYNTAX

    -
  • -
  • -

    DB:CONNECTIVITY

    -
  • -
  • -

    DB:QUERY_EXECUTION

    -
  • -
-
-
-
-
-

Stored Procedure

-
-

<db:stored-procedure>

-
-
-

Invokes a stored procedure on the database. When the stored procedure returns one or more ResultSet instances, results are not read all at once. Instead, results are automatically streamed to prevent performance and memory issues. This behavior means that pages of fetchSize rows are loaded lazily when needed. If the Stored procedure operation is performed inside a transaction (for example, in a Try scope component), and that transaction is closed before consuming the data, accessing the results that haven’t been loaded will fail.

-
-
-

Parameters

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
NameTypeDescriptionDefault ValueRequired

Configuration

-

String

-
-

The name of the configuration to use.

-
-

x

-

Transactional Action

-

Enumeration, one of:

-
-
-
    -
  • -

    ALWAYS_JOIN

    -
  • -
  • -

    JOIN_IF_POSSIBLE

    -
  • -
  • -

    NOT_SUPPORTED

    -
  • -
-
-

The type of joining action that operations can take regarding transactions.

-
-

JOIN_IF_POSSIBLE

-

Streaming Strategy

- -
-

Configure to use repeatable streams

-

Query Timeout

-

Number

-
-

Indicates the minimum amount of time before the JDBC driver attempts to cancel a running statement. No timeout is used by default.

-
-

0

-

Query Timeout Unit

-

Enumeration, one of:

-
-
-
    -
  • -

    NANOSECONDS

    -
  • -
  • -

    MICROSECONDS

    -
  • -
  • -

    MILLISECONDS

    -
  • -
  • -

    SECONDS

    -
  • -
  • -

    MINUTES

    -
  • -
  • -

    HOURS

    -
  • -
  • -

    DAYS

    -
  • -
-
-

A time unit that qualifies the #queryTimeout. Values specified in nanoseconds, microseconds, or milliseconds are rounded to seconds.

-
-

SECONDS

-

Fetch Size

-

Number

-
-

Indicates how many rows to fetch from the database when rows are read from a resultSet. This property is required when streaming is true; in that case a default value (10) is used.

-

Max Rows

-

Number

-
-

Sets the limit for the maximum number of rows that any ResultSet object generated by this message processor can contain for the given number. If the limit is exceeded, the excess rows are silently dropped.

-

SQL Query Text

-

String

-
-

The text of the SQL query to execute

-
-

x

-

Parameter Types

-

Array of Parameter Type

-
-

Allows to optionally specify the type of one or more of the parameters in the query. If provided, you’re not even required to reference all of the parameters, but you cannot reference a parameter not present in the input values

-

Input Parameters

-

Object

-
-

A map in which keys are the name of an input parameter to be set on the JDBC prepared statement. Each parameter should be referenced in the SQL text using a colon prefix (for example: where id = :myParamName)). The map’s values will contain the actual assignation for each parameter.

-

Input - Output Parameters

-

Object

-
-

A map in which keys are the name of a parameter to be set on the JDBC prepared statement which is both input and output. Each parameter should be referenced in the SQL text using a colon prefix (for example: where id = :myParamName)). The map’s values will contain the actual assignation for each parameter.

-

Output Parameters

-

Array of Output Parameter

-
-

A list of output parameters to be set on the JDBC prepared statement. Each parameter should be referenced in the SQL text using a colon prefix (for example: call multiply(:value, :result))

-

Auto Generate Keys

-

Boolean

-
-

Indicates when to make auto-generated keys available for retrieval.

-
-

false

-

Auto Generated Keys Column Indexes

-

Array of Number

-
-

List of column indexes that indicates which auto-generated keys to make available for retrieval.

-

Auto Generated Keys Column Names

-

Array of String

-
-

List of column names that indicates which auto-generated keys should be made available for retrieval.

-

Target Variable

-

String

-
-

The name of a variable to store the operation’s output.

-

Target Value

-

String

-
-

An expression to evaluate against the operation’s output and store the expression outcome in the target variable

-
-

#[payload]

-

Reconnection Strategy

- -
-

A retry strategy in case of connectivity errors

-
-
-
-

Output

- ---- - - - - - - -

Type

Object

-
-
-
-

For Configurations

- -
-
-

Working with Pooling Profiles

-
-

When working with pooling profiles and the Stored procedure operation, the connection remains open until the flow execution ends or the content of the streams are consumed completely, or if the connection is the transaction key. This behavior occurs because the resultset the operation generates can have a stream or be part of an ongoing transaction.

-
-
-

Starting with Database Connector 1.8.3, the connections on the Stored procedure operation are released if they are not part of a stream or transaction.

-
-
-

Throws

-
-
    -
  • -

    DB:BAD_SQL_SYNTAX

    -
  • -
  • -

    DB:CONNECTIVITY

    -
  • -
  • -

    DB:QUERY_EXECUTION

    -
  • -
  • -

    DB:RETRY_EXHAUSTED

    -
  • -
-
-
-
-
-

Update

-
-

<db:update>

-
-
-

Updates data in a database.

-
-
-

Parameters

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
NameTypeDescriptionDefault ValueRequired

Configuration

-

String

-
-

The name of the configuration to use

-
-

x

-

Transactional Action

-

Enumeration, one of:

-
-
-
    -
  • -

    ALWAYS_JOIN

    -
  • -
  • -

    JOIN_IF_POSSIBLE

    -
  • -
  • -

    NOT_SUPPORTED

    -
  • -
-
-

The type of joining action that operations can take for transactions

-
-

JOIN_IF_POSSIBLE

-

Query Timeout

-

Number

-
-

Indicates the minimum amount of time before the JDBC driver attempts to cancel a running statement. By default, no timeout is used.

-
-

0

-

Query Timeout Unit

-

Enumeration, one of:

-
-
-
    -
  • -

    NANOSECONDS

    -
  • -
  • -

    MICROSECONDS

    -
  • -
  • -

    MILLISECONDS

    -
  • -
  • -

    SECONDS

    -
  • -
  • -

    MINUTES

    -
  • -
  • -

    HOURS

    -
  • -
  • -

    DAYS

    -
  • -
-
-

A time unit that qualifies the #queryTimeout. Values specified in nanoseconds, microseconds, or milliseconds are rounded to seconds.

-
-

SECONDS

-

Fetch Size

-

Number

-
-

Indicates how many rows to fetch from the database when rows are read from a ResultSet.

-
-

10

-

Max Rows

-

Number

-
-

Sets the limit for the maximum number of rows that any ResultSet object generated by this message processor can contain for the given number. If the limit is exceeded, the excess rows are silently dropped.

-

SQL Query Text

-

String

-
-

The text of the SQL query to execute

-
-

x

-

Parameter Types

-

Array of Parameter Type

-
-

Allows you to optionally specify the type of one or more of the parameters in the query. If provided, you’re not required to reference all of the parameters; but you cannot reference a parameter that is not present in the input values.

-

Input Parameters

-

Object

-
-

A map in which keys are the name of an input parameter to set on the JDBC prepared statement. Each parameter should be referenced in the SQL text using a colon prefix (for example: where id = :myParamName)). The map’s values contain the actual assignation for each parameter.

-

Auto Generate Keys

-

Boolean

-
-

Indicates when to make auto-generated keys available for retrieval

-
-

false

-

Auto Generated Keys Column Indexes

-

Array of Number

-
-

List of column indexes that indicates which auto-generated keys to make available for retrieval

-

Auto Generated Keys Column Names

-

Array of String

-
-

List of column names that indicates which auto-generated keys should be made available for retrieval

-

Target Variable

-

String

-
-

The name of a variable to store the operation’s output

-

Target Value

-

String

-
-

An expression to evaluate against the operation’s output and store the expression outcome in the target variable

-
-

#[payload]

-

Reconnection Strategy

- -
-

A retry strategy in case of connectivity errors

-
-
-
-

Output

- ---- - - - - - - -

Type

Statement Result

-
-
-
-

For Configurations

- -
-

Throws

-
-
    -
  • -

    DB:BAD_SQL_SYNTAX

    -
  • -
  • -

    DB:CONNECTIVITY

    -
  • -
  • -

    DB:QUERY_EXECUTION

    -
  • -
  • -

    DB:RETRY_EXHAUSTED

    -
  • -
-
-
-
-
-
-
-

Sources

-
-
-

On Table Row

-
-

<db:listener>

-
-
-

This operation selects from a table at a regular interval and generates one message per obtained row. Optionally, you can provide watermark and ID columns. If a watermark column is provided, the values taken from that column are used to filter the contents of the next poll, so that only rows with a greater watermark value are returned. If an ID column is provided, this component automatically verifies that the same row is not picked twice by concurrent polls.

-
-
-

This operation does not support streaming, meaning that there is no need to perform additional transformations to the payload in order to access the operation results. This behavior is identical to the Query Single operation released in version 1.9.

-
-
-

Parameters

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
NameTypeDescriptionDefault ValueRequired

Configuration

-

String

-
-

The name of the configuration to use

-
-

x

-

Table

-

String

-
-

The name of the table to select from

-
-

x

-

Watermark Column

-

String

-
-

The name of the column to use for a watermark. Values taken from this column are used to filter the contents of the next poll, so that only rows with a greater watermark value are processed.

-

Id Column

-

String

-
-

The name of the column to consider as the row ID. If provided, this component makes sure that the same row is not processed twice by concurrent polls.

-

Transactional Action

-

Enumeration, one of:

-
-
-
    -
  • -

    ALWAYS_BEGIN

    -
  • -
  • -

    NONE

    -
  • -
-
-

The type of beginning action that sources can take regarding transactions

-
-

NONE

-

Transaction Type

-

Enumeration, one of:

-
-
-
    -
  • -

    LOCAL

    -
  • -
  • -

    XA

    -
  • -
-
-

The type of transaction to create. Availability depends on the runtime version.

-
-

LOCAL

-

Primary Node Only

-

Boolean

-
-

Whether this source should be executed only on the primary node when running in a cluster

-

Scheduling Strategy

-

scheduling-strategy

-
-

Configures the scheduler that triggers the polling

-
-

x

-

Redelivery Policy

-

Defines a policy for processing the redelivery of the same message

-

Query Timeout

-

Number

-
-

Indicates the minimum amount of time before the JDBC driver attempts to cancel a running statement. By default, no timeout is used.

-
-

0

-

Query Timeout Unit

-

Enumeration, one of:

-
-
-
    -
  • -

    NANOSECONDS

    -
  • -
  • -

    MICROSECONDS

    -
  • -
  • -

    MILLISECONDS

    -
  • -
  • -

    SECONDS

    -
  • -
  • -

    MINUTES

    -
  • -
  • -

    HOURS

    -
  • -
  • -

    DAYS

    -
  • -
-
-

A time unit that qualifies the #queryTimeout. Values specified in nanoseconds, microseconds, or milliseconds are rounded to seconds.

-
-

SECONDS

-

Fetch Size

-

Number

-
-

Indicates how many rows to fetch from the database when rows are read from a ResultSet.

-
-

10

-

Max Rows

-

Number

-
-

Sets the limit for the maximum number of rows that any ResultSet object generated by this message processor can contain for the given number. If the limit is exceeded, the excess rows are silently dropped.

-

Reconnection Strategy

- -
-

A retry strategy in case of connectivity errors.

-
-
-
-

Output

- ---- - - - - - - -

Type

Object

-
-
-
-

For Configurations

- -
-
-
-
-

Types

-
-
-

Pooling Profile

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
FieldTypeDescriptionDefault ValueRequired

Max Pool Size

-

Number

-
-

Maximum number of connections a pool maintains at any given time

-
-

5

-

Min Pool Size

-

Number

-
-

Minimum number of connections a pool maintains at any given time

-
-

0

-

Acquire Increment

-

Number

-
-

Determines how many connections at a time to try to acquire when the pool is exhausted

-
-

1

-

Prepared Statement Cache Size

-

Number

-
-

Determines how many statements are cached per pooled connection. Setting this to zero disables statement caching.

-
-

5

-

Max Wait

-

Number

-
-

The amount of time a client trying to obtain a connection waits for it to be acquired when the pool is exhausted. Setting this value to zero (default) means wait indefinitely. This is equivalent to checkoutTimeout and cannot be overridden in additional-properties.

-
-

0

-

Max Wait Unit

-

Enumeration, one of:

-
-
-
    -
  • -

    NANOSECONDS

    -
  • -
  • -

    MICROSECONDS

    -
  • -
  • -

    MILLISECONDS

    -
  • -
  • -

    SECONDS

    -
  • -
  • -

    MINUTES

    -
  • -
  • -

    HOURS

    -
  • -
  • -

    DAYS

    -
  • -
-
-

A #maxWait.

-
-

SECONDS

-

Max Idle Time

-

Number

-
-

Determines how many seconds a connection can remain pooled but unused before being discarded. Setting this value to zero (default) means idle connections never expire.

-
-

0

-

Additional Properties

-

Object

-
-

A map in which keys are the name of a pooling profile configuration property. Does not support the use of expressions. These properties cannot be used to override any of the previously specified properties (like Max Pool Size or Min Pool Size), the main property prevails if an attempt is made to override it. The map’s values contain the actual assignation for each parameter.

-

Max Statement

-

Number

-
-

Defines the total number PreparedStatements a DataSource will cache. The pool destroys the least-recently-used PreparedStatement when it reaches the specified limit. When set to 0, statement caching is turned off

-

Test connection on checkout

-

Boolean

-
-

Disables connection testing on checkout to improve performance. If set to true, an operation is performed at every connection checkout to verify that the connection is valid. A better choice is to verify connections periodically using c3p0.idleConnectionTestPeriod. To improve performance, set this property to false.

-
-

true

-
-
-
-

Column Type

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
FieldTypeDescriptionDefault ValueRequired

Id

-

Number

-
-

Type identifier used by the JDBC driver

-
-

x

-

Type Name

-

String

-
-

Name of the data type used by the JDBC driver

-
-

x

-

Class Name

-

String

-
-

Indicates which Java class must be used to map the database type

-
-
-
-

Reconnection

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - -
FieldTypeDescriptionDefault ValueRequired

Fails Deployment

-

Boolean

-
-

When the application is deployed, a connectivity test is performed on all connectors. If set to true, deployment fails if the test doesn’t pass after exhausting the associated reconnection strategy.

-

Reconnection Strategy

- -
-

The reconnection strategy to use

-
-
-
-

Reconnect

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
FieldTypeDescriptionDefault ValueRequired

Frequency

-

Number

-
-

How often to reconnect (in milliseconds)

-

Count

-

Number

-
-

The number of reconnection attempts to make

-

blocking

-

Boolean

-
-

If set to false, the reconnection strategy runs in a separate, non-blocking thread

-
-

true

-
-
-
-

Reconnect Forever

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - -
FieldTypeDescriptionDefault ValueRequired

Frequency

-

Number

-
-

How often in milliseconds to reconnect

-

blocking

-

Boolean

-
-

If set to false, the reconnection strategy runs in a separate, non-blocking thread

-
-

true

-
-
-
-

Tls

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
FieldTypeDescriptionDefault ValueRequired

Enabled Protocols

-

String

-
-

A comma-separated list of protocols enabled for this context.

-

Enabled Cipher Suites

-

String

-
-

A comma-separated list of cipher suites enabled for this context.

-

Trust Store

Key Store

Revocation Check

-
-
-

Trust Store

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
FieldTypeDescriptionDefault ValueRequired

Path

-

String

-
-

The location (which will be resolved relative to the current classpath and file system, if possible) of the trust store.

-

Password

-

String

-
-

The password used to protect the trust store.

-

Type

-

String

-
-

The type of store used.

-

Algorithm

-

String

-
-

The algorithm used by the trust store.

-

Insecure

-

Boolean

-
-

If true, no certificate validations will be performed, rendering connections vulnerable to attacks. Use at your own risk.

-
-
-
-

Key Store

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
FieldTypeDescriptionDefault ValueRequired

Path

-

String

-
-

The location (which will be resolved relative to the current classpath and file system, if possible) of the key store.

-

Type

-

String

-
-

The type of store used.

-

Alias

-

String

-
-

When the key store contains many private keys, this attribute indicates the alias of the key that should be used. If not defined, the first key in the file will be used by default.

-

Key Password

-

String

-
-

The password used to protect the private key.

-

Password

-

String

-
-

The password used to protect the key store.

-

Algorithm

-

String

-
-

The algorithm used by the key store.

-
-
-
-

Standard Revocation Check

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
FieldTypeDescriptionDefault ValueRequired

Only End Entities

-

Boolean

-
-

Only verify the last element of the certificate chain.

-

Prefer Crls

-

Boolean

-
-

Try CRL instead of OCSP first.

-

No Fallback

-

Boolean

-
-

Do not use the secondary checking method (the one not selected before).

-

Soft Fail

-

Boolean

-
-

Avoid verification failure when the revocation server can not be reached or is busy.

-
-
-
-

Custom Ocsp Responder

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - -
FieldTypeDescriptionDefault ValueRequired

Url

-

String

-
-

The URL of the OCSP responder.

-

Cert Alias

-

String

-
-

Alias of the signing certificate for the OCSP response (must be in the trust store), if present.

-
-
-
-

Crl File

- ------- - - - - - - - - - - - - - - - - - - -
FieldTypeDescriptionDefault ValueRequired

Path

-

String

-
-

The path to the CRL file.

-
-
-
-

Expiration Policy

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - -
FieldTypeDescriptionDefault ValueRequired

Max Idle Time

-

Number

-
-

A scalar time value for the maximum amount of time a dynamic configuration instance should be allowed to be idle before it’s considered eligible for expiration

-

Time Unit

-

Enumeration, one of:

-
-
-
    -
  • -

    NANOSECONDS

    -
  • -
  • -

    MICROSECONDS

    -
  • -
  • -

    MILLISECONDS

    -
  • -
  • -

    SECONDS

    -
  • -
  • -

    MINUTES

    -
  • -
  • -

    HOURS

    -
  • -
  • -

    DAYS

    -
  • -
-
-

A time unit that qualifies the maxIdleTime attribute

-
-
-
-

Redelivery Policy

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
FieldTypeDescriptionDefault ValueRequired

Max Redelivery Count

-

Number

-
-

The maximum number of times a message can be redelivered and processed unsuccessfully before triggering a process-failed-message

-

Use Secure Hash

-

Boolean

-
-

Whether to use a secure hash algorithm to identify a redelivered message.

-

Message Digest Algorithm

-

String

-
-

The secure hashing algorithm to use. If this is not set, the default is SHA-256.

-
-

SHA-256

-

Id Expression

-

String

-
-

Defines one or more expressions to use to determine when a message has been redelivered. This property can be set only if Use secure hash is set to false.

-

Object Store

-

Object Store

-
-

The object store where the redelivery counter for each message is stored

-
-
-
-

Parameter Type

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - -
FieldTypeDescriptionDefault ValueRequired

Key

-

String

-
-

The name of the input parameter

-
-

x

-

Type Classifier

-

x

-
-
-
-

Type Classifier

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - -
FieldTypeDescriptionDefault ValueRequired

Type

-

Enumeration, one of:

-
-
-
    -
  • -

    BIT

    -
  • -
  • -

    TINYINT

    -
  • -
  • -

    SMALLINT

    -
  • -
  • -

    INTEGER

    -
  • -
  • -

    BIGINT

    -
  • -
  • -

    FLOAT

    -
  • -
  • -

    REAL

    -
  • -
  • -

    DOUBLE

    -
  • -
  • -

    NUMERIC

    -
  • -
  • -

    DECIMAL

    -
  • -
  • -

    CHAR

    -
  • -
  • -

    VARCHAR

    -
  • -
  • -

    LONGVARCHAR

    -
  • -
  • -

    DATE

    -
  • -
  • -

    TIME

    -
  • -
  • -

    TIMESTAMP

    -
  • -
  • -

    BINARY

    -
  • -
  • -

    VARBINARY

    -
  • -
  • -

    LONGVARBINARY

    -
  • -
  • -

    NULL

    -
  • -
  • -

    OTHER

    -
  • -
  • -

    JAVA_OBJECT

    -
  • -
  • -

    DISTINCT

    -
  • -
  • -

    STRUCT

    -
  • -
  • -

    ARRAY

    -
  • -
  • -

    BLOB

    -
  • -
  • -

    CLOB

    -
  • -
  • -

    REF

    -
  • -
  • -

    DATALINK

    -
  • -
  • -

    BOOLEAN

    -
  • -
  • -

    ROWID

    -
  • -
  • -

    NCHAR

    -
  • -
  • -

    NVARCHAR

    -
  • -
  • -

    LONGNVARCHAR

    -
  • -
  • -

    NCLOB

    -
  • -
  • -

    SQLXML

    -
  • -
  • -

    UNKNOWN

    -
  • -
-

Custom Type

-

String

-
-
-
-

Statement Result

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - -
FieldTypeDescriptionDefault ValueRequired

Affected Rows

-

Number

-

Generated Keys

-

Object

-
-
-
-

Repeatable In Memory Iterable

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
FieldTypeDescriptionDefault ValueRequired

Initial Buffer Size

-

Number

-
-

The number of instances that are initially allowed to be kept in memory to consume the stream and provide random access to it. If the stream contains more data than can fit into this buffer, then the buffer expands according to the Buffer size increment attribute, with an upper limit of Max in memory size. The default value is 100 instances.

-
-

100

-

Buffer Size Increment

-

Number

-
-

Specifies by how much the buffer size expands if it exceeds its initial size. Setting a value of zero or lower means that the buffer should not expand, in which case a STREAM_MAXIMUM_SIZE_EXCEEDED error is raised when the buffer gets full. The default value is 100 instances.

-
-

100

-

Max Buffer Size

-

Number

-
-

The maximum amount of memory to use. If more than the specified maximum amount of memory is used, then a `STREAM_MAXIMUM_SIZE_EXCEEDE`D error is raised. A value lower than, or equal to, zero means no limit.

-
-
-
-

Repeatable File Store Iterable

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - -
FieldTypeDescriptionDefault ValueRequired

In Memory Objects

-

Number

-
-

The maximum number of instances to keep in memory. If more than the specified maximum is required, then content starts to buffer on disk.

-

Buffer Unit

-

Enumeration, one of:

-
-
-
    -
  • -

    BYTE

    -
  • -
  • -

    KB

    -
  • -
  • -

    MB

    -
  • -
  • -

    GB

    -
  • -
-
-

The unit in which maxInMemorySize is expressed

-
-
-
-

Repeatable In Memory Stream

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
FieldTypeDescriptionDefault ValueRequired

Initial Buffer Size

-

Number

-
-

The number of instances that are initially allowed to be kept in memory to consume the stream and provide random access to it. If the stream contains more data than can fit into this buffer, then the buffer expands according to the Buffer size increment attribute, with an upper limit of Max in memory size

-

Buffer Size Increment

-

Number

-
-

Specifies by how much the buffer size expands if it exceeds its initial size. Setting a value of zero or lower means that the buffer should not expand, in which case a STREAM_MAXIMUM_SIZE_EXCEEDED error is raised when the buffer gets full

-

Max Buffer Size

-

Number

-
-

The maximum amount of memory to use. If more than the specified maximum amount of memory is used, then a STREAM_MAXIMUM_SIZE_EXCEEDED error is raised. A value lower than, or equal to, zero means no limit.

-

Buffer Unit

-

Enumeration, one of: - BYTE - KB - MB - GB

-
-

The unit in which all these attributes are expressed

-
-
-
-

Repeatable File Store Stream

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - -
FieldTypeDescriptionDefault ValueRequired

In Memory Size

-

Number

-
-

Defines the maximum memory that the stream should use to keep data in memory. If more than that is consumed content on the disk is buffered.

-

Buffer Unit

-

Enumeration, one of:

-
-
-
    -
  • -

    BYTE

    -
  • -
  • -

    KB

    -
  • -
  • -

    MB

    -
  • -
  • -

    GB

    -
  • -
-
-

The unit in which Max in memory size is expressed

-
-
-
-

Output Parameter

- ------- - - - - - - - - - - - - - - - - - - - - - - - - - -
FieldTypeDescriptionDefault ValueRequired

Key

-

String

-
-

The name of the input parameter

-
-

x

-

Type Classifier

-

x

-
-
-
-
-
-

See Also

- -
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/mule-teradata-connector/release-notes.html b/pr-preview/pr-110/mule-teradata-connector/release-notes.html deleted file mode 100644 index 0ef491341..000000000 --- a/pr-preview/pr-110/mule-teradata-connector/release-notes.html +++ /dev/null @@ -1,2598 +0,0 @@ - - - - - - Teradata Connector Release Notes - Mule 4 :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Teradata Connector Release Notes - Mule 4

-

Author: Tan Nguyen
-Last updated: February 13th, 2023

-
-
-
-

Anypoint Connector for Teradata (Teradata Connector) establishes communication between your Mule app and a Teradata Vantage database, enabling you to connect with your Teradata Vantage instance to load data and run SQL queries in Teradata Vantage tables.

-
-
-
-
-

1.0.0

-
-
-

Date: February 8, 2023

-
-
-

Features

-
-

The initial version is based and extended on MuleSoft’s Database Connector - Mule 4. This version supports the list of features:

-
-
-
    -
  • -

    Perform predefined queries, dynamically constructed queries, and template queries that are self-sufficient and customizable.

    -
  • -
  • -

    Use a source listener operation to read from a database in the data source section of a flow.

    -
  • -
  • -

    Execute other operations to read and write to a database anywhere in the process section.

    -
  • -
  • -

    Run a single bulk update to perform multiple SQL requests.

    -
  • -
  • -

    Make Data Definition Language (DDL) requests.

    -
  • -
  • -

    Execute stored procedures and SQL scripts.

    -
  • -
  • -

    Support pooling profile configuration for database connection

    -
  • -
  • -

    Support auto reconnect to database

    -
  • -
-
-
-
-

Compatibility

- ---- - - - - - - - - - - - - - - - - - - - - -
SoftwareVersion

Mule

-

4.3.0 and later

-

Anypoint Studio

-

7.3 and later

-

OpenJDK

-

8 and 11

-
-
-
-
-
-

See Also

- -
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/mule.jdbc.example.html b/pr-preview/pr-110/mule.jdbc.example.html deleted file mode 100644 index 278282525..000000000 --- a/pr-preview/pr-110/mule.jdbc.example.html +++ /dev/null @@ -1,2741 +0,0 @@ - - - - - - Query Teradata Vantage from a Mule service :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Query Teradata Vantage from a Mule service

-

Author: Adam Tworkiewicz
-Last updated: August 30, 2023

-
-

Overview

-
-
-

This example is a clone of the Mulesoft MySQL sample project. -It demonstrates how to query a Teradata database and expose results over REST API.

-
-
-
-
-

Prerequisites

-
-
- -
-
-
-
-

Example service

-
-
-

This example Mule service takes an HTTP request, queries the Teradata Vantage database and returns results in JSON format.

-
-
-
-service flow -
-
-
-

The Mule HTTP connector listens for HTTP GET requests with the form: http://<host>:8081/?lastname=<parameter>;. -The HTTP connector passes the value of <parameter> as one of the message properties to a database connector. -The database connector is configured to extract this value and use it in this SQL query:

-
-
-
-
SELECT * FROM hr.employees WHERE LastName = :lastName
-
-
-
-

As you can see, we are using parameterized query with reference to the value of the parameter passed to the HTTP connector. -So if the HTTP connector receives http://localhost:8081/?lastname=Smith, the SQL query will be:

-
-
-
-
SELECT * FROM employees WHERE last_name = Smith
-
-
-
-

The database connector instructs the database server to run the SQL query, retrieves the result of the query, and passes it to the Transform message processor which converts the result to JSON. -Since the HTTP connector is configured as request-response, the result is returned to the originating HTTP client.

-
-
-
-
-

Setup

-
-
-
    -
  1. -

    Clone Teradata/mule-jdbc-example repository:

    -
    -
    -
      git clone https://github.com/Teradata/mule-jdbc-example
    -
    -
    -
  2. -
  3. -

    Edit src/main/mule/querying-a-teradata-database.xml, find the Teradata connection string jdbc:teradata://<HOST>/user=<username>,password=<password> and replace Teradata connection parameters to match your environment.

    -
  4. -
-
-
- - - - - -
- - -
-

Should your Vantage instance be accessible via ClearScape Analytics Experience, you must replace <HOST> with the host URL of your ClearScape Analytics Experience environment. Additionally, the 'user' and 'password' should be updated to reflect your ClearScape Analytics Environment’s username and password.

-
-
-
-
-
    -
  1. -

    Create a sample database in your Vantage instance. -Populate it with sample data.

    -
    -
    -
     -- create database
    - CREATE DATABASE HR
    -   AS PERMANENT = 60e6, SPOOL = 120e6;
    -
    - -- create table
    - CREATE SET TABLE HR.Employees (
    -   GlobalID INTEGER,
    -   FirstName VARCHAR(30),
    -   LastName VARCHAR(30),
    -   DateOfBirth DATE FORMAT 'YYYY-MM-DD',
    -   JoinedDate DATE FORMAT 'YYYY-MM-DD',
    -   DepartmentCode BYTEINT
    - )
    - UNIQUE PRIMARY INDEX ( GlobalID );
    -
    - -- insert a record
    - INSERT INTO HR.Employees (
    -   GlobalID,
    -   FirstName,
    -   LastName,
    -   DateOfBirth,
    -   JoinedDate,
    -   DepartmentCode
    - ) VALUES (
    -   101,
    -   'Test',
    -   'Testowsky',
    -   '1980-01-05',
    -   '2004-08-01',
    -   01
    - );
    -
    -
    -
  2. -
  3. -

    Open the project in Anypoint Studio.

    -
    -
      -
    • -

      Once in Anypoint Studio, click on Import projects..:

      -
      -

      Anypoint import projects menu

      -
      -
    • -
    • -

      Select Anypoint Studio project from File System:

      -
      -

      Anypoint import option

      -
      -
    • -
    • -

      Use the directory where you cloned the git repository as the Project Root. Leave all other settings at their default values.

      -
    • -
    -
    -
  4. -
-
-
-
-
-

Run

-
-
-
    -
  1. -

    Run the example application in Anypoint Studio using the Run menu. -The project will now build and run. It will take a minute.

    -
  2. -
  3. -

    Go to your web browser and send the following request: http://localhost:8081/?lastname=Testowsky.

    -
    -

    You should get the following JSON response:

    -
    -
    -
    -
    [
    -  {
    -    "JoinedDate": "2004-08-01T00:00:00",
    -    "DateOfBirth": "1980-01-05T00:00:00",
    -    "FirstName": "Test",
    -    "GlobalID": 101,
    -    "DepartmentCode": 1,
    -    "LastName": "Testowsky"
    -  }
    -]
    -
    -
    -
  4. -
-
-
-
-
-

Further reading

-
-
-
    -
  • -

    View this document for more information on how to configure a database connector on your machine.

    -
  • -
  • -

    Access plain Reference material for the Database Connector.

    -
  • -
  • -

    Learn more about DataSense.

    -
  • -
-
-
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/nos.html b/pr-preview/pr-110/nos.html deleted file mode 100644 index 6ca11135b..000000000 --- a/pr-preview/pr-110/nos.html +++ /dev/null @@ -1,2847 +0,0 @@ - - - - - - Query data stored in object storage :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Query data stored in object storage

-

Author: Adam Tworkiewicz
-Last updated: September 7th, 2021

-
-

Overview

-
-
-

Native Object Storage (NOS) is a Vantage feature that allows you to query data stored in files in object storage such as AWS S3, Google GCS, Azure Blob or on-prem implementations. It’s useful in scenarios where you want to explore data without building a data pipeline to bring it into Vantage.

-
-
-
-
-

Prerequisites

-
-
-

You need access to a Teradata Vantage instance. NOS is enabled in all Vantage editions from Vantage Express through Developer, DYI to Vantage as a Service starting from version 17.10.

-
-
- - - - - -
- - -If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. -
-
-
-
-
-

Explore data with NOS

-
-
- - - - - -
- - -Currently, NOS supports CSV, JSON (as array or new-line delimited), and Parquet data formats. -
-
-
-

Let’s say you have a dataset stored as CSV files in an S3 bucket. You want to explore the dataset before you decide if you want to bring it into Vantage. For this scenario, we are going to use a public dataset published by Teradata that contains river flow data collected by the -U.S. Geological Survey. The bucket is at https://td-usgs-public.s3.amazonaws.com/.

-
-
-

Let’s first have a look at sample CSV data. We take the first 10 rows that Vantage will fetch from the bucket:

-
-
-
-
SELECT
-  TOP 10 *
-FROM (
-	LOCATION='/s3/td-usgs-public.s3.amazonaws.com/CSVDATA/'
-) AS d;
-
-
-
-

Here is what I’ve got:

-
-
-
-
GageHeight2 Flow   site_no datetime         Precipitation GageHeight
------------ ----- -------- ---------------- ------------- -----------
-10.9        15300 09380000 2018-06-28 00:30 671           9.80
-10.8        14500 09380000 2018-06-28 01:00 673           9.64
-10.7        14100 09380000 2018-06-28 01:15 672           9.56
-11.0        16200 09380000 2018-06-27 00:00 669           9.97
-10.9        15700 09380000 2018-06-27 00:30 668           9.88
-10.8        15400 09380000 2018-06-27 00:45 672           9.82
-10.8        15100 09380000 2018-06-27 01:00 672           9.77
-10.8        14700 09380000 2018-06-27 01:15 672           9.68
-10.9        16000 09380000 2018-06-27 00:15 668           9.93
-10.8        14900 09380000 2018-06-28 00:45 672           9.72
-
-
-
-

We have got plenty of numbers, but what do they mean? To answer this question, we will ask Vantage to detect the schema of the CSV files:

-
-
-
-
SELECT
-  *
-FROM (
-	LOCATION='/s3/td-usgs-public.s3.amazonaws.com/CSVDATA/'
-	RETURNTYPE='NOSREAD_SCHEMA'
-) AS d;
-
-
-
-

Vantage will now fetch a data sample to analyze the schema and return results:

-
-
-
-
Name            Datatype                            FileType  Location
---------------- ----------------------------------- --------- -------------------------------------------------------------------
-GageHeight2     decimal(3,2)                        csv       /S3/s3.amazonaws.com/td-usgs-public/CSVDATA/09513780/2018/06/27.csv
-Flow            decimal(3,2)                        csv       /S3/s3.amazonaws.com/td-usgs-public/CSVDATA/09513780/2018/06/27.csv
-site_no         int                                 csv       /S3/s3.amazonaws.com/td-usgs-public/CSVDATA/09513780/2018/06/27.csv
-datetime        TIMESTAMP(0) FORMAT'Y4-MM-DDBHH:MI' csv       /S3/s3.amazonaws.com/td-usgs-public/CSVDATA/09513780/2018/06/27.csv
-Precipitation   decimal(3,2)                        csv       /S3/s3.amazonaws.com/td-usgs-public/CSVDATA/09513780/2018/06/27.csv
-GageHeight      decimal(3,2)                        csv       /S3/s3.amazonaws.com/td-usgs-public/CSVDATA/09513780/2018/06/27.csv
-
-
-
-

We see that the CSV files have 6 columns. For each column, we get the name, the datatype and the file coordinates that were used to infer the schema.

-
-
-
-
-

Query data with NOS

-
-
-

Now that we know the schema, we can work with the dataset as if it was a regular SQL table. To prove the point, let’s try to do some data aggregation. Let’s get an average temperature per site for sites that collect temperatures.

-
-
-
-
SELECT
-  site_no Site_no, AVG(Flow) Avg_Flow
-FROM (
-  LOCATION='/s3/td-usgs-public.s3.amazonaws.com/CSVDATA/'
-) AS d
-GROUP BY
-  site_no
-HAVING
-  Avg_Flow IS NOT NULL;
-
-
-
-

Result:

-
-
-
-
Site_no  Avg_Flow
--------- ---------
-09380000 11
-09423560 73
-09424900 93
-09429070 81
-
-
-
-

To register your ad hoc exploratory activity as a permanent source, create it as a foreign table:

-
-
-
-
-- If you are running this sample as dbc user you will not have permissions
--- to create a table in dbc database. Instead, create a new database and use
--- the newly create database to create a foreign table.
-
-CREATE DATABASE Riverflow
-  AS PERMANENT = 60e6, -- 60MB
-  SPOOL = 120e6; -- 120MB
-
--- change current database to Riverflow
-DATABASE Riverflow;
-
-CREATE FOREIGN TABLE riverflow
-  USING ( LOCATION('/s3/td-usgs-public.s3.amazonaws.com/CSVDATA/') );
-
-SELECT top 10 * FROM riverflow;
-
-
-
-

Result:

-
-
-
-
Location                                                            GageHeight2 Flow site_no datetime            Precipitation GageHeight
-------------------------------------------------------------------- ----------- ---- ------- ------------------- ------------- ----------
-/S3/s3.amazonaws.com/td-usgs-public/CSVDATA/09429070/2018/07/02.csv null        null 9429070 2018-07-02 14:40:00 1.21          null
-/S3/s3.amazonaws.com/td-usgs-public/CSVDATA/09400815/2018/07/10.csv null        0.00 9400815 2018-07-10 00:30:00 0.00          -0.01
-/S3/s3.amazonaws.com/td-usgs-public/CSVDATA/09400815/2018/07/10.csv null        0.00 9400815 2018-07-10 00:45:00 0.00          -0.01
-/S3/s3.amazonaws.com/td-usgs-public/CSVDATA/09400815/2018/07/10.csv null        0.00 9400815 2018-07-10 01:00:00 0.00          -0.01
-/S3/s3.amazonaws.com/td-usgs-public/CSVDATA/09400815/2018/07/10.csv null        0.00 9400815 2018-07-10 00:15:00 0.00          -0.01
-/S3/s3.amazonaws.com/td-usgs-public/CSVDATA/09429070/2018/07/02.csv null        null 9429070 2018-07-02 14:38:00 1.06          null
-
-
-
-

This time, the SELECT statement looks like a regular select against an in-database table. If you require subsecond response time when querying the data, there is an easy way to bring the CSV data into Vantage to speed things up. Read on to find out how.

-
-
-
-
-

Load data from NOS into Vantage

-
-
-

Querying object storage takes time. What if you decided that the data looks interesting and you want to do some more analysis with a solution that will you quicker answers? The good news is that data returned with NOS can be used as a source for CREATE TABLE statements. Assuming you have CREATE TABLE privilege, you will be able to run:

-
-
- - - - - -
- - -This query assumes you created database Riverflow and a foreign table called riverflow in the previous step. -
-
-
-
-
-- This query assumes you created database `Riverflow`
--- and a foreign table called `riverflow` in the previous step.
-
-CREATE MULTISET TABLE riverflow_native (site_no, Flow, GageHeight, datetime)
-AS (
-  SELECT site_no, Flow, GageHeight, datetime FROM riverflow
-) WITH DATA
-NO PRIMARY INDEX;
-
-SELECT TOP 10 * FROM riverflow_native;
-
-
-
-

Result:

-
-
-
-
site_no   Flow  GageHeight  datetime
--------  -----  ----------  -------------------
-9400815    .00        -.01  2018-07-10 00:30:00
-9400815    .00        -.01  2018-07-10 01:00:00
-9400815    .00        -.01  2018-07-10 01:15:00
-9400815    .00        -.01  2018-07-10 01:30:00
-9400815    .00        -.01  2018-07-10 02:00:00
-9400815    .00        -.01  2018-07-10 02:15:00
-9400815    .00        -.01  2018-07-10 01:45:00
-9400815    .00        -.01  2018-07-10 00:45:00
-9400815    .00        -.01  2018-07-10 00:15:00
-9400815    .00        -.01  2018-07-10 00:00:00
-
-
-
-

This time, the SELECT query returned in less than a second. Vantage didn’t have to fetch the data from NOS. Instead, it answered using data that was already on its nodes.

-
-
-
-
-

Access private buckets

-
-
-

So far, we have used a public bucket. What if you have a private bucket? How do you tell Vantage what credentials it should use?

-
-
-

It is possible to inline your credentials directly into your query:

-
-
-
-
SELECT
-  TOP 10 *
-FROM (
-  LOCATION='/s3/td-usgs-public.s3.amazonaws.com/CSVDATA/'
-  AUTHORIZATION='{"ACCESS_ID":"","ACCESS_KEY":""}'
-) AS d;
-
-
-
-

Entering these credentials all the time can be tedious and less secure. In Vantage, you can create an authorization object that will serve as a container for your credentials:

-
-
-
-
CREATE AUTHORIZATION aws_authorization
-  USER 'YOUR-ACCESS-KEY-ID'
-  PASSWORD 'YOUR-SECRET-ACCESS-KEY';
-
-
-
-

You can then reference your authorization object when you create a foreign table:

-
-
-
-
CREATE FOREIGN TABLE riverflow
-, EXTERNAL SECURITY aws_authorization
-USING ( LOCATION('/s3/td-usgs-public.s3.amazonaws.com/CSVDATA/') );
-
-
-
-
-
-

Export data from Vantage to object storage

-
-
-

So far, we have talked about reading and importing data from object storage. Wouldn’t it be nice if we had a way to use SQL to export data from Vantage to object storage? This is exactly what WRITE_NOS function is for. Let’s say we want to export data from riverflow_native table to object storage. You can do so with the following query:

-
-
-
-
SELECT * FROM WRITE_NOS (
-  ON ( SELECT * FROM riverflow_native )
-  PARTITION BY site_no ORDER BY site_no
-  USING
-    LOCATION('YOUR-OBJECT-STORE-URI')
-    AUTHORIZATION(aws_authorization)
-    STOREDAS('PARQUET')
-    COMPRESSION('SNAPPY')
-    NAMING('RANGE')
-    INCLUDE_ORDERING('TRUE')
-) AS d;
-
-
-
-

Here, we instruct Vantage to take data from riverflow_native and save it in YOUR-OBJECT-STORE-URI bucket using parquet format. The data will be split into files by site_no attribute. The files will be compressed.

-
-
-
-
-

Summary

-
-
-

In this quick start we have learned how to read data from object storage using Native Object Storage (NOS) functionality in Vantage. NOS supports reading and importing data stored in CSV, JSON and Parquet formats. NOS can also export data from Vantage to object storage.

-
-
-
-
-

Further reading

-
- -
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/odbc.ubuntu.html b/pr-preview/pr-110/odbc.ubuntu.html deleted file mode 100644 index 29eb03683..000000000 --- a/pr-preview/pr-110/odbc.ubuntu.html +++ /dev/null @@ -1,2656 +0,0 @@ - - - - - - Use Vantage with ODBC on Ubuntu :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Use Vantage with ODBC on Ubuntu

-

Author: Adam Tworkiewicz
-Last updated: January 5th, 2022

-
-

Overview

-
-
-

This how-to demonstrates how to use the ODBC driver with Teradata Vantage on Ubuntu.

-
-
-
-
-

Prerequisites

-
-
-
    -
  • -

    Access to a Teradata Vantage instance.

    -
    - - - - - -
    - - -If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. -
    -
    -
  • -
  • -

    Root access to a Ubuntu machine.

    -
  • -
-
-
-
-
-

Installation

-
-
-
    -
  1. -

    Install dependencies:

    -
    -
    -
    apt update && DEBIAN_FRONTEND=noninteractive apt install -y wget unixodbc unixodbc-dev iodbc python3-pip
    -
    -
    -
  2. -
  3. -

    Install Teradata ODBC driver for Ubuntu:

    -
    -
    -
    wget https://downloads.teradata.com/download/cdn/connectivity/odbc/17.10.x.x/tdodbc1710__ubuntu_x8664.17.10.00.14-1.tar.gz \
    -    && tar -xzf tdodbc1710__ubuntu_x8664.17.10.00.14-1.tar.gz \
    -    && dpkg -i tdodbc1710/tdodbc1710-17.10.00.14-1.x86_64.deb
    -
    -
    -
  4. -
  5. -

    Configure ODBC, by creating file /etc/odbcinst.ini with the following content:

    -
    -
    -
    [ODBC Drivers]
    -Teradata Database ODBC Driver 17.10=Installed
    -
    -[Teradata Database ODBC Driver 17.10]
    -Description=Teradata Database ODBC Driver 17.10
    -Driver=/opt/teradata/client/17.10/odbc_64/lib/tdataodbc_sb64.so
    -
    -
    -
  6. -
-
-
-
-
-

Use ODBC

-
-
-

We will validate the installation with a sample Python application. Create test.py file with the following content. -Replace DBCName=192.168.86.33;UID=dbc;PWD=dbc with the IP address of your Teradata Vantage instance, username and password:

-
-
-
-
import pyodbc
-
-print(pyodbc.drivers())
-
-cnxn = pyodbc.connect('DRIVER={Teradata Database ODBC Driver 17.10};DBCName=192.168.86.33;UID=dbc;PWD=dbc;')
-cursor = cnxn.cursor()
-
-cursor.execute("SELECT CURRENT_DATE")
-for row in cursor.fetchall():
-    print(row)
-EOF
-
-
-
-

Run the test application:

-
-
-
-
python3 test.py
-
-
-
-

You should get output similar to:

-
-
-
-
['ODBC Drivers', 'Teradata Database ODBC Driver 17.10']
-(datetime.date(2022, 1, 5), )
-
-
-
-
-
-

Summary

-
-
-

This how-to demonstrated how to use ODBC with Teradata Vantage on Ubuntu. The how-to shows how to install the ODBC Teradata driver and the dependencies. It then shows how to configure ODBC and validate connectivity with a simple Python application.

-
-
-
-
-

Further reading

-
- -
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/other-integrations/_attachments/execute-airflow-workflows-that-use-dbt-with-teradata-vantage/airflow.cfg b/pr-preview/pr-110/other-integrations/_attachments/execute-airflow-workflows-that-use-dbt-with-teradata-vantage/airflow.cfg deleted file mode 100644 index 4674449b6..000000000 --- a/pr-preview/pr-110/other-integrations/_attachments/execute-airflow-workflows-that-use-dbt-with-teradata-vantage/airflow.cfg +++ /dev/null @@ -1,1112 +0,0 @@ -[core] -# The folder where your airflow pipelines live, most likely a -# subfolder in a code repository. This path must be absolute. -dags_folder = /opt/airflow/dags - -# Hostname by providing a path to a callable, which will resolve the hostname. -# The format is "package.function". -# -# For example, default value "socket.getfqdn" means that result from getfqdn() of "socket" -# package will be used as hostname. -# -# No argument should be required in the function specified. -# If using IP address as hostname is preferred, use value ``airflow.utils.net.get_host_ip_address`` -hostname_callable = socket.getfqdn - -# Default timezone in case supplied date times are naive -# can be utc (default), system, or any IANA timezone string (e.g. Europe/Amsterdam) -default_timezone = utc - -# The executor class that airflow should use. Choices include -# ``SequentialExecutor``, ``LocalExecutor``, ``CeleryExecutor``, ``DaskExecutor``, -# ``KubernetesExecutor``, ``CeleryKubernetesExecutor`` or the -# full import path to the class when using a custom executor. -executor = SequentialExecutor - -# The SqlAlchemy connection string to the metadata database. -# SqlAlchemy supports many different database engines. -# More information here: -# http://airflow.apache.org/docs/apache-airflow/stable/howto/set-up-database.html#database-uri -sql_alchemy_conn = sqlite:////opt/airflow/airflow.db - -# The encoding for the databases -sql_engine_encoding = utf-8 - -# Collation for ``dag_id``, ``task_id``, ``key`` columns in case they have different encoding. -# By default this collation is the same as the database collation, however for ``mysql`` and ``mariadb`` -# the default is ``utf8mb3_bin`` so that the index sizes of our index keys will not exceed -# the maximum size of allowed index when collation is set to ``utf8mb4`` variant -# (see https://github.com/apache/airflow/pull/17603#issuecomment-901121618). -# sql_engine_collation_for_ids = - -# If SqlAlchemy should pool database connections. -sql_alchemy_pool_enabled = True - -# The SqlAlchemy pool size is the maximum number of database connections -# in the pool. 0 indicates no limit. -sql_alchemy_pool_size = 5 - -# The maximum overflow size of the pool. -# When the number of checked-out connections reaches the size set in pool_size, -# additional connections will be returned up to this limit. -# When those additional connections are returned to the pool, they are disconnected and discarded. -# It follows then that the total number of simultaneous connections the pool will allow -# is pool_size + max_overflow, -# and the total number of "sleeping" connections the pool will allow is pool_size. -# max_overflow can be set to ``-1`` to indicate no overflow limit; -# no limit will be placed on the total number of concurrent connections. Defaults to ``10``. -sql_alchemy_max_overflow = 10 - -# The SqlAlchemy pool recycle is the number of seconds a connection -# can be idle in the pool before it is invalidated. This config does -# not apply to sqlite. If the number of DB connections is ever exceeded, -# a lower config value will allow the system to recover faster. -sql_alchemy_pool_recycle = 1800 - -# Check connection at the start of each connection pool checkout. -# Typically, this is a simple statement like "SELECT 1". -# More information here: -# https://docs.sqlalchemy.org/en/13/core/pooling.html#disconnect-handling-pessimistic -sql_alchemy_pool_pre_ping = True - -# The schema to use for the metadata database. -# SqlAlchemy supports databases with the concept of multiple schemas. -sql_alchemy_schema = - -# Import path for connect args in SqlAlchemy. Defaults to an empty dict. -# This is useful when you want to configure db engine args that SqlAlchemy won't parse -# in connection string. -# See https://docs.sqlalchemy.org/en/13/core/engines.html#sqlalchemy.create_engine.params.connect_args -# sql_alchemy_connect_args = - -# This defines the maximum number of task instances that can run concurrently in Airflow -# regardless of scheduler count and worker count. Generally, this value is reflective of -# the number of task instances with the running state in the metadata database. -parallelism = 32 - -# The maximum number of task instances allowed to run concurrently in each DAG. To calculate -# the number of tasks that is running concurrently for a DAG, add up the number of running -# tasks for all DAG runs of the DAG. This is configurable at the DAG level with ``max_active_tasks``, -# which is defaulted as ``max_active_tasks_per_dag``. -# -# An example scenario when this would be useful is when you want to stop a new dag with an early -# start date from stealing all the executor slots in a cluster. -max_active_tasks_per_dag = 16 - -# Are DAGs paused by default at creation -dags_are_paused_at_creation = True - -# The maximum number of active DAG runs per DAG. The scheduler will not create more DAG runs -# if it reaches the limit. This is configurable at the DAG level with ``max_active_runs``, -# which is defaulted as ``max_active_runs_per_dag``. -max_active_runs_per_dag = 16 - -# Whether to load the DAG examples that ship with Airflow. It's good to -# get started, but you probably want to set this to ``False`` in a production -# environment -load_examples = True - -# Whether to load the default connections that ship with Airflow. It's good to -# get started, but you probably want to set this to ``False`` in a production -# environment -load_default_connections = True - -# Path to the folder containing Airflow plugins -plugins_folder = /opt/airflow/plugins - -# Should tasks be executed via forking of the parent process ("False", -# the speedier option) or by spawning a new python process ("True" slow, -# but means plugin changes picked up by tasks straight away) -execute_tasks_new_python_interpreter = False - -# Secret key to save connection passwords in the db -fernet_key = - -# Whether to disable pickling dags -donot_pickle = True - -# How long before timing out a python file import -dagbag_import_timeout = 30.0 - -# Should a traceback be shown in the UI for dagbag import errors, -# instead of just the exception message -dagbag_import_error_tracebacks = True - -# If tracebacks are shown, how many entries from the traceback should be shown -dagbag_import_error_traceback_depth = 2 - -# How long before timing out a DagFileProcessor, which processes a dag file -dag_file_processor_timeout = 50 - -# The class to use for running task instances in a subprocess. -# Choices include StandardTaskRunner, CgroupTaskRunner or the full import path to the class -# when using a custom task runner. -task_runner = StandardTaskRunner - -# If set, tasks without a ``run_as_user`` argument will be run with this user -# Can be used to de-elevate a sudo user running Airflow when executing tasks -default_impersonation = - -# What security module to use (for example kerberos) -security = - -# Turn unit test mode on (overwrites many configuration options with test -# values at runtime) -unit_test_mode = False - -# Whether to enable pickling for xcom (note that this is insecure and allows for -# RCE exploits). -enable_xcom_pickling = False - -# When a task is killed forcefully, this is the amount of time in seconds that -# it has to cleanup after it is sent a SIGTERM, before it is SIGKILLED -killed_task_cleanup_time = 60 - -# Whether to override params with dag_run.conf. If you pass some key-value pairs -# through ``airflow dags backfill -c`` or -# ``airflow dags trigger -c``, the key-value pairs will override the existing ones in params. -dag_run_conf_overrides_params = True - -# When discovering DAGs, ignore any files that don't contain the strings ``DAG`` and ``airflow``. -dag_discovery_safe_mode = True - -# The number of retries each task is going to have by default. Can be overridden at dag or task level. -default_task_retries = 0 - -# The weighting method used for the effective total priority weight of the task -default_task_weight_rule = downstream - -# Updating serialized DAG can not be faster than a minimum interval to reduce database write rate. -min_serialized_dag_update_interval = 30 - -# Fetching serialized DAG can not be faster than a minimum interval to reduce database -# read rate. This config controls when your DAGs are updated in the Webserver -min_serialized_dag_fetch_interval = 10 - -# Maximum number of Rendered Task Instance Fields (Template Fields) per task to store -# in the Database. -# All the template_fields for each of Task Instance are stored in the Database. -# Keeping this number small may cause an error when you try to view ``Rendered`` tab in -# TaskInstance view for older tasks. -max_num_rendered_ti_fields_per_task = 30 - -# On each dagrun check against defined SLAs -check_slas = True - -# Path to custom XCom class that will be used to store and resolve operators results -# Example: xcom_backend = path.to.CustomXCom -xcom_backend = airflow.models.xcom.BaseXCom - -# By default Airflow plugins are lazily-loaded (only loaded when required). Set it to ``False``, -# if you want to load plugins whenever 'airflow' is invoked via cli or loaded from module. -lazy_load_plugins = True - -# By default Airflow providers are lazily-discovered (discovery and imports happen only when required). -# Set it to False, if you want to discover providers whenever 'airflow' is invoked via cli or -# loaded from module. -lazy_discover_providers = True - -# Number of times the code should be retried in case of DB Operational Errors. -# Not all transactions will be retried as it can cause undesired state. -# Currently it is only used in ``DagFileProcessor.process_file`` to retry ``dagbag.sync_to_db``. -max_db_retries = 3 - -# Hide sensitive Variables or Connection extra json keys from UI and task logs when set to True -# -# (Connection passwords are always hidden in logs) -hide_sensitive_var_conn_fields = True - -# A comma-separated list of extra sensitive keywords to look for in variables names or connection's -# extra JSON. -sensitive_var_conn_names = - -# Task Slot counts for ``default_pool``. This setting would not have any effect in an existing -# deployment where the ``default_pool`` is already created. For existing deployments, users can -# change the number of slots using Webserver, API or the CLI -default_pool_task_slot_count = 128 - -[logging] -# The folder where airflow should store its log files. -# This path must be absolute. -# There are a few existing configurations that assume this is set to the default. -# If you choose to override this you may need to update the dag_processor_manager_log_location and -# dag_processor_manager_log_location settings as well. -base_log_folder = /opt/airflow/logs - -# Airflow can store logs remotely in AWS S3, Google Cloud Storage or Elastic Search. -# Set this to True if you want to enable remote logging. -remote_logging = False - -# Users must supply an Airflow connection id that provides access to the storage -# location. -remote_log_conn_id = - -# Path to Google Credential JSON file. If omitted, authorization based on `the Application Default -# Credentials -# `__ will -# be used. -google_key_path = - -# Storage bucket URL for remote logging -# S3 buckets should start with "s3://" -# Cloudwatch log groups should start with "cloudwatch://" -# GCS buckets should start with "gs://" -# WASB buckets should start with "wasb" just to help Airflow select correct handler -# Stackdriver logs should start with "stackdriver://" -remote_base_log_folder = - -# Use server-side encryption for logs stored in S3 -encrypt_s3_logs = False - -# Logging level. -# -# Supported values: ``CRITICAL``, ``ERROR``, ``WARNING``, ``INFO``, ``DEBUG``. -logging_level = INFO - -# Logging level for Flask-appbuilder UI. -# -# Supported values: ``CRITICAL``, ``ERROR``, ``WARNING``, ``INFO``, ``DEBUG``. -fab_logging_level = WARNING - -# Logging class -# Specify the class that will specify the logging configuration -# This class has to be on the python classpath -# Example: logging_config_class = my.path.default_local_settings.LOGGING_CONFIG -logging_config_class = - -# Flag to enable/disable Colored logs in Console -# Colour the logs when the controlling terminal is a TTY. -colored_console_log = True - -# Log format for when Colored logs is enabled -colored_log_format = [%%(blue)s%%(asctime)s%%(reset)s] {%%(blue)s%%(filename)s:%%(reset)s%%(lineno)d} %%(log_color)s%%(levelname)s%%(reset)s - %%(log_color)s%%(message)s%%(reset)s -colored_formatter_class = airflow.utils.log.colored_log.CustomTTYColoredFormatter - -# Format of Log line -log_format = [%%(asctime)s] {%%(filename)s:%%(lineno)d} %%(levelname)s - %%(message)s -simple_log_format = %%(asctime)s %%(levelname)s - %%(message)s - -# Specify prefix pattern like mentioned below with stream handler TaskHandlerWithCustomFormatter -# Example: task_log_prefix_template = {ti.dag_id}-{ti.task_id}-{execution_date}-{try_number} -task_log_prefix_template = - -# Formatting for how airflow generates file names/paths for each task run. -log_filename_template = {{ ti.dag_id }}/{{ ti.task_id }}/{{ ts }}/{{ try_number }}.log - -# Formatting for how airflow generates file names for log -log_processor_filename_template = {{ filename }}.log - -# Full path of dag_processor_manager logfile. -dag_processor_manager_log_location = /opt/airflow/logs/dag_processor_manager/dag_processor_manager.log - -# Name of handler to read task instance logs. -# Defaults to use ``task`` handler. -task_log_reader = task - -# A comma\-separated list of third-party logger names that will be configured to print messages to -# consoles\. -# Example: extra_logger_names = connexion,sqlalchemy -extra_logger_names = - -# When you start an airflow worker, airflow starts a tiny web server -# subprocess to serve the workers local log files to the airflow main -# web server, who then builds pages and sends them to users. This defines -# the port on which the logs are served. It needs to be unused, and open -# visible from the main web server to connect into the workers. -worker_log_server_port = 8793 - -[metrics] - -# StatsD (https://github.com/etsy/statsd) integration settings. -# Enables sending metrics to StatsD. -statsd_on = False -statsd_host = localhost -statsd_port = 8125 -statsd_prefix = airflow - -# If you want to avoid sending all the available metrics to StatsD, -# you can configure an allow list of prefixes (comma separated) to send only the metrics that -# start with the elements of the list (e.g: "scheduler,executor,dagrun") -statsd_allow_list = - -# A function that validate the statsd stat name, apply changes to the stat name if necessary and return -# the transformed stat name. -# -# The function should have the following signature: -# def func_name(stat_name: str) -> str: -stat_name_handler = - -# To enable datadog integration to send airflow metrics. -statsd_datadog_enabled = False - -# List of datadog tags attached to all metrics(e.g: key1:value1,key2:value2) -statsd_datadog_tags = - -# If you want to utilise your own custom Statsd client set the relevant -# module path below. -# Note: The module path must exist on your PYTHONPATH for Airflow to pick it up -# statsd_custom_client_path = - -[secrets] -# Full class name of secrets backend to enable (will precede env vars and metastore in search path) -# Example: backend = airflow.providers.amazon.aws.secrets.systems_manager.SystemsManagerParameterStoreBackend -backend = - -# The backend_kwargs param is loaded into a dictionary and passed to __init__ of secrets backend class. -# See documentation for the secrets backend you are using. JSON is expected. -# Example for AWS Systems Manager ParameterStore: -# ``{"connections_prefix": "/airflow/connections", "profile_name": "default"}`` -backend_kwargs = - -[cli] -# In what way should the cli access the API. The LocalClient will use the -# database directly, while the json_client will use the api running on the -# webserver -api_client = airflow.api.client.local_client - -# If you set web_server_url_prefix, do NOT forget to append it here, ex: -# ``endpoint_url = http://localhost:8080/myroot`` -# So api will look like: ``http://localhost:8080/myroot/api/experimental/...`` -endpoint_url = http://localhost:8080 - -[debug] -# Used only with ``DebugExecutor``. If set to ``True`` DAG will fail with first -# failed task. Helpful for debugging purposes. -fail_fast = False - -[api] -# Enables the deprecated experimental API. Please note that these APIs do not have access control. -# The authenticated user has full access. -# -# .. warning:: -# -# This `Experimental REST API `__ is -# deprecated since version 2.0. Please consider using -# `the Stable REST API `__. -# For more information on migration, see -# `UPDATING.md `_ -enable_experimental_api = False - -# How to authenticate users of the API. See -# https://airflow.apache.org/docs/apache-airflow/stable/security.html for possible values. -# ("airflow.api.auth.backend.default" allows all requests for historic reasons) -auth_backend = airflow.api.auth.backend.deny_all - -# Used to set the maximum page limit for API requests -maximum_page_limit = 100 - -# Used to set the default page limit when limit is zero. A default limit -# of 100 is set on OpenApi spec. However, this particular default limit -# only work when limit is set equal to zero(0) from API requests. -# If no limit is supplied, the OpenApi spec default is used. -fallback_page_limit = 100 - -# The intended audience for JWT token credentials used for authorization. This value must match on the client and server sides. If empty, audience will not be tested. -# Example: google_oauth2_audience = project-id-random-value.apps.googleusercontent.com -google_oauth2_audience = - -# Path to Google Cloud Service Account key file (JSON). If omitted, authorization based on -# `the Application Default Credentials -# `__ will -# be used. -# Example: google_key_path = /files/service-account-json -google_key_path = - -# Used in response to a preflight request to indicate which HTTP -# headers can be used when making the actual request. This header is -# the server side response to the browser's -# Access-Control-Request-Headers header. -access_control_allow_headers = - -# Specifies the method or methods allowed when accessing the resource. -access_control_allow_methods = - -# Indicates whether the response can be shared with requesting code from the given origins. -# Separate URLs with space. -access_control_allow_origins = - -[lineage] -# what lineage backend to use -backend = - -[atlas] -sasl_enabled = False -host = -port = 21000 -username = -password = - -[operators] -# The default owner assigned to each new operator, unless -# provided explicitly or passed via ``default_args`` -default_owner = airflow -default_cpus = 1 -default_ram = 512 -default_disk = 512 -default_gpus = 0 - -# Default queue that tasks get assigned to and that worker listen on. -default_queue = default - -# Is allowed to pass additional/unused arguments (args, kwargs) to the BaseOperator operator. -# If set to False, an exception will be thrown, otherwise only the console message will be displayed. -allow_illegal_arguments = False - -[hive] -# Default mapreduce queue for HiveOperator tasks -default_hive_mapred_queue = - -# Template for mapred_job_name in HiveOperator, supports the following named parameters -# hostname, dag_id, task_id, execution_date -# mapred_job_name_template = - -[webserver] -# The base url of your website as airflow cannot guess what domain or -# cname you are using. This is used in automated emails that -# airflow sends to point links to the right web server -base_url = http://localhost:8080 - -# Default timezone to display all dates in the UI, can be UTC, system, or -# any IANA timezone string (e.g. Europe/Amsterdam). If left empty the -# default value of core/default_timezone will be used -# Example: default_ui_timezone = America/New_York -default_ui_timezone = UTC - -# The ip specified when starting the web server -web_server_host = 0.0.0.0 - -# The port on which to run the web server -web_server_port = 8080 - -# Paths to the SSL certificate and key for the web server. When both are -# provided SSL will be enabled. This does not change the web server port. -web_server_ssl_cert = - -# Paths to the SSL certificate and key for the web server. When both are -# provided SSL will be enabled. This does not change the web server port. -web_server_ssl_key = - -# The type of backend used to store web session data, can be 'database' or 'securecookie' -# Example: session_backend = securecookie -session_backend = database - -# Number of seconds the webserver waits before killing gunicorn master that doesn't respond -web_server_master_timeout = 120 - -# Number of seconds the gunicorn webserver waits before timing out on a worker -web_server_worker_timeout = 120 - -# Number of workers to refresh at a time. When set to 0, worker refresh is -# disabled. When nonzero, airflow periodically refreshes webserver workers by -# bringing up new ones and killing old ones. -worker_refresh_batch_size = 1 - -# Number of seconds to wait before refreshing a batch of workers. -worker_refresh_interval = 6000 - -# If set to True, Airflow will track files in plugins_folder directory. When it detects changes, -# then reload the gunicorn. -reload_on_plugin_change = False - -# Secret key used to run your flask app. It should be as random as possible. However, when running -# more than 1 instances of webserver, make sure all of them use the same ``secret_key`` otherwise -# one of them will error with "CSRF session token is missing". -secret_key = g/rHkt7pPrfeHOlAWr5EaQ== - -# Number of workers to run the Gunicorn web server -workers = 4 - -# The worker class gunicorn should use. Choices include -# sync (default), eventlet, gevent -worker_class = sync - -# Log files for the gunicorn webserver. '-' means log to stderr. -access_logfile = - - -# Log files for the gunicorn webserver. '-' means log to stderr. -error_logfile = - - -# Access log format for gunicorn webserver. -# default format is %%(h)s %%(l)s %%(u)s %%(t)s "%%(r)s" %%(s)s %%(b)s "%%(f)s" "%%(a)s" -# documentation - https://docs.gunicorn.org/en/stable/settings.html#access-log-format -access_logformat = - -# Expose the configuration file in the web server -expose_config = False - -# Expose hostname in the web server -expose_hostname = True - -# Expose stacktrace in the web server -expose_stacktrace = True - -# Default DAG view. Valid values are: ``tree``, ``graph``, ``duration``, ``gantt``, ``landing_times`` -dag_default_view = tree - -# Default DAG orientation. Valid values are: -# ``LR`` (Left->Right), ``TB`` (Top->Bottom), ``RL`` (Right->Left), ``BT`` (Bottom->Top) -dag_orientation = LR - -# The amount of time (in secs) webserver will wait for initial handshake -# while fetching logs from other worker machine -log_fetch_timeout_sec = 5 - -# Time interval (in secs) to wait before next log fetching. -log_fetch_delay_sec = 2 - -# Distance away from page bottom to enable auto tailing. -log_auto_tailing_offset = 30 - -# Animation speed for auto tailing log display. -log_animation_speed = 1000 - -# By default, the webserver shows paused DAGs. Flip this to hide paused -# DAGs by default -hide_paused_dags_by_default = False - -# Consistent page size across all listing views in the UI -page_size = 100 - -# Define the color of navigation bar -navbar_color = #fff - -# Default dagrun to show in UI -default_dag_run_display_number = 25 - -# Enable werkzeug ``ProxyFix`` middleware for reverse proxy -enable_proxy_fix = False - -# Number of values to trust for ``X-Forwarded-For``. -# More info: https://werkzeug.palletsprojects.com/en/0.16.x/middleware/proxy_fix/ -proxy_fix_x_for = 1 - -# Number of values to trust for ``X-Forwarded-Proto`` -proxy_fix_x_proto = 1 - -# Number of values to trust for ``X-Forwarded-Host`` -proxy_fix_x_host = 1 - -# Number of values to trust for ``X-Forwarded-Port`` -proxy_fix_x_port = 1 - -# Number of values to trust for ``X-Forwarded-Prefix`` -proxy_fix_x_prefix = 1 - -# Set secure flag on session cookie -cookie_secure = False - -# Set samesite policy on session cookie -cookie_samesite = Lax - -# Default setting for wrap toggle on DAG code and TI log views. -default_wrap = False - -# Allow the UI to be rendered in a frame -x_frame_enabled = True - -# Send anonymous user activity to your analytics tool -# choose from google_analytics, segment, or metarouter -# analytics_tool = - -# Unique ID of your account in the analytics tool -# analytics_id = - -# 'Recent Tasks' stats will show for old DagRuns if set -show_recent_stats_for_completed_runs = True - -# Update FAB permissions and sync security manager roles -# on webserver startup -update_fab_perms = True - -# The UI cookie lifetime in minutes. User will be logged out from UI after -# ``session_lifetime_minutes`` of non-activity -session_lifetime_minutes = 43200 - -# Sets a custom page title for the DAGs overview page and site title for all pages -# instance_name = - -# How frequently, in seconds, the DAG data will auto-refresh in graph or tree view -# when auto-refresh is turned on -auto_refresh_interval = 3 - -[email] - -# Configuration email backend and whether to -# send email alerts on retry or failure -# Email backend to use -email_backend = airflow.utils.email.send_email_smtp - -# Email connection to use -email_conn_id = smtp_default - -# Whether email alerts should be sent when a task is retried -default_email_on_retry = True - -# Whether email alerts should be sent when a task failed -default_email_on_failure = True - -# File that will be used as the template for Email subject (which will be rendered using Jinja2). -# If not set, Airflow uses a base template. -# Example: subject_template = /path/to/my_subject_template_file -# subject_template = - -# File that will be used as the template for Email content (which will be rendered using Jinja2). -# If not set, Airflow uses a base template. -# Example: html_content_template = /path/to/my_html_content_template_file -# html_content_template = - -# Email address that will be used as sender address. -# It can either be raw email or the complete address in a format ``Sender Name `` -# Example: from_email = Airflow -# from_email = - -[smtp] - -# If you want airflow to send emails on retries, failure, and you want to use -# the airflow.utils.email.send_email_smtp function, you have to configure an -# smtp server here -smtp_host = localhost -smtp_starttls = True -smtp_ssl = False -# Example: smtp_user = airflow -# smtp_user = -# Example: smtp_password = airflow -# smtp_password = -smtp_port = 25 -smtp_mail_from = airflow@example.com -smtp_timeout = 30 -smtp_retry_limit = 5 - -[sentry] - -# Sentry (https://docs.sentry.io) integration. Here you can supply -# additional configuration options based on the Python platform. See: -# https://docs.sentry.io/error-reporting/configuration/?platform=python. -# Unsupported options: ``integrations``, ``in_app_include``, ``in_app_exclude``, -# ``ignore_errors``, ``before_breadcrumb``, ``transport``. -# Enable error reporting to Sentry -sentry_on = false -sentry_dsn = - -# Dotted path to a before_send function that the sentry SDK should be configured to use. -# before_send = - -[celery_kubernetes_executor] - -# This section only applies if you are using the ``CeleryKubernetesExecutor`` in -# ``[core]`` section above -# Define when to send a task to ``KubernetesExecutor`` when using ``CeleryKubernetesExecutor``. -# When the queue of a task is the value of ``kubernetes_queue`` (default ``kubernetes``), -# the task is executed via ``KubernetesExecutor``, -# otherwise via ``CeleryExecutor`` -kubernetes_queue = kubernetes - -[celery] - -# This section only applies if you are using the CeleryExecutor in -# ``[core]`` section above -# The app name that will be used by celery -celery_app_name = airflow.executors.celery_executor - -# The concurrency that will be used when starting workers with the -# ``airflow celery worker`` command. This defines the number of task instances that -# a worker will take, so size up your workers based on the resources on -# your worker box and the nature of your tasks -worker_concurrency = 16 - -# The maximum and minimum concurrency that will be used when starting workers with the -# ``airflow celery worker`` command (always keep minimum processes, but grow -# to maximum if necessary). Note the value should be max_concurrency,min_concurrency -# Pick these numbers based on resources on worker box and the nature of the task. -# If autoscale option is available, worker_concurrency will be ignored. -# http://docs.celeryproject.org/en/latest/reference/celery.bin.worker.html#cmdoption-celery-worker-autoscale -# Example: worker_autoscale = 16,12 -# worker_autoscale = - -# Used to increase the number of tasks that a worker prefetches which can improve performance. -# The number of processes multiplied by worker_prefetch_multiplier is the number of tasks -# that are prefetched by a worker. A value greater than 1 can result in tasks being unnecessarily -# blocked if there are multiple workers and one worker prefetches tasks that sit behind long -# running tasks while another worker has unutilized processes that are unable to process the already -# claimed blocked tasks. -# https://docs.celeryproject.org/en/stable/userguide/optimizing.html#prefetch-limits -# Example: worker_prefetch_multiplier = 1 -# worker_prefetch_multiplier = - -# Umask that will be used when starting workers with the ``airflow celery worker`` -# in daemon mode. This control the file-creation mode mask which determines the initial -# value of file permission bits for newly created files. -worker_umask = 0o077 - -# The Celery broker URL. Celery supports RabbitMQ, Redis and experimentally -# a sqlalchemy database. Refer to the Celery documentation for more information. -broker_url = redis://redis:6379/0 - -# The Celery result_backend. When a job finishes, it needs to update the -# metadata of the job. Therefore it will post a message on a message bus, -# or insert it into a database (depending of the backend) -# This status is used by the scheduler to update the state of the task -# The use of a database is highly recommended -# http://docs.celeryproject.org/en/latest/userguide/configuration.html#task-result-backend-settings -result_backend = db+postgresql://postgres:airflow@postgres/airflow - -# Celery Flower is a sweet UI for Celery. Airflow has a shortcut to start -# it ``airflow celery flower``. This defines the IP that Celery Flower runs on -flower_host = 0.0.0.0 - -# The root URL for Flower -# Example: flower_url_prefix = /flower -flower_url_prefix = - -# This defines the port that Celery Flower runs on -flower_port = 5555 - -# Securing Flower with Basic Authentication -# Accepts user:password pairs separated by a comma -# Example: flower_basic_auth = user1:password1,user2:password2 -flower_basic_auth = - -# How many processes CeleryExecutor uses to sync task state. -# 0 means to use max(1, number of cores - 1) processes. -sync_parallelism = 0 - -# Import path for celery configuration options -celery_config_options = airflow.config_templates.default_celery.DEFAULT_CELERY_CONFIG -ssl_active = False -ssl_key = -ssl_cert = -ssl_cacert = - -# Celery Pool implementation. -# Choices include: ``prefork`` (default), ``eventlet``, ``gevent`` or ``solo``. -# See: -# https://docs.celeryproject.org/en/latest/userguide/workers.html#concurrency -# https://docs.celeryproject.org/en/latest/userguide/concurrency/eventlet.html -pool = prefork - -# The number of seconds to wait before timing out ``send_task_to_executor`` or -# ``fetch_celery_task_state`` operations. -operation_timeout = 1.0 - -# Celery task will report its status as 'started' when the task is executed by a worker. -# This is used in Airflow to keep track of the running tasks and if a Scheduler is restarted -# or run in HA mode, it can adopt the orphan tasks launched by previous SchedulerJob. -task_track_started = True - -# Time in seconds after which Adopted tasks are cleared by CeleryExecutor. This is helpful to clear -# stalled tasks. -task_adoption_timeout = 600 - -# The Maximum number of retries for publishing task messages to the broker when failing -# due to ``AirflowTaskTimeout`` error before giving up and marking Task as failed. -task_publish_max_retries = 3 - -# Worker initialisation check to validate Metadata Database connection -worker_precheck = False - -[celery_broker_transport_options] - -# This section is for specifying options which can be passed to the -# underlying celery broker transport. See: -# http://docs.celeryproject.org/en/latest/userguide/configuration.html#std:setting-broker_transport_options -# The visibility timeout defines the number of seconds to wait for the worker -# to acknowledge the task before the message is redelivered to another worker. -# Make sure to increase the visibility timeout to match the time of the longest -# ETA you're planning to use. -# visibility_timeout is only supported for Redis and SQS celery brokers. -# See: -# http://docs.celeryproject.org/en/master/userguide/configuration.html#std:setting-broker_transport_options -# Example: visibility_timeout = 21600 -# visibility_timeout = - -[dask] - -# This section only applies if you are using the DaskExecutor in -# [core] section above -# The IP address and port of the Dask cluster's scheduler. -cluster_address = 127.0.0.1:8786 - -# TLS/ SSL settings to access a secured Dask scheduler. -tls_ca = -tls_cert = -tls_key = - -[scheduler] -# Task instances listen for external kill signal (when you clear tasks -# from the CLI or the UI), this defines the frequency at which they should -# listen (in seconds). -job_heartbeat_sec = 5 - -# The scheduler constantly tries to trigger new tasks (look at the -# scheduler section in the docs for more information). This defines -# how often the scheduler should run (in seconds). -scheduler_heartbeat_sec = 5 - -# The number of times to try to schedule each DAG file -# -1 indicates unlimited number -num_runs = -1 - -# Controls how long the scheduler will sleep between loops, but if there was nothing to do -# in the loop. i.e. if it scheduled something then it will start the next loop -# iteration straight away. -scheduler_idle_sleep_time = 1 - -# Number of seconds after which a DAG file is parsed. The DAG file is parsed every -# ``min_file_process_interval`` number of seconds. Updates to DAGs are reflected after -# this interval. Keeping this number low will increase CPU usage. -min_file_process_interval = 30 - -# How often (in seconds) to check for stale DAGs (DAGs which are no longer present in -# the expected files) which should be deactivated. -deactivate_stale_dags_interval = 60 - -# How often (in seconds) to scan the DAGs directory for new files. Default to 5 minutes. -dag_dir_list_interval = 300 - -# How often should stats be printed to the logs. Setting to 0 will disable printing stats -print_stats_interval = 30 - -# How often (in seconds) should pool usage stats be sent to statsd (if statsd_on is enabled) -pool_metrics_interval = 5.0 - -# If the last scheduler heartbeat happened more than scheduler_health_check_threshold -# ago (in seconds), scheduler is considered unhealthy. -# This is used by the health check in the "/health" endpoint -scheduler_health_check_threshold = 30 - -# How often (in seconds) should the scheduler check for orphaned tasks and SchedulerJobs -orphaned_tasks_check_interval = 300.0 -child_process_log_directory = /opt/airflow/logs/scheduler - -# Local task jobs periodically heartbeat to the DB. If the job has -# not heartbeat in this many seconds, the scheduler will mark the -# associated task instance as failed and will re-schedule the task. -scheduler_zombie_task_threshold = 300 - -# Turn off scheduler catchup by setting this to ``False``. -# Default behavior is unchanged and -# Command Line Backfills still work, but the scheduler -# will not do scheduler catchup if this is ``False``, -# however it can be set on a per DAG basis in the -# DAG definition (catchup) -catchup_by_default = True - -# This changes the batch size of queries in the scheduling main loop. -# If this is too high, SQL query performance may be impacted by -# complexity of query predicate, and/or excessive locking. -# Additionally, you may hit the maximum allowable query length for your db. -# Set this to 0 for no limit (not advised) -max_tis_per_query = 512 - -# Should the scheduler issue ``SELECT ... FOR UPDATE`` in relevant queries. -# If this is set to False then you should not run more than a single -# scheduler at once -use_row_level_locking = True - -# Max number of DAGs to create DagRuns for per scheduler loop. -max_dagruns_to_create_per_loop = 10 - -# How many DagRuns should a scheduler examine (and lock) when scheduling -# and queuing tasks. -max_dagruns_per_loop_to_schedule = 20 - -# Should the Task supervisor process perform a "mini scheduler" to attempt to schedule more tasks of the -# same DAG. Leaving this on will mean tasks in the same DAG execute quicker, but might starve out other -# dags in some circumstances -schedule_after_task_execution = True - -# The scheduler can run multiple processes in parallel to parse dags. -# This defines how many processes will run. -parsing_processes = 2 - -# One of ``modified_time``, ``random_seeded_by_host`` and ``alphabetical``. -# The scheduler will list and sort the dag files to decide the parsing order. -# -# * ``modified_time``: Sort by modified time of the files. This is useful on large scale to parse the -# recently modified DAGs first. -# * ``random_seeded_by_host``: Sort randomly across multiple Schedulers but with same order on the -# same host. This is useful when running with Scheduler in HA mode where each scheduler can -# parse different DAG files. -# * ``alphabetical``: Sort by filename -file_parsing_sort_mode = modified_time - -# Turn off scheduler use of cron intervals by setting this to False. -# DAGs submitted manually in the web UI or with trigger_dag will still run. -use_job_schedule = True - -# Allow externally triggered DagRuns for Execution Dates in the future -# Only has effect if schedule_interval is set to None in DAG -allow_trigger_in_future = False - -# DAG dependency detector class to use -dependency_detector = airflow.serialization.serialized_objects.DependencyDetector - -# How often to check for expired trigger requests that have not run yet. -trigger_timeout_check_interval = 15 - -[triggerer] -# How many triggers a single Triggerer will run at once, by default. -default_capacity = 1000 - -[kerberos] -ccache = /tmp/airflow_krb5_ccache - -# gets augmented with fqdn -principal = airflow -reinit_frequency = 3600 -kinit_path = kinit -keytab = airflow.keytab - -# Allow to disable ticket forwardability. -forwardable = True - -# Allow to remove source IP from token, useful when using token behind NATted Docker host. -include_ip = True - -[github_enterprise] -api_rev = v3 - -[elasticsearch] -# Elasticsearch host -host = - -# Format of the log_id, which is used to query for a given tasks logs -log_id_template = {dag_id}-{task_id}-{execution_date}-{try_number} - -# Used to mark the end of a log stream for a task -end_of_log_mark = end_of_log - -# Qualified URL for an elasticsearch frontend (like Kibana) with a template argument for log_id -# Code will construct log_id using the log_id template from the argument above. -# NOTE: scheme will default to https if one is not provided -# Example: frontend = http://localhost:5601/app/kibana#/discover?_a=(columns:!(message),query:(language:kuery,query:'log_id: "{log_id}"'),sort:!(log.offset,asc)) -frontend = - -# Write the task logs to the stdout of the worker, rather than the default files -write_stdout = False - -# Instead of the default log formatter, write the log lines as JSON -json_format = False - -# Log fields to also attach to the json output, if enabled -json_fields = asctime, filename, lineno, levelname, message - -# The field where host name is stored (normally either `host` or `host.name`) -host_field = host - -# The field where offset is stored (normally either `offset` or `log.offset`) -offset_field = offset - -[elasticsearch_configs] -use_ssl = False -verify_certs = True - -[kubernetes] -# Path to the YAML pod file that forms the basis for KubernetesExecutor workers. -pod_template_file = - -# The repository of the Kubernetes Image for the Worker to Run -worker_container_repository = - -# The tag of the Kubernetes Image for the Worker to Run -worker_container_tag = - -# The Kubernetes namespace where airflow workers should be created. Defaults to ``default`` -namespace = default - -# If True, all worker pods will be deleted upon termination -delete_worker_pods = True - -# If False (and delete_worker_pods is True), -# failed worker pods will not be deleted so users can investigate them. -# This only prevents removal of worker pods where the worker itself failed, -# not when the task it ran failed. -delete_worker_pods_on_failure = False - -# Number of Kubernetes Worker Pod creation calls per scheduler loop. -# Note that the current default of "1" will only launch a single pod -# per-heartbeat. It is HIGHLY recommended that users increase this -# number to match the tolerance of their kubernetes cluster for -# better performance. -worker_pods_creation_batch_size = 1 - -# Allows users to launch pods in multiple namespaces. -# Will require creating a cluster-role for the scheduler -multi_namespace_mode = False - -# Use the service account kubernetes gives to pods to connect to kubernetes cluster. -# It's intended for clients that expect to be running inside a pod running on kubernetes. -# It will raise an exception if called from a process not running in a kubernetes environment. -in_cluster = True - -# When running with in_cluster=False change the default cluster_context or config_file -# options to Kubernetes client. Leave blank these to use default behaviour like ``kubectl`` has. -# cluster_context = - -# Path to the kubernetes configfile to be used when ``in_cluster`` is set to False -# config_file = - -# Keyword parameters to pass while calling a kubernetes client core_v1_api methods -# from Kubernetes Executor provided as a single line formatted JSON dictionary string. -# List of supported params are similar for all core_v1_apis, hence a single config -# variable for all apis. See: -# https://raw.githubusercontent.com/kubernetes-client/python/41f11a09995efcd0142e25946adc7591431bfb2f/kubernetes/client/api/core_v1_api.py -kube_client_request_args = - -# Optional keyword arguments to pass to the ``delete_namespaced_pod`` kubernetes client -# ``core_v1_api`` method when using the Kubernetes Executor. -# This should be an object and can contain any of the options listed in the ``v1DeleteOptions`` -# class defined here: -# https://github.com/kubernetes-client/python/blob/41f11a09995efcd0142e25946adc7591431bfb2f/kubernetes/client/models/v1_delete_options.py#L19 -# Example: delete_option_kwargs = {"grace_period_seconds": 10} -delete_option_kwargs = - -# Enables TCP keepalive mechanism. This prevents Kubernetes API requests to hang indefinitely -# when idle connection is time-outed on services like cloud load balancers or firewalls. -enable_tcp_keepalive = True - -# When the `enable_tcp_keepalive` option is enabled, TCP probes a connection that has -# been idle for `tcp_keep_idle` seconds. -tcp_keep_idle = 120 - -# When the `enable_tcp_keepalive` option is enabled, if Kubernetes API does not respond -# to a keepalive probe, TCP retransmits the probe after `tcp_keep_intvl` seconds. -tcp_keep_intvl = 30 - -# When the `enable_tcp_keepalive` option is enabled, if Kubernetes API does not respond -# to a keepalive probe, TCP retransmits the probe `tcp_keep_cnt number` of times before -# a connection is considered to be broken. -tcp_keep_cnt = 6 - -# Set this to false to skip verifying SSL certificate of Kubernetes python client. -verify_ssl = True - -# How long in seconds a worker can be in Pending before it is considered a failure -worker_pods_pending_timeout = 300 - -# How often in seconds to check if Pending workers have exceeded their timeouts -worker_pods_pending_timeout_check_interval = 120 - -# How often in seconds to check for task instances stuck in "queued" status without a pod -worker_pods_queued_check_interval = 60 - -# How many pending pods to check for timeout violations in each check interval. -# You may want this higher if you have a very large cluster and/or use ``multi_namespace_mode``. -worker_pods_pending_timeout_batch_size = 100 - -[smart_sensor] -# When `use_smart_sensor` is True, Airflow redirects multiple qualified sensor tasks to -# smart sensor task. -use_smart_sensor = False - -# `shard_code_upper_limit` is the upper limit of `shard_code` value. The `shard_code` is generated -# by `hashcode % shard_code_upper_limit`. -shard_code_upper_limit = 10000 - -# The number of running smart sensor processes for each service. -shards = 5 - -# comma separated sensor classes support in smart_sensor. -sensors_enabled = NamedHivePartitionSensor - -# Igor comment diff --git a/pr-preview/pr-110/other-integrations/_attachments/execute-airflow-workflows-that-use-dbt-with-teradata-vantage/airflow_dbt_integration.py b/pr-preview/pr-110/other-integrations/_attachments/execute-airflow-workflows-that-use-dbt-with-teradata-vantage/airflow_dbt_integration.py deleted file mode 100644 index 1f6fd5328..000000000 --- a/pr-preview/pr-110/other-integrations/_attachments/execute-airflow-workflows-that-use-dbt-with-teradata-vantage/airflow_dbt_integration.py +++ /dev/null @@ -1,47 +0,0 @@ -from airflow import DAG -from airflow.operators.python import PythonOperator, BranchPythonOperator -from airflow.operators.bash import BashOperator -from airflow.operators.dummy_operator import DummyOperator -from datetime import datetime - - -default_args = { - 'owner': 'airflow', - 'depends_on_past': False, - 'start_date': datetime(2020,8,1), - 'retries': 0 -} - -with DAG('airflow_dbt_integration', default_args=default_args, schedule_interval='@once') as dag: - task_1 = BashOperator( - task_id='dbt_debug', - bash_command='cd /opt/airflow && rm -f logs/dbt.log && dbt debug', - dag=dag - ) - - task_2 = BashOperator( - task_id='dbt_seed', - bash_command='cd /opt/airflow && dbt seed', - dag=dag - ) - - task_3 = BashOperator( - task_id='dbt_run', - bash_command='cd /opt/airflow && dbt run', - dag=dag - ) - - task_4 = BashOperator( - task_id='dbt_test', - bash_command='cd /opt/airflow && dbt test', - dag=dag - ) - - task_5 = BashOperator( - task_id='dbt_docs_generate', - bash_command='cd /opt/airflow && dbt docs generate', - dag=dag - ) - - - task_1 >> task_2 >> task_3 >> task_4 >> task_5 # Define dependencies diff --git a/pr-preview/pr-110/other-integrations/_attachments/execute-airflow-workflows-that-use-dbt-with-teradata-vantage/db_test_example_dag.py b/pr-preview/pr-110/other-integrations/_attachments/execute-airflow-workflows-that-use-dbt-with-teradata-vantage/db_test_example_dag.py deleted file mode 100644 index 36d91643b..000000000 --- a/pr-preview/pr-110/other-integrations/_attachments/execute-airflow-workflows-that-use-dbt-with-teradata-vantage/db_test_example_dag.py +++ /dev/null @@ -1,152 +0,0 @@ -from datetime import datetime, timedelta -from airflow import DAG -from airflow.models import Variable -from airflow.operators.python_operator import PythonOperator, BranchPythonOperator -from airflow.operators.bash_operator import BashOperator -import pendulum -import teradatasql -import logging -import getpass -import urllib.parse -import sqlalchemy -from sqlalchemy import exc -from sqlalchemy.dialects import registry - - -db_user = 'airflowtest' -db_password = 'abcd' -db_IP_address = '44.236.48.243' -SQL_string_cleanup = 'drop table employee;drop table organization' - -SQL_string_create_employee = 'create table employee (employee_id integer, name varchar(40), emp_position varchar(40), salary integer, organization_id integer);insert into employee (1,\'John Smith\',\'Engineer\',80000,1);insert into employee (2,\'Jennifer Jones\',\'Account Manager\',100000,2);insert into employee (3,\'William Bowman\',\'Product Manager\',90000,3);insert into employee (1,\'Meghan Stein\',\'Project Manager\',75000,1);' - -SQL_string_create_organization = 'create table organization (organization_id integer, organization_name varchar(40), organization_status varchar(10)); insert into organization (1,\'Engineering\',\'Active\');insert into organization (2,\'Sales\',\'Active\');insert into organization (3,\'Marketing\',\'Active\');insert into organization (4,\'Engineering-Old\',\'Inactive\')' - -SQL_string_select = 'select avg(employee.salary),organization.organization_name from employee,organization where employee.organization_id=organization.organization_id and organization.organization_status=\'Active\' group by organization.organization_name' - - - -#Execute an SQL statements in a string format; The string can contain one or more SQL commands separated by ";" - -def executeSQLString(db_user, db_password, db_IP_address, SQL_string): - - - - # all SQL commands (split by ';') - sqlCommands = SQL_string.split(';') - - # create database connection - try: - registry.register("teradatasql", "teradatasqlalchemy.dialect", "TeradataDialect") - enginedbc = sqlalchemy.create_engine('teradatasql://'+db_IP_address+'/?user='+db_user+'&password='+db_password, connect_args={'sslmode': "DISABLE"}) - conn = enginedbc.connect() - logging.info ("Database connection with "+db_IP_address+" established successfully.") - except Exception as ex: - logging.error(str(ex)) - - - - # Execute every command from the input file - for command in sqlCommands: - # This will skip and report errors - # For example, if the tables do not yet exist, this will skip over - # the DROP TABLE commands - # Check if sql command empty - if not command.strip(): - continue - sqlresp='' - try: - logging.info("Executing command : "+command.strip('\n')) - sqlresp=conn.execute(command) - for row in sqlresp: - logging.info(row) - # for key, value in row.items(): - # logging.info(str(key) + ' : ' + str(value)) - - except exc.SQLAlchemyError as e: - logging.warn(type(e)) - complete_err = str(e.orig.args) - # ignore table does not exist, object does not exist, database already exists errors, storage does not exist, view does not exist; - # add any errors that you want to be ignored - if (("[Error 3802]" in complete_err) or ("[Error 3807]" in complete_err) or ("[Error 6938]" in complete_err) or ("[Error 5612]" in complete_err) or ("[Error 4836]" in complete_err) or ("[Error 3706]" in complete_err)): - logging.warn("Ignoring error "+complete_err.partition('\\n')[0]) - else: - logging.error("Terminating execution because of error "+complete_err.partition('\\n')[0]) - raise - - conn.close - - -def _cleanup(): - try: - logging.info ("Calling execute SQL string.") - executeSQLString(db_user, db_password, db_IP_address, SQL_string_cleanup) - logging.info ("Completed execute SQL files.") - except Exception as ex: - logging.error(str(ex)) - -def _create_employee(): - try: - logging.info ("Calling execute SQL string.") - executeSQLString(db_user, db_password, db_IP_address, SQL_string_create_employee) - logging.info ("Completed execute SQL files.") - except Exception as ex: - logging.error(str(ex)) - -def _create_organization(): - try: - logging.info ("Calling execute SQL string.") - executeSQLString(db_user, db_password, db_IP_address, SQL_string_create_organization) - logging.info ("Completed execute SQL files.") - except Exception as ex: - logging.error(str(ex)) - -def _run_query(): - try: - logging.info ("Calling execute SQL string.") - executeSQLString(db_user, db_password, db_IP_address, SQL_string_select) - logging.info ("Completed execute SQL files.") - except Exception as ex: - logging.error(str(ex)) - - - -with DAG("db_test_example", start_date=pendulum.datetime(2021, 1, 1, tz="UTC"), - schedule_interval=None, catchup=False) as dag: - - - cleanup = PythonOperator( - task_id="cleanup", - python_callable=_cleanup, - depends_on_past=False - ) - - create_employee = PythonOperator( - task_id="create_employee", - python_callable=_create_employee, - depends_on_past=False - ) - - create_organization = PythonOperator( - task_id="create_organization", - python_callable=_create_organization, - depends_on_past=False - ) - - run_query = PythonOperator( - task_id="run_query", - python_callable=_run_query, - depends_on_past=False - ) - - - - - - - - -cleanup >> [create_employee, create_organization] >> run_query - - - diff --git a/pr-preview/pr-110/other-integrations/_attachments/execute-airflow-workflows-that-use-dbt-with-teradata-vantage/discover_dag.py b/pr-preview/pr-110/other-integrations/_attachments/execute-airflow-workflows-that-use-dbt-with-teradata-vantage/discover_dag.py deleted file mode 100644 index a9e3994b2..000000000 --- a/pr-preview/pr-110/other-integrations/_attachments/execute-airflow-workflows-that-use-dbt-with-teradata-vantage/discover_dag.py +++ /dev/null @@ -1,489 +0,0 @@ -# Airflow DAG to load a generic number of parquet, csv and json files into a Teradata 20 database on Amazon Web Services (AWS). -# The files are assumed to be located on specific S3 buckets (location defined in Airflow variables - csv files go to the csv -# S3 bucket, json files to the json bucket, parquet into the parquet bucket). -# The script locates the files, determines the structure of the files (columns, delimiters, etc.) and: -# 1. Creates the needed databases (scv database for csv files, json database for json files, multiple parquet databases are created based on the -# parquet directory names). If databases are already created, it skips this step. -# 2. Creates a teradata foreign table that point to the files -# 3. Creates a NOS table (uses S3 storage) and uses the previously created foreign tables to load them (doing select from -# foreign tables / insert into NOS tables). -# -# The Airflow environment must be created by using a docker_compose.yaml and Dockerfile to include all the needed packages and libraries. - - -from datetime import datetime, timedelta -from airflow.decorators import dag,task -from airflow import AirflowException -from airflow.models import Variable -import teradatasql -import logging -import getpass -import urllib.parse -import sqlalchemy -from sqlalchemy import exc -from sqlalchemy.dialects import registry -from airflow import DAG -from airflow.operators.python import PythonOperator, BranchPythonOperator -from airflow.operators.bash import BashOperator -from airflow.operators.dummy_operator import DummyOperator -import os -import sys -import ijson -import json -import subprocess -import csv -import boto3 - -# Airflow variables that must be imported before running this DAG. -# A sample variables.json file is provided aas an example -# AWS keys: -aws_access_key_id =Variable.get("aws_access_key_id") -aws_secret_access_key =Variable.get("aws_secret_access_key") -# S3 Locations. Ls locations (to be used for the aws ls command line interface) have a different format than ft locations (where files reside) -s3_location_parq_ls =Variable.get("s3_location_parq_ls") -s3_location_parq_ft =Variable.get("s3_location_parq_ft") -s3_location_csv_ls =Variable.get("s3_location_csv_ls") -s3_location_csv_create =Variable.get("s3_location_csv_create") -s3_location_csv_ft =Variable.get("s3_location_csv_ft") -s3_location_json_ls =Variable.get("s3_location_json_ls") -s3_location_json_ft =Variable.get("s3_location_json_ft") -s3_location_json_create =Variable.get("s3_location_json_create") -# s3 bucket is the top S3 bucket where the data resides (and where the parquet directories start), csv and json are subbuckets where these types of -# files reside -s3_bucket =Variable.get("s3_bucket") -csv_subbucket =Variable.get("csv_subbucket") -json_subbucket =Variable.get("json_subbucket") -# Temp file where the list of databases to be created reside -filenamedb=Variable.get("filenamedb") -# Location of temporary files where databasename tablename are listed for the program fo create tables -parqfilenamedbtab=Variable.get("parqfilenamedbtab") -csvfilenamedbtab=Variable.get("csvfilenamedbtab") -jsonfilenamedbtab=Variable.get("jsonfilenamedbtab") -alldbtab =Variable.get("alldbtab") -# Csv variables, database name and delimiters supported -csvdb=Variable.get("csvdb") -supported_csvdelimiters=Variable.get("supported_csvdelimiters") -supported_csvlineterminator=Variable.get("supported_csvlineterminator") -# Json db name -jsondb=Variable.get("jsondb") -# Target database variables - the DB user must have database create privileges - the csvdb and jsondb are going to be created under the user's -# datbase. -DB_username =Variable.get("DB_username") -DB_password =Variable.get("DB_password") -DB_ip_address =Variable.get("DB_ip_address") -# Authorization object name -auth_name =Variable.get("auth_name") -region_name=Variable.get("region_name") -# Temp file used to determine json file format -output_file =Variable.get("output_file") -# Sample size (num of lines) to determine csv format -linenumax=int(Variable.get("linenumax")) -# Permanent size for csv and json databases. Here one size fits all, to change it has to be slightly modified -perm_dbsize=Variable.get("perm_dbsize") -# NOS storage name -nos_storage=Variable.get("nos_storage") -# Flags to let the program know which types of files to load. 'Y' to loas the specific file type. -load_csv=Variable.get("load_csv") -load_json=Variable.get("load_json") -load_parquet=Variable.get("load_parquet") - - - -# Genertes the JSON nos select command for table table_name -def get_json_nos_select_comm(table_name): - try: - - command_getvalues = 'select ' - json_sample_size = 'top 100' - - logging.info("Generating JSON nos select command") - - command_getfields = 'select * from (SELECT distinct * FROM JSON_KEYS (ON (SELECT ' + json_sample_size + ' payload FROM ' + table_name + ' )) AS j ) as cols;' - - logging.info("Command to get json fields: " + command_getfields) - - registry.register("teradatasql", "teradatasqlalchemy.dialect", "TeradataDialect") - enginedbc = sqlalchemy.create_engine('teradatasql://'+DB_ip_address+'/?user='+DB_username+'&password='+DB_password, connect_args={'sslmode': "DISABLE"}) - conn = enginedbc.connect() - logging.info("Database connection with "+DB_ip_address+" established successfully.") - sqlrespfields=conn.execute(command_getfields) - for row in sqlrespfields: - for key, value in row.items(): - fieldname = '"payload".' + str(value) + ' ' + value.replace('"."','__').replace('"','') - print(fieldname) - command_getvalues = command_getvalues + fieldname + ', ' - command_getvalues = command_getvalues[:-3] - command_getvalues = command_getvalues + ' from ' + table_name - logging.info('JSON nos select command: \n\n' + command_getvalues + '\n') - conn.close - return(command_getvalues) - except Exception as ex: - logging.error(str(ex)) - raise AirflowException - - - -# Execute a string of SQL commands separated by semicolons (;) -def execute_sql_commands(commands): - try: - logging.info ("SQL commands: " + commands) - sqlcommands = commands.split(';') - registry.register("teradatasql", "teradatasqlalchemy.dialect", "TeradataDialect") - enginedbc = sqlalchemy.create_engine('teradatasql://'+DB_ip_address+'/?user='+DB_username+'&password='+DB_password, connect_args={'sslmode': "DISABLE"}) - conn = enginedbc.connect() - logging.info ("Database connection with "+DB_ip_address+" established successfully.") - - - # files to tbl: - for sqlcommand in sqlcommands: - try: - logging.info ("SQL Command: " + sqlcommand) - sqlresp=conn.execute(sqlcommand) - for row in sqlresp: - logging.info(row) - - except exc.SQLAlchemyError as e: - logging.warn(type(e)) - complete_err = str(e.orig.args) - # ignore table does not exist, object does not exist, database already exists errors, storage does not exist, view does not exist - if (("[Error 3802]" in complete_err) or ("[Error 3807]" in complete_err) or ("[Error 6938]" in complete_err) or ("[Error 5612]" in complete_err) or ("[Error 4836]" in complete_err) or ("[Error 3706]" in complete_err)): - logging.warn("Ignoring error "+complete_err.partition('\\n')[0]) - continue - else: - logging.error("Terminating execution because of error "+complete_err.partition('\\n')[0]) - raise AirflowException - - conn.close - - except Exception as ex: - logging.error(str(ex)) - raise AirflowException - - - -# Returns bash script string containing the script that creates a file containing the database names to be created -def create_db_file_bash(filenamedb): - empty_bash_str = 'touch ' + filenamedb + ';' - csv_bash_str = 'echo \'' + csvdb + '\' >> ' + filenamedb + ';' - json_bash_str = 'echo \'' + jsondb + '\' >> ' + filenamedb + ';' - parquet_bash_str = 'export AWS_ACCESS_KEY_ID=' + aws_access_key_id + ' ; export AWS_SECRET_ACCESS_KEY=' + aws_secret_access_key + '; aws s3 ls ' + s3_location_parq_ls + ' | awk \'{print $2}\' | sed \'s#/##\' >> ' + filenamedb + ';' - create_db_file_bash_command = empty_bash_str - if (load_csv == 'Y'): - create_db_file_bash_command = create_db_file_bash_command + csv_bash_str - if (load_json == 'Y'): - create_db_file_bash_command = create_db_file_bash_command + json_bash_str - if (load_parquet == 'Y'): - create_db_file_bash_command = create_db_file_bash_command + parquet_bash_str - logging.info ("Returning db file creation bash command: " + create_db_file_bash_command) - return (create_db_file_bash_command) - - -# SQL and Bash scripts - -# Bash command to create placeholder empty files -create_placeholder_files_command = 'touch ' + csvfilenamedbtab + '; touch ' + jsonfilenamedbtab + '; touch ' + parqfilenamedbtab + '; touch ' + alldbtab - -# Bash command to create a file containing the names of parquet files to be loaded -create_parq_db_tab_file_bash_command = 'export AWS_ACCESS_KEY_ID=' + aws_access_key_id + ' ; export AWS_SECRET_ACCESS_KEY=' + aws_secret_access_key + '; for DB in `aws s3 ls ' + s3_location_parq_ls + '| awk \'{print $2}\' | sed \'s#/##\' `; do aws s3 ls ' + s3_location_parq_ls + '$DB/ | awk \'{print db,$2}\' db="${DB}" | sed \'s#/##\'; done > ' + parqfilenamedbtab - -# Bash command to create a temporary file containing the names of csv files to be loaded -create_csv_tab_file_bash_command = 'export AWS_ACCESS_KEY_ID=' + aws_access_key_id + ' ; export AWS_SECRET_ACCESS_KEY=' + aws_secret_access_key + '; aws s3 ls ' + s3_location_csv_ls + ' | awk \'{print "+csv+ " $4}\' | sed \'s#/##\' | tail -n +2 > ' + csvfilenamedbtab - - -# Bash command to create a temporary file containing the names of json files to be loaded -create_json_tab_file_bash_command = 'export AWS_ACCESS_KEY_ID=' + aws_access_key_id + ' ; export AWS_SECRET_ACCESS_KEY=' + aws_secret_access_key + '; aws s3 ls ' + s3_location_json_ls + ' | awk \'{print "+json+ " $4}\' | sed \'s#/##\' | tail -n +2 > ' + jsonfilenamedbtab - -# Bash commands to create a temporary file containing the names of all (json, csv, parquet) files to be loaded -join_csv_tab_files_bash_command = 'cat ' + csvfilenamedbtab + ' >> ' + alldbtab -join_json_tab_files_bash_command = 'cat ' + jsonfilenamedbtab + ' >> ' + alldbtab -join_parquet_tab_files_bash_command = 'cat ' + parqfilenamedbtab + ' >> ' + alldbtab - -# Bash command to clean up files containing table and database lists from the previous run if they exist -cleanup_bash_command = 'rm -f ' + filenamedb + ' ' + parqfilenamedbtab + ' ' + csvfilenamedbtab + ' ' + jsonfilenamedbtab + ' ' + alldbtab - -# Returns the delimiter of the csv file. Supported csv delimiters are defined by the supported_csvdelimiters variable. -# S3 bucket and file name are passed as arguments. -def csv_delimiter(bucket, file): - try: - s3 = boto3.resource( 's3', region_name=region_name, aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key) - # bucket = topmost bucket, like tc-001-teracloud-nos-us-west-2-3745abcd, file = filename incl. lower buckets, ex csvdata/inventory.csv - # where complete path is tc-001-teracloud-nos-us-west-2-3745abcd/csvdata/inventory.csv - obj = s3.Object(bucket,file) - line = obj.get()['Body']._raw_stream.readline().decode('UTF-8') - dialect = csv.Sniffer().sniff(line, delimiters=supported_csvdelimiters) - delimiter = dialect.__dict__['delimiter'] - return(delimiter) - except Exception as ex: - logging.error(str(ex)) - raise AirflowException - - - - - -# Returns the JSON fields (columns) in the file delimited by the '|' character. In case the Json file is nested the columns are flattened. -# A sample of the JSON file (numner of lines defined by the linenumax variable) is copied from S3 to the filesystem and examined. -# then ijson is used to examine it. Linenumax is by default set to 100, but for complex files can be increased. -def json_fields(bucket, file): - try: - - s3 = boto3.resource( 's3', region_name=region_name, aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key) - # bucket = topmost bucket, like tc-perf-001-teracloud-nos-us-west-2-3745a70d0aef, file = filename incl. lower buckets, ex csvdata/inventory.csv - # where complete path is tc-perf-001-teracloud-nos-us-west-2-3745a70d0aef/csvdata/inventory.csv - logging.info('Json-fields, Bucket: ' + bucket + ', File: ' + file) - obj = s3.Object(bucket,file) - - if os.path.exists(output_file): - os.remove(output_file) - - f = open(output_file,'w+') - - linenum=1 - while linenum <= linenumax: - # line = print_line(s3_bucket,json_subbucket + '/' + 'pd_review.json') - line = obj.get()['Body']._raw_stream.readline().decode('UTF-8') - f.write(line) - linenum = linenum + 1 - - f.seek(0) - - logging.info('Json-fields, Out Temp File: ' + output_file) - objects = ijson.items(f, "", multiple_values=True) - logging.info('Json-fields, Json objects: ' + str(objects)) - - key_string="" - - for obj in objects: - first = True - for i in obj.keys(): - if first: - key_string=key_string+i - first = False - else: - key_string=key_string+'|'+i - break - - f.close - logging.info('Json-fields, Field string: ' + key_string) - - return(key_string) - - - except Exception as ex: - logging.error(str(ex)) - raise AirflowException - - - - - -default_args = { - 'owner': 'airflow', - 'depends_on_past': False, - 'start_date': datetime(2020,8,1), - 'retries': 0 -} - - -@dag(dag_id="discover_dag", schedule_interval=None, start_date=datetime(2022, 4, 2)) -def taskflow(): - - - # Create a temporary file containing the names of all databases. - # CSV database name comes from the variable csvdb, JSON database from variable jsondb, Parquet database(s) from the parquet sub-bucket name(s) - # The file is created in the directory name defined by the variable filenamedb. By default this is /tmp/db.txt on the host system or - # /opt/airflow/tmp/db.txt on the container, but is configurable by changing the variable value and the /tmp mount in the docker_compose.yaml file - @task - def make_file_db(): - logging.info ("Cleaning up old files : " + cleanup_bash_command) - subprocess.run(cleanup_bash_command, shell=True, check=True, executable='/bin/bash') - logging.info ("Executing bash: " + create_db_file_bash(filenamedb)) - createdb_file_bash_command = create_db_file_bash(filenamedb) - subprocess.run(createdb_file_bash_command, shell=True, check=True, executable='/bin/bash') - return (filenamedb) - - # Create databases based on the database names found in the file created in the make_file_db task - # Notice the password is the same as the database name, manually change the password as needed - @task - def create_db(filenamedb): - try: - logging.info ("Opening file " + filenamedb) - with open(filenamedb) as file: - lines = file.readlines() - lines = [line.rstrip() for line in lines] - logging.info ("File "+filenamedb+" found, opened, read successfully.") - - # for each line in the db file (i.e. for each database), create user/database and auth object to access S3 - # databases are created all of the same size because the data will not be loaded into the databasebut in the NOS storage - for line in lines: - sqlcommandstr = "create user " + line + " as perm=" + perm_dbsize + ",password=" + line + "; grant all on " + line + " to " + line + " with grant option; grant create database on " + line + " to " + line + "; grant EXECUTE FUNCTION on TD_SYSFNLIB to " + line + "; database " + line + "; drop AUTHORIZATION " + line + "." + auth_name + "; CREATE AUTHORIZATION " + line + "." + auth_name + " AS DEFINER TRUSTED USER '" + aws_access_key_id + "' PASSWORD '" + aws_secret_access_key + "';" - execute_sql_commands(sqlcommandstr) - file.close() - os.remove(filenamedb) - return(parqfilenamedbtab) - - except Exception as ex: - logging.error(str(ex)) - raise AirflowException - - - - - # Create temporary files containing all the table names. Bash commands use aws command line create a list of files/tables - # The argument parquetfilenamedb is a placeholder to support the airflow task flow. - @task - def make_file_dbtab(parqfilenamedbtab): - logging.info ("Create empty files bash: " + create_placeholder_files_command) - subprocess.run(create_placeholder_files_command, shell=True, check=True, executable='/bin/bash') - if (load_csv == 'Y'): - logging.info ("Executing csv bash: " + create_csv_tab_file_bash_command) - subprocess.run(create_csv_tab_file_bash_command, shell=True, check=True, executable='/bin/bash') - logging.info ("Executing csv join bash: " + join_csv_tab_files_bash_command) - subprocess.run(join_csv_tab_files_bash_command, shell=True, check=True, executable='/bin/bash') - if (load_json == 'Y'): - logging.info ("Executing json bash: " + create_json_tab_file_bash_command) - subprocess.run(create_json_tab_file_bash_command, shell=True, check=True, executable='/bin/bash') - logging.info ("Executing json join bash: " + join_json_tab_files_bash_command) - subprocess.run(join_json_tab_files_bash_command, shell=True, check=True, executable='/bin/bash') - if (load_parquet == 'Y'): - logging.info ("Executing parq bash: " + create_parq_db_tab_file_bash_command) - subprocess.run(create_parq_db_tab_file_bash_command, shell=True, check=True, executable='/bin/bash') - logging.info ("Executing parquet join bash: " + join_parquet_tab_files_bash_command) - subprocess.run(join_parquet_tab_files_bash_command, shell=True, check=True, executable='/bin/bash') - # logging.info ("Executing join_file bash: " + join_tab_files_bash_command) - # subprocess.run(join_tab_files_bash_command, shell=True, check=True, executable='/bin/bash') - return(alldbtab) - - # Open filename created by the make_file_dbtab task containing the table names and return the content - @task - def make_tab_list(filename): - # Open and read the file as a single buffer, then split sql commnds based on the ";" character, i.e. commands must be separated by ";" - logging.info ("Opening file " + filename) - try: - with open(filename) as file: - lines = file.readlines() - lines = [line.rstrip() for line in lines] - file.close() - # os.remove(filename) - logging.info ("File "+filename+" found, opened, read successfully.") - return (lines) - except Exception as ex: - logging.error ("File error ", str (ex).split ("\n") [0]) - raise AirflowException - - - # Based on the list of tables passed by the previous task and create the tables. - # The tables can be csv (prefixed by +csv+), json (prefixed by +json+) or parquet (no +parquet+ prefix, but simply database and table name) . - # Each file type has a different creation process and SQL code. - @task - def create_tables(arg): - logging.info ("Creating table for record :"+arg) - argstring = arg.split(' ') - i = 1 - db="" - tbl="" - tbltype="" - csvfilename = "" - jsonfilename = "" - for argstr in argstring: - argstr = argstr.strip() - logging.info ('Arg passed ' + str(i) + ': ' + argstr + ';') - if (i == 1) : - if (argstr == '+csv+'): - tbltype = 'csv' - db = csvdb - elif (argstr == '+json+'): - tbltype = 'json' - db = jsondb - else : - tbltype = 'parquet' - db = argstr - i = i + 1 - elif (i == 2): - if (tbltype == 'csv'): - csvfilename = argstr - tbl = argstr.split('.',1)[0] - db = csvdb - bucketfile = csv_subbucket + '/' + csvfilename - csvdelimiter = csv_delimiter(s3_bucket, csv_subbucket + '/' + csvfilename ) - logging.info ('CSV File path :' + bucketfile) - logging.info ('CSV Delimiter :' + csvdelimiter) - elif (tbltype == 'json'): - jsonfilename = argstr - tbl = argstr.split('.',1)[0] - db = jsondb - bucketfile = json_subbucket + '/' + jsonfilename - jsonfieldstr = json_fields(s3_bucket, json_subbucket + '/' + jsonfilename ) - logging.info ('JSON File path :' + bucketfile) - logging.info ('JSON Fields String :' + jsonfieldstr) - else : - tbl = argstr - - - logging.info ("Table type :" + tbltype + " Table name: " + tbl + " Database: " + db) - - - - - - - if (tbltype == 'parquet'): - - sqlstr_parq_ft = "drop FOREIGN TABLE " + db + "." + tbl + "_parq_ft; CREATE FOREIGN TABLE " + db + "." + tbl + "_parq_ft ,EXTERNAL SECURITY DEFINER TRUSTED " + auth_name + " USING ( LOCATION ('" + s3_location_parq_ft + db + "/" + tbl + "/') STOREDAS ('PARQUET') ) NO PRIMARY INDEX PARTITION BY COLUMN; select cast(count(*) as bigint) from " + db + "." + tbl + "_parq_ft;" - - logging.info ("Parquet foreign table string:" + sqlstr_parq_ft) - - - sqlstr_parq_nosfs = "drop TABLE " + db + "." + tbl + "_parq_nos; CREATE MULTISET TABLE " + db + "." + tbl + "_parq_nos, STORAGE = " + nos_storage + " as ( select * from antiselect ( on " + db + "." + tbl + "_parq_ft using exclude ('location')) as tbl) with data no primary index; select cast(count(*) as bigint) from " + db + "." + tbl + "_parq_nos; select cast(count(*) as bigint) from " + db + "." + tbl + "_parq_ft;" - - logging.info ("Parquet nosfs table string:" + sqlstr_parq_nosfs) - - - parq_sqlstr_all = sqlstr_parq_ft + sqlstr_parq_nosfs - - execute_sql_commands(parq_sqlstr_all) - - - elif (tbltype == 'csv'): - sqlstr_csv_ft = 'drop FOREIGN TABLE ' + csvdb + '.' + tbl + '_csv_ft; CREATE FOREIGN TABLE ' + csvdb + '.' + tbl + '_csv_ft ,EXTERNAL SECURITY DEFINER TRUSTED ' + auth_name + ' USING ( LOCATION (\'' + s3_location_csv_create + '/' + csvfilename +'\') ROWFORMAT ('+'\'{"field_delimiter":"' + csvdelimiter + '","record_delimiter":"\\n","character_set":"LATIN"}\') HEADER (\'TRUE\')); select cast(count(*) as bigint) from ' + csvdb + '.' + tbl + '_csv_ft;' - - sqlstr_csv_nosfs = "drop TABLE " + csvdb + "." + tbl + "_csv_nos; CREATE MULTISET TABLE " + csvdb + "." + tbl + "_csv_nos, STORAGE = " + nos_storage + " as ( select * from antiselect ( on " + csvdb + "." + tbl + "_csv_ft using exclude ('location')) as tbl) with data no primary index; select cast(count(*) as bigint) from " + csvdb + "." + tbl + "_csv_nos; select cast(count(*) as bigint) from " + csvdb + "." + tbl + "_csv_ft;" - - logging.info ("Csv nosfs table string:" + sqlstr_csv_nosfs) - - csv_sqlstr_all = sqlstr_csv_ft + sqlstr_csv_nosfs - - # sqlcommands = csv_sqlstr_all.split(';') - execute_sql_commands(csv_sqlstr_all) - - elif (tbltype == 'json'): - - sqlstr_json_ft = 'drop FOREIGN TABLE ' + jsondb + '.' + tbl + '_json_ft; CREATE FOREIGN TABLE ' + jsondb + '.' + tbl + '_json_ft ,EXTERNAL SECURITY DEFINER TRUSTED ' + auth_name + ' USING ( LOCATION (\'' + s3_location_json_create + '/' + jsonfilename +'\')); select cast(count(*) as bigint) from ' + jsondb + '.' + tbl + '_json_ft;' - - - execute_sql_commands(sqlstr_json_ft) - - sqlstr_json_select = get_json_nos_select_comm(jsondb + '.' + tbl + '_json_ft') - - - sqlstr_json_nosfs = "drop TABLE " + jsondb + "." + tbl + "_json_nos; CREATE MULTISET TABLE " + jsondb + "." + tbl + "_json_nos, STORAGE = " + nos_storage + " as ( " + sqlstr_json_select + " ) with data no primary index; select cast(count(*) as bigint) from " + jsondb + "." + tbl + "_json_nos; select cast(count(*) as bigint) from " + jsondb + "." + tbl + "_json_ft;" - - execute_sql_commands(sqlstr_json_nosfs) - - - - - - - - - - - - - create_tables.expand(arg=make_tab_list(make_file_dbtab(create_db(make_file_db())))) - - -dag = taskflow() - - diff --git a/pr-preview/pr-110/other-integrations/_attachments/execute-airflow-workflows-that-use-dbt-with-teradata-vantage/docker-compose.yaml b/pr-preview/pr-110/other-integrations/_attachments/execute-airflow-workflows-that-use-dbt-with-teradata-vantage/docker-compose.yaml deleted file mode 100644 index 82d30f487..000000000 --- a/pr-preview/pr-110/other-integrations/_attachments/execute-airflow-workflows-that-use-dbt-with-teradata-vantage/docker-compose.yaml +++ /dev/null @@ -1,351 +0,0 @@ -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. -# - -# Basic Airflow cluster configuration for CeleryExecutor with Redis and PostgreSQL. -# 3 workers are created, others can be added. -# Added nginx web server for the dbt use case. -# -# WARNING: This configuration is for local development. Do not use it in a production deployment. -# -# This configuration supports basic configuration using environment variables or an .env file -# The following variables are supported: -# -# AIRFLOW_IMAGE_NAME - Docker image name used to run Airflow. -# Default: apache/airflow:|version| -# AIRFLOW_UID - User ID in Airflow containers -# Default: 50000 -# Those configurations are useful mostly in case of standalone testing/running Airflow in test/try-out mode -# -# _AIRFLOW_WWW_USER_USERNAME - Username for the administrator account (if requested). -# Default: airflow -# _AIRFLOW_WWW_USER_PASSWORD - Password for the administrator account (if requested). -# Default: airflow -# _PIP_ADDITIONAL_REQUIREMENTS - Additional PIP requirements to add when starting all containers. -# Default: '' -# -# Feel free to modify this file to suit your needs. ---- -version: '3' -x-airflow-common: - &airflow-common - # In order to add custom dependencies or upgrade provider packages you can use your extended image. - # Comment the image line, place your Dockerfile in the directory where you placed the docker-compose.yaml - # and uncomment the "build" line below, Then run `docker-compose build` to build the images. - image: ${AIRFLOW_IMAGE_NAME:-apache/airflow:2.2.4} - build: . - environment: - &airflow-common-env - AIRFLOW__CORE__EXECUTOR: CeleryExecutor - AIRFLOW__DATABASE__SQL_ALCHEMY_CONN: postgresql+psycopg2://airflow:airflow@postgres/airflow - # For backward compatibility, with Airflow <2.3 - AIRFLOW__CORE__SQL_ALCHEMY_CONN: postgresql+psycopg2://airflow:airflow@postgres/airflow - AIRFLOW__CELERY__RESULT_BACKEND: db+postgresql://airflow:airflow@postgres/airflow - AIRFLOW__CELERY__BROKER_URL: redis://:@redis:6379/0 - AIRFLOW__CORE__FERNET_KEY: '' - AIRFLOW__CORE__DAGS_ARE_PAUSED_AT_CREATION: 'true' - AIRFLOW__CORE__LOAD_EXAMPLES: 'true' - AIRFLOW__API__AUTH_BACKENDS: 'airflow.api.auth.backend.basic_auth' - _PIP_ADDITIONAL_REQUIREMENTS: '' - # _PIP_ADDITIONAL_REQUIREMENTS will be implemented in the Dockerfile, that is why it is commented out here - # _PIP_ADDITIONAL_REQUIREMENTS: ${_PIP_ADDITIONAL_REQUIREMENTS:- sqlalchemy sqlalchemy-teradata teradatasql teradatasqlalchemy dbt-teradata} - volumes: - # Volumes host system directories (in this example host system is an AWS EC2 Linux instance) which will be mounted / readable / writable from all containers. - # The first directory is the path on the host system, the second (separated by ":") is the path on the docker container. - # These will have to be changed for a different setups / systems - # ./dags - Airflow dags directory where the dag python files are places - - ./dags:/opt/airflow/dags - # ./logs - Airflow logs directory - - ./logs:/opt/airflow/logs - # plugins - Airflow plugin directory - - ./plugins:/opt/airflow/plugins - # airflow.cfg - airflow configuration file used when airflow is started on the container - - ./config/airflow.cfg:/opt/airflow/airflow.cfg - # /tmp - temporary directory used to create / store temporary files - - /tmp:/opt/airflow/tmp - # The dbt directory (here installed under /home/ec3-user) contains the dbt project - - /home/ec2-user/dbt/jaffle_shop/data:/opt/airflow/data - - /home/ec2-user/dbt/jaffle_shop/dbt_project.yml:/opt/airflow/dbt_project.yml - - /home/ec2-user/dbt/jaffle_shop/etc:/opt/airflow/etc - - /home/ec2-user/dbt/jaffle_shop/LICENSE:/opt/airflow/LICENSE - - /home/ec2-user/dbt/jaffle_shop/models:/opt/airflow/models - # The .dbt directory contain the .dbt configuration files - - /home/ec2-user/.dbt:/home/airflow/.dbt - - /home/ec2-user/dbt/jaffle_shop/target:/opt/airflow/target - user: "${AIRFLOW_UID:-50000}:0" - depends_on: - &airflow-common-depends-on - redis: - condition: service_healthy - postgres: - condition: service_healthy - -services: - postgres: - image: postgres:13 - environment: - POSTGRES_USER: airflow - POSTGRES_PASSWORD: airflow - POSTGRES_DB: airflow - volumes: - - postgres-db-volume:/var/lib/postgresql/data - healthcheck: - test: ["CMD", "pg_isready", "-U", "airflow"] - interval: 5s - retries: 5 - restart: always - - redis: - image: redis:latest - expose: - - 6379 - healthcheck: - test: ["CMD", "redis-cli", "ping"] - interval: 5s - timeout: 30s - retries: 50 - restart: always - # nginx added to visualize on a web browser the DBT generated documents. Nginx is here configured on host port 4000 - nginx: - image: nginx - ports: - - 4000:80 - volumes: - - /home/ec2-user/dbt/jaffle_shop/target:/usr/share/nginx/html - healthcheck: - test: ["CMD", "curl", "-f", "http://localhost"] - interval: 1m30s - timeout: 10s - retries: 3 - start_period: 1m #version 3.4 minimum - - - airflow-webserver: - <<: *airflow-common - command: webserver - ports: - - 8080:8080 - healthcheck: - test: ["CMD", "curl", "--fail", "http://localhost:8080/health"] - interval: 10s - timeout: 10s - retries: 5 - restart: always - depends_on: - <<: *airflow-common-depends-on - airflow-init: - condition: service_completed_successfully - - airflow-scheduler: - <<: *airflow-common - command: scheduler - healthcheck: - test: ["CMD-SHELL", 'airflow jobs check --job-type SchedulerJob --hostname "$${HOSTNAME}"'] - interval: 10s - timeout: 10s - retries: 5 - restart: always - depends_on: - <<: *airflow-common-depends-on - airflow-init: - condition: service_completed_successfully - # Three workers installed so airflow can in parallel execute up to 3 tasks. If more are needed, just /cut/paste/add/rename additional worker config sessions - airflow-worker_1: - <<: *airflow-common - command: celery worker - healthcheck: - test: - - "CMD-SHELL" - - 'celery --app airflow.executors.celery_executor.app inspect ping -d "celery@$${HOSTNAME}"' - interval: 10s - timeout: 10s - retries: 5 - environment: - <<: *airflow-common-env - # Required to handle warm shutdown of the celery workers properly - # See https://airflow.apache.org/docs/docker-stack/entrypoint.html#signal-propagation - DUMB_INIT_SETSID: "0" - restart: always - depends_on: - <<: *airflow-common-depends-on - airflow-init: - condition: service_completed_successfully - - airflow-worker_2: - <<: *airflow-common - command: celery worker - healthcheck: - test: - - "CMD-SHELL" - - 'celery --app airflow.executors.celery_executor.app inspect ping -d "celery@$${HOSTNAME}"' - interval: 10s - timeout: 10s - retries: 5 - environment: - <<: *airflow-common-env - # Required to handle warm shutdown of the celery workers properly - # See https://airflow.apache.org/docs/docker-stack/entrypoint.html#signal-propagation - DUMB_INIT_SETSID: "0" - restart: always - depends_on: - <<: *airflow-common-depends-on - airflow-init: - condition: service_completed_successfully - - airflow-worker_3: - <<: *airflow-common - command: celery worker - healthcheck: - test: - - "CMD-SHELL" - - 'celery --app airflow.executors.celery_executor.app inspect ping -d "celery@$${HOSTNAME}"' - interval: 10s - timeout: 10s - retries: 5 - environment: - <<: *airflow-common-env - # Required to handle warm shutdown of the celery workers properly - # See https://airflow.apache.org/docs/docker-stack/entrypoint.html#signal-propagation - DUMB_INIT_SETSID: "0" - restart: always - depends_on: - <<: *airflow-common-depends-on - airflow-init: - condition: service_completed_successfully - - airflow-triggerer: - <<: *airflow-common - command: triggerer - healthcheck: - test: ["CMD-SHELL", 'airflow jobs check --job-type TriggererJob --hostname "$${HOSTNAME}"'] - interval: 10s - timeout: 10s - retries: 5 - restart: always - depends_on: - <<: *airflow-common-depends-on - airflow-init: - condition: service_completed_successfully - - airflow-init: - <<: *airflow-common - entrypoint: /bin/bash - # yamllint disable rule:line-length - command: - - -c - - | - function ver() { - printf "%04d%04d%04d%04d" $${1//./ } - } - airflow_version=$$(gosu airflow airflow version) - airflow_version_comparable=$$(ver $${airflow_version}) - min_airflow_version=2.2.0 - min_airflow_version_comparable=$$(ver $${min_airflow_version}) - if (( airflow_version_comparable < min_airflow_version_comparable )); then - echo - echo -e "\033[1;31mERROR!!!: Too old Airflow version $${airflow_version}!\e[0m" - echo "The minimum Airflow version supported: $${min_airflow_version}. Only use this or higher!" - echo - exit 1 - fi - if [[ -z "${AIRFLOW_UID}" ]]; then - echo - echo -e "\033[1;33mWARNING!!!: AIRFLOW_UID not set!\e[0m" - echo "If you are on Linux, you SHOULD follow the instructions below to set " - echo "AIRFLOW_UID environment variable, otherwise files will be owned by root." - echo "For other operating systems you can get rid of the warning with manually created .env file:" - echo " See: https://airflow.apache.org/docs/apache-airflow/stable/start/docker.html#setting-the-right-airflow-user" - echo - fi - one_meg=1048576 - mem_available=$$(($$(getconf _PHYS_PAGES) * $$(getconf PAGE_SIZE) / one_meg)) - cpus_available=$$(grep -cE 'cpu[0-9]+' /proc/stat) - disk_available=$$(df / | tail -1 | awk '{print $$4}') - warning_resources="false" - if (( mem_available < 4000 )) ; then - echo - echo -e "\033[1;33mWARNING!!!: Not enough memory available for Docker.\e[0m" - echo "At least 4GB of memory required. You have $$(numfmt --to iec $$((mem_available * one_meg)))" - echo - warning_resources="true" - fi - if (( cpus_available < 2 )); then - echo - echo -e "\033[1;33mWARNING!!!: Not enough CPUS available for Docker.\e[0m" - echo "At least 2 CPUs recommended. You have $${cpus_available}" - echo - warning_resources="true" - fi - if (( disk_available < one_meg * 10 )); then - echo - echo -e "\033[1;33mWARNING!!!: Not enough Disk space available for Docker.\e[0m" - echo "At least 10 GBs recommended. You have $$(numfmt --to iec $$((disk_available * 1024 )))" - echo - warning_resources="true" - fi - if [[ $${warning_resources} == "true" ]]; then - echo - echo -e "\033[1;33mWARNING!!!: You have not enough resources to run Airflow (see above)!\e[0m" - echo "Please follow the instructions to increase amount of resources available:" - echo " https://airflow.apache.org/docs/apache-airflow/stable/start/docker.html#before-you-begin" - echo - fi - mkdir -p /sources/logs /sources/dags /sources/plugins - chown -R "${AIRFLOW_UID}:0" /sources/{logs,dags,plugins} - exec /entrypoint airflow version - # yamllint enable rule:line-length - environment: - <<: *airflow-common-env - _AIRFLOW_DB_UPGRADE: 'true' - _AIRFLOW_WWW_USER_CREATE: 'true' - _AIRFLOW_WWW_USER_USERNAME: ${_AIRFLOW_WWW_USER_USERNAME:-airflow} - _AIRFLOW_WWW_USER_PASSWORD: ${_AIRFLOW_WWW_USER_PASSWORD:-airflow} - user: "0:0" - volumes: - - .:/sources - - airflow-cli: - <<: *airflow-common - profiles: - - debug - environment: - <<: *airflow-common-env - CONNECTION_CHECK_MAX_COUNT: "0" - # Workaround for entrypoint issue. See: https://github.com/apache/airflow/issues/16252 - command: - - bash - - -c - - airflow - - flower: - <<: *airflow-common - command: celery flower - ports: - - 5555:5555 - healthcheck: - test: ["CMD", "curl", "--fail", "http://localhost:5555/"] - interval: 10s - timeout: 10s - retries: 5 - restart: always - depends_on: - <<: *airflow-common-depends-on - airflow-init: - condition: service_completed_successfully - -volumes: - postgres-db-volume: diff --git a/pr-preview/pr-110/other-integrations/_attachments/execute-airflow-workflows-that-use-dbt-with-teradata-vantage/profiles.yml b/pr-preview/pr-110/other-integrations/_attachments/execute-airflow-workflows-that-use-dbt-with-teradata-vantage/profiles.yml deleted file mode 100644 index 691c767cc..000000000 --- a/pr-preview/pr-110/other-integrations/_attachments/execute-airflow-workflows-that-use-dbt-with-teradata-vantage/profiles.yml +++ /dev/null @@ -1,15 +0,0 @@ -jaffle_shop: - outputs: - dev: - type: teradata - host: 192.11.25.33 - user: jaffle_shop - password: abcd - logmech: TD2 - schema: jaffle_shop - tmode: ANSI - threads: 1 - timeout_seconds: 300 - priority: interactive - retries: 1 - target: dev diff --git a/pr-preview/pr-110/other-integrations/_attachments/execute-airflow-workflows-that-use-dbt-with-teradata-vantage/variables.json b/pr-preview/pr-110/other-integrations/_attachments/execute-airflow-workflows-that-use-dbt-with-teradata-vantage/variables.json deleted file mode 100644 index 0905f82ac..000000000 --- a/pr-preview/pr-110/other-integrations/_attachments/execute-airflow-workflows-that-use-dbt-with-teradata-vantage/variables.json +++ /dev/null @@ -1,36 +0,0 @@ -{ -"aws_access_key_id" : "*******", -"aws_secret_access_key" : "**************", -"s3_location_parq_ls" : "s3://tc-001-teracloud-nos-us-west-2-374222bfg/soc/nosexports/", -"s3_location_parq_ft" : "/s3/s3.amazonaws.com/tc-001-teracloud-nos-us-west-2-374222bfg/soc/nosexports/", -"s3_location_csv_ls" : "s3://tc-001-teracloud-nos-us-west-2-374222bfg/csvdata/", -"s3_location_csv_create" : "/s3/s3.amazonaws.com/tc-001-teracloud-nos-us-west-2-374222bfg/csvdata", -"s3_location_csv_ft" : "/s3/s3.amazonaws.com/tc-001-teracloud-nos-us-west-2-374222bfg/nosexports/", -"s3_location_json_ls" : "s3://tc-001-teracloud-nos-us-west-2-374222bfg/jsondata/", -"s3_location_json_ft" : "/s3/s3.amazonaws.com/tc-001-teracloud-nos-us-west-2-374222bfg/nosexports/", -"s3_location_json_create" : "/s3/s3.amazonaws.com/tc-001-teracloud-nos-us-west-2-374222bfg/jsondata", -"s3_bucket" : "tc-perf-teracloud-nos-us-west-2-374222bfg", -"csv_subbucket" : "csvdata", -"json_subbucket" : "jsondata", -"filenamedb" :"/opt/airflow/tmp/db.txt", -"parqfilenamedbtab" :"/opt/airflow/tmp/parqdbtbl.txt", -"csvfilenamedbtab" :"/opt/airflow/tmp/csvdbtbl.txt", -"jsonfilenamedbtab" :"/opt/airflow/tmp/jsondbtbl.txt", -"alldbtab" : "/opt/airflow/tmp/alldbtbl.txt", -"csvdb" :"csvdb", -"supported_csvdelimiters" : ",:|\t", -"supported_csvlineterminator" : "\n", -"jsondb" : "jsondb", -"DB_username" : "dbc", -"DB_password" : "dbc", -"DB_ip_address" : "***.***.***.***", -"auth_name" : "soc_Auth_NOS", -"region_name" : "us-west-2", -"output_file" : "/tmp/outfile.txt", -"perm_dbsize" : "5e9", -"nos_storage" : "TD_NOSFS_STORAGE", -"load_csv" : "Y", -"load_json" : "Y", -"load_parquet" : "Y", -"linenumax" : "100" -} diff --git a/pr-preview/pr-110/other-integrations/_images/configure-a-teradata-connection-in-dbeaver/plug-icon.png b/pr-preview/pr-110/other-integrations/_images/configure-a-teradata-connection-in-dbeaver/plug-icon.png deleted file mode 100644 index fa3901a78..000000000 Binary files a/pr-preview/pr-110/other-integrations/_images/configure-a-teradata-connection-in-dbeaver/plug-icon.png and /dev/null differ diff --git a/pr-preview/pr-110/other-integrations/_images/configure-a-teradata-connection-in-dbeaver/select-your-database.png b/pr-preview/pr-110/other-integrations/_images/configure-a-teradata-connection-in-dbeaver/select-your-database.png deleted file mode 100644 index db45329fe..000000000 Binary files a/pr-preview/pr-110/other-integrations/_images/configure-a-teradata-connection-in-dbeaver/select-your-database.png and /dev/null differ diff --git a/pr-preview/pr-110/other-integrations/_images/configure-a-teradata-connection-in-dbeaver/teradata-connection-settings-ssh.png b/pr-preview/pr-110/other-integrations/_images/configure-a-teradata-connection-in-dbeaver/teradata-connection-settings-ssh.png deleted file mode 100644 index 61d75adc0..000000000 Binary files a/pr-preview/pr-110/other-integrations/_images/configure-a-teradata-connection-in-dbeaver/teradata-connection-settings-ssh.png and /dev/null differ diff --git a/pr-preview/pr-110/other-integrations/_images/configure-a-teradata-connection-in-dbeaver/teradata-connection-settings.png b/pr-preview/pr-110/other-integrations/_images/configure-a-teradata-connection-in-dbeaver/teradata-connection-settings.png deleted file mode 100644 index 1b09bf647..000000000 Binary files a/pr-preview/pr-110/other-integrations/_images/configure-a-teradata-connection-in-dbeaver/teradata-connection-settings.png and /dev/null differ diff --git a/pr-preview/pr-110/other-integrations/_images/diag-2e3bc6beb3ead8209775ef6464a9f726fd0101b3.svg b/pr-preview/pr-110/other-integrations/_images/diag-2e3bc6beb3ead8209775ef6464a9f726fd0101b3.svg deleted file mode 100644 index ef2ef7875..000000000 --- a/pr-preview/pr-110/other-integrations/_images/diag-2e3bc6beb3ead8209775ef6464a9f726fd0101b3.svg +++ /dev/null @@ -1,179 +0,0 @@ - - - - - - - - - -raw_customers - - -raw_customers - - -cust_id   - [INTEGER] - - -income   - [DECIMAL(15, 1)] - - -age   - [INTEGER] - - -years_with_bank   - [INTEGER] - - -nbr_children   - [INTEGER] - - -gender   - [VARCHAR(1)] - - -marital_status   - [VARCHAR(1)] - - -name_prefix   - [VARCHAR(4)] - - -first_name   - [VARCHAR(12)] - - -last_name   - [VARCHAR(15)] - - -street_nbr   - [VARCHAR(8)] - - -street_name   - [VARCHAR(15)] - - -postal_code   - [VARCHAR(5)] - - -city_name   - [VARCHAR(16)] - - -state_code   - [VARCHAR(2)] - - - -raw_accounts - - -raw_accounts - - -acct_nbr   - [VARCHAR(18)] - - -cust_id   - [INTEGER] - - -acct_type   - [VARCHAR(2)] - - -account_active   - [VARCHAR(1)] - - -acct_start_date   - [DATE] - - -acct_end_date   - [DATE] - - -starting_balance   - [DECIMAL(11, 3)] - - -ending_balance   - [DECIMAL(11, 3)] - - - -raw_customers--raw_accounts - -0..N -1 - - - -raw_transactions - - -raw_transactions - - -tran_id   - [INTEGER] - - -acct_nbr   - [VARCHAR(18)] - - -tran_amt   - [DECIMAL(9, 2)] - - -principal_amt   - [DECIMAL(15, 2)] - - -interest_amt   - [DECIMAL(11, 3)] - - -new_balance   - [DECIMAL(9, 2)] - - -tran_date   - [DATE] - - -tran_time   - [INTEGER] - - -channel   - [VARCHAR(1)] - - -tran_code   - [VARCHAR(2)] - - - -raw_accounts--raw_transactions - -0..N -1 - - - diff --git a/pr-preview/pr-110/other-integrations/_images/diag-a06cfc37fb213394532cc236ff7225b3dfdbc64b.svg b/pr-preview/pr-110/other-integrations/_images/diag-a06cfc37fb213394532cc236ff7225b3dfdbc64b.svg deleted file mode 100644 index b09856743..000000000 --- a/pr-preview/pr-110/other-integrations/_images/diag-a06cfc37fb213394532cc236ff7225b3dfdbc64b.svg +++ /dev/null @@ -1,159 +0,0 @@ - - - - - - - - - -fact: Analytic_Dataset - - -fact: Analytic_Dataset - - -cust_id   - [INTEGER] - - -income   - [DECIMAL(15, 1)] - - -age   - [INTEGER] - - -years_with_bank   - [INTEGER] - - -nbr_children   - [INTEGER] - - -marital_status_0   - [INTEGER] - - -marital_status_1   - [INTEGER] - - -marital_status_2   - [INTEGER] - - -marital_status_other   - [INTEGER] - - -gender_0   - [INTEGER] - - -gender_1   - [INTEGER] - - -gender_other   - [INTEGER] - - -state_code_0   - [INTEGER] - - -state_code_1   - [INTEGER] - - -state_code_2   - [INTEGER] - - -state_code_3   - [INTEGER] - - -state_code_4   - [INTEGER] - - -state_code_5   - [INTEGER] - - -state_code_other   - [INTEGER] - - -acct_type_0   - [INTEGER] - - -acct_type_1   - [INTEGER] - - -acct_type_2   - [INTEGER] - - -acct_type_other   - [INTEGER] - - -CK_avg_bal   - [FLOAT] - - -CK_avg_tran_amt   - [FLOAT] - - -CC_avg_bal   - [FLOAT] - - -CC_avg_tran_amt   - [FLOAT] - - -SV_avg_bal   - [FLOAT] - - -SV_avg_tran_amt   - [FLOAT] - - -q1_trans_cnt   - [DECIMAL(15, 0)] - - -q2_trans_cnt   - [DECIMAL(15, 0)] - - -q3_trans_cnt   - [DECIMAL(15, 0)] - - -q4_trans_cnt   - [DECIMAL(15, 0)] - - -event_timestamp   - [TIMESTAMP(0)] - - -created   - [TIMESTAMP(0)] - - - diff --git a/pr-preview/pr-110/other-integrations/_images/execute-airflow-workflows-that-use-dbt-with-teradata-vantage/admin-dropdown.png b/pr-preview/pr-110/other-integrations/_images/execute-airflow-workflows-that-use-dbt-with-teradata-vantage/admin-dropdown.png deleted file mode 100644 index 09dd180dc..000000000 Binary files a/pr-preview/pr-110/other-integrations/_images/execute-airflow-workflows-that-use-dbt-with-teradata-vantage/admin-dropdown.png and /dev/null differ diff --git a/pr-preview/pr-110/other-integrations/_images/execute-airflow-workflows-that-use-dbt-with-teradata-vantage/import-variables.png b/pr-preview/pr-110/other-integrations/_images/execute-airflow-workflows-that-use-dbt-with-teradata-vantage/import-variables.png deleted file mode 100644 index 7cc50d83a..000000000 Binary files a/pr-preview/pr-110/other-integrations/_images/execute-airflow-workflows-that-use-dbt-with-teradata-vantage/import-variables.png and /dev/null differ diff --git a/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/add-jar.png b/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/add-jar.png deleted file mode 100644 index 6de7092bc..000000000 Binary files a/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/add-jar.png and /dev/null differ diff --git a/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/apply-and-close.png b/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/apply-and-close.png deleted file mode 100644 index 41ddfff79..000000000 Binary files a/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/apply-and-close.png and /dev/null differ diff --git a/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/enter-configuration.png b/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/enter-configuration.png deleted file mode 100644 index 4028ae692..000000000 Binary files a/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/enter-configuration.png and /dev/null differ diff --git a/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/execute-node.png b/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/execute-node.png deleted file mode 100644 index e1c0725ce..000000000 Binary files a/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/execute-node.png and /dev/null differ diff --git a/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/register-driver.png b/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/register-driver.png deleted file mode 100644 index d57bb6f83..000000000 Binary files a/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/register-driver.png and /dev/null differ diff --git a/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/start-configuration.png b/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/start-configuration.png deleted file mode 100644 index e409f70d2..000000000 Binary files a/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/start-configuration.png and /dev/null differ diff --git a/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/test-connection-1.png b/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/test-connection-1.png deleted file mode 100644 index a87fc4635..000000000 Binary files a/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/test-connection-1.png and /dev/null differ diff --git a/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/test-connection-2.png b/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/test-connection-2.png deleted file mode 100644 index 51973412b..000000000 Binary files a/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/test-connection-2.png and /dev/null differ diff --git a/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/test-connection-apply.png b/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/test-connection-apply.png deleted file mode 100644 index 7d11dcfec..000000000 Binary files a/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/test-connection-apply.png and /dev/null differ diff --git a/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/view-results-final.png b/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/view-results-final.png deleted file mode 100644 index add30b8e5..000000000 Binary files a/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/view-results-final.png and /dev/null differ diff --git a/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/view-results.png b/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/view-results.png deleted file mode 100644 index 9456d5d2d..000000000 Binary files a/pr-preview/pr-110/other-integrations/_images/integrate-teradata-vantage-with-knime/view-results.png and /dev/null differ diff --git a/pr-preview/pr-110/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html b/pr-preview/pr-110/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html deleted file mode 100644 index b14de089e..000000000 --- a/pr-preview/pr-110/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html +++ /dev/null @@ -1,2630 +0,0 @@ - - - - - - Configure a Teradata Vantage connection in DBeaver :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Configure a Teradata Vantage connection in DBeaver

-

Author: Adam Tworkiewicz
-Last updated: September 12th, 2022

-
-

Overview

-
-
-

This how-to demonstrates how to create a connection to Teradata Vantage with DBeaver.

-
-
-
-
-

Prerequisites

-
-
- -
-
-
-
-

Add a Teradata connection to DBeaver

-
-
-
    -
  1. -

    Start the new connection wizard by clicking on the plug icon (plug icon) in the upper left corner of the application window or go to Database → New Database Connection.

    -
  2. -
  3. -

    On Select your database screen, start typing teradata and select the Teradata icon.

    -
    -
    -Select your database -
    -
    -
  4. -
  5. -

    On the main tab, you need to set all primary connection settings. The required ones include Host, Port, Database, Username, and Password.

    -
    - - - - - -
    - - -With DBeaver PRO, you can not only use the standard ordering of tables but also hierarchically link tables to a specific database or user. Expanding and collapsing the databases or users will help you navigate from one area to another without swamping the Database Navigator window. Check the Show databases and users hierarchically box to enable this setting. -
    -
    -
    - - - - - -
    - - -In many environments Teradata Vantage can only be accessed using the TLS protocol. When in DBeaver PRO, check Use TLS protocol option to enable TLS. -
    -
    -
    -
    -Teradata connection settings -
    -
    -
  6. -
  7. -

    Click on Finish.

    -
  8. -
-
-
-
-
-

Optional: SSH tunneling

-
-
-

If your database cannot be accessed directly, you can use an SSH tunnel. All settings are available on the SSH tab. DBeaver supports the following authentication methods: user/password, public key, SSH agent authentication.

-
-
-
-Teradata connection settings SSH -
-
-
-
-
-

Summary

-
-
-

This how-to demonstrated how to create a connection to Teradata Vantage with DBeaver.

-
-
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html b/pr-preview/pr-110/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html deleted file mode 100644 index c9e6f8d42..000000000 --- a/pr-preview/pr-110/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html +++ /dev/null @@ -1,3035 +0,0 @@ - - - - - - Execute Airflow workflows that use dbt with Teradata Vantage :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Execute Airflow workflows that use dbt with Teradata Vantage

-

Author: Igor Machin, Ambrose Inman
-Last updated: November 18th, 2022

-
-

Overview

-
-
-

This tutorial demonstrates how to install Airflow on an AWS EC2 VM, configure the workflow to use dbt, and run it against a Teradata Vantage database. Airflow is a task scheduling tool that is typically used to build data pipelines to process and load data. In this example, we go through the Airflow installation process, which creates a Docker-based Airflow environment. Once Airflow is installed, we run several Airflow DAG (Direct Acyclic Graph, or simply workflow) examples that load data into a Teradata Vantage database.

-
-
-
-
-

Prerequsites

-
-
-
    -
  1. -

    Access to AWS (Amazon Web Services) with permissions to create a VM.

    -
    - - - - - -
    - - -This tutorial can be adjusted to other compute platforms or even on a bare metal machine as long as it has a computing and storage capacity comparable to the machine mentioned in this document (t2.2xlarge EC2 on AWS with approximately 100GB of storage) and is connected to the internet. If you decide to use a different compute platform, some steps in the tutorial will have to be altered. -
    -
    -
  2. -
  3. -

    An SSH client.

    -
    - - - - - -
    - - -If you are on a Mac or a Linux machine, these tools are already included. If you are on Windows, consider PuTTY or MobaXterm. -
    -
    -
  4. -
  5. -

    Access to a Teradata Vantage database. If you don’t have access to Teradata Vantage, explore Vantage Express - a free edition for developers.

    -
  6. -
-
-
-
-
-

Install and execute Airflow

-
-
-

Create a VM

-
-
    -
  1. -

    Go to the AWS EC2 console and click on Launch instance.

    -
  2. -
  3. -

    Select Red Hat for OS image.

    -
  4. -
  5. -

    Select t2.2xlarge for instance type.

    -
  6. -
  7. -

    Create a new key pair or use an existing one.

    -
  8. -
  9. -

    Apply network settings that will allow you ssh to the server and the server will have outbound connectivity to the Internet. Usually, applying the default settings will do.

    -
  10. -
  11. -

    Assign 100GB of storage.

    -
  12. -
-
-
-
-

Install Python

-
-
    -
  1. -

    ssh to the machine using ec2-user user.

    -
  2. -
  3. -

    Check if python is installed (should be Python 3.7 or higher). Type python or python3 on the command line.

    -
  4. -
  5. -

    If python is not installed (you are getting command not found message) run the commands below to install it. The commands may require you to confirm the installation by typing y and enter.

    -
    -
    -
    sudo yum install python3
    -# create a virtual environment for the project
    -sudo yum install python3-pip
    -sudo pip3 install virtualenv
    -
    -
    -
  6. -
-
-
-
-

Create an Airflow environment

-
-
    -
  1. -

    Create the Airflow directory structure (from the ec2-user home directory /home/ec2-user)

    -
    -
    -
    mkdir airflow
    -cd airflow
    -mkdir -p ./dags ./logs ./plugins ./data ./config ./data
    -echo -e "AIRFLOW_UID=$(id -u)" > .env
    -
    -
    -
  2. -
  3. -

    Use your preferred file transfer tool (scp, PuTTY, MobaXterm, or similar) to upload airflow.cfg file to airflow/config directory.

    -
  4. -
-
-
-
-

Install Docker

-
-

Docker is a containerization tool that allows us to install Airflow in a containerized environment.

-
-
- - - - - -
- - -The steps must be executed in airflow directory. -
-
-
-
    -
  1. -

    Uninstall podman (RHEL containerization tool)

    -
    -
    -
    sudo yum remove docker \
    -docker-client \
    -docker-client-latest \
    -docker-common \
    -docker-latest \
    -docker-latest-logrotate \
    -docker-logrotate \
    -docker-engine \
    -podman \
    -runc
    -
    -
    -
  2. -
  3. -

    Install yum utilities

    -
    -
    -
    sudo yum install -y yum-utils
    -
    -
    -
  4. -
  5. -

    Add docker to yum repository.

    -
    -
    -
    sudo yum-config-manager \
    ---add-repo \
    -https://download.docker.com/linux/centos/docker-ce.repo
    -
    -
    -
  6. -
  7. -

    Install docker.

    -
    -
    -
    sudo yum install docker-ce docker-ce-cli containerd.io
    -
    -
    -
  8. -
  9. -

    Start docker as a service. The first command runs the docker service automatically when the system starts up next time. The second command starts Docker now.

    -
    -
    -
    sudo systemctl enable docker
    -sudo systemctl start docker
    -
    -
    -
  10. -
  11. -

    Check if Docker is installed correctly. This command should return an empty list of containers (since we have not started any container yet):

    -
    -
    -
    sudo docker ps
    -
    -
    -
  12. -
-
-
-
-

Install docker-compose and docker environment configuration files

-
-
    -
  1. -

    Upload docker-compose.yaml and Dockerfile files to the VM and save them in airflow directory.

    -
    - - - - - -
    - - -
    What docker-compose.yaml and Dockerfile do
    -
    -

    docker-compose.yaml and Dockerfile files are necessary to build the environment during the installation. The docker-compose.yaml file downloads and installs the Airflow docker container. The container includes the web ui, a Postgres database for metadata, the scheduler, 3 workers (so 3 tasks can be run in parallel), the trigger and the nginx web server to show the docs produced by dbt. In addition host directories are mounted on containers and various other install processes are performed. Dockerfile will additionally install needed packages in each container.

    -
    -
    -

    If you would like to learn more what docker-compose.yaml and Dockerfile files do, examine these files. There are comments which clarify what is installed and why.

    -
    -
    -
    -
  2. -
  3. -

    Install docker-compose (necessary to run the yaml file).

    -
    - - - - - -
    - - -The instructions are based on version 1.29.2. Check out https://github.com/docker/compose/releases site for the latest release and update the command below as needed. -
    -
    -
    -
    -
    sudo curl -L https://github.com/docker/compose/releases/download/1.29.2/docker-compose-$(uname -s)-$(uname -m) -o /usr/local/bin/docker-compose
    -sudo chmod +x /usr/local/bin/docker-compose
    -sudo ln -s /usr/local/bin/docker-compose /usr/bin/docker-compose
    -
    -
    -
  4. -
  5. -

    Test your docker-compose installation. The command should return the docker-compose version, for example docker-compose version 1.29.2, build 5becea4c:

    -
    -
    -
    docker-compose --version
    -
    -
    -
  6. -
-
-
-
-

Install a test dbt project

-
- - - - - -
- - -These steps set up a sample dbt project. dbt tool itself will be installed on the containers later by docker-compose. -
-
-
-
    -
  1. -

    Install git:

    -
    -
    -
    sudo yum install git
    -
    -
    -
  2. -
  3. -

    Get the sample jaffle shop dbt project:

    -
    - - - - - -
    - - -The dbt directories will be created under the home directory (not under airflow). The home directory in our example is /home/ec2-user. -
    -
    -
    -
    -
    # move to home dir
    -cd
    -mkdir dbt
    -cd dbt
    -git clone https://github.com/Teradata/jaffle_shop-dev.git jaffle_shop
    -cd jaffle_shop
    -mkdir target
    -chmod 777 target
    -echo '' > target/index.html
    -chmod o+w target/index.html
    -
    -
    -
  4. -
  5. -

    Create the airflowtest and jaffle_shop users/databases on your Teradata database by using your preferred database tool (Teradata Studio Express, bteq or similar). Log into the database as dbc, then execute the commands (change the passwords if needed):

    -
    -
    -
    CREATE USER "airflowtest" FROM "dbc" AS PERM=5000000000 PASSWORD="abcd";
    -CREATE USER "jaffle_shop" FROM "dbc" AS PERM=5000000000 PASSWORD="abcd";
    -
    -
    -
  6. -
  7. -

    Create the dbt configuration directory:

    -
    -
    -
    cd
    -mkdir .dbt
    -
    -
    -
  8. -
  9. -

    Copy profiles.yml into the .dbt directory.

    -
  10. -
  11. -

    Edit the file so it corresponds to your Teradata database setup. At a minium, you will need to change the host, user and password. Use jaffle_shop user credentials you set up in step 3.

    -
  12. -
-
-
-
-

Create the Airflow environment in Docker

-
-
    -
  1. -

    Run the docker environment creation script in the airflow directory where Dockerfile and docker-compose.yaml:

    -
    -
    -
    cd ~/airflow
    -sudo docker-compose up --build
    -
    -
    -
    -

    This can take 5-10 minutes, when the installation is complete you should see on the screen a message similar to this:

    -
    -
    -
    -
    airflow-webserver_1  | 127.0.0.1 - - [13/Sep/2022:00:20:48 +0000] "GET /health HTTP/1.1" 200 187 "-" "curl/7.74.0"
    -
    -
    -
    -

    This means the Airflow webserver is ready to accept calls.

    -
    -
  2. -
  3. -

    Now Airflow should be up. The terminal session that we were using during the installation will be used to display log messages, so it is recommended -to open another terminal session for subsequent steps. To check the Airflow installation type:

    -
    -
    -
    sudo docker ps
    -
    -
    -
    -

    The result should be something like:

    -
    -
    -
    -
    CONTAINER ID   IMAGE                  COMMAND                  CREATED          STATUS                    PORTS                                                 NAMES
    -60d50d9f43f5   apache/airflow:2.2.4   "/usr/bin/dumb-init …"   18 minutes ago   Up 18 minutes (healthy)   8080/tcp                                              airflow_airflow-scheduler_1
    -e2b46ec98274   apache/airflow:2.2.4   "/usr/bin/dumb-init …"   18 minutes ago   Up 18 minutes (healthy)   8080/tcp                                              airflow_airflow-worker_3_1
    -7b44004c7277   apache/airflow:2.2.4   "/usr/bin/dumb-init …"   18 minutes ago   Up 18 minutes (healthy)   8080/tcp                                              airflow_airflow-worker_1_1
    -4017b8ce9235   apache/airflow:2.2.4   "/usr/bin/dumb-init …"   18 minutes ago   Up 18 minutes (healthy)   0.0.0.0:8080->8080/tcp, :::8080->8080/tcp             airflow_airflow-webserver_1
    -3cc407e2d565   apache/airflow:2.2.4   "/usr/bin/dumb-init …"   18 minutes ago   Up 18 minutes (healthy)   0.0.0.0:5555->5555/tcp, :::5555->5555/tcp, 8080/tcp   airflow_flower_1
    -340a83b202e3   apache/airflow:2.2.4   "/usr/bin/dumb-init …"   18 minutes ago   Up 18 minutes (healthy)   8080/tcp                                              airflow_airflow-triggerer_1
    -82198f0d8b84   apache/airflow:2.2.4   "/usr/bin/dumb-init …"   18 minutes ago   Up 18 minutes (healthy)   8080/tcp                                              airflow_airflow-worker_2_1
    -382c3077c1e5   redis:latest           "docker-entrypoint.s…"   18 minutes ago   Up 18 minutes (healthy)   6379/tcp                                              airflow_redis_1
    -8a3be8d8a7f4   nginx                  "/docker-entrypoint.…"   18 minutes ago   Up 18 minutes (healthy)   0.0.0.0:4000->80/tcp, :::4000->80/tcp                 airflow_nginx_1
    -9ca888e9e8df   postgres:13            "docker-entrypoint.s…"   18 minutes ago   Up 18 minutes (healthy)   5432/tcp                                              airflow_postgres_1
    -
    -
    -
  4. -
  5. -

    OPTIONAL: If you want to delete the docker installation (for example to update the docker-compose.yaml and the Dockerfile files and recreate a different environment), the command is (from the airflow directory where these files are located):

    -
    -
    -
    sudo docker-compose down --volumes --rmi all
    -
    -
    -
    -

    Once the stack is down, update the configuration files and restart by running the command in step 1.

    -
    -
  6. -
  7. -

    To test if the Airflow web UI works, type the following urls on your browser. Replace <VM_IP_ADDRESS> with the external IP address of the VM:

    -
    - -
    -
  8. -
-
-
-
-

Run an Airflow DAG

-
-
    -
  1. -

    Copy airflow_dbt_integration.py, db_test_example_dag.py, discover_dag.txt, variables.json files to /home/ec2-user/airflow/dags.

    -
  2. -
  3. -

    Examine the files:

    -
    -
      -
    • -

      airflow_dbt_integration.py - a simple Teradata sql example that creates a few tables and runs queries.

      -
    • -
    • -

      db_test_example_dag.py - runs a dbt example (i.e. integration of dbt and airflow with a Teradata database). In this example a fictitious jaffle_shop data model is created, loaded and the documentation for this project is produced (you can view it by pointing your browser to http://<VM_IP_ADDRESS>:4000/)

      -
      - - - - - -
      - - -
      Adjust db_test_example_dag.py
      -
      -

      db_test_example_dag.py needs to be updated so that the Teradata database IP address points to your database.

      -
      -
      -
      -
    • -
    • -

      discover_dag.py - an example on how to load various types of data files (CSV, Parquet, JSON). The source code file contains comments that explain what the program does and how to use it. This example relies on variables.json file. The file needs to be imported into Airflow. It will happen in subsequent steps.

      -
    • -
    -
    -
  4. -
  5. -

    Wait for a few minutes until these dag files are picked up by the airflow tool. Once they are picked up they will appear on the list of dags on the Airflow home page.

    -
  6. -
  7. -

    Import variables.json file as a variable file into Airflow:

    -
    -
      -
    • -

      Click on Admin → Variables menu item to go to the Variables page

      -
      -
      -Airflow admin dropdown -
      -
      -
    • -
    • -

      Click on Choose File, then select variable.json in your file explorer and click on Import Variables

      -
      -
      -Airflow admin dropdown -
      -
      -
    • -
    • -

      Edit the variables to match your environment

      -
    • -
    -
    -
  8. -
  9. -

    Run the dags from the UI and check the logs.

    -
  10. -
-
-
-
-
-
-

Summary

-
-
-

This tutorial aimed at providing a hands on exercise on how to install an Airflow environment on a Linux server and how to use Airflow to interact with a Teradata Vantage database. An additional example is provided on how to integrate Airflow and the data modelling and maintenance tool dbt to create and load a Teradata Vantage database.

-
-
-
-
-

Further reading

-
- -
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/other-integrations/getting.started.dbt-feast-teradata-pipeline.html b/pr-preview/pr-110/other-integrations/getting.started.dbt-feast-teradata-pipeline.html deleted file mode 100644 index 28a01e3ac..000000000 --- a/pr-preview/pr-110/other-integrations/getting.started.dbt-feast-teradata-pipeline.html +++ /dev/null @@ -1,2858 +0,0 @@ - - - - - - A Data pipeline with dbt+FEAST on Teradata :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

A Data pipeline with dbt+FEAST on Teradata

-

Author: Ravi Chillanki
-Last updated: August 4th, 2023

-
-

Overview

-
-
-

This how-to shows an approach to creating a data pipeline with Teradata database. While there are several ways a data pipeline can be designed, this document helps to understand how components of two of the popular tools in the software industry, namely dbt and FEAST, -can be integrated with Teradata Vantage. Teradata’s robust 'Analytics Database Analytic functions' are used on the Teradata data source within dbt, for data transformation. The output of which is loaded into FEAST to materialize features that can be used in ML models.

-
-
-
-
-

Introduction

-
-
-

dbt

-
-

dbt (Data Build Tool) is a data transformation tool that is the cornerstone of the Modern Data Stack. It takes care of the T in ELT (Extract Load Transform). The assumption is that some other process brings raw data into your data warehouse or lake. This data then needs to be transformed.

-
-
-
-

Feast

-
-

Feast (Feature Store) is a flexible data system that utilizes existing technology to manage and provide machine learning features to real-time models. It allows for customization to meet specific needs. It also allows us to make features consistently available for training and serving, avoid data leakage and decouple ML from data infrastructure.

-
-
-
-
-
-

Prerequisites

-
-
- -
-
-
-
-

Objective

-
-
-

To create a data pipeline with Teradata Vantage as source, perform data transformation on some variables in dbt. The principle transformation of data that we do in dbt is onehotencoding of several columns like gender, marital status, state code etc. On top of that the account type column data will be transformed by performing aggregation operations on the couple of columns. All together generates our desired Analytic_dataset with transformed data. Then we use the transformed dataset output as input in FEAST to store features that can be used to generate training dataset for models.

-
-
-
-
-

Getting started

-
-
-
    -
  1. -

    Create a new python environment to manage dbt, feast and their dependencies. Activate the environment:

    -
    -
    -
    python3 -m venv env
    -source env/bin/activate
    -
    -
    -
  2. -
  3. -

    Clone the tutorial repository and cd into the project directory:

    -
    -
    -
    git clone https://github.td.teradata.com/rc255085/Tdatapipeline.git
    -
    -
    -
    -

    The directory structure of the project cloned looks like :

    -
    -
    -
    -
    Tdatapipeline/
    -    feature_repo/
    -        feature_views.py
    -        feature_store.yml
    -    dbt_transformation/
    -        ...
    -        macros
    -        models
    -        ...
    -    generate_training_data.py
    -    CreateDB.sql
    -    dbt_project.yml
    -
    -
    -
  4. -
-
-
-
-
-

About the Banking warehouse

-
-
-

teddy_bank is a fictitious dataset of banking customers, consists of mainly 3 tables customers, accounts, and -transactions, with the following entity-relationship diagram:

-
-
-
-Diagram -
-
-
-

dbt takes these tables' raw data and builds the following model, which is more suitable for ML modelling and analytics tools:

-
-
-
-Diagram -
-
-
-
-
-

Configure dbt

-
-
-

We will now configure dbt to connect to your Vantage database. Create file $HOME/.dbt/profiles.yml with the following content. Adjust <host>, <user>, <password> to match your Teradata instance.

-
-
- - - - - -
- - -
Database setup
-
-

The following dbt profile points to a database called teddy_bank. You can change schema value to point to an existing database in your Teradata Vantage instance

-
-
-
-
-
-
dbt_transformation:
-  target: dev
-  outputs:
-    dev:
-      type: teradata
-      host: <host>
-      user: <user>
-      password: <password>
-      schema: teddy_bank
-      tmode: ANSI
-
-
-
-

Now, that we have the profile file in place, we can validate the setup:

-
-
-
-
dbt debug
-
-
-
-

If the debug command returned errors, you likely have an issue with the content of profiles.yml.

-
-
-
-
-

Configure FEAST

-
-
-

Feast configuration addresses connection to your Vantage database. The yml file create while initializing the feast -project, $HOME/.feast/feature_repo/feature_store.yml can hold the details of offline storage, online storage, provider -and registry. Adjust <host>, <user>, <password> to match your Teradata instance.

-
-
- - - - - -
- - -
Database setup
-
-

The following dbt profile points to a database called teddy_bank. You can change schema value to point to an -existing database in your Teradata Vantage instance

-
-
-
-
-

Offline Store Config

-
-
-
project: td_pipeline
-registry:
-    registry_type: sql
-    path: teradatasql://<user>:<password>@<hostIP>/?database=teddy_bank&LOGMECH=TDNEGO
-provider: local
-offline_store:
-    type: feast_teradata.offline.teradata.TeradataOfflineStore
-    host: <host>
-    database: teddy_bank
-    user: <user>
-    password: <password>
-    log_mech: TDNEGO
-entity_key_serialization_version: 2
-
-
-
-
-

syntax for Teradata SQL Registry

-
-
-
path = 'teradatasql://'+ teradata_user +':' + teradata_password + '@'+host + '/?database=' +
-        teradata_database + '&LOGMECH=' + teradata_log_mech
-
-
-
-
-
-
-

Run dbt

-
-
-

Teradata Vantage has long been recognized as a database that provides superior ELT(Extract Load Transform) capabilities. dbt enhances this capabilities by making use of its efficient Analytic functions to transform data. -So, in this case, we will use data tables, customers, accounts and transactions, that are made available on Vantage.

-
-
-

Create the dimensional model

-
-

Now that we have the raw data tables, we can instruct dbt to create the dimensional model:

-
-
-
-
dbt run --select Analytic_Dataset
-
-
-
-
-

Test the data

- -
-
-
-
-

Run FEAST

-
-
-

Feature Repository definition

-
-
    -
  • -

    TeradataSource: Data Source for features stored in Teradata (Enterprise or Lake) or accessible via a Foreign Table from Teradata (NOS, QueryGrid)

    -
  • -
  • -

    Entity: A collection of semantically related features

    -
  • -
  • -

    Feature View: A feature view is a group of feature data from a specific data source. Feature views allow you to consistently define features and their data sources, enabling the reuse of feature groups across a project

    -
  • -
-
-
-
-
DBT_source = TeradataSource( database=dbload, table=f"Analytic_Dataset", timestamp_field="event_timestamp")
-
-customer = Entity(name = "customer", join_keys = ['cust_id'])
-
-ads_fv = FeatureView(name="ads_fv",entities=[customer],source=DBT_source, schema=[
-        Field(name="age", dtype=Float32),
-        Field(name="income", dtype=Float32),
-        Field(name="q1_trans_cnt", dtype=Int64),
-        Field(name="q2_trans_cnt", dtype=Int64),
-        Field(name="q3_trans_cnt", dtype=Int64),
-        Field(name="q4_trans_cnt", dtype=Int64),
-    ],)
-
-
-
-
-

Generate training data

-
-

The approach to generate training data can vary. Depending upon the requirements, 'entitydf' can be considered, -that would join with the source data tables using the feature views mapping. Here is a sample function that -generates certain training dataset.

-
-
-
-
def get_Training_Data():
-    # Initialize a FeatureStore with our current repository's configurations
-    store = FeatureStore(repo_path="feature_repo")
-    con = create_context(host = os.environ["latest_vm"], username = os.environ["dbc_pwd"],
-            password = os.environ["dbc_pwd"], database = "EFS")
-    entitydf = DataFrame('Analytic_Dataset').to_pandas()
-    entitydf.reset_index(inplace=True)
-    print(entitydf)
-    entitydf = entitydf[['cust_id','event_timestamp']]
-    training_data = store.get_historical_features(
-        entity_df=entitydf,
-        features=[
-        "ads_fv:age"
-        ,"ads_fv:income"
-        ,"ads_fv:q1_trans_cnt"
-        ,"ads_fv:q2_trans_cnt"
-        ,"ads_fv:q3_trans_cnt"
-        ,"ads_fv:q4_trans_cnt"
-        ],
-        full_feature_names=True
-    ).to_df()
-
-    return training_data
-
-
-
-
-
-
-

Summary

-
-
-

This tutorial demonstrated how to use dbt and FEAST with Teradata Vantage. The sample project takes raw data in Teradata Vantage and produces a features with dbt, which is again saved as a model in the database itself. Metadata of features that form the base to generate training dataset for a model was then created with FEAST; all its corresponding tables that create the feature store, are also generated at runtime within the same database. This sample project gives us an idea how to integrate these three robust platforms.

-
-
-
- -
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/other-integrations/integrate-teradata-vantage-with-knime.html b/pr-preview/pr-110/other-integrations/integrate-teradata-vantage-with-knime.html deleted file mode 100644 index 50a23d53d..000000000 --- a/pr-preview/pr-110/other-integrations/integrate-teradata-vantage-with-knime.html +++ /dev/null @@ -1,2677 +0,0 @@ - - - - - - Integrate Teradata Vantage with KNIME Analytics Platform :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Integrate Teradata Vantage with KNIME Analytics Platform

-

Author: Jeremy Yu
-Last updated: May 18th, 2022

-
-

Overview

-
-
-

This how-to describes how to connect to Terdata Vantage from KNIME Analytics Platform.

-
-
-

About KNIME Analytics Platform

-
-

KNIME Analytics Platform is a data science workbench. It supports analytics on various data sources, including Teradata Vantage.

-
-
-
-
-
-

Prerequisites

-
-
- -
-
-
-
-

Integration Procedure

-
-
-
    -
  1. -

    Go to https://downloads.teradata.com/download/connectivity/jdbc-driver (first time users will need to register) and download the latest version of the JDBC driver.

    -
  2. -
  3. -

    Unzip the downloaded file. You will find terajdbc4.jar file.

    -
  4. -
  5. -

    In KNIME, click on File → Preference. Under Databases, click Add:

    -
    -
    -Add jar -
    -
    -
  6. -
  7. -

    Register a new database driver. Provide values for ID, Name and Description like below. Click on Add file and point to the .jar file you downloaded earlier. Click on the Find driver classes and the Driver class: should populate with the jdbc.TeraDriver:

    -
    -
    -Register driver -
    -
    -
  8. -
  9. -

    Click Apply and Close:

    -
    -
    -Apply and close -
    -
    -
  10. -
  11. -

    To test the connection, create a new KNIME workflow and add a Database Reader (legacy) node by dragging it to the workspace to the right:

    -
    -
    -Test connection step 1 -
    -
    -
    -
    -Test connection step 2 -
    -
    -
  12. -
  13. -

    Right-click on the Database Reader (legacy) to configure settings. Select com.teradata.jdbc.Teradriver from the drop-down:

    -
    -
    -Start configuration -
    -
    -
  14. -
  15. -

    Enter the name of the Vantage server and login mechanism, e.g.:

    -
    -
    -Enter configuration -
    -
    -
  16. -
  17. -

    To test connection, enter SQL statement in box in lower right. For example, enter SELECT * FROM DBC.DBCInfoV and click Apply to close the dialog:

    -
    -
    -Test connection apply -
    -
    -
  18. -
  19. -

    Execute the node to test the connection:

    -
    -
    -Execute node -
    -
    -
  20. -
  21. -

    The node will show a green light when run successfully. Right-click and select Data from Database to view the results:

    -
    -
    -View results -
    -
    -
    -
    -View results -
    -
    -
  22. -
-
-
-
-
-

Summary

-
-
-

This how-to demonstrats how to connect from KNIME Analytics Platform to Teradata Vantage.

-
-
-
-
-

Further reading

-
- -
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/perform-time-series-analysis-using-teradata-vantage.html b/pr-preview/pr-110/perform-time-series-analysis-using-teradata-vantage.html deleted file mode 100644 index 97435cf7d..000000000 --- a/pr-preview/pr-110/perform-time-series-analysis-using-teradata-vantage.html +++ /dev/null @@ -1,2814 +0,0 @@ - - - - - - Perform time series analysis using Teradata Vantage :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Perform time series analysis using Teradata Vantage

-

Author: Remi Turpaud
-Last updated: April 15th, 2022

-
-

Overview

-
-
-

Time series is series of data points indexed in time order. It is data continuously produced and collected by a wide range of applications and devices including but not limited to Internet of Things. Teradata Vantage offers various functionalities to simplify time series data analysis.

-
-
-
-
-

Prerequisites

-
-
-

You need access to a Teradata Vantage instance. Times series functionalities and NOS are enabled in all Vantage editions from Vantage Express through Developer, DYI to Vantage as a Service starting from version 17.10.

-
-
- - - - - -
- - -If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. -
-
-
-
-
-

Import data sets from AWS S3 using Vantage NOS

-
-
-

Our sample data sets are available on S3 bucket and can be accessed from Vantage directly using Vantage NOS. Data is in CSV format and let’s ingest them into Vantage for our time series analysis.

-
-
-

Let’s have a look at the data first. Below query will fetch 10 rows from S3 bucket.

-
-
-
-
SELECT TOP 10 * FROM (
-	LOCATION='/s3/nos-demo-apj.s3.amazonaws.com/taxi/2014/11/data_2014-11-25.csv'
-) AS d;
-
-
-
-

Here is what we’ve got:

-
-
-
-
Location					        		vendor_id	pickup_datetime		dropoff_datetime	passenger_count		trip_distance		pickup_longitude	        pickup_latitude		rate_code	store_and_fwd_flag	dropoff_longitude	dropoff_latitude	payment_type	fare_amount	surcharge	mta_tax		tip_amount	tolls_amount	total_amount
-------------------------------------------------------------------	---------	-----------------	-----------------	----------------	--------------		-----------------		----------------	----------	-------------------	------------------	-----------------	-------------	------------	----------	--------	----------	------------	------------
-/S3/s3.amazonaws.com/nyc-tlc/csv_backup/yellow_tripdata_2013-11.csv	CMT   		25/11/2013 15:18	25/11/2013 15:33	1			1			-73.992423			40.749517		1		N 			-73.98816		40.746557		CRD   		10		0		0.5		2.22		0		12.72
-/S3/s3.amazonaws.com/nyc-tlc/csv_backup/yellow_tripdata_2013-11.csv	CMT   		25/11/2013 5:34		25/11/2013 5:48		1			3.6			-73.971555			40.794548		1		N 			-73.975399		40.755404		CRD   		14.5		0.5		0.5		1		0		16.5
-/S3/s3.amazonaws.com/nyc-tlc/csv_backup/yellow_tripdata_2013-11.csv	CMT   		25/11/2013 8:31		25/11/2013 8:55		1			5.9			-73.94764			40.830465		1		N 			-73.972323		40.76332		CRD   		21		0		0.5		3		0		24.5
-/S3/s3.amazonaws.com/nyc-tlc/csv_backup/yellow_tripdata_2013-11.csv	CMT   		25/11/2013 7:00		25/11/2013 7:04		1			1.2			-73.983357			40.767193		1		N 			-73.978394		40.75558		CRD   		5.5		0		0.5		1		0		7
-/S3/s3.amazonaws.com/nyc-tlc/csv_backup/yellow_tripdata_2013-11.csv	CMT   		25/11/2013 15:24	25/11/2013 15:30	1			0.5			-73.982313			40.764827		1		N 			-73.982129		40.758889		CRD   		5.5		0		0.5		3		0		9
-/S3/s3.amazonaws.com/nyc-tlc/csv_backup/yellow_tripdata_2013-11.csv	CMT   		25/11/2013 15:53	25/11/2013 16:00	1			0.6			-73.978104			40.752966		1		N 			-73.985756		40.762685		CRD   		6		1		0.5		1		0		8.5
-/S3/s3.amazonaws.com/nyc-tlc/csv_backup/yellow_tripdata_2013-11.csv	CMT   		25/11/2013 6:49		25/11/2013 7:04		1			3.8			-73.976005			40.744481		1		N 			-74.016063		40.717298		CRD   		14		0		0.5		2.9		0		17.4
-/S3/s3.amazonaws.com/nyc-tlc/csv_backup/yellow_tripdata_2013-11.csv	CMT   		25/11/2013 21:20	25/11/2013 21:26	1			1.1			-73.946371			40.775369		1		N 			-73.95309		40.785103		CRD   		6.5		0.5		0.5		1.5		0		9
-/S3/s3.amazonaws.com/nyc-tlc/csv_backup/yellow_tripdata_2013-11.csv	CMT   		25/11/2013 10:02	25/11/2013 10:17	1			2.2			-73.952625			40.780962		1		N 			-73.98163		40.777978		CRD   		12		0		0.5		2		0		14.5
-/S3/s3.amazonaws.com/nyc-tlc/csv_backup/yellow_tripdata_2013-11.csv	CMT   		25/11/2013 9:43		25/11/2013 10:02	1			3.3			-73.982013			40.762507		1		N 			-74.006854		40.719582		CRD   		15		0		0.5		2		0		17.5
-
-
-
-

Let’s extract the complete data and bring it into Vantage for further analysis.

-
-
-
-
CREATE TABLE trip
-(
-  vendor_id varchar(10) character set latin NOT casespecific,
-  rate_code          integer,
-  pickup_datetime timestamp(6),
-  dropoff_datetime timestamp(6),
-  passenger_count   smallint,
-  trip_distance float,
-  pickup_longitude float,
-  pickup_latitude float,
-  dropoff_longitude float,
-  dropoff_latitude float
-)
-NO PRIMARY INDEX ;
-
-
-
-INSERT INTO trip
-SELECT TOP 200000 vendor_id ,
-  rate_code,
-  pickup_datetime,
-  dropoff_datetime ,
-  passenger_count,
-   trip_distance ,
-  pickup_longitude,
-  pickup_latitude ,
-  dropoff_longitude ,
-  dropoff_latitude FROM (
-	LOCATION='/s3/nos-demo-apj.s3.amazonaws.com/taxi/2014/11/data_2014-11-25.csv'
-) AS d;
-
-
-
-

Result:

-
-
-
-
200000 rows affected.
-
-
-
-

Vantage will now fetch the data from S3 and insert into trip table we just created.

-
-
-
-
-

Basic time series operations

-
-
-

Now that we are familiar with the data set, we can use Vantage capabilities to quickly analyse the data set. First, let’s identify how many passengers are being picked up by hour in the month of November.

-
-
-
-
SELECT TOP 10
-	$TD_TIMECODE_RANGE
-	,begin($TD_TIMECODE_RANGE) time_bucket_start
-	,sum(passenger_count) passenger_count
-FROM trip
-WHERE extract(month from pickup_datetime)=11
-GROUP BY TIME(HOURS(1))
-USING TIMECODE(pickup_datetime)
-ORDER BY 1;
-
-
-
-

For further reading on GROUP BY TIME.

-
-
-

Result:

-
-
-
-
TIMECODE_RANGE							time_bucket_start			passenger_count
----------------------------------------------------------	---------------------------------	----------------
-(2013-11-04 11:00:00.000000, 2013-11-04 12:00:00.000000)	2013-11-04 11:00:00.000000-05:00	4
-(2013-11-04 12:00:00.000000, 2013-11-04 13:00:00.000000)	2013-11-04 12:00:00.000000-05:00	2
-(2013-11-04 14:00:00.000000, 2013-11-04 15:00:00.000000)	2013-11-04 14:00:00.000000-05:00	5
-(2013-11-04 15:00:00.000000, 2013-11-04 16:00:00.000000)	2013-11-04 15:00:00.000000-05:00	2
-(2013-11-04 16:00:00.000000, 2013-11-04 17:00:00.000000)	2013-11-04 16:00:00.000000-05:00	9
-(2013-11-04 17:00:00.000000, 2013-11-04 18:00:00.000000)	2013-11-04 17:00:00.000000-05:00	11
-(2013-11-04 18:00:00.000000, 2013-11-04 19:00:00.000000)	2013-11-04 18:00:00.000000-05:00	41
-(2013-11-04 19:00:00.000000, 2013-11-04 20:00:00.000000)	2013-11-04 19:00:00.000000-05:00	2791
-(2013-11-04 20:00:00.000000, 2013-11-04 21:00:00.000000)	2013-11-04 20:00:00.000000-05:00	15185
-(2013-11-04 21:00:00.000000, 2013-11-04 22:00:00.000000)	2013-11-04 21:00:00.000000-05:00	27500
-
-
-
-

Yes, this can also be achieved by extracting the hour from time and then aggregating - it’s additional code/work, but can be done without timeseries specific functionality.

-
-
-

But, now let’s go a step further to identify how many passengers are being picked up and what is the average trip duration by vendor every 15 minutes in November.

-
-
-
-
SELECT TOP 10
-    $TD_TIMECODE_RANGE,
-    vendor_id,
-    SUM(passenger_count),
-    AVG((dropoff_datetime - pickup_datetime ) MINUTE (4)) AS avg_trip_time_in_mins
-FROM trip
-GROUP BY TIME (MINUTES(15) AND vendor_id)
-USING TIMECODE(pickup_datetime)
-WHERE EXTRACT(MONTH FROM pickup_datetime)=11
-ORDER BY 1,2;
-
-
-
-

Result:

-
-
-
-
TIMECODE_RANGE							vendor_id	passenger_count		avg_trip_time_in_mins
---------------------------------------------------------	----------	----------------	----------------------
-(2013-11-04 11:00:00.000000, 2013-11-04 11:15:00.000000)	VTS		1			16
-(2013-11-04 11:15:00.000000, 2013-11-04 11:30:00.000000)	VTS		1			10
-(2013-11-04 11:45:00.000000, 2013-11-04 12:00:00.000000)	VTS		2			6
-(2013-11-04 12:00:00.000000, 2013-11-04 12:15:00.000000)	VTS		1			11
-(2013-11-04 12:15:00.000000, 2013-11-04 12:30:00.000000)	VTS		1			57
-(2013-11-04 14:15:00.000000, 2013-11-04 14:30:00.000000)	VTS		1			3
-(2013-11-04 14:30:00.000000, 2013-11-04 14:45:00.000000)	VTS		2			19
-(2013-11-04 14:45:00.000000, 2013-11-04 15:00:00.000000)	VTS		2			9
-(2013-11-04 15:15:00.000000, 2013-11-04 15:30:00.000000)	VTS		1			11
-(2013-11-04 15:30:00.000000, 2013-11-04 15:45:00.000000)	VTS		1			31
-
-
-
-

This is the power of Vantage time series functionality. Without needing complicated, cumbersome logic we are able to find average trip duration by vendor every 15 minutes just by modifying the group by time clause. Let’s now look at how simple it is to build moving averages based on this. First, let’s start by creating a view as below.

-
-
-
-
REPLACE VIEW NYC_taxi_trip_ts as
-SELECT
-	$TD_TIMECODE_RANGE time_bucket_per
-	,vendor_id
-	,sum(passenger_count) passenger_cnt
-	,avg(CAST((dropoff_datetime - pickup_datetime MINUTE(4) ) AS INTEGER))  avg_trip_time_in_mins
-FROM trip
-GROUP BY TIME (MINUTES(15) and vendor_id)
-USING TIMECODE(pickup_datetime)
-WHERE extract(month from pickup_datetime)=11
-
-
-
-

Let’s calculate a 2 hours moving average on our 15-minutes time series. 2 hour is 8 * 15 minutes periods.

-
-
-
-
SELECT * FROM MovingAverage (
-  ON NYC_taxi_trip_ts PARTITION BY vendor_id ORDER BY time_bucket_per
-  USING
-  MAvgType ('S')
-  WindowSize (8)
-  TargetColumns ('passenger_cnt')
-) AS dt
-WHERE begin(time_bucket_per)(date) = '2014-11-25'
-ORDER BY vendor_id, time_bucket_per;
-
-
-
-

Result:

-
-
-
-
time_bucket_per							vendor_id	passenger_cnt		avg_trip_time_in_mins	passenger_cnt_smavg
----------------------------------------------------------	--------------	----------------------	--------------------	--------------------
-(2013-11-04 14:45:00.000000, 2013-11-04 15:00:00.000000)	VTS		2			9			1.375
-(2013-11-04 15:15:00.000000, 2013-11-04 15:30:00.000000)	VTS		1			11			1.375
-(2013-11-04 15:30:00.000000, 2013-11-04 15:45:00.000000)	VTS		1			31			1.375
-(2013-11-04 16:15:00.000000, 2013-11-04 16:30:00.000000)	VTS		2			16			1.375
-(2013-11-04 16:30:00.000000, 2013-11-04 16:45:00.000000)	VTS		1			3			1.375
-(2013-11-04 16:45:00.000000, 2013-11-04 17:00:00.000000)	VTS		6			38			2
-(2013-11-04 17:15:00.000000, 2013-11-04 17:30:00.000000)	VTS		2			29.5			2.125
-(2013-11-04 17:45:00.000000, 2013-11-04 18:00:00.000000)	VTS		9			20.33333333		3
-(2013-11-04 18:00:00.000000, 2013-11-04 18:15:00.000000)	VTS		6			23.4			3.5
-(2013-11-04 18:15:00.000000, 2013-11-04 18:30:00.000000)	VTS		4			15.66666667		3.875
-(2013-11-04 18:30:00.000000, 2013-11-04 18:45:00.000000)	VTS		8			24.5			4.75
-(2013-11-04 18:45:00.000000, 2013-11-04 19:00:00.000000)	VTS		23			38.33333333		7.375
-(2013-11-04 19:00:00.000000, 2013-11-04 19:15:00.000000)	VTS		195			26.61538462		31.625
-(2013-11-04 19:15:00.000000, 2013-11-04 19:30:00.000000)	VTS		774			13.70083102		127.625
-(2013-11-04 19:30:00.000000, 2013-11-04 19:45:00.000000)	VTS		586			12.38095238		200.625
-(2013-11-04 19:45:00.000000, 2013-11-04 20:00:00.000000)	VTS		1236			15.54742097		354
-(2013-11-04 20:00:00.000000, 2013-11-04 20:15:00.000000)	VTS		3339			11.78947368		770.625
-(2013-11-04 20:15:00.000000, 2013-11-04 20:30:00.000000)	VTS		3474			10.5603396		1204.375
-(2013-11-04 20:30:00.000000, 2013-11-04 20:45:00.000000)	VTS		3260			12.26484323		1610.875
-(2013-11-04 20:45:00.000000, 2013-11-04 21:00:00.000000)	VTS		5112			12.05590062		2247
-
-
-
- - - - - -
- - -In addition to above time series operations, Vantage also provides a special time series tables with Primary Time Index (PTI). These are regular Vantage tables with PTI defined rather than a Primary Index (PI). Though tables with PTI are not mandatory for time series functionality/operations, PTI optimizes how the time series data is stored physically and hence improves performance considerably compared to regular tables. -
-
-
-
-
-

Summary

-
-
-

In this quick start we have learnt how easy it is to analyse time series datasets using Vantage’s time series capabilities.

-
-
-
-
-

Further reading

-
- -
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/query-service/send-queries-using-rest-api.html b/pr-preview/pr-110/query-service/send-queries-using-rest-api.html deleted file mode 100644 index 29caefe05..000000000 --- a/pr-preview/pr-110/query-service/send-queries-using-rest-api.html +++ /dev/null @@ -1,3331 +0,0 @@ - - - - - - Send queries using REST API :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Send queries using REST API

-

Author: Sudha Vedula
-Last updated: May 29th, 2023

-
-

Overview

-
-
-

Teradata Query Service is a REST API for Vantage that you can use to run standard SQL statements without managing client-side drivers. Use Query Service if you are looking to query and access the Analytics Database through a REST API.

-
-
-

This how-to provides examples of common use cases to help you get started with Query Service API.

-
-
-
-
-

Prerequisites

-
-
-

Before starting, make sure you have:

-
-
-
    -
  • -

    Access to a VantageCloud system where Query Service is provisioned, or a VantageCore with Query Service enabled connectivity. If you are an admin and need to install Query Service, see Query Service Installation, Configuration, and Usage Guide.

    -
    - - - - - -
    - - -If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. -
    -
    -
  • -
  • -

    Query Service hostname and system name

    -
  • -
  • -

    Authorization credentials to connect to the database

    -
  • -
-
-
-

Having trouble with the prerequisites? Contact Teradata for setup information.

-
-
-
-
-

Query Service API examples

-
-
-

When using the examples, please keep in mind that:

-
-
-
    -
  • -

    The examples in this document use Python, and you can use these to create examples in your language of choice.

    -
  • -
  • -

    The examples provided here are complete and ready for you to use, although most require a little customization.

    -
    -
      -
    • -

      The examples in this document use the URL https://<QS_HOSTNAME>:1443/.

      -
    • -
    • -

      Replace the following variables with your own value:

      -
      -
        -
      • -

        <QS_HOSTNAME>: Server where Query Service is installed

        -
      • -
      • -

        <SYSTEM_NAME>: Preconfigured alias of the system

        -
        - - - - - -
        - - -
        -

        If your Vantage instance is provided through ClearScape Analytics Experience,<QS_HOSTNAME>, is the host URL of your ClearScape Analytics Experience environment, <SYSTEM_NAME> is 'local'.

        -
        -
        -
        -
      • -
      -
      -
    • -
    -
    -
  • -
-
-
-
-
-

Connect to your Query Service instance

-
-
-

Provide valid credentials to access the target Analytics Database using HTTP Basic or JWT authentication.

-
-
-

HTTP Basic authentication

-
-

The database username and password are combined into a string ("username : password") which is then encoded using Base64. The API response contains the authorization method and encoded credentials.

-
-
-

Request

-
-
-
-
import requests
-import json
-import base64
-requests.packages.urllib3.disable_warnings()
-
-# run it from local.
-
-db_user, db_password = 'dbc','dbc'
-auth_encoded = db_user + ':' + db_password
-auth_encoded = base64.b64encode(bytes(auth_encoded, 'utf-8'))
-auth_str = 'Basic ' + auth_encoded.decode('utf-8')
-
-print(auth_str)
-
-headers = {
-  'Content-Type': 'application/json',
-  'Authorization': auth_str # base 64 encoded username:password
-}
-
-print(headers)
-
-
-
-

Response

-
-
-
-
Basic ZGJjOmRiYw==
-{
-  'Content-Type': 'application/json',
-  'Authorization': 'Basic ZGJjOmRiYw=='
-}
-
-
-
-
-

JWT authentication

-
-

Prerequisites:

-
-
-
    -
  • -

    The user must already exist in the database.

    -
  • -
  • -

    The database must be JWT enabled.

    -
  • -
-
-
-

Request

-
-
-
-
import requests
-import json
-requests.packages.urllib3.disable_warnings()
-
-# run it from local.
-
-auth_encoded_jwt = "<YOUR_JWT_HERE>"
-auth_str = "Bearer " + auth_encoded_jwt
-
-headers = {
-  'Content-Type': 'application/json',
-  'Authorization': auth_str
-}
-
-print(headers)
-
-
-
-

Response

-
-
-
-
{'Content-Type': 'application/json', 'Authorization': 'Bearer <YOUR_JWT_HERE>'}
-
-
-
-
-
-
-

Make a simple API request with basic options

-
-
-

In the following example, the request includes:

-
-
-
    -
  • -

    SELECT * FROM DBC.DBCInfo: The query to the system with the alias <SYSTEM_NAME>.

    -
  • -
  • -

    'format': 'OBJECT': The format for response. The formats supported are: JSON object, JSON array, and CSV.

    -
    - - - - - -
    - - -The JSON object format creates one JSON object per row where the column name is the field name, and the column value is the field value. -
    -
    -
  • -
  • -

    'includeColumns': true: The request to include column metadata, such as column names and types, in the response.

    -
  • -
  • -

    'rowLimit': 4: The number of rows to be returned from a query.

    -
  • -
-
-
-

Request

-
-
-
-
url = 'https://<QS_HOSTNAME>:1443/systems/<SYSTEM_NAME>/queries'
-
-payload = {
-  'query': example_query, # 'SELECT * FROM DBC.DBCInfo;',
-  'format': 'OBJECT',
-  'includeColumns': True,
-  'rowLimit': 4
-}
-
-payload_json = json.dumps(payload)
-
-response = requests.request('POST', url, headers=headers, data=payload_json, verify=False)
-
-num_rows = response.json().get('results')[0].get('rowCount')
-print('NUMBER of ROWS', num_rows)
-print('==========================================================')
-
-print(response.json())
-
-
-
-

Response

-
-
-
-
NUMBER of ROWS 4
-==========================================================
-{
-  "queueDuration":7,
-  "queryDuration":227,
-  "results":[
-    {
-      "resultSet":True,
-      "columns":[
-        {
-          "name":"DatabaseName",
-          "type":"CHAR"
-        },
-        {
-          "name":"USEDSPACE_IN_GB",
-          "type":"FLOAT"
-        },
-        {
-          "name":"MAXSPACE_IN_GB",
-          "type":"FLOAT"
-        },
-        {
-          "name":"Percentage_Used",
-          "type":"FLOAT"
-        },
-        {
-          "name":"REMAININGSPACE_IN_GB",
-          "type":"FLOAT"
-        }
-      ],
-      "data":[
-        {
-          "DatabaseName":"DBC",
-          "USEDSPACE_IN_GB":317.76382541656494,
-          "MAXSPACE_IN_GB":1510.521079641879,
-          "Percentage_Used":21.03670247964377,
-          "REMAININGSPACE_IN_GB":1192.757254225314
-        },
-        {
-          "DatabaseName":"EM",
-          "USEDSPACE_IN_GB":0.0007491111755371094,
-          "MAXSPACE_IN_GB":11.546071618795395,
-          "Percentage_Used":0.006488017745513208,
-          "REMAININGSPACE_IN_GB":11.545322507619858
-        },
-        {
-          "DatabaseName":"user10",
-          "USEDSPACE_IN_GB":0.019153594970703125,
-          "MAXSPACE_IN_GB":9.313225746154785,
-          "Percentage_Used":0.20566016,
-          "REMAININGSPACE_IN_GB":9.294072151184082
-        },
-        {
-          "DatabaseName":"EMEM",
-          "USEDSPACE_IN_GB":0.006140708923339844,
-          "MAXSPACE_IN_GB":4.656612873077393,
-          "Percentage_Used":0.13187072,
-          "REMAININGSPACE_IN_GB":4.650472164154053
-        },
-        {
-          "DatabaseName":"EMWork",
-          "USEDSPACE_IN_GB":0.0,
-          "MAXSPACE_IN_GB":4.656612873077393,
-          "Percentage_Used":0.0,
-          "REMAININGSPACE_IN_GB":4.656612873077393
-        }
-      ],
-      "rowCount":4,
-      "rowLimitExceeded":True
-    }
-  ]
-}
-
-
- -
-

Request a response in CSV format

-
-

To return an API response in CSV format, set the format field in the request with the value CSV.

-
-
-

The CSV format contains only the query results and not response metadata. The response contains a line for each row, where each line contains the row columns separated by a comma. The following example returns the data as comma-separated values.

-
-
-

Request

-
-
-
-
# CSV with all rows included
-
-url = 'https://<QS_HOSTNAME>:1443/systems/<SYSTEM_NAME>/queries'
-
-payload = {
-  'query': example_query, # 'SELECT * FROM DBC.DBCInfo;',
-  'format': 'CSV',
-  'includeColumns': True
-}
-
-payload_json = json.dumps(payload)
-
-response = requests.request('POST', url, headers=headers, data=payload_json, verify=False)
-
-print(response.text)
-
-
-
-

Response

-
-
-
-
DatabaseName,USEDSPACE_IN_GB,MAXSPACE_IN_GB,Percentage_Used,REMAININGSPACE_IN_GB
-DBC                           ,317.7634754180908,1510.521079641879,21.036679308932754,1192.7576042237881
-EM                            ,7.491111755371094E-4,11.546071618795395,0.006488017745513208,11.545322507619858
-user10                        ,0.019153594970703125,9.313225746154785,0.20566016,9.294072151184082
-EMEM                          ,0.006140708923339844,4.656612873077393,0.13187072,4.650472164154053
-EMWork                        ,0.0,4.656612873077393,0.0,4.656612873077393
-EMJI                          ,0.0,2.3283064365386963,0.0,2.3283064365386963
-USER_NAME                     ,0.0,2.0,0.0,2.0
-readonly                      ,0.0,0.9313225746154785,0.0,0.9313225746154785
-aug12_db                      ,7.200241088867188E-5,0.9313225746154785,0.0077312,0.9312505722045898
-SystemFe                      ,1.8024444580078125E-4,0.7450580596923828,0.024192,0.744877815246582
-dbcmngr                       ,3.814697265625E-6,0.09313225746154785,0.004096,0.09312844276428223
-EMViews                       ,0.027594566345214844,0.09313225746154785,29.62944,0.06553769111633301
-tdwm                          ,6.732940673828125E-4,0.09313225746154785,0.722944,0.09245896339416504
-Crashdumps                    ,0.0,0.06984921544790268,0.0,0.06984921544790268
-SYSLIB                        ,0.006252288818359375,0.03725290298461914,16.78336,0.031000614166259766
-SYSBAR                        ,4.76837158203125E-6,0.03725290298461914,0.0128,0.03724813461303711
-SYSUDTLIB                     ,3.5381317138671875E-4,0.029802322387695312,1.1872,0.029448509216308594
-External_AP                   ,0.0,0.01862645149230957,0.0,0.01862645149230957
-SysAdmin                      ,0.002307891845703125,0.01862645149230957,12.3904,0.016318559646606445
-KZXaDtQp                      ,0.0,0.009313225746154785,0.0,0.009313225746154785
-s476QJ6O                      ,0.0,0.009313225746154785,0.0,0.009313225746154785
-hTzz03i7                      ,0.0,0.009313225746154785,0.0,0.009313225746154785
-Y5WYUUXj                      ,0.0,0.009313225746154785,0.0,0.009313225746154785
-
-
-
-
-
-
-

Use explicit session to submit a query

-
-
-

Use explicit sessions when a transaction needs to span multiple requests or when using volatile tables. These sessions are only reused if you reference the sessions in a query request. The request is queued if a request references an explicit session already in use.

-
-
-
    -
  1. -

    Create a session

    -
    -

    Send a POST request to the /system/<SYSTEM_NAME>/sessions endpoint. The request creates a new database session and returns the session details as the response.

    -
    -
    -

    In the following example, the request includes 'auto_commit': True - the request to commit the query upon completion.

    -
    -
    -

    Request

    -
    -
    -
    -
    # first create a session
    -url = 'https://<QS_HOSTNAME>:1443/systems/<SYSTEM_NAME>/sessions'
    -
    -payload = {
    -  'auto_commit': True
    -}
    -
    -payload_json = json.dumps(payload)
    -
    -response = requests.request('POST', url, headers=headers, data=payload_json, verify=False)
    -
    -print(response.text)
    -
    -
    -
    -

    Response

    -
    -
    -
    -
    {
    -  'sessionId': 1366010,
    -  'system': 'testsystem',
    -  'user': 'dbc',
    -  'tdSessionNo': 1626922,
    -  'createMode': 'EXPLICIT',
    -  'state': 'LOGGINGON',
    -  'autoCommit': true
    -}
    -
    -
    -
  2. -
  3. -

    Use the session created in Step 1 to submit queries

    -
    -

    Send a POST request to the /system/<SYSTEM_NAME>/queries endpoint.

    -
    -
    -

    The request submits queries to the target system and returns the release and version number of the target system.

    -
    -
    -

    In the following example, the request includes:

    -
    -
    -
      -
    • -

      SELECT * FROM DBC.DBCInfo: The query to the system with the alias <SYSTEM_NAME>.

      -
    • -
    • -

      'format': 'OBJECT': The format for response.

      -
    • -
    • -

      'Session' : <Session ID>: The session ID returned in Step 1 to create an explicit session.

      -
    • -
    -
    -
    -
    -
    -
    -
    -

    Request

    -
    -
    -
    -
    # use this session to submit queries afterwards
    -
    -url = 'https://<QS_HOSTNAME>:1443/systems/<SYSTEM_NAME>/queries'
    -
    -payload = {
    -  'query': 'SELECT * FROM DBC.DBCInfo;',
    -  'format': 'OBJECT',
    -  'session': 1366010 # <-- sessionId
    -}
    -payload_json = json.dumps(payload)
    -
    -response = requests.request('POST', url, headers=headers, data=payload_json, verify=False)
    -
    -print(response.text)
    -
    -
    -
    -
    -
    -
    -
    -

    Response

    -
    -
    -
    -
    {
    -  "queueDuration":6,
    -  "queryDuration":41,
    -  "results":[
    -    {
    -      "resultSet":true,
    -      "data":[
    -        {
    -          "InfoKey":"LANGUAGE SUPPORT MODE",
    -          "InfoData":"Standard"
    -        },
    -        {
    -          "InfoKey":"RELEASE",
    -          "InfoData":"15.10.07.02"
    -        },
    -        {
    -          "InfoKey":"VERSION",
    -          "InfoData":"15.10.07.02"
    -        }
    -      ],
    -      "rowCount":3,
    -      "rowLimitExceeded":false
    -    }
    -  ]
    -}
    -
    -
    -
    -
    -
    -
    -
  4. -
-
-
-
-
-

Use asynchronous queries

-
-
-

Use asynchronous queries when a system or network performance is affected by querying a large group of data or long running queries.

-
-
-
    -
  1. -

    Submit asynchronous queries to the target system and retrieve a Query ID

    -
    -

    Send a POST request to the /system/<SYSTEM_NAME>/queries endpoint.

    -
    -
    -

    In the following example, the request includes:

    -
    -
    -
      -
    • -

      SELECT * FROM DBC.DBCInfo: The query to the system with the alias <SYSTEM_NAME>.

      -
    • -
    • -

      'format': 'OBJECT': The format for response.

      -
    • -
    • -

      'spooled_result_set': True: The indication that the request is asynchronous.

      -
    • -
    -
    -
    -
    -
    -
    -
    -

    Request

    -
    -
    -
    -
    ## Run async query .
    -
    -url = 'https://<QS_HOSTNAME>:1443/systems/<SYSTEM_NAME>/queries'
    -
    -payload = {
    -  'query': 'SELECT * FROM DBC.DBCInfo;',
    -  'format': 'OBJECT',
    -  'spooled_result_set': True
    -}
    -
    -payload_json = json.dumps(payload)
    -response = requests.request('POST', url, headers=headers, data=payload_json, verify=False)
    -
    -print(response.text)
    -
    -
    -
    -
    -
    -
    -
    -

    Response

    -
    -
    -
    -
    {"id":1366025}
    -
    -
    -
    -
    -
    -
    -
  2. -
  3. -

    Get query details using the ID retrieved from Step 1

    -
    -

    Send a GET request to the /system/<SYSTEM_NAME>/queries/<queryID> endpoint, replacing <queryID> with the ID retrieved from Step 1.

    -
    -
    -

    The request returns the details of the specific query, including queryState, queueOrder, queueDuration, and so on. For a complete list of the response fields and their descriptions, see Query Service Installation, Configuration, and Usage Guide.

    -
    -
    -

    Request

    -
    -
    -
    -
    ## response for async query .
    -
    -url = 'https://<QS_HOSTNAME>:1443/systems/<SYSTEM_NAME>/queries/1366025'
    -
    -payload_json = json.dumps(payload)
    -response = requests.request('GET', url, headers=headers, verify=False)
    -
    -print(response.text)
    -
    -
    -
    -

    Response

    -
    -
    -
    -
    {
    -  "queryId":1366025,
    -  "query":"SELECT * FROM DBC.DBCInfo;",
    -  "batch":false,
    -  "system":"testsystem",
    -  "user":"dbc",
    -  "session":1366015,
    -  "queryState":"RESULT_SET_READY",
    -  "queueOrder":0,
    -  "queueDuration":6,
    -  "queryDuration":9,
    -  "statusCode":200,
    -  "resultSets":{
    -
    -  },
    -  "counts":{
    -
    -  },
    -  "exceptions":{
    -
    -  },
    -  "outParams":{
    -
    -  }
    -}
    -
    -
    -
  4. -
  5. -

    View resultset for asynchronous query

    -
    -

    Send a GET request to the /system/<SYSTEM_NAME>/queries/<queryID>/results endpoint, replacing <queryID> with the ID retrieved from Step 1. -The request returns an array of the result sets and update counts produced by the submitted query.

    -
    -
    -

    Request

    -
    -
    -
    -
    url = 'https://<QS_HOSTNAME>:1443/systems/<SYSTEM_NAME>/queries/1366025/results'
    -
    -payload_json = json.dumps(payload)
    -response = requests.request('GET', url, headers=headers, verify=False)
    -
    -print(response.text)
    -
    -
    -
    -

    Response

    -
    -
    -
    -
    {
    -  "queueDuration":6,
    -  "queryDuration":9,
    -  "results":[
    -    {
    -      "resultSet":true,
    -      "data":[
    -        {
    -          "InfoKey":"LANGUAGE SUPPORT MODE",
    -          "InfoData":"Standard"
    -        },
    -        {
    -          "InfoKey":"RELEASE",
    -          "InfoData":"15.10.07.02"
    -        },
    -        {
    -          "InfoKey":"VERSION",
    -          "InfoData":"15.10.07.02"
    -        }
    -      ],
    -      "rowCount":3,
    -      "rowLimitExceeded":false
    -    }
    -  ]
    -}
    -
    -
    -
  6. -
-
-
-
-
-

Get a list of active or queued queries

-
-
-

Send a GET request to the /system/<SYSTEM_NAME>/queries endpoint. The request returns the IDs of active queries.

-
-
-

Request

-
-
-
-
url = 'https://<QS_HOSTNAME>:1443/systems/<SYSTEM_NAME>/queries'
-
-payload={}
-
-response = requests.request('GET', url, headers=headers, data=payload, verify=False)
-
-print(response.json())
-
-
-
-

Response

-
-
-
-
[
-  {
-    "queryId": 12516087,
-    "query": "SELECt * from dbcmgr.AlertRequest;",
-    "batch": false,
-    "system": "BasicTestSys",
-    "user": "dbc",
-    "session": 12516011,
-    "queryState": "REST_SET_READY",
-    "queueOrder": 0,
-    "queueDurayion": 3,
-    "queryDuration": 3,
-    "statusCode": 200,
-    "resultSets": {},
-    "counts": {},
-    "exceptions": {},
-    "outparams": {}
-  },
-  {
-    "queryId": 12516088,
-    "query": "SELECt * from dbc.DBQLAmpDataTbl;",
-    "batch": false,
-    "system": "BasicTestSys",
-    "user": "dbc",
-    "session": 12516011,
-    "queryState": "REST_SET_READY",
-    "queueOrder": 0,
-    "queueDurayion": 3,
-    "queryDuration": 3,
-    "statusCode": 200,
-    "resultSets": {},
-    "counts": {},
-    "exceptions": {},
-    "outparams": {}
-  }
-]
-
-
-
-
-
-

Resources

-
- -
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/regulus/_images/install-regulus-docker-image/regulus.workspaces.setting.png b/pr-preview/pr-110/regulus/_images/install-regulus-docker-image/regulus.workspaces.setting.png deleted file mode 100644 index 8b88a6020..000000000 Binary files a/pr-preview/pr-110/regulus/_images/install-regulus-docker-image/regulus.workspaces.setting.png and /dev/null differ diff --git a/pr-preview/pr-110/regulus/_images/regulus-magic-reference/regulus.auth.list.png b/pr-preview/pr-110/regulus/_images/regulus-magic-reference/regulus.auth.list.png deleted file mode 100644 index 7063e7cdb..000000000 Binary files a/pr-preview/pr-110/regulus/_images/regulus-magic-reference/regulus.auth.list.png and /dev/null differ diff --git a/pr-preview/pr-110/regulus/_images/regulus-magic-reference/regulus.engine.deploy.png b/pr-preview/pr-110/regulus/_images/regulus-magic-reference/regulus.engine.deploy.png deleted file mode 100644 index eed18586e..000000000 Binary files a/pr-preview/pr-110/regulus/_images/regulus-magic-reference/regulus.engine.deploy.png and /dev/null differ diff --git a/pr-preview/pr-110/regulus/_images/regulus-magic-reference/regulus.engine.list.png b/pr-preview/pr-110/regulus/_images/regulus-magic-reference/regulus.engine.list.png deleted file mode 100644 index 82e13313f..000000000 Binary files a/pr-preview/pr-110/regulus/_images/regulus-magic-reference/regulus.engine.list.png and /dev/null differ diff --git a/pr-preview/pr-110/regulus/_images/regulus-magic-reference/regulus.project.list.png b/pr-preview/pr-110/regulus/_images/regulus-magic-reference/regulus.project.list.png deleted file mode 100644 index 4363497de..000000000 Binary files a/pr-preview/pr-110/regulus/_images/regulus-magic-reference/regulus.project.list.png and /dev/null differ diff --git a/pr-preview/pr-110/regulus/_images/regulus-magic-reference/regulus.user.list.png b/pr-preview/pr-110/regulus/_images/regulus-magic-reference/regulus.user.list.png deleted file mode 100644 index f69193476..000000000 Binary files a/pr-preview/pr-110/regulus/_images/regulus-magic-reference/regulus.user.list.png and /dev/null differ diff --git a/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.auth.create.png b/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.auth.create.png deleted file mode 100644 index 4040d257e..000000000 Binary files a/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.auth.create.png and /dev/null differ diff --git a/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.auth.delete.png b/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.auth.delete.png deleted file mode 100644 index 3455c035f..000000000 Binary files a/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.auth.delete.png and /dev/null differ diff --git a/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.auth.list.png b/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.auth.list.png deleted file mode 100644 index fbc39ff00..000000000 Binary files a/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.auth.list.png and /dev/null differ diff --git a/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.engine.list.png b/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.engine.list.png deleted file mode 100644 index d929f16c2..000000000 Binary files a/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.engine.list.png and /dev/null differ diff --git a/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.engine.suspend.png b/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.engine.suspend.png deleted file mode 100644 index 8170e7db5..000000000 Binary files a/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.engine.suspend.png and /dev/null differ diff --git a/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.project.backup.png b/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.project.backup.png deleted file mode 100644 index 9742a3649..000000000 Binary files a/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.project.backup.png and /dev/null differ diff --git a/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.project.create.png b/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.project.create.png deleted file mode 100644 index a79e28237..000000000 Binary files a/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.project.create.png and /dev/null differ diff --git a/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.project.delete.png b/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.project.delete.png deleted file mode 100644 index 39d2f1da6..000000000 Binary files a/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.project.delete.png and /dev/null differ diff --git a/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.project.list.png b/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.project.list.png deleted file mode 100644 index c64a53417..000000000 Binary files a/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.project.list.png and /dev/null differ diff --git a/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.project.restore.png b/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.project.restore.png deleted file mode 100644 index 09b4809d0..000000000 Binary files a/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.project.restore.png and /dev/null differ diff --git a/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.project.user.list.png b/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.project.user.list.png deleted file mode 100644 index 0946abf75..000000000 Binary files a/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.project.user.list.png and /dev/null differ diff --git a/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.user.list.png b/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.user.list.png deleted file mode 100644 index 2c446e373..000000000 Binary files a/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.user.list.png and /dev/null differ diff --git a/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.workspaces.config.png b/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.workspaces.config.png deleted file mode 100644 index 7f8547028..000000000 Binary files a/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.workspaces.config.png and /dev/null differ diff --git a/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.workspaces.png b/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.workspaces.png deleted file mode 100644 index e0aff207c..000000000 Binary files a/pr-preview/pr-110/regulus/_images/using-regulus-workspace-cli/reguluscli.workspaces.png and /dev/null differ diff --git a/pr-preview/pr-110/regulus/getting-started-with-regulus.html b/pr-preview/pr-110/regulus/getting-started-with-regulus.html deleted file mode 100644 index e3b7cdcf5..000000000 --- a/pr-preview/pr-110/regulus/getting-started-with-regulus.html +++ /dev/null @@ -1,2834 +0,0 @@ - - - - - - Run a Sample Workload in JupyterLab :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Run a Sample Workload in JupyterLab

-

Author: Thripti Aravind
-Last updated: May 16th, 2023

-
-
-
- - - - - -
- - -This product is in preview and is subject to change. To get early access to Regulus, sign up on the Regulus Home page. -
-
-
-
-
-

Overview

-
-
-

This document walks you through a simple workflow where you can use JupyterLab to:

-
-
-
    -
  • -

    Deploy on-demand, scalable compute

    -
  • -
  • -

    Connect to your external data source

    -
  • -
  • -

    Run the workload

    -
  • -
  • -

    Suspend the compute

    -
  • -
-
-
-
-
-

Before you begin

-
-
- -
-
-
-
-

Run your first workload

-
-
-

Run %help or %help <command> for details on any magic command. See Regulus JupyterLab Magic Command Reference for more details.

-
-
-
    -
  1. -

    Connect to JupyterLab using the URL: http://localhost:8888 and enter the token when prompted.

    -
  2. -
  3. -

    Connect to Workspaces using the API Key.

    -
    -
    -
    %workspaces_config host=<ip_or_hostname>, apikey=<API_Key>, withtls=F
    -
    -
    -
  4. -
  5. -

    Create a new project.

    -
    - - - - - -
    - - -Currently, Regulus supports only AWS. -
    -
    -
    -
    -
    %project_create project=<Project_Name>, env=aws
    -
    -
    -
  6. -
  7. -

    [Optional] Create an authorization object to store the CSP credentials.

    -
    -

    Replace AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, and AWS_REGION with your values.

    -
    -
    -
    -
    %project_auth_create name=<Auth_Name>, project=<Project_Name>, key=<AWS_ACCESS_KEY_ID>, secret=<AWS_SECRET_ACCESS_KEy>, region=<AWS_REGION>
    -
    -
    -
  8. -
  9. -

    Deploy a query engine for the project.

    -
    -

    Replace the <Project_Name> to a name of your choice. The size parameter value can be small, medium, large, or extralarge. The default size is small.

    -
    -
    -
    -
    %project_engine_deploy name=<Project_Name>, size=<Size_of_Engine>
    -
    -
    -
    -

    The deployment process will take a few minutes to complete. On successful deployment, a password is generated.

    -
    -
  10. -
  11. -

    Establish a connection to your project.

    -
    -
    -
    %connect <Project_Name>
    -
    -
    -
    -

    When a connection is established, the interface prompts you for a password. Enter the password generated in the previous step.

    -
    -
  12. -
  13. -

    Run the sample workload.

    -
    - - - - - -
    - - -Make sure that you do not have tables named SalesCenter or SalesDemo in the selected database. -
    -
    -
    -
      -
    1. -

      Create a table to store the sales center data.

      -
      -

      First, drop the table if it already exists. The command fails if the table does not exist.

      -
      -
      -
      -
      DROP TABLE SalesCenter;
      -CREATE MULTISET TABLE SalesCenter ,NO FALLBACK ,
      -     NO BEFORE JOURNAL,
      -     NO AFTER JOURNAL,
      -     CHECKSUM = DEFAULT,
      -     DEFAULT MERGEBLOCKRATIO
      -     (
      -      Sales_Center_id INTEGER NOT NULL,
      -      Sales_Center_Name VARCHAR(255) CHARACTER SET LATIN NOT CASESPECIFIC)
      -NO PRIMARY INDEX ;
      -
      -
      -
    2. -
    3. -

      Load data into the SalesCenter table using the %dataload magic command.

      -
      -
      -
      %dataload DATABASE=<Project_Name>, TABLE=SalesCenter, FILEPATH=notebooks/sql/data/salescenter.csv
      -
      -
      -
      - - - - - -
      - - -Unable to locate the salescenter.csv file? Download the file from GitHub Demo: Charting and Visualization Data -
      -
      -
      -

      Verify that the data was inserted.

      -
      -
      -
      -
      SELECT * FROM SalesCenter ORDER BY 1
      -
      -
      -
    4. -
    5. -

      Create a table with the sales demo data.

      -
      -
      -
      DROP TABLE SalesDemo;
      -CREATE MULTISET TABLE SalesDemo ,NO FALLBACK ,
      -     NO BEFORE JOURNAL,
      -     NO AFTER JOURNAL,
      -     CHECKSUM = DEFAULT,
      -     DEFAULT MERGEBLOCKRATIO
      -     (
      -      Sales_Center_ID INTEGER NOT NULL,
      -      UNITS DECIMAL(15,4),
      -      SALES DECIMAL(15,2),
      -      COST DECIMAL(15,2))
      -NO PRIMARY INDEX ;
      -
      -
      -
    6. -
    7. -

      Load data into the SalesDemo table using the %dataload magic command.

      -
      -
      -
      %dataload DATABASE=<Project_Name>, TABLE=SalesDemo, FILEPATH=notebooks/sql/data/salesdemo.csv
      -
      -
      -
      - - - - - -
      - - -Unable to locate the salesdemo.csv file? Download the file from GitHub Demo: Charting and Visualization Data -
      -
      -
      -

      Verify that the sales demo data was inserted successfully.

      -
      -
      -
      -
      SELECT * FROM SalesDemo ORDER BY sales
      -
      -
      -
      -

      Open the Navigator for your connection and verify that the tables were created. Run a row count on the tables to verify that the data was loaded.

      -
      -
    8. -
    9. -

      Use charting magic to visualize the result.

      -
      -

      Provide X and Y axes for your chart.

      -
      -
      -
      -
      %chart sales_center_name, sales, title=Sales Data
      -
      -
      -
    10. -
    11. -

      Drop the tables.

      -
      -
      -
      DROP TABLE SalesCenter;
      -DROP TABLE SalesDemo;
      -
      -
      -
    12. -
    -
    -
  14. -
  15. -

    Back up your project metadata and object definitions in your GitHub repository.

    -
    -
    -
    %project_backup project=<Project_Name>
    -
    -
    -
  16. -
  17. -

    Suspend the query engine.

    -
    -
    -
    %project_engine_suspend project=<Project_Name>
    -
    -
    -
  18. -
-
-
-

Congrats! You’ve successfully run your first use case in JupyterLab.

-
-
-
-
-

Next steps

-
-
-
    -
  • -

    Interested in exploring advanced use cases? Coming soon! Keep watching this space for the GitHub link.

    -
  • -
  • -

    Learn about the magic commands available in JupyterLab. See Regulus JupyterLab Magic Command Reference.

    -
  • -
-
-
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/regulus/install-regulus-docker-image.html b/pr-preview/pr-110/regulus/install-regulus-docker-image.html deleted file mode 100644 index 86807a5df..000000000 --- a/pr-preview/pr-110/regulus/install-regulus-docker-image.html +++ /dev/null @@ -1,3106 +0,0 @@ - - - - - - Install and Configure Regulus Using Docker :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Install and Configure Regulus Using Docker

-

Author: Thripti Aravind
-Last updated: May 16th, 2023

-
-
-
- - - - - -
- - -This product is in preview and is subject to change. To get early access to Regulus, sign up on the Regulus Home page. -
-
-
-
-
-

Overview

-
-
-

Regulus is a self-service platform that enables you to deploy and connect an SQL query engine to your data lake. You can then run your workloads on the on-demand, scalable query engine deployed on your preferred Cloud Service Provider (CSP). Using the query engine, you can leverage the capabilities of a highly parallel database while eliminating the need for data management.

-
-
-

Regulus contains the following components:

-
-
-
    -
  • -

    Workspaces: An orchestration service that controls and manages Regulus automation and deployments. It also controls the integration elements that provide a seamless user experience when running data-related projects. Workspaces includes a web-based UI that you can use to authorize the user and define your choice of CSP integrations.

    -
  • -
  • -

    Interface: An environment to write and run data projects, connect to the Teradata system, and visualize data. You can use either JupyterLab or Workspaces CLI.

    -
  • -
  • -

    Query Engine: A fully managed computational resource that you can use to run your data science and analytical workloads.

    -
  • -
-
-
-

This document outlines the steps for installing and configuring Regulus using Docker. To use Regulus with Workspaces CLI, see Use Regulus With Workspaces CLI.

-
-
-
-
-

Before you begin

-
-
-

Make sure you have the following:

-
-
- -
-
-
-
-

Install Workspaces

-
-
-

The Workspaces Docker images are monolithic images of Workspaces running the necessary services in a single container.

-
-
-

Pull the docker image from Docker Hub.

-
-
-
-
docker pull teradata/regulus-workspaces
-
-
-
-

Before proceeding, make sure to:

-
-
-
    -
  • -

    Copy and retain the environment variables, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, and AWS_SESSION_TOKEN, from your AWS Console. See Environment Variables.

    -
  • -
  • -

    Set the environment variable, WORKSPACES_HOME, to the directory where the configuration and data files are located. Make sure that the directory exists and appropriate permission is granted.

    - ----- - - - - - - - - - - - - - - - - - - - -
    Local LocationContainer LocationUsage

    $WORKSPACES_HOME

    /etc/td

    Stores data and configuration

    $WORKSPACES_HOME/tls

    /etc/td/tls

    Stores cert files

    -
  • -
-
-
-

You can install Workspaces using one of the following methods:

-
-
- -
-
-

Install Workspaces using Docker Engine

-
-

Run the Docker image once you’ve set the WORKSPACES_HOME variable.

-
-
- - - - - -
- - -Modify the directories based on your requirements. -
-
-
-
-
docker run -detach \
-  --env accept_license="Y" \
-  --env AWS_ACCESS_KEY_ID="${AWS_ACCESS_KEY_ID}" \
-  --env AWS_SECRET_ACCESS_KEY="${AWS_SECRET_ACCESS_KEY}" \
-  --env AWS_SESSION_TOKEN="${AWS_SESSION_TOKEN}" \
-  --publish 3000:3000 \
-  --publish 3282:3282 \
-  --volume ${WORKSPACES_HOME}:/etc/td \
-  teradata/regulus-workspaces:latest
-
-
-
-

The command downloads and starts a Workspaces container and publishes the ports needed to access it. Once the Workspaces server is initialized and started, you can access Workspaces using the URL: http://<ip_or_hostname>:3000/.

-
-
-
-

Install Workspaces using Docker Compose

-
-

With Docker Compose, you can easily configure, install, and upgrade your Docker-based Workspaces installation.

-
-
-
    -
  1. -

    Install Docker Compose. See https://docs.docker.com/compose/install/.

    -
  2. -
  3. -

    Create a docker-compose.yml file.

    -
    -
    -
    version: "3.9"
    -
    -services:
    -  workspaces:
    -    deploy:
    -      replicas: 1
    -    container_name: workspaces
    -    image: ${WORKSPACES_IMAGE_NAME:-teradata/regulus-workspaces}:${WORKSPACES_IMAGE_TAG:-latest}
    -    command: workspaces serve -v
    -    restart: unless-stopped
    -    ports:
    -      - "443:443/tcp"
    -      - "3000:3000/tcp"
    -      - "3282:3282/tcp"
    -    environment:
    -      accept_license: "Y"
    -      TZ: ${WS_TZ:-UTC}
    -      AWS_ACCESS_KEY_ID: "${AWS_ACCESS_KEY_ID}"
    -      AWS_SECRET_ACCESS_KEY: "${AWS_SECRET_ACCESS_KEY}"
    -      AWS_SESSION_TOKEN: "${AWS_SESSION_TOKEN}"
    -    volumes:
    -      - ${WORKSPACES_HOME:-./volumes/workspaces}:/etc/td
    -      - ${WORKSPACES_AWS_CONFIG:-~/.aws}:/root/.aws
    -
    -
    -
  4. -
  5. -

    Go to the directory where the docker-compose.yml file is located and start Workspaces.

    -
    -
    -
    Docker compose up -d
    -
    -
    -
    -

    Once the Workspaces server is initialized and started, you can access Workspaces using the URL: http://<ip_or_hostname>:3000/.

    -
    -
  6. -
-
-
-
-
-
-

Configure and set up Workspaces

-
-
-

Workspaces uses the GitHub OAuth App to authorize users and manage the project state. To authorize Workspaces to save your project instance configuration, use the Client ID and Client secret key generated during the GitHub OAuth App registration. The project instance configuration values are maintained in your GitHub repositories.

-
-
-

First-time users must perform the following steps before proceeding:

-
-
-
    -
  1. -

    Log on to your GitHub account and create an OAuth App. See GitHub Documentation.

    -
    -

    While registering the OAuth App, type the following Workspaces URLs in the URL fields:

    -
    -
    - -
    -
  2. -
  3. -

    Copy and retain the Client ID and Client secret key.

    -
  4. -
-
-
-

To set up Workspaces, do the following:

-
-
-
    -
  1. -

    Access Workspaces using the URL: http://<ip_or_hostname>:3000/.

    -
    -
    -regulus.workspaces.setting -
    -
    -
  2. -
  3. -

    Apply the following general service configuration under Setup.

    - ----- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    SettingDescriptionRequired?

    Service Base URL

    [Non-Editable] The root URL of the service.

    Yes

    Git Provider

    The provider for Git integration. Currently, Regulus supports only GitHub.

    Yes

    Service Log Lev

    The level of logging.

    Yes

    Engine IP Network Type

    The type of network assigned to a query engine instance, which can be either public or private.

    Yes

    Use TLS

    Indicates if TLS support is enabled. Teradata recommends enabling this option.

    Yes

    Service TLS Certification

    The server certificate to authenticate the server identity.

    No

    Service TLS Certificate Key

    The server certificate key.

    No

    -
  4. -
  5. -

    To use a self-signed certificate for Service Base URL, select GENERATE TLS. A certificate and private key are generated and displayed in the respective fields.

    -
  6. -
  7. -

    Select Next.

    -
  8. -
  9. -

    Apply the following settings under Cloud Integrations: AWS.

    - ----- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    SettingDescriptionRequired?

    Default Region

    The AWS region you want to deploy the workload in. Teradata recommends choosing the region closest to your primary work location.

    Yes

    Default Subnet

    The default location to launch the query engine.

    Yes

    Default CIDRs

    The list of Classless Inter-Domain Routing (CIDR) addresses used for the query engine. Use CIDR to allocate IP addresses flexibly and efficiently in your network. If you don’t specify a CIDR, the query engine is automatically associated with the default CIDR.

    No

    Default Security Groups

    The list of security groups for the VPC in each region. If you don’t specify a security group, the query engine is automatically associated with the default security group for the VPC.

    No

    -
  10. -
  11. -

    Select Next.

    -
  12. -
  13. -

    Apply the following settings under Configure GitHub.

    - ----- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    SettingDescriptionRequired?

    GitHub Application URL

    [Non-Editable] The URL where the Workspaces server is hosted.

    Yes

    GitHub Callback URL

    [Non-Editable] The URL you are redirected to after you authorize.

    Yes

    GitHub Client ID

    The Client ID you received from GitHub on creating your OAuth App.

    Yes

    Use TLS

    Enable TLS support.

    Yes

    GitHub Client Secret

    The Client secret ID you received from GitHub on creating your OAuth App.

    Yes

    GitHub Organization

    The name of the GitHub organization account that you use to collaborate with your team.

    No

    GitHub Base URL

    The base URL of your GitHub account. The URL may vary based on your account type. For example, https://github.company.com/ for GitHub Enterprise account.

    No

    -
  14. -
  15. -

    Select Save and then select Login. You are redirected to GitHub.

    -
  16. -
  17. -

    Log on with your GitHub credentials to authorize Workspaces.

    -
    -

    After authentication, you are redirected to the Workspaces Profile page, and an API Key is generated. You can use the API Key to make requests to the Workspaces service.

    -
    -
    - - - - - -
    - - -A new API Key is generated each time you connect to Workspaces. -
    -
    -
  18. -
-
-
-
-
-

Install a Regulus interface

-
-
-

You can use either JupyterLab or Workspaces CLI as your Regulus interface.

-
-
- -
-
-

Install JupyterLab using Docker Engine

-
-
    -
  1. -

    Pull the Docker image from the DockerHub at https://hub.docker.com/r/teradata/regulus-jupyter.

    -
  2. -
  3. -

    Run the Docker image once you’ve set the JUPYTER_HOME variable.

    -
    - - - - - -
    - - -Modify the directories based on your requirements. -
    -
    -
    -
    -
    docker run -detach \
    -  --env “accept_license=Y” \
    -  --publish 8888:8888 \
    -  --volume ${JUPYTER_HOME}: /home/jovyan/JupyterLabRoot \
    -  teradata/regulus-jupyter:latest
    -
    -
    -
  4. -
-
-
-

The command downloads and starts a JupyterLab container and publishes the ports needed to access it. -Connect to JupyterLab using the URL: http://localhost:8888 and enter the token when prompted. For detailed instructions, see Teradata Vantage™ Modules for Jupyter Installation Guide or Use Vantage from a Jupyter Notebook.

-
-
-
-

Install JupyterLab using Docker Compose

-
-

With Docker Compose, you can easily configure, install, and upgrade your Docker-based JupyterLab installation.

-
-
-
    -
  1. -

    Install Docker Compose. See https://docs.docker.com/compose/install/.

    -
  2. -
  3. -

    Create a docker-compose.yml file.

    -
    -
    -
    version: "3.9"
    -
    -services:
    -  jupyter:
    -    deploy:
    -      replicas: 1
    -    image: teradata/regulus-jupyter:latest
    -    environment:
    -      - "accept_license=Y"
    -    ports:
    -      - 8888:8888
    -    volumes:
    -      - ${JUPYTER_HOME:-./volumes/jupyter}:/home/jovyan/JupyterLabRoot/userdata
    -      - ${WORKSPACES_AWS_CONFIG:-~/.aws}:/root/.aws
    -
    -
    -
  4. -
  5. -

    Go to the directory where the docker-compose.yml file is located and start JupyterLab.

    -
    -
    -
    Docker compose up -d
    -
    -
    -
    -

    Once the JupyterLab server is initialized and started, you can connect to JupyterLab using the URL: http://localhost:8888 and enter the token when prompted. For detailed instructions, see Teradata Vantage™ Modules for Jupyter Installation Guide or Use Vantage from a Jupyter Notebook.

    -
    -
  6. -
-
-
-

Congrats! You’re all set up to use Regulus.

-
-
-
-
-
-

Next steps

-
-
-
    -
  • -

    Get started with Regulus by running a simple workflow. See Run a Sample Workload in JupyterLab.

    -
  • -
  • -

    Interested in learning how Regulus can help you with real-life use cases? Coming soon! Keep watching this space for the GitHub link.

    -
  • -
-
-
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/regulus/regulus-magic-reference.html b/pr-preview/pr-110/regulus/regulus-magic-reference.html deleted file mode 100644 index caa5f2ad0..000000000 --- a/pr-preview/pr-110/regulus/regulus-magic-reference.html +++ /dev/null @@ -1,3104 +0,0 @@ - - - - - - Regulus JupyterLab Magic Command Reference :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Regulus JupyterLab Magic Command Reference

-

Author: Thripti Aravind
-Last updated: May 16th, 2023

-
-
-
- - - - - -
- - -This product is in preview and is subject to change. To get early access to Regulus, sign up on the Regulus Home page. -
-
-
-
-
-

Overview

-
-
-

Regulus JupyterLab supports the following magic commands in addition to the existing Teradata SQL Kernel magic commands. See Teradata JupyterLab Getting Started Guide.

-
-
-
-
-

%workspaces_config

-
-
-

Description: One-time configuration to bind with the Workspaces service.

-
-
-

Usage:

-
-
-
-
%workspaces_config host=<RPC_Service_URL>, apikey=<Workspace_API_Key>, withtls=F
-
-
-
-

Where:

-
-
-
    -
  • -

    host: Name or IP address of the query engine service.

    -
  • -
  • -

    apikey: API Key value from the Workspaces Profile page.

    -
  • -
  • -

    [Optional] withTLS: If False (F), the default client-server communication does not use TLS.

    -
  • -
-
-
-

Output:

-
-
-
-
Workspace configured for host=<RPC_Service_URL>
-
-
-
-
-
-

%project_create

-
-
-

Description: Create a new project. This command also creates a new repository with the project name in your GitHub account. The configurations are stored in the engine.yml file.

-
-
-

Usage:

-
-
-
-
%project_create project=<Project_Name>, env=<CSP>, team=<Project_Team>
-
-
-
-

Where:

-
-
-
    -
  • -

    project: Name of the project to be created.

    -
  • -
  • -

    env: Cloud environment where the project is hosted. The value can be aws, azure, gcp, or vsphere. For the current release, only AWS is supported.

    -
  • -
  • -

    [Optional] team: Name of the team collaborating on the project.

    -
  • -
-
-
-

Output:

-
-
-
-
Project <Project_Name> created
-
-
-
-
-
-

%project_delete

-
-
-

Description: Delete a project.

-
-
- - - - - -
- - -Running this command removes the GitHub repository containing the objects created using Regulus. -
-
-
-

Usage:

-
-
-
-
%project_delete project=<Project_Name>, team=<Project_Team>
-
-
-
-

Where:

-
-
-
    -
  • -

    project: Name of the project to be deleted.

    -
  • -
  • -

    [Optional] team: Name of the team collaborating on the project.

    -
  • -
-
-
-

Output:

-
-
-
-
Project <Project_Name> deleted
-
-
-
-
-
-

%project_list

-
-
-

Description: List the details of the projects.

-
-
-

Use the project parameter to get the details of a specific project. All the projects are listed if you run the command without any parameters.

-
-
-

Usage:

-
-
-
-
%project_list project=<Project_Name>
-
-
-
-

Where:

-
-
-
    -
  • -

    project: Name of the project to be listed.

    -
  • -
-
-
-

Output:

-
-
-
-List Project -
-
-
-
-
-

%project_auth_create

-
-
-

Description: Create an authorization object to store object store credentials.

-
-
-

You must create the authorization object before deploying the query engine. The authorization details are retained and are included while redeploying the project. Optionally, you can create authorizations manually using the CREATE AUTHORIZATION SQL command after deploying the query engine. In this case, the authorization details are not retained.

-
-
-

Usage:

-
-
-
-
%project_auth_create project=<Project_Name>, name=<Auth_Name>, key=<Auth_Key>, secret=<Auth_Secret>, region=<ObjectStore_Region>
-
-
-
-

Where:

-
-
-
    -
  • -

    project: Name of the project.

    -
  • -
  • -

    name: Authorization name for the object store.

    -
  • -
  • -

    key: Authorization key of the object store.

    -
  • -
  • -

    secret: Authorization secret access ID of the object store.

    -
  • -
  • -

    region: Region of the object store; local for the local object store.

    -
  • -
-
-
-

Output:

-
-
-
-
Authorization 'name' created
-
-
-
-
-
-

%project_auth_delete

-
-
-

Description: Remove an object store authorization.

-
-
-

Usage:

-
-
-
-
%project_auth_delete project=<Project_Name>, name=<Auth_Name>
-
-
-
-

Where:

-
-
-
    -
  • -

    project: Name of the project.

    -
  • -
  • -

    name: Authorization name for the object store.

    -
  • -
-
-
-

Output:

-
-
-
-
Authorization 'name' deleted
-
-
-
-
-
-

%project_auth_list

-
-
-

Description: List object store authorizations that are created for a project.

-
-
-

Usage:

-
-
-
-
%project_auth_list project=<Project_Name>
-
-
-
-

Where:

-
-
-
    -
  • -

    project: Name of the project.

    -
  • -
-
-
-

Output:

-
-
-
-List Auth -
-
-
-
-
-

%project_engine_deploy

-
-
-

Description: Deploy a query engine for the project. The deployment process will take a few minutes to complete. On successful deployment, a password is generated.

-
-
-

Usage:

-
-
-
-
%project_engine_deploy project=<Project_Name>, size=<Size_of_Engine>, node=<Number_of_Nodes>, subnet=<Subnet_id>, region=<Region>, secgroups=<Security_Group>, cidrs=<CIDR>
-
-
-
-

Where:

-
-
-
    -
  • -

    project: Name of the project.

    -
  • -
  • -

    size: Size of the query engine. The value can be:

    -
    -
      -
    • -

      small

      -
    • -
    • -

      medium

      -
    • -
    • -

      large

      -
    • -
    • -

      extralarge

      -
    • -
    -
    -
  • -
  • -

    [Optional] node: Number of query engine nodes to be deployed. The default value is 1.

    -
  • -
  • -

    [Optional] subnet: Subnet used for the query engine if there are no default values from the service.

    -
  • -
  • -

    [Optional] region: Region used for the query engine if there are no default values from service.

    -
  • -
  • -

    [Optional] secgroups: List of security groups for the VPC in each region. If you don’t specify a security group, the query engine is automatically associated with the default security group for the VPC.

    -
  • -
  • -

    [Optional] cidr: List of CIDR addresses used for the query engine.

    -
  • -
-
-
-

Output:

-
-
-
-
Started deploying.
-Success: Compute Engine setup, look at the connection manager
-
-
-
-
-Deploy Engine -
-
-
-
-
-

%project_engine_suspend

-
-
-

Description: Stop the query engine after you’re done with your work.

-
-
-

Usage:

-
-
-
-
%project_engine_suspend <Project_Name>
-
-
-
-

Where:

-
-
-
    -
  • -

    project: Name of the project.

    -
  • -
-
-
-

Output:

-
-
-
-
Started suspend. Success: connection removed
-Success: Suspending Compute Engine
-
-
-
-
-
-

%project_engine_list

-
-
-

Description: View the list of query engines deployed for your project.

-
-
-

Usage:

-
-
-
-
%project_engine_list project=<Project_Name>
-
-
-
-

Where:

-
-
-
    -
  • -

    project: Name of the project.

    -
  • -
-
-
-

Output:

-
-
-
-Engine List -
-
-
-
-
-

%project_user_list

-
-
-

Description: View the list of collaborators assigned to the project.

-
-
-

Usage:

-
-
-
-
%project_user_list project=<Project_Name>
-
-
-
-

Where:

-
-
-
    -
  • -

    [Optional] project: Name of the project.

    -
  • -
-
-
-

Output:

-
-
-
-User List -
-
-
-
-
-

%project_backup

-
-
-

Description: Back up your project metadata and object definition inside the query engine.

-
-
-

Usage:

-
-
-
-
%project_backup project=<Project_Name>
-
-
-
-

Where:

-
-
-
    -
  • -

    project: Name of the project.

    -
  • -
-
-
-

Output:

-
-
-
-
Backup of the object definitions created
-
-
-
-
-
-

%project_restore

-
-
-

Description: Restore your project metadata and object definition from your GitHub repository.

-
-
-

Usage:

-
-
-
-
%project_restore project=<Project_Name>, gitref=<Git_Reference>
-
-
-
-

Where:

-
-
-
    -
  • -

    project: Name of the project.

    -
  • -
  • -

    [Optional] gitref: Git reference.

    -
  • -
-
-
-

Output:

-
-
-
-
Restore of the object definitions done
-
-
-
-
-
-

%help

-
-
-

Description: View the list of magics provided with Regulus-Teradata SQL CE Kernel.

-
-
-

Usage:

-
-
-
-
%help
-
-
-
-

Additionally, you can see detailed help messages per command.

-
-
-

Usage:

-
-
-
-
%help <command>
-
-
-
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/regulus/using-regulus-workspace-cli.html b/pr-preview/pr-110/regulus/using-regulus-workspace-cli.html deleted file mode 100644 index ff18b9126..000000000 --- a/pr-preview/pr-110/regulus/using-regulus-workspace-cli.html +++ /dev/null @@ -1,3533 +0,0 @@ - - - - - - Use Regulus With Workspaces CLI :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Use Regulus With Workspaces CLI

-

Author: Thripti Aravind
-Last updated: May 16th, 2023

-
-
-
- - - - - -
- - -This product is in preview and is subject to change. To get early access to Regulus, contact Support. -
-
-
-
-
-

Overview

-
-
-

Workspaces CLI is a command line interface (CLI) for Regulus. This document provides step-by-step instructions to install Workspaces CLI. In this document, you can find all the necessary information and guidance on the CLI commands, allowing you to navigate the command line quickly and efficiently.

-
-
-

You can also use JupyterLab as your Regulus interface. See Run a Sample Workload in JupyterLab.

-
-
-
-
-

Before you begin

-
-
-

Make sure you have:

-
-
- -
-
-
-
-

Install Workspaces CLI

-
-
-

Download the Workspaces CLI executable file from https://downloads.teradata.com/download/tools/regulus-ctl.

-
-
- - - - - -
- - -Workspaces CLI supports all major operating systems. -
-
-
-
-
-

Use Workspaces CLI

-
-
-
    -
  1. -

    Open the terminal window and run the workspacesctl file.

    -
    -
    -
      -
    • -

      Windows

      -
    • -
    • -

      MacOS

      -
    • -
    -
    -
    -
    -
    -
    -
    worksapcesctl.exe
    -
    -
    -
    -
    -
    -
    -
    workspacesctl
    -
    -
    -
    -
    -
    -
    -
    -Regulus CLI -
    -
    -
  2. -
  3. -

    Configure Workspaces using the API Key.

    -
    -
    -
    workspacesctl workspaces config
    -
    -
    -
  4. -
  5. -

    Create a new project.

    -
    -
    -
    workspacesctl project create <Project_Name> -e <CSP> --no-tls
    -
    -
    -
  6. -
  7. -

    Deploy a query engine for the project.

    -
    -
    -
    workspacesctl project engine deploy <Project_Name> -t <Size_of_Engine> --no-tls
    -
    -
    -
  8. -
  9. -

    Run a sample workload.

    -
  10. -
  11. -

    Manage your project and query engine.

    -
  12. -
  13. -

    Backup your project.

    -
    -
    -
    workspacesctl project backup <Project_Name> --no-tls
    -
    -
    -
  14. -
  15. -

    Suspend the query engine.

    -
    -
    -
    workspacesctl project engine suspend <Project_Name> --no-tls
    -
    -
    -
  16. -
-
-
-

For a supported list of commands, see Workspaces CLI Reference.

-
-
-
-
-

Workspaces CLI reference

-
-
-

workspaces config

-
-

Description: One-time configuration to bind CLI with the Workspaces service. Go to the Workspaces Profile page and copy the API Key.

-
-
-

Usage:

-
-
-
-
workspacesctl workspaces config
-
-
-
-

Flags:

-
-
-

-h, --help: List the details of the command.

-
-
-

Output:

-
-
-
-Regulus CLI Config -
-
-
-

Follow the prompts to choose the Workspaces endpoint and API Key.

-
-
-
-

workspaces user list

-
-

Description: View the list of users set up for Regulus on GitHub.

-
-
-

Usage:

-
-
-
-
workspacesctl workspaces user list --no-tls
-
-
-
- - - - - -
- - -If your setup includes TLS configuration, you need not add the -no-tls parameter. -
-
-
-

Flags:

-
-
-

-h, --help: List the details of the command.

-
-
-

Output:

-
-
-
-Regulus CLI User List -
-
-
-
-

project create

-
-

Description: Create a project in Regulus. The command also creates a corresponding GitHub repository for the project.

-
-
-

Usage:

-
-
-
-
workspacesctl project create <Project_Name> -e <CSP> --no-tls
-
-
-
- - - - - -
- - -If your setup includes TLS configuration, you need not add the -no-tls parameter. -
-
-
-

Flags:

-
- ------ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
FlagTypeDescriptionRequired?

-e, --environment

String

Environment where the project query engine is hosted. Values: aws, azure, or gcloud. Currently, Regulus supports only aws.

Yes

-f, --manifest

String

Path to manifest the yaml file to be used for the input.

No

-t, --team

String

Team assigned to the project.

No

-h, --help

List the details of the command.

No

-
-

Output:

-
-
-
-Regulus CLI Project Create -
-
-
-
-

project list

-
-

Description: View the list of all projects set up in Regulus.

-
-
-

Usage:

-
-
-
-
workspacesctl project list --no-tls
-
-
-
-

or

-
-
-
-
workspacesctl project list <Project_Name> --no-tls
-
-
-
- - - - - -
- - -If your setup includes TLS configuration, you need not add the -no-tls parameter. -
-
-
-

Flags:

-
-
-

-h, --help: List the details of the command.

-
-
-

Output:

-
-
-
-Regulus CLI Project List -
-
-
-
-

project delete

-
-

Description: Delete a project in Regulus.

-
-
-

Usage:

-
-
-
-
 workspacesctl project delete <Project_Name> --no-tls
-
-
-
- - - - - -
- - -If your setup includes TLS configuration, you need not add the -no-tls parameter. -
-
-
-

Flags:

-
-
-

-h, --help: List the details of the command.

-
-
-

Output:

-
-
- - - - - -
- - -The output is in YAML format. -
-
-
-
-Regulus CLI Project Delete -
-
-
-
-

project user list

-
-

Description: View the list of collaborators assigned to the project in GitHub.

-
-
-

Usage:

-
-
-
-
workspacesctl project user list <Project_Name> --no-tls
-
-
-
- - - - - -
- - -If your setup includes TLS configuration, you need not add the -no-tls parameter. -
-
-
-

Flags:

-
-
-

-h, --help: List the details of the command.

-
-
-

Output:

-
-
-
-Regulus CLI Project User List -
-
-
-
-

project backup

-
-

Description: Back up the query engine object definitions to the GitHub repository assigned for the project.

-
-
-

Usage:

-
-
-
-
workspacesctl project backup <Project_Name> --no-tls
-
-
-
- - - - - -
- - -If your setup includes TLS configuration, you need not add the -no-tls parameter. -
-
-
-

Flags:

-
-
-

-h, --help: List the details of the command.

-
-
-

Output:

-
-
- - - - - -
- - -The output is in YAML format. -
-
-
-
-Regulus CLI Project Backup -
-
-
-
-

project restore

-
-

Description: Restore all query engine object definitions from the project GitHub repository.

-
-
-

Usage:

-
-
-
-
workspacesctl project restore <Project_Name> --no-tls
-
-
-
-

or

-
-
-
-
workspacesctl project restore <Project_Name> --gitref <git_reference> --no-tls
-
-
-
- - - - - -
- - -If your setup includes TLS configuration, you need not add the -no-tls parameter. -
-
-
-

Flags:

-
- ------ - - - - - - - - - - - - - - - - - - - - - - -
FlagTypeDescriptionRequired?

-g, --gitref

String

Tag, SHA, or branch name.

No

-h, --help

List the details of the command.

No

-
-

Output:

-
-
- - - - - -
- - -The output is in YAML format. -
-
-
-
-Regulus CLI Project Restore -
-
-
-
-

project engine deploy

-
-

Description: Deploy a query engine for the project.

-
-
-

Usage:

-
-
-
-
workspacesctl project engine deploy <Project_Name> -t small --no-tls
-
-
-
- - - - - -
- - -If your setup includes TLS configuration, you need not add the -no-tls parameter. -
-
-
-

Flags:

-
- ------ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
FlagTypeDescriptionRequired?

-c, --instance-count

Int

Number of query engine nodes. The default value is 1.

No

-t, --instance-size

String

Instance size of the query engine.

No

-f, --manifest

String

Path to manifest the yaml file to use for the input.

No

-r, --region

String

Region for the deployment.

No

-s, --subnet-id

String

Subnet ID for the deployment.

No

-h, --help

List the details of the command.

No

-
-
-

project engine suspend

-
-

Description: Destroy the deployed query engine and back up the object definitions created during the session.

-
-
-

Usage:

-
-
-
-
workspacesctl project engine suspend <Project_Name> --no-tls
-
-
-
- - - - - -
- - -If your setup includes TLS configuration, you need not add the -no-tls parameter. -
-
-
-

Flags:

-
-
-

-h, --help: List the details of the command.

-
-
-

Output:

-
-
- - - - - -
- - -The output is in YAML format. -
-
-
-
-Regulus CLI Engine Suspend -
-
-
-
-

project engine list

-
-

Description: View the detailed information about the query engine for a project. The command displays the last state of the query engine.

-
-
-

Usage:

-
-
-
-
workspacesctl project engine list <Project_Name> --no-tls
-
-
-
- - - - - -
- - -If your setup includes TLS configuration, you need not add the -no-tls parameter. -
-
-
-

Flags:

-
-
-

-h, --help: List the details of the command.

-
-
-

Output:

-
-
- - - - - -
- - -The output is in YAML format. -
-
-
-
-Regulus CLI Engine List -
-
-
-
-

project auth create

-
-

Description: Create authorization for object store.

-
-
-

Usage:

-
-
-
-
workspacesctl project auth create <Project_Name> -n <Auth_Name> -a <Auth_Key> -s <Auth_Secret> -r <ObjectStore_Region> --no-tls
-
-
-
- - - - - -
- - -If your setup includes TLS configuration, you need not add the -no-tls parameter. -
-
-
-

Flags:

-
- ------ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
FlagTypeDescriptionRequired?

-a, --accesskey

String

Authorization access key or ID.

Yes, if you’re not using the -f flag.

-n, --name string

String

Authorization name for the object store.

Yes, if you’re not using the -f flag.

-f, --manifest

String

Path to manifest the yaml file to use for the input.

No

-r, --region

String

Region of the object store.

Yes

-s, --secret string

String

Authorization secret access key of the object store.

Yes, if you’re not using the -f flag.

-h, --help

List the details of the command.

No

-
-

Output:

-
-
- - - - - -
- - -The output is in YAML format. -
-
-
-
-Regulus CLI Auth Create -
-
-
-
-

project auth list

-
-

Description: List object store authorizations that are created for a project.

-
-
-

Usage:

-
-
-
-
workspacesctl project auth list <Project_Name> --no-tls
-
-
-
- - - - - -
- - -If your setup includes TLS configuration, you need not add the -no-tls parameter. -
-
-
-

Flags:

-
-
-

-h, --help: List the details of the command.

-
-
-

Output:

-
-
- - - - - -
- - -The output is in YAML format. -
-
-
-
-Regulus CLI Auth List -
-
-
-
-

project auth delete

-
-

Description: Delete object store authorizations that are created for a project.

-
-
-

Usage:

-
-
-
-
workspacesctl project auth delete <Project_Name> -n <Auth_Name> --no-tls
-
-
-
- - - - - -
- - -If your setup includes TLS configuration, you need not add the -no-tls parameter. -
-
-
-

Flags:

-
- ------ - - - - - - - - - - - - - - - - - - - - - - -
FlagTypeDescriptionRequired?

-n, --name

String

Name of the object store authorization to delete.

Yes

-h, --help

List the details of the command.

No

-
-

Output:

-
-
- - - - - -
- - -The output is in YAML format. -
-
-
-
-Regulus CLI Auth Delete -
-
-
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/run-vantage-express-on-aws.html b/pr-preview/pr-110/run-vantage-express-on-aws.html deleted file mode 100644 index 8798fbf00..000000000 --- a/pr-preview/pr-110/run-vantage-express-on-aws.html +++ /dev/null @@ -1,3128 +0,0 @@ - - - - - - Run Vantage Express on AWS :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Run Vantage Express on AWS

-

Author: Adam Tworkiewicz
-Last updated: December 12th, 2022

-
-

Overview

-
-
-

This how-to demonstrates how to run Vantage Express on AWS. Vantage Express is a small footprint configuration that contains a fully functional Teradata SQL Engine.

-
-
- - - - - -
- - -
Cloud charges
-
-

Vantage Express is distributed as a virtual machine image. This how-to uses the EC2 c5n.metal instance type. It’s a bare metal instance that costs over $3/h.

-
-
-

If you want a cheaper option, try Google Cloud and Azure which support nested virtualization and can run Vantage Express on cheap VM’s.

-
-
-

If you do not wish to pay for cloud usage at all, install Vantage Express locally using VMware, VirtualBox, or UTM.

-
-
-
-
-
-
-

Prerequisites

-
-
-
    -
  1. -

    An AWS account. If you need to create a new account follow the official AWS instructions.

    -
  2. -
  3. -

    awscli command line utility installed and configured on your machine. You can find installation instructions here: https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html.

    -
  4. -
-
-
-
-
-

Installation

-
-
-
    -
  1. -

    You will need a VPC with an Internet-facing subnet. If you don’t have one available, here is how you can create it:

    -
    -
    -
    # Copied from https://cloudaffaire.com/how-to-create-a-custom-vpc-using-aws-cli/
    -
    -# Create VPC
    -AWS_VPC_ID=$(aws ec2 create-vpc \
    -  --cidr-block 10.0.0.0/16 \
    -  --query 'Vpc.{VpcId:VpcId}' \
    -  --output text)
    -
    -# Enable DNS hostname for your VPC
    -aws ec2 modify-vpc-attribute \
    -  --vpc-id $AWS_VPC_ID \
    -  --enable-dns-hostnames "{\"Value\":true}"
    -
    -# Create a public subnet
    -AWS_SUBNET_PUBLIC_ID=$(aws ec2 create-subnet \
    -  --vpc-id $AWS_VPC_ID --cidr-block 10.0.1.0/24 \
    -  --query 'Subnet.{SubnetId:SubnetId}' \
    -  --output text)
    -
    -# Enable Auto-assign Public IP on Public Subnet
    -aws ec2 modify-subnet-attribute \
    -  --subnet-id $AWS_SUBNET_PUBLIC_ID \
    -  --map-public-ip-on-launch
    -
    -# Create an Internet Gateway
    -AWS_INTERNET_GATEWAY_ID=$(aws ec2 create-internet-gateway \
    -  --query 'InternetGateway.{InternetGatewayId:InternetGatewayId}' \
    -  --output text)
    -
    -# Attach Internet gateway to your VPC
    -aws ec2 attach-internet-gateway \
    -  --vpc-id $AWS_VPC_ID \
    -  --internet-gateway-id $AWS_INTERNET_GATEWAY_ID
    -
    -# Create a route table
    -AWS_CUSTOM_ROUTE_TABLE_ID=$(aws ec2 create-route-table \
    -  --vpc-id $AWS_VPC_ID \
    -  --query 'RouteTable.{RouteTableId:RouteTableId}' \
    -  --output text )
    -
    -# Create route to Internet Gateway
    -aws ec2 create-route \
    -  --route-table-id $AWS_CUSTOM_ROUTE_TABLE_ID \
    -  --destination-cidr-block 0.0.0.0/0 \
    -  --gateway-id $AWS_INTERNET_GATEWAY_ID \
    -  --output text
    -
    -# Associate the public subnet with route table
    -AWS_ROUTE_TABLE_ASSOID=$(aws ec2 associate-route-table  \
    -  --subnet-id $AWS_SUBNET_PUBLIC_ID \
    -  --route-table-id $AWS_CUSTOM_ROUTE_TABLE_ID \
    -  --output text | head -1)
    -
    -# Create a security group
    -aws ec2 create-security-group \
    -  --vpc-id $AWS_VPC_ID \
    -  --group-name myvpc-security-group \
    -  --description 'My VPC non default security group' \
    -  --output text
    -
    -# Get security group ID's
    -AWS_DEFAULT_SECURITY_GROUP_ID=$(aws ec2 describe-security-groups \
    -  --filters "Name=vpc-id,Values=$AWS_VPC_ID" \
    -  --query 'SecurityGroups[?GroupName == `default`].GroupId' \
    -  --output text) &&
    -  AWS_CUSTOM_SECURITY_GROUP_ID=$(aws ec2 describe-security-groups \
    -  --filters "Name=vpc-id,Values=$AWS_VPC_ID" \
    -  --query 'SecurityGroups[?GroupName == `myvpc-security-group`].GroupId' \
    -  --output text)
    -
    -# Create security group ingress rules
    -aws ec2 authorize-security-group-ingress \
    -  --group-id $AWS_CUSTOM_SECURITY_GROUP_ID \
    -  --ip-permissions '[{"IpProtocol": "tcp", "FromPort": 22, "ToPort": 22, "IpRanges": [{"CidrIp": "0.0.0.0/0", "Description": "Allow SSH"}]}]' \
    -  --output text
    -
    -# Add a tag to the VPC
    -aws ec2 create-tags \
    -  --resources $AWS_VPC_ID \
    -  --tags "Key=Name,Value=vantage-express-vpc"
    -
    -# Add a tag to public subnet
    -aws ec2 create-tags \
    -  --resources $AWS_SUBNET_PUBLIC_ID \
    -  --tags "Key=Name,Value=vantage-express-vpc-public-subnet"
    -
    -# Add a tag to the Internet-Gateway
    -aws ec2 create-tags \
    -  --resources $AWS_INTERNET_GATEWAY_ID \
    -  --tags "Key=Name,Value=vantage-express-vpc-internet-gateway"
    -
    -# Add a tag to the default route table
    -AWS_DEFAULT_ROUTE_TABLE_ID=$(aws ec2 describe-route-tables \
    -  --filters "Name=vpc-id,Values=$AWS_VPC_ID" \
    -  --query 'RouteTables[?Associations[0].Main != `false`].RouteTableId' \
    -  --output text) &&
    -  aws ec2 create-tags \
    -  --resources $AWS_DEFAULT_ROUTE_TABLE_ID \
    -  --tags "Key=Name,Value=vantage-express-vpc-default-route-table"
    -
    -# Add a tag to the public route table
    -aws ec2 create-tags \
    -  --resources $AWS_CUSTOM_ROUTE_TABLE_ID \
    -  --tags "Key=Name,Value=vantage-express-vpc-public-route-table"
    -
    -# Add a tags to security groups
    -aws ec2 create-tags \
    -  --resources $AWS_CUSTOM_SECURITY_GROUP_ID \
    -  --tags "Key=Name,Value=vantage-express-vpc-security-group" &&
    -  aws ec2 create-tags \
    -  --resources $AWS_DEFAULT_SECURITY_GROUP_ID \
    -  --tags "Key=Name,Value=vantage-express-vpc-default-security-group"
    -
    -
    -
  2. -
  3. -

    To create a VM you will need an ssh key pair. If you don’t have it already, create one:

    -
    -
    -
    aws ec2 create-key-pair --key-name vantage-key --query 'KeyMaterial' --output text > vantage-key.pem
    -
    -
    -
  4. -
  5. -

    Restrict access to the private key. Replace <path_to_private_key_file> with the private key path returned by the previous command:

    -
    -
    -
    chmod 600 vantage-key.pem
    -
    -
    -
  6. -
  7. -

    Get the AMI id of the latest Ubuntu image in your region:

    -
    -
    -
    AWS_AMI_ID=$(aws ec2 describe-images \
    -  --filters 'Name=name,Values=ubuntu/images/hvm-ssd/ubuntu-*amd64*' \
    -  --query 'Images[*].[Name,ImageId,CreationDate]' --output text \
    -  | sort -k3 -r | head -n1 | cut -f 2)
    -
    -
    -
  8. -
  9. -

    Create a Ubuntu VM with 4 CPU’s and 8GB of RAM, and a 70GB disk.

    -
    -
    -
    AWS_INSTANCE_ID=$(aws ec2 run-instances \
    -  --image-id $AWS_AMI_ID \
    -  --count 1 \
    -  --instance-type c5n.metal \
    -  --block-device-mapping DeviceName=/dev/sda1,Ebs={VolumeSize=70} \
    -  --key-name vantage-key \
    -  --security-group-ids $AWS_CUSTOM_SECURITY_GROUP_ID \
    -  --subnet-id $AWS_SUBNET_PUBLIC_ID \
    -  --query 'Instances[0].InstanceId' \
    -  --output text)
    -
    -
    -
  10. -
  11. -

    ssh to your VM:

    -
    -
    -
    AWS_INSTANCE_PUBLIC_IP=$(aws ec2 describe-instances \
    -  --query "Reservations[*].Instances[*].PublicIpAddress" \
    -  --output=text --instance-ids $AWS_INSTANCE_ID)
    -ssh -i vantage-key.pem ubuntu@$AWS_INSTANCE_PUBLIC_IP
    -
    -
    -
  12. -
  13. -

    Once in the VM, switch to root user:

    -
    -
    -
    sudo -i
    -
    -
    -
  14. -
  15. -

    Prepare the download directory for Vantage Express:

    -
    -
    -
    mkdir /opt/downloads
    -cd /opt/downloads
    -
    -
    -
  16. -
  17. -

    Install VirtualBox and 7zip:

    -
    -
    -
    apt update && apt-get install p7zip-full p7zip-rar virtualbox -y
    -
    -
    -
  18. -
  19. -

    Retrieve the curl command to download Vantage Express.

    -
    -
      -
    1. -

      Go to Vantage Expess download page (registration required).

      -
    2. -
    3. -

      Click on the latest download link, e.g. "Vantage Express 17.20". You will see a license agreement popup. Don’t accept the license yet.

      -
    4. -
    5. -

      Open the network view in your browser. For example, in Chrome press F12 and navigate to Network tab:

      -
      -
      -Browser Network Tab -
      -
      -
    6. -
    7. -

      Accept the license by clicking on I Agree button and cancel the download.

      -
    8. -
    9. -

      In the network view, find the last request that starts with VantageExpress. Right click on it and select Copy → Copy as cURL:

      -
      -
      -Browser Copy culr -
      -
      -
    10. -
    -
    -
  20. -
  21. -

    Head back to the ssh session and download Vantage Express by pasting the curl command. Add -o ve.7z to the command to save the download to file named ve.7z. You can remove all the HTTP headers, e.g.:

    -
    -
    -
    curl -o ve.7z 'http://d289lrf5tw1zls.cloudfront.net/database/teradata-express/VantageExpress17.20_Sles12_202108300444.7z?Expires=1638719978&Signature=GKBkNvery_long_signature__&Key-Pair-Id=********************'
    -
    -
    -
  22. -
  23. -

    Unzip the downloaded file. It will take several minutes:

    -
    -
    -
    7z x ve.7z
    -
    -
    -
  24. -
  25. -

    Start the VM in VirtualBox. The command will return immediately but the VM init process will take several minutes:

    -
    -
    -
    export VM_IMAGE_DIR="/opt/downloads/VantageExpress17.20_Sles12"
    -DEFAULT_VM_NAME="vantage-express"
    -VM_NAME="${VM_NAME:-$DEFAULT_VM_NAME}"
    -vboxmanage createvm --name "$VM_NAME" --register --ostype openSUSE_64
    -vboxmanage modifyvm "$VM_NAME" --ioapic on --memory 6000 --vram 128 --nic1 nat --cpus 4
    -vboxmanage storagectl "$VM_NAME" --name "SATA Controller" --add sata --controller IntelAhci
    -vboxmanage storageattach "$VM_NAME" --storagectl "SATA Controller" --port 0 --device 0 --type hdd --medium  "$(find $VM_IMAGE_DIR -name '*disk1*')"
    -vboxmanage storageattach "$VM_NAME" --storagectl "SATA Controller" --port 1 --device 0 --type hdd --medium  "$(find $VM_IMAGE_DIR -name '*disk2*')"
    -vboxmanage storageattach "$VM_NAME" --storagectl "SATA Controller" --port 2 --device 0 --type hdd --medium  "$(find $VM_IMAGE_DIR -name '*disk3*')"
    -vboxmanage modifyvm "$VM_NAME" --natpf1 "tdssh,tcp,,4422,,22"
    -vboxmanage modifyvm "$VM_NAME" --natpf1 "tddb,tcp,,1025,,1025"
    -vboxmanage startvm "$VM_NAME" --type headless
    -vboxmanage controlvm "$VM_NAME" keyboardputscancode 1c 1c
    -
    -
    -
  26. -
  27. -

    ssh to Vantage Express VM. Use root as password:

    -
    -
    -
    ssh -p 4422 root@localhost
    -
    -
    -
  28. -
  29. -

    Validate that the DB is up:

    -
    -
    -
    pdestate -a
    -
    -
    -
    -

    If the command returns PDE state is RUN/STARTED. DBS state is 5: Logons are enabled - The system is quiescent, it means that Vantage Express has started. -If the status is different, repeat pdestate -a till you get the correct status.

    -
    -
  30. -
  31. -

    Once Vantage Express is up and running, start bteq client command line client. BTEQ (pronounced “bee-teek”) is a general-purpose, command-based client tool used to submit SQL queries to a Teradata Database.

    -
    -
    -
    bteq
    -
    -
    -
  32. -
  33. -

    Once in bteq, connect to your Vantage Express instance. When asked for the password, enter dbc:

    -
    -
    -
    .logon localhost/dbc
    -
    -
    -
  34. -
-
-
-
-
-

Run sample queries

-
-
-
    -
  1. -

    Using dbc user, we will create a new database called HR. Copy/paste this query and run press Enter:

    -
    -
    -
    CREATE DATABASE HR
    -AS PERMANENT = 60e6, -- 60MB
    -    SPOOL = 120e6; -- 120MB
    -
    -
    -
    - -
    -
    Were you able to run the query? - - -
    -
    -
    - -
  2. -
  3. -

    Let’s create a sample table and insert some data and query it. We will first create a table to hold employee information:

    -
    -
    -
    CREATE SET TABLE HR.Employees (
    -   GlobalID INTEGER,
    -   FirstName VARCHAR(30),
    -   LastName VARCHAR(30),
    -   DateOfBirth DATE FORMAT 'YYYY-MM-DD',
    -   JoinedDate DATE FORMAT 'YYYY-MM-DD',
    -   DepartmentCode BYTEINT
    -)
    -UNIQUE PRIMARY INDEX ( GlobalID );
    -
    -
    -
  4. -
  5. -

    Now, let’s insert a record:

    -
    -
    -
    INSERT INTO HR.Employees (
    -   GlobalID,
    -   FirstName,
    -   LastName,
    -   DateOfBirth,
    -   JoinedDate,
    -   DepartmentCode
    -)
    -VALUES (
    -   101,
    -   'Adam',
    -   'Tworkowski',
    -   '1980-01-05',
    -   '2004-08-01',
    -   01
    -);
    -
    -
    -
  6. -
  7. -

    Finally, let’s see if we can retrieve the data:

    -
    -
    -
    SELECT * FROM HR.Employees;
    -
    -
    -
    -

    You should get the following results:

    -
    -
    -
    -
    GlobalID  FirstName  LastName   DateOfBirth  JoinedDate  DepartmentCode
    ---------  ---------  ---------- -----------  ----------  --------------
    -     101  Adam       Tworkowski  1980-01-05  2004-08-01               1
    -
    -
    -
  8. -
-
-
-
-
-

Optional setup

-
-
-
    -
  • -

    If you intend to stop and start the VM, you may want to add Vantage Express to autostart. ssh to your VM and run the following commands:

    -
    -
    -
    sudo -i
    -
    -cat <<EOF >> /etc/default/virtualbox
    -VBOXAUTOSTART_DB=/etc/vbox
    -VBOXAUTOSTART_CONFIG=/etc/vbox/autostart.cfg
    -EOF
    -
    -cat <<EOF > /etc/systemd/system/vantage-express.service
    -[Unit]
    -Description=vm1
    -After=network.target virtualbox.service
    -Before=runlevel2.target shutdown.target
    -[Service]
    -User=root
    -Group=root
    -Type=forking
    -Restart=no
    -TimeoutSec=5min
    -IgnoreSIGPIPE=no
    -KillMode=process
    -GuessMainPID=no
    -RemainAfterExit=yes
    -ExecStart=/usr/bin/VBoxManage startvm vantage-express --type headless
    -ExecStop=/usr/bin/VBoxManage controlvm vantage-express savestate
    -[Install]
    -WantedBy=multi-user.target
    -EOF
    -
    -systemctl daemon-reload
    -systemctl enable vantage-express
    -systemctl start vantage-express
    -
    -
    -
  • -
  • -

    If you would like to connect to Vantage Express from the Internet, you will need to open up firewall holes to your VM. You should also change the default password to dbc user:

    -
    -
      -
    1. -

      To change the password for dbc user go to your VM and start bteq:

      -
      -
      -
      bteq
      -
      -
      -
    2. -
    3. -

      Login to your database using dbc as username and password:

      -
      -
      -
      .logon localhost/dbc
      -
      -
      -
    4. -
    5. -

      Change the password for dbc user:

      -
      -
      -
      MODIFY USER dbc AS PASSWORD = new_password;
      -
      -
      -
    6. -
    7. -

      You can now open up port 1025 to the internet:

      -
      -
      -
      aws ec2 authorize-security-group-ingress \
      -  --group-id $AWS_CUSTOM_SECURITY_GROUP_ID \
      -  --ip-permissions '[{"IpProtocol": "tcp", "FromPort": 1025, "ToPort": 1025, "IpRanges": [{"CidrIp": "0.0.0.0/0", "Description": "Allow Teradata port"}]}]'
      -
      -
      -
    8. -
    -
    -
  • -
-
-
-
-
-

Cleanup

-
-
-

To stop incurring charges, delete all the resources:

-
-
-
-
# Delete the VM
-aws ec2 terminate-instances --instance-ids $AWS_INSTANCE_ID --output text
-
-# Wait for the VM to terminate
-
-# Delete custom security group
-aws ec2 delete-security-group \
-  --group-id $AWS_CUSTOM_SECURITY_GROUP_ID
-
-# Delete internet gateway
-aws ec2 detach-internet-gateway \
-  --internet-gateway-id $AWS_INTERNET_GATEWAY_ID \
-  --vpc-id $AWS_VPC_ID &&
-  aws ec2 delete-internet-gateway \
-  --internet-gateway-id $AWS_INTERNET_GATEWAY_ID
-
-# Delete the custom route table
-aws ec2 disassociate-route-table \
-  --association-id $AWS_ROUTE_TABLE_ASSOID &&
-  aws ec2 delete-route-table \
-  --route-table-id $AWS_CUSTOM_ROUTE_TABLE_ID
-
-# Delete the public subnet
-aws ec2 delete-subnet \
-  --subnet-id $AWS_SUBNET_PUBLIC_ID
-
-# Delete the vpc
-aws ec2 delete-vpc \
-  --vpc-id $AWS_VPC_ID
-
-
-
-
-
-

Next steps

- -
-
-

Further reading

-
- -
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/run-vantage-express-on-microsoft-azure.html b/pr-preview/pr-110/run-vantage-express-on-microsoft-azure.html deleted file mode 100644 index 4ac0d8cb8..000000000 --- a/pr-preview/pr-110/run-vantage-express-on-microsoft-azure.html +++ /dev/null @@ -1,3039 +0,0 @@ - - - - - - Run Vantage Express on Azure :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Run Vantage Express on Azure

-

Author: Adam Tworkiewicz
-Last updated: August 23rd, 2022

-
-

Overview

-
-
-

This how-to demonstrates how to run Vantage Express in Microsoft Azure. Vantage Express contains a fully functional Teradata SQL Engine.

-
-
- - - - - -
- - -If do not wish to pay for cloud usage you can install Vantage Express locally using VMware, VirtualBox, or UTM. -
-
-
-
-
-

Prerequisites

-
-
-
    -
  1. -

    An Azure account. You can create one here: https://azure.microsoft.com/en-us/free/

    -
  2. -
  3. -

    az command line utility installed on your machine. You can find installation instructions here: https://docs.microsoft.com/en-us/cli/azure/install-azure-cli.

    -
  4. -
-
-
-
-
-

Installation

-
-
-
    -
  1. -

    Setup the default region to the closest region to you (to list locations run az account list-locations -o table):

    -
    -
    -
    az config set defaults.location=<location>
    -
    -
    -
  2. -
  3. -

    Create a new resource group called tdve-resource-group and add it to defaults:

    -
    -
    -
    az group create -n tdve-resource-group
    -az config set defaults.group=tdve-resource-group
    -
    -
    -
  4. -
  5. -

    To create a VM you will need an ssh key pair. If you don’t have it already, create one:

    -
    -
    -
    az sshkey create --name vantage-ssh-key
    -
    -
    -
  6. -
  7. -

    Restrict access to the private key. Replace <path_to_private_key_file> with the private key path returned by the previous command:

    -
    -
    -
    chmod 600 <path_to_private_key_file>
    -
    -
    -
  8. -
  9. -

    Create a Ubuntu VM with 4 CPU’s and 8GB of RAM, a 30GB os disk and a 60GB data disk.

    -
    -
    -
      -
    • -

      Windows

      -
    • -
    • -

      MacOS

      -
    • -
    • -

      Linux

      -
    • -
    -
    -
    -
    -
    -
    -
    az disk create -n teradata-vantage-express --size-gb 60
    -az vm create `
    -  --name teradata-vantage-express `
    -  --image UbuntuLTS `
    -  --admin-username azureuser `
    -  --ssh-key-name vantage-ssh-key `
    -  --size Standard_F4s_v2 `
    -  --public-ip-sku Standard
    -
    -$diskId = (az disk show -n teradata-vantage-express --query 'id' -o tsv) | Out-String
    -az vm disk attach --vm-name teradata-vantage-express --name $diskId
    -
    -
    -
    -
    -
    -
    -
    az disk create -n teradata-vantage-express --size-gb 60
    -az vm create \
    -  --name teradata-vantage-express \
    -  --image UbuntuLTS \
    -  --admin-username azureuser \
    -  --ssh-key-name vantage-ssh-key \
    -  --size Standard_F4s_v2 \
    -  --public-ip-sku Standard
    -
    -DISK_ID=$(az disk show -n teradata-vantage-express --query 'id' -o tsv)
    -az vm disk attach --vm-name teradata-vantage-express --name $DISK_ID
    -
    -
    -
    -
    -
    -
    -
    az disk create -n teradata-vantage-express --size-gb 60
    -az vm create \
    -  --name teradata-vantage-express \
    -  --image UbuntuLTS \
    -  --admin-username azureuser \
    -  --ssh-key-name vantage-ssh-key \
    -  --size Standard_F4s_v2 \
    -  --public-ip-sku Standard
    -
    -DISK_ID=$(az disk show -n teradata-vantage-express --query 'id' -o tsv)
    -az vm disk attach --vm-name teradata-vantage-express --name $DISK_ID
    -
    -
    -
    -
    -
    -
  10. -
  11. -

    ssh to your VM. Replace <path_to_private_key_file> and <vm_ip> with values that match your environment:

    -
    -
    -
    ssh -i <path_to_private_key_file> azureuser@<vm_ip>
    -
    -
    -
  12. -
  13. -

    Once in the VM, switch to root user:

    -
    -
    -
    sudo -i
    -
    -
    -
  14. -
  15. -

    Prepare the download directory for Vantage Express:

    -
    -
    -
    mkdir /opt/downloads
    -cd /opt/downloads
    -
    -
    -
  16. -
  17. -

    Mount the data disk:

    -
    -
    -
    parted /dev/sdc --script mklabel gpt mkpart xfspart xfs 0% 100%
    -mkfs.xfs /dev/sdc1
    -partprobe /dev/sdc1
    -export DISK_UUID=$(blkid | grep sdc1 | cut -d"\"" -f2)
    -echo "UUID=$DISK_UUID  /opt/downloads   xfs   defaults,nofail   1   2" >> /etc/fstab
    -
    -
    -
  18. -
  19. -

    Install VirtualBox and 7zip:

    -
    -
    -
    apt update && apt-get install p7zip-full p7zip-rar virtualbox -y
    -
    -
    -
  20. -
  21. -

    Retrieve the curl command to download Vantage Express.

    -
    -
      -
    1. -

      Go to Vantage Expess download page (registration required).

      -
    2. -
    3. -

      Click on the latest download link, e.g. "Vantage Express 17.20". You will see a license agreement popup. Don’t accept the license yet.

      -
    4. -
    5. -

      Open the network view in your browser. For example, in Chrome press F12 and navigate to Network tab:

      -
      -
      -Browser Network Tab -
      -
      -
    6. -
    7. -

      Accept the license by clicking on I Agree button and cancel the download.

      -
    8. -
    9. -

      In the network view, find the last request that starts with VantageExpress. Right click on it and select Copy → Copy as cURL:

      -
      -
      -Browser Copy culr -
      -
      -
    10. -
    -
    -
  22. -
  23. -

    Head back to the ssh session and download Vantage Express by pasting the curl command. Add -o ve.7z to the command to save the download to file named ve.7z. You can remove all the HTTP headers, e.g.:

    -
    -
    -
    curl -o ve.7z 'http://d289lrf5tw1zls.cloudfront.net/database/teradata-express/VantageExpress17.20_Sles12_202108300444.7z?Expires=1638719978&Signature=GKBkNvery_long_signature__&Key-Pair-Id=********************'
    -
    -
    -
  24. -
  25. -

    Unzip the downloaded file. It will take several minutes:

    -
    -
    -
    7z x ve.7z
    -
    -
    -
  26. -
  27. -

    Start the VM in VirtualBox. The command will return immediately but the VM init process will take several minutes:

    -
    -
    -
    export VM_IMAGE_DIR="/opt/downloads/VantageExpress17.20_Sles12"
    -DEFAULT_VM_NAME="vantage-express"
    -VM_NAME="${VM_NAME:-$DEFAULT_VM_NAME}"
    -vboxmanage createvm --name "$VM_NAME" --register --ostype openSUSE_64
    -vboxmanage modifyvm "$VM_NAME" --ioapic on --memory 6000 --vram 128 --nic1 nat --cpus 4
    -vboxmanage storagectl "$VM_NAME" --name "SATA Controller" --add sata --controller IntelAhci
    -vboxmanage storageattach "$VM_NAME" --storagectl "SATA Controller" --port 0 --device 0 --type hdd --medium  "$(find $VM_IMAGE_DIR -name '*disk1*')"
    -vboxmanage storageattach "$VM_NAME" --storagectl "SATA Controller" --port 1 --device 0 --type hdd --medium  "$(find $VM_IMAGE_DIR -name '*disk2*')"
    -vboxmanage storageattach "$VM_NAME" --storagectl "SATA Controller" --port 2 --device 0 --type hdd --medium  "$(find $VM_IMAGE_DIR -name '*disk3*')"
    -vboxmanage modifyvm "$VM_NAME" --natpf1 "tdssh,tcp,,4422,,22"
    -vboxmanage modifyvm "$VM_NAME" --natpf1 "tddb,tcp,,1025,,1025"
    -vboxmanage startvm "$VM_NAME" --type headless
    -vboxmanage controlvm "$VM_NAME" keyboardputscancode 1c 1c
    -
    -
    -
  28. -
  29. -

    ssh to Vantage Express VM. Use root as password:

    -
    -
    -
    ssh -p 4422 root@localhost
    -
    -
    -
  30. -
  31. -

    Validate that the DB is up:

    -
    -
    -
    pdestate -a
    -
    -
    -
    -

    If the command returns PDE state is RUN/STARTED. DBS state is 5: Logons are enabled - The system is quiescent, it means that Vantage Express has started. -If the status is different, repeat pdestate -a till you get the correct status.

    -
    -
  32. -
  33. -

    Once Vantage Express is up and running, start bteq client command line client. BTEQ (pronounced “bee-teek”) is a general-purpose, command-based client tool used to submit SQL queries to a Teradata Database.

    -
    -
    -
    bteq
    -
    -
    -
  34. -
  35. -

    Once in bteq, connect to your Vantage Express instance. When asked for the password, enter dbc:

    -
    -
    -
    .logon localhost/dbc
    -
    -
    -
  36. -
-
-
-
-
-

Run sample queries

-
-
-
    -
  1. -

    Using dbc user, we will create a new database called HR. Copy/paste this query and run press Enter:

    -
    -
    -
    CREATE DATABASE HR
    -AS PERMANENT = 60e6, -- 60MB
    -    SPOOL = 120e6; -- 120MB
    -
    -
    -
    - -
    -
    Were you able to run the query? - - -
    -
    -
    - -
  2. -
  3. -

    Let’s create a sample table and insert some data and query it. We will first create a table to hold employee information:

    -
    -
    -
    CREATE SET TABLE HR.Employees (
    -   GlobalID INTEGER,
    -   FirstName VARCHAR(30),
    -   LastName VARCHAR(30),
    -   DateOfBirth DATE FORMAT 'YYYY-MM-DD',
    -   JoinedDate DATE FORMAT 'YYYY-MM-DD',
    -   DepartmentCode BYTEINT
    -)
    -UNIQUE PRIMARY INDEX ( GlobalID );
    -
    -
    -
  4. -
  5. -

    Now, let’s insert a record:

    -
    -
    -
    INSERT INTO HR.Employees (
    -   GlobalID,
    -   FirstName,
    -   LastName,
    -   DateOfBirth,
    -   JoinedDate,
    -   DepartmentCode
    -)
    -VALUES (
    -   101,
    -   'Adam',
    -   'Tworkowski',
    -   '1980-01-05',
    -   '2004-08-01',
    -   01
    -);
    -
    -
    -
  6. -
  7. -

    Finally, let’s see if we can retrieve the data:

    -
    -
    -
    SELECT * FROM HR.Employees;
    -
    -
    -
    -

    You should get the following results:

    -
    -
    -
    -
    GlobalID  FirstName  LastName   DateOfBirth  JoinedDate  DepartmentCode
    ---------  ---------  ---------- -----------  ----------  --------------
    -     101  Adam       Tworkowski  1980-01-05  2004-08-01               1
    -
    -
    -
  8. -
-
-
-
-
-

Optional setup

-
-
-
    -
  • -

    If you intend to stop and start the VM, you may want to add Vantage Express to autostart. ssh to your VM and run the following commands:

    -
    -
    -
    sudo -i
    -
    -cat <<EOF >> /etc/default/virtualbox
    -VBOXAUTOSTART_DB=/etc/vbox
    -VBOXAUTOSTART_CONFIG=/etc/vbox/autostart.cfg
    -EOF
    -
    -cat <<EOF > /etc/systemd/system/vantage-express.service
    -[Unit]
    -Description=vm1
    -After=network.target virtualbox.service
    -Before=runlevel2.target shutdown.target
    -[Service]
    -User=root
    -Group=root
    -Type=forking
    -Restart=no
    -TimeoutSec=5min
    -IgnoreSIGPIPE=no
    -KillMode=process
    -GuessMainPID=no
    -RemainAfterExit=yes
    -ExecStart=/usr/bin/VBoxManage startvm vantage-express --type headless
    -ExecStop=/usr/bin/VBoxManage controlvm vantage-express savestate
    -[Install]
    -WantedBy=multi-user.target
    -EOF
    -
    -systemctl daemon-reload
    -systemctl enable vantage-express
    -systemctl start vantage-express
    -
    -
    -
  • -
  • -

    If you would like to connect to Vantage Express from the Internet, you will need to open up firewall holes to your VM. You should also change the default password to dbc user:

    -
    -
      -
    1. -

      To change the password for dbc user go to your VM and start bteq:

      -
      -
      -
      bteq
      -
      -
      -
    2. -
    3. -

      Login to your database using dbc as username and password:

      -
      -
      -
      .logon localhost/dbc
      -
      -
      -
    4. -
    5. -

      Change the password for dbc user:

      -
      -
      -
      MODIFY USER dbc AS PASSWORD = new_password;
      -
      -
      -
    6. -
    7. -

      You can now open up port 1025 to the internet using gcloud command:

      -
      -
      -
      az vm open-port --name teradata-vantage-express --port 1025
      -
      -
      -
    8. -
    -
    -
  • -
-
-
-
-
-

Cleanup

-
-
-

To stop incurring charges, delete all the resources associated with the resource group:

-
-
-
-
az group delete --no-wait -n tdve-resource-group
-
-
-
-
-
-

Next steps

- -
-
-

Further reading

-
- -
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/search-index.js b/pr-preview/pr-110/search-index.js deleted file mode 100644 index 3d820d4c4..000000000 --- a/pr-preview/pr-110/search-index.js +++ /dev/null @@ -1 +0,0 @@ -initSearch(lunr, {"index":{"version":"2.3.8","fields":["title","name","text","component"],"fieldVectors":[["title//business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html",[0,12.515,1,39.686,2,31.27,3,29.261,4,12.198,5,10.859]],["name//business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html",[0,0.154,2,0.384,3,0.36,4,0.15,5,0.133,6,0.488,7,0.326,8,0.144,9,0.133]],["text//business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html",[0,1.464,2,8.696,3,8.171,4,2.014,5,2.196,7,1.563,8,2.997,9,2.313,10,0.538,11,1.282,12,1.282,13,1.282,14,1.282,15,0.534,16,0.526,17,0.945,18,0.919,19,0.689,20,1.306,21,0.652,22,0.793,23,1.449,24,2.458,25,0.768,26,0.632,27,2.258,28,0.756,29,0.681,30,2.758,31,7.661,32,5.932,33,1.282,34,2.204,35,3.44,36,1.105,37,0.945,38,1.531,39,3.296,40,2.287,41,1.306,42,0.681,43,1.175,44,1.105,45,1.282,46,1.282,47,1.282,48,1.037,49,2.146,50,0.919,51,2.947,52,1.803,53,0.945,54,1.052,55,2.341,56,0.838,57,1.282,58,1.282,59,1.01,60,0.975,61,1.282,62,1.282,63,0.945,64,1.052,65,0.838,66,1.01,67,0.945,68,0.793,69,0.919,70,0.975,71,1.282,72,1.282,73,1.678,74,2,75,0.681,76,3.557,77,4.001,78,1.282,79,1.175,80,0.856,81,0.975,82,2.416,83,2.962,84,0.856,85,0.983,86,0.793,87,1.091,88,1.306,89,3.657,90,2.007,91,1.704,92,0.838,93,0.807,94,0.78,95,1.282,96,1.845,97,1.01,98,0.945,99,1.052,100,0.698,101,1.046,102,0.735,103,2.467,104,1.101,105,2.05,106,0.896,107,1.081,108,0.856,109,0.698,110,0.896,111,0.768,112,0.875,113,1.175,114,1.282,115,1.052,116,1.282,117,1.282,118,1.052,119,0.997,120,1.101,121,1.203,122,0.768,123,0.559,124,0.626,125,0.997,126,0.626,127,0.526,128,1.643,129,2.788,130,0.822,131,1.259,132,1.531,133,0.78,134,1.299,135,1.827,136,1.282,137,1.105,138,1.105,139,1.178,140,1.282,141,0.875,142,4.663,143,1.105,144,1.01,145,0.896,146,1.726,147,1.781,148,2.341,149,2.171,150,1.949,151,0.919,152,1.282,153,0.681,154,0.756,155,1.01,156,1.091,157,0.919,158,1.282,159,1.678,160,1.803,161,1.948,162,0.875,163,0.875,164,1.105,165,1.01,166,1.598,167,0.689,168,0.559,169,1.282,170,1.105,171,0.856,172,2.336,173,1.678,174,1.105,175,1.282,176,0.568,177,0.78,178,2.035,179,0.78,180,1.29,181,0.689,182,0.975,183,1.797,184,0.919,185,2.722,186,1.449,187,3.657,188,1.282,189,0.659,190,1.726,191,0.614,192,0.793,193,1.282,194,1.052,195,1.105,196,1.282,197,0.78,198,0.945,199,0.482,200,1.175,201,0.659,202,1.282,203,1.306,204,1.105,205,1.282,206,0.856,207,0.638,208,1.037,209,0.838,210,0.975,211,0.919,212,1.01,213,1.627,214,1.455,215,1.175,216,0.689,217,0.875,218,1.598,219,0.935,220,1.175,221,0.945,222,1.282,223,0.756,224,0.756,225,1.052,226,1.402,227,0.856,228,0.725,229,1.052,230,0.756,231,0.875,232,0.768,233,0.745,234,0.875,235,2.035,236,0.603,237,1.726,238,0.822,239,0.768,240,1.282,241,1.175,242,1.282,243,0.568,244,0.446,245,0.563,246,0.563,247,0.568,248,0.997,249,0.568,250,0.568,251,0.53,252,0.526]],["component//business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html",[253,0.408]],["title//business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_overview",[254,35.084]],["name//business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_overview",[]],["text//business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_overview",[]],["component//business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_overview",[]],["title//business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_prerequisites",[255,36.808]],["name//business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_prerequisites",[]],["text//business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_prerequisites",[]],["component//business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_prerequisites",[]],["title//business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_getting_started",[86,41.731,87,31.435]],["name//business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_getting_started",[]],["text//business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_getting_started",[]],["component//business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_getting_started",[]],["title//business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_install_power_bi_desktop",[2,39.371,3,36.841,31,36.841,91,18.339]],["name//business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_install_power_bi_desktop",[]],["text//business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_install_power_bi_desktop",[]],["component//business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_install_power_bi_desktop",[]],["title//business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_install_the_net_data_provider_for_teradata",[8,13.064,9,12.104,89,40.549,90,22.255,91,16.236]],["name//business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_install_the_net_data_provider_for_teradata",[]],["text//business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_install_the_net_data_provider_for_teradata",[]],["component//business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_install_the_net_data_provider_for_teradata",[]],["title//business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_connect_to_teradata_vantage",[5,15.706,9,15.706,30,22.919]],["name//business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_connect_to_teradata_vantage",[]],["text//business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_connect_to_teradata_vantage",[]],["component//business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_connect_to_teradata_vantage",[]],["title//business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_next_steps",[216,36.252,256,28.304]],["name//business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_next_steps",[]],["text//business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_next_steps",[]],["component//business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_next_steps",[]],["title//advanced-dbt.html",[4,12.198,5,10.859,9,10.859,171,26.492,257,20.845,258,21.334]],["name//advanced-dbt.html",[171,1.258,257,0.99]],["text//advanced-dbt.html",[0,1.978,4,1.807,5,1.489,7,0.794,8,2.782,9,1.981,10,0.499,15,0.495,16,2.415,21,2.234,22,1.352,23,1.352,25,2.632,26,0.586,29,1.161,30,0.475,34,0.924,35,3.739,37,0.876,40,0.681,41,0.663,42,0.632,48,0.968,50,0.852,51,0.672,52,0.663,67,0.876,68,0.736,75,1.161,82,1.59,85,0.499,87,0.554,90,0.598,91,1.613,101,2.627,103,1.161,104,0.559,105,1.558,106,0.831,107,1.656,110,1.527,119,1.602,120,1.028,121,0.611,123,1.916,124,0.58,125,0.931,126,0.58,127,0.897,130,1.401,131,1.174,133,0.723,134,1.766,150,3.151,153,0.632,159,0.852,163,0.811,168,3.479,171,2.933,176,0.527,181,1.174,183,0.535,189,0.611,190,1.312,191,2.105,199,0.822,201,0.611,206,2.024,208,1.666,213,1.236,214,2.451,219,1.21,223,2.218,224,1.788,228,1.235,236,0.559,237,2.235,243,0.527,244,0.414,245,0.522,246,0.96,247,0.527,248,0.931,249,0.527,250,0.527,251,0.492,252,0.897,256,0.499,257,4.948,258,1.174,259,1.189,260,1.189,261,1.189,262,0.639,263,3.268,264,2.779,265,1.099,266,0.976,267,1.354,268,0.632,269,0.811,270,1.189,271,1.429,272,3.342,273,2.306,274,3.378,275,2.612,276,1.458,277,1.09,278,0.904,279,2.566,280,2.86,281,1.189,282,1.944,283,1.662,284,6.273,285,1.883,286,2.421,287,0.976,288,0.976,289,0.976,290,1.024,291,2.327,292,1.525,293,0.937,294,1.982,295,1.527,296,0.723,297,1.491,298,2.837,299,0.749,300,1.189,301,2.306,302,0.904,303,2.024,304,0.723,305,0.852,306,0.976,307,0.749,308,0.777,309,1.883,310,0.663,311,0.976,312,0.736,313,1.189,314,1.401,315,2.118,316,0.712,317,0.811,318,0.736,319,1.883,320,0.811,321,1.189,322,0.794,323,1.235,324,2.069,325,1.189,326,1.09,327,0.592,328,0.762,329,1.649,330,0.663,331,1.189,332,0.647,333,1.883,334,2.998,335,1.09,336,1.09,337,2.289,338,1.252,339,1.788,340,2.118,341,0.598,342,1.219,343,0.736,344,1.09,345,0.749,346,1.09,347,1.401,348,0.604,349,1.189,350,1.909,351,1.911,352,0.723,353,0.811,354,1.09,355,1.189,356,1.189,357,1.135,358,1.024,359,0.852,360,0.777,361,0.681,362,1.088,363,1.189,364,1.189,365,0.794,366,1.721,367,0.592,368,1.123,369,0.624,370,0.937,371,1.09,372,0.976,373,0.976,374,1.024,375,1.037,376,1.09,377,1.09,378,1.024,379,0.976,380,0.691,381,0.811,382,0.701,383,0.617,384,1.793,385,0.691,386,0.811,387,0.794,388,1.09,389,1.09,390,1.429,391,1.189,392,0.831,393,1.189,394,0.794,395,1.111,396,1.189,397,3.117,398,2.185,399,0.831,400,0.811,401,0.904,402,0.937,403,1.024,404,2.696,405,0.617,406,1.09,407,1.024,408,0.976,409,1.189,410,0.811,411,0.904,412,1.189,413,0.762,414,0.831,415,1.09,416,0.904,417,1.024,418,1.189,419,0.937,420,3.032,421,1.352,422,1.189,423,1.662,424,0.976,425,1.189,426,1.235,427,1.189,428,0.794,429,1.189,430,0.831,431,0.681,432,0.647,433,0.598,434,0.831,435,1.376,436,0.663,437,2.185,438,0.701,439,3.24,440,3.032,441,1.189,442,1.491,443,0.794,444,3.032,445,1.189,446,0.852,447,1.189,448,1.458,449,2.612,450,2.003,451,0.632,452,0.831,453,1.883,454,1.458,455,0.831,456,1.09,457,1.09,458,0.617,459,1.09,460,0.736,461,1.189,462,0.852,463,1.189,464,0.976,465,0.937,466,1.09,467,0.976,468,1.189,469,0.723,470,1.189,471,0.937,472,0.647,473,0.672,474,0.701,475,2.003,476,0.701,477,1.365,478,0.976,479,1.189,480,0.876,481,1.189,482,1.09,483,0.937,484,1.189,485,1.189,486,1.189,487,1.189,488,0.736,489,0.976,490,1.189,491,0.794]],["component//advanced-dbt.html",[253,0.408]],["title//advanced-dbt.html#_overview",[254,35.084]],["name//advanced-dbt.html#_overview",[]],["text//advanced-dbt.html#_overview",[]],["component//advanced-dbt.html#_overview",[]],["title//advanced-dbt.html#_prerequisites",[255,36.808]],["name//advanced-dbt.html#_prerequisites",[]],["text//advanced-dbt.html#_prerequisites",[]],["component//advanced-dbt.html#_prerequisites",[]],["title//advanced-dbt.html#_demo_project_setup",[263,26.998,271,37.537,383,29.816]],["name//advanced-dbt.html#_demo_project_setup",[]],["text//advanced-dbt.html#_demo_project_setup",[]],["component//advanced-dbt.html#_demo_project_setup",[]],["title//advanced-dbt.html#_data_warehouse_setup",[8,16.952,324,39.171,383,29.816]],["name//advanced-dbt.html#_data_warehouse_setup",[]],["text//advanced-dbt.html#_data_warehouse_setup",[]],["component//advanced-dbt.html#_data_warehouse_setup",[]],["title//advanced-dbt.html#_configure_dbt",[199,25.376,257,35.421]],["name//advanced-dbt.html#_configure_dbt",[]],["text//advanced-dbt.html#_configure_dbt",[]],["component//advanced-dbt.html#_configure_dbt",[]],["title//advanced-dbt.html#_about_the_teddy_retailers_warehouse",[324,39.171,406,52.616,407,49.463]],["name//advanced-dbt.html#_about_the_teddy_retailers_warehouse",[]],["text//advanced-dbt.html#_about_the_teddy_retailers_warehouse",[]],["component//advanced-dbt.html#_about_the_teddy_retailers_warehouse",[]],["title//advanced-dbt.html#_the_data_models",[8,19.915,168,29.405]],["name//advanced-dbt.html#_the_data_models",[]],["text//advanced-dbt.html#_the_data_models",[]],["component//advanced-dbt.html#_the_data_models",[]],["title//advanced-dbt.html#_the_sources",[35,40.696]],["name//advanced-dbt.html#_the_sources",[]],["text//advanced-dbt.html#_the_sources",[]],["component//advanced-dbt.html#_the_sources",[]],["title//advanced-dbt.html#_the_dbt_models",[168,29.405,257,35.421]],["name//advanced-dbt.html#_the_dbt_models",[]],["text//advanced-dbt.html#_the_dbt_models",[]],["component//advanced-dbt.html#_the_dbt_models",[]],["title//advanced-dbt.html#_staging_area",[423,51.296,424,55.344]],["name//advanced-dbt.html#_staging_area",[]],["text//advanced-dbt.html#_staging_area",[]],["component//advanced-dbt.html#_staging_area",[]],["title//advanced-dbt.html#_core_area",[315,47.119,424,55.344]],["name//advanced-dbt.html#_core_area",[]],["text//advanced-dbt.html#_core_area",[]],["component//advanced-dbt.html#_core_area",[]],["title//advanced-dbt.html#_incremental_materializations",[272,51.296,273,51.296]],["name//advanced-dbt.html#_incremental_materializations",[]],["text//advanced-dbt.html#_incremental_materializations",[]],["component//advanced-dbt.html#_incremental_materializations",[]],["title//advanced-dbt.html#_macro_assisted_assertions",[245,25.229,275,49.463,456,52.616]],["name//advanced-dbt.html#_macro_assisted_assertions",[]],["text//advanced-dbt.html#_macro_assisted_assertions",[]],["component//advanced-dbt.html#_macro_assisted_assertions",[]],["title//advanced-dbt.html#_teradata_modifiers",[9,18.451,206,45.017]],["name//advanced-dbt.html#_teradata_modifiers",[]],["text//advanced-dbt.html#_teradata_modifiers",[]],["component//advanced-dbt.html#_teradata_modifiers",[]],["title//advanced-dbt.html#_running_transformations",[107,22.556,223,39.784]],["name//advanced-dbt.html#_running_transformations",[]],["text//advanced-dbt.html#_running_transformations",[]],["component//advanced-dbt.html#_running_transformations",[]],["title//advanced-dbt.html#_create_dimensional_model_with_baseline_data",[0,13.951,8,13.064,168,19.289,404,31.713,475,40.549]],["name//advanced-dbt.html#_create_dimensional_model_with_baseline_data",[]],["text//advanced-dbt.html#_create_dimensional_model_with_baseline_data",[]],["component//advanced-dbt.html#_create_dimensional_model_with_baseline_data",[]],["title//advanced-dbt.html#_test_the_data",[8,19.915,123,29.405]],["name//advanced-dbt.html#_test_the_data",[]],["text//advanced-dbt.html#_test_the_data",[]],["component//advanced-dbt.html#_test_the_data",[]],["title//advanced-dbt.html#_running_sample_queries",[107,19.2,219,22.919,477,25.854]],["name//advanced-dbt.html#_running_sample_queries",[]],["text//advanced-dbt.html#_running_sample_queries",[]],["component//advanced-dbt.html#_running_sample_queries",[]],["title//advanced-dbt.html#_mocking_the_elt_process",[29,30.497,283,43.664,336,52.616]],["name//advanced-dbt.html#_mocking_the_elt_process",[]],["text//advanced-dbt.html#_mocking_the_elt_process",[]],["component//advanced-dbt.html#_mocking_the_elt_process",[]],["title//advanced-dbt.html#_summary",[492,40.696]],["name//advanced-dbt.html#_summary",[]],["text//advanced-dbt.html#_summary",[]],["component//advanced-dbt.html#_summary",[]],["title//create-parquet-files-in-object-storage.html",[0,13.951,134,17.785,327,22.029,493,31.713,494,22.488]],["name//create-parquet-files-in-object-storage.html",[0,0.267,134,0.34,327,0.421,493,0.607,494,0.43]],["text//create-parquet-files-in-object-storage.html",[0,2.385,4,1.72,5,2.324,8,2.509,9,1.102,10,0.703,15,0.698,16,0.688,19,0.901,26,1.985,34,1.261,39,0.843,48,0.743,75,1.584,80,1.99,82,2.622,85,2.82,87,0.781,90,0.843,100,2.191,101,1.799,104,0.788,107,0.561,110,3.412,119,1.716,120,1.402,122,1.004,123,0.731,124,0.818,125,0.714,126,0.818,127,2.005,131,0.901,134,2.702,135,0.948,149,1.622,150,1.69,154,0.989,161,1.456,167,0.901,178,1.055,181,0.901,183,2.199,189,1.532,190,1.742,201,0.861,208,4.357,213,2.74,217,1.144,218,1.144,219,2.235,230,0.989,236,1.402,239,1.786,243,0.743,244,0.583,245,0.737,246,0.737,247,0.743,248,1.27,249,0.743,250,0.743,251,0.693,252,0.688,256,0.703,282,1.075,292,0.843,294,3.193,316,2.412,327,4.093,329,1.622,330,1.664,351,2.047,357,2.536,361,0.961,375,1.415,385,0.974,394,1.119,410,1.144,431,1.709,432,1.622,433,2.026,436,0.935,442,1.144,458,0.871,472,1.622,473,0.948,476,0.989,488,1.037,493,5.421,494,4.445,495,1.676,496,1.676,497,1.171,498,1.536,499,4.276,500,1.815,501,1.95,502,3.009,503,2.218,504,3.022,505,4.231,506,1.444,507,2.761,508,1.376,509,1.99,510,1.444,511,1.075,512,1.202,513,1.02,514,1.037,515,0.912,516,2.688,517,0.861,518,0.826,519,1.055,520,1.444,521,1.321,522,3.132,523,2.814,524,0.948,525,4.593,526,1.444,527,1.075,528,1.236,529,1.536,530,1.584,531,2.94,532,2.688,533,1.676,534,1.676,535,1.676,536,4.027,537,1.202,538,1.676,539,2.447,540,1.676,541,1.676,542,1.664,543,0.871,544,1.376,545,1.536,546,1.709,547,0.811,548,5.597,549,1.376,550,2.569,551,1.444,552,1.444,553,1.878,554,2.733,555,4.027,556,2.569,557,2.083,558,2.982,559,1.99,560,1.676,561,2.982,562,2.982,563,1.144,564,2.277,565,1.676,566,1.676,567,1.676,568,2.982,569,2.982,570,1.643,571,2.982,572,2.982,573,1.733,574,2.982,575,2.982,576,1.709,577,2.982,578,2.198,579,1.321,580,1.119,581,1.676,582,2.982,583,2.569,584,1.536,585,1.676,586,1.536,587,1.536,588,1.676,589,1.275,590,1.236,591,1.096,592,0.961,593,0.961,594,1.99,595,1.202,596,2.982,597,1.144,598,1.321,599,1.676,600,1.444,601,1.144,602,1.376,603,1.236,604,4.027,605,4.027,606,4.027,607,1.676,608,1.536,609,1.144,610,1.444,611,0.698]],["component//create-parquet-files-in-object-storage.html",[253,0.408]],["title//create-parquet-files-in-object-storage.html#_overview",[254,35.084]],["name//create-parquet-files-in-object-storage.html#_overview",[]],["text//create-parquet-files-in-object-storage.html#_overview",[]],["component//create-parquet-files-in-object-storage.html#_overview",[]],["title//create-parquet-files-in-object-storage.html#_prerequisites",[255,36.808]],["name//create-parquet-files-in-object-storage.html#_prerequisites",[]],["text//create-parquet-files-in-object-storage.html#_prerequisites",[]],["component//create-parquet-files-in-object-storage.html#_prerequisites",[]],["title//create-parquet-files-in-object-storage.html#_create_a_parquet_file_with_write_nos_function",[0,13.951,134,17.785,493,31.713,525,36.305,531,23.236]],["name//create-parquet-files-in-object-storage.html#_create_a_parquet_file_with_write_nos_function",[]],["text//create-parquet-files-in-object-storage.html#_create_a_parquet_file_with_write_nos_function",[]],["component//create-parquet-files-in-object-storage.html#_create_a_parquet_file_with_write_nos_function",[]],["title//create-parquet-files-in-object-storage.html#_summary",[492,40.696]],["name//create-parquet-files-in-object-storage.html#_summary",[]],["text//create-parquet-files-in-object-storage.html#_summary",[]],["component//create-parquet-files-in-object-storage.html#_summary",[]],["title//create-parquet-files-in-object-storage.html#_further_reading",[244,23.463,611,28.096]],["name//create-parquet-files-in-object-storage.html#_further_reading",[]],["text//create-parquet-files-in-object-storage.html#_further_reading",[]],["component//create-parquet-files-in-object-storage.html#_further_reading",[]],["title//dbt.html",[5,15.706,9,15.706,257,30.15]],["name//dbt.html",[257,1.675]],["text//dbt.html",[0,2.465,3,1.108,4,1.937,5,1.725,8,2.846,9,1.956,10,0.631,15,0.626,16,0.617,21,0.764,22,1.673,26,2.854,28,0.887,30,0.6,34,1.143,35,1.347,48,1.198,50,1.939,52,1.509,56,1.768,69,2.643,74,1.673,75,1.437,82,1.143,85,0.631,86,0.93,87,1.261,91,1.653,98,1.108,101,2.586,104,0.707,107,1.233,119,1.919,120,0.707,121,0.772,123,3.117,124,0.734,125,1.152,126,0.734,127,0.617,133,2.244,134,3.143,135,0.85,139,0.756,146,1.108,149,2.006,150,2.834,156,0.701,168,3.408,176,1.198,181,1.454,183,0.677,191,1.295,199,1.387,201,0.772,208,1.996,213,3.669,223,2.658,224,2.175,227,1.003,228,0.85,229,2.219,236,0.707,238,0.964,243,0.666,244,0.523,245,0.661,246,0.661,247,0.666,248,1.152,249,0.666,250,0.666,251,1.118,252,0.617,256,0.631,257,5.703,258,0.808,262,0.808,263,1.734,267,0.671,277,1.378,285,1.295,286,1.49,287,1.233,288,1.233,289,1.233,290,1.295,292,1.855,294,2.946,295,1.889,296,0.915,297,1.845,298,2.113,299,0.946,301,2.057,305,1.077,306,1.233,307,0.946,308,0.983,311,1.233,314,1.734,315,1.05,316,0.9,317,1.026,318,0.93,332,0.818,337,1.646,338,1.55,339,0.887,340,1.889,341,1.36,342,0.839,343,0.93,344,1.378,345,0.946,346,1.378,351,0.764,357,2.34,358,1.295,359,1.939,360,0.983,366,1.184,367,1.347,368,1.894,369,0.789,370,1.184,371,1.378,372,1.233,373,1.233,374,1.295,375,1.283,376,1.378,377,1.378,378,1.295,379,1.233,380,1.572,381,1.026,382,1.595,383,1.405,384,2.219,385,0.874,386,1.026,387,1.003,394,1.003,395,1.375,396,1.471,397,1.703,399,1.05,401,1.143,404,4.841,405,2.34,426,2.084,433,0.756,434,1.05,436,1.509,460,0.93,469,0.915,473,2.547,474,2.658,476,0.887,477,0.677,489,1.233,500,3.163,503,0.828,511,0.964,512,1.077,515,1.471,531,0.789,543,0.781,546,0.861,547,0.727,557,1.05,563,1.845,573,0.874,579,4.095,612,0.887,613,0.887,614,1.378,615,1.233,616,1.233,617,1.184,618,1.143,619,1.184,620,1.503,621,1.378,622,1.378,623,1.378,624,6.16,625,1.143,626,1.108,627,1.503,628,5.125,629,1.295,630,1.572,631,1.295,632,1.05,633,1.378,634,1.233,635,1.503,636,1.503,637,1.077,638,1.503,639,1.378,640,3.379,641,3.074,642,1.295,643,1.233,644,1.295,645,1.503,646,1.503,647,1.503,648,1.378,649,1.295,650,0.861,651,1.003,652,1.503,653,1.184,654,1.378,655,1.378,656,1.378,657,1.378,658,0.946,659,1.503,660,0.983,661,1.378,662,1.378,663,1.143,664,1.143,665,1.05,666,1.503,667,0.964,668,1.378,669,0.764,670,1.143,671,1.295,672,1.184,673,1.026,674,1.503,675,1.378,676,1.233,677,1.378,678,1.503,679,0.915,680,1.503,681,1.503,682,1.378,683,1.003,684,1.503,685,1.378,686,1.295,687,1.003,688,0.964,689,1.295,690,1.184]],["component//dbt.html",[253,0.408]],["title//dbt.html#_overview",[254,35.084]],["name//dbt.html#_overview",[]],["text//dbt.html#_overview",[]],["component//dbt.html#_overview",[]],["title//dbt.html#_prerequisites",[255,36.808]],["name//dbt.html#_prerequisites",[]],["text//dbt.html#_prerequisites",[]],["component//dbt.html#_prerequisites",[]],["title//dbt.html#_install_dbt",[91,24.751,257,35.421]],["name//dbt.html#_install_dbt",[]],["text//dbt.html#_install_dbt",[]],["component//dbt.html#_install_dbt",[]],["title//dbt.html#_configure_dbt",[199,25.376,257,35.421]],["name//dbt.html#_configure_dbt",[]],["text//dbt.html#_configure_dbt",[]],["component//dbt.html#_configure_dbt",[]],["title//dbt.html#_about_the_jaffle_shop_warehouse",[324,39.171,617,45.229,618,43.664]],["name//dbt.html#_about_the_jaffle_shop_warehouse",[]],["text//dbt.html#_about_the_jaffle_shop_warehouse",[]],["component//dbt.html#_about_the_jaffle_shop_warehouse",[]],["title//dbt.html#_run_dbt",[107,22.556,257,35.421]],["name//dbt.html#_run_dbt",[]],["text//dbt.html#_run_dbt",[]],["component//dbt.html#_run_dbt",[]],["title//dbt.html#_create_raw_data_tables",[0,15.758,8,14.756,213,20.373,628,35.82]],["name//dbt.html#_create_raw_data_tables",[]],["text//dbt.html#_create_raw_data_tables",[]],["component//dbt.html#_create_raw_data_tables",[]],["title//dbt.html#_create_the_dimensional_model",[0,18.102,168,25.03,404,41.15]],["name//dbt.html#_create_the_dimensional_model",[]],["text//dbt.html#_create_the_dimensional_model",[]],["component//dbt.html#_create_the_dimensional_model",[]],["title//dbt.html#_test_the_data",[8,19.915,123,29.405]],["name//dbt.html#_test_the_data",[]],["text//dbt.html#_test_the_data",[]],["component//dbt.html#_test_the_data",[]],["title//dbt.html#_generate_documentation",[26,33.248,474,39.784]],["name//dbt.html#_generate_documentation",[]],["text//dbt.html#_generate_documentation",[]],["component//dbt.html#_generate_documentation",[]],["title//dbt.html#_summary",[492,40.696]],["name//dbt.html#_summary",[]],["text//dbt.html#_summary",[]],["component//dbt.html#_summary",[]],["title//dbt.html#_further_reading",[244,23.463,611,28.096]],["name//dbt.html#_further_reading",[]],["text//dbt.html#_further_reading",[]],["component//dbt.html#_further_reading",[]],["title//fastload.html",[107,14.796,413,28.373,691,36.305,692,28.373,693,33.65]],["name//fastload.html",[693,2.426]],["text//fastload.html",[0,1.842,4,2.002,5,1.862,8,2.407,9,1.376,10,0.443,15,0.816,16,0.434,19,0.568,23,0.653,28,0.623,34,1.7,35,0.526,39,0.531,42,0.561,48,1.515,51,1.107,73,0.757,75,0.561,76,0.72,80,1.307,82,1.7,85,0.443,87,1.276,94,0.643,98,0.778,101,0.472,104,0.497,107,1.954,111,1.173,119,0.834,121,0.542,123,0.46,124,0.515,125,0.45,126,0.515,127,0.434,128,1.738,133,0.643,134,3.412,145,1.368,149,0.574,150,2.599,153,0.561,176,1.213,177,0.643,180,0.582,181,2.703,183,0.476,190,2.679,203,0.589,207,1.364,208,4.205,213,3.737,214,2.789,219,0.782,224,0.623,226,0.632,232,1.64,234,0.72,236,0.497,239,0.632,243,0.468,244,0.681,245,0.464,246,0.464,247,0.468,248,0.834,249,0.468,250,0.468,251,0.437,252,0.434,258,1.053,267,0.472,274,2.334,292,0.985,298,0.605,312,1.212,317,0.72,323,0.597,327,1.364,328,0.677,332,0.574,334,1.079,338,0.605,341,0.985,342,0.589,343,0.653,345,0.665,348,0.537,357,1.776,365,1.307,380,1.138,381,0.72,386,2.334,387,1.307,390,1.281,397,0.665,405,2.088,411,0.803,413,2.193,414,0.738,421,0.653,431,0.605,432,1.861,433,0.531,442,1.336,452,0.738,460,0.653,465,0.832,469,1.192,472,1.49,473,1.107,491,0.705,492,0.526,494,1.392,499,1.548,500,1.192,503,0.582,505,1.724,511,1.256,512,0.757,515,1.065,518,0.521,522,1.256,543,0.548,546,1.96,547,1.654,563,1.336,564,2.574,570,1.509,576,0.605,580,0.705,591,0.69,593,0.605,594,1.307,595,2.451,601,3.723,603,4.022,612,0.623,613,0.623,619,1.543,650,0.605,651,0.705,660,1.791,669,0.995,683,0.705,687,0.705,692,1.256,693,6.059,694,0.832,695,0.968,696,1.958,697,1.056,698,0.757,699,0.738,700,0.738,701,0.778,702,0.778,703,2.247,704,1.444,705,0.968,706,3.499,707,0.968,708,0.866,709,1.307,710,0.803,711,2.236,712,0.968,713,0.968,714,0.968,715,1.687,716,0.832,717,1.795,718,0.803,719,0.866,720,0.968,721,0.968,722,0.91,723,1.056,724,1.795,725,0.832,726,0.778,727,1.053,728,0.866,729,3.134,730,1.281,731,1.307,732,0.653,733,0.757,734,0.665,735,0.968,736,1.49,737,1.543,738,0.91,739,0.91,740,0.968,741,0.778,742,0.69,743,0.985,744,1.444,745,1.828,746,0.968,747,0.91,748,1.404,749,2.806,750,0.665,751,1.828,752,0.866,753,1.958,754,0.803,755,0.832,756,0.677,757,1.368,758,1.958,759,1.795,760,0.778,761,0.561,762,0.677,763,5.842,764,0.778,765,3.181,766,3.42,767,3.42,768,0.738,769,5,770,3.356,771,4.172,772,4.701,773,4.298,774,4.172,775,4.172,776,4.172,777,3.922,778,4.172,779,3.134,780,3.134,781,2.947,782,3.134,783,2.738,784,0.832,785,0.968,786,0.968,787,0.778,788,0.69,789,1.056,790,1.444,791,3.134,792,0.968,793,1.57,794,0.866,795,1.543,796,1.056,797,1.958,798,0.803,799,0.866,800,0.91,801,0.832,802,0.832,803,0.91,804,1.958,805,2.247,806,3.134,807,5.676,808,3.134,809,3.134,810,3.134,811,3.134,812,1.795,813,3.134,814,3.134,815,3.134,816,3.134,817,0.778,818,2.738,819,0.968,820,0.677,821,0.968,822,1.404,823,0.778,824,0.803,825,0.803,826,1.958,827,0.832,828,1.056,829,0.705,830,1.795,831,0.968,832,0.968,833,0.803,834,0.866,835,1.065,836,0.757,837,0.91,838,0.531,839,0.91,840,1.543,841,0.803,842,0.968,843,0.866,844,0.803,845,0.968,846,0.968]],["component//fastload.html",[253,0.408]],["title//fastload.html#_overview",[254,35.084]],["name//fastload.html#_overview",[]],["text//fastload.html#_overview",[]],["component//fastload.html#_overview",[]],["title//fastload.html#_prerequisites",[255,36.808]],["name//fastload.html#_prerequisites",[]],["text//fastload.html#_prerequisites",[]],["component//fastload.html#_prerequisites",[]],["title//fastload.html#_install_ttu",[91,24.751,708,55.344]],["name//fastload.html#_install_ttu",[]],["text//fastload.html#_install_ttu",[]],["component//fastload.html#_install_ttu",[]],["title//fastload.html#_get_sample_data",[8,19.915,477,30.373]],["name//fastload.html#_get_sample_data",[]],["text//fastload.html#_get_sample_data",[]],["component//fastload.html#_get_sample_data",[]],["title//fastload.html#_create_a_database",[0,21.267,150,28.304]],["name//fastload.html#_create_a_database",[]],["text//fastload.html#_create_a_database",[]],["component//fastload.html#_create_a_database",[]],["title//fastload.html#_run_fastload",[107,22.556,693,51.296]],["name//fastload.html#_run_fastload",[]],["text//fastload.html#_run_fastload",[]],["component//fastload.html#_run_fastload",[]],["title//fastload.html#_batch_mode",[748,48.344,749,55.344]],["name//fastload.html#_batch_mode",[]],["text//fastload.html#_batch_mode",[]],["component//fastload.html#_batch_mode",[]],["title//fastload.html#_fastload_vs_nos",[499,32.456,693,43.664,847,52.616]],["name//fastload.html#_fastload_vs_nos",[]],["text//fastload.html#_fastload_vs_nos",[]],["component//fastload.html#_fastload_vs_nos",[]],["title//fastload.html#_summary",[492,40.696]],["name//fastload.html#_summary",[]],["text//fastload.html#_summary",[]],["component//fastload.html#_summary",[]],["title//fastload.html#_further_reading",[244,23.463,611,28.096]],["name//fastload.html#_further_reading",[]],["text//fastload.html#_further_reading",[]],["component//fastload.html#_further_reading",[]],["title//geojson-to-vantage.html",[4,13.597,5,12.104,8,13.064,743,22.255,848,40.549]],["name//geojson-to-vantage.html",[5,0.516,849,1.351]],["text//geojson-to-vantage.html",[0,1.996,4,2.337,5,2.127,8,1.79,9,1.301,10,0.361,15,0.358,16,0.353,18,0.616,19,0.462,25,0.515,26,3.359,29,0.859,30,1.738,34,0.683,35,0.805,37,0.634,48,0.716,75,0.859,80,2.286,82,2.309,85,0.361,90,0.432,91,0.593,92,0.562,94,2.084,101,0.722,103,0.457,104,0.404,105,0.83,107,0.288,119,0.689,120,1.076,123,0.375,124,0.42,125,0.689,126,0.42,127,0.664,128,0.437,129,1.598,132,0.562,134,0.65,139,2.189,145,0.601,149,0.468,151,0.616,153,1.533,161,2.125,167,2.339,168,0.375,171,1.079,176,2.805,177,1.392,179,0.984,181,1.229,186,1,187,1.481,190,0.989,195,0.741,200,1.481,206,1.079,207,0.428,208,4.242,213,2.866,214,3.258,219,0.343,223,0.507,227,1.079,228,0.914,230,2.307,236,2.569,239,0.515,241,0.788,243,0.381,244,0.299,245,0.378,246,0.378,247,0.381,248,0.689,249,0.381,250,0.381,251,0.946,252,0.353,257,0.451,267,0.384,269,0.587,276,0.574,278,0.654,283,1.229,286,3.181,291,1.786,294,0.562,303,0.574,304,0.523,317,1.103,327,1.139,328,0.551,329,2.787,338,3.13,341,0.432,357,2.26,362,0.428,368,2.443,369,0.849,370,1.273,380,0.5,381,0.587,386,0.587,387,0.574,394,1.079,395,3.345,402,0.677,410,1.969,411,1.229,413,1.467,421,1,426,1.632,431,1.311,435,1.44,442,0.587,451,0.457,458,0.839,473,0.914,488,0.532,501,3.571,502,1.551,513,0.523,514,0.532,515,1.244,524,0.914,531,2.497,542,0.48,546,0.493,547,0.781,553,1.018,563,0.587,564,0.914,573,1.33,576,0.493,593,0.926,601,1.561,602,1.326,611,0.358,616,1.877,628,0.616,641,0.587,650,1.311,653,0.677,660,0.562,673,0.587,679,0.523,692,1.037,698,1.159,704,0.634,706,0.551,725,2.274,728,0.705,732,0.532,743,1.151,745,1.079,761,1.215,762,1.037,785,0.788,793,1.311,800,1.393,802,0.677,820,0.551,825,0.654,827,1.802,834,1.326,835,0.468,836,0.616,848,2.645,849,2.455,850,0.86,851,0.788,852,0.86,853,0.86,854,0.741,855,2.886,856,3.406,857,0.741,858,0.86,859,0.741,860,1.229,861,1.273,862,1.273,863,2.195,864,3.209,865,2.886,866,1.616,867,0.86,868,0.705,869,0.86,870,0.86,871,1.64,872,0.741,873,0.741,874,0.86,875,0.705,876,0.677,877,1.393,878,2.886,879,3.584,880,0.86,881,0.616,882,0.86,883,0.86,884,0.86,885,1.326,886,3.139,887,2.886,888,1.496,889,3.041,890,2.886,891,0.86,892,0.86,893,0.86,894,1.616,895,1.616,896,0.86,897,1.393,898,1.616,899,1.452,900,1.616,901,1.616,902,1.729,903,2.096,904,1.616,905,1.616,906,1.326,907,1.616,908,1.616,909,1.616,910,0.86,911,2.886,912,2.287,913,2.287,914,2.287,915,1.616,916,2.287,917,0.86,918,1.616,919,0.86,920,1.273,921,1.686,922,5.461,923,1.229,924,0.741,925,1.192,926,1.616,927,2.096,928,2.287,929,0.788,930,1.61,931,3.424,932,4.754,933,2.886,934,2.287,935,2.287,936,2.287,937,0.86,938,1.616,939,3.424,940,0.86,941,0.507,942,0.86,943,0.86,944,0.86,945,0.86,946,0.86,947,3.424,948,0.86,949,0.86,950,2.645,951,0.86,952,0.86,953,0.86,954,0.86,955,0.86,956,0.86,957,0.541,958,0.486,959,0.86,960,2.287,961,0.86,962,0.86,963,0.86,964,0.86,965,0.86,966,0.86,967,0.86,968,0.86,969,0.86,970,0.86,971,0.86,972,0.86,973,0.86,974,0.86,975,0.86,976,0.86,977,1.616,978,1.616,979,0.86,980,0.86,981,1.616,982,0.86,983,0.86,984,0.86,985,0.86,986,0.86,987,0.86,988,0.86,989,0.788,990,0.86,991,0.86,992,0.86,993,0.677,994,0.86,995,0.86,996,0.788,997,0.86,998,0.86,999,0.616,1000,1.159,1001,0.532,1002,0.86,1003,0.86,1004,0.86,1005,1.64,1006,0.788,1007,0.788,1008,0.562,1009,0.86,1010,2.487,1011,0.86,1012,0.86,1013,0.86,1014,0.86,1015,0.86,1016,0.86,1017,0.705,1018,0.616,1019,0.616,1020,0.677,1021,0.86,1022,0.86,1023,0.86,1024,0.86,1025,0.86,1026,0.741,1027,0.654,1028,0.788,1029,1.877,1030,0.86,1031,0.86,1032,0.705,1033,0.86,1034,1.616,1035,1.616,1036,0.86,1037,1.129,1038,0.86,1039,0.86,1040,0.86,1041,0.654,1042,0.86,1043,1.229,1044,1.273,1045,0.705,1046,0.86,1047,2.287,1048,2.287,1049,1.616,1050,1.616,1051,0.86,1052,0.86,1053,0.587,1054,0.705,1055,0.654,1056,0.741,1057,1.616,1058,0.86,1059,0.705,1060,1.616,1061,0.86,1062,0.86,1063,0.86,1064,0.86,1065,0.86,1066,0.86,1067,0.86,1068,0.86,1069,0.86,1070,0.86,1071,0.86,1072,0.86,1073,0.86,1074,0.86,1075,0.86,1076,0.86,1077,0.86,1078,0.86,1079,0.86,1080,0.705,1081,1.159,1082,0.562,1083,0.551,1084,0.788,1085,0.86,1086,0.741,1087,0.741,1088,0.86,1089,0.788,1090,0.86,1091,0.741,1092,0.86]],["component//geojson-to-vantage.html",[253,0.408]],["title//geojson-to-vantage.html#_overview",[254,35.084]],["name//geojson-to-vantage.html#_overview",[]],["text//geojson-to-vantage.html#_overview",[]],["component//geojson-to-vantage.html#_overview",[]],["title//geojson-to-vantage.html#_prerequisites",[255,36.808]],["name//geojson-to-vantage.html#_prerequisites",[]],["text//geojson-to-vantage.html#_prerequisites",[]],["component//geojson-to-vantage.html#_prerequisites",[]],["title//geojson-to-vantage.html#_option_1_load_a_geojson_document_into_vantage",[5,10.859,26,19.567,172,19.966,214,17.875,375,18.836,849,28.45]],["name//geojson-to-vantage.html#_option_1_load_a_geojson_document_into_vantage",[]],["text//geojson-to-vantage.html#_option_1_load_a_geojson_document_into_vantage",[]],["component//geojson-to-vantage.html#_option_1_load_a_geojson_document_into_vantage",[]],["title//geojson-to-vantage.html#_get_and_load_the_geojson_document",[26,28.301,214,25.854,849,41.15]],["name//geojson-to-vantage.html#_get_and_load_the_geojson_document",[]],["text//geojson-to-vantage.html#_get_and_load_the_geojson_document",[]],["component//geojson-to-vantage.html#_get_and_load_the_geojson_document",[]],["title//geojson-to-vantage.html#_load_the_geojson_document_in_vantage",[5,13.672,26,24.636,214,22.505,849,35.82]],["name//geojson-to-vantage.html#_load_the_geojson_document_in_vantage",[]],["text//geojson-to-vantage.html#_load_the_geojson_document_in_vantage",[]],["component//geojson-to-vantage.html#_load_the_geojson_document_in_vantage",[]],["title//geojson-to-vantage.html#_use_the_map_from_vantage",[4,17.643,5,15.706,553,36.147]],["name//geojson-to-vantage.html#_use_the_map_from_vantage",[]],["text//geojson-to-vantage.html#_use_the_map_from_vantage",[]],["component//geojson-to-vantage.html#_use_the_map_from_vantage",[]],["title//geojson-to-vantage.html#_option_2_prepare_a_geojson_document_with_python_and_load_it_into_vantage",[5,9.006,26,16.228,172,16.559,214,14.825,286,18.133,570,18.133,745,21.972,849,23.596]],["name//geojson-to-vantage.html#_option_2_prepare_a_geojson_document_with_python_and_load_it_into_vantage",[]],["text//geojson-to-vantage.html#_option_2_prepare_a_geojson_document_with_python_and_load_it_into_vantage",[]],["component//geojson-to-vantage.html#_option_2_prepare_a_geojson_document_with_python_and_load_it_into_vantage",[]],["title//geojson-to-vantage.html#_get_and_load_the_geojson_document_2",[26,28.301,214,25.854,849,41.15]],["name//geojson-to-vantage.html#_get_and_load_the_geojson_document_2",[]],["text//geojson-to-vantage.html#_get_and_load_the_geojson_document_2",[]],["component//geojson-to-vantage.html#_get_and_load_the_geojson_document_2",[]],["title//geojson-to-vantage.html#_open_the_geojson_file_and_type_it_as_a_dictionary",[134,17.785,139,22.255,368,22.729,849,31.713,1093,40.549]],["name//geojson-to-vantage.html#_open_the_geojson_file_and_type_it_as_a_dictionary",[]],["text//geojson-to-vantage.html#_open_the_geojson_file_and_type_it_as_a_dictionary",[]],["component//geojson-to-vantage.html#_open_the_geojson_file_and_type_it_as_a_dictionary",[]],["title//geojson-to-vantage.html#_optional_check_the_content_of_the_file",[22,30.921,134,20.089,172,25.138,431,28.641]],["name//geojson-to-vantage.html#_optional_check_the_content_of_the_file",[]],["text//geojson-to-vantage.html#_optional_check_the_content_of_the_file",[]],["component//geojson-to-vantage.html#_optional_check_the_content_of_the_file",[]],["title//geojson-to-vantage.html#_create_a_vantage_connection_and_load_our_file_in_a_staging_table",[0,11.348,5,9.846,30,14.368,134,14.467,213,14.672,214,16.207,423,27.372]],["name//geojson-to-vantage.html#_create_a_vantage_connection_and_load_our_file_in_a_staging_table",[]],["text//geojson-to-vantage.html#_create_a_vantage_connection_and_load_our_file_in_a_staging_table",[]],["component//geojson-to-vantage.html#_create_a_vantage_connection_and_load_our_file_in_a_staging_table",[]],["title//geojson-to-vantage.html#_create_and_our_geography_refernce_table",[0,15.758,213,20.373,1094,49.967,1095,49.967]],["name//geojson-to-vantage.html#_create_and_our_geography_refernce_table",[]],["text//geojson-to-vantage.html#_create_and_our_geography_refernce_table",[]],["component//geojson-to-vantage.html#_create_and_our_geography_refernce_table",[]],["title//geojson-to-vantage.html#_use_your_data",[4,20.727,8,19.915]],["name//geojson-to-vantage.html#_use_your_data",[]],["text//geojson-to-vantage.html#_use_your_data",[]],["component//geojson-to-vantage.html#_use_your_data",[]],["title//geojson-to-vantage.html#_summary",[492,40.696]],["name//geojson-to-vantage.html#_summary",[]],["text//geojson-to-vantage.html#_summary",[]],["component//geojson-to-vantage.html#_summary",[]],["title//getting.started.utm.html",[5,13.672,107,16.713,518,24.636,1096,34.097]],["name//getting.started.utm.html",[1097,3.19]],["text//getting.started.utm.html",[0,1.644,4,1.453,5,1.989,8,1.054,9,1.916,10,0.467,15,0.464,16,0.457,17,0.821,20,1.148,21,0.566,23,1.273,26,0.549,30,1.671,31,2.632,34,0.87,38,1.345,42,1.093,48,0.493,51,1.163,52,1.148,65,0.728,68,0.689,82,1.509,85,0.467,87,3.263,88,0.621,91,1.735,93,1.805,100,1.119,101,1.869,103,1.523,106,2.003,107,2.342,108,3.156,109,1.56,112,0.76,115,2.353,120,0.524,121,0.572,125,0.474,127,0.457,128,1.815,130,1.319,131,1.541,134,1.435,135,0.63,139,1.035,141,4.118,142,2.366,150,2.815,154,1.691,156,1.951,157,1.475,159,1.475,160,2.335,167,1.106,168,0.486,172,0.56,179,1.252,180,0.613,183,2.542,189,1.834,190,0.89,191,0.985,199,1.343,203,2.335,207,2.595,208,3.525,213,1.169,216,1.919,217,0.76,219,2.55,226,1.232,231,2.436,232,1.232,234,0.76,236,0.524,238,0.714,239,1.232,243,0.493,244,0.387,245,0.489,246,0.489,247,0.493,248,0.876,249,0.493,250,0.493,251,0.461,252,0.457,253,0.422,256,0.467,262,0.599,265,0.56,266,0.914,267,1.281,269,0.76,276,0.743,282,0.714,292,1.035,298,0.638,302,0.847,304,0.678,310,0.621,312,1.273,315,1.437,316,0.667,320,0.76,322,0.743,323,0.63,327,0.555,330,1.148,337,0.678,338,0.638,341,1.035,343,0.689,345,0.701,347,1.319,351,0.566,353,0.76,357,1.489,359,0.798,361,0.638,362,0.555,369,1.081,375,0.976,383,0.578,385,0.647,387,1.373,392,0.778,395,1.046,397,0.701,419,0.877,426,0.63,431,0.638,432,0.606,433,0.56,448,0.743,451,0.592,458,0.578,460,0.689,472,0.606,477,0.502,492,0.555,494,1.046,502,1.541,507,1.621,513,0.678,517,0.572,518,3.706,519,1.295,524,0.63,530,2.223,532,3.768,543,1.069,546,1.643,547,1.726,553,2.248,559,1.373,564,1.621,570,1.133,573,1.667,593,0.638,612,1.691,613,0.657,663,0.847,669,1.046,679,0.678,688,0.714,698,0.798,702,0.821,706,0.714,711,0.728,727,1.541,730,0.728,731,0.743,754,0.847,756,1.319,757,0.778,761,1.093,762,1.319,768,0.778,784,0.877,799,0.914,820,0.714,823,0.821,881,0.798,888,0.728,902,1.232,923,0.847,941,1.214,957,0.701,958,0.63,1018,0.798,1019,3,1028,1.021,1055,0.847,1083,4.821,1096,2.856,1098,0.877,1099,0.877,1100,0.96,1101,0.914,1102,0.96,1103,1.295,1104,0.847,1105,0.678,1106,0.689,1107,0.63,1108,0.76,1109,1.688,1110,2.057,1111,2.057,1112,1.773,1113,0.778,1114,4.224,1115,2.057,1116,1.114,1117,1.114,1118,0.96,1119,0.877,1120,1.114,1121,0.877,1122,2.924,1123,0.847,1124,0.914,1125,2.181,1126,2.181,1127,0.96,1128,2.057,1129,1.475,1130,0.76,1131,1.373,1132,0.798,1133,1.021,1134,1.021,1135,0.96,1136,1.114,1137,1.565,1138,1.114,1139,0.877,1140,1.114,1141,0.778,1142,0.798,1143,1.021,1144,0.877,1145,0.701,1146,3.272,1147,0.657,1148,0.96,1149,0.914,1150,0.914,1151,0.914,1152,1.114,1153,1.114,1154,0.76,1155,0.914,1156,1.114,1157,1.114,1158,1.114,1159,0.821,1160,3.086,1161,0.877,1162,1.565,1163,0.821,1164,0.96,1165,0.798,1166,0.96,1167,0.96,1168,0.914,1169,0.914,1170,1.688,1171,1.475,1172,1.565,1173,0.96,1174,0.96,1175,0.877,1176,0.847,1177,1.688,1178,2.181,1179,0.96,1180,0.877,1181,1.319,1182,4.579,1183,3.183,1184,0.847,1185,0.877,1186,0.96,1187,0.96,1188,0.96,1189,0.96,1190,0.96,1191,0.96,1192,2.259,1193,0.914,1194,0.96,1195,0.96,1196,0.914,1197,0.96,1198,0.877,1199,0.76,1200,2.335,1201,1.773,1202,1.565,1203,1.404,1204,0.96,1205,0.821,1206,0.877,1207,1.517,1208,0.96,1209,0.96,1210,0.76,1211,0.778,1212,0.76,1213,0.798,1214,2.114,1215,2.632,1216,0.701,1217,2.114,1218,1.517,1219,2.114,1220,2.114,1221,1.475,1222,1.437,1223,1.517,1224,2.114,1225,2.114,1226,0.821,1227,1.517,1228,1.565,1229,1.517,1230,3,1231,1.517,1232,1.517,1233,1.475,1234,0.638,1235,0.877,1236,0.798,1237,0.914,1238,0.877,1239,0.778]],["component//getting.started.utm.html",[253,0.408]],["title//getting.started.utm.html#_overview",[254,35.084]],["name//getting.started.utm.html#_overview",[]],["text//getting.started.utm.html#_overview",[]],["component//getting.started.utm.html#_overview",[]],["title//getting.started.utm.html#_prerequisites",[255,36.808]],["name//getting.started.utm.html#_prerequisites",[]],["text//getting.started.utm.html#_prerequisites",[]],["component//getting.started.utm.html#_prerequisites",[]],["title//getting.started.utm.html#_installation",[91,29.994]],["name//getting.started.utm.html#_installation",[]],["text//getting.started.utm.html#_installation",[]],["component//getting.started.utm.html#_installation",[]],["title//getting.started.utm.html#_download_required_software",[38,37.537,128,29.18,348,29.18]],["name//getting.started.utm.html#_download_required_software",[]],["text//getting.started.utm.html#_download_required_software",[]],["component//getting.started.utm.html#_download_required_software",[]],["title//getting.started.utm.html#_run_utm_installer",[91,21.068,107,19.2,1096,39.171]],["name//getting.started.utm.html#_run_utm_installer",[]],["text//getting.started.utm.html#_run_utm_installer",[]],["component//getting.started.utm.html#_run_utm_installer",[]],["title//getting.started.utm.html#_run_vantage_express",[5,15.706,107,19.2,518,28.301]],["name//getting.started.utm.html#_run_vantage_express",[]],["text//getting.started.utm.html#_run_vantage_express",[]],["component//getting.started.utm.html#_run_vantage_express",[]],["title//getting.started.utm.html#_run_sample_queries",[107,19.2,219,22.919,477,25.854]],["name//getting.started.utm.html#_run_sample_queries",[]],["text//getting.started.utm.html#_run_sample_queries",[]],["component//getting.started.utm.html#_run_sample_queries",[]],["title//getting.started.utm.html#_summary",[492,40.696]],["name//getting.started.utm.html#_summary",[]],["text//getting.started.utm.html#_summary",[]],["component//getting.started.utm.html#_summary",[]],["title//getting.started.utm.html#_next_steps",[216,36.252,256,28.304]],["name//getting.started.utm.html#_next_steps",[]],["text//getting.started.utm.html#_next_steps",[]],["component//getting.started.utm.html#_next_steps",[]],["title//getting.started.utm.html#_further_reading",[244,23.463,611,28.096]],["name//getting.started.utm.html#_further_reading",[]],["text//getting.started.utm.html#_further_reading",[]],["component//getting.started.utm.html#_further_reading",[]],["title//getting.started.vbox.html",[5,13.672,107,16.713,518,24.636,1240,34.913]],["name//getting.started.vbox.html",[1241,3.19]],["text//getting.started.vbox.html",[0,1.731,4,1.687,5,1.73,8,0.905,9,1.994,10,0.505,15,0.502,16,1.259,17,0.888,20,1.234,21,1.124,23,0.745,26,0.594,30,1.771,31,2.26,34,0.509,38,2.005,40,0.69,42,1.175,48,0.534,51,2.148,52,0.672,68,1.368,82,1.606,85,0.928,87,3.261,88,0.672,91,2.176,93,1.392,101,2.231,103,2.018,107,2.34,108,2.536,109,1.668,112,0.822,115,0.988,120,0.566,121,0.619,125,0.942,127,0.495,128,1.124,130,0.772,131,2.042,134,1.232,135,0.681,139,0.606,141,3.027,142,2.148,144,0.949,150,2.802,154,0.711,156,2.328,157,1.585,159,1.585,160,2.475,167,1.189,168,0.525,179,1.346,180,0.663,183,2.25,189,1.575,190,0.521,191,1.059,199,0.453,201,0.619,203,2.12,207,2.209,208,3.556,213,1.25,216,1.648,217,0.822,219,2.524,226,1.325,228,0.681,231,2.593,234,0.822,236,0.566,238,0.772,243,0.534,244,0.419,245,0.529,246,0.529,247,0.534,248,0.942,249,0.534,250,0.534,251,0.498,252,0.495,253,0.456,256,0.505,262,0.647,265,0.606,266,0.988,267,1.369,276,1.476,292,1.542,302,1.682,304,0.733,308,0.788,310,0.672,312,1.897,315,0.842,316,0.721,322,0.804,323,0.681,327,0.6,337,0.733,341,1.112,343,0.745,345,0.758,347,1.418,348,0.612,351,0.612,353,0.822,357,1.149,360,0.788,361,0.69,362,0.6,369,0.633,375,0.572,385,0.7,387,0.804,392,0.842,395,1.124,419,0.949,428,0.804,432,0.655,433,0.606,435,0.758,442,0.822,448,0.804,451,1.175,458,0.626,460,0.745,472,0.655,477,0.542,494,1.124,502,1.189,507,0.681,513,0.733,517,0.619,518,3.291,519,1.392,524,0.681,530,1.175,531,0.633,532,3.957,543,1.149,544,0.988,546,1.757,547,2.145,559,1.476,564,2.148,573,0.7,593,1.757,612,1.808,613,0.711,679,0.733,690,0.949,702,0.888,706,0.772,709,1.476,727,1.189,730,0.788,731,0.804,750,0.758,754,0.916,756,1.418,757,0.842,761,0.64,765,0.842,768,0.842,820,0.772,823,0.888,835,0.655,844,0.916,881,0.863,888,1.446,902,1.325,957,0.758,958,0.681,1019,3.934,1083,5.003,1096,0.822,1098,0.949,1099,0.949,1100,1.038,1101,0.988,1102,1.038,1103,1.392,1104,1.682,1105,0.733,1106,0.745,1107,0.681,1108,0.822,1109,0.988,1114,4.204,1119,0.949,1121,0.949,1122,0.842,1123,0.916,1124,0.988,1125,0.916,1126,1.682,1127,1.038,1129,0.863,1130,0.822,1131,1.476,1137,0.916,1145,0.758,1146,1.104,1160,3.271,1161,0.949,1162,1.682,1163,0.888,1164,1.038,1165,1.585,1166,1.038,1167,1.038,1168,0.988,1169,0.988,1170,1.815,1171,1.585,1172,1.682,1173,1.038,1174,1.038,1175,0.949,1176,0.916,1177,2.516,1178,2.332,1179,1.038,1180,0.949,1181,1.418,1182,4.786,1183,3.375,1184,0.916,1185,0.949,1186,1.038,1187,1.038,1188,1.038,1189,1.038,1190,1.038,1191,1.038,1192,2.415,1193,0.988,1194,1.038,1195,1.038,1196,0.988,1197,1.038,1198,0.949,1199,0.822,1200,2.475,1201,1.905,1202,0.916,1205,1.63,1206,1.742,1207,1.63,1208,1.038,1209,1.038,1210,0.822,1211,0.842,1212,0.822,1213,0.863,1214,2.26,1215,2.801,1216,0.758,1217,2.26,1218,1.63,1219,2.26,1220,2.26,1221,1.585,1222,1.545,1223,1.63,1224,2.26,1225,2.26,1226,0.888,1227,1.63,1228,1.682,1229,1.63,1230,3.18,1231,1.63,1232,1.63,1233,1.585,1234,0.69,1235,0.949,1236,0.863,1237,0.988,1238,0.949,1239,0.842,1240,5.753,1242,0.822,1243,1.104,1244,3.065,1245,2.211,1246,1.204,1247,1.204,1248,2.211,1249,0.822,1250,1.204,1251,0.949,1252,4.578,1253,2.7,1254,1.204,1255,1.204,1256,1.204,1257,0.888,1258,1.204,1259,1.204,1260,0.949,1261,1.204,1262,0.988,1263,1.204,1264,1.038,1265,1.204,1266,1.204,1267,1.204]],["component//getting.started.vbox.html",[253,0.408]],["title//getting.started.vbox.html#_overview",[254,35.084]],["name//getting.started.vbox.html#_overview",[]],["text//getting.started.vbox.html#_overview",[]],["component//getting.started.vbox.html#_overview",[]],["title//getting.started.vbox.html#_prerequisites",[255,36.808]],["name//getting.started.vbox.html#_prerequisites",[]],["text//getting.started.vbox.html#_prerequisites",[]],["component//getting.started.vbox.html#_prerequisites",[]],["title//getting.started.vbox.html#_installation",[91,29.994]],["name//getting.started.vbox.html#_installation",[]],["text//getting.started.vbox.html#_installation",[]],["component//getting.started.vbox.html#_installation",[]],["title//getting.started.vbox.html#_download_required_software",[38,37.537,128,29.18,348,29.18]],["name//getting.started.vbox.html#_download_required_software",[]],["text//getting.started.vbox.html#_download_required_software",[]],["component//getting.started.vbox.html#_download_required_software",[]],["title//getting.started.vbox.html#_run_installers",[91,24.751,107,22.556]],["name//getting.started.vbox.html#_run_installers",[]],["text//getting.started.vbox.html#_run_installers",[]],["component//getting.started.vbox.html#_run_installers",[]],["title//getting.started.vbox.html#_run_vantage_express",[5,15.706,107,19.2,518,28.301]],["name//getting.started.vbox.html#_run_vantage_express",[]],["text//getting.started.vbox.html#_run_vantage_express",[]],["component//getting.started.vbox.html#_run_vantage_express",[]],["title//getting.started.vbox.html#_run_sample_queries",[107,19.2,219,22.919,477,25.854]],["name//getting.started.vbox.html#_run_sample_queries",[]],["text//getting.started.vbox.html#_run_sample_queries",[]],["component//getting.started.vbox.html#_run_sample_queries",[]],["title//getting.started.vbox.html#_updating_virtualbox_guest_extensions",[16,20.518,1240,34.913,1252,45.801,1253,30.411]],["name//getting.started.vbox.html#_updating_virtualbox_guest_extensions",[]],["text//getting.started.vbox.html#_updating_virtualbox_guest_extensions",[]],["component//getting.started.vbox.html#_updating_virtualbox_guest_extensions",[]],["title//getting.started.vbox.html#_summary",[492,40.696]],["name//getting.started.vbox.html#_summary",[]],["text//getting.started.vbox.html#_summary",[]],["component//getting.started.vbox.html#_summary",[]],["title//getting.started.vbox.html#_next_steps",[216,36.252,256,28.304]],["name//getting.started.vbox.html#_next_steps",[]],["text//getting.started.vbox.html#_next_steps",[]],["component//getting.started.vbox.html#_next_steps",[]],["title//getting.started.vbox.html#_further_reading",[244,23.463,611,28.096]],["name//getting.started.vbox.html#_further_reading",[]],["text//getting.started.vbox.html#_further_reading",[]],["component//getting.started.vbox.html#_further_reading",[]],["title//getting.started.vmware.html",[5,13.672,107,16.713,112,34.097,518,24.636]],["name//getting.started.vmware.html",[1268,3.19]],["text//getting.started.vmware.html",[0,1.799,4,1.753,5,1.975,8,0.952,9,2.054,10,0.537,15,0.533,16,0.525,17,0.943,20,1.303,21,0.65,23,0.791,25,0.766,26,0.63,30,1.85,31,2.935,34,0.541,38,1.527,42,1.241,48,0.566,51,2.62,52,0.713,68,0.791,81,0.972,82,1.683,85,0.537,87,3.364,88,0.713,91,2.256,93,1.471,101,2.07,103,2.115,104,0.601,106,0.893,107,2.414,108,2.657,109,1.271,112,4.925,113,2.141,115,1.049,120,0.601,121,0.657,125,0.995,127,0.525,128,1.639,130,0.82,131,1.255,134,0.939,135,1.32,139,0.643,141,2.2,142,1.32,150,2.895,154,0.754,156,2.425,157,1.674,159,1.674,160,2.586,168,0.557,179,1.421,180,0.704,183,2.087,189,1.2,190,0.553,191,1.119,198,0.943,199,0.481,201,0.657,203,2.221,207,2.591,208,3.551,213,1.314,216,1.255,217,0.872,219,2.754,226,1.399,231,2.716,234,0.872,236,0.601,238,0.82,243,0.566,244,0.445,245,0.562,246,0.562,247,0.566,248,0.995,249,0.566,250,0.566,251,0.529,252,0.525,253,0.484,256,0.537,262,0.687,265,0.643,266,1.049,267,1.44,276,0.853,292,1.175,298,0.733,302,0.972,304,0.778,310,0.713,312,1.995,315,0.893,316,1.399,322,0.853,323,0.723,327,0.637,337,0.778,338,0.733,341,1.175,343,0.791,345,0.805,347,1.498,348,0.65,351,0.65,353,0.872,357,1.674,361,0.733,362,0.637,365,0.853,369,0.671,375,0.607,385,0.743,387,1.559,392,0.893,395,1.187,419,1.007,432,0.696,433,0.643,448,0.853,451,0.679,458,0.664,460,0.791,472,0.696,477,0.576,494,0.65,502,1.255,507,0.723,511,0.82,513,0.778,517,0.657,518,3.832,519,1.471,524,0.723,530,1.241,532,4.103,543,1.213,546,1.848,547,1.559,559,1.559,564,1.823,593,0.733,612,1.902,613,0.754,679,0.778,702,2.377,706,0.82,709,2.152,711,1.527,718,0.972,727,1.255,730,0.836,731,0.853,754,0.972,756,1.498,757,0.893,768,0.893,820,0.82,823,0.943,862,1.007,881,0.916,888,0.836,902,1.399,957,0.805,958,0.723,1019,3.322,1055,0.972,1083,5.141,1086,1.102,1096,1.594,1098,1.007,1099,1.007,1100,1.102,1101,1.049,1102,1.102,1103,1.471,1104,0.972,1105,0.778,1106,0.791,1107,0.723,1108,0.872,1109,1.049,1114,3.87,1119,1.007,1121,1.007,1122,0.893,1123,0.972,1124,1.049,1125,0.972,1126,1.776,1127,1.102,1129,0.916,1130,0.872,1131,0.853,1137,0.972,1160,3.417,1161,1.007,1162,1.776,1163,0.943,1164,1.102,1165,0.916,1166,1.102,1167,1.102,1168,1.049,1169,1.049,1170,1.916,1171,1.674,1172,1.776,1173,1.102,1174,1.102,1175,1.007,1176,0.972,1177,1.916,1178,2.452,1179,1.102,1180,1.007,1181,1.498,1182,4.944,1183,3.525,1184,0.972,1185,1.007,1186,1.102,1187,1.102,1188,1.102,1189,1.102,1190,1.102,1191,1.102,1192,2.54,1193,1.049,1194,1.102,1195,1.102,1196,1.049,1197,1.102,1198,1.007,1199,0.872,1200,2.586,1201,2.012,1202,1.776,1203,1.594,1204,1.102,1205,0.943,1206,1.84,1207,1.722,1208,1.102,1209,1.102,1210,0.872,1211,0.893,1212,0.872,1213,0.916,1214,2.377,1215,2.935,1216,0.805,1217,2.377,1218,1.722,1219,2.377,1220,2.377,1221,1.674,1222,1.632,1223,1.722,1224,2.377,1225,2.377,1226,0.943,1227,1.722,1228,1.776,1229,1.722,1230,3.322,1231,1.722,1232,1.722,1233,1.674,1234,0.733,1235,1.007,1236,0.916,1237,1.049,1238,1.007,1239,0.893,1240,1.632,1243,1.172,1269,3.224,1270,3.981,1271,2.141,1272,1.722,1273,1.278,1274,1.049,1275,1.172,1276,1.916,1277,1.278,1278,0.754,1279,1.278]],["component//getting.started.vmware.html",[253,0.408]],["title//getting.started.vmware.html#_overview",[254,35.084]],["name//getting.started.vmware.html#_overview",[]],["text//getting.started.vmware.html#_overview",[]],["component//getting.started.vmware.html#_overview",[]],["title//getting.started.vmware.html#_prerequisites",[255,36.808]],["name//getting.started.vmware.html#_prerequisites",[]],["text//getting.started.vmware.html#_prerequisites",[]],["component//getting.started.vmware.html#_prerequisites",[]],["title//getting.started.vmware.html#_installation",[91,29.994]],["name//getting.started.vmware.html#_installation",[]],["text//getting.started.vmware.html#_installation",[]],["component//getting.started.vmware.html#_installation",[]],["title//getting.started.vmware.html#_download_required_software",[38,37.537,128,29.18,348,29.18]],["name//getting.started.vmware.html#_download_required_software",[]],["text//getting.started.vmware.html#_download_required_software",[]],["component//getting.started.vmware.html#_download_required_software",[]],["title//getting.started.vmware.html#_run_installers",[91,24.751,107,22.556]],["name//getting.started.vmware.html#_run_installers",[]],["text//getting.started.vmware.html#_run_installers",[]],["component//getting.started.vmware.html#_run_installers",[]],["title//getting.started.vmware.html#_run_vantage_express",[5,15.706,107,19.2,518,28.301]],["name//getting.started.vmware.html#_run_vantage_express",[]],["text//getting.started.vmware.html#_run_vantage_express",[]],["component//getting.started.vmware.html#_run_vantage_express",[]],["title//getting.started.vmware.html#_run_sample_queries",[107,19.2,219,22.919,477,25.854]],["name//getting.started.vmware.html#_run_sample_queries",[]],["text//getting.started.vmware.html#_run_sample_queries",[]],["component//getting.started.vmware.html#_run_sample_queries",[]],["title//getting.started.vmware.html#_summary",[492,40.696]],["name//getting.started.vmware.html#_summary",[]],["text//getting.started.vmware.html#_summary",[]],["component//getting.started.vmware.html#_summary",[]],["title//getting.started.vmware.html#_next_steps",[216,36.252,256,28.304]],["name//getting.started.vmware.html#_next_steps",[]],["text//getting.started.vmware.html#_next_steps",[]],["component//getting.started.vmware.html#_next_steps",[]],["title//getting.started.vmware.html#_further_reading",[244,23.463,611,28.096]],["name//getting.started.vmware.html#_further_reading",[]],["text//getting.started.vmware.html#_further_reading",[]],["component//getting.started.vmware.html#_further_reading",[]],["title//index.html",[]],["name//index.html",[472,1.735]],["text//index.html",[]],["component//index.html",[253,0.408]],["title//install-teradata-studio-on-mac-m1-m2.html",[4,12.198,9,10.859,106,27.73,1119,31.27,1280,39.686,1281,34.198]],["name//install-teradata-studio-on-mac-m1-m2.html",[9,0.196,91,0.262,106,0.499,1133,0.655,1200,0.399,1282,0.715]],["text//install-teradata-studio-on-mac-m1-m2.html",[9,3.15,10,1.669,15,1.656,16,1.633,18,2.85,20,3.426,34,1.681,40,3.52,42,3.262,48,1.762,82,1.681,91,3.688,96,4.838,97,4.838,101,1.776,106,5.895,109,3.341,128,4.289,130,2.55,189,3.155,201,4.953,236,1.87,243,1.762,244,1.383,245,1.747,246,1.747,247,1.762,248,2.616,249,1.762,250,1.762,251,2.54,252,1.633,262,2.137,282,2.55,365,2.654,436,2.219,497,2.778,515,2.163,517,2.043,518,4.954,709,2.654,739,3.426,743,2,1001,2.46,1053,2.713,1109,6.157,1112,5.291,1119,5.911,1200,6.425,1281,7.858,1283,3.976,1284,3.976,1285,3.976,1286,6.14,1287,3.133,1288,3.644,1289,6.876,1290,5.039,1291,3.644,1292,3.976,1293,2.778,1294,3.976,1295,2.19,1296,3.644,1297,6.14,1298,4.671,1299,7.502]],["component//install-teradata-studio-on-mac-m1-m2.html",[253,0.408]],["title//install-teradata-studio-on-mac-m1-m2.html#_overview",[254,35.084]],["name//install-teradata-studio-on-mac-m1-m2.html#_overview",[]],["text//install-teradata-studio-on-mac-m1-m2.html#_overview",[]],["component//install-teradata-studio-on-mac-m1-m2.html#_overview",[]],["title//install-teradata-studio-on-mac-m1-m2.html#_steps_to_follow",[101,30.123,256,28.304]],["name//install-teradata-studio-on-mac-m1-m2.html#_steps_to_follow",[]],["text//install-teradata-studio-on-mac-m1-m2.html#_steps_to_follow",[]],["component//install-teradata-studio-on-mac-m1-m2.html#_steps_to_follow",[]],["title//install-teradata-studio-on-mac-m1-m2.html#_summary",[492,40.696]],["name//install-teradata-studio-on-mac-m1-m2.html#_summary",[]],["text//install-teradata-studio-on-mac-m1-m2.html#_summary",[]],["component//install-teradata-studio-on-mac-m1-m2.html#_summary",[]],["title//jdbc.html",[4,15.358,5,13.672,30,19.951,1300,38.008]],["name//jdbc.html",[1300,2.426]],["text//jdbc.html",[4,2.705,5,2.829,9,2.829,10,1.81,15,1.797,16,1.771,18,3.092,19,2.319,26,2.126,28,2.544,30,3.15,34,1.824,38,2.82,40,3.746,48,1.911,56,2.82,82,3.336,85,1.81,92,5.756,104,2.029,105,2.216,107,2.639,108,2.879,109,2.347,119,2.784,123,3.44,124,2.106,125,1.838,126,2.106,134,1.734,150,1.81,151,3.092,176,1.911,185,2.943,190,1.866,214,1.943,219,2.609,224,2.544,243,1.911,244,1.501,245,1.896,246,1.896,247,1.911,248,2.784,249,1.911,250,1.911,251,1.784,252,1.771,256,1.81,263,2.029,322,2.879,362,2.148,369,2.265,405,2.24,436,2.407,477,3.554,515,3.556,518,2.126,543,2.24,612,2.544,613,2.544,663,3.281,743,3.288,754,3.281,868,3.54,899,2.17,1114,2.716,1144,3.398,1145,4.968,1289,3.953,1300,7.195,1301,3.398,1302,5.99,1303,4.313,1304,7.232,1305,4.313,1306,3.953,1307,4.313,1308,2.879,1309,4.313,1310,2.716]],["component//jdbc.html",[253,0.408]],["title//jdbc.html#_overview",[254,35.084]],["name//jdbc.html#_overview",[]],["text//jdbc.html#_overview",[]],["component//jdbc.html#_overview",[]],["title//jdbc.html#_prerequisites",[255,36.808]],["name//jdbc.html#_prerequisites",[]],["text//jdbc.html#_prerequisites",[]],["component//jdbc.html#_prerequisites",[]],["title//jdbc.html#_add_dependency_to_your_maven_project",[224,29.478,263,23.501,362,24.883,1304,45.801]],["name//jdbc.html#_add_dependency_to_your_maven_project",[]],["text//jdbc.html#_add_dependency_to_your_maven_project",[]],["component//jdbc.html#_add_dependency_to_your_maven_project",[]],["title//jdbc.html#_code_to_send_a_query",[219,22.919,856,33.864,1310,36.147]],["name//jdbc.html#_code_to_send_a_query",[]],["text//jdbc.html#_code_to_send_a_query",[]],["component//jdbc.html#_code_to_send_a_query",[]],["title//jdbc.html#_run_the_tests",[107,22.556,123,29.405]],["name//jdbc.html#_run_the_tests",[]],["text//jdbc.html#_run_the_tests",[]],["component//jdbc.html#_run_the_tests",[]],["title//jdbc.html#_summary",[492,40.696]],["name//jdbc.html#_summary",[]],["text//jdbc.html#_summary",[]],["component//jdbc.html#_summary",[]],["title//jdbc.html#_further_reading",[244,23.463,611,28.096]],["name//jdbc.html#_further_reading",[]],["text//jdbc.html#_further_reading",[]],["component//jdbc.html#_further_reading",[]],["title//jupyter.html",[4,15.358,5,13.672,1311,27.527,1312,30.411]],["name//jupyter.html",[1311,1.757]],["text//jupyter.html",[0,1.157,4,2.7,5,1.95,7,0.77,8,1.084,9,2.719,10,0.484,15,0.48,16,0.473,19,0.62,20,1.185,21,1.08,25,0.691,28,0.68,30,2.953,34,0.898,42,1.128,48,0.941,52,0.643,63,0.85,64,1.743,68,0.713,74,0.713,75,1.128,76,0.787,82,2.049,85,0.484,87,2.486,88,0.643,90,1.486,91,1.347,92,1.931,100,0.627,101,0.515,104,0.999,105,0.592,107,1.784,109,1.156,119,0.491,120,0.542,123,0.926,124,0.563,125,0.905,126,1.037,131,0.62,133,0.702,134,1.187,135,2.075,139,1.846,149,1.607,150,1.24,156,1.711,160,1.648,161,0.563,162,0.787,167,2.309,172,2.161,176,4.322,181,1.973,183,0.957,186,0.713,190,0.499,191,1.017,192,0.713,201,0.592,207,1.827,208,4.183,209,0.754,211,1.523,213,0.47,214,0.957,219,0.46,228,1.201,230,1.742,231,0.787,236,0.999,238,1.362,243,0.511,244,0.401,245,0.507,246,0.507,247,0.511,248,0.905,249,0.511,250,0.511,251,0.477,252,0.872,256,0.891,258,0.62,265,1.069,267,0.949,271,1.389,282,1.894,286,3.394,292,0.58,304,0.702,305,1.523,314,0.739,318,1.314,327,1.058,330,0.643,332,0.627,348,1.08,351,0.586,352,0.702,353,0.787,357,1.534,362,1.471,365,1.971,369,0.606,381,0.787,395,0.586,396,0.627,405,0.599,414,0.806,436,1.185,438,1.253,451,1.128,458,1.534,476,0.68,477,0.519,488,2.998,500,0.702,507,0.652,511,1.894,512,1.523,515,1.156,518,0.568,524,0.652,530,0.612,531,0.606,532,1.971,542,0.643,543,0.599,546,0.661,576,1.217,591,0.754,593,0.661,609,0.787,612,0.68,613,0.68,619,0.908,626,2.178,650,0.661,669,1.08,687,1.418,701,1.566,727,2.309,736,0.877,743,1.069,751,1.418,752,1.743,759,2.707,761,0.612,764,0.85,834,1.743,836,0.826,856,0.68,873,0.993,881,0.826,888,0.754,902,1.272,906,0.946,941,0.68,1053,1.449,1087,1.83,1101,1.743,1105,3.749,1108,0.787,1114,0.726,1131,0.77,1145,1.338,1159,2.178,1165,3.823,1200,1.185,1203,0.787,1235,0.908,1253,4.338,1272,0.85,1278,4.205,1295,1.17,1301,0.908,1308,0.77,1311,5.319,1312,5.746,1313,0.993,1314,2.564,1315,1.616,1316,2.124,1317,1.153,1318,4.693,1319,2.124,1320,1.153,1321,1.057,1322,1.153,1323,1.83,1324,0.877,1325,1.057,1326,2.707,1327,1.153,1328,1.153,1329,3.012,1330,1.057,1331,4.888,1332,3.701,1333,1.057,1334,1.057,1335,0.826,1336,0.739,1337,0.946,1338,1.566,1339,1.947,1340,1.153,1341,1.83,1342,1.153,1343,1.947,1344,2.931,1345,1.057,1346,1.153,1347,1.153,1348,0.908,1349,1.153,1350,1.153,1351,1.153,1352,1.616,1353,1.153,1354,1.153,1355,1.83,1356,1.947,1357,1.947,1358,3.976,1359,3.168,1360,1.153,1361,1.057,1362,0.946,1363,2.124,1364,2.124,1365,2.124,1366,2.124,1367,2.124,1368,0.993,1369,1.153,1370,2.707,1371,1.057,1372,1.153,1373,1.057,1374,2.246,1375,1.153,1376,1.153,1377,1.153,1378,0.993,1379,1.153,1380,1.153,1381,1.153,1382,0.85,1383,1.057,1384,0.85,1385,0.85,1386,1.153,1387,0.85,1388,1.947,1389,0.946,1390,1.153,1391,1.153,1392,0.77,1393,1.153,1394,1.153,1395,1.153,1396,0.806,1397,1.153,1398,0.826,1399,1.153,1400,1.153,1401,1.153,1402,1.153,1403,0.946,1404,1.057]],["component//jupyter.html",[253,0.408]],["title//jupyter.html#_overview",[254,35.084]],["name//jupyter.html#_overview",[]],["text//jupyter.html#_overview",[]],["component//jupyter.html#_overview",[]],["title//jupyter.html#_options",[172,41.113]],["name//jupyter.html#_options",[]],["text//jupyter.html#_options",[]],["component//jupyter.html#_options",[]],["title//jupyter.html#_teradata_libraries",[9,18.451,1105,41.043]],["name//jupyter.html#_teradata_libraries",[]],["text//jupyter.html#_teradata_libraries",[]],["component//jupyter.html#_teradata_libraries",[]],["title//jupyter.html#_teradata_jupyter_docker_image",[9,13.672,1278,29.478,1311,27.527,1318,27.187]],["name//jupyter.html#_teradata_jupyter_docker_image",[]],["text//jupyter.html#_teradata_jupyter_docker_image",[]],["component//jupyter.html#_teradata_jupyter_docker_image",[]],["title//jupyter.html#_summary",[492,40.696]],["name//jupyter.html#_summary",[]],["text//jupyter.html#_summary",[]],["component//jupyter.html#_summary",[]],["title//jupyter.html#_further_reading",[244,23.463,611,28.096]],["name//jupyter.html#_further_reading",[]],["text//jupyter.html#_further_reading",[]],["component//jupyter.html#_further_reading",[]],["title//local.jupyter.hub.html",[9,12.104,838,22.255,1253,26.924,1311,24.37,1405,38.119]],["name//local.jupyter.hub.html",[1406,3.19]],["text//local.jupyter.hub.html",[0,0.422,4,2.644,5,1.128,9,2.734,10,0.562,15,0.558,16,0.549,20,1.869,21,1.238,25,0.802,26,1.651,28,1.976,34,1.029,42,0.711,48,1.079,63,1.795,68,0.828,74,2.073,75,0.711,82,1.416,87,1.135,90,0.673,91,3.002,92,0.875,101,1.088,104,0.629,107,2.113,119,1.037,120,2.761,123,0.583,124,0.653,125,1.037,126,0.653,128,2.728,129,0.935,130,0.858,131,1.801,133,1.482,134,2.841,135,1.894,143,1.153,147,1.018,150,0.562,156,1.561,161,1.635,172,1.685,176,1.827,183,0.603,184,1.745,191,0.641,199,0.504,201,2.119,206,2.236,207,1.212,208,4.684,214,1.509,236,1.575,243,0.593,244,0.466,245,0.588,246,1.472,247,0.593,248,1.037,249,0.593,250,0.593,251,2.428,252,0.549,253,0.922,256,0.562,265,0.673,267,2.139,269,0.913,286,2.272,298,1.92,301,1.018,304,2.51,307,0.843,312,1.507,314,2.148,318,0.828,322,0.893,332,0.728,337,1.482,339,2.433,341,1.225,342,3.276,352,4.832,362,1.212,394,0.893,396,1.822,434,2.34,435,1.533,436,4.122,469,2.51,477,1.097,502,0.719,515,0.728,537,0.959,576,1.395,593,0.767,650,0.767,651,1.625,669,2.434,698,0.959,711,0.875,727,1.801,750,0.843,751,0.893,760,0.987,761,0.711,838,0.673,881,0.959,888,4.389,889,2.34,902,0.802,957,1.533,1001,0.828,1053,0.913,1105,1.482,1148,2.098,1165,4.208,1168,1.998,1253,4.301,1272,1.795,1278,6.106,1295,1.845,1301,1.054,1311,5.257,1312,4.496,1314,2.882,1318,4.782,1323,3.554,1324,1.018,1325,1.227,1329,1.998,1337,1.998,1343,1.227,1392,1.625,1405,6.09,1407,1.153,1408,1.153,1409,1.338,1410,1.098,1411,4.623,1412,1.227,1413,1.227,1414,1.227,1415,1.795,1416,1.098,1417,1.153,1418,1.227,1419,1.338,1420,2.435,1421,3.554,1422,2.47,1423,1.227,1424,1.918,1425,1.338,1426,1.338,1427,3.07,1428,1.338,1429,2.435,1430,3.349,1431,1.338,1432,3.554,1433,1.338,1434,1.153,1435,1.227,1436,1.338,1437,1.338,1438,1.338,1439,1.338,1440,1.338,1441,1.338,1442,1.338,1443,1.153,1444,1.227,1445,1.054,1446,1.227,1447,1.227,1448,1.227,1449,2.232,1450,1.338,1451,1.338,1452,1.227,1453,1.338,1454,3.07,1455,1.153,1456,1.227,1457,1.338,1458,2.435,1459,2.435,1460,4.39,1461,1.153,1462,1.338,1463,1.338,1464,1.338,1465,1.338,1466,1.338,1467,1.338,1468,2.232,1469,1.227,1470,1.227,1471,1.338,1472,1.338]],["component//local.jupyter.hub.html",[253,0.408]],["title//local.jupyter.hub.html#_overview",[254,35.084]],["name//local.jupyter.hub.html#_overview",[]],["text//local.jupyter.hub.html#_overview",[]],["component//local.jupyter.hub.html#_overview",[]],["title//local.jupyter.hub.html#_use_teradata_jupyter_docker_image",[4,13.597,9,12.104,1278,26.098,1311,24.37,1318,24.07]],["name//local.jupyter.hub.html#_use_teradata_jupyter_docker_image",[]],["text//local.jupyter.hub.html#_use_teradata_jupyter_docker_image",[]],["component//local.jupyter.hub.html#_use_teradata_jupyter_docker_image",[]],["title//local.jupyter.hub.html#_install_teradata_jupyter_docker_image_in_your_registry",[9,10.859,91,14.566,1278,23.413,1311,21.863,1318,21.593,1422,29.261]],["name//local.jupyter.hub.html#_install_teradata_jupyter_docker_image_in_your_registry",[]],["text//local.jupyter.hub.html#_install_teradata_jupyter_docker_image_in_your_registry",[]],["component//local.jupyter.hub.html#_install_teradata_jupyter_docker_image_in_your_registry",[]],["title//local.jupyter.hub.html#_use_teradata_jupyter_docker_image_in_jupyterhub",[4,12.198,9,10.859,1278,23.413,1311,21.863,1318,21.593,1405,34.198]],["name//local.jupyter.hub.html#_use_teradata_jupyter_docker_image_in_jupyterhub",[]],["text//local.jupyter.hub.html#_use_teradata_jupyter_docker_image_in_jupyterhub",[]],["component//local.jupyter.hub.html#_use_teradata_jupyter_docker_image_in_jupyterhub",[]],["title//local.jupyter.hub.html#_customize_teradata_jupyter_docker_image",[9,12.104,396,24.07,1278,26.098,1311,24.37,1318,24.07]],["name//local.jupyter.hub.html#_customize_teradata_jupyter_docker_image",[]],["text//local.jupyter.hub.html#_customize_teradata_jupyter_docker_image",[]],["component//local.jupyter.hub.html#_customize_teradata_jupyter_docker_image",[]],["title//local.jupyter.hub.html#_customize_an_existing_docker_image_to_include_teradata_extensions",[9,9.846,21,18.293,342,20.079,396,19.579,1253,21.901,1278,21.229,1318,19.579]],["name//local.jupyter.hub.html#_customize_an_existing_docker_image_to_include_teradata_extensions",[]],["text//local.jupyter.hub.html#_customize_an_existing_docker_image_to_include_teradata_extensions",[]],["component//local.jupyter.hub.html#_customize_an_existing_docker_image_to_include_teradata_extensions",[]],["title//local.jupyter.hub.html#_further_reading",[244,23.463,611,28.096]],["name//local.jupyter.hub.html#_further_reading",[]],["text//local.jupyter.hub.html#_further_reading",[]],["component//local.jupyter.hub.html#_further_reading",[]],["title//ml.html",[5,13.672,168,21.788,1336,32.048,1473,29.478]],["name//ml.html",[1336,2.046]],["text//ml.html",[0,2.032,4,1.89,5,1.968,8,1.099,9,0.488,10,0.401,15,0.398,16,0.392,20,0.533,25,0.572,29,0.508,30,0.382,31,1.316,34,1.062,48,0.423,50,0.685,52,2.619,60,0.727,68,1.104,82,1.062,85,0.749,87,1.735,91,2.64,100,0.52,101,0.427,102,1.439,104,0.449,107,1.054,109,1.366,110,1.247,112,1.218,119,0.76,120,1.482,121,0.917,122,1.069,123,0.417,128,0.907,131,0.514,133,1.086,134,1.267,135,2.653,139,0.481,150,2.582,151,1.279,156,0.832,160,1.759,161,0.871,166,0.652,168,3.036,172,1.263,176,0.791,181,0.514,183,1.131,184,0.685,186,0.591,190,0.413,192,1.104,201,0.491,203,0.533,207,1.57,208,4.602,213,3.021,214,0.804,218,0.652,224,0.564,227,1.676,229,0.784,238,0.613,239,0.572,243,0.423,244,0.332,245,0.42,246,0.784,247,0.423,248,0.76,249,0.423,250,0.423,251,0.395,252,0.392,258,2.001,267,0.797,279,0.652,292,0.481,294,0.625,304,0.582,316,1.069,320,0.652,329,0.971,330,0.533,334,0.526,338,0.548,341,0.481,342,0.533,343,0.591,345,0.602,348,0.907,350,0.602,351,1.276,357,1.637,359,0.685,360,0.625,365,0.638,367,0.476,368,0.917,375,3.612,380,0.556,382,0.564,392,1.247,395,2.152,396,1.366,400,1.218,416,0.727,426,0.54,432,0.52,435,0.602,436,1.759,438,0.564,454,1.191,458,0.927,460,0.591,472,0.52,473,0.54,477,1.907,480,0.705,488,1.104,491,0.638,503,0.526,504,0.591,507,0.54,511,0.613,513,0.582,514,0.591,517,0.491,518,1.835,530,0.948,531,1.319,539,3.851,542,0.996,546,2.426,557,2.202,570,2.332,573,2.461,580,0.638,592,0.548,609,0.652,612,0.564,613,0.564,615,0.784,630,0.556,632,0.668,669,0.486,670,0.727,679,0.582,683,1.191,693,0.727,704,0.705,727,1.35,730,0.625,731,0.638,734,1.124,737,1.406,741,0.705,750,0.602,754,0.727,755,1.406,756,3.277,760,0.705,761,0.508,764,0.705,765,1.754,788,1.167,792,0.876,793,1.439,798,0.727,822,6.155,825,0.727,835,0.971,838,0.481,856,0.564,899,0.898,941,1.053,958,0.54,1019,0.685,1037,0.668,1082,3.069,1091,0.823,1096,0.652,1105,2.265,1114,1.124,1137,1.91,1142,0.685,1145,0.602,1160,1.851,1177,0.784,1185,0.753,1203,0.652,1210,0.652,1211,0.668,1236,0.685,1240,1.247,1242,0.652,1249,1.713,1260,1.978,1287,0.753,1336,2.022,1338,0.705,1359,0.625,1410,0.784,1474,0.753,1475,0.876,1476,0.823,1477,1.636,1478,0.876,1479,0.956,1480,0.956,1481,0.956,1482,6.539,1483,0.784,1484,3.152,1485,1.538,1486,2.889,1487,1.465,1488,1.785,1489,2.511,1490,2.511,1491,0.956,1492,0.652,1493,0.956,1494,0.727,1495,0.876,1496,0.823,1497,0.956,1498,0.876,1499,0.956,1500,0.956,1501,0.956,1502,0.956,1503,0.956,1504,0.956,1505,0.956,1506,1.465,1507,0.685,1508,1.406,1509,3.152,1510,1.406,1511,0.956,1512,0.823,1513,1.465,1514,0.956,1515,2.511,1516,0.956,1517,2.668,1518,0.823,1519,1.785,1520,2.716,1521,2.511,1522,2.511,1523,0.876,1524,2.511,1525,2.511,1526,1.636,1527,0.956,1528,0.956,1529,0.956,1530,0.956,1531,0.956,1532,0.956,1533,0.956,1534,0.956,1535,2.511,1536,5.023,1537,0.956,1538,0.956,1539,0.956,1540,0.956,1541,0.956,1542,5.488,1543,4.233,1544,0.956,1545,0.956,1546,0.956,1547,0.956,1548,0.956,1549,0.956,1550,0.956,1551,0.956,1552,0.876,1553,0.956,1554,0.956,1555,0.956,1556,5.488,1557,2.511,1558,0.956,1559,2.511,1560,0.956,1561,2.511,1562,0.956,1563,4.233,1564,2.511,1565,0.956,1566,0.956,1567,1.785,1568,2.511,1569,0.956,1570,0.956,1571,0.956,1572,3.152,1573,2.889,1574,3.152,1575,3.152,1576,0.956,1577,0.956,1578,0.956,1579,0.956,1580,0.956,1581,1.785,1582,0.956,1583,0.956,1584,0.956,1585,0.956,1586,0.956,1587,0.582,1588,2.06,1589,1.636,1590,0.876,1591,1.785,1592,0.956,1593,1.785,1594,1.785,1595,0.956,1596,0.956,1597,1.785,1598,0.956,1599,0.784,1600,1.191,1601,0.638,1602,0.956,1603,0.753,1604,2.511,1605,0.956,1606,0.956,1607,0.956,1608,0.956,1609,0.956,1610,0.956,1611,0.956,1612,0.784,1613,0.956,1614,0.956,1615,0.956,1616,0.956,1617,2.511,1618,1.785,1619,0.956,1620,0.956,1621,0.956,1622,0.956,1623,0.956,1624,0.956,1625,0.956,1626,0.956,1627,0.956,1628,0.956,1629,0.956,1630,0.956,1631,0.956,1632,0.956,1633,0.956,1634,0.956,1635,0.956,1636,1.785,1637,0.956,1638,0.956,1639,0.956,1640,0.956,1641,1.785,1642,0.956,1643,0.956,1644,0.956]],["component//ml.html",[253,0.408]],["title//ml.html#_overview",[254,35.084]],["name//ml.html#_overview",[]],["text//ml.html#_overview",[]],["component//ml.html#_overview",[]],["title//ml.html#_prerequisites",[255,36.808]],["name//ml.html#_prerequisites",[]],["text//ml.html#_prerequisites",[]],["component//ml.html#_prerequisites",[]],["title//ml.html#_install_vantage_analytics_library",[5,13.672,91,18.339,395,25.401,1105,30.411]],["name//ml.html#_install_vantage_analytics_library",[]],["text//ml.html#_install_vantage_analytics_library",[]],["component//ml.html#_install_vantage_analytics_library",[]],["title//ml.html#_sample_data",[8,19.915,477,30.373]],["name//ml.html#_sample_data",[]],["text//ml.html#_sample_data",[]],["component//ml.html#_sample_data",[]],["title//ml.html#_create_a_linear_regression_model",[0,15.758,168,21.788,1588,41.007,1589,45.801]],["name//ml.html#_create_a_linear_regression_model",[]],["text//ml.html#_create_a_linear_regression_model",[]],["component//ml.html#_create_a_linear_regression_model",[]],["title//ml.html#_scoring",[1600,54.553]],["name//ml.html#_scoring",[]],["text//ml.html#_scoring",[]],["component//ml.html#_scoring",[]],["title//ml.html#_summary",[492,40.696]],["name//ml.html#_summary",[]],["text//ml.html#_summary",[]],["component//ml.html#_summary",[]],["title//ml.html#_further_reading",[244,23.463,611,28.096]],["name//ml.html#_further_reading",[]],["text//ml.html#_further_reading",[]],["component//ml.html#_further_reading",[]],["title//mule.jdbc.example.html",[5,12.104,9,12.104,39,22.255,219,17.663,1645,28.928]],["name//mule.jdbc.example.html",[1646,3.19]],["text//mule.jdbc.example.html",[0,1.986,4,1.708,5,1.723,8,0.594,9,1.891,10,0.844,15,0.838,16,1.437,26,0.992,30,1.398,34,0.85,39,1.012,40,1.153,41,4.79,48,0.891,74,1.245,82,1.48,85,1.95,101,1.563,103,1.069,104,0.946,107,1.859,109,1.094,119,2.368,120,0.946,121,1.798,123,2.026,124,0.982,125,1.491,126,0.982,128,1.022,134,0.809,139,1.012,142,1.137,145,1.405,149,1.904,150,3.726,156,0.937,167,1.081,176,2.059,180,1.108,183,2.093,189,1.033,190,1.514,191,1.677,197,3.382,199,1.749,203,1.122,207,1.002,208,4.535,213,1.427,218,1.372,219,2.966,223,1.186,226,1.205,236,2.962,243,0.891,244,0.7,245,0.884,246,0.884,247,0.891,248,1.491,249,0.891,250,0.891,251,0.832,252,0.826,253,0.762,262,1.081,263,3.251,273,1.53,291,1.245,295,3.883,296,2.13,298,1.153,299,2.204,341,3.168,343,1.245,345,1.266,357,1.045,360,1.315,369,1.056,375,0.955,385,2.035,395,2.362,410,1.372,432,1.094,436,1.122,458,3.271,460,1.245,469,1.224,471,1.585,472,1.094,476,1.186,477,2.093,497,1.405,501,3.039,502,2.498,515,1.094,542,1.122,559,2.336,563,1.372,564,1.979,576,2.006,612,1.186,613,1.186,616,1.651,630,2.035,663,1.53,687,1.343,704,1.483,706,1.29,730,1.315,743,1.761,862,1.585,863,3.535,899,1.761,921,1.483,930,1.122,1107,1.137,1155,1.651,1181,2.245,1200,3.514,1205,1.483,1207,1.483,1210,1.372,1213,1.442,1214,3.426,1215,4.097,1216,1.266,1217,3.426,1218,2.581,1219,4.643,1220,3.426,1221,2.509,1222,2.446,1223,2.581,1224,3.426,1225,3.426,1226,1.483,1227,2.581,1229,2.581,1230,3.984,1231,1.483,1232,2.581,1233,2.509,1234,1.153,1257,2.581,1274,2.872,1275,1.843,1298,1.53,1300,2.662,1308,3.102,1310,1.266,1333,1.843,1344,1.372,1359,1.315,1384,2.581,1385,1.483,1396,5.499,1506,1.651,1645,2.289,1647,2.758,1648,2.011,1649,1.53,1650,4.79,1651,2.011,1652,1.585,1653,2.011,1654,2.011,1655,1.442,1656,2.011,1657,1.843,1658,2.011,1659,2.011,1660,2.011,1661,2.011,1662,2.011,1663,2.011,1664,1.372,1665,2.011,1666,2.011,1667,3.5,1668,1.343,1669,2.011,1670,2.011,1671,2.011,1672,2.011]],["component//mule.jdbc.example.html",[253,0.408]],["title//mule.jdbc.example.html#_overview",[254,35.084]],["name//mule.jdbc.example.html#_overview",[]],["text//mule.jdbc.example.html#_overview",[]],["component//mule.jdbc.example.html#_overview",[]],["title//mule.jdbc.example.html#_prerequisites",[255,36.808]],["name//mule.jdbc.example.html#_prerequisites",[]],["text//mule.jdbc.example.html#_prerequisites",[]],["component//mule.jdbc.example.html#_prerequisites",[]],["title//mule.jdbc.example.html#_example_service",[39,33.926,236,31.717]],["name//mule.jdbc.example.html#_example_service",[]],["text//mule.jdbc.example.html#_example_service",[]],["component//mule.jdbc.example.html#_example_service",[]],["title//mule.jdbc.example.html#_setup",[383,42.448]],["name//mule.jdbc.example.html#_setup",[]],["text//mule.jdbc.example.html#_setup",[]],["component//mule.jdbc.example.html#_setup",[]],["title//mule.jdbc.example.html#_run",[107,27.334]],["name//mule.jdbc.example.html#_run",[]],["text//mule.jdbc.example.html#_run",[]],["component//mule.jdbc.example.html#_run",[]],["title//mule.jdbc.example.html#_further_reading",[244,23.463,611,28.096]],["name//mule.jdbc.example.html#_further_reading",[]],["text//mule.jdbc.example.html#_further_reading",[]],["component//mule.jdbc.example.html#_further_reading",[]],["title//nos.html",[8,13.064,127,18.166,219,17.663,327,22.029,494,22.488]],["name//nos.html",[499,1.803]],["text//nos.html",[0,2.295,4,2.099,5,2.193,8,2.499,9,0.665,10,1.283,15,0.384,16,0.378,20,0.514,34,1.028,35,0.859,37,1.271,39,0.463,42,0.489,48,0.408,52,0.962,68,1.067,69,0.66,75,0.489,76,0.628,80,1.623,81,1.311,82,1.028,85,1.02,86,0.57,87,1.133,100,0.501,101,0.411,104,0.433,107,0.577,110,0.643,119,0.735,120,0.811,121,0.473,122,0.552,123,0.402,124,0.45,125,0.392,126,0.45,127,1.691,129,0.643,131,0.495,134,1.838,135,2.045,149,0.501,150,2.249,156,0.429,160,0.514,161,0.842,167,0.927,176,0.764,177,1.049,178,1.925,183,2.842,207,0.459,208,4.016,213,2.784,217,1.659,218,0.628,219,1.99,230,0.543,232,0.552,239,1.456,243,0.764,244,0.32,245,0.405,246,0.405,247,0.408,248,0.735,249,0.408,250,0.408,251,0.381,252,0.378,256,0.724,267,1.086,282,0.591,308,0.602,322,1.623,323,0.521,327,3.4,328,1.106,329,1.663,330,0.514,338,0.528,339,0.543,340,2.136,343,1.067,345,0.58,348,0.468,357,0.896,361,0.528,385,1.413,397,0.58,426,0.521,432,0.501,433,0.867,436,0.514,442,0.628,451,1.921,454,0.615,458,1.588,462,0.66,469,0.561,472,0.501,473,0.975,476,0.543,477,1.095,480,0.679,488,1.067,493,1.743,494,2.724,499,2.818,500,4.004,501,1.127,502,1.307,503,0.95,504,0.57,505,1.086,507,0.521,508,0.756,509,0.615,510,0.794,511,0.591,512,1.236,513,0.561,514,0.57,516,1.623,517,0.473,518,0.454,519,0.58,520,0.794,521,0.726,522,2.642,525,1.415,531,0.906,542,0.514,543,0.478,544,0.756,546,2.073,547,0.834,557,4.205,578,0.679,580,0.615,584,0.844,586,0.844,587,0.844,589,2.751,591,0.602,594,3.052,595,0.66,597,1.177,609,0.628,611,1.274,612,0.543,613,0.543,630,1.413,643,0.756,644,1.486,648,0.844,650,0.988,660,0.602,665,0.643,669,0.876,730,0.602,731,0.615,732,0.57,743,0.463,752,0.756,756,1.106,770,0.679,793,0.528,798,0.701,802,0.726,817,0.679,825,0.701,829,0.615,833,0.701,843,0.756,860,0.701,924,0.794,941,0.543,957,1.925,999,1.236,1001,1.067,1005,0.66,1017,0.756,1029,0.756,1032,0.756,1044,0.726,1130,0.628,1162,0.701,1203,0.628,1210,0.628,1211,0.643,1222,0.643,1230,4.088,1238,0.726,1242,5.355,1249,0.628,1257,0.679,1290,0.756,1315,1.311,1373,0.844,1410,0.756,1474,0.726,1492,0.628,1518,0.794,1587,0.561,1599,0.756,1673,0.794,1674,0.794,1675,0.921,1676,2.697,1677,0.921,1678,0.921,1679,0.921,1680,0.921,1681,7.847,1682,0.921,1683,1.792,1684,3.057,1685,4.119,1686,2.431,1687,6.579,1688,4.119,1689,2.431,1690,4.119,1691,2.431,1692,0.921,1693,6.018,1694,8.842,1695,5.703,1696,3.057,1697,1.724,1698,0.921,1699,0.921,1700,3.616,1701,0.921,1702,1.724,1703,0.921,1704,0.921,1705,0.921,1706,0.921,1707,1.724,1708,3.616,1709,0.921,1710,0.921,1711,0.921,1712,3.775,1713,0.921,1714,0.921,1715,0.921,1716,0.921,1717,1.724,1718,0.921,1719,0.921,1720,1.724,1721,0.921,1722,0.921,1723,0.921,1724,0.921,1725,0.921,1726,0.921,1727,0.921,1728,0.921,1729,0.921,1730,0.921,1731,0.921,1732,2.431,1733,0.921,1734,0.921,1735,1.724,1736,0.921,1737,2.802,1738,6.309,1739,4.119,1740,0.844,1741,0.921,1742,0.921,1743,0.726,1744,0.921,1745,0.756,1746,1.724,1747,1.58,1748,0.921,1749,2.431,1750,0.921,1751,0.921,1752,0.921,1753,0.921,1754,0.921,1755,0.921,1756,0.921,1757,0.921,1758,6.018,1759,1.724,1760,1.724,1761,1.724,1762,7.277,1763,1.724,1764,0.921,1765,0.921,1766,3.057,1767,4.984,1768,6.828,1769,1.724,1770,3.057,1771,1.724,1772,1.724,1773,1.724,1774,0.921,1775,0.921,1776,0.921,1777,0.844,1778,0.921,1779,3.616,1780,5.703,1781,0.921,1782,0.921,1783,0.921,1784,0.921,1785,0.921,1786,0.921,1787,1.58,1788,1.58,1789,0.66,1790,0.756,1791,0.794,1792,0.921,1793,1.724,1794,0.794,1795,0.921,1796,0.921,1797,0.921,1798,1.724,1799,0.921,1800,0.921,1801,0.844]],["component//nos.html",[253,0.408]],["title//nos.html#_overview",[254,35.084]],["name//nos.html#_overview",[]],["text//nos.html#_overview",[]],["component//nos.html#_overview",[]],["title//nos.html#_prerequisites",[255,36.808]],["name//nos.html#_prerequisites",[]],["text//nos.html#_prerequisites",[]],["component//nos.html#_prerequisites",[]],["title//nos.html#_explore_data_with_nos",[8,16.952,488,35.522,499,32.456]],["name//nos.html#_explore_data_with_nos",[]],["text//nos.html#_explore_data_with_nos",[]],["component//nos.html#_explore_data_with_nos",[]],["title//nos.html#_query_data_with_nos",[8,16.952,219,22.919,499,32.456]],["name//nos.html#_query_data_with_nos",[]],["text//nos.html#_query_data_with_nos",[]],["component//nos.html#_query_data_with_nos",[]],["title//nos.html#_load_data_from_nos_into_vantage",[5,13.672,8,14.756,214,22.505,499,28.252]],["name//nos.html#_load_data_from_nos_into_vantage",[]],["text//nos.html#_load_data_from_nos_into_vantage",[]],["component//nos.html#_load_data_from_nos_into_vantage",[]],["title//nos.html#_access_private_buckets",[85,24.092,522,36.816,1789,41.15]],["name//nos.html#_access_private_buckets",[]],["text//nos.html#_access_private_buckets",[]],["component//nos.html#_access_private_buckets",[]],["title//nos.html#_export_data_from_vantage_to_object_storage",[5,12.104,8,13.064,327,22.029,494,22.488,516,29.53]],["name//nos.html#_export_data_from_vantage_to_object_storage",[]],["text//nos.html#_export_data_from_vantage_to_object_storage",[]],["component//nos.html#_export_data_from_vantage_to_object_storage",[]],["title//nos.html#_summary",[492,40.696]],["name//nos.html#_summary",[]],["text//nos.html#_summary",[]],["component//nos.html#_summary",[]],["title//nos.html#_further_reading",[244,23.463,611,28.096]],["name//nos.html#_further_reading",[]],["text//nos.html#_further_reading",[]],["component//nos.html#_further_reading",[]],["title//odbc.ubuntu.html",[4,15.358,5,13.672,1802,43.057,1803,39.371]],["name//odbc.ubuntu.html",[1804,3.19]],["text//odbc.ubuntu.html",[0,1.683,4,1.64,5,2.29,9,2.826,10,1.396,15,1.386,16,2.191,17,2.452,19,1.788,20,1.856,22,3.302,30,1.328,34,1.406,40,3.83,48,1.474,82,2.256,85,2.239,88,2.977,91,3.072,92,6.9,101,2.383,104,1.564,107,1.112,109,1.81,119,2.846,120,1.564,121,1.709,123,2.327,124,1.624,125,1.417,126,1.624,134,2.145,150,3.513,162,2.27,163,2.27,167,1.788,180,1.832,199,2.008,208,4.323,224,3.148,243,1.474,244,1.157,245,1.462,246,1.462,247,1.474,248,2.273,249,1.474,250,1.474,251,1.376,252,1.366,253,1.26,286,2.939,301,2.53,318,2.058,367,1.656,375,1.579,382,3.148,477,1.498,515,2.903,521,5.264,576,1.906,612,1.962,613,1.962,625,4.059,725,4.204,793,1.906,903,3.049,958,1.881,1008,2.175,1612,2.73,1802,9.536,1803,6.024,1805,3.049,1806,4.379,1807,3.326,1808,2.384,1809,5.335,1810,3.326,1811,3.326,1812,5.335,1813,3.326,1814,3.326,1815,3.326,1816,3.326,1817,3.326,1818,3.326,1819,3.326,1820,3.326,1821,3.326,1822,3.326,1823,3.326,1824,5.335,1825,3.326,1826,3.326,1827,3.326,1828,3.326,1829,3.326,1830,3.326,1831,3.326,1832,3.326,1833,3.326,1834,3.326,1835,3.326,1836,2.621,1837,3.326]],["component//odbc.ubuntu.html",[253,0.408]],["title//odbc.ubuntu.html#_overview",[254,35.084]],["name//odbc.ubuntu.html#_overview",[]],["text//odbc.ubuntu.html#_overview",[]],["component//odbc.ubuntu.html#_overview",[]],["title//odbc.ubuntu.html#_prerequisites",[255,36.808]],["name//odbc.ubuntu.html#_prerequisites",[]],["text//odbc.ubuntu.html#_prerequisites",[]],["component//odbc.ubuntu.html#_prerequisites",[]],["title//odbc.ubuntu.html#_installation",[91,29.994]],["name//odbc.ubuntu.html#_installation",[]],["text//odbc.ubuntu.html#_installation",[]],["component//odbc.ubuntu.html#_installation",[]],["title//odbc.ubuntu.html#_use_odbc",[4,20.727,1802,58.11]],["name//odbc.ubuntu.html#_use_odbc",[]],["text//odbc.ubuntu.html#_use_odbc",[]],["component//odbc.ubuntu.html#_use_odbc",[]],["title//odbc.ubuntu.html#_summary",[492,40.696]],["name//odbc.ubuntu.html#_summary",[]],["text//odbc.ubuntu.html#_summary",[]],["component//odbc.ubuntu.html#_summary",[]],["title//odbc.ubuntu.html#_further_reading",[244,23.463,611,28.096]],["name//odbc.ubuntu.html#_further_reading",[]],["text//odbc.ubuntu.html#_further_reading",[]],["component//odbc.ubuntu.html#_further_reading",[]],["title//perform-time-series-analysis-using-teradata-vantage.html",[4,11.06,5,9.846,9,9.846,451,19.118,835,19.579,1005,25.797,1838,29.532]],["name//perform-time-series-analysis-using-teradata-vantage.html",[4,0.19,5,0.169,9,0.169,451,0.329,835,0.337,1005,0.444,1838,0.508]],["text//perform-time-series-analysis-using-teradata-vantage.html",[0,0.592,2,0.544,4,1.136,5,1.764,8,1.564,9,0.655,10,0.29,15,0.287,16,0.283,19,0.371,20,0.385,21,0.351,34,0.292,37,0.509,39,0.347,40,0.395,48,0.306,59,0.544,80,0.461,82,1.012,85,0.551,86,0.427,87,1.115,90,0.347,99,0.566,104,0.324,105,0.354,119,0.559,123,0.301,124,0.337,125,0.294,126,0.337,127,0.771,129,0.482,131,0.371,181,0.371,183,1.484,190,1.035,201,0.354,206,0.461,207,0.344,208,3.099,213,1.506,217,0.471,218,0.471,219,0.524,238,0.842,239,0.786,243,0.306,244,0.832,245,0.303,246,0.303,247,0.306,248,0.559,249,0.306,250,0.306,251,0.285,252,0.283,256,0.29,271,0.858,276,0.461,279,0.471,282,0.442,288,0.566,304,0.42,310,0.732,320,0.471,326,0.632,327,0.654,329,0.375,338,0.395,357,1.243,375,4.223,390,0.451,397,1.803,408,0.566,410,0.896,432,1.022,436,0.385,451,3.717,458,1.243,472,1.302,476,0.407,477,0.311,494,0.351,499,0.742,500,0.42,502,0.371,503,0.38,505,1.182,511,0.442,513,0.799,517,0.354,518,0.34,519,0.434,520,0.594,521,0.544,522,0.842,524,0.39,531,1.257,543,0.682,546,2.329,547,0.908,556,0.594,564,0.742,570,3.061,573,1.665,576,0.395,589,0.998,592,1.076,601,0.471,603,0.509,611,0.287,641,0.471,650,0.395,651,0.876,694,0.544,701,0.968,702,0.509,773,0.544,793,0.752,825,0.525,835,0.375,844,0.525,851,0.632,902,0.786,930,0.732,957,1.506,958,0.39,989,0.632,1000,0.495,1005,1.346,1008,0.451,1032,0.566,1054,0.566,1162,0.525,1203,0.471,1216,0.827,1236,0.495,1242,2.249,1290,9.287,1291,1.203,1301,1.034,1315,0.998,1348,0.544,1518,2.061,1523,0.632,1536,4.06,1573,1.721,1587,1.743,1668,1.911,1683,0.968,1743,1.885,1745,0.566,1838,4.76,1839,0.69,1840,0.69,1841,0.544,1842,0.632,1843,0.509,1844,0.509,1845,0.566,1846,1.313,1847,1.313,1848,1.313,1849,0.69,1850,5.02,1851,2.863,1852,1.877,1853,3.296,1854,1.877,1855,1.877,1856,1.877,1857,1.877,1858,0.69,1859,1.877,1860,1.877,1861,0.69,1862,0.69,1863,0.69,1864,0.69,1865,0.69,1866,0.69,1867,0.69,1868,4.723,1869,4.723,1870,4.723,1871,4.723,1872,6.995,1873,0.69,1874,0.69,1875,0.69,1876,0.69,1877,3.722,1878,0.69,1879,0.69,1880,4.723,1881,5.556,1882,0.69,1883,0.69,1884,0.69,1885,0.69,1886,0.69,1887,0.69,1888,0.69,1889,0.69,1890,0.69,1891,1.313,1892,0.69,1893,0.69,1894,0.69,1895,0.69,1896,0.69,1897,0.69,1898,0.69,1899,0.69,1900,0.69,1901,1.313,1902,0.69,1903,1.313,1904,0.69,1905,0.69,1906,0.69,1907,0.69,1908,0.69,1909,1.313,1910,0.69,1911,0.69,1912,0.69,1913,0.69,1914,0.69,1915,0.69,1916,3.021,1917,0.69,1918,0.69,1919,0.69,1920,0.69,1921,0.69,1922,0.69,1923,0.69,1924,0.69,1925,0.69,1926,0.69,1927,0.69,1928,0.69,1929,0.69,1930,0.69,1931,0.69,1932,0.69,1933,0.69,1934,0.69,1935,0.69,1936,0.69,1937,0.69,1938,0.69,1939,0.69,1940,0.69,1941,0.69,1942,1.313,1943,0.69,1944,0.69,1945,0.69,1946,0.69,1947,0.69,1948,0.69,1949,0.69,1950,0.69,1951,0.69,1952,0.69,1953,0.69,1954,0.69,1955,0.69,1956,2.863,1957,0.69,1958,4.063,1959,0.594,1960,1.203,1961,2.467,1962,1.313,1963,0.594,1964,0.998,1965,1.313,1966,0.968,1967,1.313,1968,1.203,1969,1.077,1970,2.061,1971,0.69,1972,1.877,1973,0.69,1974,1.313,1975,1.877,1976,1.877,1977,0.69,1978,1.877,1979,1.313,1980,11.177,1981,11.177,1982,1.877,1983,2.863,1984,4.723,1985,0.69,1986,1.313,1987,2.863,1988,1.877,1989,2.392,1990,2.863,1991,2.863,1992,0.69,1993,2.863,1994,0.69,1995,2.392,1996,0.69,1997,0.69,1998,0.69,1999,0.566,2000,0.69,2001,0.69,2002,1.313,2003,0.69,2004,2.392,2005,1.313,2006,0.69,2007,1.313,2008,8.331,2009,1.203,2010,0.69,2011,0.69,2012,1.313,2013,0.69,2014,0.69,2015,0.69,2016,1.313,2017,1.877,2018,0.69,2019,1.313,2020,2.392,2021,1.313,2022,1.313,2023,0.69,2024,0.69,2025,0.594,2026,1.313,2027,2.392,2028,1.877,2029,0.69,2030,0.69,2031,1.618,2032,0.69,2033,0.69,2034,0.566,2035,0.69,2036,0.69,2037,0.69,2038,0.69,2039,0.69,2040,0.69,2041,0.69,2042,2.863,2043,0.69,2044,1.313,2045,1.313,2046,0.69,2047,0.69,2048,0.69,2049,0.69,2050,0.69,2051,0.69,2052,0.69,2053,1.313,2054,0.69,2055,0.69,2056,1.313,2057,0.69,2058,0.69,2059,1.313,2060,0.69,2061,0.69,2062,0.69,2063,0.69,2064,1.313,2065,0.69,2066,0.69,2067,0.69,2068,1.313,2069,0.69,2070,0.69,2071,0.69,2072,1.313,2073,0.69,2074,0.69,2075,0.69,2076,0.69,2077,0.69,2078,0.69,2079,1.313,2080,0.69,2081,0.69,2082,0.69,2083,1.313,2084,0.69,2085,0.69,2086,0.69,2087,1.313,2088,0.69,2089,0.69,2090,0.69,2091,0.69,2092,0.69,2093,0.69,2094,0.594,2095,2.392,2096,0.632,2097,0.632,2098,0.632,2099,0.69,2100,0.632,2101,0.69,2102,0.632,2103,0.544,2104,0.69,2105,0.632]],["component//perform-time-series-analysis-using-teradata-vantage.html",[253,0.408]],["title//perform-time-series-analysis-using-teradata-vantage.html#_overview",[254,35.084]],["name//perform-time-series-analysis-using-teradata-vantage.html#_overview",[]],["text//perform-time-series-analysis-using-teradata-vantage.html#_overview",[]],["component//perform-time-series-analysis-using-teradata-vantage.html#_overview",[]],["title//perform-time-series-analysis-using-teradata-vantage.html#_prerequisites",[255,36.808]],["name//perform-time-series-analysis-using-teradata-vantage.html#_prerequisites",[]],["text//perform-time-series-analysis-using-teradata-vantage.html#_prerequisites",[]],["component//perform-time-series-analysis-using-teradata-vantage.html#_prerequisites",[]],["title//perform-time-series-analysis-using-teradata-vantage.html#_import_data_sets_from_aws_s3_using_vantage_nos",[4,10.116,5,9.006,8,9.72,167,17.694,190,14.24,499,18.61,505,20.726,507,18.61]],["name//perform-time-series-analysis-using-teradata-vantage.html#_import_data_sets_from_aws_s3_using_vantage_nos",[]],["text//perform-time-series-analysis-using-teradata-vantage.html#_import_data_sets_from_aws_s3_using_vantage_nos",[]],["component//perform-time-series-analysis-using-teradata-vantage.html#_import_data_sets_from_aws_s3_using_vantage_nos",[]],["title//perform-time-series-analysis-using-teradata-vantage.html#_basic_time_series_operations",[310,27.882,430,34.913,451,26.547,1838,41.007]],["name//perform-time-series-analysis-using-teradata-vantage.html#_basic_time_series_operations",[]],["text//perform-time-series-analysis-using-teradata-vantage.html#_basic_time_series_operations",[]],["component//perform-time-series-analysis-using-teradata-vantage.html#_basic_time_series_operations",[]],["title//perform-time-series-analysis-using-teradata-vantage.html#_summary",[492,40.696]],["name//perform-time-series-analysis-using-teradata-vantage.html#_summary",[]],["text//perform-time-series-analysis-using-teradata-vantage.html#_summary",[]],["component//perform-time-series-analysis-using-teradata-vantage.html#_summary",[]],["title//perform-time-series-analysis-using-teradata-vantage.html#_further_reading",[244,23.463,611,28.096]],["name//perform-time-series-analysis-using-teradata-vantage.html#_further_reading",[]],["text//perform-time-series-analysis-using-teradata-vantage.html#_further_reading",[]],["component//perform-time-series-analysis-using-teradata-vantage.html#_further_reading",[]],["title//run-vantage-express-on-aws.html",[5,13.672,107,16.713,507,28.252,518,24.636]],["name//run-vantage-express-on-aws.html",[5,0.284,107,0.347,507,0.586,518,0.511]],["text//run-vantage-express-on-aws.html",[0,2.556,4,1.028,5,1.995,8,0.493,9,0.585,10,0.701,15,0.484,16,0.477,19,0.326,20,0.339,28,1.517,29,0.322,30,0.464,34,0.491,39,0.305,48,0.269,52,0.339,59,1.685,75,0.617,82,1.087,83,4.912,85,0.255,87,1.72,91,1.227,100,0.33,101,0.746,102,0.666,103,0.322,105,0.312,107,1.118,108,0.775,109,0.632,112,0.414,119,1.71,120,1.398,121,1.718,122,0.696,125,0.495,127,0.249,128,1.876,130,0.745,134,0.467,135,0.657,139,0.84,142,0.944,150,0.897,154,0.358,156,0.541,157,0.435,160,0.648,161,1.96,162,1.459,164,4.811,172,0.305,173,0.435,176,0.514,179,0.369,180,0.334,183,0.523,189,1.321,190,0.262,197,0.369,199,0.437,201,0.312,203,0.932,206,1.115,207,0.578,208,5.151,209,0.397,213,2.522,219,2.314,221,1.576,226,0.363,232,0.363,235,0.382,236,0.285,243,0.269,244,0.211,245,0.267,246,0.267,247,0.269,248,0.495,249,0.269,250,0.269,251,0.48,252,0.249,253,0.44,267,0.519,268,0.322,274,0.414,291,1.033,292,2.172,297,0.414,298,0.348,316,1,323,0.343,327,0.302,328,2.769,330,0.339,339,0.985,341,0.305,343,0.375,345,0.382,348,0.308,350,0.382,352,1.016,353,0.414,357,0.603,362,1.999,367,2.78,368,1.718,375,1.015,382,0.358,385,0.971,396,0.909,405,0.315,432,0.33,433,1.857,438,0.358,443,0.775,455,0.424,458,0.315,460,0.375,469,0.707,472,0.33,474,0.358,476,1.517,477,0.273,491,0.775,494,0.308,502,0.624,507,4.268,511,0.389,515,0.33,516,0.405,517,1.321,518,3.781,530,0.887,531,0.319,532,0.775,543,1.111,546,0.957,547,0.293,553,0.731,559,0.775,564,0.944,570,0.64,576,0.348,592,0.666,593,0.348,597,4.092,609,0.414,612,0.985,613,0.358,615,0.498,630,0.675,650,0.666,664,0.461,669,0.308,670,0.461,687,0.405,688,0.389,704,0.447,706,0.389,710,0.461,711,0.397,726,1.576,727,0.326,730,0.397,731,0.405,732,0.719,736,0.461,742,0.397,745,0.405,755,0.915,756,2.145,757,1.167,760,0.447,768,0.424,788,0.759,801,0.478,805,1.755,817,0.856,820,0.389,829,0.405,859,0.523,930,0.648,941,4.524,958,0.343,999,0.435,1018,0.435,1019,0.832,1027,0.461,1037,0.424,1045,0.498,1081,1.843,1083,0.745,1096,0.414,1103,2.324,1104,0.461,1114,3.225,1122,0.424,1125,0.461,1126,0.461,1130,0.414,1131,0.775,1141,1.167,1142,2.646,1143,1.064,1144,1.316,1145,1.619,1147,2.873,1149,0.498,1150,0.498,1151,0.498,1160,0.856,1171,0.435,1172,0.461,1176,0.461,1178,0.883,1182,0.435,1183,0.461,1184,0.461,1199,0.414,1200,0.648,1202,0.461,1207,0.856,1210,0.414,1211,0.424,1212,0.792,1213,0.435,1214,1.231,1215,1.576,1216,0.382,1217,1.231,1218,0.856,1219,1.231,1220,1.231,1221,0.832,1222,0.811,1223,0.856,1224,1.231,1225,1.231,1226,0.447,1227,0.856,1228,0.883,1229,0.856,1230,1.843,1231,0.856,1232,0.856,1233,0.832,1234,0.666,1239,0.424,1240,1.494,1249,0.414,1262,2.11,1272,1.231,1276,0.498,1278,1.261,1314,0.424,1338,0.447,1361,1.064,1389,0.498,1396,0.424,1424,5.154,1445,0.478,1483,0.498,1485,0.523,1487,0.498,1507,2.397,1536,1.346,1587,3.981,1668,0.775,1789,0.832,1803,0.915,1806,0.953,1808,0.435,1836,0.915,1843,4.273,2106,0.607,2107,0.435,2108,0.607,2109,0.447,2110,0.883,2111,7.231,2112,1.161,2113,0.556,2114,0.556,2115,0.478,2116,0.607,2117,0.607,2118,0.556,2119,0.607,2120,0.498,2121,0.414,2122,0.607,2123,0.607,2124,0.607,2125,5.984,2126,0.607,2127,4.222,2128,0.607,2129,0.389,2130,0.607,2131,1.439,2132,0.607,2133,0.607,2134,3.691,2135,0.607,2136,0.607,2137,0.607,2138,0.607,2139,0.498,2140,0.397,2141,2.571,2142,0.607,2143,0.607,2144,0.953,2145,2.571,2146,5.496,2147,0.607,2148,0.607,2149,2.138,2150,0.447,2151,1.67,2152,1.167,2153,0.607,2154,1.439,2155,1.161,2156,1.071,2157,0.607,2158,0.607,2159,1.67,2160,1.67,2161,1.161,2162,0.607,2163,0.607,2164,0.607,2165,1.67,2166,0.556,2167,2.571,2168,1.161,2169,1.161,2170,1.161,2171,1.161,2172,1.161,2173,1.161,2174,3.344,2175,0.607,2176,0.607,2177,0.607,2178,0.607,2179,0.607,2180,1.27,2181,0.607,2182,1.67,2183,0.523,2184,0.607,2185,0.414,2186,0.607,2187,0.607,2188,0.607,2189,0.607,2190,0.607,2191,0.556,2192,0.607,2193,0.607,2194,0.556,2195,0.523,2196,0.523,2197,0.556,2198,0.607,2199,0.607,2200,0.478,2201,0.607,2202,0.607,2203,0.607,2204,0.607,2205,0.607,2206,1.161,2207,0.607,2208,0.915,2209,0.461,2210,1.001,2211,1.001,2212,0.523,2213,0.523,2214,0.523,2215,0.498,2216,0.523,2217,0.498,2218,0.498,2219,0.523,2220,0.414,2221,0.883,2222,1.842,2223,0.523,2224,0.523,2225,0.523,2226,0.461,2227,0.523,2228,0.523,2229,0.523,2230,0.523,2231,3.721,2232,0.523,2233,3.721,2234,0.523,2235,0.523,2236,1.439,2237,0.523,2238,0.523,2239,0.523,2240,0.523,2241,0.523,2242,0.523,2243,1.842,2244,0.523,2245,1.439,2246,1.439,2247,1.316,2248,1.439,2249,1.001,2250,0.523,2251,0.523,2252,1.001,2253,1.001,2254,1.001,2255,0.523,2256,1.001,2257,0.523,2258,0.424,2259,0.523,2260,0.523,2261,0.523,2262,0.447,2263,1.001,2264,0.498,2265,0.832,2266,1.001,2267,0.523,2268,0.523,2269,0.523,2270,0.523,2271,0.523,2272,0.461,2273,0.523,2274,0.523,2275,0.523,2276,0.523,2277,0.523,2278,0.523,2279,0.523,2280,0.523,2281,0.523,2282,0.523,2283,0.523,2284,0.523,2285,0.523,2286,0.523,2287,0.523,2288,0.523,2289,0.523,2290,0.523,2291,0.523,2292,1.37,2293,0.523,2294,0.498,2295,0.523,2296,0.523,2297,0.478,2298,0.556,2299,0.607,2300,0.607,2301,0.461]],["component//run-vantage-express-on-aws.html",[253,0.408]],["title//run-vantage-express-on-aws.html#_overview",[254,35.084]],["name//run-vantage-express-on-aws.html#_overview",[]],["text//run-vantage-express-on-aws.html#_overview",[]],["component//run-vantage-express-on-aws.html#_overview",[]],["title//run-vantage-express-on-aws.html#_prerequisites",[255,36.808]],["name//run-vantage-express-on-aws.html#_prerequisites",[]],["text//run-vantage-express-on-aws.html#_prerequisites",[]],["component//run-vantage-express-on-aws.html#_prerequisites",[]],["title//run-vantage-express-on-aws.html#_installation",[91,29.994]],["name//run-vantage-express-on-aws.html#_installation",[]],["text//run-vantage-express-on-aws.html#_installation",[]],["component//run-vantage-express-on-aws.html#_installation",[]],["title//run-vantage-express-on-aws.html#_run_sample_queries",[107,19.2,219,22.919,477,25.854]],["name//run-vantage-express-on-aws.html#_run_sample_queries",[]],["text//run-vantage-express-on-aws.html#_run_sample_queries",[]],["component//run-vantage-express-on-aws.html#_run_sample_queries",[]],["title//run-vantage-express-on-aws.html#_optional_setup",[172,33.926,383,35.028]],["name//run-vantage-express-on-aws.html#_optional_setup",[]],["text//run-vantage-express-on-aws.html#_optional_setup",[]],["component//run-vantage-express-on-aws.html#_optional_setup",[]],["title//run-vantage-express-on-aws.html#_cleanup",[2302,62.163]],["name//run-vantage-express-on-aws.html#_cleanup",[]],["text//run-vantage-express-on-aws.html#_cleanup",[]],["component//run-vantage-express-on-aws.html#_cleanup",[]],["title//run-vantage-express-on-aws.html#_next_steps",[216,36.252,256,28.304]],["name//run-vantage-express-on-aws.html#_next_steps",[]],["text//run-vantage-express-on-aws.html#_next_steps",[]],["component//run-vantage-express-on-aws.html#_next_steps",[]],["title//run-vantage-express-on-aws.html#_further_reading",[244,23.463,611,28.096]],["name//run-vantage-express-on-aws.html#_further_reading",[]],["text//run-vantage-express-on-aws.html#_further_reading",[]],["component//run-vantage-express-on-aws.html#_further_reading",[]],["title//run-vantage-express-on-microsoft-azure.html",[5,13.672,100,27.187,107,16.713,518,24.636]],["name//run-vantage-express-on-microsoft-azure.html",[5,0.232,24,0.644,100,0.46,107,0.283,518,0.417]],["text//run-vantage-express-on-microsoft-azure.html",[0,2.321,4,1.186,5,2.584,8,0.997,9,1.906,10,0.354,15,0.662,16,0.653,19,0.454,20,0.471,24,0.642,29,0.449,30,0.635,34,0.357,39,0.425,48,0.374,51,0.477,52,0.887,59,1.774,82,0.952,85,0.354,87,2.003,88,1.256,91,1.577,100,1.225,101,0.71,102,0.911,103,0.449,107,1.291,109,0.459,112,0.576,119,0.36,120,1.815,121,2.207,125,0.677,127,0.347,128,2.387,130,0.542,134,0.639,135,0.477,139,1.431,142,1.273,150,1.193,153,0.844,154,0.498,156,0.741,157,0.605,160,0.887,161,3.765,162,1.536,173,0.605,176,0.704,179,0.514,180,1.567,183,0.716,189,1.157,190,0.974,191,0.405,197,0.514,201,0.434,203,1.256,206,0.564,207,0.792,208,4.285,209,0.552,213,1.159,219,1.875,226,0.506,232,0.506,235,0.532,236,0.397,243,0.374,244,0.294,245,0.371,246,0.371,247,0.374,248,0.677,249,0.374,250,0.374,251,0.657,252,0.347,253,0.602,267,0.71,268,0.449,274,0.576,291,1.393,292,2.873,297,0.576,298,0.484,312,0.523,316,0.952,323,0.477,327,0.421,328,1.444,334,0.465,339,1.328,341,0.8,343,0.523,345,0.532,348,0.429,350,0.532,352,0.967,353,0.576,357,0.826,360,0.552,362,1.416,368,1.735,375,1.069,382,0.498,383,0.439,385,1.309,405,0.439,432,0.459,433,2.717,438,0.498,443,1.061,455,0.59,458,0.439,460,0.523,469,0.514,472,0.459,474,0.498,476,1.992,477,0.38,491,1.061,494,0.429,497,0.59,502,0.854,503,0.876,515,0.459,516,1.061,517,0.817,518,4.529,530,0.449,531,0.444,532,1.061,543,1.477,546,1.29,547,0.408,559,1.061,564,1.273,570,0.876,576,0.911,580,0.564,589,0.642,592,0.911,593,0.484,612,1.328,613,0.498,630,0.924,650,0.911,664,0.642,669,0.429,687,0.564,688,0.542,706,0.542,709,0.564,710,0.642,711,0.552,726,2.097,727,0.454,730,0.552,731,0.564,732,0.984,736,0.642,742,0.552,745,0.564,756,2.756,757,1.573,760,0.623,768,0.59,788,1.039,801,0.665,820,0.542,829,0.564,930,0.887,941,1.678,958,0.477,999,0.605,1018,0.605,1027,0.642,1045,0.693,1081,2.42,1083,1.019,1096,0.576,1103,2.706,1104,0.642,1114,4.957,1121,0.665,1122,4.192,1125,0.642,1126,0.642,1129,1.614,1130,0.576,1131,1.061,1141,1.573,1142,4.671,1144,1.252,1145,2.43,1147,0.938,1149,0.693,1150,0.693,1151,0.693,1160,1.172,1171,0.605,1172,0.642,1176,0.642,1178,1.209,1182,0.605,1183,0.642,1184,0.642,1200,0.887,1202,0.642,1207,1.172,1210,0.576,1211,0.59,1212,1.085,1213,0.605,1214,1.66,1215,2.097,1216,0.532,1217,1.66,1218,1.172,1219,1.66,1220,1.66,1221,1.139,1222,1.111,1223,1.172,1224,1.66,1225,1.66,1226,0.623,1227,1.172,1228,1.209,1229,1.172,1230,2.42,1231,1.172,1232,1.172,1233,1.139,1234,0.911,1239,0.59,1240,1.987,1249,0.576,1262,2.771,1264,0.728,1272,1.66,1276,0.693,1278,1.328,1338,0.623,1359,0.552,1389,0.693,1396,0.59,1445,0.665,1487,0.693,1507,3.08,1508,0.665,1536,2.126,1552,6.747,1587,2.858,1668,1.061,1789,1.139,1803,0.665,1806,1.304,1808,0.605,1836,1.252,1843,1.172,1877,3.7,2109,0.623,2110,0.642,2120,0.693,2121,0.576,2129,0.542,2144,1.848,2152,0.59,2154,0.728,2180,1.209,2183,0.728,2185,1.085,2194,0.774,2195,0.728,2196,0.728,2208,1.252,2209,0.642,2210,1.94,2211,1.37,2212,0.728,2213,0.728,2214,0.728,2215,0.693,2216,0.728,2217,0.693,2218,0.693,2219,0.728,2220,0.576,2221,2.935,2222,2.45,2223,0.728,2224,0.728,2225,0.728,2226,0.642,2227,0.728,2228,0.728,2229,0.728,2230,0.728,2231,4.653,2232,0.728,2233,4.653,2234,0.728,2235,0.728,2236,1.94,2237,0.728,2238,0.728,2239,0.728,2240,0.728,2241,0.728,2242,0.728,2243,2.45,2244,0.728,2245,1.94,2246,1.94,2247,1.774,2248,1.94,2249,1.37,2250,0.728,2251,0.728,2252,1.37,2253,1.37,2254,1.37,2255,0.728,2256,1.37,2257,0.728,2258,0.59,2259,0.728,2260,0.728,2261,0.728,2262,0.623,2263,1.37,2264,0.693,2265,1.139,2266,1.37,2267,0.728,2268,0.728,2269,0.728,2270,0.728,2271,0.728,2272,0.642,2273,0.728,2274,0.728,2275,0.728,2276,0.728,2277,0.728,2278,0.728,2279,0.728,2280,0.728,2281,0.728,2282,0.728,2283,0.728,2284,0.728,2285,0.728,2286,0.728,2287,0.728,2288,0.728,2289,0.728,2290,0.728,2291,0.728,2292,1.848,2293,0.728,2294,0.693,2295,0.728,2296,0.728,2297,0.665,2301,0.642,2303,0.774,2304,0.844,2305,0.844,2306,0.844,2307,0.844,2308,0.728,2309,1.019,2310,0.844,2311,2.251,2312,0.844,2313,0.844,2314,0.642,2315,0.844,2316,2.935,2317,2.064,2318,2.064,2319,2.251,2320,2.844,2321,2.251,2322,2.251,2323,1.573,2324,1.589,2325,2.251,2326,1.589,2327,1.589,2328,0.844,2329,0.844,2330,0.844,2331,0.844,2332,0.844,2333,1.589,2334,0.693,2335,0.844,2336,1.589,2337,0.844,2338,0.844,2339,0.844,2340,0.844,2341,0.844,2342,0.693,2343,0.844,2344,0.844,2345,0.844,2346,0.665]],["component//run-vantage-express-on-microsoft-azure.html",[253,0.408]],["title//run-vantage-express-on-microsoft-azure.html#_overview",[254,35.084]],["name//run-vantage-express-on-microsoft-azure.html#_overview",[]],["text//run-vantage-express-on-microsoft-azure.html#_overview",[]],["component//run-vantage-express-on-microsoft-azure.html#_overview",[]],["title//run-vantage-express-on-microsoft-azure.html#_prerequisites",[255,36.808]],["name//run-vantage-express-on-microsoft-azure.html#_prerequisites",[]],["text//run-vantage-express-on-microsoft-azure.html#_prerequisites",[]],["component//run-vantage-express-on-microsoft-azure.html#_prerequisites",[]],["title//run-vantage-express-on-microsoft-azure.html#_installation",[91,29.994]],["name//run-vantage-express-on-microsoft-azure.html#_installation",[]],["text//run-vantage-express-on-microsoft-azure.html#_installation",[]],["component//run-vantage-express-on-microsoft-azure.html#_installation",[]],["title//run-vantage-express-on-microsoft-azure.html#_run_sample_queries",[107,19.2,219,22.919,477,25.854]],["name//run-vantage-express-on-microsoft-azure.html#_run_sample_queries",[]],["text//run-vantage-express-on-microsoft-azure.html#_run_sample_queries",[]],["component//run-vantage-express-on-microsoft-azure.html#_run_sample_queries",[]],["title//run-vantage-express-on-microsoft-azure.html#_optional_setup",[172,33.926,383,35.028]],["name//run-vantage-express-on-microsoft-azure.html#_optional_setup",[]],["text//run-vantage-express-on-microsoft-azure.html#_optional_setup",[]],["component//run-vantage-express-on-microsoft-azure.html#_optional_setup",[]],["title//run-vantage-express-on-microsoft-azure.html#_cleanup",[2302,62.163]],["name//run-vantage-express-on-microsoft-azure.html#_cleanup",[]],["text//run-vantage-express-on-microsoft-azure.html#_cleanup",[]],["component//run-vantage-express-on-microsoft-azure.html#_cleanup",[]],["title//run-vantage-express-on-microsoft-azure.html#_next_steps",[216,36.252,256,28.304]],["name//run-vantage-express-on-microsoft-azure.html#_next_steps",[]],["text//run-vantage-express-on-microsoft-azure.html#_next_steps",[]],["component//run-vantage-express-on-microsoft-azure.html#_next_steps",[]],["title//run-vantage-express-on-microsoft-azure.html#_further_reading",[244,23.463,611,28.096]],["name//run-vantage-express-on-microsoft-azure.html#_further_reading",[]],["text//run-vantage-express-on-microsoft-azure.html#_further_reading",[]],["component//run-vantage-express-on-microsoft-azure.html#_further_reading",[]],["title//segment.html",[127,20.518,634,41.007,2347,39.371,2348,45.801]],["name//segment.html",[634,2.618]],["text//segment.html",[0,2.403,4,1.876,5,1.998,8,1.935,9,1.67,10,0.598,15,0.594,16,1.45,17,1.051,19,0.766,26,0.703,28,0.841,34,0.603,39,3.674,40,2.871,48,0.632,51,0.806,52,1.439,56,3.276,65,0.932,70,1.084,75,2.3,76,1.76,82,2.118,85,0.598,88,0.796,91,0.523,94,0.868,102,3.207,104,0.671,107,3.011,119,1.504,122,0.854,123,0.622,124,0.696,125,1.504,126,0.696,127,1.45,128,0.725,131,1.386,134,0.573,149,0.776,150,1.817,153,0.757,156,1.202,161,0.696,162,0.973,173,1.022,176,1.142,177,0.868,181,0.766,185,0.973,189,0.732,190,2.167,199,0.97,208,4.258,211,1.022,213,0.581,214,0.642,228,1.996,232,0.854,236,1.213,238,0.914,243,0.632,244,0.496,245,0.627,246,0.627,247,0.632,248,1.099,249,0.632,250,0.632,251,0.59,252,0.585,256,0.598,258,0.766,263,3.435,265,0.717,267,0.637,292,1.297,295,1.802,296,0.868,299,0.898,307,0.898,312,0.882,316,0.854,330,3.657,332,1.403,334,1.421,341,2.52,348,1.311,362,2.494,365,1.721,368,0.732,379,2.116,383,0.741,405,0.741,433,1.297,436,1.439,457,1.307,477,1.59,502,0.766,511,0.914,515,0.776,516,2.89,517,1.325,523,3.5,530,5.034,531,0.749,532,0.952,537,1.022,543,0.741,547,0.689,553,0.898,576,0.817,578,4.501,591,0.932,601,0.973,612,0.841,613,0.841,628,1.022,634,7.656,660,0.932,669,0.725,709,0.952,728,1.17,732,0.882,742,0.932,755,1.123,756,1.654,833,2.685,838,2.178,868,2.116,941,1.521,1041,1.084,1107,1.458,1124,1.17,1135,1.228,1200,0.796,1234,0.817,1274,1.17,1278,0.841,1288,1.307,1295,0.785,1310,1.624,1344,0.973,1382,1.051,1398,1.022,1421,2.222,1424,1.123,1485,1.228,1494,1.084,1507,1.022,1520,1.228,1652,4.408,1655,1.022,1794,1.228,1877,2.032,2140,0.932,2150,1.901,2183,1.228,2185,3.818,2309,3.916,2342,2.116,2346,7.35,2347,6.435,2348,2.364,2349,1.228,2350,7.621,2351,1.307,2352,1.426,2353,1.307,2354,1.426,2355,1.426,2356,1.426,2357,1.426,2358,4.329,2359,2.032,2360,1.426,2361,1.426,2362,1.426,2363,1.426,2364,1.426,2365,1.426,2366,1.426,2367,1.426,2368,1.426,2369,2.579,2370,2.579,2371,1.426,2372,1.426,2373,2.579,2374,1.426,2375,1.426,2376,3.73,2377,2.782,2378,2.897,2379,2.364,2380,1.426,2381,1.307,2382,1.426,2383,1.426,2384,1.426,2385,1.426,2386,1.426,2387,1.426,2388,1.426,2389,1.426,2390,5.596,2391,5.009,2392,3.968,2393,1.426,2394,2.579,2395,1.426,2396,1.426,2397,1.426,2398,1.228,2399,1.426,2400,1.426,2401,3.042,2402,1.426,2403,1.426,2404,1.426,2405,1.084,2406,1.426,2407,1.307,2408,2.579,2409,1.307,2410,1.426,2411,1.426,2412,1.426,2413,1.228,2414,1.426,2415,1.426,2416,1.426,2417,1.123,2418,1.426,2419,1.307]],["component//segment.html",[253,0.408]],["title//segment.html#_overview",[254,35.084]],["name//segment.html#_overview",[]],["text//segment.html#_overview",[]],["component//segment.html#_overview",[]],["title//segment.html#_architecture",[1113,57.101]],["name//segment.html#_architecture",[]],["text//segment.html#_architecture",[]],["component//segment.html#_architecture",[]],["title//segment.html#_deployment",[838,41.113]],["name//segment.html#_deployment",[]],["text//segment.html#_deployment",[]],["component//segment.html#_deployment",[]],["title//segment.html#_prerequisites",[255,36.808]],["name//segment.html#_prerequisites",[]],["text//segment.html#_prerequisites",[]],["component//segment.html#_prerequisites",[]],["title//segment.html#_build_and_deploy",[436,37.629,838,33.926]],["name//segment.html#_build_and_deploy",[]],["text//segment.html#_build_and_deploy",[]],["component//segment.html#_build_and_deploy",[]],["title//segment.html#_try_it_out",[580,45.017,609,46.018]],["name//segment.html#_try_it_out",[]],["text//segment.html#_try_it_out",[]],["component//segment.html#_try_it_out",[]],["title//segment.html#_limitations",[1000,58.585]],["name//segment.html#_limitations",[]],["text//segment.html#_limitations",[]],["component//segment.html#_limitations",[]],["title//segment.html#_summary",[492,40.696]],["name//segment.html#_summary",[]],["text//segment.html#_summary",[]],["component//segment.html#_summary",[]],["title//segment.html#_further_reading",[244,23.463,611,28.096]],["name//segment.html#_further_reading",[]],["text//segment.html#_further_reading",[]],["component//segment.html#_further_reading",[]],["title//select-the-right-data-ingestion-tools-for-teradata-vantage.html",[5,9.846,8,10.627,9,9.846,154,21.229,183,16.207,390,23.532,405,18.691]],["name//select-the-right-data-ingestion-tools-for-teradata-vantage.html",[5,0.169,8,0.183,9,0.169,154,0.365,183,0.279,390,0.405,405,0.321]],["text//select-the-right-data-ingestion-tools-for-teradata-vantage.html",[4,2.983,5,2.074,8,2.958,9,2.813,10,1.376,15,1.366,16,1.346,21,1.667,27,3.685,28,1.934,35,2.626,40,1.879,41,1.829,54,2.691,82,1.386,90,1.649,103,1.742,105,3.4,107,1.097,111,4.542,119,1.397,127,1.346,134,2.66,139,1.649,149,1.784,153,2.802,172,4.694,176,1.453,182,2.494,214,2.98,219,1.309,251,1.356,252,1.346,258,4.076,262,1.762,269,6.057,276,3.521,283,2.494,303,2.188,323,1.854,327,3.295,334,1.806,390,5.433,396,1.784,405,4.61,413,2.103,426,2.982,432,1.784,438,3.903,453,2.825,488,2.029,494,3.364,497,2.291,499,4.287,504,3.264,510,2.825,511,2.103,512,2.35,518,1.616,530,1.742,611,1.366,672,2.583,676,2.691,679,1.995,691,2.691,692,2.103,699,4.623,700,5.297,701,2.417,727,1.762,733,2.35,742,2.144,837,2.825,861,2.583,872,2.825,873,2.825,1000,2.35,1017,2.691,1098,2.583,1475,4.834,1507,3.781,1844,2.417,1964,2.494,1966,2.417,2420,2.583,2421,2.583,2422,2.825,2423,3.278,2424,2.494,2425,3.005,2426,2.691,2427,3.005,2428,2.583,2429,5.43,2430,3.278,2431,3.278,2432,3.278,2433,3.278,2434,3.278,2435,3.278,2436,3.005,2437,2.691,2438,4.515,2439,3.278,2440,3.278,2441,3.278]],["component//select-the-right-data-ingestion-tools-for-teradata-vantage.html",[253,0.408]],["title//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_overview",[254,35.084]],["name//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_overview",[]],["text//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_overview",[]],["component//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_overview",[]],["title//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_ingesting_data_from_external_object_store",[8,13.064,127,18.166,327,22.029,390,28.928,504,27.375]],["name//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_ingesting_data_from_external_object_store",[]],["text//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_ingesting_data_from_external_object_store",[]],["component//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_ingesting_data_from_external_object_store",[]],["title//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_native_object_store_nos_teradata_parallel_transporter_tpt",[9,12.007,80,17.494,105,13.465,111,15.698,127,10.761,327,13.05,405,13.612,499,14.818,699,18.311,700,18.311]],["name//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_native_object_store_nos_teradata_parallel_transporter_tpt",[]],["text//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_native_object_store_nos_teradata_parallel_transporter_tpt",[]],["component//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_native_object_store_nos_teradata_parallel_transporter_tpt",[]],["title//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_ingesting_data_from_local_files",[8,14.756,134,20.089,390,32.675,727,26.861]],["name//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_ingesting_data_from_local_files",[]],["text//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_ingesting_data_from_local_files",[]],["component//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_ingesting_data_from_local_files",[]],["title//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_parallel_transporter_tpt_bteq",[9,9.846,105,18.488,111,21.555,405,18.691,699,25.143,700,25.143,1507,25.797]],["name//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_parallel_transporter_tpt_bteq",[]],["text//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_parallel_transporter_tpt_bteq",[]],["component//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_parallel_transporter_tpt_bteq",[]],["title//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_move_data_from_different_systems_for_unified_query_processing",[8,10.627,29,19.118,103,19.118,219,14.368,438,21.229,701,26.532,2442,28.353]],["name//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_move_data_from_different_systems_for_unified_query_processing",[]],["text//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_move_data_from_different_systems_for_unified_query_processing",[]],["component//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_move_data_from_different_systems_for_unified_query_processing",[]],["title//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_querygrid",[9,13.672,105,25.673,405,25.954,2429,41.007]],["name//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_querygrid",[]],["text//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_querygrid",[]],["component//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_querygrid",[]],["title//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_ingesting_data_from_saas_applications_third_party_tools",[8,10.627,40,20.626,54,29.532,79,32.984,390,23.532,405,18.691,2443,35.984]],["name//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_ingesting_data_from_saas_applications_third_party_tools",[]],["text//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_ingesting_data_from_saas_applications_third_party_tools",[]],["component//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_ingesting_data_from_saas_applications_third_party_tools",[]],["title//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_airbyte",[105,29.492,405,29.816,2438,39.171]],["name//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_airbyte",[]],["text//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_airbyte",[]],["component//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_airbyte",[]],["title//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_summary",[492,40.696]],["name//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_summary",[]],["text//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_summary",[]],["component//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_summary",[]],["title//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_further_reading",[244,23.463,611,28.096]],["name//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_further_reading",[]],["text//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_further_reading",[]],["component//select-the-right-data-ingestion-tools-for-teradata-vantage.html#_further_reading",[]],["title//sto.html",[5,15.706,107,19.2,334,31.623]],["name//sto.html",[2444,2.924]],["text//sto.html",[0,2.206,4,1.853,5,2.37,8,2.219,9,1.293,10,0.467,15,0.856,16,0.457,21,0.565,22,1.272,25,0.666,29,1.092,34,1.211,40,1.642,42,0.591,48,0.493,52,2.906,68,0.688,73,0.797,74,0.688,75,1.522,82,2.385,85,0.467,87,1.662,90,1.034,91,1.309,101,1.593,103,0.591,104,0.523,107,2.135,109,1.118,111,2.136,119,0.875,120,1.677,122,0.666,123,1.249,124,0.543,125,2.013,126,0.543,127,0.457,132,1.873,134,1.151,135,1.162,144,0.876,150,3.049,154,0.656,156,0.958,161,0.543,167,1.54,168,0.485,170,2.468,172,1.034,176,1.58,177,0.677,181,1.105,183,2.54,190,1.239,191,0.533,203,1.147,204,0.958,207,0.554,208,3.838,213,2.853,217,1.402,219,1.424,223,0.656,224,0.656,226,1.231,230,1.212,235,1.804,237,0.82,238,0.713,239,0.666,243,0.493,244,0.387,245,0.489,246,0.489,247,0.493,248,0.875,249,0.493,250,0.493,251,0.46,252,0.457,258,0.598,267,1.279,286,1.132,292,1.034,298,1.642,304,0.677,310,3.147,316,1.716,322,1.912,323,0.629,334,5.811,338,0.638,341,1.441,342,0.621,343,0.688,345,0.7,350,0.7,351,0.565,353,0.759,357,2.172,367,1.776,375,0.975,383,0.578,385,3.027,387,0.742,395,0.565,402,0.876,411,0.846,413,0.713,426,1.162,432,0.605,433,0.56,434,0.777,436,0.621,446,0.797,455,0.777,458,1.067,462,0.797,472,0.605,473,0.629,480,0.82,504,0.688,515,0.605,518,1.013,531,1.079,539,0.913,542,1.147,546,2.985,547,0.538,564,0.629,570,2.603,573,1.195,580,0.742,590,0.82,591,0.727,595,0.797,601,0.759,609,0.759,610,0.958,612,0.656,613,0.656,630,1.195,642,0.958,649,1.771,650,1.642,665,0.777,673,1.402,676,1.686,679,1.251,688,1.318,727,1.105,730,0.727,731,0.742,732,2.587,733,0.797,734,2.246,744,1.515,752,0.913,756,1.318,760,1.515,762,1.318,787,0.82,793,1.642,798,0.846,800,0.958,802,0.876,824,0.846,829,0.742,840,3.294,856,0.656,864,0.913,885,5.238,899,1.034,929,1.019,1000,0.797,1008,1.873,1017,0.913,1032,0.913,1054,4.629,1082,1.344,1181,2.287,1185,0.876,1203,0.759,1210,0.759,1211,0.777,1234,2.044,1237,0.913,1271,1.884,1287,1.619,1308,1.912,1314,0.777,1326,1.884,1344,3.849,1355,0.958,1359,0.727,1374,0.846,1383,1.019,1404,1.019,1410,0.913,1474,0.876,1476,0.958,1478,1.019,1492,1.402,1536,1.294,1673,0.958,1674,0.958,1788,1.019,2102,1.019,2180,0.846,2220,1.954,2262,0.82,2342,1.686,2419,1.019,2444,7.794,2445,1.019,2446,2.055,2447,0.913,2448,1.112,2449,0.913,2450,0.958,2451,1.884,2452,5.527,2453,1.112,2454,4.724,2455,3.073,2456,1.112,2457,2.055,2458,1.112,2459,0.913,2460,2.468,2461,1.112,2462,0.846,2463,1.112,2464,1.112,2465,0.958,2466,1.112,2467,0.958,2468,1.019,2469,0.82,2470,1.112,2471,1.112,2472,1.112,2473,1.112,2474,1.019,2475,2.864,2476,2.055,2477,1.112,2478,1.112,2479,1.112,2480,1.112,2481,2.864,2482,1.112,2483,3.566,2484,1.019,2485,2.864,2486,1.112,2487,1.112,2488,1.112,2489,3.566,2490,1.112,2491,1.112,2492,1.112,2493,1.112,2494,2.055,2495,1.112,2496,1.112,2497,1.112,2498,0.958,2499,1.112,2500,1.112,2501,1.112,2502,1.112,2503,1.112,2504,2.055,2505,1.112,2506,1.112,2507,1.112,2508,1.112,2509,1.112,2510,1.112,2511,1.112,2512,1.112,2513,1.112,2514,2.055,2515,2.055,2516,3.566,2517,4.181,2518,1.112,2519,1.112,2520,2.055,2521,2.055,2522,2.055,2523,2.055,2524,3.566,2525,2.055,2526,2.055,2527,2.055,2528,2.055,2529,4.724,2530,2.055,2531,2.055,2532,1.112,2533,2.055,2534,1.112]],["component//sto.html",[253,0.408]],["title//sto.html#_overview",[254,35.084]],["name//sto.html#_overview",[]],["text//sto.html#_overview",[]],["component//sto.html#_overview",[]],["title//sto.html#_prerequisites",[255,36.808]],["name//sto.html#_prerequisites",[]],["text//sto.html#_prerequisites",[]],["component//sto.html#_prerequisites",[]],["title//sto.html#_hello_world",[885,55.344,2452,61.813]],["name//sto.html#_hello_world",[]],["text//sto.html#_hello_world",[]],["component//sto.html#_hello_world",[]],["title//sto.html#_supported_languages",[34,28.515,744,49.721]],["name//sto.html#_supported_languages",[]],["text//sto.html#_supported_languages",[]],["component//sto.html#_supported_languages",[]],["title//sto.html#_uploading_scripts",[334,37.151,734,42.465]],["name//sto.html#_uploading_scripts",[]],["text//sto.html#_uploading_scripts",[]],["component//sto.html#_uploading_scripts",[]],["title//sto.html#_passing_data_stored_in_vantage_to_script",[5,12.104,8,13.064,127,18.166,334,24.37,1308,29.53]],["name//sto.html#_passing_data_stored_in_vantage_to_script",[]],["text//sto.html#_passing_data_stored_in_vantage_to_script",[]],["component//sto.html#_passing_data_stored_in_vantage_to_script",[]],["title//sto.html#_inserting_script_output_into_a_table",[213,20.373,334,27.527,367,24.883,564,28.252]],["name//sto.html#_inserting_script_output_into_a_table",[]],["text//sto.html#_inserting_script_output_into_a_table",[]],["component//sto.html#_inserting_script_output_into_a_table",[]],["title//sto.html#_summary",[492,40.696]],["name//sto.html#_summary",[]],["text//sto.html#_summary",[]],["component//sto.html#_summary",[]],["title//sto.html#_further_reading",[244,23.463,611,28.096]],["name//sto.html#_further_reading",[]],["text//sto.html#_further_reading",[]],["component//sto.html#_further_reading",[]],["title//teradata-vantage-engine-architecture-and-concepts.html",[5,12.104,9,12.104,268,23.503,280,33.65,1113,30.91]],["name//teradata-vantage-engine-architecture-and-concepts.html",[5,0.232,9,0.232,268,0.45,280,0.644,1113,0.591]],["text//teradata-vantage-engine-architecture-and-concepts.html",[3,0.897,4,1.955,5,1.925,8,2.647,9,2.453,10,0.511,15,0.507,16,0.5,21,1.572,22,0.753,27,1.56,29,4.165,36,1.049,38,2.023,40,1.28,42,0.647,50,1.601,60,0.926,63,1.646,65,2.505,69,1.601,74,1.382,75,1.643,84,3.359,85,3.187,90,0.612,93,1.406,94,0.741,101,0.544,102,0.698,103,3.567,107,0.407,108,3.983,109,0.662,110,3.124,111,4.696,112,0.831,120,1.455,125,0.519,127,0.917,133,2.332,134,1.54,146,1.646,149,1.215,150,2.504,176,1.981,186,0.753,190,0.527,191,0.583,197,2.721,201,0.625,213,2.051,218,0.831,219,2.539,227,0.813,228,2.166,230,0.718,248,0.951,251,0.503,252,0.5,256,0.511,258,1.2,262,0.654,268,4.035,274,0.831,276,0.813,280,2.353,282,0.781,291,1.382,303,0.813,308,1.46,310,1.726,314,2.868,327,1.908,332,1.683,338,1.28,341,1.123,342,0.679,348,1.572,351,1.572,367,0.606,381,0.831,385,0.708,395,0.619,411,0.926,413,0.781,414,1.56,426,2.528,431,1.28,432,2.738,433,1.123,446,0.873,448,2.065,454,0.813,458,0.632,460,0.753,466,1.116,472,2.084,473,0.688,474,0.718,494,2.273,497,0.85,502,0.654,503,0.671,513,0.741,517,2.297,528,2.825,530,0.647,531,2.643,543,1.16,544,0.999,547,0.589,553,0.766,576,0.698,593,1.28,611,0.507,630,0.708,665,0.85,667,0.781,669,0.619,679,0.741,692,2.457,732,0.753,743,1.123,745,0.813,761,0.647,768,0.85,784,0.959,786,1.116,793,2.563,805,2.538,829,0.813,835,2.433,838,0.612,839,1.924,840,7.063,841,0.926,856,0.718,864,5.511,872,1.049,902,1.337,920,0.959,924,1.049,925,0.897,1059,1.832,1081,0.873,1084,1.116,1103,0.766,1113,4.916,1114,0.766,1122,4.444,1123,2.914,1134,2.047,1154,0.831,1162,1.698,1181,1.432,1182,2.217,1193,0.999,1196,0.999,1198,2.437,1234,3.168,1235,0.959,1253,1.882,1257,2.28,1298,4.204,1308,0.813,1310,1.406,1411,3.301,1483,4.129,1492,3.433,1588,2.538,1655,0.873,1673,1.049,1676,0.718,1745,0.999,1777,2.047,1964,1.698,2096,1.116,2100,2.047,2105,1.116,2140,0.796,2152,0.85,2191,1.116,2220,1.524,2272,1.698,2359,0.959,2420,0.959,2421,0.959,2424,2.914,2427,2.047,2428,0.959,2460,2.665,2535,0.999,2536,4.098,2537,1.217,2538,2.233,2539,5.031,2540,3.093,2541,2.161,2542,1.049,2543,0.999,2544,1.217,2545,2.047,2546,6.155,2547,4.098,2548,1.759,2549,1.116,2550,2.047,2551,2.233,2552,1.116,2553,0.959,2554,1.217,2555,1.217,2556,1.116,2557,1.116,2558,1.217,2559,1.049,2560,1.217,2561,0.999,2562,1.217,2563,1.217,2564,1.217,2565,2.047,2566,1.217,2567,3.093,2568,1.116,2569,1.217,2570,1.217,2571,1.049,2572,1.217,2573,1.832,2574,1.116,2575,3.093,2576,1.217,2577,1.116,2578,1.217,2579,1.217,2580,1.217,2581,1.924,2582,1.217,2583,0.959,2584,1.217,2585,2.233,2586,0.999,2587,3.093,2588,1.217,2589,4.098,2590,1.217,2591,1.217,2592,1.217,2593,1.217,2594,1.217,2595,1.217,2596,0.999,2597,1.116,2598,1.116]],["component//teradata-vantage-engine-architecture-and-concepts.html",[253,0.408]],["title//teradata-vantage-engine-architecture-and-concepts.html#_overview",[254,35.084]],["name//teradata-vantage-engine-architecture-and-concepts.html#_overview",[]],["text//teradata-vantage-engine-architecture-and-concepts.html#_overview",[]],["component//teradata-vantage-engine-architecture-and-concepts.html#_overview",[]],["title//teradata-vantage-engine-architecture-and-concepts.html#_teradata_vantage_engine_architecture_components",[5,12.104,9,12.104,84,29.53,268,23.503,1113,30.91]],["name//teradata-vantage-engine-architecture-and-concepts.html#_teradata_vantage_engine_architecture_components",[]],["text//teradata-vantage-engine-architecture-and-concepts.html#_teradata_vantage_engine_architecture_components",[]],["component//teradata-vantage-engine-architecture-and-concepts.html#_teradata_vantage_engine_architecture_components",[]],["title//teradata-vantage-engine-architecture-and-concepts.html#_parsing_engines_pe",[268,30.497,864,47.109,1198,45.229]],["name//teradata-vantage-engine-architecture-and-concepts.html#_parsing_engines_pe",[]],["text//teradata-vantage-engine-architecture-and-concepts.html#_parsing_engines_pe",[]],["component//teradata-vantage-engine-architecture-and-concepts.html#_parsing_engines_pe",[]],["title//teradata-vantage-engine-architecture-and-concepts.html#_bynet",[2546,74.908]],["name//teradata-vantage-engine-architecture-and-concepts.html#_bynet",[]],["text//teradata-vantage-engine-architecture-and-concepts.html#_bynet",[]],["component//teradata-vantage-engine-architecture-and-concepts.html#_bynet",[]],["title//teradata-vantage-engine-architecture-and-concepts.html#_parallel_database_extension_pde",[111,29.931,150,20.972,1182,35.82,1253,30.411]],["name//teradata-vantage-engine-architecture-and-concepts.html#_parallel_database_extension_pde",[]],["text//teradata-vantage-engine-architecture-and-concepts.html#_parallel_database_extension_pde",[]],["component//teradata-vantage-engine-architecture-and-concepts.html#_parallel_database_extension_pde",[]],["title//teradata-vantage-engine-architecture-and-concepts.html#_access_module_processor_amp",[85,20.972,314,32.048,840,39.371,1298,38.008]],["name//teradata-vantage-engine-architecture-and-concepts.html#_access_module_processor_amp",[]],["text//teradata-vantage-engine-architecture-and-concepts.html#_access_module_processor_amp",[]],["component//teradata-vantage-engine-architecture-and-concepts.html#_access_module_processor_amp",[]],["title//teradata-vantage-engine-architecture-and-concepts.html#_virtual_disks_vdisks",[108,38.318,1122,40.108,2547,52.616]],["name//teradata-vantage-engine-architecture-and-concepts.html#_virtual_disks_vdisks",[]],["text//teradata-vantage-engine-architecture-and-concepts.html#_virtual_disks_vdisks",[]],["component//teradata-vantage-engine-architecture-and-concepts.html#_virtual_disks_vdisks",[]],["title//teradata-vantage-engine-architecture-and-concepts.html#_node",[1492,55.766]],["name//teradata-vantage-engine-architecture-and-concepts.html#_node",[]],["text//teradata-vantage-engine-architecture-and-concepts.html#_node",[]],["component//teradata-vantage-engine-architecture-and-concepts.html#_node",[]],["title//teradata-vantage-engine-architecture-and-concepts.html#_teradata_vantage_architecture_concepts",[5,13.672,9,13.672,280,38.008,1113,34.913]],["name//teradata-vantage-engine-architecture-and-concepts.html#_teradata_vantage_architecture_concepts",[]],["text//teradata-vantage-engine-architecture-and-concepts.html#_teradata_vantage_architecture_concepts",[]],["component//teradata-vantage-engine-architecture-and-concepts.html#_teradata_vantage_architecture_concepts",[]],["title//teradata-vantage-engine-architecture-and-concepts.html#_linear_growth_and_expandability",[1588,47.109,2573,47.109,2598,52.616]],["name//teradata-vantage-engine-architecture-and-concepts.html#_linear_growth_and_expandability",[]],["text//teradata-vantage-engine-architecture-and-concepts.html#_linear_growth_and_expandability",[]],["component//teradata-vantage-engine-architecture-and-concepts.html#_linear_growth_and_expandability",[]],["title//teradata-vantage-engine-architecture-and-concepts.html#_teradata_parallelism",[9,18.451,111,40.395]],["name//teradata-vantage-engine-architecture-and-concepts.html#_teradata_parallelism",[]],["text//teradata-vantage-engine-architecture-and-concepts.html#_teradata_parallelism",[]],["component//teradata-vantage-engine-architecture-and-concepts.html#_teradata_parallelism",[]],["title//teradata-vantage-engine-architecture-and-concepts.html#_teradata_retrieval_architecture",[9,15.706,1113,40.108,1234,32.902]],["name//teradata-vantage-engine-architecture-and-concepts.html#_teradata_retrieval_architecture",[]],["text//teradata-vantage-engine-architecture-and-concepts.html#_teradata_retrieval_architecture",[]],["component//teradata-vantage-engine-architecture-and-concepts.html#_teradata_retrieval_architecture",[]],["title//teradata-vantage-engine-architecture-and-concepts.html#_teradata_data_distribution",[8,16.952,9,15.706,1483,47.109]],["name//teradata-vantage-engine-architecture-and-concepts.html#_teradata_data_distribution",[]],["text//teradata-vantage-engine-architecture-and-concepts.html#_teradata_data_distribution",[]],["component//teradata-vantage-engine-architecture-and-concepts.html#_teradata_data_distribution",[]],["title//teradata-vantage-engine-architecture-and-concepts.html#_conclusion",[2599,81.721]],["name//teradata-vantage-engine-architecture-and-concepts.html#_conclusion",[]],["text//teradata-vantage-engine-architecture-and-concepts.html#_conclusion",[]],["component//teradata-vantage-engine-architecture-and-concepts.html#_conclusion",[]],["title//teradata-vantage-engine-architecture-and-concepts.html#_further_reading",[244,23.463,611,28.096]],["name//teradata-vantage-engine-architecture-and-concepts.html#_further_reading",[]],["text//teradata-vantage-engine-architecture-and-concepts.html#_further_reading",[]],["component//teradata-vantage-engine-architecture-and-concepts.html#_further_reading",[]],["title//teradatasql.html",[4,15.358,5,13.672,30,19.951,286,27.527]],["name//teradatasql.html",[889,2.229]],["text//teradatasql.html",[4,2.931,5,2.848,9,2.743,10,1.845,15,1.831,16,1.805,28,2.593,30,3.549,34,3.375,48,1.948,51,2.485,82,2.803,85,1.845,91,2.433,92,6.237,96,3.464,97,5.224,103,2.335,104,2.067,107,2.217,119,2.825,123,1.917,124,2.146,125,1.873,126,2.146,150,3.35,151,3.151,176,1.948,185,3,219,2.647,243,1.948,244,1.529,245,1.932,246,1.932,247,1.948,248,2.825,249,1.948,250,1.948,251,1.818,252,1.805,262,2.363,286,5.523,312,4.939,318,2.72,477,1.98,497,3.071,498,4.029,515,3.607,709,2.934,743,2.211,764,5.885,856,3.911,888,2.875,889,7.485,899,2.211,1001,4.103,1008,2.875,1112,3.788,1113,3.071,1293,3.071,1308,2.934,1310,2.768,2420,3.464,2421,3.464,2600,4.396,2601,4.396,2602,4.396,2603,4.396]],["component//teradatasql.html",[253,0.408]],["title//teradatasql.html#_overview",[254,35.084]],["name//teradatasql.html#_overview",[]],["text//teradatasql.html#_overview",[]],["component//teradatasql.html#_overview",[]],["title//teradatasql.html#_prerequisites",[255,36.808]],["name//teradatasql.html#_prerequisites",[]],["text//teradatasql.html#_prerequisites",[]],["component//teradatasql.html#_prerequisites",[]],["title//teradatasql.html#_code_to_send_a_query",[219,22.919,856,33.864,1310,36.147]],["name//teradatasql.html#_code_to_send_a_query",[]],["text//teradatasql.html#_code_to_send_a_query",[]],["component//teradatasql.html#_code_to_send_a_query",[]],["title//teradatasql.html#_summary",[492,40.696]],["name//teradatasql.html#_summary",[]],["text//teradatasql.html#_summary",[]],["component//teradatasql.html#_summary",[]],["title//teradatasql.html#_further_reading",[244,23.463,611,28.096]],["name//teradatasql.html#_further_reading",[]],["text//teradatasql.html#_further_reading",[]],["component//teradatasql.html#_further_reading",[]],["title//vantage.express.gcp.html",[5,12.104,107,14.796,330,24.684,518,21.811,530,23.503]],["name//vantage.express.gcp.html",[2604,3.19]],["text//vantage.express.gcp.html",[0,2.249,4,1.347,5,2.461,8,0.773,9,1.442,10,0.42,15,0.777,16,0.766,19,0.538,20,0.559,26,0.494,29,0.532,30,0.744,34,0.788,39,0.504,48,0.444,51,0.566,52,0.559,59,2.061,82,0.788,87,2.26,91,1.78,93,3.053,101,1.168,102,0.574,103,0.532,107,1.465,108,1.746,109,1.782,112,0.683,119,1.645,120,2.061,121,2.491,125,0.427,127,0.411,128,2.679,130,0.642,134,0.75,135,0.566,139,1.316,142,1.479,150,1.375,153,0.532,154,0.591,156,1.219,157,0.718,160,1.04,161,2.139,173,0.718,176,0.826,179,0.61,180,0.552,183,0.84,189,0.515,190,0.433,197,0.61,201,0.515,203,1.04,204,0.863,206,0.669,207,0.928,208,4.22,209,0.655,213,1.067,219,1.541,226,0.6,232,0.6,235,0.631,236,0.471,243,0.444,244,0.348,245,0.44,246,0.44,247,0.444,248,0.794,249,0.444,250,0.444,251,0.771,252,0.411,253,0.706,267,0.447,268,0.532,274,0.683,291,1.619,292,3.18,297,0.683,298,0.574,312,0.62,316,0.6,327,0.499,330,1.46,332,0.545,339,1.543,341,0.504,343,0.62,345,0.631,348,0.509,352,1.135,353,0.683,357,0.968,362,1.303,368,1.983,375,0.885,380,0.582,382,0.591,385,1.084,396,1.423,405,0.52,432,0.545,438,0.591,443,1.245,454,0.669,455,1.303,458,0.52,460,0.62,469,0.61,472,0.545,474,0.591,476,2.277,477,0.451,491,1.245,494,0.509,497,0.7,502,1.002,515,0.545,516,0.669,517,1.983,518,4.493,530,1.74,531,0.526,532,1.245,543,1.702,546,1.499,547,0.484,559,1.245,564,1.479,570,0.552,576,0.574,592,2.213,593,0.574,612,1.543,613,0.591,630,1.084,650,0.574,664,0.762,669,0.509,687,0.669,688,0.642,706,0.642,709,0.669,710,0.762,711,0.655,726,2.415,727,0.538,730,0.655,731,0.669,732,1.154,742,0.655,745,0.669,756,3.11,757,1.828,760,0.738,768,0.7,788,1.711,801,0.789,820,0.642,829,0.669,835,0.545,930,1.04,941,0.591,958,0.566,1018,0.718,1027,0.762,1045,0.822,1081,2.767,1083,1.196,1096,0.683,1104,0.762,1114,3.98,1122,0.7,1125,0.762,1126,0.762,1130,0.683,1131,1.245,1141,1.828,1142,3.141,1144,0.789,1145,2.063,1147,1.543,1149,0.822,1150,0.822,1151,0.822,1160,1.375,1172,0.762,1176,0.762,1178,1.418,1182,0.718,1183,0.762,1184,0.762,1200,1.04,1202,0.762,1207,1.375,1210,0.683,1211,0.7,1212,1.272,1213,0.718,1214,1.929,1215,2.415,1216,0.631,1217,1.929,1218,1.375,1219,1.929,1220,1.929,1221,1.337,1222,1.303,1223,1.375,1224,1.929,1225,1.929,1226,0.738,1227,1.375,1228,1.418,1229,1.375,1230,2.767,1231,1.375,1232,2.846,1233,1.337,1234,1.069,1239,0.7,1240,2.289,1249,0.683,1262,3.168,1272,1.929,1276,0.822,1338,0.738,1389,0.822,1396,0.7,1487,0.822,1507,3.476,1520,2.823,1536,2.063,1668,1.245,1803,0.789,1806,1.53,1808,0.718,1836,1.469,1843,1.375,2109,0.738,2110,0.762,2118,2.398,2120,0.822,2121,0.683,2154,0.863,2166,2.398,2180,0.762,2185,2.235,2195,0.863,2196,0.863,2197,0.918,2208,1.469,2209,0.762,2210,1.607,2211,1.607,2212,0.863,2213,0.863,2214,0.863,2215,0.822,2216,0.863,2217,0.822,2218,0.822,2219,0.863,2220,0.683,2221,1.418,2222,2.823,2223,0.863,2224,0.863,2225,0.863,2226,0.762,2227,0.863,2228,0.863,2229,0.863,2230,0.863,2231,5.172,2232,0.863,2233,5.172,2234,0.863,2235,0.863,2236,2.254,2237,0.863,2238,0.863,2239,0.863,2240,0.863,2241,0.863,2242,0.863,2243,2.823,2244,0.863,2245,2.254,2246,2.254,2247,2.061,2248,2.254,2249,1.607,2250,0.863,2251,0.863,2252,1.607,2253,1.607,2254,1.607,2255,0.863,2256,1.607,2257,0.863,2258,0.7,2259,0.863,2260,0.863,2261,0.863,2262,0.738,2263,1.607,2264,0.822,2265,1.337,2266,1.607,2267,0.863,2268,0.863,2269,0.863,2270,0.863,2271,0.863,2272,0.762,2273,0.863,2274,0.863,2275,0.863,2276,0.863,2277,0.863,2278,0.863,2279,0.863,2280,0.863,2281,0.863,2282,0.863,2283,0.863,2284,0.863,2285,0.863,2286,0.863,2287,0.863,2288,0.863,2289,0.863,2290,0.863,2291,0.863,2292,2.147,2293,0.863,2294,2.688,2295,0.863,2296,0.863,2297,0.789,2301,0.762,2303,0.918,2308,0.863,2314,1.99,2346,4.454,2353,0.918,2426,0.822,2605,4.381,2606,0.918,2607,3.86,2608,2.616,2609,2.616,2610,2.616,2611,2.616,2612,2.616,2613,2.616,2614,2.616,2615,2.616,2616,2.616,2617,3.276,2618,1.002,2619,1.002]],["component//vantage.express.gcp.html",[253,0.408]],["title//vantage.express.gcp.html#_overview",[254,35.084]],["name//vantage.express.gcp.html#_overview",[]],["text//vantage.express.gcp.html#_overview",[]],["component//vantage.express.gcp.html#_overview",[]],["title//vantage.express.gcp.html#_prerequisites",[255,36.808]],["name//vantage.express.gcp.html#_prerequisites",[]],["text//vantage.express.gcp.html#_prerequisites",[]],["component//vantage.express.gcp.html#_prerequisites",[]],["title//vantage.express.gcp.html#_installation",[91,29.994]],["name//vantage.express.gcp.html#_installation",[]],["text//vantage.express.gcp.html#_installation",[]],["component//vantage.express.gcp.html#_installation",[]],["title//vantage.express.gcp.html#_run_sample_queries",[107,19.2,219,22.919,477,25.854]],["name//vantage.express.gcp.html#_run_sample_queries",[]],["text//vantage.express.gcp.html#_run_sample_queries",[]],["component//vantage.express.gcp.html#_run_sample_queries",[]],["title//vantage.express.gcp.html#_optional_setup",[172,33.926,383,35.028]],["name//vantage.express.gcp.html#_optional_setup",[]],["text//vantage.express.gcp.html#_optional_setup",[]],["component//vantage.express.gcp.html#_optional_setup",[]],["title//vantage.express.gcp.html#_cleanup",[2302,62.163]],["name//vantage.express.gcp.html#_cleanup",[]],["text//vantage.express.gcp.html#_cleanup",[]],["component//vantage.express.gcp.html#_cleanup",[]],["title//vantage.express.gcp.html#_next_steps",[216,36.252,256,28.304]],["name//vantage.express.gcp.html#_next_steps",[]],["text//vantage.express.gcp.html#_next_steps",[]],["component//vantage.express.gcp.html#_next_steps",[]],["title//vantage.express.gcp.html#_further_reading",[244,23.463,611,28.096]],["name//vantage.express.gcp.html#_further_reading",[]],["text//vantage.express.gcp.html#_further_reading",[]],["component//vantage.express.gcp.html#_further_reading",[]],["title//cloud-guides/connect-azure-data-share-to-teradata-vantage.html",[5,10.859,8,11.72,9,10.859,30,15.846,65,25.952,100,21.593]],["name//cloud-guides/connect-azure-data-share-to-teradata-vantage.html",[5,0.196,8,0.211,9,0.196,30,0.285,65,0.467,100,0.389]],["text//cloud-guides/connect-azure-data-share-to-teradata-vantage.html",[0,2.5,4,2.261,5,1.495,7,0.283,8,3.057,9,0.76,10,0.502,15,0.342,16,0.174,18,0.304,19,0.228,21,0.788,22,0.509,23,0.959,24,0.322,26,0.405,27,3.085,28,0.25,29,0.225,30,0.328,34,1.055,35,0.596,39,0.779,42,0.225,48,0.188,52,1.226,65,5.575,66,1.967,67,0.313,75,0.823,77,0.365,80,0.799,82,0.929,85,1.279,87,0.558,90,1.533,93,0.518,94,0.728,98,0.313,100,4.144,101,2.221,102,3.937,103,0.437,104,0.387,105,0.218,107,1.264,111,0.254,119,0.35,120,0.729,121,0.422,123,0.185,124,0.207,125,0.51,126,0.207,127,2.112,129,0.574,133,0.943,134,0.757,137,0.365,139,0.602,142,3.09,146,0.313,149,0.447,150,0.502,153,0.437,156,0.722,157,0.304,159,0.304,160,1.551,161,2.742,163,0.816,165,0.943,166,1.285,167,0.442,171,0.283,172,0.213,176,2.279,177,0.728,179,0.258,181,0.833,183,3.094,186,0.262,189,0.422,190,0.67,198,0.606,199,0.309,201,0.615,203,0.865,207,0.772,208,3.374,209,0.277,210,0.322,213,3.138,214,1.702,216,0.833,219,0.752,224,0.25,226,0.492,227,0.283,235,0.267,236,0.387,237,0.606,243,0.188,244,0.147,245,0.186,246,0.186,247,0.188,248,0.35,249,0.188,250,0.188,251,0.34,252,0.174,254,0.182,255,0.191,256,0.79,265,0.413,267,0.189,268,0.225,272,0.625,274,0.289,276,0.283,286,0.234,292,1.901,303,0.799,304,0.5,308,0.277,310,1.226,316,0.254,317,0.289,324,0.289,327,2.797,328,0.527,329,3.056,332,0.447,338,0.471,341,0.413,348,0.957,350,0.518,352,0.943,357,0.621,361,0.471,362,0.772,365,0.283,368,0.422,375,0.39,380,1.451,381,1.057,382,0.914,394,0.283,395,1.117,396,0.231,397,0.518,400,1.703,401,0.322,402,0.943,405,0.427,408,0.348,413,0.272,421,0.262,426,0.465,430,0.296,431,0.686,432,0.651,433,0.779,435,0.267,438,0.485,443,0.283,446,0.304,448,0.799,451,1,452,0.296,460,0.262,472,0.651,473,0.876,477,0.848,478,0.348,480,0.606,488,1.72,493,0.589,494,4.334,499,1.723,500,1.692,501,0.537,502,2.477,503,2.833,504,0.509,509,4.364,513,0.5,517,0.422,524,0.676,528,1.142,529,0.753,530,0.437,531,0.223,547,0.579,553,0.753,557,0.836,564,0.24,576,1.593,583,1.335,590,0.606,594,3.076,595,1.111,597,0.561,598,0.648,600,0.365,601,0.289,602,0.348,603,0.313,611,0.177,632,0.296,637,0.304,650,0.243,651,0.283,658,1.572,665,0.296,667,0.272,669,2.527,687,0.549,688,1.783,689,0.365,692,0.272,699,0.296,700,0.296,702,0.313,703,0.348,706,0.272,718,0.322,733,0.304,734,0.267,741,0.606,742,0.782,743,0.602,750,0.267,761,0.823,788,0.277,790,0.313,793,0.243,817,0.606,827,0.648,835,0.231,836,0.589,838,0.602,856,0.25,857,0.365,871,0.304,875,0.348,902,0.254,923,0.322,925,0.606,927,1.097,930,1.843,957,0.267,958,0.24,1001,0.262,1010,1.622,1037,0.296,1041,2.114,1044,0.334,1103,2.08,1131,2.035,1141,0.296,1147,0.25,1154,0.289,1161,0.334,1200,0.459,1204,0.365,1206,0.943,1216,3.342,1221,2.368,1222,2.308,1236,0.304,1239,0.296,1242,1.285,1253,0.258,1295,0.453,1310,0.267,1314,0.296,1336,0.272,1359,1.013,1378,0.365,1398,0.858,1417,0.365,1434,0.365,1496,0.365,1517,0.304,1587,1.338,1612,0.348,1655,1.789,1683,0.313,1737,3.028,1740,3.028,1743,0.334,1790,0.348,1791,0.365,1841,1.221,1845,0.348,1959,1.622,1964,0.625,2025,0.708,2094,0.365,2107,0.304,2110,0.322,2115,0.648,2140,0.277,2150,0.313,2152,0.574,2156,0.272,2215,0.348,2217,0.348,2316,0.91,2323,0.574,2334,0.348,2398,1.031,2401,1.335,2428,0.334,2442,0.648,2447,0.348,2449,0.675,2462,0.322,2469,0.606,2541,0.574,2586,0.348,2620,0.389,2621,0.389,2622,0.296,2623,0.289,2624,0.389,2625,3.048,2626,0.822,2627,0.822,2628,0.389,2629,0.365,2630,0.389,2631,0.365,2632,0.365,2633,0.348,2634,0.365,2635,0.708,2636,0.348,2637,0.365,2638,0.365,2639,0.365,2640,0.348,2641,0.389,2642,0.675,2643,0.365,2644,0.304,2645,0.424,2646,0.365,2647,0.389,2648,0.424,2649,0.424,2650,0.822,2651,0.322,2652,0.822,2653,0.91,2654,1.196,2655,0.424,2656,0.424,2657,3.048,2658,1.549,2659,0.424,2660,0.389,2661,0.424,2662,0.424,2663,0.389,2664,1.031,2665,1.031,2666,0.424,2667,0.348,2668,0.304,2669,0.389,2670,2.151,2671,0.424,2672,0.424,2673,0.424,2674,0.424,2675,0.424,2676,1.196,2677,0.822,2678,0.822,2679,0.822,2680,0.334,2681,0.424,2682,0.424,2683,0.365,2684,0.753,2685,0.389,2686,0.365,2687,0.822,2688,0.334,2689,0.424,2690,0.708,2691,0.822,2692,0.753,2693,0.424,2694,1.549,2695,0.365,2696,0.424,2697,0.424,2698,0.389,2699,0.424,2700,0.389,2701,0.389,2702,0.389,2703,0.424,2704,0.822,2705,1.549,2706,2.794,2707,1.549,2708,1.883,2709,1.549,2710,3.304,2711,2.198,2712,1.549,2713,1.883,2714,1.549,2715,1.883,2716,1.549,2717,1.883,2718,1.549,2719,1.883,2720,1.549,2721,6.972,2722,1.883,2723,1.549,2724,7.17,2725,1.883,2726,1.549,2727,1.883,2728,1.549,2729,1.883,2730,1.549,2731,1.883,2732,1.549,2733,1.883,2734,1.549,2735,1.883,2736,1.549,2737,1.883,2738,1.549,2739,4.415,2740,1.883,2741,1.549,2742,1.883,2743,1.883,2744,1.549,2745,1.883,2746,1.549,2747,1.883,2748,1.549,2749,1.883,2750,1.549,2751,1.883,2752,1.549,2753,1.883,2754,1.549,2755,1.883,2756,1.549,2757,1.883,2758,1.549,2759,1.883,2760,1.549,2761,1.883,2762,1.549,2763,1.883,2764,1.549,2765,1.883,2766,0.675,2767,0.389,2768,0.424,2769,0.348,2770,0.365,2771,0.424,2772,2.198,2773,0.822,2774,0.424,2775,0.708,2776,0.822,2777,0.424,2778,1.804,2779,1.196,2780,1.196,2781,0.753,2782,0.424,2783,0.424,2784,0.424,2785,0.424,2786,0.424]],["component//cloud-guides/connect-azure-data-share-to-teradata-vantage.html",[253,0.408]],["title//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_overview",[254,35.084]],["name//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_overview",[]],["text//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_overview",[]],["component//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_overview",[]],["title//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_about_azure_data_share",[8,16.952,65,37.537,100,31.232]],["name//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_about_azure_data_share",[]],["text//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_about_azure_data_share",[]],["component//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_about_azure_data_share",[]],["title//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_about_teradata_vantage",[5,18.451,9,18.451]],["name//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_about_teradata_vantage",[]],["text//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_about_teradata_vantage",[]],["component//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_about_teradata_vantage",[]],["title//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_prerequisites",[255,36.808]],["name//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_prerequisites",[]],["text//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_prerequisites",[]],["component//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_prerequisites",[]],["title//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_procedure",[1082,53.441]],["name//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_procedure",[]],["text//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_procedure",[]],["component//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_procedure",[]],["title//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_an_azure_blob_storage_account_and_container",[0,12.515,100,21.593,102,22.748,494,20.174,509,26.492,669,20.174]],["name//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_an_azure_blob_storage_account_and_container",[]],["text//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_an_azure_blob_storage_account_and_container",[]],["component//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_an_azure_blob_storage_account_and_container",[]],["title//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_a_data_share_account",[0,15.758,8,14.756,65,32.675,102,28.641]],["name//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_a_data_share_account",[]],["text//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_a_data_share_account",[]],["component//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_a_data_share_account",[]],["title//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_a_share",[0,21.267,65,44.099]],["name//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_a_share",[]],["text//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_a_share",[]],["component//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_a_share",[]],["title//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_accept_and_receive_data_using_azure_data_share",[4,11.06,8,16.775,65,23.532,100,19.579,1131,24.021,1655,25.797]],["name//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_accept_and_receive_data_using_azure_data_share",[]],["text//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_accept_and_receive_data_using_azure_data_share",[]],["component//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_accept_and_receive_data_using_azure_data_share",[]],["title//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_open_invitation",[139,33.926,2670,58.11]],["name//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_open_invitation",[]],["text//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_open_invitation",[]],["component//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_open_invitation",[]],["title//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_accept_invitation",[1131,45.017,2670,58.11]],["name//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_accept_invitation",[]],["text//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_accept_invitation",[]],["component//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_accept_invitation",[]],["title//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_configure_received_share",[65,37.537,199,21.6,1655,41.15]],["name//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_configure_received_share",[]],["text//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_configure_received_share",[]],["component//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_configure_received_share",[]],["title//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_configure_nos_access_to_azure_blob_storage",[85,16.657,100,21.593,199,14.934,494,20.174,499,22.439,509,26.492]],["name//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_configure_nos_access_to_azure_blob_storage",[]],["text//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_configure_nos_access_to_azure_blob_storage",[]],["component//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_configure_nos_access_to_azure_blob_storage",[]],["title//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_a_foreign_table_definition",[0,15.758,213,20.373,594,33.355,658,31.465]],["name//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_a_foreign_table_definition",[]],["text//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_a_foreign_table_definition",[]],["component//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_a_foreign_table_definition",[]],["title//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_query_the_dataset_in_azure_blob_storage",[100,24.07,219,17.663,329,24.07,494,22.488,509,29.53]],["name//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_query_the_dataset_in_azure_blob_storage",[]],["text//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_query_the_dataset_in_azure_blob_storage",[]],["component//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_query_the_dataset_in_azure_blob_storage",[]],["title//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_a_view",[0,21.267,930,37.629]],["name//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_a_view",[]],["text//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_a_view",[]],["component//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_a_view",[]],["title//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_load_data_from_blob_storage_into_vantage_optional",[5,10.859,8,11.72,172,19.966,214,17.875,494,20.174,509,26.492]],["name//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_load_data_from_blob_storage_into_vantage_optional",[]],["text//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_load_data_from_blob_storage_into_vantage_optional",[]],["component//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_load_data_from_blob_storage_into_vantage_optional",[]],["title//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_the_table_and_load_the_data_in_a_single_statement",[0,12.515,8,11.72,94,24.154,177,24.154,213,16.181,214,17.875]],["name//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_the_table_and_load_the_data_in_a_single_statement",[]],["text//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_the_table_and_load_the_data_in_a_single_statement",[]],["component//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_the_table_and_load_the_data_in_a_single_statement",[]],["title//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_the_table_and_load_the_data_in_multiple_statements",[0,12.515,8,11.72,133,24.154,177,24.154,213,16.181,214,17.875]],["name//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_the_table_and_load_the_data_in_multiple_statements",[]],["text//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_the_table_and_load_the_data_in_multiple_statements",[]],["component//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_the_table_and_load_the_data_in_multiple_statements",[]],["title//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_read_nos_an_alternative_method_to_foreign_tables",[186,27.375,198,32.617,213,18.037,594,29.53,2778,36.305]],["name//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_read_nos_an_alternative_method_to_foreign_tables",[]],["text//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_read_nos_an_alternative_method_to_foreign_tables",[]],["component//cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_read_nos_an_alternative_method_to_foreign_tables",[]],["title//cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html",[9,9.846,265,18.103,330,20.079,1253,21.901,1311,19.824,1335,25.797,2787,26.532]],["name//cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html",[9,0.169,265,0.311,330,0.345,1253,0.377,1311,0.341,1335,0.444,2787,0.456]],["text//cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html",[0,2.093,4,2.04,5,1.205,8,0.352,9,2.721,10,0.5,15,0.497,16,0.489,19,0.641,20,1.222,21,0.606,23,0.738,26,1.858,27,0.833,28,1.292,29,0.633,34,1.861,39,0.6,42,1.164,48,0.528,68,1.355,75,0.633,82,1.285,85,0.919,88,1.222,90,1.528,91,3.58,101,0.532,102,0.683,104,1.03,105,0.612,107,2.101,119,2.322,120,3.122,123,0.955,124,0.582,125,1.294,126,1.069,127,0.489,128,1.915,131,1.633,134,1.222,139,0.6,142,0.674,150,0.5,172,1.528,176,1.346,186,0.738,190,0.516,191,1.805,199,0.448,201,1.561,203,0.665,207,1.091,208,4.748,209,0.779,228,3.082,235,4.179,243,0.528,244,0.415,245,0.524,246,0.963,247,0.528,248,0.933,249,0.528,250,0.528,251,1.257,252,0.489,253,0.451,256,0.5,265,1.528,267,1.683,269,0.813,278,0.907,286,2.076,297,1.494,298,1.741,312,1.355,314,1.949,318,4.804,320,0.813,323,0.674,330,3.042,332,1.192,334,3.245,335,1.092,352,4.039,362,1.091,368,0.612,369,0.626,395,0.606,396,3.418,405,0.619,411,0.907,421,0.738,428,0.796,435,2.373,436,2.456,476,3.915,477,0.986,491,0.796,494,2.238,503,0.657,506,1.027,514,0.738,517,0.612,519,0.751,522,2.417,523,0.833,524,0.674,526,1.027,530,2.635,531,0.626,537,0.854,542,1.222,590,0.879,593,0.683,626,1.615,630,1.273,637,0.854,650,1.255,663,0.907,669,3.686,673,0.813,711,1.987,732,0.738,734,1.379,743,0.6,750,0.751,881,0.854,888,4.34,889,2.633,902,1.82,1037,0.833,1105,2.293,1145,0.751,1165,4.222,1192,3.907,1216,0.751,1253,5.502,1272,0.879,1278,4.713,1311,5.127,1312,5.216,1314,3.809,1318,2.698,1323,1.887,1324,1.666,1329,0.978,1335,4.758,1336,1.405,1387,0.879,1403,0.978,1407,1.027,1408,1.027,1417,1.027,1421,3.247,1422,3.246,1432,1.887,1443,1.887,1444,2.007,1445,0.939,1446,1.092,1447,1.092,1448,1.092,1449,1.092,1452,1.092,1454,2.785,1455,1.887,1456,2.007,1469,1.092,1470,1.092,1473,0.703,1599,0.978,1668,0.796,1683,0.879,2209,0.907,2442,0.939,2447,0.978,2623,0.813,2787,4.893,2788,1.092,2789,1.192,2790,1.092,2791,1.192,2792,2.785,2793,1.092,2794,3.768,2795,1.092,2796,2.007,2797,1.192,2798,1.192,2799,2.007,2800,2.007,2801,2.007,2802,2.007,2803,2.007,2804,1.192,2805,2.19,2806,2.19,2807,2.19,2808,2.19,2809,1.092,2810,2.19,2811,1.192,2812,1.192,2813,1.192,2814,1.192,2815,1.192,2816,1.192,2817,1.887,2818,1.887]],["component//cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html",[253,0.408]],["title//cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_overview",[254,35.084]],["name//cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_overview",[]],["text//cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_overview",[]],["component//cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_overview",[]],["title//cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_prerequisites",[255,36.808]],["name//cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_prerequisites",[]],["text//cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_prerequisites",[]],["component//cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_prerequisites",[]],["title//cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_integration",[265,41.113]],["name//cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_integration",[]],["text//cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_integration",[]],["component//cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_integration",[]],["title//cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_use_startup_script",[4,17.643,334,31.623,1192,45.229]],["name//cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_use_startup_script",[]],["text//cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_use_startup_script",[]],["component//cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_use_startup_script",[]],["title//cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_use_custom_container",[4,17.643,396,31.232,669,29.18]],["name//cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_use_custom_container",[]],["text//cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_use_custom_container",[]],["component//cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_use_custom_container",[]],["title//cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_further_reading",[244,23.463,611,28.096]],["name//cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_further_reading",[]],["text//cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_further_reading",[]],["component//cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_further_reading",[]],["title//cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html",[9,9.846,119,15.331,265,18.103,1108,24.556,1253,21.901,1311,19.824,1312,21.901]],["name//cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html",[9,0.232,265,0.426,1108,0.577,1253,0.515,1311,0.466]],["text//cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html",[0,1.962,4,1.912,5,1.107,9,2.732,10,0.707,15,0.702,16,0.692,19,0.906,20,1.672,27,1.178,28,0.994,34,1.267,35,2.441,44,1.452,48,0.747,75,0.895,82,2.073,85,2.058,88,0.94,90,0.848,91,3.711,102,0.966,104,1.409,105,1.539,119,3.379,120,2.642,123,1.306,124,0.823,125,1.723,126,1.463,127,0.692,128,1.523,131,1.611,132,1.102,134,0.678,139,1.507,142,0.953,146,1.243,150,1.258,155,1.328,161,1.463,176,0.747,183,1.349,190,1.296,191,1.938,199,2.536,208,3.36,209,1.102,243,0.747,244,0.586,245,0.741,246,1.317,247,0.747,248,1.277,249,0.747,250,0.747,251,0.697,252,0.692,256,0.707,265,0.848,269,1.15,271,1.959,286,0.928,297,1.15,307,1.887,308,1.102,312,2.503,314,1.922,317,1.15,318,4.171,332,0.917,334,3.714,362,1.492,369,0.885,395,0.857,396,3.668,405,0.875,414,2.094,426,0.953,443,1.125,477,1.349,491,1.125,505,3.537,507,2.287,522,2.594,527,1.922,531,0.885,570,2.228,590,1.243,597,1.15,626,2.209,650,0.966,669,0.857,711,1.959,725,1.328,734,1.061,750,1.061,794,1.383,881,1.208,888,4.069,889,2.094,902,1.01,993,1.328,1099,1.328,1108,2.76,1141,1.178,1148,1.452,1165,5.154,1171,1.208,1216,1.061,1253,5.996,1311,5.501,1312,5.594,1337,1.383,1338,2.982,1345,2.746,1387,1.243,1392,1.125,1407,1.452,1408,1.452,1443,1.452,1455,1.452,1460,1.545,1468,1.545,1474,1.328,1587,1.026,1664,1.15,1683,2.209,1836,3.863,1966,1.243,1999,1.383,2111,2.582,2121,1.15,2125,1.383,2127,1.328,2208,2.361,2209,2.279,2221,2.279,2309,1.081,2455,1.452,2766,2.459,2790,1.545,2793,2.746,2796,2.746,2799,1.545,2800,1.545,2801,1.545,2802,1.545,2803,1.545,2819,1.685,2820,5.665,2821,1.685,2822,1.685,2823,2.996,2824,2.996,2825,7.19,2826,1.545,2827,2.996,2828,1.685,2829,1.685,2830,3.707,2831,2.996,2832,2.996,2833,4.045,2834,2.996,2835,2.996,2836,1.685,2837,1.685,2838,1.685,2839,1.685,2840,4.045,2841,1.685,2842,2.996,2843,1.685,2844,1.685,2845,2.996,2846,1.685,2847,1.685,2848,1.685,2849,4.045,2850,1.685,2851,1.685,2852,2.996,2853,1.685,2854,2.746,2855,1.685,2856,1.685,2857,1.685,2858,5.617,2859,1.685,2860,1.685,2861,1.685,2862,1.685]],["component//cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html",[253,0.408]],["title//cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html#_overview",[254,35.084]],["name//cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html#_overview",[]],["text//cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html#_overview",[]],["component//cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html#_overview",[]],["title//cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html#_prerequisites",[255,36.808]],["name//cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html#_prerequisites",[]],["text//cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html#_prerequisites",[]],["component//cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html#_prerequisites",[]],["title//cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html#_integration",[265,41.113]],["name//cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html#_integration",[]],["text//cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html#_integration",[]],["component//cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html#_integration",[]],["title//cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html#_steps_to_integrate_with_notebook_instance",[119,21.288,256,20.972,265,25.138,1312,30.411]],["name//cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html#_steps_to_integrate_with_notebook_instance",[]],["text//cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html#_steps_to_integrate_with_notebook_instance",[]],["component//cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html#_steps_to_integrate_with_notebook_instance",[]],["title//cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html#_further_reading",[244,23.463,611,28.096]],["name//cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html#_further_reading",[]],["text//cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html#_further_reading",[]],["component//cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html#_further_reading",[]],["title//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html",[4,11.06,5,9.846,9,9.846,30,14.368,527,23.08,2863,28.353,2864,29.532]],["name//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html",[4,0.19,5,0.169,9,0.169,265,0.311,527,0.397,2863,0.488,2864,0.508]],["text//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html",[0,2.083,4,2.312,5,1.57,7,0.24,8,2.492,9,0.664,10,0.683,15,0.15,16,0.892,18,0.258,19,0.194,21,0.357,22,0.223,23,0.223,28,0.414,29,0.373,30,1.494,34,0.434,35,1.863,38,0.235,39,0.818,40,0.402,48,0.16,49,0.33,51,0.397,54,0.576,56,1.064,60,0.274,67,0.265,68,0.223,70,0.274,75,1.418,80,0.684,81,0.274,82,0.919,85,1.312,87,0.327,88,0.201,90,0.671,91,0.257,93,0.442,94,0.624,98,0.517,99,0.295,101,1.084,102,2.145,103,0.708,104,0.169,105,0.36,107,0.971,110,0.252,119,0.568,120,0.896,121,0.527,122,0.216,123,0.157,124,0.176,125,0.299,126,0.176,127,1.689,129,0.716,131,0.194,132,0.235,134,1.425,135,0.58,137,0.31,142,2.949,143,0.31,145,0.252,149,0.196,150,0.56,153,0.708,154,0.605,155,0.284,156,0.168,160,0.744,161,1.731,162,0.7,163,1.482,166,2.553,167,0.194,171,0.684,172,0.959,176,0.591,177,0.427,178,0.442,179,0.99,180,0.198,181,0.717,183,2.528,184,0.258,186,0.635,189,1.247,190,3.015,191,0.172,198,0.265,199,0.135,201,0.185,203,1.212,206,0.684,207,0.349,208,3.827,210,1.014,211,0.956,213,3.282,215,0.643,216,1.304,218,0.246,219,0.28,221,1.199,225,0.841,226,2.861,227,0.89,228,0.58,232,0.216,235,0.227,236,1.47,237,0.756,239,0.216,243,0.16,244,0.244,245,0.158,246,0.158,247,0.16,248,0.299,249,0.16,250,0.16,251,0.29,252,0.148,255,0.162,256,1.312,258,0.194,265,0.671,267,1.193,268,0.191,272,0.274,278,0.533,286,0.198,292,0.181,303,0.684,304,0.427,310,0.744,320,0.246,327,2.379,328,0.231,332,0.382,338,0.402,339,0.787,341,0.671,343,0.434,348,0.827,351,0.183,352,0.427,357,0.187,361,0.206,362,0.664,365,0.24,367,0.81,368,0.185,375,1.152,378,1.402,380,0.596,381,0.246,382,0.414,383,0.187,386,0.246,389,0.33,395,0.678,396,0.725,397,1.968,400,0.7,405,0.364,415,0.33,416,0.533,417,0.884,421,0.825,426,0.204,428,1.782,430,0.49,432,1.182,433,0.353,435,0.442,436,0.391,438,0.605,443,0.468,446,0.956,448,0.24,449,1.402,450,0.643,451,0.191,452,0.716,453,0.31,454,0.468,455,0.49,458,0.693,464,0.295,472,1.182,473,0.92,474,0.212,476,0.212,477,0.733,478,0.295,480,0.265,488,1.006,493,0.735,494,0.357,499,1.767,500,0.99,501,1.42,502,0.717,503,1.953,504,0.825,505,3.902,507,1.641,513,0.427,516,0.468,517,0.979,519,0.442,522,3.064,523,0.716,524,0.58,525,0.576,526,0.31,527,4.777,530,0.191,531,0.854,537,0.258,546,0.206,547,0.496,549,0.295,550,0.604,551,0.31,552,0.31,553,2.103,554,0.33,557,2.184,559,1.45,564,1.078,570,0.735,573,0.209,576,0.206,580,0.24,583,0.884,589,0.78,590,0.265,592,0.402,593,0.764,594,3.29,595,0.503,597,0.91,598,0.553,600,0.31,601,4.44,602,1.094,603,4.569,608,0.33,611,0.15,628,0.258,632,0.252,637,0.258,653,0.284,658,0.84,665,0.49,667,0.231,669,0.678,671,0.31,672,0.553,673,0.479,679,0.427,686,0.31,688,0.231,704,0.756,706,1.862,716,0.553,722,0.884,736,0.533,741,0.265,742,0.235,743,0.516,750,0.227,751,0.24,761,1.013,762,0.231,765,0.252,770,2.462,772,2.501,773,4.796,777,2.693,787,0.265,793,0.206,817,1.405,822,0.258,827,0.284,835,0.196,856,0.212,857,0.31,871,0.258,886,0.94,902,0.216,921,0.265,923,0.274,925,0.517,930,0.908,950,1.747,957,0.442,958,0.204,1000,0.258,1001,0.434,1005,0.258,1010,0.884,1026,0.31,1041,2.378,1044,0.553,1053,0.246,1055,0.274,1056,0.884,1080,0.295,1081,0.258,1083,0.658,1103,0.227,1107,0.58,1114,0.227,1118,1.402,1132,0.258,1139,0.284,1147,0.96,1154,0.479,1155,0.576,1161,0.553,1181,1.222,1200,0.201,1203,0.246,1233,0.735,1234,0.588,1236,0.258,1239,0.252,1242,0.246,1253,0.219,1295,0.386,1310,0.227,1314,0.252,1336,0.231,1385,0.265,1398,0.735,1418,0.643,1423,0.33,1496,0.31,1506,0.576,1510,2.104,1517,0.258,1536,0.227,1587,0.219,1599,0.295,1657,0.33,1676,3.952,1789,0.503,1790,0.295,1791,0.31,1801,0.33,1841,0.284,1842,0.33,1843,0.265,1845,0.295,1959,5.852,1969,0.295,2009,0.33,2025,0.884,2034,0.295,2094,0.31,2107,0.258,2109,0.265,2110,0.274,2115,0.284,2150,2.613,2152,0.49,2156,1.556,2180,0.274,2185,0.479,2221,0.274,2258,0.252,2265,0.258,2297,0.284,2323,0.49,2347,0.284,2377,0.553,2398,0.31,2413,0.604,2417,0.284,2442,0.284,2445,0.33,2447,0.295,2449,0.841,2459,0.295,2462,0.274,2465,0.31,2474,0.33,2498,1.642,2541,0.252,2542,0.31,2548,0.553,2557,0.33,2581,0.31,2622,0.252,2631,0.31,2632,0.31,2633,0.295,2634,0.31,2635,0.31,2636,0.295,2637,0.604,2638,0.31,2639,0.31,2640,0.295,2642,0.295,2643,0.31,2644,0.258,2646,0.31,2653,0.533,2665,0.31,2667,0.295,2668,0.258,2669,0.643,2688,1.282,2690,0.31,2692,0.33,2695,0.31,2700,0.33,2701,0.33,2702,0.33,2706,0.33,2766,0.841,2767,0.33,2769,2.741,2770,0.31,2775,0.604,2778,1.564,2781,0.94,2863,6.479,2864,3.92,2865,0.31,2866,0.31,2867,0.36,2868,1.025,2869,1.906,2870,0.701,2871,0.36,2872,0.36,2873,0.36,2874,0.33,2875,0.36,2876,0.36,2877,2.427,2878,0.36,2879,0.701,2880,0.36,2881,0.36,2882,0.36,2883,0.701,2884,0.36,2885,0.701,2886,0.36,2887,0.31,2888,0.701,2889,0.36,2890,0.295,2891,0.36,2892,0.36,2893,0.36,2894,0.36,2895,0.36,2896,0.701,2897,0.246,2898,0.36,2899,0.33,2900,0.33,2901,0.36,2902,0.258,2903,0.553,2904,0.36,2905,0.36,2906,0.36,2907,0.36,2908,0.36,2909,0.36,2910,0.33,2911,0.33,2912,0.604,2913,0.576,2914,0.701,2915,0.517,2916,0.701,2917,1.626,2918,1.626,2919,0.36,2920,0.36,2921,1.025,2922,1.025,2923,1.025,2924,1.025,2925,1.025,2926,1.025,2927,0.36,2928,0.701,2929,0.33,2930,0.94,2931,0.33,2932,0.33,2933,1.025,2934,0.36,2935,0.701,2936,1.333,2937,7.373,2938,2.661,2939,1.333,2940,1.906,2941,1.333,2942,1.906,2943,1.333,2944,1.626,2945,1.333,2946,1.626,2947,1.333,2948,1.626,2949,1.333,2950,1.626,2951,1.333,2952,1.626,2953,1.333,2954,3.126,2955,1.626,2956,1.333,2957,1.626,2958,1.333,2959,1.906,2960,1.333,2961,1.906,2962,1.333,2963,1.906,2964,1.333,2965,1.626,2966,1.333,2967,1.906,2968,1.333,2969,1.491,2970,1.333,2971,1.626,2972,1.333,2973,1.626,2974,1.333,2975,1.333,2976,1.626,2977,1.333,2978,1.626,2979,1.333,2980,1.626,2981,1.333,2982,1.626,2983,1.333,2984,1.626,2985,1.333,2986,1.626,2987,0.36,2988,0.701,2989,0.36,2990,1.906,2991,1.906,2992,0.78,2993,0.701,2994,0.36,2995,0.36,2996,0.643,2997,0.36,2998,0.36,2999,0.36,3000,0.36,3001,1.025,3002,0.36,3003,0.36,3004,1.025,3005,0.701,3006,0.36,3007,0.36,3008,0.701,3009,0.36,3010,0.36,3011,0.36,3012,0.36,3013,0.36,3014,0.36,3015,0.36,3016,0.36,3017,0.36,3018,0.36,3019,0.36,3020,0.701,3021,0.36,3022,0.36,3023,0.36,3024,0.701,3025,1.333,3026,0.36,3027,0.36,3028,1.025,3029,0.36,3030,0.701,3031,0.36,3032,0.36,3033,0.36,3034,0.36,3035,0.701,3036,0.36,3037,0.36,3038,0.701,3039,0.36,3040,0.36,3041,0.36,3042,0.36,3043,0.36,3044,0.36,3045,0.36,3046,0.36,3047,0.36,3048,0.295,3049,0.36,3050,0.36,3051,0.31,3052,0.36,3053,0.36,3054,0.36,3055,0.36,3056,0.36]],["component//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html",[253,0.408]],["title//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_overview",[254,35.084]],["name//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_overview",[]],["text//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_overview",[]],["component//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_overview",[]],["title//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_about_amazon_appflow",[527,43.252,2864,55.344]],["name//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_about_amazon_appflow",[]],["text//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_about_amazon_appflow",[]],["component//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_about_amazon_appflow",[]],["title//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_about_teradata_vantage",[5,18.451,9,18.451]],["name//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_about_teradata_vantage",[]],["text//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_about_teradata_vantage",[]],["component//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_about_teradata_vantage",[]],["title//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_prerequisites",[255,36.808]],["name//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_prerequisites",[]],["text//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_prerequisites",[]],["component//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_prerequisites",[]],["title//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_procedure",[1082,53.441]],["name//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_procedure",[]],["text//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_procedure",[]],["component//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_procedure",[]],["title//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_create_a_salesforce_to_amazon_s3_flow",[0,13.951,505,27.857,527,28.373,1676,26.098,2863,34.856]],["name//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_create_a_salesforce_to_amazon_s3_flow",[]],["text//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_create_a_salesforce_to_amazon_s3_flow",[]],["component//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_create_a_salesforce_to_amazon_s3_flow",[]],["title//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_1_specify_flow_details",[256,18.567,375,20.996,421,27.375,1295,24.37,1676,26.098]],["name//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_1_specify_flow_details",[]],["text//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_1_specify_flow_details",[]],["component//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_1_specify_flow_details",[]],["title//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_2_configure_flow",[199,18.802,256,20.972,570,27.527,1676,29.478]],["name//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_2_configure_flow",[]],["text//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_2_configure_flow",[]],["component//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_2_configure_flow",[]],["title//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_3_map_data_fields",[8,13.064,256,18.567,428,29.53,553,27.857,573,25.718]],["name//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_3_map_data_fields",[]],["text//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_3_map_data_fields",[]],["component//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_3_map_data_fields",[]],["title//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_4_add_filters",[221,36.841,256,20.972,362,24.883,592,28.641]],["name//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_4_add_filters",[]],["text//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_4_add_filters",[]],["component//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_4_add_filters",[]],["title//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_5_review_and_create",[0,15.758,256,20.972,958,28.252,2653,38.008]],["name//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_5_review_and_create",[]],["text//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_5_review_and_create",[]],["component//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_5_review_and_create",[]],["title//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_run_flow",[107,22.556,1676,39.784]],["name//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_run_flow",[]],["text//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_run_flow",[]],["component//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_run_flow",[]],["title//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_change_data_file_properties",[8,14.756,134,20.089,339,29.478,921,36.841]],["name//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_change_data_file_properties",[]],["text//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_change_data_file_properties",[]],["component//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_change_data_file_properties",[]],["title//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_exploring_data_using_nos",[4,15.358,8,14.756,488,30.921,499,28.252]],["name//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_exploring_data_using_nos",[]],["text//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_exploring_data_using_nos",[]],["component//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_exploring_data_using_nos",[]],["title//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_create_foreign_table",[0,18.102,213,23.404,594,38.318]],["name//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_create_foreign_table",[]],["text//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_create_foreign_table",[]],["component//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_create_foreign_table",[]],["title//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_json_keys_table_operator",[213,23.404,310,32.03,2930,52.616]],["name//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_json_keys_table_operator",[]],["text//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_json_keys_table_operator",[]],["component//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_json_keys_table_operator",[]],["title//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_create_view",[0,21.267,930,37.629]],["name//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_create_view",[]],["text//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_create_view",[]],["component//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_create_view",[]],["title//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_read_nos_table_operator",[213,23.404,310,32.03,2778,47.109]],["name//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_read_nos_table_operator",[]],["text//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_read_nos_table_operator",[]],["component//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_read_nos_table_operator",[]],["title//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_join_amazon_s3_data_to_in_database_tables",[8,11.72,150,16.657,213,16.181,227,26.492,505,24.991,527,25.454]],["name//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_join_amazon_s3_data_to_in_database_tables",[]],["text//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_join_amazon_s3_data_to_in_database_tables",[]],["component//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_join_amazon_s3_data_to_in_database_tables",[]],["title//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_import_amazon_s3_data_to_vantage",[5,12.104,8,13.064,167,23.781,505,27.857,527,28.373]],["name//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_import_amazon_s3_data_to_vantage",[]],["text//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_import_amazon_s3_data_to_vantage",[]],["component//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_import_amazon_s3_data_to_vantage",[]],["title//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_export_vantage_data_to_amazon_s3_using_nos",[4,11.06,5,9.846,8,10.627,499,20.346,505,22.66,516,24.021,527,23.08]],["name//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_export_vantage_data_to_amazon_s3_using_nos",[]],["text//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_export_vantage_data_to_amazon_s3_using_nos",[]],["component//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_export_vantage_data_to_amazon_s3_using_nos",[]],["title//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_create_an_amazon_s3_to_salesforce_flow",[0,13.951,505,27.857,527,28.373,1676,26.098,2863,34.856]],["name//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_create_an_amazon_s3_to_salesforce_flow",[]],["text//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_create_an_amazon_s3_to_salesforce_flow",[]],["component//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_create_an_amazon_s3_to_salesforce_flow",[]],["title//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_1_specify_flow_details_2",[256,18.567,375,20.996,421,27.375,1295,24.37,1676,26.098]],["name//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_1_specify_flow_details_2",[]],["text//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_1_specify_flow_details_2",[]],["component//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_1_specify_flow_details_2",[]],["title//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_2_configure_flow_2",[199,18.802,256,20.972,570,27.527,1676,29.478]],["name//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_2_configure_flow_2",[]],["text//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_2_configure_flow_2",[]],["component//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_2_configure_flow_2",[]],["title//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_3_map_data_fields_2",[8,13.064,256,18.567,428,29.53,553,27.857,573,25.718]],["name//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_3_map_data_fields_2",[]],["text//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_3_map_data_fields_2",[]],["component//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_3_map_data_fields_2",[]],["title//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_4_add_filters_2",[221,36.841,256,20.972,362,24.883,592,28.641]],["name//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_4_add_filters_2",[]],["text//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_4_add_filters_2",[]],["component//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_4_add_filters_2",[]],["title//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_5_review_and_create_2",[0,15.758,256,20.972,958,28.252,2653,38.008]],["name//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_5_review_and_create_2",[]],["text//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_5_review_and_create_2",[]],["component//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_5_review_and_create_2",[]],["title//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_run_flow_2",[107,22.556,1676,39.784]],["name//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_run_flow_2",[]],["text//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_run_flow_2",[]],["component//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_run_flow_2",[]],["title//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_cleanup_optional",[172,33.926,2302,51.296]],["name//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_cleanup_optional",[]],["text//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_cleanup_optional",[]],["component//cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_cleanup_optional",[]],["title//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html",[5,9.846,8,10.627,9,9.846,265,18.103,330,20.079,530,19.118,3057,24.021]],["name//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html",[5,0.169,8,0.183,9,0.169,265,0.311,330,0.345,530,0.329,3057,0.413]],["text//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html",[0,2.199,4,0.876,5,1.982,7,0.738,8,2.715,9,2.481,10,0.858,15,0.461,16,0.454,18,0.793,19,0.594,23,0.684,26,0.545,27,0.772,28,0.652,29,1.514,30,1.662,34,0.864,35,1.018,39,2.094,41,4.18,48,0.49,51,1.155,67,1.507,70,0.841,75,0.587,77,0.953,80,0.738,82,0.864,85,0.858,87,1.654,88,0.617,90,0.556,91,2.56,93,0.696,94,0.673,101,0.913,102,2.034,104,0.52,105,1.05,107,1.187,119,0.871,120,0.961,123,0.482,124,0.54,125,0.471,126,0.54,127,0.454,134,0.822,139,0.556,142,2.66,149,0.602,150,1.196,154,0.652,156,0.953,165,0.871,166,1.394,176,1.262,178,1.794,179,1.244,181,0.594,183,0.498,189,1.05,190,0.884,191,0.53,197,1.244,201,0.568,207,0.551,208,3.209,209,0.723,213,2.291,216,1.098,219,0.441,223,0.652,226,0.662,228,1.155,237,0.815,243,0.49,244,0.385,245,0.486,246,0.486,247,0.49,248,0.871,249,0.49,250,0.49,251,1.178,252,0.454,256,1.196,263,2.826,265,4.348,267,0.913,269,0.754,276,0.738,286,3.095,292,1.785,298,1.171,312,1.265,318,2.911,320,0.754,323,0.625,324,0.754,327,0.551,328,0.709,330,4.426,332,1.55,338,0.634,339,0.652,342,1.98,347,0.709,351,0.562,352,0.673,360,0.723,367,0.551,375,1.352,390,3.076,394,1.364,395,1.448,396,0.602,399,1.428,405,1.061,417,0.953,433,0.556,442,0.754,451,0.587,477,0.498,478,0.907,488,1.265,494,0.562,501,0.723,502,0.594,503,0.609,516,3.14,517,1.823,528,0.815,530,3.192,531,0.581,543,1.843,547,0.535,632,0.772,667,0.709,669,0.562,709,1.364,727,0.594,745,1.364,757,0.772,761,1.086,762,0.709,821,1.013,822,0.793,824,1.554,836,0.793,838,0.556,854,3.058,860,0.841,871,0.793,957,0.696,1080,1.677,1103,0.696,1105,0.673,1107,1.611,1129,0.793,1147,1.206,1200,0.617,1205,1.507,1234,0.634,1239,0.772,1251,0.871,1310,0.696,1314,0.772,1329,1.677,1336,0.709,1344,1.394,1352,1.554,1396,1.428,1398,1.465,1424,4.087,1508,1.61,1510,2.245,1517,0.793,1587,0.673,1590,1.013,1603,0.871,1664,0.754,1676,0.652,2107,0.793,2109,0.815,2115,0.871,2129,0.709,2156,0.709,2309,0.709,2346,2.245,2351,1.013,2405,2.167,2442,1.61,2449,1.677,2465,0.953,2541,0.772,2543,0.907,2606,1.013,2622,0.772,2624,1.873,2629,0.953,2630,1.013,2631,0.953,2632,0.953,2633,0.907,2634,0.953,2635,0.953,2636,0.907,2637,0.953,2638,0.953,2639,0.953,2640,0.907,2641,1.013,2642,0.907,2686,0.953,2865,0.953,2866,0.953,2897,5.268,2902,2.043,2911,1.013,2915,0.815,3057,5.964,3058,2.043,3059,1.105,3060,1.105,3061,1.105,3062,1.105,3063,1.013,3064,1.105,3065,1.761,3066,1.013,3067,4.469,3068,2.849,3069,1.105,3070,2.043,3071,1.105,3072,7.243,3073,1.105,3074,1.105,3075,1.105,3076,1.105,3077,1.105,3078,1.105,3079,4.704,3080,1.105,3081,1.105,3082,1.105,3083,1.105,3084,1.105,3085,4.162,3086,2.043,3087,1.105,3088,1.105,3089,1.105,3090,1.105,3091,1.105,3092,2.043,3093,2.043,3094,2.043,3095,1.761,3096,4.162,3097,2.043,3098,2.043,3099,2.043,3100,2.043,3101,2.043,3102,1.873,3103,1.761,3104,2.043,3105,1.105,3106,4.704,3107,3.468,3108,7.931,3109,7.931,3110,2.043,3111,2.849,3112,1.105,3113,5.186,3114,1.105,3115,1.105,3116,2.043,3117,1.105,3118,2.849,3119,2.849,3120,1.105,3121,1.105,3122,2.043,3123,1.105,3124,1.105,3125,1.105,3126,2.043,3127,1.105,3128,1.105,3129,1.105,3130,1.105,3131,1.105,3132,1.105,3133,1.105,3134,1.105]],["component//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html",[253,0.408]],["title//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_overview",[254,35.084]],["name//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_overview",[]],["text//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_overview",[]],["component//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_overview",[]],["title//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_about_google_cloud_data_catalog",[8,14.756,330,27.882,530,26.547,3057,33.355]],["name//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_about_google_cloud_data_catalog",[]],["text//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_about_google_cloud_data_catalog",[]],["component//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_about_google_cloud_data_catalog",[]],["title//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_about_teradata_vantage",[5,18.451,9,18.451]],["name//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_about_teradata_vantage",[]],["text//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_about_teradata_vantage",[]],["component//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_about_teradata_vantage",[]],["title//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_prerequisites",[255,36.808]],["name//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_prerequisites",[]],["text//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_prerequisites",[]],["component//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_prerequisites",[]],["title//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_procedure",[1082,53.441]],["name//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_procedure",[]],["text//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_procedure",[]],["component//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_procedure",[]],["title//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_enable_data_catalog_api",[8,14.756,517,25.673,1107,28.252,3057,33.355]],["name//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_enable_data_catalog_api",[]],["text//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_enable_data_catalog_api",[]],["component//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_enable_data_catalog_api",[]],["title//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_install_teradata_data_catalog_connector",[8,13.064,9,12.104,41,24.684,91,16.236,3057,29.53]],["name//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_install_teradata_data_catalog_connector",[]],["text//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_install_teradata_data_catalog_connector",[]],["component//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_install_teradata_data_catalog_connector",[]],["title//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_install_virtualenv",[91,24.751,3067,58.11]],["name//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_install_virtualenv",[]],["text//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_install_virtualenv",[]],["component//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_install_virtualenv",[]],["title//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_install_data_catalog_teradata_connector",[8,13.064,9,12.104,41,24.684,91,16.236,3057,29.53]],["name//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_install_data_catalog_teradata_connector",[]],["text//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_install_data_catalog_teradata_connector",[]],["component//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_install_data_catalog_teradata_connector",[]],["title//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_set_environment_variables",[190,24.835,191,27.498,192,35.522]],["name//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_set_environment_variables",[]],["text//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_set_environment_variables",[]],["component//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_set_environment_variables",[]],["title//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_run",[107,27.334]],["name//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_run",[]],["text//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_run",[]],["component//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_run",[]],["title//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_explore_teradata_vantage_metadata_with_data_catalog",[5,10.859,8,11.72,9,10.859,488,24.559,2897,27.082,3057,26.492]],["name//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_explore_teradata_vantage_metadata_with_data_catalog",[]],["text//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_explore_teradata_vantage_metadata_with_data_catalog",[]],["component//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_explore_teradata_vantage_metadata_with_data_catalog",[]],["title//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_cleanup_optional",[172,33.926,2302,51.296]],["name//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_cleanup_optional",[]],["text//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_cleanup_optional",[]],["component//cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_cleanup_optional",[]],["title//cloud-guides/sagemaker-with-teradata-vantage.html",[4,13.597,5,12.104,9,12.104,507,25.013,1108,30.187]],["name//cloud-guides/sagemaker-with-teradata-vantage.html",[5,0.366,9,0.366,1108,0.913]],["text//cloud-guides/sagemaker-with-teradata-vantage.html",[0,2.741,4,2.672,5,2.02,8,2.85,9,2.378,10,0.518,15,0.943,16,0.507,19,0.664,20,1.748,22,0.764,23,0.764,25,0.74,26,0.609,27,0.863,28,0.729,30,0.493,34,0.522,39,1.576,40,0.708,48,0.547,51,1.28,66,2.468,70,2.948,82,1.324,85,0.95,87,0.576,90,1.576,91,0.831,101,1.011,104,0.581,105,1.163,109,1.231,119,2.565,121,0.635,122,0.74,123,1.69,124,0.603,125,0.964,126,0.603,127,1.591,134,1.817,139,0.621,142,3.404,149,0.672,151,2.245,156,0.576,160,1.263,161,2.207,166,1.544,167,2.999,168,4.209,176,0.547,180,0.681,183,2.711,189,2.866,190,1.355,191,1.857,199,2.547,203,0.689,207,0.615,208,3.688,213,0.923,214,1.019,228,0.698,238,0.792,243,0.547,244,0.787,245,0.543,246,0.543,247,0.547,248,0.964,249,0.547,250,0.547,251,0.511,252,0.929,256,1.314,258,2.083,265,1.139,267,2.019,268,0.656,286,0.681,291,0.764,296,1.377,318,0.764,329,0.672,332,0.672,342,0.689,350,1.425,357,0.642,360,0.808,367,2.251,368,1.163,375,0.586,395,0.628,410,1.544,414,0.863,435,0.778,436,0.689,446,1.622,451,0.656,458,0.642,462,0.886,469,1.377,483,0.973,494,0.628,500,0.752,503,1.725,505,5.241,507,0.698,515,0.672,519,2.44,522,4.734,523,1.581,527,6.498,542,1.263,547,0.597,563,0.843,576,0.708,593,0.708,611,0.515,630,0.718,641,0.843,643,2.57,651,1.511,658,1.972,667,3.26,669,0.628,683,1.511,716,3.561,727,0.664,734,1.425,749,1.014,761,0.656,788,2.534,795,5.587,833,0.94,838,1.95,856,0.729,999,0.886,1105,1.377,1107,0.698,1108,6.045,1121,0.973,1154,0.843,1163,0.911,1199,0.843,1205,0.911,1234,0.708,1242,0.843,1251,1.783,1278,0.729,1295,0.681,1311,0.681,1312,2.359,1324,2.948,1332,1.95,1336,1.451,1358,1.014,1362,1.014,1368,1.95,1473,5.757,1506,3.181,1513,3.181,1600,3.017,1603,0.973,1664,0.843,1668,0.825,2109,0.911,2262,1.669,2314,0.94,2359,3.054,2376,2.699,2535,1.014,2622,0.863,2636,2.57,2651,5.393,2766,1.014,2817,1.95,2865,1.064,2866,1.064,2899,1.132,2902,0.886,3135,1.235,3136,1.235,3137,1.132,3138,1.235,3139,1.064,3140,1.132,3141,1.132,3142,1.132,3143,1.132,3144,1.235,3145,1.064,3146,1.235,3147,1.132,3148,1.235,3149,1.132,3150,1.132,3151,1.235,3152,1.235,3153,1.235,3154,1.235,3155,1.132,3156,1.235,3157,1.235,3158,1.235,3159,1.235,3160,1.235,3161,1.235,3162,1.235,3163,4.52,3164,1.064,3165,1.235,3166,1.235,3167,1.235,3168,1.132,3169,4.143,3170,1.235,3171,1.235,3172,1.235,3173,1.235,3174,1.235,3175,1.235,3176,1.235,3177,1.235,3178,1.235,3179,1.235,3180,1.235,3181,1.235,3182,1.235,3183,1.235]],["component//cloud-guides/sagemaker-with-teradata-vantage.html",[253,0.408]],["title//cloud-guides/sagemaker-with-teradata-vantage.html#_overview",[254,35.084]],["name//cloud-guides/sagemaker-with-teradata-vantage.html#_overview",[]],["text//cloud-guides/sagemaker-with-teradata-vantage.html#_overview",[]],["component//cloud-guides/sagemaker-with-teradata-vantage.html#_overview",[]],["title//cloud-guides/sagemaker-with-teradata-vantage.html#_prerequisites",[255,36.808]],["name//cloud-guides/sagemaker-with-teradata-vantage.html#_prerequisites",[]],["text//cloud-guides/sagemaker-with-teradata-vantage.html#_prerequisites",[]],["component//cloud-guides/sagemaker-with-teradata-vantage.html#_prerequisites",[]],["title//cloud-guides/sagemaker-with-teradata-vantage.html#_load_data",[8,19.915,214,30.373]],["name//cloud-guides/sagemaker-with-teradata-vantage.html#_load_data",[]],["text//cloud-guides/sagemaker-with-teradata-vantage.html#_load_data",[]],["component//cloud-guides/sagemaker-with-teradata-vantage.html#_load_data",[]],["title//cloud-guides/sagemaker-with-teradata-vantage.html#_train_the_model",[168,29.405,1473,39.784]],["name//cloud-guides/sagemaker-with-teradata-vantage.html#_train_the_model",[]],["text//cloud-guides/sagemaker-with-teradata-vantage.html#_train_the_model",[]],["component//cloud-guides/sagemaker-with-teradata-vantage.html#_train_the_model",[]],["title//cloud-guides/sagemaker-with-teradata-vantage.html#_deploy_the_model",[168,29.405,838,33.926]],["name//cloud-guides/sagemaker-with-teradata-vantage.html#_deploy_the_model",[]],["text//cloud-guides/sagemaker-with-teradata-vantage.html#_deploy_the_model",[]],["component//cloud-guides/sagemaker-with-teradata-vantage.html#_deploy_the_model",[]],["title//cloud-guides/sagemaker-with-teradata-vantage.html#_create_a_model",[0,21.267,168,29.405]],["name//cloud-guides/sagemaker-with-teradata-vantage.html#_create_a_model",[]],["text//cloud-guides/sagemaker-with-teradata-vantage.html#_create_a_model",[]],["component//cloud-guides/sagemaker-with-teradata-vantage.html#_create_a_model",[]],["title//cloud-guides/sagemaker-with-teradata-vantage.html#_create_an_endpoint_configuration",[0,18.102,199,21.6,2651,43.664]],["name//cloud-guides/sagemaker-with-teradata-vantage.html#_create_an_endpoint_configuration",[]],["text//cloud-guides/sagemaker-with-teradata-vantage.html#_create_an_endpoint_configuration",[]],["component//cloud-guides/sagemaker-with-teradata-vantage.html#_create_an_endpoint_configuration",[]],["title//cloud-guides/sagemaker-with-teradata-vantage.html#_create_endpoint",[0,21.267,2651,51.296]],["name//cloud-guides/sagemaker-with-teradata-vantage.html#_create_endpoint",[]],["text//cloud-guides/sagemaker-with-teradata-vantage.html#_create_endpoint",[]],["component//cloud-guides/sagemaker-with-teradata-vantage.html#_create_endpoint",[]],["title//cloud-guides/sagemaker-with-teradata-vantage.html#_summary",[492,40.696]],["name//cloud-guides/sagemaker-with-teradata-vantage.html#_summary",[]],["text//cloud-guides/sagemaker-with-teradata-vantage.html#_summary",[]],["component//cloud-guides/sagemaker-with-teradata-vantage.html#_summary",[]],["title//cloud-guides/sagemaker-with-teradata-vantage.html#_further_reading",[244,23.463,611,28.096]],["name//cloud-guides/sagemaker-with-teradata-vantage.html#_further_reading",[]],["text//cloud-guides/sagemaker-with-teradata-vantage.html#_further_reading",[]],["component//cloud-guides/sagemaker-with-teradata-vantage.html#_further_reading",[]],["title//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html",[4,11.06,5,9.846,9,9.846,100,19.579,109,19.579,542,20.079,1200,20.079]],["name//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html",[4,0.19,5,0.169,9,0.169,100,0.337,109,0.337,542,0.345,1200,0.345]],["text//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html",[0,1.073,4,1.897,5,1.37,7,1.819,8,2.767,9,1.856,10,0.441,15,0.437,16,0.431,18,0.753,19,0.564,20,1.087,24,1.482,25,0.629,27,0.733,30,1.81,34,0.444,39,0.98,42,0.558,48,0.465,52,0.586,66,0.827,74,0.65,75,0.558,76,0.716,82,1.439,85,1.429,86,1.205,87,0.908,88,0.586,90,0.528,91,1.469,100,4.768,101,0.87,102,3.337,104,0.916,105,0.539,107,1.138,109,3.358,111,0.629,119,1.45,121,0.539,123,1.977,124,0.513,125,1.45,126,0.513,128,0.534,134,1.096,139,1.371,141,1.329,142,3.836,146,0.774,149,1.06,150,0.441,151,0.753,154,0.619,156,2.113,160,1.087,161,2.445,166,1.329,167,3.49,168,3.821,171,0.701,172,0.528,176,0.863,180,0.578,183,1.803,190,1.473,191,0.503,192,0.65,199,0.395,201,0.539,207,0.523,208,2.876,213,0.428,214,0.473,216,0.564,223,0.619,230,0.619,232,0.629,233,1.979,239,1.167,243,0.465,244,0.365,245,0.461,246,0.461,247,0.465,248,0.83,249,0.465,250,0.465,251,0.434,252,0.431,256,0.441,267,1.52,278,0.799,286,2.205,291,0.65,292,0.528,304,0.639,310,0.586,314,5.215,318,1.205,320,0.716,323,0.594,324,0.716,329,1.852,338,0.602,342,1.087,348,0.534,352,2.759,353,0.716,357,0.545,359,0.753,367,1.993,375,1.293,380,1.132,382,0.619,395,0.99,396,1.483,401,0.799,405,0.545,413,0.673,421,1.686,433,1.371,435,3.423,436,2.233,438,0.619,454,0.701,458,0.545,473,3.67,480,0.774,494,4.133,500,0.639,503,0.578,509,5.029,523,0.733,542,3.444,547,1.646,570,1.073,573,0.61,592,0.602,593,0.602,597,0.716,618,0.799,625,1.482,653,0.827,660,0.686,667,1.748,669,1.385,679,1.185,683,1.3,698,0.753,699,0.733,734,1.227,743,0.528,750,1.227,757,1.904,761,1.035,765,1.904,793,0.602,820,0.673,823,0.774,824,0.799,833,0.799,835,2.178,836,0.753,838,0.98,843,2.236,888,1.782,920,0.827,921,2.951,930,0.586,958,0.594,1001,0.65,1006,0.962,1043,0.799,1105,1.185,1132,1.396,1139,0.827,1145,1.716,1155,1.599,1159,0.774,1199,1.859,1200,3.786,1234,0.602,1260,4.587,1287,0.827,1295,0.578,1311,1.073,1312,3.048,1324,2.073,1336,4.352,1358,1.599,1362,0.862,1368,2.933,1384,4.007,1385,1.436,1473,2.955,1510,0.827,1517,3.896,1536,0.661,1600,3.026,1601,1.3,2103,2.682,2120,0.862,2140,0.686,2185,0.716,2301,0.799,2323,0.733,2401,0.905,2469,0.774,2552,0.962,2583,0.827,2620,0.962,2621,0.962,2622,0.733,2633,2.236,2647,2.498,2660,0.962,2769,0.862,3065,2.933,3139,0.905,3140,0.962,3141,0.962,3142,0.962,3143,0.962,3145,0.905,3147,0.962,3149,2.498,3150,0.962,3164,4.315,3184,1.05,3185,1.05,3186,1.05,3187,0.862,3188,1.05,3189,0.905,3190,1.05,3191,1.05,3192,1.05,3193,1.05,3194,1.05,3195,1.05,3196,1.05,3197,1.05,3198,1.05,3199,1.05,3200,1.05,3201,1.05,3202,1.05,3203,1.05,3204,1.948,3205,1.678,3206,1.05,3207,1.05,3208,3.404,3209,1.05,3210,2.725,3211,1.05,3212,4.002,3213,5.657,3214,0.862,3215,1.948,3216,1.05,3217,1.05,3218,1.05,3219,1.948,3220,1.948,3221,3.284,3222,1.948,3223,0.962,3224,1.05,3225,1.05,3226,1.05,3227,2.725,3228,2.725,3229,1.948,3230,1.785,3231,1.05,3232,1.05,3233,1.482,3234,1.05,3235,1.948,3236,1.05,3237,1.05,3238,1.05,3239,1.948,3240,1.05,3241,1.948,3242,2.725,3243,1.05,3244,1.05,3245,0.905,3246,1.05]],["component//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html",[253,0.408]],["title//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_overview",[254,35.084]],["name//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_overview",[]],["text//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_overview",[]],["component//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_overview",[]],["title//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_prerequisites",[255,36.808]],["name//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_prerequisites",[]],["text//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_prerequisites",[]],["component//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_prerequisites",[]],["title//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_procedure",[1082,53.441]],["name//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_procedure",[]],["text//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_procedure",[]],["component//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_procedure",[]],["title//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_initial_setup",[347,43.252,383,35.028]],["name//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_initial_setup",[]],["text//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_initial_setup",[]],["component//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_initial_setup",[]],["title//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_load_data",[8,19.915,214,30.373]],["name//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_load_data",[]],["text//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_load_data",[]],["component//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_load_data",[]],["title//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_train_the_model",[168,29.405,1473,39.784]],["name//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_train_the_model",[]],["text//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_train_the_model",[]],["component//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_train_the_model",[]],["title//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_import_data",[8,19.915,167,36.252]],["name//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_import_data",[]],["text//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_import_data",[]],["component//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_import_data",[]],["title//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_clean_the_data",[8,19.915,824,51.296]],["name//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_clean_the_data",[]],["text//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_clean_the_data",[]],["component//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_clean_the_data",[]],["title//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_build_the_model",[168,29.405,436,37.629]],["name//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_build_the_model",[]],["text//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_build_the_model",[]],["component//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_build_the_model",[]],["title//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_score_the_model",[168,29.405,1600,45.017]],["name//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_score_the_model",[]],["text//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_score_the_model",[]],["component//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_score_the_model",[]],["title//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_further_reading",[244,23.463,611,28.096]],["name//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_further_reading",[]],["text//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_further_reading",[]],["component//cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_further_reading",[]],["title//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html",[4,8.642,5,7.693,8,8.303,9,7.693,214,12.664,223,16.587,257,14.768,504,17.399,1664,19.186,2438,19.186]],["name//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html",[4,0.136,5,0.121,8,0.13,9,0.121,214,0.199,223,0.26,257,0.232,504,0.273,1664,0.301,2438,0.301]],["text//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html",[0,1.78,3,0.737,4,2.113,5,1.545,8,2.955,9,2.126,10,0.419,15,0.416,16,0.41,21,0.946,22,0.618,23,0.618,26,2.157,29,0.531,34,0.787,35,2.621,41,0.558,42,0.531,48,0.443,50,1.872,51,0.565,52,0.558,53,0.737,63,1.372,67,0.737,69,1.872,74,2.024,75,0.531,81,0.76,82,0.787,85,0.419,87,0.867,88,0.558,90,0.503,91,1.2,98,0.737,101,1.461,103,1.387,104,0.47,105,0.513,107,1.289,108,0.667,119,0.793,121,1.341,123,2.614,124,0.488,125,1.112,126,0.488,133,1.132,134,1.759,135,0.565,139,0.936,146,0.737,149,2.097,150,1.096,161,0.908,167,0.537,168,4.019,180,1.438,181,2.352,182,0.76,183,1.176,186,1.151,189,1.341,190,0.432,191,1.251,199,1.45,201,0.956,203,0.558,207,0.498,208,2.332,213,2.905,214,3.313,216,0.537,223,3.724,224,1.54,227,0.667,228,1.476,236,1.228,243,0.443,244,0.348,245,0.439,246,0.818,247,0.443,248,0.793,249,0.443,250,0.443,251,0.77,252,0.41,256,1.372,257,5.256,258,1,262,0.537,263,3.561,267,0.831,271,1.217,273,1.415,282,3.105,285,0.861,286,1.025,287,0.82,288,0.82,289,0.82,290,0.861,292,2.84,293,1.466,294,2.52,296,0.608,298,1.067,301,1.415,305,0.716,306,0.82,307,0.629,308,1.217,309,1.603,311,0.82,314,1.193,315,1.3,316,0.599,317,0.682,318,0.618,319,0.861,322,0.667,327,0.498,329,1.012,330,1.457,339,0.59,340,2.693,341,0.936,347,0.641,351,1.327,359,0.716,360,0.654,366,2.577,367,0.498,368,1.98,369,0.525,372,0.82,373,0.82,380,1.082,382,1.098,383,1.356,384,1.527,385,0.581,386,0.682,387,0.667,390,0.654,394,1.242,395,0.946,396,1.012,397,2.059,399,0.698,400,0.682,401,1.415,404,3.773,405,2.002,410,1.27,423,3.683,426,1.849,431,0.573,433,0.503,435,1.172,436,1.457,438,0.59,443,1.242,448,0.667,449,0.861,454,0.667,458,0.519,459,0.916,460,0.618,473,2.473,474,1.929,476,1.098,477,1.736,483,0.787,489,1.527,500,0.608,501,3.92,502,0.537,503,1.438,504,1.151,512,0.716,513,0.608,515,1.421,524,1.052,543,0.519,547,0.9,557,0.698,579,3.037,614,0.916,616,1.527,617,3.447,618,2.487,621,0.916,624,0.861,625,0.76,628,3.773,629,0.861,630,1.518,631,0.861,639,0.916,640,2.393,641,1.782,654,0.916,655,0.916,656,0.916,657,0.916,658,1.172,660,0.654,661,0.916,662,0.916,663,0.76,664,1.415,665,0.698,667,0.641,668,0.916,669,1.959,670,0.76,671,1.603,672,0.787,673,0.682,676,0.82,677,1.706,685,0.916,686,0.861,687,0.667,688,0.641,689,0.861,690,0.787,718,1.415,733,1.334,743,1.313,748,0.716,817,0.737,820,0.641,835,1.421,841,0.76,860,0.76,868,0.82,871,0.716,902,2.9,925,0.737,930,3.686,1137,0.76,1181,0.641,1234,1.067,1249,1.27,1295,1.438,1308,0.667,1359,1.217,1664,0.682,1712,0.916,1845,0.82,1963,0.861,2097,0.916,2107,0.716,2150,0.737,2226,0.76,2262,1.372,2420,0.787,2421,0.787,2438,4.691,2459,4.919,2462,0.76,2542,0.861,2550,0.916,2553,1.466,2596,0.82,2664,4.535,2826,0.916,2897,0.682,2938,0.916,2996,0.916,3245,0.861,3247,2.393,3248,0.916,3249,0.999,3250,2.611,3251,0.999,3252,1.861,3253,0.999,3254,0.861,3255,0.999,3256,0.999,3257,0.999,3258,0.999,3259,0.916,3260,0.999,3261,1.861,3262,0.999,3263,1.861,3264,2.611,3265,1.861,3266,0.999,3267,0.916,3268,0.999,3269,0.999,3270,0.999,3271,1.861,3272,0.999,3273,0.999,3274,0.999,3275,0.999,3276,0.916,3277,0.999,3278,0.916,3279,0.999,3280,0.999,3281,0.999,3282,0.999,3283,0.999,3284,0.861,3285,0.999,3286,0.999,3287,0.916,3288,0.999]],["component//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html",[253,0.408]],["title//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_overview",[254,35.084]],["name//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_overview",[]],["text//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_overview",[]],["component//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_overview",[]],["title//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_prerequisites",[255,36.808]],["name//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_prerequisites",[]],["text//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_prerequisites",[]],["component//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_prerequisites",[]],["title//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_sample_data_loading",[8,16.952,214,25.854,477,25.854]],["name//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_sample_data_loading",[]],["text//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_sample_data_loading",[]],["component//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_sample_data_loading",[]],["title//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_install_dbt",[91,24.751,257,35.421]],["name//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_install_dbt",[]],["text//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_install_dbt",[]],["component//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_install_dbt",[]],["title//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_configure_dbt",[199,25.376,257,35.421]],["name//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_configure_dbt",[]],["text//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_configure_dbt",[]],["component//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_configure_dbt",[]],["title//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_the_jaffle_shop_dbt_project",[257,26.245,263,23.501,617,39.371,618,38.008]],["name//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_the_jaffle_shop_dbt_project",[]],["text//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_the_jaffle_shop_dbt_project",[]],["component//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_the_jaffle_shop_dbt_project",[]],["title//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_dbt_transformations",[223,39.784,257,35.421]],["name//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_dbt_transformations",[]],["text//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_dbt_transformations",[]],["component//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_dbt_transformations",[]],["title//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_staging_models",[168,29.405,423,51.296]],["name//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_staging_models",[]],["text//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_staging_models",[]],["component//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_staging_models",[]],["title//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_dimensional_models_marts",[168,25.03,404,41.15,489,47.109]],["name//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_dimensional_models_marts",[]],["text//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_dimensional_models_marts",[]],["component//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_dimensional_models_marts",[]],["title//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_executing_transformations",[223,39.784,351,34.281]],["name//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_executing_transformations",[]],["text//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_executing_transformations",[]],["component//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_executing_transformations",[]],["title//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_model_testing",[123,29.405,168,29.405]],["name//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_model_testing",[]],["text//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_model_testing",[]],["component//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_model_testing",[]],["title//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_generate_documentation",[26,33.248,474,39.784]],["name//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_generate_documentation",[]],["text//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_generate_documentation",[]],["component//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_generate_documentation",[]],["title//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_lineage_graph",[3287,61.813,3289,58.11]],["name//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_lineage_graph",[]],["text//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_lineage_graph",[]],["component//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_lineage_graph",[]],["title//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_summary",[492,40.696]],["name//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_summary",[]],["text//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_summary",[]],["component//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_summary",[]],["title//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_further_reading",[244,23.463,611,28.096]],["name//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_further_reading",[]],["text//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_further_reading",[]],["component//elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_further_reading",[]],["title//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html",[4,10.116,5,9.006,8,9.72,9,9.006,35,16.391,214,14.825,504,20.368,2438,22.46]],["name//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html",[4,0.168,5,0.149,8,0.161,9,0.149,35,0.272,214,0.246,504,0.338,2438,0.372]],["text//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html",[0,1.107,4,2.358,5,1.727,8,2.266,9,2.099,10,0.458,15,0.455,16,0.448,21,0.555,25,0.654,26,0.995,29,1.072,30,3.227,31,1.488,34,1.191,35,4.557,39,2.998,41,1.572,42,0.58,51,0.617,56,0.713,82,1.743,85,0.847,87,0.509,88,1.126,90,2.073,94,0.664,102,3.97,103,1.497,104,0.513,105,0.561,107,2.489,119,1.756,120,0.513,121,1.447,122,0.654,123,1.228,124,0.533,125,0.86,126,0.533,127,0.448,134,0.439,135,0.617,139,2.586,142,2.33,149,1.911,150,2.158,154,0.644,156,0.941,160,1.572,161,2.012,163,0.745,176,0.483,178,0.687,180,1.112,181,1.085,183,2.099,184,1.447,185,3.802,186,0.675,189,2.863,190,2.41,191,0.523,199,2.243,201,1.037,203,0.609,207,1.005,208,1.556,213,1.9,214,1.269,216,0.587,219,0.436,223,1.662,231,0.745,234,0.745,235,1.774,236,2.192,244,0.702,246,1.543,248,0.86,251,0.451,252,0.448,256,0.458,258,1.888,262,0.587,263,0.513,264,1,267,1.258,279,0.745,280,0.83,282,0.7,283,0.83,292,0.549,293,0.86,294,1.32,295,1.41,296,1.229,297,0.745,298,0.625,299,1.271,304,0.664,307,0.687,308,0.713,315,0.762,322,0.728,323,0.617,330,3.865,332,1.533,334,1.112,340,3.893,342,0.609,347,0.7,361,1.157,362,1.005,368,2.394,369,1.48,375,0.518,382,0.644,383,0.567,386,1.378,395,1.785,397,0.687,400,0.745,405,1.049,410,1.378,421,1.249,426,1.141,431,0.625,433,2.586,438,0.644,443,0.728,448,1.348,451,1.866,458,0.567,465,0.86,473,2.33,477,0.909,483,0.86,501,2.695,502,1.514,503,1.112,509,0.728,515,0.594,517,0.561,518,0.995,524,1.141,530,1.072,537,0.782,543,2.14,547,1.362,570,0.601,573,1.174,579,0.86,628,0.782,650,1.157,664,1.536,667,0.7,669,0.555,688,0.7,727,1.888,733,0.782,743,1.767,747,0.94,750,1.271,751,1.348,761,2.189,762,2.252,793,0.625,820,0.7,822,2.517,838,0.549,844,0.83,861,0.86,863,2.143,902,0.654,925,1.488,957,0.687,1008,0.713,1053,1.378,1083,0.7,1098,0.86,1107,0.617,1139,0.86,1147,1.191,1181,1.295,1199,1.378,1213,0.782,1249,0.745,1295,1.934,1308,1.348,1311,0.601,1312,1.229,1318,2.242,1384,2.077,1385,0.804,1415,0.804,1587,0.664,1603,0.86,1664,1.922,1676,0.644,1916,1,1960,1,1970,3.026,2140,1.32,2150,6.221,2265,0.782,2347,2.22,2417,0.86,2420,0.86,2421,0.86,2437,3.824,2438,6.475,2455,0.94,2459,0.895,2571,1.739,2623,0.745,2665,0.94,2683,0.94,2684,2.582,2686,0.94,2788,1,2818,0.94,2874,1,2890,1.657,2900,1,2913,0.895,3137,1,3247,5.107,3254,0.94,3259,1,3276,1.85,3290,2.019,3291,1.536,3292,0.94,3293,5.571,3294,1.091,3295,1.091,3296,1.091,3297,1.85,3298,1.091,3299,1.091,3300,2.019,3301,2.817,3302,1.091,3303,1.091,3304,1.091,3305,1.091,3306,1.85,3307,1.091,3308,1.091,3309,1.091,3310,1.091,3311,1.091,3312,4.66,3313,1.091,3314,5.463,3315,3.824,3316,2.582,3317,1.091,3318,1.091,3319,1,3320,1.091,3321,2.019,3322,1.091,3323,1.091,3324,1.091,3325,1.091,3326,1.091,3327,1,3328,2.019,3329,2.019,3330,1.091,3331,1.091,3332,1.091,3333,1.091,3334,1.091,3335,1.091,3336,1.091,3337,1.091,3338,1.091,3339,1,3340,2.019,3341,0.94,3342,1.091,3343,1.091]],["component//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html",[253,0.408]],["title//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_overview",[254,35.084]],["name//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_overview",[]],["text//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_overview",[]],["component//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_overview",[]],["title//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_prerequisites",[255,36.808]],["name//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_prerequisites",[]],["text//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_prerequisites",[]],["component//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_prerequisites",[]],["title//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_launch_airbyte_open_source",[35,24.883,139,25.138,1199,34.097,2438,34.097]],["name//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_launch_airbyte_open_source",[]],["text//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_launch_airbyte_open_source",[]],["component//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_launch_airbyte_open_source",[]],["title//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_airbyte_configuration",[199,25.376,2438,46.018]],["name//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_airbyte_configuration",[]],["text//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_airbyte_configuration",[]],["component//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_airbyte_configuration",[]],["title//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_setting_the_source_connection",[30,22.919,35,28.585,190,24.835]],["name//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_setting_the_source_connection",[]],["text//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_setting_the_source_connection",[]],["component//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_setting_the_source_connection",[]],["title//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_setting_the_destination_connection",[30,22.919,190,24.835,2150,42.323]],["name//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_setting_the_destination_connection",[]],["text//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_setting_the_destination_connection",[]],["component//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_setting_the_destination_connection",[]],["title//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_configuring_data_sync",[8,16.952,199,21.6,2437,47.109]],["name//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_configuring_data_sync",[]],["text//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_configuring_data_sync",[]],["component//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_configuring_data_sync",[]],["title//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_replication_frequency",[3316,61.813,3341,58.11]],["name//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_replication_frequency",[]],["text//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_replication_frequency",[]],["component//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_replication_frequency",[]],["title//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_data_sync_validation",[8,16.952,382,33.864,2437,47.109]],["name//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_data_sync_validation",[]],["text//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_data_sync_validation",[]],["component//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_data_sync_validation",[]],["title//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_close_and_delete_the_connection",[30,22.919,234,39.171,1147,33.864]],["name//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_close_and_delete_the_connection",[]],["text//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_close_and_delete_the_connection",[]],["component//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_close_and_delete_the_connection",[]],["title//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_summary",[492,40.696]],["name//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_summary",[]],["text//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_summary",[]],["component//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_summary",[]],["title//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_further_reading",[244,23.463,611,28.096]],["name//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_further_reading",[]],["text//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_further_reading",[]],["component//elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_further_reading",[]],["title//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html",[5,8.298,236,14.264,330,16.922,514,18.767,530,16.112,1106,18.767,1335,21.741,2787,22.36,3344,26.133]],["name//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html",[5,0.149,236,0.257,333,0.47,514,0.338,1106,0.338,1335,0.391,2787,0.402,3344,0.47]],["text//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html",[0,1.932,4,2.212,5,1.834,7,0.445,8,2.079,9,0.348,15,0.278,21,0.339,23,0.413,25,0.4,30,0.727,51,0.377,60,0.967,70,0.508,82,1.523,84,4.904,85,0.28,87,0.311,88,0.71,90,0.64,91,1.022,92,0.832,93,1.147,94,0.406,101,1.609,102,1.596,105,0.343,107,1.326,119,0.99,120,0.314,123,1.729,125,0.284,127,1.144,128,0.339,134,2.285,135,0.719,138,0.575,139,0.916,142,1.575,149,0.692,150,0.534,153,0.355,154,0.394,156,0.849,159,0.478,160,0.372,161,1.36,167,4.475,168,3.487,173,0.478,176,1.422,177,0.406,179,0.406,180,0.368,181,0.684,183,1.254,189,0.936,190,0.788,191,0.609,192,0.413,194,0.548,199,0.251,201,0.343,203,0.372,207,0.907,208,5.188,213,2.219,214,0.301,216,0.359,217,0.455,219,0.266,223,0.394,228,0.719,230,0.75,232,1.392,235,0.42,236,1.093,239,0.4,251,0.276,252,0.274,256,0.975,265,0.336,267,2.062,268,2.286,291,0.413,294,0.436,303,0.445,304,0.774,305,0.912,307,1.147,317,0.455,318,0.787,320,0.455,323,0.377,324,0.455,329,0.991,330,1.016,338,0.382,341,0.916,342,0.71,351,1.831,352,0.406,357,1.207,367,1.793,369,0.35,375,0.317,380,0.388,383,0.66,394,0.445,395,0.339,426,1.314,428,0.445,431,0.382,432,0.692,433,0.336,435,0.42,452,0.466,458,0.347,469,0.406,472,0.692,476,0.394,482,0.612,494,0.926,500,0.774,501,0.832,502,0.359,508,1.044,509,0.445,514,5.151,516,0.445,518,1.146,519,0.42,522,1.786,524,0.719,530,1.235,531,0.35,542,1.791,543,1.207,547,1.552,553,0.42,564,0.377,609,0.455,611,0.53,626,0.492,630,0.739,637,0.478,641,0.455,650,1.332,653,0.526,660,1.191,669,1.416,679,0.774,683,2.142,688,0.428,715,1.57,733,0.478,748,0.478,750,0.42,751,0.445,761,0.968,762,1.168,788,0.436,793,1.596,795,2.529,798,0.508,820,0.428,824,0.508,835,0.692,838,1.401,856,0.394,888,1.821,889,1.273,899,1.169,906,1.044,930,0.372,941,1.643,957,0.42,993,1.831,999,0.478,1005,0.478,1008,0.832,1037,0.466,1087,2.4,1103,0.42,1106,1.438,1107,0.719,1114,1.463,1129,0.478,1130,0.868,1147,1.371,1216,0.42,1234,0.729,1274,0.548,1278,0.75,1295,0.368,1308,2.646,1312,0.406,1315,0.508,1324,2.118,1331,1.166,1332,0.575,1335,2.301,1336,0.816,1337,1.495,1355,0.575,1356,1.166,1357,0.612,1358,1.495,1359,0.436,1362,0.548,1378,0.575,1398,0.478,1414,0.612,1473,3.058,1492,0.455,1517,0.912,1536,0.42,1600,3.081,1794,0.575,1843,0.938,1877,0.526,1961,2.003,2110,0.508,2140,0.436,2265,0.478,2294,0.548,2297,0.526,2314,0.967,2334,0.548,2376,0.575,2381,0.612,2668,0.478,2688,0.526,2787,2.366,2795,1.166,2817,2.003,2902,0.478,2913,0.548,3063,1.166,3139,1.57,3155,0.612,3233,2.118,3289,1.57,3306,0.612,3344,1.57,3345,0.667,3346,0.667,3347,0.667,3348,0.667,3349,0.667,3350,0.526,3351,0.667,3352,3.209,3353,1.67,3354,0.667,3355,0.575,3356,2.785,3357,0.612,3358,0.667,3359,0.667,3360,0.667,3361,2.553,3362,1.821,3363,0.667,3364,0.667,3365,0.667,3366,1.272,3367,0.612,3368,0.667,3369,0.667,3370,0.575,3371,1.272,3372,0.667,3373,0.667,3374,0.667,3375,0.667,3376,0.612,3377,1.272,3378,1.821,3379,1.821,3380,0.667,3381,0.667,3382,0.667,3383,0.667,3384,2.324,3385,1.821,3386,1.821,3387,1.821,3388,2.003,3389,1.821,3390,2.324,3391,1.821,3392,1.821,3393,1.272,3394,0.667,3395,0.667,3396,0.667,3397,2.324,3398,3.209,3399,0.612,3400,2.324,3401,2.324,3402,0.667,3403,0.667,3404,0.667,3405,0.667,3406,0.667,3407,0.667,3408,0.667,3409,0.667,3410,0.667,3411,0.667,3412,0.667,3413,0.612,3414,1.272,3415,1.272,3416,1.272,3417,1.272,3418,1.272,3419,1.272,3420,0.667,3421,1.272,3422,1.272,3423,0.667,3424,0.667,3425,0.667,3426,0.667,3427,2.765,3428,3.601,3429,5.442,3430,1.272,3431,0.667,3432,0.667,3433,1.821,3434,1.272,3435,1.272,3436,0.667,3437,0.667,3438,0.667,3439,0.667,3440,0.667,3441,0.667,3442,1.821,3443,1.821,3444,3.601,3445,0.667,3446,0.667,3447,0.667,3448,0.667,3449,0.667,3450,0.667,3451,1.272,3452,1.272,3453,0.667,3454,0.667,3455,0.667,3456,0.667,3457,0.667,3458,1.272,3459,0.667,3460,0.667,3461,1.272,3462,1.272,3463,1.272,3464,1.821,3465,0.667,3466,0.667,3467,0.667,3468,0.667,3469,0.667,3470,0.667,3471,1.272,3472,0.667,3473,0.667,3474,0.667,3475,0.667,3476,0.667,3477,0.667,3478,0.667,3479,0.667,3480,0.667,3481,1.821,3482,0.667,3483,0.667,3484,0.667,3485,0.667,3486,0.667,3487,1.044,3488,0.667,3489,0.667,3490,1.272,3491,0.667,3492,0.667,3493,1.272,3494,0.667,3495,1.272,3496,2.785,3497,3.601,3498,1.272,3499,1.821,3500,1.272,3501,1.166,3502,0.667,3503,0.667,3504,0.667,3505,0.612,3506,1.272,3507,0.667,3508,1.272,3509,0.667,3510,0.667,3511,0.667,3512,0.667,3513,0.667,3514,0.667,3515,1.821,3516,0.667,3517,0.667,3518,0.667,3519,0.667,3520,0.667,3521,1.821,3522,1.272,3523,1.272,3524,1.272,3525,1.272,3526,0.667,3527,0.667,3528,1.272,3529,1.272,3530,1.272,3531,0.548,3532,0.667,3533,0.667,3534,0.667,3535,0.667,3536,0.667,3537,0.667,3538,0.667,3539,0.667,3540,1.272,3541,0.667,3542,1.821,3543,0.667,3544,0.667,3545,0.667,3546,0.667,3547,1.272,3548,0.667,3549,0.667,3550,2.324,3551,2.785,3552,2.785,3553,2.785,3554,0.667,3555,0.667,3556,0.667,3557,0.612,3558,1.272,3559,0.667,3560,0.667,3561,0.667,3562,0.667,3563,0.667,3564,0.667,3565,0.667,3566,1.272]],["component//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html",[253,0.408]],["title//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Prerequisites",[255,36.808]],["name//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Prerequisites",[]],["text//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Prerequisites",[]],["component//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Prerequisites",[]],["title//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Setting-up-Vantage-and-loading-data",[5,12.104,8,13.064,190,19.139,214,19.925,543,22.978]],["name//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Setting-up-Vantage-and-loading-data",[]],["text//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Setting-up-Vantage-and-loading-data",[]],["component//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Setting-up-Vantage-and-loading-data",[]],["title//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Setup-the-notebook-environment",[191,27.498,383,29.816,1312,34.936]],["name//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Setup-the-notebook-environment",[]],["text//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Setup-the-notebook-environment",[]],["component//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Setup-the-notebook-environment",[]],["title//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Setup-a-Vantage-instance",[5,15.706,119,24.456,383,29.816]],["name//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Setup-a-Vantage-instance",[]],["text//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Setup-a-Vantage-instance",[]],["component//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Setup-a-Vantage-instance",[]],["title//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-GCS-bucket",[0,18.102,508,47.109,522,36.816]],["name//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-GCS-bucket",[]],["text//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-GCS-bucket",[]],["component//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-GCS-bucket",[]],["title//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Give-permissions-to-Vertex-AI-to-access-your-bucket",[85,16.657,122,23.773,522,25.454,537,28.45,1335,28.45,2787,29.261]],["name//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Give-permissions-to-Vertex-AI-to-access-your-bucket",[]],["text//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Give-permissions-to-Vertex-AI-to-access-your-bucket",[]],["component//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Give-permissions-to-Vertex-AI-to-access-your-bucket",[]],["title//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Download-sample-data",[8,16.952,128,29.18,477,25.854]],["name//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Download-sample-data",[]],["text//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Download-sample-data",[]],["component//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Download-sample-data",[]],["title//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Load-training-data-to-Vantage",[5,13.672,8,14.756,214,22.505,1473,29.478]],["name//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Load-training-data-to-Vantage",[]],["text//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Load-training-data-to-Vantage",[]],["component//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Load-training-data-to-Vantage",[]],["title//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#The-first-pipeline-to-train-and-deploy-a-model-using-Kubeflow",[4,11.06,168,15.691,514,22.268,547,17.401,838,18.103,1473,21.229,3361,32.984]],["name//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#The-first-pipeline-to-train-and-deploy-a-model-using-Kubeflow",[]],["text//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#The-first-pipeline-to-train-and-deploy-a-model-using-Kubeflow",[]],["component//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#The-first-pipeline-to-train-and-deploy-a-model-using-Kubeflow",[]],["title//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-the-component-that-reads-data-from-Vantage",[0,13.951,5,12.104,8,13.064,84,29.53,611,18.431]],["name//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-the-component-that-reads-data-from-Vantage",[]],["text//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-the-component-that-reads-data-from-Vantage",[]],["component//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-the-component-that-reads-data-from-Vantage",[]],["title//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-the-train-model-component",[0,15.758,84,33.355,168,21.788,1473,29.478]],["name//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-the-train-model-component",[]],["text//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-the-train-model-component",[]],["component//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-the-train-model-component",[]],["title//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-component-to-deploy-model",[0,15.758,84,33.355,168,21.788,838,25.138]],["name//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-component-to-deploy-model",[]],["text//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-component-to-deploy-model",[]],["component//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-component-to-deploy-model",[]],["title//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-function-for-executing-the-pipeline",[0,15.758,351,25.401,514,30.921,531,26.245]],["name//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-function-for-executing-the-pipeline",[]],["text//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-function-for-executing-the-pipeline",[]],["component//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-function-for-executing-the-pipeline",[]],["title//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Inspect-model-metrics",[168,25.03,642,49.463,3233,43.664]],["name//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Inspect-model-metrics",[]],["text//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Inspect-model-metrics",[]],["component//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Inspect-model-metrics",[]],["title//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Test-the-deployed-model",[123,25.03,168,25.03,838,28.878]],["name//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Test-the-deployed-model",[]],["text//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Test-the-deployed-model",[]],["component//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Test-the-deployed-model",[]],["title//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-a-new-pipeline-to-score-new-data",[0,12.515,8,11.72,267,27.391,514,24.559,1600,26.492]],["name//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-a-new-pipeline-to-score-new-data",[]],["text//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-a-new-pipeline-to-score-new-data",[]],["component//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-a-new-pipeline-to-score-new-data",[]],["title//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Cleanup",[2302,62.163]],["name//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Cleanup",[]],["text//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Cleanup",[]],["component//jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Cleanup",[]],["title//jupyter-demos/index.html",[271,37.537,1311,31.623,1312,34.936]],["name//jupyter-demos/index.html",[472,1.735]],["text//jupyter-demos/index.html",[5,3.119,9,3.119,24,5.572,30,2.242,34,1.096,39,1.304,91,2.688,100,3.986,106,1.811,107,3.655,109,4.583,123,3.194,127,1.064,168,1.13,197,2.646,208,2.488,228,4.142,239,1.553,251,1.072,252,1.064,271,2.843,276,1.73,328,1.662,330,4.087,396,2.366,407,6.312,476,1.529,507,4.142,518,5.619,519,4.613,530,5.918,542,4.087,629,2.233,727,2.337,835,1.41,920,2.042,1096,1.769,1141,3.038,1238,2.042,1240,3.038,1281,2.233,1384,3.206,1415,3.206,2450,2.233,2559,2.233,3205,2.233,3376,2.376,3567,8.424,3568,6.575,3569,2.592,3570,2.592,3571,5.616,3572,5.147,3573,2.592,3574,2.592,3575,7.928,3576,2.592,3577,4.348,3578,2.592,3579,2.592,3580,2.592,3581,2.592,3582,7.325,3583,2.592,3584,2.592,3585,2.592,3586,7.325,3587,2.592,3588,2.376,3589,2.592,3590,2.592,3591,2.592,3592,2.592,3593,2.592,3594,2.592,3595,2.592,3596,4.348]],["component//jupyter-demos/index.html",[253,0.408]],["title//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html",[167,21.334,168,17.305,547,19.191,838,19.966,1106,24.559,3597,30.188]],["name//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html",[9,0.149,109,0.297,168,0.238,542,0.304,838,0.274,1106,0.338,3350,0.43,3597,0.415]],["text//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html",[0,1.59,4,2.147,5,1.803,8,1.662,9,1.193,10,0.604,15,0.6,16,0.591,19,0.774,21,1.322,30,2.248,32,1.181,34,0.609,39,0.724,48,0.638,64,1.181,76,0.982,82,2.38,85,0.604,86,1.609,87,2.032,101,1.589,104,0.677,105,0.739,107,0.481,118,2.92,119,1.108,122,0.862,123,1.551,124,0.703,125,0.613,126,0.703,128,4.037,129,1.006,131,2.344,134,3.078,139,0.724,141,0.982,150,2.765,161,3.411,167,1.398,168,3.338,176,0.638,178,1.638,179,0.876,181,1.398,183,3.146,190,1.125,191,0.689,198,1.061,208,3.834,213,1.451,219,2.248,224,0.849,230,2.099,232,0.862,235,0.906,243,0.638,244,0.501,245,0.632,246,0.632,247,0.638,248,1.108,249,0.638,250,0.638,251,1.471,252,0.591,258,3.026,262,1.398,263,2.051,267,2.743,268,0.765,271,5.517,294,2.326,295,3.523,299,3.867,307,0.906,329,4.166,348,1.322,350,0.906,351,0.732,357,0.747,362,1.295,369,0.756,375,1.234,380,3.57,383,0.747,395,1.322,399,4.29,430,2.486,431,0.825,433,1.308,438,0.849,465,1.134,467,1.181,473,1.47,474,0.849,517,0.739,532,2.375,542,0.803,543,0.747,546,1.491,570,1.96,573,0.837,592,0.825,650,0.825,694,1.134,711,0.941,719,2.92,734,1.638,742,1.701,748,1.032,770,1.917,788,0.941,795,1.134,799,1.181,838,1.79,856,2.975,863,1.978,877,2.241,897,1.24,957,0.906,958,2.465,993,1.134,1105,0.876,1106,5.075,1163,1.061,1175,1.134,1203,0.982,1249,0.982,1251,2.049,1295,0.793,1311,1.96,1312,4.01,1348,1.134,1382,1.061,1415,1.917,1473,3.622,1482,1.134,1517,2.55,1536,0.906,1587,0.876,1600,2.375,1601,5.302,1649,1.095,1743,1.134,1841,1.134,2144,1.181,2156,3.611,2428,1.134,2653,1.978,2668,1.864,2820,2.049,2903,1.134,3057,1.736,3107,1.917,3233,3.316,3350,4.838,3355,3.066,3388,1.24,3531,1.181,3597,5.824,3598,1.319,3599,1.319,3600,1.319,3601,1.319,3602,1.319,3603,1.24,3604,2.384,3605,1.319,3606,1.319,3607,2.384,3608,3.261,3609,3.996,3610,1.319,3611,1.319,3612,1.24,3613,1.319,3614,1.319,3615,3.261,3616,1.319,3617,1.319,3618,1.319,3619,1.24,3620,1.319,3621,2.384,3622,1.319,3623,1.319,3624,5.16,3625,1.319,3626,1.319,3627,1.319,3628,1.319,3629,1.319,3630,1.319,3631,1.319,3632,3.996,3633,1.319,3634,1.319,3635,1.319,3636,3.996,3637,1.319,3638,2.384,3639,2.384,3640,3.261,3641,1.439,3642,1.439,3643,1.319,3644,1.319,3645,1.439,3646,1.319,3647,1.319,3648,1.319,3649,1.319,3650,1.319,3651,1.319,3652,1.24,3653,1.319,3654,1.319,3655,1.319,3656,1.319]],["component//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html",[253,0.408]],["title//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_overview",[254,35.084]],["name//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_overview",[]],["text//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_overview",[]],["component//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_overview",[]],["title//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_prerequisites",[255,36.808]],["name//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_prerequisites",[]],["text//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_prerequisites",[]],["component//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_prerequisites",[]],["title//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_understand_where_we_are_in_the_methodology",[1020,53.135,3657,58.11]],["name//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_understand_where_we_are_in_the_methodology",[]],["text//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_understand_where_we_are_in_the_methodology",[]],["component//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_understand_where_we_are_in_the_methodology",[]],["title//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_a_new_project_or_use_an_existing_one",[0,12.515,4,12.198,125,16.908,263,18.666,267,17.728,342,22.145]],["name//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_a_new_project_or_use_an_existing_one",[]],["text//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_a_new_project_or_use_an_existing_one",[]],["component//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_a_new_project_or_use_an_existing_one",[]],["title//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_a_personal_connection",[0,18.102,30,22.919,1415,42.323]],["name//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_a_personal_connection",[]],["text//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_a_personal_connection",[]],["component//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_a_personal_connection",[]],["title//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_validate_permissions_in_sql_database_for_val_and_byom",[122,23.773,150,16.657,176,17.584,382,23.413,1106,24.559,1482,31.27]],["name//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_validate_permissions_in_sql_database_for_val_and_byom",[]],["text//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_validate_permissions_in_sql_database_for_val_and_byom",[]],["component//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_validate_permissions_in_sql_database_for_val_and_byom",[]],["title//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_add_dataset_to_identify_vantage_tables_for_byom_evaluation_and_scoring",[5,9.006,213,13.42,329,17.909,362,16.391,1106,20.368,1600,21.972,1601,21.972,1966,24.268]],["name//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_add_dataset_to_identify_vantage_tables_for_byom_evaluation_and_scoring",[]],["text//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_add_dataset_to_identify_vantage_tables_for_byom_evaluation_and_scoring",[]],["component//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_add_dataset_to_identify_vantage_tables_for_byom_evaluation_and_scoring",[]],["title//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_training_dataset",[0,18.102,329,31.232,1473,33.864]],["name//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_training_dataset",[]],["text//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_training_dataset",[]],["component//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_training_dataset",[]],["title//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_evaluation_dataset_1",[0,15.758,329,27.187,375,23.716,1601,33.355]],["name//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_evaluation_dataset_1",[]],["text//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_evaluation_dataset_1",[]],["component//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_evaluation_dataset_1",[]],["title//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_evaluation_dataset_2",[0,15.758,329,27.187,570,27.527,1601,33.355]],["name//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_evaluation_dataset_2",[]],["text//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_evaluation_dataset_2",[]],["component//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_evaluation_dataset_2",[]],["title//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_model_lifecycle_for_a_new_byom",[168,21.788,267,22.32,1106,30.921,2820,39.371]],["name//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_model_lifecycle_for_a_new_byom",[]],["text//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_model_lifecycle_for_a_new_byom",[]],["component//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_model_lifecycle_for_a_new_byom",[]],["title//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_summary",[492,40.696]],["name//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_summary",[]],["text//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_summary",[]],["component//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_summary",[]],["title//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_further_reading",[244,23.463,611,28.096]],["name//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_further_reading",[]],["text//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_further_reading",[]],["component//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_further_reading",[]],["title//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html",[167,21.334,168,17.305,299,24.991,547,19.191,838,19.966,3597,30.188]],["name//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html",[9,0.149,109,0.297,168,0.238,299,0.344,542,0.304,838,0.274,3350,0.43,3597,0.415]],["text//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html",[0,1.327,4,1.971,5,1.658,8,1.243,9,0.982,10,0.471,15,0.467,16,0.461,19,1.113,21,1.053,30,2.264,32,0.921,34,0.474,39,0.564,48,0.497,64,0.921,76,1.969,82,2.01,85,0.471,86,1.282,87,1.674,101,1.604,104,0.528,105,1.064,107,0.375,118,2.368,119,0.882,122,0.672,123,1.566,124,0.548,125,0.478,126,0.548,127,0.461,128,3.26,131,2.555,134,2.825,139,1.042,141,0.765,150,2.692,156,1.962,161,3.131,168,4.028,176,0.497,178,1.304,179,0.683,181,0.603,183,3.033,189,0.576,190,0.896,191,0.537,198,2.647,207,1.031,208,4.242,213,1.176,219,1.898,224,0.662,230,1.702,232,1.241,236,0.528,243,0.497,244,0.39,245,0.493,246,0.493,247,0.497,248,0.882,249,0.497,250,0.497,251,0.464,252,0.461,258,2.555,262,0.603,263,1.979,267,2.707,268,1.533,271,5.22,286,0.618,292,0.564,294,1.354,295,2.94,296,1.756,299,4.241,307,0.706,314,0.719,329,3.97,334,2.618,348,2.416,350,0.706,351,1.825,357,0.583,362,1.031,369,0.589,375,0.983,380,2.763,383,0.583,395,1.053,399,3.659,430,2.016,431,0.643,433,1.042,438,0.662,454,0.749,465,1.632,467,0.921,473,0.634,503,0.618,531,1.515,532,1.926,542,0.626,543,0.583,546,1.187,570,1.589,573,0.652,592,0.643,611,0.863,650,0.643,667,0.719,669,2.416,694,0.884,716,0.884,719,2.368,726,0.827,734,1.304,737,0.884,742,1.354,748,2.068,770,0.827,788,1.887,799,0.921,838,2.635,856,3.973,863,1.575,877,1.785,899,0.564,958,2.03,993,0.884,1054,1.7,1091,2.486,1105,1.261,1106,3.509,1163,0.827,1175,0.884,1203,0.765,1249,0.765,1251,1.632,1295,0.618,1311,1.589,1312,4.591,1318,1.127,1348,0.884,1382,0.827,1387,2.647,1415,1.527,1473,3.576,1482,0.884,1517,1.485,1536,0.706,1587,0.683,1600,3.173,1601,4.871,1649,2.195,1743,1.632,1841,0.884,2103,0.884,2129,1.85,2144,0.921,2156,3.048,2428,0.884,2653,3.201,2664,1.785,2668,2.574,2820,1.632,2903,0.884,3057,1.383,3107,2.647,3168,1.028,3233,3.201,3350,2.829,3353,1.028,3355,1.785,3388,0.967,3427,2.486,3531,0.921,3597,6.072,3598,1.028,3599,1.028,3600,1.028,3601,1.028,3602,1.028,3603,0.967,3604,1.028,3605,1.028,3606,1.028,3607,1.898,3608,3.291,3609,1.898,3610,1.028,3611,1.028,3612,0.967,3613,1.028,3614,1.028,3615,2.645,3616,1.028,3617,1.028,3618,1.028,3619,0.967,3620,1.028,3621,1.898,3622,1.028,3623,1.028,3624,4.357,3625,1.028,3626,1.028,3627,1.028,3628,1.028,3629,1.028,3630,1.028,3631,1.028,3632,3.291,3633,1.028,3634,1.028,3635,1.028,3636,3.291,3637,1.028,3638,1.028,3639,1.028,3640,1.028,3643,1.028,3644,1.028,3646,1.028,3648,1.028,3649,2.645,3650,1.028,3651,1.028,3652,0.967,3653,1.028,3654,1.028,3655,1.028,3656,1.028,3657,0.967,3658,1.122,3659,1.122,3660,1.122,3661,1.122,3662,2.885,3663,2.885,3664,2.885,3665,1.122,3666,1.122,3667,1.122,3668,1.122,3669,2.071,3670,1.122,3671,1.122,3672,1.122,3673,1.122,3674,2.071,3675,1.122,3676,1.122,3677,1.122,3678,1.122,3679,1.122,3680,1.122,3681,1.122,3682,1.122,3683,2.071,3684,1.122,3685,1.122,3686,1.122,3687,1.122,3688,1.122,3689,1.122,3690,1.122,3691,1.122,3692,1.122]],["component//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html",[253,0.408]],["title//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_overview",[254,35.084]],["name//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_overview",[]],["text//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_overview",[]],["component//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_overview",[]],["title//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_prerequisites",[255,36.808]],["name//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_prerequisites",[]],["text//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_prerequisites",[]],["component//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_prerequisites",[]],["title//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_understand_where_we_are_in_the_methodology",[1020,53.135,3657,58.11]],["name//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_understand_where_we_are_in_the_methodology",[]],["text//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_understand_where_we_are_in_the_methodology",[]],["component//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_understand_where_we_are_in_the_methodology",[]],["title//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_a_new_project_or_use_an_existing_one",[0,12.515,4,12.198,125,16.908,263,18.666,267,17.728,342,22.145]],["name//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_a_new_project_or_use_an_existing_one",[]],["text//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_a_new_project_or_use_an_existing_one",[]],["component//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_a_new_project_or_use_an_existing_one",[]],["title//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_a_personal_connection",[0,18.102,30,22.919,1415,42.323]],["name//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_a_personal_connection",[]],["text//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_a_personal_connection",[]],["component//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_a_personal_connection",[]],["title//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_validate_permissions_in_sql_database_for_val_and_byom",[122,23.773,150,16.657,176,17.584,382,23.413,1106,24.559,1482,31.27]],["name//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_validate_permissions_in_sql_database_for_val_and_byom",[]],["text//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_validate_permissions_in_sql_database_for_val_and_byom",[]],["component//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_validate_permissions_in_sql_database_for_val_and_byom",[]],["title//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_add_dataset_to_identify_vantage_tables_for_byom_evaluation_and_scoring",[5,9.006,213,13.42,329,17.909,362,16.391,1106,20.368,1600,21.972,1601,21.972,1966,24.268]],["name//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_add_dataset_to_identify_vantage_tables_for_byom_evaluation_and_scoring",[]],["text//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_add_dataset_to_identify_vantage_tables_for_byom_evaluation_and_scoring",[]],["component//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_add_dataset_to_identify_vantage_tables_for_byom_evaluation_and_scoring",[]],["title//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_training_dataset",[0,18.102,329,31.232,1473,33.864]],["name//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_training_dataset",[]],["text//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_training_dataset",[]],["component//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_training_dataset",[]],["title//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_evaluation_dataset_1",[0,15.758,329,27.187,375,23.716,1601,33.355]],["name//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_evaluation_dataset_1",[]],["text//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_evaluation_dataset_1",[]],["component//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_evaluation_dataset_1",[]],["title//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_evaluation_dataset_2",[0,15.758,329,27.187,570,27.527,1601,33.355]],["name//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_evaluation_dataset_2",[]],["text//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_evaluation_dataset_2",[]],["component//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_evaluation_dataset_2",[]],["title//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_prepare_code_templates",[745,38.318,856,33.864,3107,42.323]],["name//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_prepare_code_templates",[]],["text//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_prepare_code_templates",[]],["component//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_prepare_code_templates",[]],["title//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_model_lifecycle_for_a_new_git",[168,21.788,267,22.32,299,31.465,2820,39.371]],["name//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_model_lifecycle_for_a_new_git",[]],["text//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_model_lifecycle_for_a_new_git",[]],["component//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_model_lifecycle_for_a_new_git",[]],["title//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_summary",[492,40.696]],["name//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_summary",[]],["text//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_summary",[]],["component//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_summary",[]],["title//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_further_reading",[244,23.463,611,28.096]],["name//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_further_reading",[]],["text//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_further_reading",[]],["component//modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_further_reading",[]],["title//modelops/using-feast-feature-store-with-teradata-vantage.html",[4,17.643,9,15.706,3693,41.15]],["name//modelops/using-feast-feature-store-with-teradata-vantage.html",[4,0.22,5,0.196,9,0.196,127,0.294,230,0.422,3693,0.512]],["text//modelops/using-feast-feature-store-with-teradata-vantage.html",[0,0.82,4,2.638,5,0.712,8,1.55,9,2.173,10,0.418,15,0.772,16,0.409,17,0.734,21,0.506,25,1.11,26,0.914,29,0.985,30,0.74,34,1.378,35,1.913,36,0.857,37,0.734,41,1.034,42,0.985,48,0.441,50,0.713,52,0.555,53,4.643,68,0.616,69,0.713,75,1.382,82,1.624,84,0.664,85,0.778,86,0.616,87,0.864,88,0.555,90,0.932,91,0.955,92,1.701,98,0.734,101,1.948,103,0.985,104,0.468,107,1.09,110,0.695,111,0.596,119,0.79,120,1.533,121,1.336,123,1.421,124,0.486,125,0.424,126,0.486,127,3.581,132,1.212,133,0.606,134,0.745,135,0.563,145,0.695,149,0.541,150,2.203,153,0.985,156,1.519,161,0.905,167,1.398,168,1.134,174,0.857,176,0.821,180,0.548,181,0.996,183,0.835,184,0.713,189,0.511,190,0.802,192,0.616,203,0.555,208,4.49,213,1.06,214,0.448,216,0.535,221,0.734,224,0.587,226,1.11,230,5.661,231,0.679,236,2.27,243,0.441,244,0.346,245,0.437,246,0.815,247,0.441,248,0.79,249,0.441,250,0.441,251,0.412,252,0.409,256,0.778,258,0.535,262,0.535,263,1.223,265,0.932,267,0.444,271,1.212,272,1.41,273,4.283,279,1.265,292,3.008,293,2.049,296,0.606,298,0.57,303,1.237,304,1.128,305,0.713,315,1.295,318,0.616,322,1.237,323,0.563,329,1.415,334,0.548,340,0.695,341,2.194,348,0.942,350,1.167,351,0.942,357,1.692,360,0.651,361,0.57,362,0.495,368,0.952,369,1.366,370,0.784,383,0.517,399,3.047,400,1.265,423,0.757,431,0.57,433,0.932,434,1.295,435,1.167,438,1.534,442,1.265,451,2.041,454,0.664,460,0.616,464,1.521,471,1.46,473,0.563,476,0.587,499,0.563,502,0.535,503,0.548,515,0.541,517,1.336,519,1.167,524,2.172,528,0.734,531,0.973,546,1.491,547,0.896,563,1.265,580,0.664,591,0.651,592,1.062,594,0.664,611,0.415,630,1.077,632,0.695,637,0.713,643,1.521,658,0.627,660,0.651,673,1.265,679,0.606,692,0.638,727,0.996,734,0.627,743,0.501,748,0.713,761,0.985,793,1.062,802,0.784,822,1.329,825,1.41,829,0.664,835,0.541,836,1.329,841,0.757,859,1.597,861,1.46,862,1.46,885,0.817,889,0.695,899,1.309,902,1.11,920,0.784,930,2.143,958,1.048,999,0.713,1001,0.616,1005,0.713,1007,0.912,1008,0.651,1043,0.757,1056,0.857,1059,2.674,1093,0.912,1099,0.784,1105,2.338,1107,0.563,1170,1.521,1234,0.57,1242,0.679,1295,0.548,1296,0.912,1321,0.912,1359,0.651,1382,1.918,1387,1.366,1422,4.151,1461,0.857,1473,1.534,1508,0.784,1587,1.128,1664,1.265,1683,2.402,1787,0.912,1805,0.912,1808,0.713,1844,0.734,1966,0.734,2098,1.699,2129,1.189,2226,1.41,2262,1.366,2264,0.817,2318,1.699,2323,0.695,2347,0.784,2359,0.784,2379,3.521,2424,1.41,2429,0.817,2535,1.521,2548,1.46,2556,0.912,2561,1.521,2596,0.817,2597,0.912,2623,1.265,2640,1.521,2770,0.857,2897,0.679,2915,0.734,2929,0.912,3057,0.664,3107,0.734,3169,0.912,3205,0.857,3221,1.521,3248,0.912,3284,0.857,3557,0.912,3693,6.673,3694,0.995,3695,0.995,3696,0.995,3697,0.995,3698,0.995,3699,0.995,3700,0.995,3701,0.995,3702,3.803,3703,0.995,3704,1.853,3705,1.853,3706,2.601,3707,0.912,3708,0.995,3709,2.601,3710,0.912,3711,0.995,3712,0.912,3713,0.995,3714,0.995,3715,0.995,3716,0.912,3717,0.995,3718,1.699,3719,1.699,3720,1.699,3721,0.995,3722,0.995,3723,1.699,3724,0.912,3725,0.857,3726,0.995,3727,0.995,3728,0.995,3729,0.995,3730,0.995,3731,0.995,3732,0.995,3733,0.912,3734,0.995,3735,0.995,3736,0.995,3737,0.995,3738,0.995,3739,0.995,3740,0.995,3741,1.699,3742,0.995,3743,1.699,3744,0.995,3745,0.995,3746,0.995,3747,0.995,3748,0.995,3749,0.995,3750,2.601,3751,0.912,3752,0.912,3753,0.995,3754,0.912,3755,0.995,3756,6.297,3757,0.995,3758,1.699,3759,0.857,3760,1.853,3761,1.853,3762,1.853,3763,0.912,3764,0.995,3765,0.995,3766,0.995,3767,0.995,3768,1.853,3769,1.853,3770,0.912,3771,0.857,3772,0.995,3773,0.995,3774,0.995,3775,0.995,3776,2.601,3777,0.995,3778,0.995,3779,0.995,3780,0.995,3781,0.912,3782,1.853,3783,1.853,3784,1.853,3785,0.995,3786,0.995,3787,0.995,3788,0.995,3789,0.995,3790,0.995,3791,0.995,3792,0.995,3793,0.995,3794,0.995,3795,0.912,3796,0.912,3797,0.912,3798,0.995,3799,0.995,3800,0.995,3801,0.995,3802,0.995,3803,0.995,3804,1.853,3805,0.995,3806,0.995,3807,0.995,3808,3.841,3809,0.995,3810,0.995,3811,0.995,3812,0.995,3813,0.995,3814,0.995,3815,0.995,3816,0.995,3817,0.995,3818,0.995,3819,0.995,3820,0.995,3821,0.995,3822,0.995,3823,0.995,3824,0.995,3825,0.995,3826,0.912,3827,0.995]],["component//modelops/using-feast-feature-store-with-teradata-vantage.html",[253,0.408]],["title//modelops/using-feast-feature-store-with-teradata-vantage.html#_introduction",[2301,62.163]],["name//modelops/using-feast-feature-store-with-teradata-vantage.html#_introduction",[]],["text//modelops/using-feast-feature-store-with-teradata-vantage.html#_introduction",[]],["component//modelops/using-feast-feature-store-with-teradata-vantage.html#_introduction",[]],["title//modelops/using-feast-feature-store-with-teradata-vantage.html#_prerequisites",[255,36.808]],["name//modelops/using-feast-feature-store-with-teradata-vantage.html#_prerequisites",[]],["text//modelops/using-feast-feature-store-with-teradata-vantage.html#_prerequisites",[]],["component//modelops/using-feast-feature-store-with-teradata-vantage.html#_prerequisites",[]],["title//modelops/using-feast-feature-store-with-teradata-vantage.html#_overview",[254,35.084]],["name//modelops/using-feast-feature-store-with-teradata-vantage.html#_overview",[]],["text//modelops/using-feast-feature-store-with-teradata-vantage.html#_overview",[]],["component//modelops/using-feast-feature-store-with-teradata-vantage.html#_overview",[]],["title//modelops/using-feast-feature-store-with-teradata-vantage.html#_getting_started",[86,41.731,87,31.435]],["name//modelops/using-feast-feature-store-with-teradata-vantage.html#_getting_started",[]],["text//modelops/using-feast-feature-store-with-teradata-vantage.html#_getting_started",[]],["component//modelops/using-feast-feature-store-with-teradata-vantage.html#_getting_started",[]],["title//modelops/using-feast-feature-store-with-teradata-vantage.html#_offline_store_config",[127,23.571,2309,36.816,3702,45.229]],["name//modelops/using-feast-feature-store-with-teradata-vantage.html#_offline_store_config",[]],["text//modelops/using-feast-feature-store-with-teradata-vantage.html#_offline_store_config",[]],["component//modelops/using-feast-feature-store-with-teradata-vantage.html#_offline_store_config",[]],["title//modelops/using-feast-feature-store-with-teradata-vantage.html#_repo_definition",[658,42.465,1382,49.721]],["name//modelops/using-feast-feature-store-with-teradata-vantage.html#_repo_definition",[]],["text//modelops/using-feast-feature-store-with-teradata-vantage.html#_repo_definition",[]],["component//modelops/using-feast-feature-store-with-teradata-vantage.html#_repo_definition",[]],["title//modelops/using-feast-feature-store-with-teradata-vantage.html#_offline_store_usage",[127,23.571,2121,39.171,3702,45.229]],["name//modelops/using-feast-feature-store-with-teradata-vantage.html#_offline_store_usage",[]],["text//modelops/using-feast-feature-store-with-teradata-vantage.html#_offline_store_usage",[]],["component//modelops/using-feast-feature-store-with-teradata-vantage.html#_offline_store_usage",[]],["title//modelops/using-feast-feature-store-with-teradata-vantage.html#_online_store",[53,49.721,127,27.692]],["name//modelops/using-feast-feature-store-with-teradata-vantage.html#_online_store",[]],["text//modelops/using-feast-feature-store-with-teradata-vantage.html#_online_store",[]],["component//modelops/using-feast-feature-store-with-teradata-vantage.html#_online_store",[]],["title//modelops/using-feast-feature-store-with-teradata-vantage.html#_online_store_config",[53,42.323,127,23.571,2309,36.816]],["name//modelops/using-feast-feature-store-with-teradata-vantage.html#_online_store_config",[]],["text//modelops/using-feast-feature-store-with-teradata-vantage.html#_online_store_config",[]],["component//modelops/using-feast-feature-store-with-teradata-vantage.html#_online_store_config",[]],["title//modelops/using-feast-feature-store-with-teradata-vantage.html#_online_store_usage",[53,42.323,127,23.571,2121,39.171]],["name//modelops/using-feast-feature-store-with-teradata-vantage.html#_online_store_usage",[]],["text//modelops/using-feast-feature-store-with-teradata-vantage.html#_online_store_usage",[]],["component//modelops/using-feast-feature-store-with-teradata-vantage.html#_online_store_usage",[]],["title//modelops/using-feast-feature-store-with-teradata-vantage.html#_how_to_set_sql_registry",[176,25.433,190,24.835,1422,42.323]],["name//modelops/using-feast-feature-store-with-teradata-vantage.html#_how_to_set_sql_registry",[]],["text//modelops/using-feast-feature-store-with-teradata-vantage.html#_how_to_set_sql_registry",[]],["component//modelops/using-feast-feature-store-with-teradata-vantage.html#_how_to_set_sql_registry",[]],["title//modelops/using-feast-feature-store-with-teradata-vantage.html#_further_reading",[244,23.463,611,28.096]],["name//modelops/using-feast-feature-store-with-teradata-vantage.html#_further_reading",[]],["text//modelops/using-feast-feature-store-with-teradata-vantage.html#_further_reading",[]],["component//modelops/using-feast-feature-store-with-teradata-vantage.html#_further_reading",[]],["title//mule-teradata-connector/examples-configuration.html",[4,10.116,9,9.006,41,18.366,199,12.385,592,18.866,1200,18.366,1645,21.524,1650,25.037]],["name//mule-teradata-connector/examples-configuration.html",[199,0.709,236,0.886]],["text//mule-teradata-connector/examples-configuration.html",[0,0.872,4,1.625,9,2.533,10,0.647,15,0.642,16,1.136,21,1.406,28,0.909,30,3.032,34,0.652,35,2.929,40,0.883,41,6.017,48,0.683,51,3.326,56,4.737,63,1.136,73,4.586,82,1.169,85,0.647,88,1.543,101,2.628,105,1.421,107,1.258,119,1.178,123,1.206,125,1.178,134,2.125,141,2.567,142,4.472,150,2.469,154,0.909,156,1.289,160,0.86,161,1.837,170,2.383,171,1.846,172,2.66,181,0.828,183,2.882,189,0.792,197,0.938,199,3.751,201,0.792,208,2.835,211,1.105,213,2.953,216,1.487,220,1.412,224,1.631,226,3.167,233,0.896,234,1.051,236,0.725,243,0.683,244,0.536,245,0.677,246,0.677,247,0.683,248,1.178,249,0.683,250,0.683,251,0.637,252,1.545,256,1.579,262,0.828,263,3.407,267,1.681,279,1.051,292,0.775,302,2.104,310,4.238,314,0.988,319,1.328,332,0.838,339,0.909,340,1.077,341,0.775,347,2.943,348,0.783,350,0.97,362,3.782,367,0.767,368,0.792,369,0.809,375,0.731,392,4.11,396,0.838,421,4.7,426,0.871,428,3.927,431,1.585,439,2.383,451,1.469,454,1.029,462,1.105,474,2.22,503,1.523,511,0.988,563,1.051,570,0.849,611,0.642,651,1.029,672,2.179,683,1.846,688,3.773,732,0.953,743,1.391,751,4.271,761,0.819,793,3.667,823,2.039,835,0.838,856,0.909,921,1.136,930,3.821,1027,1.172,1132,1.982,1145,0.97,1154,1.051,1169,2.27,1181,0.988,1200,4.96,1212,1.051,1260,2.179,1306,1.412,1315,1.172,1396,1.077,1494,4.866,1645,5.812,1647,1.214,1650,4.475,1652,1.214,1655,1.105,1676,3.774,2309,1.774,2314,1.172,2390,1.412,2426,1.264,2543,2.27,2586,1.264,2622,1.077,2646,2.383,2663,2.535,2668,1.105,2902,1.982,3065,2.383,3189,1.328,3213,3.449,3223,2.535,3314,1.412,3370,1.328,3759,1.328,3828,1.264,3829,1.264,3830,1.412,3831,2.765,3832,1.541,3833,4.589,3834,1.541,3835,2.765,3836,2.535,3837,1.982,3838,3.384,3839,1.541,3840,2.179,3841,2.765,3842,1.541,3843,1.541,3844,1.541,3845,1.214]],["component//mule-teradata-connector/examples-configuration.html",[253,0.408]],["title//mule-teradata-connector/examples-configuration.html#create-mule-project",[0,18.102,263,26.998,1645,37.537]],["name//mule-teradata-connector/examples-configuration.html#create-mule-project",[]],["text//mule-teradata-connector/examples-configuration.html#create-mule-project",[]],["component//mule-teradata-connector/examples-configuration.html#create-mule-project",[]],["title//mule-teradata-connector/examples-configuration.html#add-connector-to-project",[41,27.882,263,23.501,362,24.883,1645,32.675]],["name//mule-teradata-connector/examples-configuration.html#add-connector-to-project",[]],["text//mule-teradata-connector/examples-configuration.html#add-connector-to-project",[]],["component//mule-teradata-connector/examples-configuration.html#add-connector-to-project",[]],["title//mule-teradata-connector/examples-configuration.html#configure-input-source",[35,33.582,199,25.376]],["name//mule-teradata-connector/examples-configuration.html#configure-input-source",[]],["text//mule-teradata-connector/examples-configuration.html#configure-input-source",[]],["component//mule-teradata-connector/examples-configuration.html#configure-input-source",[]],["title//mule-teradata-connector/examples-configuration.html#add-connector-operation",[41,27.882,310,27.882,362,24.883,1676,29.478]],["name//mule-teradata-connector/examples-configuration.html#add-connector-operation",[]],["text//mule-teradata-connector/examples-configuration.html#add-connector-operation",[]],["component//mule-teradata-connector/examples-configuration.html#add-connector-operation",[]],["title//mule-teradata-connector/examples-configuration.html#_configure_a_global_element_for_the_connector",[41,27.882,73,35.82,199,18.802,1494,38.008]],["name//mule-teradata-connector/examples-configuration.html#_configure_a_global_element_for_the_connector",[]],["text//mule-teradata-connector/examples-configuration.html#_configure_a_global_element_for_the_connector",[]],["component//mule-teradata-connector/examples-configuration.html#_configure_a_global_element_for_the_connector",[]],["title//mule-teradata-connector/examples-configuration.html#view-app-log",[56,37.537,751,38.318,930,32.03]],["name//mule-teradata-connector/examples-configuration.html#view-app-log",[]],["text//mule-teradata-connector/examples-configuration.html#view-app-log",[]],["component//mule-teradata-connector/examples-configuration.html#view-app-log",[]],["title//mule-teradata-connector/examples-configuration.html#_see_also",[156,38.094]],["name//mule-teradata-connector/examples-configuration.html#_see_also",[]],["text//mule-teradata-connector/examples-configuration.html#_see_also",[]],["component//mule-teradata-connector/examples-configuration.html#_see_also",[]],["title//mule-teradata-connector/index.html",[9,13.672,41,27.882,592,28.641,1645,32.675]],["name//mule-teradata-connector/index.html",[472,1.735]],["text//mule-teradata-connector/index.html",[0,1.118,4,2.436,5,2.634,8,2.058,9,3.034,10,1.488,15,1.477,16,2.305,29,1.883,30,2.241,34,1.499,35,2.795,39,1.783,41,5.875,56,3.671,73,4.024,82,1.499,85,1.488,94,2.158,99,2.909,104,1.667,107,1.878,119,2.392,123,1.546,124,1.731,125,1.51,126,1.731,127,1.456,131,1.906,132,3.671,133,2.158,150,2.925,176,3.512,178,2.232,197,3.417,199,2.112,213,1.445,214,1.597,219,3.449,236,1.667,248,1.51,251,1.466,252,2.305,255,1.597,262,1.906,268,1.883,310,3.132,334,1.953,351,2.854,361,2.032,380,2.061,403,3.055,517,2.884,523,2.477,524,2.004,609,2.419,611,2.339,658,2.232,679,2.158,743,2.824,744,2.614,750,3.535,761,1.883,764,2.614,835,3.054,1082,2.318,1103,2.232,1200,4.82,1293,3.922,1313,3.055,1494,2.697,1645,5.649,1647,2.793,1650,6.989,1652,2.793,1676,3.312,2139,2.909,2622,2.477,2644,2.541,2915,2.614,2992,2.697,3107,2.614,3487,2.909,3828,2.909,3829,2.909,3837,2.541,3838,2.614,3845,2.793,3846,3.545,3847,3.249,3848,3.055,3849,3.055,3850,3.249,3851,3.249,3852,3.249,3853,3.249]],["component//mule-teradata-connector/index.html",[253,0.408]],["title//mule-teradata-connector/index.html#_before_you_begin",[361,38.654,790,49.721]],["name//mule-teradata-connector/index.html#_before_you_begin",[]],["text//mule-teradata-connector/index.html#_before_you_begin",[]],["component//mule-teradata-connector/index.html#_before_you_begin",[]],["title//mule-teradata-connector/index.html#_common_use_cases_for_the_connector",[4,15.358,41,27.882,182,38.008,258,26.861]],["name//mule-teradata-connector/index.html#_common_use_cases_for_the_connector",[]],["text//mule-teradata-connector/index.html#_common_use_cases_for_the_connector",[]],["component//mule-teradata-connector/index.html#_common_use_cases_for_the_connector",[]],["title//mule-teradata-connector/index.html#_examples",[236,38.436]],["name//mule-teradata-connector/index.html#_examples",[]],["text//mule-teradata-connector/index.html#_examples",[]],["component//mule-teradata-connector/index.html#_examples",[]],["title//mule-teradata-connector/index.html#_see_also",[156,38.094]],["name//mule-teradata-connector/index.html#_see_also",[]],["text//mule-teradata-connector/index.html#_see_also",[]],["component//mule-teradata-connector/index.html#_see_also",[]],["title//mule-teradata-connector/reference.html",[9,12.104,41,24.684,592,25.357,743,22.255,1645,28.928]],["name//mule-teradata-connector/reference.html",[743,1.605]],["text//mule-teradata-connector/reference.html",[0,0.189,4,2.27,5,0.164,8,0.752,9,0.362,10,0.087,15,0.169,16,0.472,22,0.922,23,0.128,29,0.611,30,2.299,34,0.254,35,0.484,40,0.344,41,0.831,42,0.319,44,0.178,52,0.115,56,0.135,66,1.174,67,0.152,68,0.251,73,0.148,74,0.128,75,1.353,81,0.309,82,0.254,84,0.526,85,0.408,86,0.251,87,0.189,90,1.668,92,1.666,94,1.289,96,0.162,101,0.092,103,0.216,105,0.931,107,0.897,118,0.333,119,0.838,120,0.191,121,0.765,123,0.65,125,2.453,127,2.392,131,0.218,132,0.266,134,0.729,139,0.302,144,0.162,145,0.144,149,1.603,150,1.955,153,1.353,155,0.621,161,3.331,164,3.692,171,0.138,172,0.912,176,2.18,177,2.666,180,0.114,181,0.618,183,0.595,184,0.148,186,0.128,189,3.608,190,2.128,192,2.827,194,1.614,195,0.178,199,2.266,203,0.227,208,0.586,213,0.396,214,0.671,216,0.218,219,2.683,221,0.299,223,0.122,224,0.122,227,1.313,234,0.41,236,0.778,238,1.721,248,0.088,251,0.248,252,0.167,258,1.583,262,0.111,272,0.739,291,0.128,293,1.428,303,0.138,309,0.35,310,2.926,317,0.538,327,2.229,332,0.112,334,0.434,337,0.907,338,0.118,341,4.076,347,0.737,348,2.961,350,0.612,351,1.971,361,1.831,365,0.401,367,1.983,368,4.412,374,0.35,375,0.098,379,1.738,380,2.656,382,0.24,385,0.565,386,1.831,387,0.271,392,3.553,396,0.327,397,0.13,399,0.144,400,0.141,408,0.169,419,0.162,421,2.992,426,1.592,428,2.213,431,0.344,432,0.221,433,2.79,438,0.354,439,4.166,442,0.141,446,0.148,448,0.401,451,2.828,452,3.378,458,1.022,462,0.291,472,0.625,473,2.31,474,2.748,502,0.111,503,0.331,509,0.138,511,0.132,513,0.125,517,0.59,518,2.014,524,0.446,531,0.414,545,0.55,547,0.29,549,0.169,553,1.426,556,0.178,557,0.144,559,0.138,564,0.842,591,5.32,597,0.538,598,0.905,609,0.663,611,0.944,630,1.231,632,0.144,651,0.401,660,3.378,665,1.374,669,1.971,670,1.006,675,0.372,679,0.125,683,2.727,698,0.43,703,2.521,706,0.385,727,0.218,738,0.178,741,0.152,742,0.266,743,1.668,745,1.104,750,0.13,761,0.878,762,0.132,765,1.48,781,0.178,787,0.299,788,0.135,790,0.152,793,4.132,803,0.35,805,0.647,817,0.716,822,0.565,829,1.313,835,1.532,838,0.665,844,0.739,862,1.897,879,0.189,899,4.042,921,1.45,925,0.443,941,1.336,958,0.23,1000,2.929,1001,0.251,1018,2.29,1027,0.309,1029,3.269,1041,1.938,1053,0.141,1055,0.157,1080,0.493,1082,0.751,1086,0.517,1103,0.13,1118,0.679,1122,0.419,1132,0.148,1139,0.32,1147,0.573,1154,0.41,1171,0.565,1181,2.049,1206,0.162,1212,3.117,1216,0.13,1234,0.948,1242,1.445,1257,0.152,1287,0.162,1293,0.551,1298,1.611,1300,2.699,1302,0.189,1308,0.401,1313,0.178,1315,0.157,1344,0.538,1359,4.829,1411,0.178,1413,1.212,1427,0.372,1434,0.837,1492,0.277,1508,0.473,1536,1.69,1601,1.313,1603,1.174,1645,0.392,1647,0.162,1650,0.157,1668,1.607,1676,0.465,1683,2.699,1789,0.291,1790,0.333,1844,0.847,1961,0.178,1963,0.178,1966,0.299,1968,0.189,1969,0.169,1970,2.075,2103,0.473,2139,2.417,2140,0.974,2152,0.419,2156,3.101,2200,0.32,2218,1.738,2258,1.48,2272,3.404,2309,0.132,2316,3.475,2317,0.55,2323,0.419,2334,0.647,2377,0.765,2378,0.647,2392,0.189,2407,3.456,2409,0.372,2417,0.621,2426,0.169,2436,0.372,2460,0.35,2462,0.157,2467,0.35,2469,0.152,2484,0.372,2498,0.178,2543,0.333,2549,0.372,2559,0.35,2571,0.35,2573,0.943,2589,0.723,2622,0.144,2644,0.43,2667,0.943,2668,0.43,2683,3.154,2688,0.32,2690,1.425,2695,2.075,2775,0.178,2890,1.223,2912,0.35,2915,0.152,2931,0.189,2992,0.309,3048,1.223,3066,0.372,3164,1.139,3221,0.333,3230,0.189,3245,1.284,3267,0.89,3278,0.189,3284,1.951,3315,3.004,3319,0.189,3327,2.207,3339,0.189,3341,0.35,3367,0.55,3370,0.35,3399,0.189,3487,0.169,3505,0.723,3572,0.189,3652,0.679,3716,0.89,3758,0.372,3759,0.178,3770,0.189,3781,0.372,3826,0.55,3828,0.169,3829,0.169,3836,0.55,3837,2.461,3838,4.441,3840,1.303,3845,0.162,3848,0.35,3853,4.431,3854,0.971,3855,0.6,3856,0.206,3857,0.206,3858,0.206,3859,0.206,3860,0.55,3861,0.971,3862,4.476,3863,0.206,3864,0.206,3865,0.206,3866,0.206,3867,0.406,3868,2.683,3869,0.6,3870,0.406,3871,0.406,3872,0.6,3873,0.55,3874,1.967,3875,3.433,3876,1.967,3877,1.812,3878,3.878,3879,3.878,3880,4.086,3881,2.265,3882,2.118,3883,2.118,3884,3.554,3885,3.433,3886,2.118,3887,2.118,3888,2.118,3889,3.433,3890,1.967,3891,2.076,3892,1.967,3893,1.967,3894,1.653,3895,1.967,3896,0.206,3897,1.49,3898,1.322,3899,1.49,3900,0.6,3901,0.406,3902,1.425,3903,0.6,3904,0.206,3905,0.206,3906,0.406,3907,0.206,3908,0.206,3909,0.55,3910,0.206,3911,1.149,3912,0.406,3913,0.372,3914,0.189,3915,0.206,3916,0.206,3917,0.89,3918,0.206,3919,0.206,3920,0.206,3921,0.206,3922,0.206,3923,0.206,3924,0.206,3925,0.206,3926,0.189,3927,0.406,3928,0.189,3929,0.206,3930,0.372,3931,0.406,3932,0.55,3933,0.723,3934,0.372,3935,0.723,3936,0.406,3937,0.6,3938,0.206,3939,0.55,3940,0.206,3941,0.206,3942,0.206,3943,0.206,3944,0.723,3945,0.206,3946,0.206,3947,0.206,3948,0.189,3949,0.206,3950,0.6,3951,0.206,3952,0.206,3953,0.372,3954,0.406,3955,0.206,3956,0.723,3957,0.206,3958,0.206,3959,0.206,3960,0.206,3961,0.206,3962,0.206,3963,0.206,3964,0.206,3965,0.206,3966,0.206,3967,0.206,3968,0.206,3969,0.206,3970,0.206,3971,0.206,3972,0.206,3973,0.206,3974,3.548,3975,0.406,3976,0.406,3977,0.406,3978,0.406,3979,0.723,3980,0.6,3981,0.206,3982,0.6,3983,0.6,3984,0.206]],["component//mule-teradata-connector/reference.html",[253,0.408]],["title//mule-teradata-connector/reference.html#_configurations",[199,30.751]],["name//mule-teradata-connector/reference.html#_configurations",[]],["text//mule-teradata-connector/reference.html#_configurations",[]],["component//mule-teradata-connector/reference.html#_configurations",[]],["title//mule-teradata-connector/reference.html#config",[189,34.648,199,25.376]],["name//mule-teradata-connector/reference.html#config",[]],["text//mule-teradata-connector/reference.html#config",[]],["component//mule-teradata-connector/reference.html#config",[]],["title//mule-teradata-connector/reference.html#_parameters",[899,41.113]],["name//mule-teradata-connector/reference.html#_parameters",[]],["text//mule-teradata-connector/reference.html#_parameters",[]],["component//mule-teradata-connector/reference.html#_parameters",[]],["title//mule-teradata-connector/reference.html#_connection_types",[30,26.926,368,34.648]],["name//mule-teradata-connector/reference.html#_connection_types",[]],["text//mule-teradata-connector/reference.html#_connection_types",[]],["component//mule-teradata-connector/reference.html#_connection_types",[]],["title//mule-teradata-connector/reference.html#config_data-source",[8,14.756,30,19.951,35,24.883,743,25.138]],["name//mule-teradata-connector/reference.html#config_data-source",[]],["text//mule-teradata-connector/reference.html#config_data-source",[]],["component//mule-teradata-connector/reference.html#config_data-source",[]],["title//mule-teradata-connector/reference.html#_parameters_2",[899,41.113]],["name//mule-teradata-connector/reference.html#_parameters_2",[]],["text//mule-teradata-connector/reference.html#_parameters_2",[]],["component//mule-teradata-connector/reference.html#_parameters_2",[]],["title//mule-teradata-connector/reference.html#config_teradata",[9,18.451,30,26.926]],["name//mule-teradata-connector/reference.html#config_teradata",[]],["text//mule-teradata-connector/reference.html#config_teradata",[]],["component//mule-teradata-connector/reference.html#config_teradata",[]],["title//mule-teradata-connector/reference.html#_parameters_3",[899,41.113]],["name//mule-teradata-connector/reference.html#_parameters_3",[]],["text//mule-teradata-connector/reference.html#_parameters_3",[]],["component//mule-teradata-connector/reference.html#_parameters_3",[]],["title//mule-teradata-connector/reference.html#_operations",[310,45.601]],["name//mule-teradata-connector/reference.html#_operations",[]],["text//mule-teradata-connector/reference.html#_operations",[]],["component//mule-teradata-connector/reference.html#_operations",[]],["title//mule-teradata-connector/reference.html#_associated_sources",[35,33.582,2152,47.119]],["name//mule-teradata-connector/reference.html#_associated_sources",[]],["text//mule-teradata-connector/reference.html#_associated_sources",[]],["component//mule-teradata-connector/reference.html#_associated_sources",[]],["title//mule-teradata-connector/reference.html#bulkDelete",[1147,39.784,2644,48.344]],["name//mule-teradata-connector/reference.html#bulkDelete",[]],["text//mule-teradata-connector/reference.html#bulkDelete",[]],["component//mule-teradata-connector/reference.html#bulkDelete",[]],["title//mule-teradata-connector/reference.html#_parameters_4",[899,41.113]],["name//mule-teradata-connector/reference.html#_parameters_4",[]],["text//mule-teradata-connector/reference.html#_parameters_4",[]],["component//mule-teradata-connector/reference.html#_parameters_4",[]],["title//mule-teradata-connector/reference.html#_output",[367,40.696]],["name//mule-teradata-connector/reference.html#_output",[]],["text//mule-teradata-connector/reference.html#_output",[]],["component//mule-teradata-connector/reference.html#_output",[]],["title//mule-teradata-connector/reference.html#_for_configurations",[199,30.751]],["name//mule-teradata-connector/reference.html#_for_configurations",[]],["text//mule-teradata-connector/reference.html#_for_configurations",[]],["component//mule-teradata-connector/reference.html#_for_configurations",[]],["title//mule-teradata-connector/reference.html#_throws",[3985,54.553]],["name//mule-teradata-connector/reference.html#_throws",[]],["text//mule-teradata-connector/reference.html#_throws",[]],["component//mule-teradata-connector/reference.html#_throws",[]],["title//mule-teradata-connector/reference.html#bulkInsert",[564,38.13,2644,48.344]],["name//mule-teradata-connector/reference.html#bulkInsert",[]],["text//mule-teradata-connector/reference.html#bulkInsert",[]],["component//mule-teradata-connector/reference.html#bulkInsert",[]],["title//mule-teradata-connector/reference.html#_parameters_5",[899,41.113]],["name//mule-teradata-connector/reference.html#_parameters_5",[]],["text//mule-teradata-connector/reference.html#_parameters_5",[]],["component//mule-teradata-connector/reference.html#_parameters_5",[]],["title//mule-teradata-connector/reference.html#_output_2",[367,40.696]],["name//mule-teradata-connector/reference.html#_output_2",[]],["text//mule-teradata-connector/reference.html#_output_2",[]],["component//mule-teradata-connector/reference.html#_output_2",[]],["title//mule-teradata-connector/reference.html#_for_configurations_2",[199,30.751]],["name//mule-teradata-connector/reference.html#_for_configurations_2",[]],["text//mule-teradata-connector/reference.html#_for_configurations_2",[]],["component//mule-teradata-connector/reference.html#_for_configurations_2",[]],["title//mule-teradata-connector/reference.html#_throws_2",[3985,54.553]],["name//mule-teradata-connector/reference.html#_throws_2",[]],["text//mule-teradata-connector/reference.html#_throws_2",[]],["component//mule-teradata-connector/reference.html#_throws_2",[]],["title//mule-teradata-connector/reference.html#bulkUpdate",[16,27.692,2644,48.344]],["name//mule-teradata-connector/reference.html#bulkUpdate",[]],["text//mule-teradata-connector/reference.html#bulkUpdate",[]],["component//mule-teradata-connector/reference.html#bulkUpdate",[]],["title//mule-teradata-connector/reference.html#_parameters_6",[899,41.113]],["name//mule-teradata-connector/reference.html#_parameters_6",[]],["text//mule-teradata-connector/reference.html#_parameters_6",[]],["component//mule-teradata-connector/reference.html#_parameters_6",[]],["title//mule-teradata-connector/reference.html#_output_3",[367,40.696]],["name//mule-teradata-connector/reference.html#_output_3",[]],["text//mule-teradata-connector/reference.html#_output_3",[]],["component//mule-teradata-connector/reference.html#_output_3",[]],["title//mule-teradata-connector/reference.html#_for_configurations_3",[199,30.751]],["name//mule-teradata-connector/reference.html#_for_configurations_3",[]],["text//mule-teradata-connector/reference.html#_for_configurations_3",[]],["component//mule-teradata-connector/reference.html#_for_configurations_3",[]],["title//mule-teradata-connector/reference.html#_throws_3",[3985,54.553]],["name//mule-teradata-connector/reference.html#_throws_3",[]],["text//mule-teradata-connector/reference.html#_throws_3",[]],["component//mule-teradata-connector/reference.html#_throws_3",[]],["title//mule-teradata-connector/reference.html#delete",[1147,48.212]],["name//mule-teradata-connector/reference.html#delete",[]],["text//mule-teradata-connector/reference.html#delete",[]],["component//mule-teradata-connector/reference.html#delete",[]],["title//mule-teradata-connector/reference.html#_parameters_7",[899,41.113]],["name//mule-teradata-connector/reference.html#_parameters_7",[]],["text//mule-teradata-connector/reference.html#_parameters_7",[]],["component//mule-teradata-connector/reference.html#_parameters_7",[]],["title//mule-teradata-connector/reference.html#_output_4",[367,40.696]],["name//mule-teradata-connector/reference.html#_output_4",[]],["text//mule-teradata-connector/reference.html#_output_4",[]],["component//mule-teradata-connector/reference.html#_output_4",[]],["title//mule-teradata-connector/reference.html#_for_configurations_4",[199,30.751]],["name//mule-teradata-connector/reference.html#_for_configurations_4",[]],["text//mule-teradata-connector/reference.html#_for_configurations_4",[]],["component//mule-teradata-connector/reference.html#_for_configurations_4",[]],["title//mule-teradata-connector/reference.html#_throws_4",[3985,54.553]],["name//mule-teradata-connector/reference.html#_throws_4",[]],["text//mule-teradata-connector/reference.html#_throws_4",[]],["component//mule-teradata-connector/reference.html#_throws_4",[]],["title//mule-teradata-connector/reference.html#executeDdl",[351,34.281,2992,51.296]],["name//mule-teradata-connector/reference.html#executeDdl",[]],["text//mule-teradata-connector/reference.html#executeDdl",[]],["component//mule-teradata-connector/reference.html#executeDdl",[]],["title//mule-teradata-connector/reference.html#_parameters_8",[899,41.113]],["name//mule-teradata-connector/reference.html#_parameters_8",[]],["text//mule-teradata-connector/reference.html#_parameters_8",[]],["component//mule-teradata-connector/reference.html#_parameters_8",[]],["title//mule-teradata-connector/reference.html#_output_5",[367,40.696]],["name//mule-teradata-connector/reference.html#_output_5",[]],["text//mule-teradata-connector/reference.html#_output_5",[]],["component//mule-teradata-connector/reference.html#_output_5",[]],["title//mule-teradata-connector/reference.html#_for_configurations_5",[199,30.751]],["name//mule-teradata-connector/reference.html#_for_configurations_5",[]],["text//mule-teradata-connector/reference.html#_for_configurations_5",[]],["component//mule-teradata-connector/reference.html#_for_configurations_5",[]],["title//mule-teradata-connector/reference.html#_throws_5",[3985,54.553]],["name//mule-teradata-connector/reference.html#_throws_5",[]],["text//mule-teradata-connector/reference.html#_throws_5",[]],["component//mule-teradata-connector/reference.html#_throws_5",[]],["title//mule-teradata-connector/reference.html#executeScript",[334,37.151,351,34.281]],["name//mule-teradata-connector/reference.html#executeScript",[]],["text//mule-teradata-connector/reference.html#executeScript",[]],["component//mule-teradata-connector/reference.html#executeScript",[]],["title//mule-teradata-connector/reference.html#_parameters_9",[899,41.113]],["name//mule-teradata-connector/reference.html#_parameters_9",[]],["text//mule-teradata-connector/reference.html#_parameters_9",[]],["component//mule-teradata-connector/reference.html#_parameters_9",[]],["title//mule-teradata-connector/reference.html#_output_6",[367,40.696]],["name//mule-teradata-connector/reference.html#_output_6",[]],["text//mule-teradata-connector/reference.html#_output_6",[]],["component//mule-teradata-connector/reference.html#_output_6",[]],["title//mule-teradata-connector/reference.html#_for_configurations_6",[199,30.751]],["name//mule-teradata-connector/reference.html#_for_configurations_6",[]],["text//mule-teradata-connector/reference.html#_for_configurations_6",[]],["component//mule-teradata-connector/reference.html#_for_configurations_6",[]],["title//mule-teradata-connector/reference.html#_throws_6",[3985,54.553]],["name//mule-teradata-connector/reference.html#_throws_6",[]],["text//mule-teradata-connector/reference.html#_throws_6",[]],["component//mule-teradata-connector/reference.html#_throws_6",[]],["title//mule-teradata-connector/reference.html#insert",[564,46.207]],["name//mule-teradata-connector/reference.html#insert",[]],["text//mule-teradata-connector/reference.html#insert",[]],["component//mule-teradata-connector/reference.html#insert",[]],["title//mule-teradata-connector/reference.html#_parameters_10",[899,41.113]],["name//mule-teradata-connector/reference.html#_parameters_10",[]],["text//mule-teradata-connector/reference.html#_parameters_10",[]],["component//mule-teradata-connector/reference.html#_parameters_10",[]],["title//mule-teradata-connector/reference.html#_output_7",[367,40.696]],["name//mule-teradata-connector/reference.html#_output_7",[]],["text//mule-teradata-connector/reference.html#_output_7",[]],["component//mule-teradata-connector/reference.html#_output_7",[]],["title//mule-teradata-connector/reference.html#_for_configurations_7",[199,30.751]],["name//mule-teradata-connector/reference.html#_for_configurations_7",[]],["text//mule-teradata-connector/reference.html#_for_configurations_7",[]],["component//mule-teradata-connector/reference.html#_for_configurations_7",[]],["title//mule-teradata-connector/reference.html#_throws_7",[3985,54.553]],["name//mule-teradata-connector/reference.html#_throws_7",[]],["text//mule-teradata-connector/reference.html#_throws_7",[]],["component//mule-teradata-connector/reference.html#_throws_7",[]],["title//mule-teradata-connector/reference.html#select",[183,36.808]],["name//mule-teradata-connector/reference.html#select",[]],["text//mule-teradata-connector/reference.html#select",[]],["component//mule-teradata-connector/reference.html#select",[]],["title//mule-teradata-connector/reference.html#_parameters_11",[899,41.113]],["name//mule-teradata-connector/reference.html#_parameters_11",[]],["text//mule-teradata-connector/reference.html#_parameters_11",[]],["component//mule-teradata-connector/reference.html#_parameters_11",[]],["title//mule-teradata-connector/reference.html#_output_8",[367,40.696]],["name//mule-teradata-connector/reference.html#_output_8",[]],["text//mule-teradata-connector/reference.html#_output_8",[]],["component//mule-teradata-connector/reference.html#_output_8",[]],["title//mule-teradata-connector/reference.html#_for_configurations_8",[199,30.751]],["name//mule-teradata-connector/reference.html#_for_configurations_8",[]],["text//mule-teradata-connector/reference.html#_for_configurations_8",[]],["component//mule-teradata-connector/reference.html#_for_configurations_8",[]],["title//mule-teradata-connector/reference.html#_working_with_pooling_profiles",[42,30.497,337,34.936,3837,41.15]],["name//mule-teradata-connector/reference.html#_working_with_pooling_profiles",[]],["text//mule-teradata-connector/reference.html#_working_with_pooling_profiles",[]],["component//mule-teradata-connector/reference.html#_working_with_pooling_profiles",[]],["title//mule-teradata-connector/reference.html#_throws_8",[3985,54.553]],["name//mule-teradata-connector/reference.html#_throws_8",[]],["text//mule-teradata-connector/reference.html#_throws_8",[]],["component//mule-teradata-connector/reference.html#_throws_8",[]],["title//mule-teradata-connector/reference.html#querySingle",[94,41.043,219,26.926]],["name//mule-teradata-connector/reference.html#querySingle",[]],["text//mule-teradata-connector/reference.html#querySingle",[]],["component//mule-teradata-connector/reference.html#querySingle",[]],["title//mule-teradata-connector/reference.html#_parameters_12",[899,41.113]],["name//mule-teradata-connector/reference.html#_parameters_12",[]],["text//mule-teradata-connector/reference.html#_parameters_12",[]],["component//mule-teradata-connector/reference.html#_parameters_12",[]],["title//mule-teradata-connector/reference.html#_output_9",[367,40.696]],["name//mule-teradata-connector/reference.html#_output_9",[]],["text//mule-teradata-connector/reference.html#_output_9",[]],["component//mule-teradata-connector/reference.html#_output_9",[]],["title//mule-teradata-connector/reference.html#_for_configurations_9",[199,30.751]],["name//mule-teradata-connector/reference.html#_for_configurations_9",[]],["text//mule-teradata-connector/reference.html#_for_configurations_9",[]],["component//mule-teradata-connector/reference.html#_for_configurations_9",[]],["title//mule-teradata-connector/reference.html#_working_with_pooling_profiles_2",[42,30.497,337,34.936,3837,41.15]],["name//mule-teradata-connector/reference.html#_working_with_pooling_profiles_2",[]],["text//mule-teradata-connector/reference.html#_working_with_pooling_profiles_2",[]],["component//mule-teradata-connector/reference.html#_working_with_pooling_profiles_2",[]],["title//mule-teradata-connector/reference.html#_throws_9",[3985,54.553]],["name//mule-teradata-connector/reference.html#_throws_9",[]],["text//mule-teradata-connector/reference.html#_throws_9",[]],["component//mule-teradata-connector/reference.html#_throws_9",[]],["title//mule-teradata-connector/reference.html#storedProcedure",[127,27.692,1082,44.099]],["name//mule-teradata-connector/reference.html#storedProcedure",[]],["text//mule-teradata-connector/reference.html#storedProcedure",[]],["component//mule-teradata-connector/reference.html#storedProcedure",[]],["title//mule-teradata-connector/reference.html#_parameters_13",[899,41.113]],["name//mule-teradata-connector/reference.html#_parameters_13",[]],["text//mule-teradata-connector/reference.html#_parameters_13",[]],["component//mule-teradata-connector/reference.html#_parameters_13",[]],["title//mule-teradata-connector/reference.html#_output_10",[367,40.696]],["name//mule-teradata-connector/reference.html#_output_10",[]],["text//mule-teradata-connector/reference.html#_output_10",[]],["component//mule-teradata-connector/reference.html#_output_10",[]],["title//mule-teradata-connector/reference.html#_for_configurations_10",[199,30.751]],["name//mule-teradata-connector/reference.html#_for_configurations_10",[]],["text//mule-teradata-connector/reference.html#_for_configurations_10",[]],["component//mule-teradata-connector/reference.html#_for_configurations_10",[]],["title//mule-teradata-connector/reference.html#_working_with_pooling_profiles_3",[42,30.497,337,34.936,3837,41.15]],["name//mule-teradata-connector/reference.html#_working_with_pooling_profiles_3",[]],["text//mule-teradata-connector/reference.html#_working_with_pooling_profiles_3",[]],["component//mule-teradata-connector/reference.html#_working_with_pooling_profiles_3",[]],["title//mule-teradata-connector/reference.html#_throws_10",[3985,54.553]],["name//mule-teradata-connector/reference.html#_throws_10",[]],["text//mule-teradata-connector/reference.html#_throws_10",[]],["component//mule-teradata-connector/reference.html#_throws_10",[]],["title//mule-teradata-connector/reference.html#update",[16,33.558]],["name//mule-teradata-connector/reference.html#update",[]],["text//mule-teradata-connector/reference.html#update",[]],["component//mule-teradata-connector/reference.html#update",[]],["title//mule-teradata-connector/reference.html#_parameters_14",[899,41.113]],["name//mule-teradata-connector/reference.html#_parameters_14",[]],["text//mule-teradata-connector/reference.html#_parameters_14",[]],["component//mule-teradata-connector/reference.html#_parameters_14",[]],["title//mule-teradata-connector/reference.html#_output_11",[367,40.696]],["name//mule-teradata-connector/reference.html#_output_11",[]],["text//mule-teradata-connector/reference.html#_output_11",[]],["component//mule-teradata-connector/reference.html#_output_11",[]],["title//mule-teradata-connector/reference.html#_for_configurations_11",[199,30.751]],["name//mule-teradata-connector/reference.html#_for_configurations_11",[]],["text//mule-teradata-connector/reference.html#_for_configurations_11",[]],["component//mule-teradata-connector/reference.html#_for_configurations_11",[]],["title//mule-teradata-connector/reference.html#_throws_11",[3985,54.553]],["name//mule-teradata-connector/reference.html#_throws_11",[]],["text//mule-teradata-connector/reference.html#_throws_11",[]],["component//mule-teradata-connector/reference.html#_throws_11",[]],["title//mule-teradata-connector/reference.html#_sources",[35,40.696]],["name//mule-teradata-connector/reference.html#_sources",[]],["text//mule-teradata-connector/reference.html#_sources",[]],["component//mule-teradata-connector/reference.html#_sources",[]],["title//mule-teradata-connector/reference.html#listener",[213,27.495,793,38.654]],["name//mule-teradata-connector/reference.html#listener",[]],["text//mule-teradata-connector/reference.html#listener",[]],["component//mule-teradata-connector/reference.html#listener",[]],["title//mule-teradata-connector/reference.html#_parameters_15",[899,41.113]],["name//mule-teradata-connector/reference.html#_parameters_15",[]],["text//mule-teradata-connector/reference.html#_parameters_15",[]],["component//mule-teradata-connector/reference.html#_parameters_15",[]],["title//mule-teradata-connector/reference.html#_output_12",[367,40.696]],["name//mule-teradata-connector/reference.html#_output_12",[]],["text//mule-teradata-connector/reference.html#_output_12",[]],["component//mule-teradata-connector/reference.html#_output_12",[]],["title//mule-teradata-connector/reference.html#_for_configurations_12",[199,30.751]],["name//mule-teradata-connector/reference.html#_for_configurations_12",[]],["text//mule-teradata-connector/reference.html#_for_configurations_12",[]],["component//mule-teradata-connector/reference.html#_for_configurations_12",[]],["title//mule-teradata-connector/reference.html#_types",[368,41.988]],["name//mule-teradata-connector/reference.html#_types",[]],["text//mule-teradata-connector/reference.html#_types",[]],["component//mule-teradata-connector/reference.html#_types",[]],["title//mule-teradata-connector/reference.html#pooling-profile",[337,41.043,3837,48.344]],["name//mule-teradata-connector/reference.html#pooling-profile",[]],["text//mule-teradata-connector/reference.html#pooling-profile",[]],["component//mule-teradata-connector/reference.html#pooling-profile",[]],["title//mule-teradata-connector/reference.html#ColumnType",[368,34.648,473,38.13]],["name//mule-teradata-connector/reference.html#ColumnType",[]],["text//mule-teradata-connector/reference.html#ColumnType",[]],["component//mule-teradata-connector/reference.html#ColumnType",[]],["title//mule-teradata-connector/reference.html#Reconnection",[3838,60.254]],["name//mule-teradata-connector/reference.html#Reconnection",[]],["text//mule-teradata-connector/reference.html#Reconnection",[]],["component//mule-teradata-connector/reference.html#Reconnection",[]],["title//mule-teradata-connector/reference.html#reconnect",[3838,60.254]],["name//mule-teradata-connector/reference.html#reconnect",[]],["text//mule-teradata-connector/reference.html#reconnect",[]],["component//mule-teradata-connector/reference.html#reconnect",[]],["title//mule-teradata-connector/reference.html#reconnect-forever",[3838,49.721,3891,61.813]],["name//mule-teradata-connector/reference.html#reconnect-forever",[]],["text//mule-teradata-connector/reference.html#reconnect-forever",[]],["component//mule-teradata-connector/reference.html#reconnect-forever",[]],["title//mule-teradata-connector/reference.html#Tls",[3986,64.391]],["name//mule-teradata-connector/reference.html#Tls",[]],["text//mule-teradata-connector/reference.html#Tls",[]],["component//mule-teradata-connector/reference.html#Tls",[]],["title//mule-teradata-connector/reference.html#TrustStore",[127,27.692,598,53.135]],["name//mule-teradata-connector/reference.html#TrustStore",[]],["text//mule-teradata-connector/reference.html#TrustStore",[]],["component//mule-teradata-connector/reference.html#TrustStore",[]],["title//mule-teradata-connector/reference.html#KeyStore",[127,27.692,433,33.926]],["name//mule-teradata-connector/reference.html#KeyStore",[]],["text//mule-teradata-connector/reference.html#KeyStore",[]],["component//mule-teradata-connector/reference.html#KeyStore",[]],["title//mule-teradata-connector/reference.html#standard-revocation-check",[431,32.902,2323,40.108,3932,52.616]],["name//mule-teradata-connector/reference.html#standard-revocation-check",[]],["text//mule-teradata-connector/reference.html#standard-revocation-check",[]],["component//mule-teradata-connector/reference.html#standard-revocation-check",[]],["title//mule-teradata-connector/reference.html#custom-ocsp-responder",[396,31.232,3933,52.616,3934,52.616]],["name//mule-teradata-connector/reference.html#custom-ocsp-responder",[]],["text//mule-teradata-connector/reference.html#custom-ocsp-responder",[]],["component//mule-teradata-connector/reference.html#custom-ocsp-responder",[]],["title//mule-teradata-connector/reference.html#crl-file",[134,27.112,3935,61.813]],["name//mule-teradata-connector/reference.html#crl-file",[]],["text//mule-teradata-connector/reference.html#crl-file",[]],["component//mule-teradata-connector/reference.html#crl-file",[]],["title//mule-teradata-connector/reference.html#ExpirationPolicy",[2377,53.135,2667,55.344]],["name//mule-teradata-connector/reference.html#ExpirationPolicy",[]],["text//mule-teradata-connector/reference.html#ExpirationPolicy",[]],["component//mule-teradata-connector/reference.html#ExpirationPolicy",[]],["title//mule-teradata-connector/reference.html#RedeliveryPolicy",[2377,53.135,3917,61.813]],["name//mule-teradata-connector/reference.html#RedeliveryPolicy",[]],["text//mule-teradata-connector/reference.html#RedeliveryPolicy",[]],["component//mule-teradata-connector/reference.html#RedeliveryPolicy",[]],["title//mule-teradata-connector/reference.html#ParameterType",[368,34.648,899,33.926]],["name//mule-teradata-connector/reference.html#ParameterType",[]],["text//mule-teradata-connector/reference.html#ParameterType",[]],["component//mule-teradata-connector/reference.html#ParameterType",[]],["title//mule-teradata-connector/reference.html#TypeClassifier",[368,34.648,3956,61.813]],["name//mule-teradata-connector/reference.html#TypeClassifier",[]],["text//mule-teradata-connector/reference.html#TypeClassifier",[]],["component//mule-teradata-connector/reference.html#TypeClassifier",[]],["title//mule-teradata-connector/reference.html#StatementResult",[177,41.043,458,35.028]],["name//mule-teradata-connector/reference.html#StatementResult",[]],["text//mule-teradata-connector/reference.html#StatementResult",[]],["component//mule-teradata-connector/reference.html#StatementResult",[]],["title//mule-teradata-connector/reference.html#repeatable-in-memory-iterable",[1018,41.15,2258,40.108,3902,49.463]],["name//mule-teradata-connector/reference.html#repeatable-in-memory-iterable",[]],["text//mule-teradata-connector/reference.html#repeatable-in-memory-iterable",[]],["component//mule-teradata-connector/reference.html#repeatable-in-memory-iterable",[]],["title//mule-teradata-connector/reference.html#repeatable-file-store-iterable",[127,20.518,134,20.089,2258,34.913,3902,43.057]],["name//mule-teradata-connector/reference.html#repeatable-file-store-iterable",[]],["text//mule-teradata-connector/reference.html#repeatable-file-store-iterable",[]],["component//mule-teradata-connector/reference.html#repeatable-file-store-iterable",[]],["title//mule-teradata-connector/reference.html#repeatable-in-memory-stream",[1018,41.15,2258,40.108,3315,47.109]],["name//mule-teradata-connector/reference.html#repeatable-in-memory-stream",[]],["text//mule-teradata-connector/reference.html#repeatable-in-memory-stream",[]],["component//mule-teradata-connector/reference.html#repeatable-in-memory-stream",[]],["title//mule-teradata-connector/reference.html#repeatable-file-store-stream",[127,20.518,134,20.089,2258,34.913,3315,41.007]],["name//mule-teradata-connector/reference.html#repeatable-file-store-stream",[]],["text//mule-teradata-connector/reference.html#repeatable-file-store-stream",[]],["component//mule-teradata-connector/reference.html#repeatable-file-store-stream",[]],["title//mule-teradata-connector/reference.html#OutputParameter",[367,33.582,899,33.926]],["name//mule-teradata-connector/reference.html#OutputParameter",[]],["text//mule-teradata-connector/reference.html#OutputParameter",[]],["component//mule-teradata-connector/reference.html#OutputParameter",[]],["title//mule-teradata-connector/reference.html#_see_also",[156,38.094]],["name//mule-teradata-connector/reference.html#_see_also",[]],["text//mule-teradata-connector/reference.html#_see_also",[]],["component//mule-teradata-connector/reference.html#_see_also",[]],["title//mule-teradata-connector/release-notes.html",[9,10.859,41,22.145,132,25.952,592,22.748,1293,27.73,1645,25.952]],["name//mule-teradata-connector/release-notes.html",[132,1.232,1293,1.317]],["text//mule-teradata-connector/release-notes.html",[4,1.313,5,2.146,8,2.317,9,2.577,10,1.793,15,1.78,16,2.664,29,2.27,30,2.591,34,3.317,35,3.231,38,2.794,41,4.377,56,2.794,94,2.6,107,2.17,119,1.82,127,1.755,131,4.217,133,2.6,150,4.163,153,2.27,176,3.476,197,3.949,199,1.608,201,2.195,213,1.742,214,1.924,219,3.498,230,2.521,248,1.82,251,1.767,252,2.664,262,3.488,310,3.621,334,2.354,337,2.6,347,2.74,351,3.298,403,3.682,517,2.195,523,2.985,559,2.852,592,2.449,611,2.703,658,2.691,679,2.6,744,3.15,750,4.086,761,2.27,764,4.784,835,3.53,1082,2.794,1200,2.384,1290,3.507,1645,5.13,1647,3.367,1650,4.936,1652,3.367,1676,2.521,2031,5.591,2139,3.507,2622,4.534,2644,3.063,2915,3.15,2992,3.25,3107,3.15,3413,3.916,3828,3.507,3829,3.507,3830,3.916,3837,3.063,3838,3.15,3845,3.367,3847,3.916,3848,3.682,3849,3.682,3850,3.916,3851,3.916,3852,3.916,3987,4.273,3988,4.273,3989,4.273,3990,4.273]],["component//mule-teradata-connector/release-notes.html",[253,0.408]],["title//mule-teradata-connector/release-notes.html#_1_0_0",[3991,81.721]],["name//mule-teradata-connector/release-notes.html#_1_0_0",[]],["text//mule-teradata-connector/release-notes.html#_1_0_0",[]],["component//mule-teradata-connector/release-notes.html#_1_0_0",[]],["title//mule-teradata-connector/release-notes.html#_features",[230,48.212]],["name//mule-teradata-connector/release-notes.html#_features",[]],["text//mule-teradata-connector/release-notes.html#_features",[]],["component//mule-teradata-connector/release-notes.html#_features",[]],["title//mule-teradata-connector/release-notes.html#_compatibility",[506,70.42]],["name//mule-teradata-connector/release-notes.html#_compatibility",[]],["text//mule-teradata-connector/release-notes.html#_compatibility",[]],["component//mule-teradata-connector/release-notes.html#_compatibility",[]],["title//mule-teradata-connector/release-notes.html#_see_also",[156,38.094]],["name//mule-teradata-connector/release-notes.html#_see_also",[]],["text//mule-teradata-connector/release-notes.html#_see_also",[]],["component//mule-teradata-connector/release-notes.html#_see_also",[]],["title//other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html",[5,12.104,9,12.104,30,17.663,199,16.646,3992,36.305]],["name//other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html",[5,0.232,9,0.232,30,0.338,199,0.318,3992,0.694]],["text//other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html",[0,1.759,4,2.426,5,2.355,9,2.506,10,1.476,15,1.466,16,1.445,19,1.891,21,1.788,30,3.436,34,2.359,40,2.016,48,1.559,51,3.155,82,2.932,85,2.91,87,2.601,88,1.963,91,2.048,101,1.571,104,1.654,105,1.807,119,2.377,120,3.261,121,1.807,123,1.534,124,1.717,125,2.954,126,1.717,129,2.458,138,4.808,141,2.4,142,3.155,144,2.772,150,4.303,151,2.522,156,1.64,165,2.772,172,2.807,180,1.938,183,2.513,185,3.807,186,2.177,190,3.414,191,1.685,207,1.752,208,2.472,209,3.649,213,2.275,235,2.215,238,2.256,243,1.559,244,1.224,245,1.546,246,1.546,247,1.559,248,2.954,249,1.559,250,1.559,251,1.455,252,2.291,267,2.492,279,2.4,328,2.256,348,1.788,368,1.807,369,1.848,397,2.215,424,2.887,431,3.198,432,1.914,433,1.77,513,2.141,515,3.036,517,2.867,612,2.075,613,2.075,615,2.887,637,2.522,688,3.578,823,2.594,1137,2.676,1142,4.971,1145,2.215,1474,2.772,2323,2.458,2573,2.887,2912,3.031,2913,2.887,3930,5.114,3986,5.463,3992,8.17,3993,6.934,3994,3.518,3995,5.579,3996,3.518,3997,3.518,3998,3.224,3999,3.518,4000,3.518]],["component//other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html",[253,0.408]],["title//other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html#_overview",[254,35.084]],["name//other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html#_overview",[]],["text//other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html#_overview",[]],["component//other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html#_overview",[]],["title//other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html#_prerequisites",[255,36.808]],["name//other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html#_prerequisites",[]],["text//other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html#_prerequisites",[]],["component//other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html#_prerequisites",[]],["title//other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html#_add_a_teradata_connection_to_dbeaver",[9,13.672,30,19.951,362,24.883,3992,41.007]],["name//other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html#_add_a_teradata_connection_to_dbeaver",[]],["text//other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html#_add_a_teradata_connection_to_dbeaver",[]],["component//other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html#_add_a_teradata_connection_to_dbeaver",[]],["title//other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html#_optional_ssh_tunneling",[172,28.878,1142,41.15,3998,52.616]],["name//other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html#_optional_ssh_tunneling",[]],["text//other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html#_optional_ssh_tunneling",[]],["component//other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html#_optional_ssh_tunneling",[]],["title//other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html#_summary",[492,40.696]],["name//other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html#_summary",[]],["text//other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html#_summary",[]],["component//other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html#_summary",[]],["title//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html",[4,11.06,5,9.846,9,9.846,257,18.901,351,18.293,2623,24.556,4001,26.532]],["name//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html",[4,0.19,5,0.169,9,0.169,257,0.325,351,0.315,2623,0.422,4001,0.456]],["text//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html",[0,1.904,4,1.78,5,1.168,8,1.364,9,1.585,10,0.31,15,0.308,16,1.243,19,0.397,21,0.712,26,0.69,29,1.061,30,0.559,34,0.312,35,0.368,39,1.004,42,0.392,48,0.62,51,0.417,52,0.412,74,1.57,75,0.744,82,1.645,85,0.838,86,0.457,87,1.412,88,0.412,90,0.704,91,3.178,93,1.257,101,0.33,103,0.392,104,0.347,106,0.516,107,1.755,108,0.493,109,1.648,111,0.442,119,0.596,120,2.173,121,1.026,122,0.442,123,0.61,125,0.315,128,0.375,130,1.627,131,1.363,134,3.096,135,0.417,139,0.371,141,0.504,142,1.434,147,2.303,149,0.402,150,2.431,153,0.744,155,0.582,156,0.344,159,0.529,160,0.412,161,0.36,162,0.955,163,0.955,166,0.504,167,1.073,168,0.61,172,0.371,174,0.636,176,0.327,178,0.465,180,0.407,182,0.562,183,0.899,189,0.379,190,1.097,191,2.045,192,1.874,199,0.751,201,0.719,203,1.114,207,0.994,208,3.695,211,0.529,213,0.301,214,1.364,216,0.397,218,1.362,219,0.295,228,0.417,232,0.442,236,2.468,243,0.327,244,0.257,245,0.324,246,0.324,247,0.327,248,0.596,249,0.327,250,0.327,251,0.826,252,0.303,256,1.633,257,3.292,263,1.193,265,0.704,267,0.33,268,0.392,269,0.504,274,0.955,278,0.562,282,0.474,286,1.397,287,0.606,291,1.235,292,2.914,294,1.659,295,0.516,296,0.449,297,2.373,298,3.32,299,1.257,302,0.562,305,0.529,307,0.465,312,0.866,316,0.442,318,0.457,323,0.417,332,0.762,334,0.407,338,0.802,339,0.826,342,0.412,348,0.375,351,0.712,352,0.852,357,0.727,359,1.004,360,0.483,362,0.697,366,0.582,368,1.787,369,0.735,375,0.35,380,0.814,383,0.383,385,0.814,388,0.677,394,0.493,405,2.569,414,0.516,416,1.065,426,0.417,431,1.736,433,0.371,434,0.978,436,1.69,438,0.826,443,0.493,451,0.392,455,0.516,458,0.383,469,0.449,471,0.582,477,0.631,483,0.582,488,0.866,491,0.493,493,0.529,494,1.015,500,0.449,501,0.483,503,0.407,504,0.457,507,1.434,514,0.457,515,0.402,517,0.379,518,0.69,519,0.465,524,0.417,527,0.474,542,0.412,543,3.474,547,0.357,573,1.16,576,0.423,579,0.582,580,0.493,610,0.636,617,0.582,618,0.562,622,0.677,623,0.677,624,2.996,625,1.518,626,0.544,630,0.429,637,0.529,641,0.955,644,0.636,649,0.636,651,0.934,660,0.483,665,0.516,667,0.898,669,2.349,673,0.955,687,0.934,690,0.582,698,0.529,701,0.544,726,0.544,732,0.457,734,0.882,737,0.582,741,0.544,751,1.693,756,1.28,764,0.544,784,0.582,794,0.606,827,0.582,829,0.493,835,0.402,841,1.065,856,0.436,871,0.529,888,0.483,902,0.839,923,0.562,930,0.412,941,0.436,958,0.417,996,0.677,1008,0.483,1019,1.004,1043,1.065,1053,0.955,1081,0.529,1114,1.597,1129,0.529,1131,0.493,1141,0.516,1142,1.431,1145,0.465,1147,0.436,1154,0.504,1171,0.529,1181,1.28,1199,0.504,1200,0.412,1205,0.544,1212,0.504,1242,0.504,1264,0.636,1278,0.826,1293,0.516,1301,0.582,1318,5.234,1330,1.283,1338,0.544,1344,0.504,1382,0.544,1385,1.87,1387,2.233,1432,3.352,1435,0.677,1445,1.573,1486,0.677,1498,0.677,1507,0.529,1510,0.582,1512,0.636,1612,1.638,1668,5.042,1747,0.677,1808,1.004,1843,1.032,1844,1.032,1969,1.149,2034,1.149,2103,0.582,2111,2.609,2113,0.677,2114,0.677,2129,0.474,2140,0.483,2180,0.562,2208,5.27,2209,2.303,2220,0.955,2221,0.562,2226,2.959,2292,1.149,2309,0.898,2314,0.562,2342,1.149,2349,0.636,2359,1.103,2535,0.606,2553,0.582,2568,1.283,2577,0.677,2596,0.606,2623,0.955,2668,1.004,2688,0.582,2769,0.606,2809,0.677,2830,0.677,2854,1.83,2897,0.504,2902,0.529,3051,1.206,3067,0.636,3102,0.677,3103,0.636,3289,0.636,3291,4.405,3588,0.677,3873,0.677,4001,6.526,4002,0.738,4003,0.738,4004,0.738,4005,3.187,4006,0.738,4007,0.677,4008,1.4,4009,0.738,4010,1.4,4011,1.4,4012,1.4,4013,0.738,4014,0.738,4015,0.738,4016,0.738,4017,0.677,4018,4.945,4019,0.738,4020,0.738,4021,0.738,4022,0.738,4023,1.996,4024,0.738,4025,1.4,4026,0.738,4027,1.4,4028,0.738,4029,0.738,4030,0.738,4031,1.283,4032,0.738,4033,0.738,4034,1.4,4035,3.89,4036,0.738,4037,1.4,4038,1.283,4039,0.738,4040,0.677,4041,1.4,4042,0.738,4043,0.738,4044,1.4,4045,1.996,4046,0.738,4047,0.738,4048,0.738,4049,0.738,4050,1.4,4051,0.738,4052,1.4,4053,0.738,4054,1.4,4055,1.4,4056,0.738,4057,1.4,4058,0.677,4059,0.738,4060,0.738,4061,0.738,4062,0.738,4063,0.738,4064,0.738,4065,3.89,4066,3.89,4067,7.236,4068,4.945,4069,4.945,4070,4.269,4071,3.477,4072,0.738,4073,0.738,4074,0.738,4075,0.738,4076,0.738,4077,0.738,4078,0.738,4079,0.738,4080,0.738,4081,1.4,4082,0.738,4083,0.738,4084,0.738,4085,0.738,4086,0.738,4087,0.738,4088,0.738,4089,0.738,4090,1.4,4091,0.738,4092,0.738,4093,0.738,4094,0.738,4095,0.738,4096,1.4,4097,0.738,4098,0.738,4099,0.738,4100,0.738,4101,0.738,4102,0.738,4103,0.738,4104,0.738,4105,0.677,4106,0.738,4107,0.738,4108,0.738,4109,1.4,4110,2.536,4111,0.738,4112,1.996,4113,0.738,4114,0.738,4115,0.738,4116,0.738,4117,0.738,4118,0.738,4119,0.738,4120,0.738,4121,0.738]],["component//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html",[253,0.408]],["title//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_overview",[254,35.084]],["name//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_overview",[]],["text//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_overview",[]],["component//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_overview",[]],["title//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_prerequsites",[4122,81.721]],["name//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_prerequsites",[]],["text//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_prerequsites",[]],["component//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_prerequsites",[]],["title//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_and_execute_airflow",[91,21.068,351,29.18,4001,42.323]],["name//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_and_execute_airflow",[]],["text//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_and_execute_airflow",[]],["component//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_and_execute_airflow",[]],["title//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_create_a_vm",[0,21.267,1114,42.465]],["name//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_create_a_vm",[]],["text//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_create_a_vm",[]],["component//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_create_a_vm",[]],["title//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_python",[91,24.751,286,37.151]],["name//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_python",[]],["text//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_python",[]],["component//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_python",[]],["title//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_create_an_airflow_environment",[0,18.102,191,27.498,4001,42.323]],["name//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_create_an_airflow_environment",[]],["text//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_create_an_airflow_environment",[]],["component//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_create_an_airflow_environment",[]],["title//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_docker",[91,24.751,1318,36.692]],["name//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_docker",[]],["text//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_docker",[]],["component//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_docker",[]],["title//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_docker_compose_and_docker_environment_configuration_files",[91,13.207,134,14.467,191,17.238,199,13.541,1318,30.907,3291,27.372]],["name//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_docker_compose_and_docker_environment_configuration_files",[]],["text//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_docker_compose_and_docker_environment_configuration_files",[]],["component//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_docker_compose_and_docker_environment_configuration_files",[]],["title//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_a_test_dbt_project",[91,18.339,123,21.788,257,26.245,263,23.501]],["name//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_a_test_dbt_project",[]],["text//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_a_test_dbt_project",[]],["component//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_a_test_dbt_project",[]],["title//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_create_the_airflow_environment_in_docker",[0,15.758,191,23.936,1318,27.187,4001,36.841]],["name//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_create_the_airflow_environment_in_docker",[]],["text//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_create_the_airflow_environment_in_docker",[]],["component//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_create_the_airflow_environment_in_docker",[]],["title//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_run_an_airflow_dag",[107,19.2,4001,42.323,4005,52.616]],["name//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_run_an_airflow_dag",[]],["text//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_run_an_airflow_dag",[]],["component//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_run_an_airflow_dag",[]],["title//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_summary",[492,40.696]],["name//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_summary",[]],["text//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_summary",[]],["component//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_summary",[]],["title//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_further_reading",[244,23.463,611,28.096]],["name//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_further_reading",[]],["text//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_further_reading",[]],["component//other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_further_reading",[]],["title//other-integrations/getting.started.dbt-feast-teradata-pipeline.html",[8,14.756,9,13.672,514,30.921,4123,49.967]],["name//other-integrations/getting.started.dbt-feast-teradata-pipeline.html",[9,0.284,514,0.641,3693,0.743,4124,1.037]],["text//other-integrations/getting.started.dbt-feast-teradata-pipeline.html",[0,1.84,4,1.793,5,2.041,8,2.924,9,2.376,10,0.493,15,0.489,16,0.482,22,1.336,26,1.478,29,0.623,30,0.862,35,2.687,37,0.865,38,0.767,43,1.076,50,2.15,52,1.205,53,0.865,60,0.893,63,0.865,68,0.726,69,0.841,75,1.593,82,1.268,84,0.783,85,0.906,88,0.655,90,1.872,91,1.366,101,1.944,102,1.719,103,0.623,104,0.552,105,1.109,107,0.393,109,0.639,119,2.09,120,1.015,121,1.541,123,0.512,124,0.573,125,0.5,126,0.573,127,2.014,132,0.767,134,1.206,145,0.82,149,0.639,150,3.499,156,1.006,161,0.573,163,0.801,168,2.715,176,0.52,180,0.646,181,0.631,183,0.529,191,1.034,192,0.726,199,1.128,201,0.603,208,4.498,213,2.2,214,1.351,217,0.801,223,4.071,224,1.274,225,0.963,227,0.783,228,1.221,229,0.963,230,5.124,232,0.703,239,0.703,251,0.485,252,0.887,257,4.645,258,0.631,262,0.631,263,2.744,265,1.086,267,0.524,273,0.893,274,0.801,275,1.011,279,1.473,283,0.893,286,0.646,292,0.59,294,1.412,295,2.095,296,1.314,297,0.801,298,1.238,299,1.36,301,1.642,303,1.441,305,0.841,306,0.963,307,0.739,308,0.767,310,0.655,311,0.963,324,0.801,329,2.368,332,0.639,337,1.825,338,2.133,339,1.274,340,2.601,341,1.086,342,1.673,347,1.385,348,0.597,350,1.36,357,1.557,358,1.011,359,1.548,360,1.412,366,0.925,367,1.493,368,1.541,369,1.575,370,0.925,372,0.963,373,0.963,380,0.682,381,0.801,382,0.692,383,1.557,384,1.772,385,1.255,386,0.801,387,0.783,392,1.509,395,1.892,396,2.669,399,1.509,400,0.801,401,0.893,404,0.841,405,1.933,410,0.801,435,0.739,436,1.205,443,0.783,446,1.548,448,0.783,451,0.623,464,0.963,469,1.825,473,1.695,474,2.894,477,1.351,491,1.441,494,1.098,497,0.82,499,0.664,514,1.856,515,0.639,517,1.109,528,1.592,531,1.575,537,0.841,542,0.655,553,0.739,570,0.646,573,0.682,594,0.783,619,0.925,625,0.893,628,2.668,630,1.743,631,1.011,632,0.82,641,0.801,650,0.673,682,1.076,683,0.783,690,0.925,692,0.753,698,0.841,727,1.612,761,1.147,768,0.82,835,1.175,856,0.692,861,0.925,871,0.841,875,0.963,889,0.82,906,0.963,923,0.893,930,2.077,957,0.739,1001,0.726,1020,0.925,1055,0.893,1059,0.963,1083,0.753,1105,1.314,1163,0.865,1295,0.646,1336,1.923,1412,1.076,1422,2.211,1461,1.011,1473,2.567,1476,1.011,1512,1.011,1513,0.963,1526,1.076,1587,1.314,1664,0.801,1745,0.963,1964,1.642,2424,1.642,2429,0.963,2450,1.011,2468,1.076,2548,0.925,2553,0.925,2561,0.963,2586,0.963,2629,1.011,2642,0.963,2897,0.801,2969,1.076,3145,1.011,3427,1.011,3487,0.963,3619,1.011,3693,5.349,3702,0.925,3707,1.076,3710,1.076,3712,1.076,3718,1.076,3719,1.076,3720,1.076,3723,1.979,3724,1.076,3725,1.011,3733,1.076,3741,3.412,3743,1.979,3751,1.076,3752,1.076,3754,1.076,3763,1.076,3795,1.076,3796,1.076,3797,1.076,3909,1.076,4007,1.076,4105,1.076,4125,1.174,4126,1.174,4127,1.174,4128,2.159,4129,1.174,4130,1.076,4131,1.174,4132,1.174,4133,1.174,4134,1.174,4135,1.174,4136,1.174,4137,1.174,4138,2.159,4139,1.174,4140,1.174,4141,1.174,4142,2.159,4143,1.174,4144,1.174,4145,1.174,4146,4.352,4147,1.174,4148,1.174,4149,1.174,4150,1.174,4151,1.174,4152,1.174,4153,1.174,4154,1.174,4155,1.174,4156,1.174,4157,1.174,4158,1.174,4159,1.174,4160,1.174,4161,1.174,4162,1.174,4163,1.174,4164,1.174,4165,1.174,4166,1.174,4167,1.174,4168,1.174,4169,1.076,4170,2.998,4171,1.174,4172,1.174,4173,1.174,4174,1.174,4175,2.159,4176,1.174,4177,1.174,4178,1.174,4179,1.174,4180,1.174,4181,2.159,4182,1.174,4183,1.174,4184,1.174,4185,1.174,4186,1.174,4187,1.174,4188,1.174,4189,1.174]],["component//other-integrations/getting.started.dbt-feast-teradata-pipeline.html",[253,0.408]],["title//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_overview",[254,35.084]],["name//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_overview",[]],["text//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_overview",[]],["component//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_overview",[]],["title//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_introduction",[2301,62.163]],["name//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_introduction",[]],["text//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_introduction",[]],["component//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_introduction",[]],["title//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_dbt",[257,42.924]],["name//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_dbt",[]],["text//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_dbt",[]],["component//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_dbt",[]],["title//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_feast",[3693,58.585]],["name//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_feast",[]],["text//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_feast",[]],["component//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_feast",[]],["title//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_prerequisites",[255,36.808]],["name//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_prerequisites",[]],["text//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_prerequisites",[]],["component//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_prerequisites",[]],["title//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_objective",[327,40.696]],["name//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_objective",[]],["text//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_objective",[]],["component//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_objective",[]],["title//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_getting_started",[86,41.731,87,31.435]],["name//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_getting_started",[]],["text//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_getting_started",[]],["component//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_getting_started",[]],["title//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_about_the_banking_warehouse",[324,46.018,1513,55.344]],["name//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_about_the_banking_warehouse",[]],["text//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_about_the_banking_warehouse",[]],["component//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_about_the_banking_warehouse",[]],["title//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_configure_dbt",[199,25.376,257,35.421]],["name//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_configure_dbt",[]],["text//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_configure_dbt",[]],["component//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_configure_dbt",[]],["title//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_configure_feast",[199,25.376,3693,48.344]],["name//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_configure_feast",[]],["text//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_configure_feast",[]],["component//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_configure_feast",[]],["title//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_offline_store_config",[127,23.571,2309,36.816,3702,45.229]],["name//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_offline_store_config",[]],["text//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_offline_store_config",[]],["component//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_offline_store_config",[]],["title//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_syntax_for_teradata_sql_registry",[9,13.672,176,22.139,1371,45.801,1422,36.841]],["name//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_syntax_for_teradata_sql_registry",[]],["text//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_syntax_for_teradata_sql_registry",[]],["component//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_syntax_for_teradata_sql_registry",[]],["title//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_run_dbt",[107,22.556,257,35.421]],["name//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_run_dbt",[]],["text//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_run_dbt",[]],["component//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_run_dbt",[]],["title//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_create_the_dimensional_model",[0,18.102,168,25.03,404,41.15]],["name//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_create_the_dimensional_model",[]],["text//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_create_the_dimensional_model",[]],["component//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_create_the_dimensional_model",[]],["title//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_test_the_data",[8,19.915,123,29.405]],["name//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_test_the_data",[]],["text//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_test_the_data",[]],["component//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_test_the_data",[]],["title//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_run_feast",[107,22.556,3693,48.344]],["name//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_run_feast",[]],["text//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_run_feast",[]],["component//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_run_feast",[]],["title//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_feature_repository_definition",[230,33.864,296,34.936,658,36.147]],["name//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_feature_repository_definition",[]],["text//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_feature_repository_definition",[]],["component//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_feature_repository_definition",[]],["title//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_generate_training_data",[8,16.952,474,33.864,1473,33.864]],["name//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_generate_training_data",[]],["text//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_generate_training_data",[]],["component//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_generate_training_data",[]],["title//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_summary",[492,40.696]],["name//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_summary",[]],["text//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_summary",[]],["component//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_summary",[]],["title//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_further_reading",[244,23.463,611,28.096]],["name//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_further_reading",[]],["text//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_further_reading",[]],["component//other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_further_reading",[]],["title//other-integrations/integrate-teradata-vantage-with-knime.html",[5,10.859,9,10.859,265,19.966,332,21.593,395,20.174,4190,32.57]],["name//other-integrations/integrate-teradata-vantage-with-knime.html",[5,0.284,9,0.284,265,0.521,4190,0.851]],["text//other-integrations/integrate-teradata-vantage-with-knime.html",[0,0.998,4,0.973,5,2.517,8,1.908,9,1.768,10,1.328,15,1.319,16,1.3,19,1.701,21,1.609,28,1.867,30,3.258,34,2.168,35,1.576,48,1.402,74,1.959,82,2.732,85,1.328,88,1.766,90,1.592,91,1.882,92,5.337,104,1.489,107,1.059,119,2.184,120,1.489,123,3.239,124,1.545,125,1.348,126,1.545,128,3.284,130,2.03,131,2.756,134,3.281,142,5.415,150,3.425,154,4.382,156,1.475,160,3.605,161,2.503,165,2.494,168,1.38,176,2.271,177,1.926,179,1.926,183,2.91,190,1.369,199,1.191,207,1.576,208,2.271,233,1.84,234,3.498,236,1.489,243,1.402,244,1.101,245,1.391,246,1.391,247,1.402,248,2.184,249,1.402,250,1.402,251,1.309,252,1.3,267,2.29,332,3.515,338,1.814,341,1.592,351,1.609,362,3.217,395,3.776,434,3.582,451,1.682,458,1.644,469,1.926,476,3.024,521,2.494,547,1.531,563,2.16,667,2.03,711,2.07,727,1.701,765,2.212,788,2.07,897,2.727,902,1.896,930,1.766,941,1.867,1026,2.727,1053,2.16,1130,3.498,1260,2.494,1295,1.744,1300,2.408,1336,2.03,1403,2.598,1473,1.867,1492,4.409,1844,2.334,2156,2.03,2349,2.727,2623,2.16,2685,2.901,2792,2.901,3051,2.727,3214,2.598,3221,4.207,3531,2.598,3979,2.901,4017,2.901,4190,7.548,4191,3.165,4192,3.165,4193,3.165,4194,3.165,4195,3.165,4196,3.165,4197,3.165,4198,5.126,4199,5.126,4200,3.165,4201,3.165,4202,3.165,4203,3.165]],["component//other-integrations/integrate-teradata-vantage-with-knime.html",[253,0.408]],["title//other-integrations/integrate-teradata-vantage-with-knime.html#_overview",[254,35.084]],["name//other-integrations/integrate-teradata-vantage-with-knime.html#_overview",[]],["text//other-integrations/integrate-teradata-vantage-with-knime.html#_overview",[]],["component//other-integrations/integrate-teradata-vantage-with-knime.html#_overview",[]],["title//other-integrations/integrate-teradata-vantage-with-knime.html#_about_knime_analytics_platform",[332,31.232,395,29.18,4190,47.109]],["name//other-integrations/integrate-teradata-vantage-with-knime.html#_about_knime_analytics_platform",[]],["text//other-integrations/integrate-teradata-vantage-with-knime.html#_about_knime_analytics_platform",[]],["component//other-integrations/integrate-teradata-vantage-with-knime.html#_about_knime_analytics_platform",[]],["title//other-integrations/integrate-teradata-vantage-with-knime.html#_prerequisites",[255,36.808]],["name//other-integrations/integrate-teradata-vantage-with-knime.html#_prerequisites",[]],["text//other-integrations/integrate-teradata-vantage-with-knime.html#_prerequisites",[]],["component//other-integrations/integrate-teradata-vantage-with-knime.html#_prerequisites",[]],["title//other-integrations/integrate-teradata-vantage-with-knime.html#_integration_procedure",[265,33.926,1082,44.099]],["name//other-integrations/integrate-teradata-vantage-with-knime.html#_integration_procedure",[]],["text//other-integrations/integrate-teradata-vantage-with-knime.html#_integration_procedure",[]],["component//other-integrations/integrate-teradata-vantage-with-knime.html#_integration_procedure",[]],["title//other-integrations/integrate-teradata-vantage-with-knime.html#_summary",[492,40.696]],["name//other-integrations/integrate-teradata-vantage-with-knime.html#_summary",[]],["text//other-integrations/integrate-teradata-vantage-with-knime.html#_summary",[]],["component//other-integrations/integrate-teradata-vantage-with-knime.html#_summary",[]],["title//other-integrations/integrate-teradata-vantage-with-knime.html#_further_reading",[244,23.463,611,28.096]],["name//other-integrations/integrate-teradata-vantage-with-knime.html#_further_reading",[]],["text//other-integrations/integrate-teradata-vantage-with-knime.html#_further_reading",[]],["component//other-integrations/integrate-teradata-vantage-with-knime.html#_further_reading",[]],["title//query-service/send-queries-using-rest-api.html",[4,13.597,219,17.663,1107,25.013,1310,27.857,1649,33.65]],["name//query-service/send-queries-using-rest-api.html",[4,0.26,219,0.338,1107,0.478,1310,0.533,1649,0.644]],["text//query-service/send-queries-using-rest-api.html",[0,1.287,4,2.063,5,0.579,8,0.624,9,0.407,10,1.713,15,0.328,16,0.611,20,1.495,21,2.074,22,1.658,26,0.733,30,0.594,34,0.894,39,3.027,48,0.349,74,0.487,82,1.133,85,0.887,87,0.693,90,1.348,91,1.342,92,0.515,97,0.62,101,1.633,103,2.904,104,0.37,107,0.896,110,0.55,119,0.634,120,1.26,121,0.764,123,0.343,124,0.726,125,0.634,126,0.384,131,0.423,133,0.479,150,1.713,153,0.418,156,0.986,161,1.308,167,1.715,173,1.921,176,0.349,177,0.479,178,1.332,180,0.819,182,0.599,183,2.175,185,0.537,186,0.487,190,0.644,191,0.377,192,0.487,194,3.668,197,5.565,199,1.008,201,0.404,208,5.399,213,0.321,219,3.779,225,0.646,226,0.472,228,0.445,230,0.464,236,2.705,237,0.58,239,0.472,243,0.349,244,0.274,245,0.346,246,0.654,247,0.349,248,0.634,249,0.349,250,0.349,251,0.326,252,0.611,255,0.67,256,1.339,258,0.423,262,0.423,267,0.352,279,1.015,282,0.954,286,0.434,291,0.487,308,0.515,317,1.015,323,0.841,327,2.405,341,1.605,342,0.439,348,0.4,361,0.451,368,1.639,369,0.413,375,1.514,380,1.229,382,0.464,383,0.409,385,2.807,392,0.55,394,0.525,395,1.362,396,0.428,426,0.841,428,1.789,430,1.872,452,0.55,458,1.392,462,0.564,473,2.067,500,2.225,501,2.39,502,3.492,513,0.479,517,0.764,524,1.196,547,0.381,573,1.558,576,1.212,591,1.383,592,1.212,641,0.537,650,0.451,669,1.362,727,1.137,732,0.92,743,1.064,744,0.58,748,1.066,749,0.646,755,0.62,756,1.718,761,0.418,762,0.505,787,0.58,793,2.339,801,1.172,803,1.282,854,1.282,863,1.131,899,0.396,930,0.439,941,1.882,1029,1.221,1041,2.781,1044,0.62,1083,0.505,1107,2.067,1129,0.564,1234,1.212,1257,6.307,1293,0.55,1295,1.165,1310,2.009,1344,4.721,1359,0.515,1370,4.097,1384,1.097,1396,0.55,1477,0.722,1495,0.722,1536,0.937,1649,1.131,2031,1.282,2121,1.828,2156,0.505,2200,2.111,2220,4.581,2323,0.55,2451,0.722,2469,0.58,2536,0.722,2565,0.722,2643,0.678,2651,2.781,2887,0.678,2897,1.015,3048,1.221,3095,2.309,3103,1.282,3501,1.938,3603,0.678,3725,0.678,3884,2.456,3944,2.456,4204,0.787,4205,0.787,4206,0.787,4207,0.787,4208,0.787,4209,0.787,4210,0.787,4211,1.363,4212,2.114,4213,1.487,4214,1.487,4215,1.487,4216,1.487,4217,0.787,4218,1.487,4219,0.787,4220,0.787,4221,2.679,4222,0.787,4223,0.787,4224,2.679,4225,0.787,4226,1.487,4227,1.487,4228,1.487,4229,1.487,4230,2.114,4231,1.487,4232,3.19,4233,1.487,4234,3.656,4235,3.656,4236,2.679,4237,4.08,4238,2.679,4239,4.08,4240,1.487,4241,0.787,4242,0.787,4243,1.487,4244,0.787,4245,0.787,4246,1.487,4247,0.787,4248,0.787,4249,0.787,4250,2.679,4251,0.787,4252,0.787,4253,0.787,4254,0.787,4255,0.787,4256,0.787,4257,0.787,4258,0.787,4259,0.787,4260,0.787,4261,0.787,4262,0.787,4263,0.787,4264,0.787,4265,0.787,4266,0.787,4267,0.787,4268,0.787,4269,0.787,4270,0.787,4271,1.487,4272,0.787,4273,0.787,4274,0.787,4275,0.787,4276,0.787,4277,0.787,4278,0.787,4279,0.787,4280,3.19,4281,0.787,4282,0.787,4283,0.787,4284,0.787,4285,0.787,4286,0.787,4287,0.787,4288,0.787,4289,0.787,4290,0.787,4291,0.787,4292,0.787,4293,0.787,4294,0.787,4295,0.787,4296,0.787,4297,0.787,4298,0.787,4299,0.787,4300,0.787,4301,0.787,4302,0.787,4303,0.787,4304,0.787,4305,0.787,4306,0.787,4307,0.787,4308,0.787,4309,0.787,4310,0.787,4311,0.787,4312,0.787,4313,0.787,4314,0.787,4315,0.787,4316,0.787,4317,0.787,4318,0.787,4319,0.787,4320,0.787,4321,0.787,4322,0.787,4323,0.787,4324,0.787,4325,0.787,4326,2.679,4327,0.787,4328,0.787,4329,0.787,4330,0.787,4331,0.787,4332,0.722,4333,0.787,4334,1.487,4335,0.787,4336,0.787,4337,0.787,4338,1.487,4339,0.787,4340,0.787,4341,0.787,4342,0.787,4343,0.787,4344,0.787,4345,2.114,4346,0.787,4347,1.487,4348,1.363,4349,1.487,4350,0.787,4351,2.114,4352,2.114,4353,0.787,4354,0.787,4355,2.114,4356,0.787,4357,0.787,4358,0.787,4359,0.787,4360,0.787,4361,0.787,4362,0.787,4363,0.787,4364,1.487,4365,1.487,4366,0.787,4367,2.114,4368,0.787,4369,0.787,4370,0.787,4371,0.787,4372,0.787,4373,1.487,4374,0.787,4375,0.787,4376,0.787,4377,0.787,4378,1.487,4379,0.787,4380,0.787,4381,1.487,4382,1.487,4383,1.487,4384,1.487,4385,1.487,4386,1.487,4387,0.787,4388,0.787,4389,0.787]],["component//query-service/send-queries-using-rest-api.html",[253,0.408]],["title//query-service/send-queries-using-rest-api.html#_overview",[254,35.084]],["name//query-service/send-queries-using-rest-api.html#_overview",[]],["text//query-service/send-queries-using-rest-api.html#_overview",[]],["component//query-service/send-queries-using-rest-api.html#_overview",[]],["title//query-service/send-queries-using-rest-api.html#_prerequisites",[255,36.808]],["name//query-service/send-queries-using-rest-api.html#_prerequisites",[]],["text//query-service/send-queries-using-rest-api.html#_prerequisites",[]],["component//query-service/send-queries-using-rest-api.html#_prerequisites",[]],["title//query-service/send-queries-using-rest-api.html#_query_service_api_examples",[39,25.138,219,19.951,236,23.501,1107,28.252]],["name//query-service/send-queries-using-rest-api.html#_query_service_api_examples",[]],["text//query-service/send-queries-using-rest-api.html#_query_service_api_examples",[]],["component//query-service/send-queries-using-rest-api.html#_query_service_api_examples",[]],["title//query-service/send-queries-using-rest-api.html#_connect_to_your_query_service_instance",[30,19.951,39,25.138,119,21.288,219,19.951]],["name//query-service/send-queries-using-rest-api.html#_connect_to_your_query_service_instance",[]],["text//query-service/send-queries-using-rest-api.html#_connect_to_your_query_service_instance",[]],["component//query-service/send-queries-using-rest-api.html#_connect_to_your_query_service_instance",[]],["title//query-service/send-queries-using-rest-api.html#_http_basic_authentication",[185,39.171,430,40.108,1396,40.108]],["name//query-service/send-queries-using-rest-api.html#_http_basic_authentication",[]],["text//query-service/send-queries-using-rest-api.html#_http_basic_authentication",[]],["component//query-service/send-queries-using-rest-api.html#_http_basic_authentication",[]],["title//query-service/send-queries-using-rest-api.html#_jwt_authentication",[185,46.018,4211,61.813]],["name//query-service/send-queries-using-rest-api.html#_jwt_authentication",[]],["text//query-service/send-queries-using-rest-api.html#_jwt_authentication",[]],["component//query-service/send-queries-using-rest-api.html#_jwt_authentication",[]],["title//query-service/send-queries-using-rest-api.html#_make_a_simple_api_request_with_basic_options",[172,19.966,197,24.154,430,27.73,761,21.085,1008,25.952,1107,22.439]],["name//query-service/send-queries-using-rest-api.html#_make_a_simple_api_request_with_basic_options",[]],["text//query-service/send-queries-using-rest-api.html#_make_a_simple_api_request_with_basic_options",[]],["component//query-service/send-queries-using-rest-api.html#_make_a_simple_api_request_with_basic_options",[]],["title//query-service/send-queries-using-rest-api.html#_request_a_response_in_csv_format",[197,30.411,500,30.411,502,26.861,1257,36.841]],["name//query-service/send-queries-using-rest-api.html#_request_a_response_in_csv_format",[]],["text//query-service/send-queries-using-rest-api.html#_request_a_response_in_csv_format",[]],["component//query-service/send-queries-using-rest-api.html#_request_a_response_in_csv_format",[]],["title//query-service/send-queries-using-rest-api.html#_use_explicit_session_to_submit_a_query",[4,13.597,173,31.713,219,17.663,2220,30.187,3095,38.119]],["name//query-service/send-queries-using-rest-api.html#_use_explicit_session_to_submit_a_query",[]],["text//query-service/send-queries-using-rest-api.html#_use_explicit_session_to_submit_a_query",[]],["component//query-service/send-queries-using-rest-api.html#_use_explicit_session_to_submit_a_query",[]],["title//query-service/send-queries-using-rest-api.html#_use_asynchronous_queries",[4,17.643,219,22.919,4348,52.616]],["name//query-service/send-queries-using-rest-api.html#_use_asynchronous_queries",[]],["text//query-service/send-queries-using-rest-api.html#_use_asynchronous_queries",[]],["component//query-service/send-queries-using-rest-api.html#_use_asynchronous_queries",[]],["title//query-service/send-queries-using-rest-api.html#_get_a_list_of_active_or_queued_queries",[153,26.547,219,19.951,308,32.675,4332,45.801]],["name//query-service/send-queries-using-rest-api.html#_get_a_list_of_active_or_queued_queries",[]],["text//query-service/send-queries-using-rest-api.html#_get_a_list_of_active_or_queued_queries",[]],["component//query-service/send-queries-using-rest-api.html#_get_a_list_of_active_or_queued_queries",[]],["title//query-service/send-queries-using-rest-api.html#_resources",[1103,51.461]],["name//query-service/send-queries-using-rest-api.html#_resources",[]],["text//query-service/send-queries-using-rest-api.html#_resources",[]],["component//query-service/send-queries-using-rest-api.html#_resources",[]],["title//regulus/getting-started-with-regulus.html",[107,16.713,477,22.505,1392,33.355,2541,34.913]],["name//regulus/getting-started-with-regulus.html",[86,0.828,87,0.623,4390,0.875]],["text//regulus/getting-started-with-regulus.html",[0,2.209,4,2.411,7,2.851,8,2.507,10,1.336,15,0.752,16,0.741,25,1.081,26,0.89,29,0.959,30,2.797,34,1.346,35,0.899,48,0.8,82,0.763,85,0.758,90,0.908,91,1.169,93,2.005,101,0.806,105,0.927,107,1.966,121,2.194,127,1.307,128,1.618,134,2.071,139,0.908,147,1.373,149,0.982,150,1.793,156,2.401,160,1.776,161,2.515,171,1.205,172,0.908,178,1.137,183,1.924,189,3.02,190,0.781,191,1.525,192,1.97,199,1.198,208,3.627,209,1.18,210,1.373,212,1.422,213,3.914,214,1.924,219,1.271,231,2.173,233,1.851,235,1.137,243,0.8,244,0.628,245,0.793,246,0.793,247,0.8,248,1.356,249,0.8,250,0.8,251,1.317,252,1.754,256,0.758,258,1.711,262,0.97,263,3.506,267,0.806,268,1.691,271,3.368,282,1.158,292,3.525,296,1.099,323,1.021,327,1.585,339,1.065,341,1.602,342,1.776,352,1.099,361,1.825,369,0.948,375,0.857,397,2.005,413,1.158,432,1.732,433,2.149,458,0.938,472,1.732,474,1.878,477,0.813,488,1.117,503,1.754,504,1.117,507,2.415,524,1.021,542,1.007,543,1.654,547,1.54,549,2.613,550,4.438,551,2.743,552,2.743,557,2.225,564,1.8,576,1.825,578,1.331,593,1.035,595,2.282,601,1.232,603,1.331,630,1.049,658,1.137,673,1.232,743,1.602,761,0.959,762,1.158,765,4.533,773,1.422,787,1.331,793,1.035,838,2.591,860,1.373,876,1.422,899,0.908,999,1.294,1001,1.117,1008,1.18,1107,1.8,1123,1.373,1132,1.294,1159,1.331,1180,1.422,1212,1.232,1216,2.005,1295,1.754,1318,0.982,1344,1.232,1352,3.918,1374,5.329,1392,4.33,1398,1.294,1668,1.205,1808,1.294,2107,2.282,2115,1.422,2185,1.232,2200,1.422,2247,1.422,2272,1.373,2316,3.249,2417,4.058,2424,1.373,2469,1.331,2541,2.225,2623,1.232,2680,1.422,2890,1.481,2897,1.232,2902,1.294,2903,1.422,2915,2.347,3214,2.613,3292,1.555,3771,1.555,3845,1.422,4390,4.581,4391,1.481,4392,1.481,4393,1.481,4394,1.805,4395,2.613,4396,1.481,4397,2.918,4398,2.918,4399,1.655,4400,1.655,4401,1.555,4402,1.655,4403,1.655,4404,1.555,4405,1.805,4406,1.655,4407,1.805,4408,1.555,4409,1.655,4410,1.555,4411,6.487,4412,6.487,4413,6.487,4414,3.184,4415,3.184,4416,1.805,4417,5.151,4418,1.805,4419,1.805,4420,3.184,4421,1.805,4422,5.877,4423,1.805,4424,3.184,4425,1.805,4426,1.805,4427,1.805,4428,1.805,4429,1.805,4430,1.555,4431,1.555,4432,1.655,4433,1.655]],["component//regulus/getting-started-with-regulus.html",[253,0.408]],["title//regulus/getting-started-with-regulus.html#_overview",[254,35.084]],["name//regulus/getting-started-with-regulus.html#_overview",[]],["text//regulus/getting-started-with-regulus.html#_overview",[]],["component//regulus/getting-started-with-regulus.html#_overview",[]],["title//regulus/getting-started-with-regulus.html#_before_you_begin",[361,38.654,790,49.721]],["name//regulus/getting-started-with-regulus.html#_before_you_begin",[]],["text//regulus/getting-started-with-regulus.html#_before_you_begin",[]],["component//regulus/getting-started-with-regulus.html#_before_you_begin",[]],["title//regulus/getting-started-with-regulus.html#_run_your_first_workload",[107,19.2,547,27.758,2541,40.108]],["name//regulus/getting-started-with-regulus.html#_run_your_first_workload",[]],["text//regulus/getting-started-with-regulus.html#_run_your_first_workload",[]],["component//regulus/getting-started-with-regulus.html#_run_your_first_workload",[]],["title//regulus/getting-started-with-regulus.html#_next_steps",[216,36.252,256,28.304]],["name//regulus/getting-started-with-regulus.html#_next_steps",[]],["text//regulus/getting-started-with-regulus.html#_next_steps",[]],["component//regulus/getting-started-with-regulus.html#_next_steps",[]],["title//regulus/install-regulus-docker-image.html",[4,13.597,91,16.236,199,16.646,1318,24.07,4390,28.928]],["name//regulus/install-regulus-docker-image.html",[91,0.38,1278,0.611,1318,0.564,4390,0.678]],["text//regulus/install-regulus-docker-image.html",[0,1.233,4,2.75,5,0.79,7,0.574,8,1.404,9,0.937,10,1.827,15,0.358,16,0.353,20,0.902,21,0.437,25,0.515,26,0.797,30,1.367,34,1.22,39,3.31,40,0.493,42,0.457,48,0.381,56,2.557,69,0.616,73,0.616,74,2.693,76,2.337,82,1.22,84,0.574,85,1.641,87,2.216,90,1.452,91,2.225,93,0.541,94,0.523,101,2.44,102,3.13,103,0.457,104,0.404,107,1.931,111,0.515,119,0.974,120,1.357,122,0.515,125,0.974,127,0.664,128,1.163,130,0.551,131,0.869,134,1.572,135,0.486,147,0.654,150,0.361,153,0.859,156,2.546,160,0.902,161,0.42,162,1.103,163,1.103,166,0.587,172,0.432,176,0.381,178,0.541,179,0.523,181,0.462,183,1.542,184,0.616,185,1.103,186,1,189,2.236,190,2.363,191,1.873,192,2.119,197,0.523,199,1.928,201,2.806,203,1.911,206,1.079,207,0.805,208,2.686,211,0.616,212,1.273,216,0.869,218,1.561,219,2.181,228,1.632,231,1.103,232,0.968,233,5.372,235,0.541,236,0.404,243,0.381,244,0.299,245,0.378,246,0.378,247,0.381,248,0.689,249,0.381,250,0.381,251,0.946,252,0.664,253,0.326,256,0.678,258,0.462,262,0.462,263,1.611,265,1.452,267,0.384,268,3.363,269,1.103,289,1.326,291,2.942,292,1.151,296,0.523,298,2.241,299,1.018,307,2.156,314,1.037,316,1.729,323,0.486,328,0.551,332,0.468,337,0.523,339,0.507,341,0.432,342,0.48,347,1.467,348,1.741,352,0.984,361,0.926,368,1.483,369,0.849,375,0.767,383,0.446,395,0.437,400,0.587,402,0.677,414,2.017,416,0.654,421,1,426,0.914,428,1.079,432,0.468,433,2.392,434,1.598,451,0.859,452,0.601,469,0.984,474,2.307,477,0.387,503,2.397,507,2.461,517,1.483,519,0.541,523,0.601,528,0.634,530,0.859,539,0.705,542,0.48,543,2.031,547,0.416,578,2.128,589,1.229,590,1.192,597,1.969,632,0.601,633,0.788,667,1.467,669,1.741,670,1.74,692,0.551,710,0.654,718,1.229,727,0.462,751,1.927,761,1.533,762,1.467,787,0.634,794,0.705,835,0.468,838,1.967,860,0.654,875,0.705,876,0.677,941,2.02,1001,0.532,1008,0.562,1043,0.654,1053,0.587,1081,1.159,1083,0.551,1089,0.788,1103,0.541,1107,1.293,1123,0.654,1130,0.587,1132,1.64,1135,0.741,1141,1.598,1145,1.817,1154,1.103,1159,1.192,1180,0.677,1199,0.587,1278,2.805,1295,0.89,1311,2.154,1312,0.984,1318,4.811,1334,0.788,1339,1.481,1341,0.741,1344,5.189,1352,6.258,1384,0.634,1385,0.634,1387,0.634,1388,1.481,1392,3.646,1398,1.159,1403,0.705,1416,0.705,1587,1.757,1655,1.159,1789,1.159,1808,0.616,1964,0.654,1999,4.975,2109,0.634,2121,0.587,2125,1.326,2127,0.677,2129,2.508,2131,2.951,2140,0.562,2146,0.788,2152,1.129,2156,1.467,2185,1.969,2265,0.616,2298,1.481,2308,0.741,2422,0.741,2424,0.654,2462,0.654,2467,0.741,2469,0.634,2541,2.017,2548,0.677,2561,0.705,2583,0.677,2623,0.587,2680,0.677,2818,1.971,2902,0.616,2903,0.677,3189,0.741,3254,0.741,3291,3.616,3292,0.741,3297,3.584,3357,1.481,3647,0.788,3771,1.393,3840,0.677,3849,1.393,3914,0.788,3939,3.584,3948,0.788,3986,3.429,4169,0.788,4390,4.303,4391,0.705,4392,0.705,4393,0.705,4396,1.326,4397,2.096,4398,2.096,4399,2.096,4400,1.481,4406,1.481,4432,0.788,4433,0.788,4434,0.86,4435,0.86,4436,0.86,4437,0.86,4438,0.86,4439,0.86,4440,0.86,4441,0.86,4442,3.424,4443,1.616,4444,2.886,4445,0.86,4446,0.86,4447,0.86,4448,0.86,4449,0.86,4450,0.86,4451,0.86,4452,0.86,4453,0.86,4454,0.86,4455,0.86,4456,2.886,4457,1.616,4458,2.886,4459,1.616,4460,0.86,4461,0.86,4462,0.86,4463,0.86,4464,0.86,4465,0.86,4466,0.86,4467,0.86,4468,0.86,4469,0.86,4470,0.86,4471,1.616,4472,1.616,4473,0.86,4474,1.616,4475,0.86,4476,0.86,4477,0.86,4478,0.86,4479,0.86,4480,2.287,4481,0.86,4482,0.86,4483,0.86,4484,2.287,4485,0.86,4486,1.616,4487,0.86]],["component//regulus/install-regulus-docker-image.html",[253,0.408]],["title//regulus/install-regulus-docker-image.html#_overview",[254,35.084]],["name//regulus/install-regulus-docker-image.html#_overview",[]],["text//regulus/install-regulus-docker-image.html#_overview",[]],["component//regulus/install-regulus-docker-image.html#_overview",[]],["title//regulus/install-regulus-docker-image.html#_before_you_begin",[361,38.654,790,49.721]],["name//regulus/install-regulus-docker-image.html#_before_you_begin",[]],["text//regulus/install-regulus-docker-image.html#_before_you_begin",[]],["component//regulus/install-regulus-docker-image.html#_before_you_begin",[]],["title//regulus/install-regulus-docker-image.html#_install_workspaces",[91,24.751,233,39.204]],["name//regulus/install-regulus-docker-image.html#_install_workspaces",[]],["text//regulus/install-regulus-docker-image.html#_install_workspaces",[]],["component//regulus/install-regulus-docker-image.html#_install_workspaces",[]],["title//regulus/install-regulus-docker-image.html#_install_workspaces_using_docker_engine",[4,13.597,91,16.236,233,25.718,268,23.503,1318,24.07]],["name//regulus/install-regulus-docker-image.html#_install_workspaces_using_docker_engine",[]],["text//regulus/install-regulus-docker-image.html#_install_workspaces_using_docker_engine",[]],["component//regulus/install-regulus-docker-image.html#_install_workspaces_using_docker_engine",[]],["title//regulus/install-regulus-docker-image.html#_install_workspaces_using_docker_compose",[4,13.597,91,16.236,233,25.718,1318,24.07,3291,33.65]],["name//regulus/install-regulus-docker-image.html#_install_workspaces_using_docker_compose",[]],["text//regulus/install-regulus-docker-image.html#_install_workspaces_using_docker_compose",[]],["component//regulus/install-regulus-docker-image.html#_install_workspaces_using_docker_compose",[]],["title//regulus/install-regulus-docker-image.html#_configure_and_set_up_workspaces",[190,21.618,199,18.802,233,29.049,543,25.954]],["name//regulus/install-regulus-docker-image.html#_configure_and_set_up_workspaces",[]],["text//regulus/install-regulus-docker-image.html#_configure_and_set_up_workspaces",[]],["component//regulus/install-regulus-docker-image.html#_configure_and_set_up_workspaces",[]],["title//regulus/install-regulus-docker-image.html#_install_a_regulus_interface",[91,21.068,1159,42.323,4390,37.537]],["name//regulus/install-regulus-docker-image.html#_install_a_regulus_interface",[]],["text//regulus/install-regulus-docker-image.html#_install_a_regulus_interface",[]],["component//regulus/install-regulus-docker-image.html#_install_a_regulus_interface",[]],["title//regulus/install-regulus-docker-image.html#_install_jupyterlab_using_docker_engine",[4,13.597,91,16.236,268,23.503,1318,24.07,1392,29.53]],["name//regulus/install-regulus-docker-image.html#_install_jupyterlab_using_docker_engine",[]],["text//regulus/install-regulus-docker-image.html#_install_jupyterlab_using_docker_engine",[]],["component//regulus/install-regulus-docker-image.html#_install_jupyterlab_using_docker_engine",[]],["title//regulus/install-regulus-docker-image.html#_install_jupyterlab_using_docker_compose",[4,13.597,91,16.236,1318,24.07,1392,29.53,3291,33.65]],["name//regulus/install-regulus-docker-image.html#_install_jupyterlab_using_docker_compose",[]],["text//regulus/install-regulus-docker-image.html#_install_jupyterlab_using_docker_compose",[]],["component//regulus/install-regulus-docker-image.html#_install_jupyterlab_using_docker_compose",[]],["title//regulus/install-regulus-docker-image.html#_next_steps",[216,36.252,256,28.304]],["name//regulus/install-regulus-docker-image.html#_next_steps",[]],["text//regulus/install-regulus-docker-image.html#_next_steps",[]],["component//regulus/install-regulus-docker-image.html#_next_steps",[]],["title//regulus/regulus-magic-reference.html",[292,22.255,743,22.255,1374,33.65,1392,29.53,4390,28.928]],["name//regulus/regulus-magic-reference.html",[743,0.673,1374,1.017,4390,0.875]],["text//regulus/regulus-magic-reference.html",[0,2.551,4,1.934,9,1.006,10,3.69,15,0.624,16,0.615,20,0.836,21,0.761,25,0.897,29,0.796,30,1.077,34,1.555,39,2.261,42,0.796,48,0.664,74,0.927,82,0.633,85,1.132,86,0.927,87,1.714,90,0.754,93,1.698,100,0.815,101,0.669,102,0.859,107,0.902,121,0.77,125,0.638,127,3.205,134,0.602,147,1.139,153,3.792,156,1.257,161,4.936,162,1.022,163,1.84,172,3.926,176,1.629,178,0.943,189,2.664,191,0.718,199,1.383,210,3.418,212,1.18,219,3.332,228,0.847,233,2.137,239,0.897,243,0.664,244,0.521,245,0.658,246,0.658,247,0.664,248,1.566,249,0.664,250,0.664,251,1.521,252,1.845,258,0.805,262,0.805,263,5.522,267,1.204,268,4.671,279,1.022,291,0.927,292,3.165,296,2.238,299,0.943,307,1.698,316,0.897,320,1.84,327,4.475,333,1.291,337,0.912,339,0.884,341,2.907,342,0.836,361,0.859,367,4.156,369,2.36,375,0.711,383,0.778,413,0.961,421,0.927,426,0.847,433,2.261,451,0.796,455,2.569,462,1.074,471,1.18,474,0.884,507,1.525,513,0.912,524,0.847,530,0.796,543,1.4,578,2.711,591,0.98,593,0.859,597,2.509,630,0.871,651,1,658,2.83,669,0.761,673,1.022,727,1.449,743,0.754,838,3.391,876,1.18,899,1.356,930,2.052,941,0.884,1001,0.927,1037,1.047,1107,0.847,1132,1.074,1147,2.651,1154,1.022,1165,1.933,1181,0.961,1293,1.047,1295,2.856,1352,2.797,1374,2.797,1392,1.8,1416,4.741,1492,2.509,1587,2.238,1668,1,2107,1.074,2121,5.999,2125,2.213,2127,2.897,2131,3.168,2140,0.98,2152,1.047,2156,5.502,2185,4.293,2247,1.18,2265,1.074,2316,2.797,2378,1.229,2413,1.291,2583,2.897,2680,1.18,2897,1.84,3048,1.229,3187,2.213,3840,1.18,3860,1.373,3986,1.18,4031,1.373,4390,3.391,4391,1.229,4392,1.229,4393,1.229,4395,2.213,4396,2.213,4401,1.291,4402,2.471,4403,1.373,4404,1.291,4408,1.291,4409,1.373,4410,1.291,4430,1.291,4431,1.291,4488,1.498,4489,1.498,4490,1.498,4491,1.373,4492,1.373,4493,1.498,4494,1.373,4495,1.373,4496,2.696,4497,1.373,4498,1.373,4499,1.291,4500,1.373,4501,2.471]],["component//regulus/regulus-magic-reference.html",[253,0.408]],["title//regulus/regulus-magic-reference.html#_overview",[254,35.084]],["name//regulus/regulus-magic-reference.html#_overview",[]],["text//regulus/regulus-magic-reference.html#_overview",[]],["component//regulus/regulus-magic-reference.html#_overview",[]],["title//regulus/regulus-magic-reference.html#_workspaces_config",[4401,70.42]],["name//regulus/regulus-magic-reference.html#_workspaces_config",[]],["text//regulus/regulus-magic-reference.html#_workspaces_config",[]],["component//regulus/regulus-magic-reference.html#_workspaces_config",[]],["title//regulus/regulus-magic-reference.html#_project_create",[4404,70.42]],["name//regulus/regulus-magic-reference.html#_project_create",[]],["text//regulus/regulus-magic-reference.html#_project_create",[]],["component//regulus/regulus-magic-reference.html#_project_create",[]],["title//regulus/regulus-magic-reference.html#_project_delete",[4491,74.908]],["name//regulus/regulus-magic-reference.html#_project_delete",[]],["text//regulus/regulus-magic-reference.html#_project_delete",[]],["component//regulus/regulus-magic-reference.html#_project_delete",[]],["title//regulus/regulus-magic-reference.html#_project_list",[4492,74.908]],["name//regulus/regulus-magic-reference.html#_project_list",[]],["text//regulus/regulus-magic-reference.html#_project_list",[]],["component//regulus/regulus-magic-reference.html#_project_list",[]],["title//regulus/regulus-magic-reference.html#_project_auth_create",[4408,70.42]],["name//regulus/regulus-magic-reference.html#_project_auth_create",[]],["text//regulus/regulus-magic-reference.html#_project_auth_create",[]],["component//regulus/regulus-magic-reference.html#_project_auth_create",[]],["title//regulus/regulus-magic-reference.html#_project_auth_delete",[4494,74.908]],["name//regulus/regulus-magic-reference.html#_project_auth_delete",[]],["text//regulus/regulus-magic-reference.html#_project_auth_delete",[]],["component//regulus/regulus-magic-reference.html#_project_auth_delete",[]],["title//regulus/regulus-magic-reference.html#_project_auth_list",[4495,74.908]],["name//regulus/regulus-magic-reference.html#_project_auth_list",[]],["text//regulus/regulus-magic-reference.html#_project_auth_list",[]],["component//regulus/regulus-magic-reference.html#_project_auth_list",[]],["title//regulus/regulus-magic-reference.html#_project_engine_deploy",[4410,70.42]],["name//regulus/regulus-magic-reference.html#_project_engine_deploy",[]],["text//regulus/regulus-magic-reference.html#_project_engine_deploy",[]],["component//regulus/regulus-magic-reference.html#_project_engine_deploy",[]],["title//regulus/regulus-magic-reference.html#_project_engine_suspend",[4431,70.42]],["name//regulus/regulus-magic-reference.html#_project_engine_suspend",[]],["text//regulus/regulus-magic-reference.html#_project_engine_suspend",[]],["component//regulus/regulus-magic-reference.html#_project_engine_suspend",[]],["title//regulus/regulus-magic-reference.html#_project_engine_list",[4497,74.908]],["name//regulus/regulus-magic-reference.html#_project_engine_list",[]],["text//regulus/regulus-magic-reference.html#_project_engine_list",[]],["component//regulus/regulus-magic-reference.html#_project_engine_list",[]],["title//regulus/regulus-magic-reference.html#_project_user_list",[4498,74.908]],["name//regulus/regulus-magic-reference.html#_project_user_list",[]],["text//regulus/regulus-magic-reference.html#_project_user_list",[]],["component//regulus/regulus-magic-reference.html#_project_user_list",[]],["title//regulus/regulus-magic-reference.html#_project_backup",[4430,70.42]],["name//regulus/regulus-magic-reference.html#_project_backup",[]],["text//regulus/regulus-magic-reference.html#_project_backup",[]],["component//regulus/regulus-magic-reference.html#_project_backup",[]],["title//regulus/regulus-magic-reference.html#_project_restore",[4500,74.908]],["name//regulus/regulus-magic-reference.html#_project_restore",[]],["text//regulus/regulus-magic-reference.html#_project_restore",[]],["component//regulus/regulus-magic-reference.html#_project_restore",[]],["title//regulus/regulus-magic-reference.html#_help",[252,33.558]],["name//regulus/regulus-magic-reference.html#_help",[]],["text//regulus/regulus-magic-reference.html#_help",[]],["component//regulus/regulus-magic-reference.html#_help",[]],["title//regulus/using-regulus-workspace-cli.html",[4,15.358,233,29.049,2129,32.048,4390,32.675]],["name//regulus/using-regulus-workspace-cli.html",[4,0.319,233,0.603,2129,0.665,4390,0.678]],["text//regulus/using-regulus-workspace-cli.html",[0,1.959,4,1.91,10,2.298,15,0.82,16,0.436,21,3.607,25,0.636,26,0.971,34,1.707,39,0.534,48,0.47,51,1.113,75,0.564,82,3.106,85,1.155,90,0.534,91,1.01,100,0.578,101,0.474,103,0.564,107,0.921,119,1.173,120,1.294,125,0.452,127,2.073,128,0.54,134,1.623,139,0.534,153,4.879,156,0.918,161,1.971,166,0.725,189,0.546,190,1.191,191,1.318,192,0.657,199,3.005,207,0.529,209,0.694,211,0.761,212,0.837,219,2.726,226,1.179,228,0.6,231,0.725,233,4.125,243,0.47,244,0.369,245,0.467,246,0.467,247,0.47,248,0.839,249,0.47,250,0.47,251,0.814,252,3.11,256,1.155,262,0.571,263,4.752,267,0.474,268,4.243,292,4.279,296,1.675,310,0.593,327,3.094,337,0.646,339,0.626,341,0.99,348,2.052,350,1.733,351,0.54,352,1.198,354,0.973,362,3.534,367,4.312,368,2.074,369,0.558,375,0.504,383,3.686,416,0.808,433,2.3,451,0.564,469,0.646,476,0.626,477,0.887,502,2.944,507,1.556,543,2.097,578,1.452,591,0.694,593,1.128,626,2.029,658,1.733,683,1.837,692,0.681,709,0.709,732,1.218,743,0.534,761,0.564,762,0.681,770,0.783,838,2.539,876,0.837,899,3.57,930,1.917,941,1.624,1001,0.657,1019,0.761,1037,3.194,1043,0.808,1083,0.681,1107,1.943,1147,2.382,1159,1.452,1236,0.761,1295,4.173,1314,1.923,1318,0.578,1352,3.071,1359,5.093,1392,1.314,1416,1.616,1424,0.837,1492,0.725,1877,2.707,1999,3.751,2034,2.259,2107,0.761,2121,5.012,2127,1.551,2129,3.512,2140,1.8,2156,5.352,2185,2.344,2200,0.837,2220,0.725,2309,1.263,2316,1.498,2346,0.837,2378,0.871,2405,2.093,2422,0.915,2541,1.376,2545,0.973,2553,0.837,2583,0.837,2651,0.808,2680,0.837,2887,0.915,3187,2.259,3612,0.915,3840,2.168,3928,0.973,3953,0.973,3986,8.43,4040,5.989,4130,3.149,4390,3.834,4391,0.871,4392,0.871,4393,0.871,4395,2.259,4396,0.871,4499,2.372,4501,1.805,4502,1.062,4503,1.062,4504,8.936,4505,1.062,4506,8.801,4507,7.345,4508,4.571,4509,1.062,4510,1.062,4511,1.062]],["component//regulus/using-regulus-workspace-cli.html",[253,0.408]],["title//regulus/using-regulus-workspace-cli.html#_overview",[254,35.084]],["name//regulus/using-regulus-workspace-cli.html#_overview",[]],["text//regulus/using-regulus-workspace-cli.html#_overview",[]],["component//regulus/using-regulus-workspace-cli.html#_overview",[]],["title//regulus/using-regulus-workspace-cli.html#_before_you_begin",[361,38.654,790,49.721]],["name//regulus/using-regulus-workspace-cli.html#_before_you_begin",[]],["text//regulus/using-regulus-workspace-cli.html#_before_you_begin",[]],["component//regulus/using-regulus-workspace-cli.html#_before_you_begin",[]],["title//regulus/using-regulus-workspace-cli.html#_install_workspaces_cli",[91,21.068,233,33.371,2129,36.816]],["name//regulus/using-regulus-workspace-cli.html#_install_workspaces_cli",[]],["text//regulus/using-regulus-workspace-cli.html#_install_workspaces_cli",[]],["component//regulus/using-regulus-workspace-cli.html#_install_workspaces_cli",[]],["title//regulus/using-regulus-workspace-cli.html#_use_workspaces_cli",[4,17.643,233,33.371,2129,36.816]],["name//regulus/using-regulus-workspace-cli.html#_use_workspaces_cli",[]],["text//regulus/using-regulus-workspace-cli.html#_use_workspaces_cli",[]],["component//regulus/using-regulus-workspace-cli.html#_use_workspaces_cli",[]],["title//regulus/using-regulus-workspace-cli.html#_workspaces_cli_reference",[233,33.371,743,28.878,2129,36.816]],["name//regulus/using-regulus-workspace-cli.html#_workspaces_cli_reference",[]],["text//regulus/using-regulus-workspace-cli.html#_workspaces_cli_reference",[]],["component//regulus/using-regulus-workspace-cli.html#_workspaces_cli_reference",[]],["title//regulus/using-regulus-workspace-cli.html#_workspaces_config",[233,39.204,2309,43.252]],["name//regulus/using-regulus-workspace-cli.html#_workspaces_config",[]],["text//regulus/using-regulus-workspace-cli.html#_workspaces_config",[]],["component//regulus/using-regulus-workspace-cli.html#_workspaces_config",[]],["title//regulus/using-regulus-workspace-cli.html#_workspaces_user_list",[120,26.998,153,30.497,233,33.371]],["name//regulus/using-regulus-workspace-cli.html#_workspaces_user_list",[]],["text//regulus/using-regulus-workspace-cli.html#_workspaces_user_list",[]],["component//regulus/using-regulus-workspace-cli.html#_workspaces_user_list",[]],["title//regulus/using-regulus-workspace-cli.html#_project_create",[0,21.267,263,31.717]],["name//regulus/using-regulus-workspace-cli.html#_project_create",[]],["text//regulus/using-regulus-workspace-cli.html#_project_create",[]],["component//regulus/using-regulus-workspace-cli.html#_project_create",[]],["title//regulus/using-regulus-workspace-cli.html#_project_list",[153,35.828,263,31.717]],["name//regulus/using-regulus-workspace-cli.html#_project_list",[]],["text//regulus/using-regulus-workspace-cli.html#_project_list",[]],["component//regulus/using-regulus-workspace-cli.html#_project_list",[]],["title//regulus/using-regulus-workspace-cli.html#_project_delete",[263,31.717,1147,39.784]],["name//regulus/using-regulus-workspace-cli.html#_project_delete",[]],["text//regulus/using-regulus-workspace-cli.html#_project_delete",[]],["component//regulus/using-regulus-workspace-cli.html#_project_delete",[]],["title//regulus/using-regulus-workspace-cli.html#_project_user_list",[120,26.998,153,30.497,263,26.998]],["name//regulus/using-regulus-workspace-cli.html#_project_user_list",[]],["text//regulus/using-regulus-workspace-cli.html#_project_user_list",[]],["component//regulus/using-regulus-workspace-cli.html#_project_user_list",[]],["title//regulus/using-regulus-workspace-cli.html#_project_backup",[263,31.717,4499,58.11]],["name//regulus/using-regulus-workspace-cli.html#_project_backup",[]],["text//regulus/using-regulus-workspace-cli.html#_project_backup",[]],["component//regulus/using-regulus-workspace-cli.html#_project_backup",[]],["title//regulus/using-regulus-workspace-cli.html#_project_restore",[263,31.717,3187,55.344]],["name//regulus/using-regulus-workspace-cli.html#_project_restore",[]],["text//regulus/using-regulus-workspace-cli.html#_project_restore",[]],["component//regulus/using-regulus-workspace-cli.html#_project_restore",[]],["title//regulus/using-regulus-workspace-cli.html#_project_engine_deploy",[263,26.998,268,30.497,838,28.878]],["name//regulus/using-regulus-workspace-cli.html#_project_engine_deploy",[]],["text//regulus/using-regulus-workspace-cli.html#_project_engine_deploy",[]],["component//regulus/using-regulus-workspace-cli.html#_project_engine_deploy",[]],["title//regulus/using-regulus-workspace-cli.html#_project_engine_suspend",[263,26.998,268,30.497,4395,47.109]],["name//regulus/using-regulus-workspace-cli.html#_project_engine_suspend",[]],["text//regulus/using-regulus-workspace-cli.html#_project_engine_suspend",[]],["component//regulus/using-regulus-workspace-cli.html#_project_engine_suspend",[]],["title//regulus/using-regulus-workspace-cli.html#_project_engine_list",[153,30.497,263,26.998,268,30.497]],["name//regulus/using-regulus-workspace-cli.html#_project_engine_list",[]],["text//regulus/using-regulus-workspace-cli.html#_project_engine_list",[]],["component//regulus/using-regulus-workspace-cli.html#_project_engine_list",[]],["title//regulus/using-regulus-workspace-cli.html#_project_auth_create",[0,18.102,263,26.998,2405,43.664]],["name//regulus/using-regulus-workspace-cli.html#_project_auth_create",[]],["text//regulus/using-regulus-workspace-cli.html#_project_auth_create",[]],["component//regulus/using-regulus-workspace-cli.html#_project_auth_create",[]],["title//regulus/using-regulus-workspace-cli.html#_project_auth_list",[153,30.497,263,26.998,2405,43.664]],["name//regulus/using-regulus-workspace-cli.html#_project_auth_list",[]],["text//regulus/using-regulus-workspace-cli.html#_project_auth_list",[]],["component//regulus/using-regulus-workspace-cli.html#_project_auth_list",[]],["title//regulus/using-regulus-workspace-cli.html#_project_auth_delete",[263,26.998,1147,33.864,2405,43.664]],["name//regulus/using-regulus-workspace-cli.html#_project_auth_delete",[]],["text//regulus/using-regulus-workspace-cli.html#_project_auth_delete",[]],["component//regulus/using-regulus-workspace-cli.html#_project_auth_delete",[]],["title//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html",[9,9.006,107,11.009,111,19.716,413,21.11,691,27.012,692,21.11,699,22.998,700,22.998]],["name//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html",[9,0.196,107,0.239,111,0.428,691,0.587,692,0.458,699,0.499]],["text//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html",[0,1.79,4,1.915,5,1.837,8,2.163,9,1.773,10,0.351,15,0.348,16,0.647,19,2.293,20,0.467,22,0.974,23,0.517,29,0.836,30,0.891,32,0.686,34,1.192,35,0.416,39,0.421,40,1.279,42,0.444,48,0.37,51,0.89,52,0.467,75,0.444,76,0.57,80,1.051,82,1.192,85,0.351,87,1.314,96,0.659,97,0.659,101,0.997,104,0.393,107,1.795,111,2.294,119,1.631,120,0.74,121,1.146,123,0.365,124,0.408,125,0.671,126,0.408,127,0.647,128,1.433,131,1.516,132,0.547,133,0.509,134,3.018,145,0.584,150,2.111,153,0.444,156,0.39,160,1.245,161,0.769,176,1.484,177,0.509,180,0.867,181,1.8,183,0.709,190,1.22,192,0.517,197,1.716,199,1.061,207,0.416,208,4.981,210,0.636,213,3.257,214,3.213,219,0.629,224,0.493,232,0.943,236,0.74,239,0.501,243,0.37,244,0.548,245,0.367,246,0.367,247,0.37,248,0.671,249,0.37,250,0.37,251,0.346,252,0.343,253,0.317,256,2.252,258,0.449,267,0.373,274,1.074,292,0.792,298,1.279,303,0.558,310,3.867,312,0.974,323,0.473,327,1.907,328,0.536,332,0.455,334,0.461,340,1.1,341,1.123,342,1.245,343,0.517,345,0.526,348,0.425,357,0.434,365,1.051,369,1.172,375,2.213,380,1.297,381,0.57,385,0.486,386,3.432,390,1.03,397,0.526,405,1.464,410,0.57,413,1.808,414,0.584,421,0.974,431,0.479,432,0.857,434,1.559,442,1.074,451,2.034,452,0.584,455,1.1,467,0.686,472,0.857,491,0.558,492,0.416,494,1.134,499,1.262,500,0.958,505,1.405,512,0.599,515,0.857,518,0.412,522,1.01,524,1.262,531,0.439,546,0.902,547,0.404,563,1.074,564,2.165,570,0.867,573,0.486,576,0.479,580,0.558,591,0.547,592,0.479,593,0.479,594,1.051,595,1.129,601,1.924,603,2.079,611,0.93,612,0.493,613,0.493,619,1.241,641,0.57,651,0.558,660,1.459,683,0.558,687,0.558,692,1.01,694,0.659,695,0.766,699,2.34,700,3.749,701,0.616,702,0.616,703,1.831,704,1.161,705,0.766,706,1.431,707,0.766,708,0.686,709,1.051,710,0.636,711,1.844,712,0.766,713,0.766,714,0.766,715,1.357,716,0.659,717,1.443,718,0.636,719,0.686,720,0.766,721,0.766,722,0.72,724,0.766,725,0.659,726,0.616,727,0.846,728,0.686,729,0.766,730,1.03,731,1.051,732,0.517,733,0.599,734,0.526,735,0.766,736,1.697,737,0.659,738,0.72,739,0.72,740,1.443,741,0.616,742,0.547,743,0.792,744,1.161,745,1.882,746,0.766,747,0.72,751,2.847,765,1.97,769,3.07,770,1.645,771,2.584,772,2.43,773,2.222,774,2.584,775,2.584,776,2.584,777,1.923,778,2.584,779,1.443,780,1.443,781,1.357,782,1.443,784,0.659,791,0.766,793,1.92,795,4.909,798,0.636,806,1.443,807,3.07,808,1.443,809,1.443,810,1.443,811,1.443,812,0.766,813,1.443,814,1.443,815,1.443,816,1.443,819,1.443,820,0.536,822,2.021,829,0.558,830,1.443,831,0.766,832,0.766,833,0.636,834,0.686,835,1.214,836,0.599,837,0.72,838,0.421,839,0.72,840,1.241,841,0.636,842,0.766,843,0.686,844,0.636,845,0.766,846,0.766,871,0.599,941,0.929,958,0.473,1000,0.599,1020,0.659,1037,0.584,1298,1.198,1310,1.405,1341,0.72,1348,3.017,1494,0.636,1536,1.405,1674,0.72,1789,1.6,1844,0.616,2156,0.536,2220,1.924,2309,0.536,2425,3.51,2574,2.584,2581,0.72,2628,0.766,2698,3.909,2910,2.045,2932,0.766,2992,2.145,3214,1.831,3233,0.636,3913,0.766,3926,4.275,4038,0.766,4058,0.766,4512,0.836,4513,0.836,4514,1.574,4515,1.574,4516,0.836,4517,0.836,4518,0.836,4519,0.836,4520,0.836,4521,0.836,4522,0.836,4523,0.836,4524,0.836,4525,0.836,4526,2.819,4527,1.574,4528,0.836,4529,1.574,4530,0.836,4531,1.574,4532,0.836,4533,2.819,4534,1.574,4535,1.574,4536,2.819,4537,0.836,4538,0.836,4539,6.48,4540,1.574,4541,1.574,4542,0.836,4543,0.836,4544,2.819,4545,0.836,4546,0.836,4547,0.836,4548,0.836,4549,0.836,4550,0.836,4551,2.231,4552,0.836,4553,2.231,4554,2.231,4555,0.836,4556,0.836,4557,1.574,4558,0.836,4559,3.349,4560,3.829,4561,2.819,4562,7.836,4563,1.574,4564,3.349,4565,0.836,4566,1.574,4567,0.836,4568,0.836,4569,2.819,4570,1.574,4571,0.836,4572,0.836,4573,2.819,4574,0.836,4575,1.574]],["component//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html",[253,0.408]],["title//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_overview",[254,35.084]],["name//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_overview",[]],["text//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_overview",[]],["component//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_overview",[]],["title//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_prerequisites",[255,36.808]],["name//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_prerequisites",[]],["text//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_prerequisites",[]],["component//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_prerequisites",[]],["title//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_install_ttu",[91,24.751,708,55.344]],["name//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_install_ttu",[]],["text//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_install_ttu",[]],["component//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_install_ttu",[]],["title//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_get_sample_data",[8,19.915,477,30.373]],["name//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_get_sample_data",[]],["text//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_get_sample_data",[]],["component//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_get_sample_data",[]],["title//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_create_a_database",[0,21.267,150,28.304]],["name//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_create_a_database",[]],["text//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_create_a_database",[]],["component//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_create_a_database",[]],["title//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_run_tpt",[107,22.556,700,47.119]],["name//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_run_tpt",[]],["text//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_run_tpt",[]],["component//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_run_tpt",[]],["title//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_tpt_vs_nos",[499,32.456,700,40.108,847,52.616]],["name//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_tpt_vs_nos",[]],["text//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_tpt_vs_nos",[]],["component//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_tpt_vs_nos",[]],["title//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_summary",[492,40.696]],["name//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_summary",[]],["text//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_summary",[]],["component//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_summary",[]],["title//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_further_reading",[244,23.463,611,28.096]],["name//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_further_reading",[]],["text//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_further_reading",[]],["component//tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_further_reading",[]]],"invertedIndex":[["",{"_index":208,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[4605,1],[4628,1]]},"/advanced-dbt.html":{"position":[[2320,1],[2335,1],[2855,1],[2857,1]]},"/create-parquet-files-in-object-storage.html":{"position":[[1900,1],[1948,1],[1988,1],[1998,1],[2105,1],[2115,2],[2753,1],[2770,1],[2775,1],[2784,1],[3040,1],[3388,1],[3439,1],[3449,1],[3509,1],[3525,1],[3537,1],[3558,1],[3566,1]]},"/dbt.html":{"position":[[1051,1],[1053,1],[1346,1],[1361,1]]},"/fastload.html":{"position":[[1465,1],[1489,1],[2958,1],[3276,1],[3292,1],[3304,2],[4129,4],[4531,1],[4602,1],[4758,1],[4854,1],[4863,1],[4995,2],[5301,1],[5619,1],[5635,1],[5647,2],[5770,4],[6034,1],[6081,1],[6177,1],[6186,1],[6318,2],[6440,1],[6671,1],[6734,2],[6889,1],[6984,1]]},"/geojson-to-vantage.html":{"position":[[2002,1],[2009,1],[2497,1],[2543,1],[2625,1],[2723,2],[2882,3],[2886,4],[3546,1],[3645,1],[3701,1],[3724,1],[3757,1],[3787,1],[3817,1],[3851,1],[3881,1],[3915,1],[3945,1],[3977,1],[3997,1],[4184,1],[6195,1],[8145,1],[8191,1],[8266,1],[8350,2],[8546,3],[8550,2],[8553,4],[9053,1],[9185,1],[9290,1],[9302,3],[9322,2],[9831,1]]},"/getting.started.utm.html":{"position":[[1557,1],[2347,1],[4962,1],[5083,1],[5221,2],[5276,1],[5298,1],[5502,1],[5665,1],[5688,1],[5699,2],[5755,1],[5828,1],[5837,1],[5897,2],[5955,1]]},"/getting.started.vbox.html":{"position":[[1533,1],[3788,1],[3909,1],[4047,2],[4102,1],[4124,1],[4328,1],[4491,1],[4514,1],[4525,2],[4581,1],[4654,1],[4663,1],[4723,2],[4781,1]]},"/getting.started.vmware.html":{"position":[[4071,1],[4192,1],[4330,2],[4385,1],[4407,1],[4611,1],[4774,1],[4797,1],[4808,2],[4864,1],[4937,1],[4946,1],[5006,2],[5064,1]]},"/jupyter.html":{"position":[[2018,1],[2211,4],[3180,1],[3258,1],[3338,1],[3340,1],[3425,1],[3578,1],[3603,1],[3989,1],[4074,1],[4154,1],[4156,1],[4400,1],[4485,1],[4499,1],[5978,1],[6021,1],[6167,3],[6187,1],[6338,1],[6435,1],[6613,1],[6625,1],[6631,1]]},"/local.jupyter.hub.html":{"position":[[3048,1],[3117,1],[4064,1],[4084,1],[4138,62],[4201,1],[4244,62],[4307,1],[4406,1],[4488,62],[4551,1],[4616,62],[4693,1],[4773,1],[4870,1],[4996,62],[5059,1],[5089,62],[5263,2],[5266,1],[5328,2],[5331,1],[5398,2],[5401,1],[5472,2],[5475,1],[5539,2],[5542,1],[5597,2],[5600,1],[5609,1],[5625,1],[5708,1]]},"/ml.html":{"position":[[1211,1],[1425,1],[2072,1],[2094,1],[4024,1],[4224,1],[4286,1],[4358,1],[4429,1],[4497,1],[4571,1],[4645,1],[4719,1],[4793,1],[4867,1],[4940,1],[5009,1],[5078,1],[5147,1],[5251,1],[5355,1],[5459,1],[5563,1],[5667,1],[5795,1],[5800,1],[5805,1],[5908,1],[5913,1],[5918,1],[6021,1],[6026,1],[6031,1],[6134,1],[6139,1],[6144,1],[6260,1],[6323,1],[8067,1],[8181,1],[8190,1],[8209,1],[8228,1],[8248,1]]},"/mule.jdbc.example.html":{"position":[[862,1],[897,1],[1136,1],[1169,1],[2211,1],[2225,1],[2280,1],[2443,1],[2466,1],[2477,2],[2524,1],[2597,1],[2606,1],[2665,2],[3200,1],[3202,1],[3362,1],[3364,1]]},"/nos.html":{"position":[[1226,1],[1233,1],[1291,1],[2056,1],[2063,1],[2149,1],[3409,1],[3467,1],[3958,1],[3980,1],[4095,1],[4154,2],[4171,1],[6003,1],[6063,1],[6107,1],[6970,1],[6977,1],[7084,1],[7481,1],[7525,1],[7584,2],[7933,1],[7950,1],[7955,1],[7964,1],[7988,1],[8184,1]]},"/odbc.ubuntu.html":{"position":[[354,2],[612,1],[614,2],[672,1],[674,2],[1305,1],[1416,1],[1675,1]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[958,1],[965,1],[1045,1],[3555,1],[3839,1],[3858,1],[3905,1],[3952,1],[3985,1],[4021,1],[4041,1],[4065,1],[4145,1],[6291,1],[7825,1],[8075,1],[8104,1],[8125,1],[8263,1],[8306,1]]},"/run-vantage-express-on-aws.html":{"position":[[1048,1],[1129,1],[1174,1],[1201,1],[1231,1],[1248,1],[1312,1],[1335,1],[1379,1],[1449,1],[1497,1],[1536,1],[1553,1],[1633,1],[1669,1],[1697,1],[1784,1],[1850,1],[1867,1],[1937,1],[1960,1],[2009,1],[2087,1],[2110,1],[2161,1],[2177,1],[2179,1],[2235,1],[2281,1],[2318,1],[2358,1],[2374,1],[2476,1],[2512,1],[2558,1],[2574,1],[2585,1],[2641,1],[2664,1],[2700,1],[2752,1],[2768,1],[2859,1],[2904,1],[2941,2],[2964,1],[2981,2],[3048,1],[3093,1],[3130,2],[3166,1],[3183,1],[3262,1],[3305,1],[3447,1],[3463,1],[3506,1],[3532,1],[3578,1],[3627,1],[3663,1],[3723,1],[3779,1],[3818,1],[3881,1],[3979,1],[4024,1],[4069,2],[4095,1],[4112,2],[4135,1],[4177,1],[4243,1],[4301,1],[4342,1],[4407,1],[4459,1],[4503,1],[4564,2],[4587,1],[4632,1],[4872,1],[5115,1],[5183,1],[5247,1],[5249,1],[5263,1],[5274,1],[5391,1],[5416,1],[5428,1],[5456,1],[5522,1],[5547,1],[5600,1],[5636,1],[5672,1],[5757,1],[5814,1],[6093,2],[6682,1],[9160,1],[9182,1],[9386,1],[9549,1],[9572,1],[9583,2],[9639,1],[9712,1],[9721,1],[9781,2],[9839,1],[10225,1],[11273,1],[11377,1],[11420,1],[11629,1],[11719,1],[11750,1],[11811,1],[11854,1],[11912,1],[11961,1],[11984,2],[12019,1],[12068,1],[12133,1],[12176,2],[12206,1],[12252,1],[12301,1],[12337,1],[12373,1]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[1277,1],[1311,1],[1331,1],[1360,1],[1393,1],[1418,1],[1453,1],[1518,1],[1668,1],[1702,1],[1722,1],[1751,1],[1784,1],[1809,1],[2046,1],[2080,1],[2100,1],[2129,1],[2162,1],[2187,1],[2727,1],[2739,1],[2819,2],[2873,2],[3462,1],[5940,1],[5962,1],[6166,1],[6329,1],[6352,1],[6363,2],[6419,1],[6492,1],[6501,1],[6561,2],[6619,1],[7005,1],[8053,1]]},"/segment.html":{"position":[[1605,1],[1653,1],[2124,1],[2290,1],[2582,1],[2662,1],[2971,1],[3024,1],[3070,1],[3170,1],[3614,1],[3776,1],[3829,1],[3916,1],[4057,1],[4145,1],[4370,1],[4401,1],[4492,1],[4516,1],[4933,1]]},"/sto.html":{"position":[[957,1],[3024,1],[3046,1],[3659,1],[3810,1],[5020,1],[5065,1],[5091,1],[5120,1],[5819,1],[5825,1],[5834,1],[6222,1],[6800,1],[6806,1],[6868,1],[6877,1],[7026,1],[7116,1],[7207,1]]},"/vantage.express.gcp.html":{"position":[[852,1],[875,1],[909,1],[1038,1],[1071,1],[1140,1],[1163,1],[1197,1],[1326,1],[1359,1],[1428,1],[1451,1],[1485,1],[1614,1],[1647,1],[1900,2],[2489,1],[4967,1],[4989,1],[5193,1],[5356,1],[5379,1],[5390,2],[5446,1],[5519,1],[5528,1],[5588,2],[5646,1],[6032,1],[7080,1]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[3544,1],[3634,1],[4128,1],[4328,1],[5833,1],[7717,1],[9194,2],[9218,2],[9230,19],[9250,2],[9293,2],[9626,1],[9742,1],[9750,1],[9823,1],[10502,1],[11126,2],[11299,1],[13363,1],[13424,1],[14710,1],[14921,1],[17003,1],[17013,1],[17118,1],[17516,1],[18496,1],[18519,1],[18549,1],[20716,1],[20802,1],[21301,1],[21484,1],[22047,1],[22257,1],[22530,1],[24592,1],[24775,1],[24808,1],[24818,1]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2148,2],[2239,1],[2264,1],[2384,1],[2439,1],[2496,1],[2560,1],[2620,1],[2684,1],[2722,1],[2787,1],[3863,1],[3915,1],[4037,62],[4100,1],[4143,62],[4206,1],[4305,1],[4387,1],[4523,1],[4649,62],[4712,1],[4742,62],[4834,1],[4866,2],[4869,1],[4896,1],[4935,2],[4938,1],[4965,1],[5000,2],[5003,1],[5030,1],[5069,2],[5072,1],[5099,1],[5137,1],[5221,1],[5292,1],[5666,1]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2017,1],[2134,1],[2247,1],[2587,1],[2860,1],[3077,1],[3352,1],[3478,1],[4342,1]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[8961,2],[8976,2],[8988,11],[9000,2],[9019,2],[9279,1],[9404,1],[9412,1],[9539,2],[10188,1],[10568,1],[10809,1],[11258,1],[12662,2],[12672,1],[12968,1],[13180,2],[13195,2],[13209,15],[13225,2],[13244,2],[13247,1],[13435,1],[13515,1],[13635,1],[13648,1],[13664,1],[13678,1],[13809,1],[14048,1],[14141,1],[14478,1],[15269,1],[15303,1],[15335,1],[15664,1],[15989,1],[17415,1],[17793,1],[19180,1],[19392,2],[19407,2],[19421,15],[19437,2],[19456,2],[19459,1],[19466,1],[19528,1],[20131,1],[20179,1],[20219,1],[20229,1],[21719,1],[23172,1],[23474,1],[23501,1],[23527,1],[23558,1],[23591,1],[23630,1],[23761,1],[23778,1],[23783,1],[23927,1],[24134,1]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2146,1],[3763,1],[3826,1],[3891,1],[3938,1],[3987,1],[4565,1],[6530,1],[6738,3],[7155,1],[7368,3],[7831,1],[8061,3]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2309,1],[2665,1],[2667,1],[2724,1],[2726,3],[2739,1],[2741,3],[2754,1],[2756,3],[2866,1],[2919,1],[2986,1],[3093,1],[3113,1],[3143,1],[5394,1]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2649,1],[2651,3],[2664,1],[2666,3],[2679,1],[2681,3],[2750,1],[2832,1],[2886,1],[3102,1],[4507,1]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[5325,1],[5342,1],[5351,1],[5358,2],[5416,2],[5442,1],[5690,1],[5699,1]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6245,1],[6322,1],[7861,1],[7899,1]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1139,1],[1141,2],[1556,1],[1558,2],[1573,1],[1575,2],[1634,1],[1636,2],[1671,2],[2257,1],[2259,2],[2304,1],[2306,2],[2558,1],[2560,2],[2654,1],[2656,2],[3093,1],[3095,2],[4258,1],[4260,2],[4311,1],[4364,1],[5313,1],[5315,2],[5475,2],[5506,1],[5532,1],[5611,1],[5633,1],[5850,1],[6298,1],[6300,2],[6463,1],[6542,2],[6891,1],[6934,1],[6967,1],[6980,1],[7031,1],[7083,1],[7101,1],[7139,1],[7304,4],[7352,1],[7372,1],[7378,2],[7433,1],[7484,1],[7623,1],[7862,1],[7864,2],[7975,1],[7991,2],[8144,1],[8222,1],[8241,1],[8325,1],[8342,1],[8368,1],[8399,1],[8452,1],[8470,1],[8496,1],[8519,1],[8544,1],[8581,1],[8656,2],[8666,1],[8694,1],[8717,1],[8735,1],[8761,1],[8784,1],[8809,1],[8914,1],[8916,2],[9024,1],[9082,2],[9095,1],[9162,1],[9369,1],[9371,2],[9863,1],[9865,2],[9925,1],[9935,1],[9953,1],[10144,1],[10146,1],[10760,1],[10762,2],[10826,1],[10871,1],[10905,1],[10994,1],[11012,1],[11055,1],[11128,1],[11158,1],[11179,1],[11202,1],[11211,1],[11444,1],[11446,2],[11675,2],[11729,1],[11862,1],[11886,1],[11915,1],[12012,1],[12401,1],[12403,2],[12529,1],[12653,2],[12856,1],[12858,2],[13032,1],[13034,2],[13094,1],[13104,1],[13122,1],[13442,1],[13444,1],[13527,1],[13529,2],[13545,1]]},"/jupyter-demos/index.html":{"position":[[275,1],[2022,1],[2118,1]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2784,1],[2940,1],[2963,1],[3139,1],[3190,1],[3437,1],[3460,1],[3522,1],[3604,1],[3627,1],[3689,1],[3771,1],[3794,1],[3856,1],[4785,1]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2821,1],[2977,1],[3000,1],[3176,1],[3227,1],[3474,1],[3497,1],[3559,1],[3641,1],[3664,1],[3726,1],[3808,1],[3831,1],[3893,1],[4097,1],[4260,1],[4281,1],[4642,1],[4666,1],[4727,1],[5020,1],[5044,1],[5105,1],[5681,1],[5702,1],[5731,1],[5733,1]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[29,1],[3613,1],[3675,1],[3751,1],[3973,1],[3991,1],[4076,1],[4253,2],[4321,1],[4803,1],[4856,1],[5066,4],[5185,2],[6239,1],[7313,3],[7378,3],[7414,1],[7416,1],[7418,1],[7439,2],[7442,1],[7463,2],[7466,1],[7486,1],[7488,1],[7593,1],[7613,1],[7771,1],[7773,1],[7775,2],[8016,1],[8050,4],[8055,1],[8075,1],[8086,1],[8102,1],[8122,1],[8136,1]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[858,1],[864,1],[1618,1],[1746,1],[2012,1],[2185,3],[3719,3]]},"/mule-teradata-connector/reference.html":{"position":[[11412,1],[16874,1],[19941,1],[23063,1],[26038,1],[26379,1],[29621,1]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[435,2],[507,1]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2066,1],[2372,1],[2727,1],[2743,1],[2766,1],[2782,1],[2798,1],[2824,1],[2843,1],[2859,1],[2868,1],[2981,1],[2994,1],[5343,1],[5502,2],[5505,1],[6527,1],[6603,1],[6605,1],[7084,2],[7217,2],[7349,2],[7481,2],[7647,2],[7812,2],[7945,2],[8946,1],[10248,1]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2469,1],[2555,3],[2573,3],[3064,1],[3066,1],[3826,1],[3828,1],[4339,1],[4373,4],[4378,1],[4398,1],[4409,1],[4425,1],[4445,1],[4459,1],[5372,1],[5478,1],[5492,1],[5516,1],[5538,1],[5849,3],[6134,1],[6213,1],[6258,1],[6280,1],[6316,1],[6350,1],[6384,1],[6402,1],[6506,1],[6562,1],[6748,2]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[757,1],[1490,1]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1328,1],[1370,1],[1745,1],[1965,1],[2007,1],[2034,1],[2044,1],[2046,3],[2050,1],[2077,1],[2135,1],[2144,1],[2146,1],[2201,1],[2203,1],[2267,1],[2303,1],[2348,1],[2424,1],[2601,1],[2639,1],[2641,2],[2653,1],[2663,1],[2665,1],[2692,1],[2694,1],[2758,1],[2846,2],[2904,1],[2963,1],[3396,1],[3439,1],[3441,1],[3467,1],[3477,1],[3557,1],[3572,1],[3603,1],[3694,1],[3897,58],[3956,1],[4010,1],[4042,1],[4081,2],[4084,1],[4127,2],[4130,1],[4172,2],[4175,1],[4218,2],[4221,1],[4269,1],[4271,2],[4283,1],[4459,2],[4462,1],[4645,2],[4648,1],[4822,2],[4825,1],[4997,2],[5000,1],[5150,1],[5152,2],[5193,1],[5195,1],[5197,1],[5639,1],[5672,1],[5715,1],[5717,1],[5743,1],[5753,1],[5815,1],[5830,1],[5861,1],[8176,1],[8205,1],[8249,1],[8251,1],[8273,1],[8288,1],[8319,1],[8431,1],[8585,1],[8862,1],[8921,1],[8978,1],[8980,1],[9055,1],[9107,1],[9150,1],[9152,1],[9171,1],[9232,1],[9308,1],[9367,1],[9499,2],[9518,1],[9524,1],[9567,1],[9569,1],[9588,1],[9657,1],[9672,1],[9703,1],[10236,2],[10264,1],[10270,1],[10326,1],[10357,1],[10449,1],[10486,1],[10699,2],[10713,2],[10731,2],[10748,1],[10750,1],[11008,1],[11072,1],[11103,1],[11195,1],[11247,1],[11276,1],[11335,2],[11338,1],[11386,2],[11389,1],[11437,1],[11439,2],[11481,1],[11483,1],[11485,1],[11599,1],[11654,1],[11762,1],[11764,1],[11804,1],[12034,3],[12048,3],[12066,3],[12083,2],[12086,2],[12089,1],[12129,1],[12358,3],[12372,3],[12390,3],[12407,2],[12410,1],[12412,1]]},"/regulus/getting-started-with-regulus.html":{"position":[[2073,1],[2121,1],[2156,1],[2278,1],[2589,1],[2727,1],[2775,1],[2810,1],[2925,1],[3252,1]]},"/regulus/install-regulus-docker-image.html":{"position":[[2735,1],[2762,1],[2811,1],[2868,1],[2917,1],[2939,1],[2961,1],[2999,1],[8266,1],[8293,1],[8315,1],[8371,1]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1340,1],[1364,1],[3111,1],[3135,1],[3167,1],[3204,1],[3206,2],[3228,1],[3264,1],[3297,1],[3330,1],[3332,3],[3355,1],[3372,1],[3394,1],[3433,1],[3472,1],[3511,1],[3728,1],[3730,2],[3779,2],[3807,1],[4037,2],[4040,2],[4194,2],[4218,1],[4239,1],[4241,2],[4258,2],[4261,5],[4280,1],[4282,2],[4302,2],[4305,5],[4324,1],[4326,2],[4346,2],[4349,5],[4368,1],[4370,2],[4390,2],[4393,5],[4414,1],[4416,2],[4436,2],[4439,1],[4441,1],[4759,1],[4775,1],[4787,4],[4812,2],[4815,2],[4914,2],[4935,1],[4957,1],[4959,2],[4979,2],[4982,1],[4984,1],[5080,1],[5089,1],[5221,4],[5253,1],[5296,2],[5299,2],[6421,1],[6458,1],[6496,1],[7804,1],[7849,1],[7886,1],[7924,1],[8216,1],[8279,2],[8434,1],[8529,1]]}},"component":{}}],["0",{"_index":1536,"title":{},"name":{},"text":{"/ml.html":{"position":[[4240,1],[4304,1],[4374,1],[4445,1],[4516,1],[4590,1],[4664,1],[4738,1],[4812,1],[4886,1],[4959,1],[5028,1],[5097,1],[5202,1],[5306,1],[5410,1],[5509,1],[5613,1],[5717,1]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1830,1],[1841,1],[2024,1],[2192,1],[2200,1],[2370,1],[2378,1],[2548,1],[2556,1],[2732,1],[2901,1],[2911,1],[3095,1],[3263,1],[3271,1],[3442,1],[3450,1]]},"/run-vantage-express-on-aws.html":{"position":[[7753,1],[7764,1],[7911,1],[8058,1]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2655,2],[4533,1],[4544,1],[4691,1],[4838,1]]},"/sto.html":{"position":[[6425,2],[7410,2]]},"/vantage.express.gcp.html":{"position":[[3560,1],[3571,1],[3718,1],[3865,1]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[14046,1]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[6648,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[7374,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[3192,1]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[3229,1]]},"/mule-teradata-connector/reference.html":{"position":[[3814,1],[6143,1],[8442,1],[10271,1],[12486,1],[14255,1],[15749,1],[18808,1],[21969,1],[24823,1],[28491,1],[32531,1],[33463,1],[34013,1],[34324,1],[34932,2]]},"/query-service/send-queries-using-rest-api.html":{"position":[[11958,2],[12282,2]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[7281,1],[7320,1],[7352,1]]}},"component":{}}],["0.0",{"_index":1617,"title":{},"name":{},"text":{"/ml.html":{"position":[[8259,4],[8622,4],[8742,4]]}},"component":{}}],["0.0,0.009313225746154785,0.0,0.009313225746154785",{"_index":4326,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[7388,50],[7448,50],[7508,50],[7568,50]]}},"component":{}}],["0.0,0.01862645149230957,0.0,0.01862645149230957",{"_index":4322,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[7250,48]]}},"component":{}}],["0.0,0.06984921544790268,0.0,0.06984921544790268",{"_index":4313,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[6953,48]]}},"component":{}}],["0.0,0.9313225746154785,0.0,0.9313225746154785",{"_index":4297,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[6507,46]]}},"component":{}}],["0.0,2.0,0.0,2.0",{"_index":4295,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[6481,16]]}},"component":{}}],["0.0,2.3283064365386963,0.0,2.3283064365386963",{"_index":4293,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[6424,46]]}},"component":{}}],["0.0,4.656612873077393,0.0,4.656612873077393",{"_index":4291,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[6374,44]]}},"component":{}}],["0.0.0.0/0",{"_index":2151,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[2308,9],[3402,12],[11521,12]]}},"component":{}}],["0.0.0.0:4000",{"_index":4095,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8217,12]]}},"component":{}}],["0.0.0.0:5555",{"_index":4080,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[7689,12]]}},"component":{}}],["0.0.0.0:8080",{"_index":4078,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[7523,12]]}},"component":{}}],["0.00",{"_index":1767,"title":{},"name":{},"text":{"/nos.html":{"position":[[4592,4],[4625,4],[4709,4],[4742,4],[4826,4],[4859,4],[4943,4],[4976,4]]}},"component":{}}],["0.002307891845703125,0.01862645149230957,12.3904,0.016318559646606445",{"_index":4324,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[7308,70]]}},"component":{}}],["0.006140708923339844,4.656612873077393,0.13187072,4.650472164154053",{"_index":4289,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[6298,68]]}},"component":{}}],["0.006252288818359375,0.03725290298461914,16.78336,0.031000614166259766",{"_index":4314,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[7009,71]]}},"component":{}}],["0.01",{"_index":1770,"title":{},"name":{},"text":{"/nos.html":{"position":[[4631,4],[4748,4],[4865,4],[4982,4]]}},"component":{}}],["0.013471",{"_index":4558,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[6423,9]]}},"component":{}}],["0.019153594970703125,9.313225746154785,0.20566016,9.294072151184082",{"_index":4287,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[6224,68]]}},"component":{}}],["0.027594566345214844,0.09313225746154785,29.62944,0.06553769111633301",{"_index":4308,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[6795,70]]}},"component":{}}],["0.0|120.35348558871233",{"_index":1643,"title":{},"name":{},"text":{"/ml.html":{"position":[[8795,23]]}},"component":{}}],["0.0|430.27950420065997",{"_index":1633,"title":{},"name":{},"text":{"/ml.html":{"position":[[8569,23]]}},"component":{}}],["0.2",{"_index":3687,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[5711,4]]}},"component":{}}],["0.254337",{"_index":4574,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[7851,9]]}},"component":{}}],["0.333276528534554",{"_index":982,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4552,18]]}},"component":{}}],["0.5",{"_index":1881,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1832,3],[2014,3],[2018,3],[2194,3],[2372,3],[2490,3],[2550,3],[2726,3],[2903,3],[3083,3],[3087,3],[3265,3],[3444,3]]}},"component":{}}],["0.6",{"_index":1919,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2668,3]]}},"component":{}}],["0.8",{"_index":3225,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[5033,3]]}},"component":{}}],["00",{"_index":1780,"title":{},"name":{},"text":{"/nos.html":{"position":[[6226,3],[6263,3],[6300,3],[6337,3],[6374,3],[6411,3],[6448,3],[6485,3],[6522,3],[6559,3]]}},"component":{}}],["0000",{"_index":4060,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6565,6]]}},"component":{}}],["00:00",{"_index":1713,"title":{},"name":{},"text":{"/nos.html":{"position":[[1620,5]]}},"component":{}}],["00:00:00",{"_index":1786,"title":{},"name":{},"text":{"/nos.html":{"position":[[6579,8]]}},"component":{}}],["00:15",{"_index":1727,"title":{},"name":{},"text":{"/nos.html":{"position":[[1850,5]]}},"component":{}}],["00:15:00",{"_index":1773,"title":{},"name":{},"text":{"/nos.html":{"position":[[4967,8],[6542,8]]}},"component":{}}],["00:30",{"_index":1697,"title":{},"name":{},"text":{"/nos.html":{"position":[[1482,5],[1666,5]]}},"component":{}}],["00:30:00",{"_index":1769,"title":{},"name":{},"text":{"/nos.html":{"position":[[4616,8],[6246,8]]}},"component":{}}],["00:45",{"_index":1720,"title":{},"name":{},"text":{"/nos.html":{"position":[[1712,5],[1896,5]]}},"component":{}}],["00:45:00",{"_index":1771,"title":{},"name":{},"text":{"/nos.html":{"position":[[4733,8],[6505,8]]}},"component":{}}],["01",{"_index":1230,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[5872,2],[5889,4],[5894,2],[6173,2],[6187,2]]},"/getting.started.vbox.html":{"position":[[4698,2],[4715,4],[4720,2],[4999,2],[5013,2]]},"/getting.started.vmware.html":{"position":[[4981,2],[4998,4],[5003,2],[5282,2],[5296,2]]},"/mule.jdbc.example.html":{"position":[[2640,2],[2657,4],[2662,2],[3262,2]]},"/nos.html":{"position":[[6231,3],[6268,3],[6305,3],[6342,3],[6379,3],[6416,3],[6453,3],[6490,3],[6527,3],[6564,3]]},"/run-vantage-express-on-aws.html":{"position":[[9756,2],[9773,4],[9778,2],[10057,2],[10071,2]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6536,2],[6553,4],[6558,2],[6837,2],[6851,2]]},"/vantage.express.gcp.html":{"position":[[5563,2],[5580,4],[5585,2],[5864,2],[5878,2]]}},"component":{}}],["01:00",{"_index":1702,"title":{},"name":{},"text":{"/nos.html":{"position":[[1528,5],[1758,5]]}},"component":{}}],["01:00:00",{"_index":1772,"title":{},"name":{},"text":{"/nos.html":{"position":[[4850,8],[6283,8]]}},"component":{}}],["01:15",{"_index":1707,"title":{},"name":{},"text":{"/nos.html":{"position":[[1574,5],[1804,5]]}},"component":{}}],["01:15:00",{"_index":1781,"title":{},"name":{},"text":{"/nos.html":{"position":[[6320,8]]}},"component":{}}],["01:30:00",{"_index":1782,"title":{},"name":{},"text":{"/nos.html":{"position":[[6357,8]]}},"component":{}}],["01:45:00",{"_index":1785,"title":{},"name":{},"text":{"/nos.html":{"position":[[6468,8]]}},"component":{}}],["01t00:00:00",{"_index":1670,"title":{},"name":{},"text":{"/mule.jdbc.example.html":{"position":[[3227,13]]}},"component":{}}],["02",{"_index":1763,"title":{},"name":{},"text":{"/nos.html":{"position":[[4497,2],[5081,2]]}},"component":{}}],["02:00:00",{"_index":1783,"title":{},"name":{},"text":{"/nos.html":{"position":[[6394,8]]}},"component":{}}],["02:15:00",{"_index":1784,"title":{},"name":{},"text":{"/nos.html":{"position":[[6431,8]]}},"component":{}}],["04",{"_index":1981,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[4924,2],[4952,2],[4980,2],[5016,2],[5044,2],[5072,2],[5108,2],[5136,2],[5164,2],[5200,2],[5228,2],[5256,2],[5292,2],[5320,2],[5348,2],[5384,2],[5412,2],[5440,2],[5477,2],[5505,2],[5533,2],[5570,2],[5598,2],[5626,2],[5665,2],[5693,2],[5721,2],[5761,2],[5789,2],[5817,2],[6661,2],[6689,2],[6727,2],[6755,2],[6793,2],[6821,2],[6858,2],[6886,2],[6924,2],[6952,2],[6990,2],[7018,2],[7055,2],[7083,2],[7121,2],[7149,2],[7186,2],[7214,2],[7252,2],[7280,2],[8595,2],[8623,2],[8666,2],[8694,2],[8738,2],[8766,2],[8810,2],[8838,2],[8882,2],[8910,2],[8953,2],[8981,2],[9021,2],[9049,2],[9095,2],[9123,2],[9172,2],[9200,2],[9244,2],[9272,2],[9325,2],[9353,2],[9398,2],[9426,2],[9480,2],[9508,2],[9564,2],[9592,2],[9649,2],[9677,2],[9734,2],[9762,2],[9816,2],[9844,2],[9902,2],[9930,2],[9988,2],[10016,2],[10075,2],[10103,2]]}},"component":{}}],["05",{"_index":1231,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[5875,4],[6176,2]]},"/getting.started.vbox.html":{"position":[[4701,4],[5002,2]]},"/getting.started.vmware.html":{"position":[[4984,4],[5285,2]]},"/mule.jdbc.example.html":{"position":[[2643,4]]},"/run-vantage-express-on-aws.html":{"position":[[9759,4],[10060,2]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6539,4],[6840,2]]},"/vantage.express.gcp.html":{"position":[[5566,4],[5867,2]]}},"component":{}}],["05:00",{"_index":1984,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[4999,5],[5091,5],[5183,5],[5275,5],[5367,5],[5459,5],[5552,5],[5645,5],[5740,5],[5836,5]]}},"component":{}}],["05t00:00:00",{"_index":1671,"title":{},"name":{},"text":{"/mule.jdbc.example.html":{"position":[[3265,13]]}},"component":{}}],["06",{"_index":1695,"title":{},"name":{},"text":{"/nos.html":{"position":[[1476,2],[1522,2],[1568,2],[1614,2],[1660,2],[1706,2],[1752,2],[1798,2],[1844,2],[1890,2]]}},"component":{}}],["07",{"_index":1762,"title":{},"name":{},"text":{"/nos.html":{"position":[[4494,2],[4610,2],[4727,2],[4844,2],[4961,2],[5078,2],[6240,2],[6277,2],[6314,2],[6351,2],[6388,2],[6425,2],[6462,2],[6499,2],[6536,2],[6573,2]]}},"component":{}}],["08",{"_index":1233,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[5886,2],[6184,2]]},"/getting.started.vbox.html":{"position":[[4712,2],[5010,2]]},"/getting.started.vmware.html":{"position":[[4995,2],[5293,2]]},"/mule.jdbc.example.html":{"position":[[2654,2],[3224,2]]},"/run-vantage-express-on-aws.html":{"position":[[9770,2],[10068,2]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6550,2],[6848,2]]},"/vantage.express.gcp.html":{"position":[[5577,2],[5875,2]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9522,2],[13137,2],[19349,2]]}},"component":{}}],["09380000",{"_index":1693,"title":{},"name":{},"text":{"/nos.html":{"position":[[1462,8],[1508,8],[1554,8],[1600,8],[1646,8],[1692,8],[1738,8],[1784,8],[1830,8],[1876,8],[3564,8]]}},"component":{}}],["09423560",{"_index":1750,"title":{},"name":{},"text":{"/nos.html":{"position":[[3576,8]]}},"component":{}}],["09424900",{"_index":1752,"title":{},"name":{},"text":{"/nos.html":{"position":[[3588,8]]}},"component":{}}],["09429070",{"_index":1754,"title":{},"name":{},"text":{"/nos.html":{"position":[[3600,8]]}},"component":{}}],["1",{"_index":375,"title":{"/geojson-to-vantage.html#_option_1_load_a_geojson_document_into_vantage":{"position":[[7,2]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_1_specify_flow_details":{"position":[[5,2]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_1_specify_flow_details_2":{"position":[[5,2]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_evaluation_dataset_1":{"position":[[26,1]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_evaluation_dataset_1":{"position":[[26,1]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[3314,1],[3368,1]]},"/create-parquet-files-in-object-storage.html":{"position":[[2402,1],[3983,1]]},"/dbt.html":{"position":[[1488,1],[1542,1]]},"/getting.started.utm.html":{"position":[[1772,1],[6190,1]]},"/getting.started.vbox.html":{"position":[[5016,1]]},"/getting.started.vmware.html":{"position":[[5299,1]]},"/ml.html":{"position":[[2966,2],[2992,2],[4226,1],[4233,1],[4297,1],[4367,1],[4438,1],[4509,1],[4583,1],[4657,1],[4731,1],[4805,1],[4879,1],[4952,1],[5021,1],[5090,1],[5807,1]]},"/mule.jdbc.example.html":{"position":[[3335,2]]},"/odbc.ubuntu.html":{"position":[[1668,2]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1774,1],[1776,1],[1799,1],[1953,1],[1980,1],[2022,1],[2135,1],[2161,1],[2311,1],[2338,1],[2376,1],[2488,1],[2515,1],[2666,1],[2693,1],[2724,1],[2730,1],[2842,1],[2869,1],[3024,1],[3051,1],[3205,1],[3232,1],[3383,1],[3410,1],[4708,2],[6713,1],[6779,1],[6910,1],[6976,1],[7042,1],[7238,1],[7304,1],[8718,1],[8790,1],[8934,1]]},"/run-vantage-express-on-aws.html":{"position":[[2582,2],[5426,1],[7900,1],[10074,1]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2814,1],[4680,1],[6854,1]]},"/sto.html":{"position":[[6435,2],[7420,2]]},"/vantage.express.gcp.html":{"position":[[3707,1],[5881,1]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[21508,1],[22281,1]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4467,1],[4886,1],[13263,2],[13633,1],[15358,2],[23240,1],[24243,1],[24880,1]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4474,1],[5011,4],[5672,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[4883,2]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3718,3],[6496,2],[6637,3]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1241,1]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[8659,2]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2488,1],[3524,1]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2525,1],[3561,1]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[3371,2]]},"/mule-teradata-connector/reference.html":{"position":[[33577,1]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8771,2]]},"/query-service/send-queries-using-rest-api.html":{"position":[[8619,1],[9014,1],[9881,1],[9979,2],[10894,2]]},"/regulus/getting-started-with-regulus.html":{"position":[[2617,1]]},"/regulus/install-regulus-docker-image.html":{"position":[[3518,1],[8995,1]]},"/regulus/regulus-magic-reference.html":{"position":[[3424,2]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[4571,2]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3357,1],[6761,1],[6815,3],[6873,1],[6948,1],[7278,2],[7388,2],[7806,1]]}},"component":{}}],["1,'2022/01/01',1.1",{"_index":565,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2186,21]]}},"component":{}}],["1,.02,0.0,7.07,0,.46,6.4,78.9,4.9,2,242,17.8,396.9,9.14",{"_index":3411,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3514,58]]}},"component":{}}],["1,2",{"_index":2006,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[6468,4]]}},"component":{}}],["1.0.0",{"_index":3991,"title":{"/mule-teradata-connector/release-notes.html#_1_0_0":{"position":[[0,5]]}},"name":{},"text":{},"component":{}}],["1.06",{"_index":1775,"title":{},"name":{},"text":{"/nos.html":{"position":[[5093,4]]}},"component":{}}],["1.1",{"_index":1935,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3026,3]]}},"component":{}}],["1.10",{"_index":569,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2413,4],[3994,4]]}},"component":{}}],["1.2",{"_index":1904,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2313,3]]}},"component":{}}],["1.21",{"_index":1765,"title":{},"name":{},"text":{"/nos.html":{"position":[[4509,4]]}},"component":{}}],["1.29.2",{"_index":4041,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4457,7],[4967,7]]}},"component":{}}],["1.375",{"_index":2042,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[8651,5],[8723,5],[8795,5],[8867,5],[8938,5]]}},"component":{}}],["1.5",{"_index":1941,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3091,3]]}},"component":{}}],["1.8.3",{"_index":3910,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[27843,6]]}},"component":{}}],["1.8024444580078125e",{"_index":4302,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[6642,20]]}},"component":{}}],["1.9",{"_index":3915,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[31249,4]]}},"component":{}}],["1.9265006861079421e+06",{"_index":998,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4965,22]]}},"component":{}}],["1.tar.gz",{"_index":1812,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[603,8],[663,8]]}},"component":{}}],["1.x86_64.deb",{"_index":1819,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[719,12]]}},"component":{}}],["1.x86_64.rpm",{"_index":1490,"title":{},"name":{},"text":{"/ml.html":{"position":[[1339,12],[1617,12],[2527,12]]}},"component":{}}],["1/1",{"_index":1191,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[4056,4]]},"/getting.started.vbox.html":{"position":[[3094,4]]},"/getting.started.vmware.html":{"position":[[3165,4]]}},"component":{}}],["1/4",{"_index":1197,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[4228,4]]},"/getting.started.vbox.html":{"position":[[3266,4]]},"/getting.started.vmware.html":{"position":[[3337,4]]}},"component":{}}],["1/5",{"_index":1194,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[4138,4]]},"/getting.started.vbox.html":{"position":[[3176,4]]},"/getting.started.vmware.html":{"position":[[3247,4]]}},"component":{}}],["10",{"_index":1242,"title":{},"name":{},"text":{"/getting.started.vbox.html":{"position":[[644,3]]},"/ml.html":{"position":[[8105,3]]},"/nos.html":{"position":[[1163,2],[1223,2],[4168,2],[4613,2],[4730,2],[4847,2],[4964,2],[6104,2],[6243,2],[6280,2],[6317,2],[6354,2],[6391,2],[6428,2],[6465,2],[6502,2],[6539,2],[6576,2],[6967,2]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[920,2],[955,2],[1827,2],[4483,2],[6195,2],[6781,2]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[10528,3],[10907,3],[13455,3],[17149,3],[20833,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13987,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3773,2]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4078,4]]},"/mule-teradata-connector/reference.html":{"position":[[4251,2],[6575,4],[8796,2],[10625,2],[12840,2],[14609,2],[16103,2],[19162,2],[22323,2],[25256,4],[28845,2],[32885,2]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6405,2]]}},"component":{}}],["10.0.0.0/16",{"_index":2132,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[1189,11]]}},"component":{}}],["10.0.1.0/24",{"_index":2137,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[1485,11]]}},"component":{}}],["10.14",{"_index":2601,"title":{},"name":{},"text":{"/teradatasql.html":{"position":[[307,6]]}},"component":{}}],["10.5603396",{"_index":2085,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9959,10]]}},"component":{}}],["10.7",{"_index":1705,"title":{},"name":{},"text":{"/nos.html":{"position":[[1543,4]]}},"component":{}}],["10.8",{"_index":1700,"title":{},"name":{},"text":{"/nos.html":{"position":[[1497,4],[1681,4],[1727,4],[1773,4],[1865,4]]}},"component":{}}],["10.9",{"_index":1691,"title":{},"name":{},"text":{"/nos.html":{"position":[[1451,4],[1635,4],[1819,4]]}},"component":{}}],["100",{"_index":2334,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[2658,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[13738,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[7354,4]]},"/mule-teradata-connector/reference.html":{"position":[[40520,3],[40535,3],[40829,3],[40844,3]]}},"component":{}}],["1000",{"_index":883,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[1638,4]]}},"component":{}}],["10000",{"_index":797,"title":{},"name":{},"text":{"/fastload.html":{"position":[[3887,6],[5734,6]]}},"component":{}}],["1001",{"_index":3785,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[7433,5]]}},"component":{}}],["1002",{"_index":3786,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[7457,5]]}},"component":{}}],["100gb",{"_index":4010,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[901,5],[1687,5]]}},"component":{}}],["100k",{"_index":1516,"title":{},"name":{},"text":{"/ml.html":{"position":[[3438,5]]}},"component":{}}],["101",{"_index":1227,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[5839,4],[6148,3]]},"/getting.started.vbox.html":{"position":[[4665,4],[4974,3]]},"/getting.started.vmware.html":{"position":[[4948,4],[5257,3]]},"/mule.jdbc.example.html":{"position":[[2608,4],[3312,4]]},"/run-vantage-express-on-aws.html":{"position":[[9723,4],[10032,3]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6503,4],[6812,3]]},"/vantage.express.gcp.html":{"position":[[5530,4],[5839,3]]}},"component":{}}],["1025",{"_index":1144,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[2110,6]]},"/jdbc.html":{"position":[[516,5]]},"/run-vantage-express-on-aws.html":{"position":[[11314,4],[11475,5],[11491,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[8094,4],[8192,4]]},"/vantage.express.gcp.html":{"position":[[7121,4]]}},"component":{}}],["10:02",{"_index":1942,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3182,5],[3377,5]]}},"component":{}}],["10:17",{"_index":1943,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3199,5]]}},"component":{}}],["10gb",{"_index":1136,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[1797,4]]}},"component":{}}],["10k",{"_index":792,"title":{},"name":{},"text":{"/fastload.html":{"position":[[3766,3]]},"/ml.html":{"position":[[3406,4]]}},"component":{}}],["10th",{"_index":1313,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[48,5]]},"/mule-teradata-connector/index.html":{"position":[[42,5]]},"/mule-teradata-connector/reference.html":{"position":[[42,5]]}},"component":{}}],["11",{"_index":1290,"title":{},"name":{},"text":{"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[317,2],[393,2]]},"/nos.html":{"position":[[3573,2]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1034,2],[4134,2],[4921,2],[4949,2],[4977,2],[5013,2],[5041,2],[5069,2],[5105,2],[5133,2],[5161,2],[5197,2],[5225,2],[5253,2],[5289,2],[5317,2],[5345,2],[5381,2],[5409,2],[5437,2],[5465,2],[5474,2],[5502,2],[5530,2],[5567,2],[5595,2],[5623,2],[5662,2],[5690,2],[5718,2],[5758,2],[5786,2],[5814,2],[6658,2],[6686,2],[6724,2],[6752,2],[6790,2],[6818,2],[6855,2],[6883,2],[6912,2],[6921,2],[6949,2],[6987,2],[7015,2],[7052,2],[7080,2],[7118,2],[7146,2],[7183,2],[7211,2],[7240,2],[7249,2],[7277,2],[8314,2],[8592,2],[8620,2],[8663,2],[8691,2],[8720,2],[8735,2],[8763,2],[8807,2],[8835,2],[8879,2],[8907,2],[8950,2],[8978,2],[9018,2],[9046,2],[9092,2],[9120,2],[9169,2],[9197,2],[9241,2],[9269,2],[9322,2],[9350,2],[9395,2],[9423,2],[9477,2],[9505,2],[9561,2],[9589,2],[9646,2],[9674,2],[9731,2],[9759,2],[9813,2],[9841,2],[9899,2],[9927,2],[9985,2],[10013,2],[10072,2],[10100,2]]},"/mule-teradata-connector/release-notes.html":{"position":[[1096,2]]}},"component":{}}],["11.0",{"_index":1710,"title":{},"name":{},"text":{"/nos.html":{"position":[[1589,4]]}},"component":{}}],["11.78947368",{"_index":2081,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9873,11]]}},"component":{}}],["11.csv",{"_index":1870,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1729,6],[1910,6],[2092,6],[2268,6],[2443,6],[2621,6],[2799,6],[2979,6],[3160,6],[3339,6]]}},"component":{}}],["11/index_2020.csv",{"_index":4513,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1132,18]]}},"component":{}}],["110e6",{"_index":344,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[2322,6]]},"/dbt.html":{"position":[[1348,6]]}},"component":{}}],["117.891604776075155",{"_index":1077,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[10008,20]]}},"component":{}}],["1184.35|463.74177458594215",{"_index":1620,"title":{},"name":{},"text":{"/ml.html":{"position":[[8312,27]]}},"component":{}}],["11:00:00.000000",{"_index":1982,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[4927,16],[4983,15],[6664,16]]}},"component":{}}],["11:15:00.000000",{"_index":2007,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[6692,16],[6730,16]]}},"component":{}}],["11:30:00.000000",{"_index":2010,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[6758,16]]}},"component":{}}],["11:45:00.000000",{"_index":2011,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[6796,16]]}},"component":{}}],["12",{"_index":1949,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3260,2]]}},"component":{}}],["12.05590062",{"_index":2092,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10132,11]]}},"component":{}}],["12.26484323",{"_index":2089,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10045,11]]}},"component":{}}],["12.38095238",{"_index":2074,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9705,11]]}},"component":{}}],["12.72",{"_index":1883,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1843,5]]}},"component":{}}],["120",{"_index":2551,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1270,5],[4413,3]]}},"component":{}}],["120.35348558871233",{"_index":1644,"title":{},"name":{},"text":{"/ml.html":{"position":[[8819,19]]}},"component":{}}],["1204.375",{"_index":2086,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9970,8]]}},"component":{}}],["120e6",{"_index":730,"title":{},"name":{},"text":{"/fastload.html":{"position":[[1467,6],[1491,6]]},"/getting.started.utm.html":{"position":[[5300,6]]},"/getting.started.vbox.html":{"position":[[4126,6]]},"/getting.started.vmware.html":{"position":[[4409,6]]},"/ml.html":{"position":[[2096,6]]},"/mule.jdbc.example.html":{"position":[[2227,6]]},"/nos.html":{"position":[[3982,6]]},"/run-vantage-express-on-aws.html":{"position":[[9184,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5964,6]]},"/sto.html":{"position":[[3048,6]]},"/vantage.express.gcp.html":{"position":[[4991,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1342,6],[1366,6]]}},"component":{}}],["120mb",{"_index":731,"title":{},"name":{},"text":{"/fastload.html":{"position":[[1477,5],[1501,5]]},"/getting.started.utm.html":{"position":[[5310,5]]},"/getting.started.vbox.html":{"position":[[4136,5]]},"/getting.started.vmware.html":{"position":[[4419,5]]},"/ml.html":{"position":[[2106,5]]},"/nos.html":{"position":[[3992,5]]},"/run-vantage-express-on-aws.html":{"position":[[9194,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5974,5]]},"/sto.html":{"position":[[3058,5]]},"/vantage.express.gcp.html":{"position":[[5001,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1352,5],[1376,5]]}},"component":{}}],["1236",{"_index":2076,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9786,4]]}},"component":{}}],["12516011",{"_index":4382,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[11902,9],[12226,9]]}},"component":{}}],["12516087",{"_index":4379,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[11777,9]]}},"component":{}}],["12516088",{"_index":4387,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[12102,9]]}},"component":{}}],["127.0.0.1",{"_index":4058,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6529,9]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2821,10]]}},"component":{}}],["127.625",{"_index":2071,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9632,7]]}},"component":{}}],["128",{"_index":2240,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[7563,3]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4343,3]]},"/vantage.express.gcp.html":{"position":[[3370,3]]}},"component":{}}],["12:00:00.000000",{"_index":1983,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[4955,16],[5019,16],[5075,15],[6824,16],[6861,16]]}},"component":{}}],["12:15:00.000000",{"_index":2012,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[6889,16],[6927,16]]}},"component":{}}],["12:30:00.000000",{"_index":2013,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[6955,16]]}},"component":{}}],["12:43",{"_index":3323,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[5744,5]]}},"component":{}}],["12th",{"_index":615,"title":{},"name":{},"text":{"/dbt.html":{"position":[[44,5]]},"/ml.html":{"position":[[49,5]]},"/run-vantage-express-on-aws.html":{"position":[[48,5]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[49,5]]}},"component":{}}],["13.499940550397127",{"_index":1074,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[9949,19]]}},"component":{}}],["13.70083102",{"_index":2070,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9620,11]]}},"component":{}}],["13/sep/2022:00:20:48",{"_index":4059,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6543,21]]}},"component":{}}],["1362498",{"_index":1616,"title":{},"name":{},"text":{"/ml.html":{"position":[[8250,8]]}},"component":{}}],["1362511|235.85941489361701|294.35369563202846",{"_index":1630,"title":{},"name":{},"text":{"/ml.html":{"position":[[8493,46]]}},"component":{}}],["1362644",{"_index":1637,"title":{},"name":{},"text":{"/ml.html":{"position":[[8666,8]]}},"component":{}}],["1362828",{"_index":1619,"title":{},"name":{},"text":{"/ml.html":{"position":[[8303,8]]}},"component":{}}],["1362839",{"_index":1622,"title":{},"name":{},"text":{"/ml.html":{"position":[[8359,8]]}},"component":{}}],["1362986",{"_index":1626,"title":{},"name":{},"text":{"/ml.html":{"position":[[8426,8]]}},"component":{}}],["1363134",{"_index":1632,"title":{},"name":{},"text":{"/ml.html":{"position":[[8560,8]]}},"component":{}}],["1363141",{"_index":1640,"title":{},"name":{},"text":{"/ml.html":{"position":[[8733,8]]}},"component":{}}],["1363290",{"_index":1642,"title":{},"name":{},"text":{"/ml.html":{"position":[[8786,8]]}},"component":{}}],["1363481",{"_index":1635,"title":{},"name":{},"text":{"/ml.html":{"position":[[8613,8]]}},"component":{}}],["1366010",{"_index":4338,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[8446,8],[9224,7]]}},"component":{}}],["13:00:00.000000",{"_index":1985,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[5047,16]]}},"component":{}}],["13th",{"_index":3830,"title":{},"name":{},"text":{"/mule-teradata-connector/examples-configuration.html":{"position":[[42,5]]},"/mule-teradata-connector/release-notes.html":{"position":[[42,5]]}},"component":{}}],["14",{"_index":1930,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2898,2]]}},"component":{}}],["14.5",{"_index":1891,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2009,4],[3273,4]]}},"component":{}}],["14100",{"_index":1706,"title":{},"name":{},"text":{"/nos.html":{"position":[[1548,5]]}},"component":{}}],["14500",{"_index":1701,"title":{},"name":{},"text":{"/nos.html":{"position":[[1502,5]]}},"component":{}}],["14700",{"_index":1724,"title":{},"name":{},"text":{"/nos.html":{"position":[[1778,5]]}},"component":{}}],["14900",{"_index":1729,"title":{},"name":{},"text":{"/nos.html":{"position":[[1870,5]]}},"component":{}}],["14:00:00.000000",{"_index":1986,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[5111,16],[5167,15]]}},"component":{}}],["14:15:00.000000",{"_index":2015,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[6993,16]]}},"component":{}}],["14:30:00.000000",{"_index":2016,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[7021,16],[7058,16]]}},"component":{}}],["14:38:00",{"_index":1774,"title":{},"name":{},"text":{"/nos.html":{"position":[[5084,8]]}},"component":{}}],["14:40:00",{"_index":1764,"title":{},"name":{},"text":{"/nos.html":{"position":[[4500,8]]}},"component":{}}],["14:45:00.000000",{"_index":2017,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[7086,16],[7124,16],[8598,16]]}},"component":{}}],["14th",{"_index":18,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[59,5]]},"/geojson-to-vantage.html":{"position":[[45,5]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[49,5]]},"/jdbc.html":{"position":[[48,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[42,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[44,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[44,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[42,5]]}},"component":{}}],["15",{"_index":1956,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3439,2],[6160,2],[7469,2],[8039,2],[8077,2]]}},"component":{}}],["15.54742097",{"_index":2077,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9791,11]]}},"component":{}}],["15.66666667",{"_index":2057,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9298,11]]}},"component":{}}],["15.798996495640267",{"_index":963,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4311,19]]}},"component":{}}],["15100",{"_index":1722,"title":{},"name":{},"text":{"/nos.html":{"position":[[1732,5]]}},"component":{}}],["15185",{"_index":1996,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[5746,5]]}},"component":{}}],["15300",{"_index":1692,"title":{},"name":{},"text":{"/nos.html":{"position":[[1456,5]]}},"component":{}}],["15400",{"_index":1719,"title":{},"name":{},"text":{"/nos.html":{"position":[[1686,5]]}},"component":{}}],["15700",{"_index":1716,"title":{},"name":{},"text":{"/nos.html":{"position":[[1640,5]]}},"component":{}}],["15:00:00.000000",{"_index":1987,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[5139,16],[5203,16],[5259,15],[7152,16],[8626,16]]}},"component":{}}],["15:15:00.000000",{"_index":2019,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[7189,16],[8669,16]]}},"component":{}}],["15:18",{"_index":1873,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1751,5]]}},"component":{}}],["15:24",{"_index":1910,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2465,5]]}},"component":{}}],["15:30",{"_index":1911,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2482,5]]}},"component":{}}],["15:30:00.000000",{"_index":2020,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[7217,16],[7255,16],[8697,16],[8741,16]]}},"component":{}}],["15:33",{"_index":1874,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1768,5]]}},"component":{}}],["15:45:00.000000",{"_index":2021,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[7283,16],[8769,16]]}},"component":{}}],["15:53",{"_index":1917,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2643,5]]}},"component":{}}],["15th",{"_index":1840,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[41,5]]}},"component":{}}],["16",{"_index":2009,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[6715,2],[8864,2]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1510,2]]}},"component":{}}],["16.10",{"_index":2603,"title":{},"name":{},"text":{"/teradatasql.html":{"position":[[508,5]]}},"component":{}}],["16.5",{"_index":1892,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2026,4]]}},"component":{}}],["16.849990864016206",{"_index":1068,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[9852,19]]}},"component":{}}],["16000",{"_index":1726,"title":{},"name":{},"text":{"/nos.html":{"position":[[1824,5]]}},"component":{}}],["1610.875",{"_index":2090,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10057,8]]}},"component":{}}],["16200",{"_index":1711,"title":{},"name":{},"text":{"/nos.html":{"position":[[1594,5]]}},"component":{}}],["1626922",{"_index":4341,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[8509,8]]}},"component":{}}],["16:00",{"_index":1918,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2660,5]]}},"component":{}}],["16:00:00.000000",{"_index":1988,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[5231,16],[5295,16],[5351,15]]}},"component":{}}],["16:15:00.000000",{"_index":2043,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[8813,16]]}},"component":{}}],["16:30:00.000000",{"_index":2044,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[8841,16],[8885,16]]}},"component":{}}],["16:45:00.000000",{"_index":2045,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[8913,16],[8956,16]]}},"component":{}}],["16mb",{"_index":1002,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[5361,4]]}},"component":{}}],["16th",{"_index":4393,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[42,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[42,5]]},"/regulus/regulus-magic-reference.html":{"position":[[42,5]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[42,5]]}},"component":{}}],["17.10",{"_index":521,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[727,6]]},"/nos.html":{"position":[[531,6]]},"/odbc.ubuntu.html":{"position":[[903,6],[952,5],[1639,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[550,6]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[310,5]]}},"component":{}}],["17.10.00.10",{"_index":4544,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[5455,11],[5842,11],[6622,11],[6729,11]]}},"component":{}}],["17.10.00.14",{"_index":1818,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[707,11]]}},"component":{}}],["17.10=instal",{"_index":1821,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[856,15]]}},"component":{}}],["17.10};dbcname=192.168.86.33;uid=dbc;pwd=dbc",{"_index":1830,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[1361,47]]}},"component":{}}],["17.20",{"_index":1104,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[421,6]]},"/getting.started.vbox.html":{"position":[[421,6],[1769,6]]},"/getting.started.vmware.html":{"position":[[421,6]]},"/run-vantage-express-on-aws.html":{"position":[[6319,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3099,7]]},"/vantage.express.gcp.html":{"position":[[2126,7]]}},"component":{}}],["17.4",{"_index":1932,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2913,4]]}},"component":{}}],["17.5",{"_index":1957,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3452,4]]}},"component":{}}],["17:00:00.000000",{"_index":1989,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[5323,16],[5387,16],[5443,15],[8984,16]]}},"component":{}}],["17:15:00.000000",{"_index":2047,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9024,16]]}},"component":{}}],["17:30:00.000000",{"_index":2048,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9052,16]]}},"component":{}}],["17:45:00.000000",{"_index":2051,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9098,16]]}},"component":{}}],["17th",{"_index":1409,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[45,5]]}},"component":{}}],["18",{"_index":4067,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[7087,2],[7105,2],[7220,2],[7238,2],[7352,2],[7370,2],[7484,2],[7502,2],[7650,2],[7668,2],[7815,2],[7833,2],[7948,2],[7966,2],[8072,2],[8090,2],[8178,2],[8196,2],[8319,2],[8337,2]]}},"component":{}}],["187",{"_index":4061,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6599,3]]}},"component":{}}],["18:00:00.000000",{"_index":1990,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[5415,16],[5480,16],[5536,15],[9126,16],[9175,16]]}},"component":{}}],["18:15:00.000000",{"_index":2053,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9203,16],[9247,16]]}},"component":{}}],["18:30:00.000000",{"_index":2056,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9275,16],[9328,16]]}},"component":{}}],["18:45:00.000000",{"_index":2059,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9356,16],[9401,16]]}},"component":{}}],["18th",{"_index":2349,"title":{},"name":{},"text":{"/segment.html":{"position":[[47,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[58,5]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[36,5]]}},"component":{}}],["19",{"_index":2018,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[7109,2]]}},"component":{}}],["19.949004471869102",{"_index":969,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4388,19]]}},"component":{}}],["195",{"_index":2065,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9532,3]]}},"component":{}}],["1950.2117993509103",{"_index":1625,"title":{},"name":{},"text":{"/ml.html":{"position":[[8406,19]]}},"component":{}}],["1980",{"_index":1229,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[5866,5],[6168,4]]},"/getting.started.vbox.html":{"position":[[4692,5],[4994,4]]},"/getting.started.vmware.html":{"position":[[4975,5],[5277,4]]},"/mule.jdbc.example.html":{"position":[[2634,5],[3256,5]]},"/run-vantage-express-on-aws.html":{"position":[[9750,5],[10052,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6530,5],[6832,4]]},"/vantage.express.gcp.html":{"position":[[5557,5],[5859,4]]}},"component":{}}],["19:00:00.000000",{"_index":1991,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[5508,16],[5573,16],[5629,15],[9429,16],[9483,16]]}},"component":{}}],["19:15:00.000000",{"_index":2064,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9511,16],[9567,16]]}},"component":{}}],["19:30:00.000000",{"_index":2068,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9595,16],[9652,16]]}},"component":{}}],["19:45:00.000000",{"_index":2072,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9680,16],[9737,16]]}},"component":{}}],["1c",{"_index":2256,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[8343,2],[8346,2]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5123,2],[5126,2]]},"/vantage.express.gcp.html":{"position":[[4150,2],[4153,2]]}},"component":{}}],["1k",{"_index":1514,"title":{},"name":{},"text":{"/ml.html":{"position":[[3382,3]]}},"component":{}}],["2",{"_index":570,"title":{"/geojson-to-vantage.html#_option_2_prepare_a_geojson_document_with_python_and_load_it_into_vantage":{"position":[[7,2]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_2_configure_flow":{"position":[[5,2]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_2_configure_flow_2":{"position":[[5,2]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_evaluation_dataset_2":{"position":[[26,1]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_evaluation_dataset_2":{"position":[[26,1]]}},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2418,1],[3999,1]]},"/fastload.html":{"position":[[3981,2],[4045,2],[5748,2]]},"/getting.started.utm.html":{"position":[[1810,1],[2416,1]]},"/ml.html":{"position":[[4360,1],[5797,2],[5910,2],[5920,1],[6023,2],[6136,2]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3269,1],[3448,1],[5097,1],[5281,1],[6845,1],[7107,1],[7173,1],[8009,1],[8063,1],[8647,1],[8862,1],[9010,1],[9073,1]]},"/run-vantage-express-on-aws.html":{"position":[[5283,2],[8047,1]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2816,2],[4827,1]]},"/sto.html":{"position":[[1276,1],[1375,1],[1522,1],[6167,1],[6456,2],[7441,2]]},"/vantage.express.gcp.html":{"position":[[3854,1]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1331,1],[3953,2],[4049,1]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4900,1],[13646,1],[13992,2],[14026,2]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3788,3],[6569,2]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[5518,1]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2515,1],[2586,1],[3691,1]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2552,1],[2623,1],[3728,1]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[4389,2]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[4332,1]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[7317,2],[7630,1]]}},"component":{}}],["2,'2022/01/02',2.2",{"_index":566,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2237,21]]}},"component":{}}],["2.0",{"_index":681,"title":{},"name":{},"text":{"/dbt.html":{"position":[[4084,3]]}},"component":{}}],["2.0.0.3",{"_index":1489,"title":{},"name":{},"text":{"/ml.html":{"position":[[1331,7],[1609,7],[2519,7]]}},"component":{}}],["2.125",{"_index":2050,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9080,5]]}},"component":{}}],["2.2",{"_index":1944,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3207,3]]}},"component":{}}],["2.20",{"_index":572,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2429,4],[4010,4]]}},"component":{}}],["2.22",{"_index":1882,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1836,4]]}},"component":{}}],["2.9",{"_index":1931,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2907,3]]}},"component":{}}],["2.amazonaws.com/xgboost:latest",{"_index":3181,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[4919,30]]}},"component":{}}],["20",{"_index":3220,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4763,3],[4809,3]]}},"component":{}}],["20.33333333",{"_index":2052,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9149,11]]}},"component":{}}],["200",{"_index":3103,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[5128,3],[5789,3]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6595,3]]},"/query-service/send-queries-using-rest-api.html":{"position":[[12015,4],[12339,4]]}},"component":{}}],["200.625",{"_index":2075,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9717,7]]}},"component":{}}],["200000",{"_index":1962,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3888,6],[4161,6]]}},"component":{}}],["2004",{"_index":1232,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[5880,5],[6179,4]]},"/getting.started.vbox.html":{"position":[[4706,5],[5005,4]]},"/getting.started.vmware.html":{"position":[[4989,5],[5288,4]]},"/mule.jdbc.example.html":{"position":[[2648,5],[3218,5]]},"/run-vantage-express-on-aws.html":{"position":[[9764,5],[10063,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6544,5],[6843,4]]},"/vantage.express.gcp.html":{"position":[[1004,4],[1292,4],[1580,4],[5571,5],[5870,4]]}},"component":{}}],["2013",{"_index":1980,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[4915,5],[4944,4],[4972,4],[5007,5],[5036,4],[5064,4],[5099,5],[5128,4],[5156,4],[5191,5],[5220,4],[5248,4],[5283,5],[5312,4],[5340,4],[5375,5],[5404,4],[5432,4],[5468,5],[5497,4],[5525,4],[5561,5],[5590,4],[5618,4],[5656,5],[5685,4],[5713,4],[5752,5],[5781,4],[5809,4],[6652,5],[6681,4],[6718,5],[6747,4],[6784,5],[6813,4],[6849,5],[6878,4],[6915,5],[6944,4],[6981,5],[7010,4],[7046,5],[7075,4],[7112,5],[7141,4],[7177,5],[7206,4],[7243,5],[7272,4],[8586,5],[8615,4],[8657,5],[8686,4],[8729,5],[8758,4],[8801,5],[8830,4],[8873,5],[8902,4],[8944,5],[8973,4],[9012,5],[9041,4],[9086,5],[9115,4],[9163,5],[9192,4],[9235,5],[9264,4],[9316,5],[9345,4],[9389,5],[9418,4],[9471,5],[9500,4],[9555,5],[9584,4],[9640,5],[9669,4],[9725,5],[9754,4],[9807,5],[9836,4],[9893,5],[9922,4],[9979,5],[10008,4],[10066,5],[10095,4]]}},"component":{}}],["2014",{"_index":2039,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[8308,5]]}},"component":{}}],["2016",{"_index":3186,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[795,4]]}},"component":{}}],["2018",{"_index":1694,"title":{},"name":{},"text":{"/nos.html":{"position":[[1471,4],[1517,4],[1563,4],[1609,4],[1655,4],[1701,4],[1747,4],[1793,4],[1839,4],[1885,4],[4489,4],[4605,4],[4722,4],[4839,4],[4956,4],[5073,4],[6235,4],[6272,4],[6309,4],[6346,4],[6383,4],[6420,4],[6457,4],[6494,4],[6531,4],[6568,4]]}},"component":{}}],["2020",{"_index":722,"title":{},"name":{},"text":{"/fastload.html":{"position":[[1216,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9517,4],[13132,4],[19344,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1070,5]]}},"component":{}}],["2021",{"_index":1410,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[51,4]]},"/ml.html":{"position":[[55,4]]},"/nos.html":{"position":[[54,4]]},"/sto.html":{"position":[[54,4]]}},"component":{}}],["2022",{"_index":19,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[65,4]]},"/create-parquet-files-in-object-storage.html":{"position":[[44,4]]},"/fastload.html":{"position":[[50,4]]},"/geojson-to-vantage.html":{"position":[[51,4]]},"/jdbc.html":{"position":[[54,4]]},"/jupyter.html":{"position":[[54,4]]},"/odbc.ubuntu.html":{"position":[[52,4]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[47,4]]},"/run-vantage-express-on-aws.html":{"position":[[54,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[52,4]]},"/segment.html":{"position":[[53,4]]},"/vantage.express.gcp.html":{"position":[[52,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[48,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[47,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[52,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[50,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[50,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[49,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[48,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[790,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[58,4],[827,6]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[55,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[64,4]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[42,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[50,4],[6479,4],[6517,4],[7907,4],[7945,4],[7980,4],[8013,4]]}},"component":{}}],["2023",{"_index":262,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[47,4]]},"/dbt.html":{"position":[[50,4]]},"/getting.started.utm.html":{"position":[[52,4]]},"/getting.started.vbox.html":{"position":[[52,4]]},"/getting.started.vmware.html":{"position":[[52,4]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[55,4]]},"/mule.jdbc.example.html":{"position":[[50,4]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[48,4]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[48,4]]},"/teradatasql.html":{"position":[[48,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[45,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[46,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[58,4],[1163,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1200,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[97,4]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[48,4]]},"/mule-teradata-connector/index.html":{"position":[[48,4]]},"/mule-teradata-connector/reference.html":{"position":[[48,4]]},"/mule-teradata-connector/release-notes.html":{"position":[[48,4],[326,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[49,4]]},"/query-service/send-queries-using-rest-api.html":{"position":[[45,4]]},"/regulus/getting-started-with-regulus.html":{"position":[[48,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[48,4]]},"/regulus/regulus-magic-reference.html":{"position":[[48,4]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[48,4]]}},"component":{}}],["209.3304347826087|279.75770904482033",{"_index":1638,"title":{},"name":{},"text":{"/ml.html":{"position":[[8675,37]]}},"component":{}}],["20:00:00.000000",{"_index":1993,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[5601,16],[5668,16],[5724,15],[9765,16],[9819,16]]}},"component":{}}],["20:15:00.000000",{"_index":2079,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9847,16],[9905,16]]}},"component":{}}],["20:30:00.000000",{"_index":2083,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9933,16],[9991,16]]}},"component":{}}],["20:45:00.000000",{"_index":2087,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10019,16],[10078,16]]}},"component":{}}],["20:56:32",{"_index":4561,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[6470,8],[6508,8],[7898,8],[7971,8]]}},"component":{}}],["20:56:42",{"_index":4575,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[7936,8],[8004,8]]}},"component":{}}],["21",{"_index":1900,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2189,2]]}},"component":{}}],["21:00:00.000000",{"_index":1995,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[5696,16],[5764,16],[5820,15],[10106,16]]}},"component":{}}],["21:20",{"_index":1933,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3001,5]]}},"component":{}}],["21:26",{"_index":1934,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3018,5]]}},"component":{}}],["21t21:02:25",{"_index":2926,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9525,13],[13140,13],[19352,13]]}},"component":{}}],["22",{"_index":1143,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[2093,4]]},"/run-vantage-express-on-aws.html":{"position":[[3360,3],[3374,3]]}},"component":{}}],["22/01/01",{"_index":568,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2404,8],[3985,8]]}},"component":{}}],["22/01/02",{"_index":571,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2420,8],[4001,8]]}},"component":{}}],["22/01/03",{"_index":574,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2436,8],[4017,8]]}},"component":{}}],["220e6",{"_index":346,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[2337,6]]},"/dbt.html":{"position":[[1363,6]]}},"component":{}}],["2247",{"_index":2093,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10144,4]]}},"component":{}}],["22:00:00.000000",{"_index":1997,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[5792,16]]}},"component":{}}],["22th",{"_index":261,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[41,5]]}},"component":{}}],["23",{"_index":2061,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9450,2]]}},"component":{}}],["23.4",{"_index":2054,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9226,4]]}},"component":{}}],["23rd",{"_index":2303,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[46,5]]},"/vantage.express.gcp.html":{"position":[[46,5]]}},"component":{}}],["24",{"_index":3320,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[5566,2]]}},"component":{}}],["24.5",{"_index":1901,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2202,4],[9379,4]]}},"component":{}}],["25",{"_index":2040,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[8317,3]]}},"component":{}}],["25.csv",{"_index":1848,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1037,7],[4137,7]]}},"component":{}}],["25/11/2013",{"_index":1872,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1740,10],[1757,10],[1921,10],[1937,10],[2103,10],[2119,10],[2279,10],[2295,10],[2454,10],[2471,10],[2632,10],[2649,10],[2810,10],[2826,10],[2990,10],[3007,10],[3171,10],[3188,10],[3350,10],[3366,10]]}},"component":{}}],["256",{"_index":3954,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[39248,4],[39257,3]]}},"component":{}}],["25a9",{"_index":2922,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9479,4],[13094,4],[19306,4]]}},"component":{}}],["26.61538462",{"_index":2066,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9536,11]]}},"component":{}}],["27",{"_index":1712,"title":{},"name":{},"text":{"/nos.html":{"position":[[1617,2],[1663,2],[1709,2],[1755,2],[1801,2],[1847,2]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[41,3]]}},"component":{}}],["27500",{"_index":1998,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[5842,5]]}},"component":{}}],["2791",{"_index":1994,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[5651,4]]}},"component":{}}],["27th",{"_index":2819,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[46,5]]}},"component":{}}],["28",{"_index":1696,"title":{},"name":{},"text":{"/nos.html":{"position":[[1479,2],[1525,2],[1571,2],[1893,2]]}},"component":{}}],["284.7057772484358",{"_index":1618,"title":{},"name":{},"text":{"/ml.html":{"position":[[8264,18],[8284,18]]}},"component":{}}],["28th",{"_index":2789,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[41,5]]}},"component":{}}],["29.5",{"_index":2049,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9075,4]]}},"component":{}}],["2933.135802469136",{"_index":1623,"title":{},"name":{},"text":{"/ml.html":{"position":[[8368,18]]}},"component":{}}],["29th",{"_index":3603,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[52,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[52,5]]},"/query-service/send-queries-using-rest-api.html":{"position":[[39,5]]}},"component":{}}],["2nd",{"_index":498,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[39,4]]},"/teradatasql.html":{"position":[[43,4]]}},"component":{}}],["3",{"_index":573,"title":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_3_map_data_fields":{"position":[[5,2]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_3_map_data_fields_2":{"position":[[5,2]]}},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2434,1],[4015,1]]},"/dbt.html":{"position":[[2585,1]]},"/geojson-to-vantage.html":{"position":[[1172,1],[1695,1],[5925,1]]},"/getting.started.utm.html":{"position":[[2195,1],[2422,1],[2645,1]]},"/getting.started.vbox.html":{"position":[[5582,2]]},"/ml.html":{"position":[[4431,1],[5802,2],[5915,2],[6028,2],[6033,1],[6141,2]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2198,1],[2554,1],[7044,1],[8936,1],[9161,1]]},"/sto.html":{"position":[[6415,2],[7400,2]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13662,1]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3865,3]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[5527,1],[6578,1]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[3858,1]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[3895,1]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3903,1],[3917,1],[6232,2]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2708,1]]},"/query-service/send-queries-using-rest-api.html":{"position":[[11978,2],[11998,2],[12302,2],[12322,2]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[7740,1]]}},"component":{}}],["3,'2022/01/03',3.3",{"_index":567,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2288,21]]}},"component":{}}],["3.080008095928406",{"_index":987,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4643,18]]}},"component":{}}],["3.10",{"_index":290,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[713,4]]},"/dbt.html":{"position":[[438,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[833,4]]}},"component":{}}],["3.11",{"_index":621,"title":{},"name":{},"text":{"/dbt.html":{"position":[[446,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[841,4]]}},"component":{}}],["3.2.0",{"_index":1393,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[6189,5]]}},"component":{}}],["3.3",{"_index":1951,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3385,3]]}},"component":{}}],["3.3.0.tar.gz",{"_index":2858,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[3627,12],[3688,12],[3743,12],[3805,12],[3863,12]]}},"component":{}}],["3.3.0/ne_50m_populated_places.geojson",{"_index":892,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[1920,39]]}},"component":{}}],["3.30",{"_index":575,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2445,4],[4026,4]]}},"component":{}}],["3.4",{"_index":2600,"title":{},"name":{},"text":{"/teradatasql.html":{"position":[[181,3]]}},"component":{}}],["3.5",{"_index":2055,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9231,3]]}},"component":{}}],["3.5381317138671875e",{"_index":4319,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[7166,20]]}},"component":{}}],["3.6",{"_index":1886,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1955,3]]}},"component":{}}],["3.7",{"_index":287,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[696,4]]},"/dbt.html":{"position":[[423,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[818,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1792,3]]}},"component":{}}],["3.8",{"_index":288,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[701,4]]},"/dbt.html":{"position":[[428,4]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2844,3]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[823,4]]}},"component":{}}],["3.814697265625e",{"_index":4305,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[6719,16]]}},"component":{}}],["3.875",{"_index":2058,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9310,5]]}},"component":{}}],["3.9",{"_index":289,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[706,3]]},"/dbt.html":{"position":[[433,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[828,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[3472,5],[8952,5]]}},"component":{}}],["3/h",{"_index":2116,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[390,5]]}},"component":{}}],["30",{"_index":1274,"title":{},"name":{},"text":{"/getting.started.vmware.html":{"position":[[1406,2]]},"/mule.jdbc.example.html":{"position":[[46,3],[245,2]]},"/segment.html":{"position":[[4536,2]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3151,5]]}},"component":{}}],["300",{"_index":377,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3333,3]]},"/dbt.html":{"position":[[1507,3]]}},"component":{}}],["3000:3000",{"_index":4452,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[2929,9]]}},"component":{}}],["3000:3000/tcp",{"_index":4464,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[3718,15]]}},"component":{}}],["300k",{"_index":705,"title":{},"name":{},"text":{"/fastload.html":{"position":[[474,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[328,4]]}},"component":{}}],["30301",{"_index":2777,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[20718,7]]}},"component":{}}],["30gb",{"_index":1121,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[935,4]]},"/getting.started.vbox.html":{"position":[[733,4]]},"/getting.started.vmware.html":{"position":[[730,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[1153,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3670,4]]}},"component":{}}],["31",{"_index":2022,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[7306,2],[8792,2]]}},"component":{}}],["31.625",{"_index":2067,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9548,6]]}},"component":{}}],["31.902944751424059",{"_index":975,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4481,19]]}},"component":{}}],["317.7634754180908,1510.521079641879,21.036679308932754,1192.7576042237881",{"_index":4282,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[6058,74]]}},"component":{}}],["32",{"_index":95,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1735,2]]}},"component":{}}],["32000",{"_index":2920,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9376,5]]}},"component":{}}],["3260",{"_index":2088,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10040,4]]}},"component":{}}],["3282:3282",{"_index":4453,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[2951,9]]}},"component":{}}],["3282:3282/tcp",{"_index":4465,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[3736,15]]}},"component":{}}],["33",{"_index":3469,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[6969,4]]}},"component":{}}],["333722",{"_index":4570,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[7202,6],[7237,6]]}},"component":{}}],["3339",{"_index":2080,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9868,4]]}},"component":{}}],["34.105.107.155/gcpuser",{"_index":3117,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[6543,22]]}},"component":{}}],["34.105.107.155/gcpuser/categori",{"_index":3123,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[7165,33]]}},"component":{}}],["34.105.107.155/gcpuser/tablesv_instantiated_latest",{"_index":3127,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[7841,50]]}},"component":{}}],["340a83b202e3",{"_index":4084,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[7758,12]]}},"component":{}}],["3474",{"_index":2084,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9954,4]]}},"component":{}}],["35.016946595501224",{"_index":1078,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[10030,19]]}},"component":{}}],["35.206209378189556",{"_index":974,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4461,19]]}},"component":{}}],["350",{"_index":2439,"title":{},"name":{},"text":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1282,3]]}},"component":{}}],["354",{"_index":2078,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9803,3]]}},"component":{}}],["36101",{"_index":2773,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[17005,7],[24810,7]]}},"component":{}}],["368731",{"_index":4566,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[6808,6],[6911,7]]}},"component":{}}],["37",{"_index":3091,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4585,2]]}},"component":{}}],["38",{"_index":2046,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9007,2]]}},"component":{}}],["38.33333333",{"_index":2062,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9453,11]]}},"component":{}}],["380.4968391264708",{"_index":1629,"title":{},"name":{},"text":{"/ml.html":{"position":[[8474,18]]}},"component":{}}],["3807",{"_index":4526,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3374,6],[5975,5],[6112,5],[6249,5]]}},"component":{}}],["382c3077c1e5",{"_index":4088,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8023,12]]}},"component":{}}],["3cc407e2d565",{"_index":4079,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[7593,12]]}},"component":{}}],["3rd",{"_index":78,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1258,3]]}},"component":{}}],["4",{"_index":592,"title":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_4_add_filters":{"position":[[5,2]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_4_add_filters_2":{"position":[[5,2]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[61,1]]},"/mule-teradata-connector/index.html":{"position":[[26,1]]},"/mule-teradata-connector/reference.html":{"position":[[36,1]]},"/mule-teradata-connector/release-notes.html":{"position":[[40,1]]}},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[3176,2]]},"/ml.html":{"position":[[6146,1]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[5005,1],[6300,4],[9296,1]]},"/run-vantage-express-on-aws.html":{"position":[[5310,1],[7585,1]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[1127,1],[4365,1]]},"/vantage.express.gcp.html":{"position":[[500,1],[902,1],[1190,1],[1478,1],[3392,1]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13676,1],[14022,3]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3923,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[647,1]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[684,1]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6840,1],[6886,1]]},"/mule-teradata-connector/release-notes.html":{"position":[[413,2]]},"/query-service/send-queries-using-rest-api.html":{"position":[[3333,2],[3555,1],[3895,1]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[5765,2]]}},"component":{}}],["4,0.029802322387695312,1.1872,0.029448509216308594",{"_index":4320,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[7187,50]]}},"component":{}}],["4,0.09313225746154785,0.722944,0.09245896339416504",{"_index":4311,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[6891,50]]}},"component":{}}],["4,0.7450580596923828,0.024192,0.744877815246582",{"_index":4303,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[6663,47]]}},"component":{}}],["4,1",{"_index":2776,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[19121,6],[23018,6]]}},"component":{}}],["4,11.546071618795395,0.006488017745513208,11.545322507619858",{"_index":4285,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[6156,60]]}},"component":{}}],["4.3.0",{"_index":3988,"title":{},"name":{},"text":{"/mule-teradata-connector/release-notes.html":{"position":[[1036,5]]}},"component":{}}],["4.6.14",{"_index":2838,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2431,6]]}},"component":{}}],["4.75",{"_index":2060,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9384,4]]}},"component":{}}],["4.76837158203125e",{"_index":4316,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[7088,18]]}},"component":{}}],["4.out",{"_index":4549,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[5739,5]]}},"component":{}}],["40.642002130098206",{"_index":964,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4331,19]]}},"component":{}}],["40.717298",{"_index":1929,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2884,9]]}},"component":{}}],["40.719582",{"_index":1955,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3425,9]]}},"component":{}}],["40.744481",{"_index":1927,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2859,9]]}},"component":{}}],["40.746557",{"_index":1879,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1813,9]]}},"component":{}}],["40.749517",{"_index":1876,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1789,9]]}},"component":{}}],["40.752966",{"_index":1921,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2683,9]]}},"component":{}}],["40.755404",{"_index":1890,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1995,9]]}},"component":{}}],["40.75558",{"_index":1908,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2353,8]]}},"component":{}}],["40.758889",{"_index":1915,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2530,9]]}},"component":{}}],["40.762507",{"_index":1953,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3400,9]]}},"component":{}}],["40.762685",{"_index":1923,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2708,9]]}},"component":{}}],["40.76332",{"_index":1899,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2176,8]]}},"component":{}}],["40.764827",{"_index":1913,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2505,9]]}},"component":{}}],["40.767193",{"_index":1906,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2328,9]]}},"component":{}}],["40.775369",{"_index":1937,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3041,9]]}},"component":{}}],["40.777978",{"_index":1948,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3246,9]]}},"component":{}}],["40.780962",{"_index":1946,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3222,9]]}},"component":{}}],["40.785103",{"_index":1939,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3065,9]]}},"component":{}}],["40.794548",{"_index":1888,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1970,9]]}},"component":{}}],["40.830465",{"_index":1897,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2151,9]]}},"component":{}}],["4000",{"_index":4097,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8239,7]]}},"component":{}}],["4017b8ce9235",{"_index":4077,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[7427,12]]}},"component":{}}],["40mb",{"_index":707,"title":{},"name":{},"text":{"/fastload.html":{"position":[[493,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[347,4]]}},"component":{}}],["41",{"_index":1992,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[5558,2]]}},"component":{}}],["411.2359958542745",{"_index":1636,"title":{},"name":{},"text":{"/ml.html":{"position":[[8627,18],[8647,18]]}},"component":{}}],["43.600373554552903",{"_index":1075,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[9969,19]]}},"component":{}}],["430.27950420065997",{"_index":1634,"title":{},"name":{},"text":{"/ml.html":{"position":[[8593,19]]}},"component":{}}],["4326",{"_index":938,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3509,5],[9246,5]]}},"component":{}}],["433757028032.dkr.ecr.u",{"_index":3180,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[4890,23]]}},"component":{}}],["4422",{"_index":1487,"title":{},"name":{},"text":{"/ml.html":{"position":[[1291,5],[1310,4]]},"/run-vantage-express-on-aws.html":{"position":[[8405,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5185,4]]},"/vantage.express.gcp.html":{"position":[[4212,4]]}},"component":{}}],["443:443/tcp",{"_index":4463,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[3702,13]]}},"component":{}}],["4493",{"_index":2923,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9484,4],[13099,4],[19311,4]]}},"component":{}}],["45.737001067072299",{"_index":1072,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[9910,19]]}},"component":{}}],["45.779982115759424",{"_index":988,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4662,19]]}},"component":{}}],["46.583292255736581",{"_index":983,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4571,19]]}},"component":{}}],["4gb",{"_index":1128,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[1022,3],[1745,3]]}},"component":{}}],["4th",{"_index":4127,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[44,4]]}},"component":{}}],["5",{"_index":958,"title":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_5_review_and_create":{"position":[[5,2]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_5_review_and_create_2":{"position":[[5,2]]}},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4182,1]]},"/getting.started.utm.html":{"position":[[3739,2]]},"/getting.started.vbox.html":{"position":[[2777,2]]},"/getting.started.vmware.html":{"position":[[2848,2]]},"/ml.html":{"position":[[3142,2]]},"/odbc.ubuntu.html":{"position":[[1671,3]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[5189,1]]},"/run-vantage-express-on-aws.html":{"position":[[8527,2]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5307,2]]},"/vantage.express.gcp.html":{"position":[[4334,2]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[21274,1]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[12942,1]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4018,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[3188,1],[3520,1],[3687,1],[3854,1]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[3225,1],[3557,1],[3724,1],[3891,1]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2839,1],[7214,2]]},"/mule-teradata-connector/reference.html":{"position":[[33375,1],[33730,1]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6403,1]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[7685,1]]}},"component":{}}],["5,0.9313225746154785,0.0077312,0.9312505722045898",{"_index":4300,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[6583,49]]}},"component":{}}],["5.5",{"_index":1909,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2366,3],[2544,3]]}},"component":{}}],["5.9",{"_index":1895,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2137,3]]}},"component":{}}],["50",{"_index":3244,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[6703,3]]}},"component":{}}],["500.9148148148148",{"_index":1627,"title":{},"name":{},"text":{"/ml.html":{"position":[[8435,18]]}},"component":{}}],["5112",{"_index":2091,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10127,4]]}},"component":{}}],["5432/tcp",{"_index":4101,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8358,8]]}},"component":{}}],["550.1681921045503",{"_index":1641,"title":{},"name":{},"text":{"/ml.html":{"position":[[8747,18],[8767,18]]}},"component":{}}],["5555",{"_index":4082,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[7713,7]]}},"component":{}}],["5555/tcp",{"_index":4081,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[7702,10],[7721,10]]}},"component":{}}],["57",{"_index":2014,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[6978,2]]}},"component":{}}],["58.494280738411426",{"_index":1631,"title":{},"name":{},"text":{"/ml.html":{"position":[[8540,19]]}},"component":{}}],["586",{"_index":2073,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9701,3]]}},"component":{}}],["5:34",{"_index":1884,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1932,4]]}},"component":{}}],["5:48",{"_index":1885,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1948,4]]}},"component":{}}],["5becea4c",{"_index":4048,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4981,9]]}},"component":{}}],["5th",{"_index":1805,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[47,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[92,4]]}},"component":{}}],["6",{"_index":1743,"title":{},"name":{},"text":{"/nos.html":{"position":[[3012,1]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2722,1],[6847,1],[9005,1],[9224,1]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[5149,1]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[779,1]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[816,1],[5729,1]]}},"component":{}}],["6,0.03725290298461914,0.0128,0.03724813461303711",{"_index":4317,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[7107,48]]}},"component":{}}],["6,0.09313225746154785,0.004096,0.09312844276428223",{"_index":4306,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[6736,50]]}},"component":{}}],["6.1",{"_index":1246,"title":{},"name":{},"text":{"/getting.started.vbox.html":{"position":[[1101,4]]}},"component":{}}],["6.5",{"_index":1940,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3079,3]]}},"component":{}}],["6.732940673828125e",{"_index":4310,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[6871,19]]}},"component":{}}],["60",{"_index":2318,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[1261,2],[1652,2],[2030,2]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4580,2],[5034,4]]}},"component":{}}],["60.096996184895431",{"_index":970,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4408,19]]}},"component":{}}],["600",{"_index":2183,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[5000,3]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[1099,3]]},"/segment.html":{"position":[[4512,3]]}},"component":{}}],["6000",{"_index":2238,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[7551,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4331,4]]},"/vantage.express.gcp.html":{"position":[[3358,4]]}},"component":{}}],["60d50d9f43f5",{"_index":4064,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[7030,12]]}},"component":{}}],["60e6",{"_index":1210,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[5278,5]]},"/getting.started.vbox.html":{"position":[[4104,5]]},"/getting.started.vmware.html":{"position":[[4387,5]]},"/ml.html":{"position":[[2074,5]]},"/mule.jdbc.example.html":{"position":[[2213,5]]},"/nos.html":{"position":[[3960,5]]},"/run-vantage-express-on-aws.html":{"position":[[9162,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5942,5]]},"/sto.html":{"position":[[3026,5]]},"/vantage.express.gcp.html":{"position":[[4969,5]]}},"component":{}}],["60gb",{"_index":2315,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[1172,4]]}},"component":{}}],["60mb",{"_index":1211,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[5287,4]]},"/getting.started.vbox.html":{"position":[[4113,4]]},"/getting.started.vmware.html":{"position":[[4396,4]]},"/ml.html":{"position":[[2083,4]]},"/nos.html":{"position":[[3969,4]]},"/run-vantage-express-on-aws.html":{"position":[[9171,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5951,4]]},"/sto.html":{"position":[[3035,4]]},"/vantage.express.gcp.html":{"position":[[4978,4]]}},"component":{}}],["6379/tcp",{"_index":4091,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8111,8]]}},"component":{}}],["64",{"_index":97,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1745,2]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[300,2],[382,2]]},"/teradatasql.html":{"position":[[167,2],[378,2]]},"/query-service/send-queries-using-rest-api.html":{"position":[[2274,2]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[5467,2]]}},"component":{}}],["64000",{"_index":2693,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[9717,5]]}},"component":{}}],["668",{"_index":1717,"title":{},"name":{},"text":{"/nos.html":{"position":[[1672,3],[1856,3]]}},"component":{}}],["669",{"_index":1714,"title":{},"name":{},"text":{"/nos.html":{"position":[[1626,3]]}},"component":{}}],["671",{"_index":1698,"title":{},"name":{},"text":{"/nos.html":{"position":[[1488,3]]}},"component":{}}],["672",{"_index":1708,"title":{},"name":{},"text":{"/nos.html":{"position":[[1580,3],[1718,3],[1764,3],[1810,3],[1902,3]]}},"component":{}}],["673",{"_index":1703,"title":{},"name":{},"text":{"/nos.html":{"position":[[1534,3]]}},"component":{}}],["6:49",{"_index":1925,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2821,4]]}},"component":{}}],["6gb",{"_index":1243,"title":{},"name":{},"text":{"/getting.started.vbox.html":{"position":[[820,3]]},"/getting.started.vmware.html":{"position":[[817,3]]}},"component":{}}],["6th",{"_index":695,"title":{},"name":{},"text":{"/fastload.html":{"position":[[45,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[45,4]]}},"component":{}}],["7",{"_index":1348,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[2325,1]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2380,1]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1154,1]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1191,1]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[6468,1],[6506,1],[7896,1],[7934,1],[7969,1],[8002,1]]}},"component":{}}],["7.200241088867188e",{"_index":4299,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[6563,19]]}},"component":{}}],["7.3",{"_index":3989,"title":{},"name":{},"text":{"/mule-teradata-connector/release-notes.html":{"position":[[1068,3]]}},"component":{}}],["7.315002595706176",{"_index":1071,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[9891,18]]}},"component":{}}],["7.375",{"_index":2063,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9465,5]]}},"component":{}}],["7.491111755371094e",{"_index":4284,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[6136,19]]}},"component":{}}],["7.5",{"_index":3846,"title":{},"name":{},"text":{"/mule-teradata-connector/index.html":{"position":[[646,3]]}},"component":{}}],["70.42727426221163",{"_index":1639,"title":{},"name":{},"text":{"/ml.html":{"position":[[8714,18]]}},"component":{}}],["70gb",{"_index":2197,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[5340,4]]},"/vantage.express.gcp.html":{"position":[[526,4]]}},"component":{}}],["720.6082254140578",{"_index":1621,"title":{},"name":{},"text":{"/ml.html":{"position":[[8340,18]]}},"component":{}}],["73",{"_index":1751,"title":{},"name":{},"text":{"/nos.html":{"position":[[3585,2]]}},"component":{}}],["73.946371",{"_index":1936,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3031,9]]}},"component":{}}],["73.94764",{"_index":1896,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2142,8]]}},"component":{}}],["73.952625",{"_index":1945,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3212,9]]}},"component":{}}],["73.95309",{"_index":1938,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3056,8]]}},"component":{}}],["73.971555",{"_index":1887,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1960,9]]}},"component":{}}],["73.972323",{"_index":1898,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2166,9]]}},"component":{}}],["73.975399",{"_index":1889,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1985,9]]}},"component":{}}],["73.976005",{"_index":1926,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2849,9]]}},"component":{}}],["73.978104",{"_index":1920,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2673,9]]}},"component":{}}],["73.978394",{"_index":1907,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2343,9]]}},"component":{}}],["73.98163",{"_index":1947,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3237,8]]}},"component":{}}],["73.982013",{"_index":1952,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3390,9]]}},"component":{}}],["73.982129",{"_index":1914,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2520,9]]}},"component":{}}],["73.982313",{"_index":1912,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2495,9]]}},"component":{}}],["73.983357",{"_index":1905,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2318,9]]}},"component":{}}],["73.985756",{"_index":1922,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2698,9]]}},"component":{}}],["73.98816",{"_index":1878,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1804,8]]}},"component":{}}],["73.992423",{"_index":1875,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1779,9]]}},"component":{}}],["74.006854",{"_index":1954,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3415,9]]}},"component":{}}],["74.016063",{"_index":1928,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2874,9]]}},"component":{}}],["7497b497a0d0/903790813",{"_index":2925,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9494,22],[13109,22],[19321,22]]}},"component":{}}],["755",{"_index":1446,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[4372,3]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[4271,3]]}},"component":{}}],["770.625",{"_index":2082,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9885,7]]}},"component":{}}],["774",{"_index":2069,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[9616,3]]}},"component":{}}],["777",{"_index":4049,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[5486,3]]}},"component":{}}],["7:00",{"_index":1902,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2290,4]]}},"component":{}}],["7:04",{"_index":1903,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2306,4],[2837,4]]}},"component":{}}],["7b44004c7277",{"_index":4075,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[7295,12]]}},"component":{}}],["7th",{"_index":1673,"title":{},"name":{},"text":{"/nos.html":{"position":[[49,4]]},"/sto.html":{"position":[[49,4]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[43,4]]}},"component":{}}],["7z",{"_index":2225,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[7166,2]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3946,2]]},"/vantage.express.gcp.html":{"position":[[2973,2]]}},"component":{}}],["7zip",{"_index":1276,"title":{},"name":{},"text":{"/getting.started.vmware.html":{"position":[[1516,4],[1668,5]]},"/run-vantage-express-on-aws.html":{"position":[[6076,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2856,5]]},"/vantage.express.gcp.html":{"position":[[1883,5]]}},"component":{}}],["8",{"_index":2031,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[8073,1],[8227,3],[9377,1]]},"/mule-teradata-connector/release-notes.html":{"position":[[323,2],[1090,1]]},"/query-service/send-queries-using-rest-api.html":{"position":[[2121,4],[2173,3]]}},"component":{}}],["8.5",{"_index":1924,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2734,3]]}},"component":{}}],["80",{"_index":3219,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4760,2],[4767,3]]}},"component":{}}],["80/tcp",{"_index":4096,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8230,8],[8247,7]]}},"component":{}}],["8080",{"_index":2809,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[3557,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[7547,7]]}},"component":{}}],["8080/tcp",{"_index":4070,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[7126,8],[7259,8],[7391,8],[7536,10],[7555,9],[7732,8],[7854,8],[7987,8]]}},"component":{}}],["81",{"_index":1755,"title":{},"name":{},"text":{"/nos.html":{"position":[[3609,2]]}},"component":{}}],["8192",{"_index":2609,"title":{},"name":{},"text":{"/vantage.express.gcp.html":{"position":[[904,4],[1192,4],[1480,4]]}},"component":{}}],["82198f0d8b84",{"_index":4086,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[7891,12]]}},"component":{}}],["881.4116539412856",{"_index":1628,"title":{},"name":{},"text":{"/ml.html":{"position":[[8454,18]]}},"component":{}}],["8888",{"_index":1400,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[6494,4]]}},"component":{}}],["8888:8888",{"_index":1339,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[1982,9],[5967,10]]},"/regulus/install-regulus-docker-image.html":{"position":[[8305,9],[9079,9]]}},"component":{}}],["8:31",{"_index":1893,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2114,4]]}},"component":{}}],["8:55",{"_index":1894,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2130,4]]}},"component":{}}],["8a3be8d8a7f4",{"_index":4093,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8136,12]]}},"component":{}}],["8gb",{"_index":2196,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[5322,3]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[1139,3]]},"/vantage.express.gcp.html":{"position":[[512,3]]}},"component":{}}],["8th",{"_index":3135,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[44,4]]}},"component":{}}],["9",{"_index":1916,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[2558,1],[3097,1],[5373,1],[7175,1],[8649,1],[9147,1]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6983,1]]}},"component":{}}],["9.225",{"_index":4572,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[7570,5]]}},"component":{}}],["9.56",{"_index":1709,"title":{},"name":{},"text":{"/nos.html":{"position":[[1584,4]]}},"component":{}}],["9.64",{"_index":1704,"title":{},"name":{},"text":{"/nos.html":{"position":[[1538,4]]}},"component":{}}],["9.68",{"_index":1725,"title":{},"name":{},"text":{"/nos.html":{"position":[[1814,4]]}},"component":{}}],["9.72",{"_index":1730,"title":{},"name":{},"text":{"/nos.html":{"position":[[1906,4]]}},"component":{}}],["9.77",{"_index":1723,"title":{},"name":{},"text":{"/nos.html":{"position":[[1768,4]]}},"component":{}}],["9.80",{"_index":1699,"title":{},"name":{},"text":{"/nos.html":{"position":[[1492,4]]}},"component":{}}],["9.82",{"_index":1721,"title":{},"name":{},"text":{"/nos.html":{"position":[[1722,4]]}},"component":{}}],["9.88",{"_index":1718,"title":{},"name":{},"text":{"/nos.html":{"position":[[1676,4]]}},"component":{}}],["9.93",{"_index":1728,"title":{},"name":{},"text":{"/nos.html":{"position":[[1860,4]]}},"component":{}}],["9.97",{"_index":1715,"title":{},"name":{},"text":{"/nos.html":{"position":[[1630,4]]}},"component":{}}],["93",{"_index":1753,"title":{},"name":{},"text":{"/nos.html":{"position":[[3597,2]]}},"component":{}}],["9400815",{"_index":1768,"title":{},"name":{},"text":{"/nos.html":{"position":[[4597,7],[4714,7],[4831,7],[4948,7],[6218,7],[6255,7],[6292,7],[6329,7],[6366,7],[6403,7],[6440,7],[6477,7],[6514,7],[6551,7]]}},"component":{}}],["9429070",{"_index":1761,"title":{},"name":{},"text":{"/nos.html":{"position":[[4481,7],[5065,7]]}},"component":{}}],["96a3ab874a03779c400966bf492fe270c2221cdcc74b61",{"_index":1399,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[6386,48]]}},"component":{}}],["982.9240031182255",{"_index":1624,"title":{},"name":{},"text":{"/ml.html":{"position":[[8387,18]]}},"component":{}}],["99.915979046410712",{"_index":1067,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[9833,18]]}},"component":{}}],["990/index_2020.csv",{"_index":724,"title":{},"name":{},"text":{"/fastload.html":{"position":[[1256,19],[6713,20]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[8258,20]]}},"component":{}}],["99ad",{"_index":2924,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9489,4],[13104,4],[19316,4]]}},"component":{}}],["9:43",{"_index":1950,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3361,4]]}},"component":{}}],["9ca888e9e8df",{"_index":4099,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8271,12]]}},"component":{}}],["9th",{"_index":1098,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[47,4]]},"/getting.started.vbox.html":{"position":[[47,4]]},"/getting.started.vmware.html":{"position":[[47,4]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[43,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[41,4]]}},"component":{}}],["_airbyte_ab_id",{"_index":3335,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6589,15]]}},"component":{}}],["_airbyte_data",{"_index":3276,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[5903,14]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6849,14],[6954,13]]}},"component":{}}],["_airbyte_data.jsonextractvalue('$.id",{"_index":3272,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[5451,38]]}},"component":{}}],["_airbyte_data.jsonextractvalue('$.order_d",{"_index":3274,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[5563,46]]}},"component":{}}],["_airbyte_data.jsonextractvalue('$.statu",{"_index":3275,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[5625,42]]}},"component":{}}],["_airbyte_data.jsonextractvalue('$.user_id",{"_index":3273,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[5503,43]]}},"component":{}}],["_airbyte_emitted_at",{"_index":3338,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6710,20]]}},"component":{}}],["_airbyte_raw_",{"_index":3334,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6423,13]]}},"component":{}}],["_airbyte_raw_custom",{"_index":3262,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[4810,22]]}},"component":{}}],["_airbyte_raw_ord",{"_index":3264,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[4909,19],[5391,24],[5779,20]]}},"component":{}}],["_airbyte_raw_pay",{"_index":3266,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[5008,21]]}},"component":{}}],["_airbyte_raw_sample_employee_payr",{"_index":3333,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6329,37]]}},"component":{}}],["_from",{"_index":2530,"title":{},"name":{},"text":{"/sto.html":{"position":[[6438,5],[7423,5]]}},"component":{}}],["_nkw",{"_index":2526,"title":{},"name":{},"text":{"/sto.html":{"position":[[6385,4],[7370,4]]}},"component":{}}],["_prebuilt",{"_index":2822,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1353,11]]}},"component":{}}],["_sacat",{"_index":2528,"title":{},"name":{},"text":{"/sto.html":{"position":[[6418,6],[7403,6]]}},"component":{}}],["_trksid",{"_index":2522,"title":{},"name":{},"text":{"/sto.html":{"position":[[6289,7],[7274,7]]}},"component":{}}],["ab",{"_index":3301,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1372,2],[1410,2],[1431,2]]}},"component":{}}],["abil",{"_index":2428,"title":{},"name":{},"text":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[780,7]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[4205,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8050,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[416,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[453,7]]}},"component":{}}],["abov",{"_index":304,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[1203,6]]},"/geojson-to-vantage.html":{"position":[[10082,5]]},"/getting.started.utm.html":{"position":[[3180,6]]},"/getting.started.vbox.html":{"position":[[2218,6]]},"/getting.started.vmware.html":{"position":[[2289,6]]},"/jupyter.html":{"position":[[3638,5]]},"/local.jupyter.hub.html":{"position":[[2020,6],[2834,5],[2928,6],[3921,5]]},"/ml.html":{"position":[[3829,6]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10164,5]]},"/sto.html":{"position":[[6657,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[21595,5],[22428,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11220,6],[19804,6]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3711,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1462,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[4427,5],[9715,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2129,5],[6824,5]]}},"component":{}}],["acapulco",{"_index":1066,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[9816,8]]}},"component":{}}],["acceler",{"_index":3824,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9429,11]]}},"component":{}}],["accept",{"_index":1131,"title":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_accept_and_receive_data_using_azure_data_share":{"position":[[0,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_accept_invitation":{"position":[[0,6]]}},"name":{},"text":{"/getting.started.utm.html":{"position":[[1415,9],[1836,6]]},"/getting.started.vbox.html":{"position":[[1225,9],[1627,6]]},"/getting.started.vmware.html":{"position":[[1615,9]]},"/jupyter.html":{"position":[[5838,6]]},"/run-vantage-express-on-aws.html":{"position":[[6373,6],[6498,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3153,6],[3278,6]]},"/vantage.express.gcp.html":{"position":[[2180,6],[2305,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2993,6],[5704,7],[5957,6],[6193,9],[6653,6],[6690,6],[7295,11],[7553,6],[8140,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6666,6]]}},"component":{}}],["accept_licens",{"_index":4466,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[3765,15]]}},"component":{}}],["accept_license=\"i",{"_index":4448,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[2743,18]]}},"component":{}}],["accept_license=i",{"_index":1388,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[5816,17],[5945,18]]},"/regulus/install-regulus-docker-image.html":{"position":[[8274,18],[9051,18]]}},"component":{}}],["acces_key",{"_index":2782,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[21780,9]]}},"component":{}}],["access",{"_index":85,"title":{"/nos.html#_access_private_buckets":{"position":[[0,6]]},"/teradata-vantage-engine-architecture-and-concepts.html#_access_module_processor_amp":{"position":[[0,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_configure_nos_access_to_azure_blob_storage":{"position":[[14,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Give-permissions-to-Vertex-AI-to-access-your-bucket":{"position":[[33,6]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1417,6],[2318,10]]},"/advanced-dbt.html":{"position":[[543,6]]},"/create-parquet-files-in-object-storage.html":{"position":[[559,6],[1359,6],[1562,6],[2574,6],[2657,6],[2734,6],[3298,6]]},"/dbt.html":{"position":[[270,6]]},"/fastload.html":{"position":[[531,6]]},"/geojson-to-vantage.html":{"position":[[1017,6]]},"/getting.started.utm.html":{"position":[[87,6]]},"/getting.started.vbox.html":{"position":[[87,6],[1413,7]]},"/getting.started.vmware.html":{"position":[[87,6]]},"/jdbc.html":{"position":[[208,6]]},"/jupyter.html":{"position":[[2219,6]]},"/ml.html":{"position":[[515,6],[1515,6]]},"/mule.jdbc.example.html":{"position":[[305,6],[1811,10],[3464,6]]},"/nos.html":{"position":[[363,6],[7318,6],[7355,6]]},"/odbc.ubuntu.html":{"position":[[142,6],[293,6]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[348,6],[723,8]]},"/run-vantage-express-on-aws.html":{"position":[[4899,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[998,6]]},"/segment.html":{"position":[[2515,6]]},"/sto.html":{"position":[[713,6]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[591,6],[866,6],[2601,6],[2693,6],[3183,6],[4569,6],[5033,7],[5530,6],[5609,7],[5982,6],[6131,6],[6426,6],[6515,6]]},"/teradatasql.html":{"position":[[408,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2593,6],[3048,6],[4742,6],[9051,6],[9269,6],[9414,6],[13873,6],[20953,6],[21816,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[423,6],[1146,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[428,6],[589,6],[4167,6],[4298,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2817,6],[3230,6],[3431,7],[3443,6],[6461,6],[8088,6],[8711,6],[8744,7],[8861,6],[15447,6],[17569,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1618,6],[2494,6]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[1681,6],[1845,6]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[543,6],[1330,6],[1495,6],[7184,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[522,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[325,6],[2962,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[4548,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[332,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[369,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[251,6],[3271,10]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[3768,6]]},"/mule-teradata-connector/index.html":{"position":[[674,6]]},"/mule-teradata-connector/reference.html":{"position":[[18175,9],[24189,9],[31142,6],[40304,6],[41567,6]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[146,6],[1167,8],[1310,8]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[597,6],[1197,6],[1254,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1230,6],[5026,10]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[263,6]]},"/query-service/send-queries-using-rest-api.html":{"position":[[235,6],[420,6],[1595,6]]},"/regulus/getting-started-with-regulus.html":{"position":[[119,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[119,6],[3126,6],[3200,6],[4214,6],[5015,6],[8495,6]]},"/regulus/regulus-magic-reference.html":{"position":[[119,6],[2458,6]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[119,6],[5840,6],[6178,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[385,6]]}},"component":{}}],["access_id",{"_index":2781,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[21715,9],[22316,10]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13154,9],[19366,9],[24148,9]]}},"component":{}}],["access_id\":\"a*****\",\"access_key",{"_index":3044,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[23999,47]]}},"component":{}}],["access_id('myconsumerstorag",{"_index":2779,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[21433,30],[22179,30],[24724,30]]}},"component":{}}],["access_key",{"_index":583,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2909,18],[3663,18]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[21464,19],[22210,19],[22331,11],[24755,19]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13198,10],[19410,10],[24182,10]]}},"component":{}}],["accesskey",{"_index":4511,"title":{},"name":{},"text":{"/regulus/using-regulus-workspace-cli.html":{"position":[[5809,9]]}},"component":{}}],["accesskeyid",{"_index":2917,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[8964,11],[9036,11],[13183,11],[19395,11],[24165,12]]}},"component":{}}],["accord",{"_index":309,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[1261,9],[3869,9]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[3735,9],[3875,9]]},"/mule-teradata-connector/reference.html":{"position":[[40406,9],[41669,9]]}},"component":{}}],["accordingli",{"_index":470,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[6078,12]]}},"component":{}}],["account",{"_index":102,"title":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_an_azure_blob_storage_account_and_container":{"position":[[29,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_a_data_share_account":{"position":[[20,7]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1903,8]]},"/ml.html":{"position":[[2734,7],[3397,8],[6231,8]]},"/run-vantage-express-on-aws.html":{"position":[[655,8],[692,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[315,8],[627,7]]},"/segment.html":{"position":[[533,8],[563,8],[3488,7],[3573,8],[3676,7],[4238,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2856,10]]},"/vantage.express.gcp.html":{"position":[[324,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[305,7],[328,7],[2748,8],[2783,8],[2814,7],[2928,7],[2970,7],[3273,7],[3762,7],[3846,7],[3980,7],[4918,7],[6080,8],[6319,8],[6365,7],[6449,7],[6525,8],[6610,7],[7114,8],[7456,8],[7524,7],[7883,7],[9205,7],[9261,7],[9342,7],[9406,7],[10002,7],[10087,7],[21542,7],[21664,7],[21743,7],[21808,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1304,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[738,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[471,7],[653,7],[2794,9],[2970,7],[3332,7],[3399,7],[3552,7],[3826,8],[4818,8],[5551,7],[6584,7],[9061,8],[23336,7],[25959,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1781,7],[1859,7],[2587,7],[3604,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[723,7],[992,7],[1176,7],[1256,7],[1361,8],[1515,8],[2965,7],[3289,7],[4069,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[981,8],[1030,7],[1063,7],[1122,7],[2496,7],[2544,7],[2613,7],[2669,7],[2689,7],[2749,7],[2799,7],[2954,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1081,7],[1112,7],[1837,7],[1995,8],[2063,8]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1812,7],[2728,9],[4754,8]]},"/regulus/install-regulus-docker-image.html":{"position":[[1408,8],[1452,8],[1500,8],[1534,8],[1572,7],[4686,7],[7236,7],[7335,8],[7375,7],[7452,8]]},"/regulus/regulus-magic-reference.html":{"position":[[828,8]]}},"component":{}}],["account=cloud",{"_index":2406,"title":{},"name":{},"text":{"/segment.html":{"position":[[4423,13]]}},"component":{}}],["account_id",{"_index":3038,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[23619,10],[23792,11]]}},"component":{}}],["account_key=accountkey",{"_index":3202,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3147,23]]}},"component":{}}],["accountkey",{"_index":3198,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3018,13]]}},"component":{}}],["accountnam",{"_index":3197,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3003,14]]}},"component":{}}],["acct_numb",{"_index":2942,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11407,12],[14881,12],[16138,12],[17942,12],[20358,11],[21924,12]]}},"component":{}}],["accumul",{"_index":3547,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[11191,10],[11985,10]]}},"component":{}}],["accuraci",{"_index":3534,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[10458,8]]}},"component":{}}],["achiev",{"_index":326,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[1804,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[5870,8]]}},"component":{}}],["acquir",{"_index":1086,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[10309,7]]},"/getting.started.vmware.html":{"position":[[1167,7]]},"/mule-teradata-connector/reference.html":{"position":[[33465,7],[33542,7],[33825,8]]}},"component":{}}],["acquisit",{"_index":4569,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[7060,11],[7551,11],[7611,11],[7666,11]]}},"component":{}}],["act",{"_index":3023,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[15733,6]]}},"component":{}}],["action",{"_index":2683,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[6940,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[2910,6]]},"/mule-teradata-connector/reference.html":{"position":[[3498,6],[3589,6],[5827,6],[5918,6],[8125,6],[8216,6],[9955,6],[10046,6],[12170,6],[12261,6],[13759,6],[13850,6],[15433,6],[15524,6],[18352,6],[18443,6],[21516,6],[21604,6],[24367,6],[24458,6],[28181,6],[28272,6],[31808,6],[31876,6]]}},"component":{}}],["activ",{"_index":308,"title":{"/query-service/send-queries-using-rest-api.html#_get_a_list_of_active_or_queued_queries":{"position":[[14,6]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[1229,8]]},"/dbt.html":{"position":[[680,8]]},"/getting.started.vbox.html":{"position":[[1465,8]]},"/nos.html":{"position":[[3648,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[4503,9],[4907,9]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[14167,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2771,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1286,8],[1364,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[4887,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2209,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[11571,6]]}},"component":{}}],["actual",{"_index":3245,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[6759,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[5855,6]]},"/mule-teradata-connector/reference.html":{"position":[[11458,6],[16921,6],[19993,6],[23115,6],[26090,6],[26431,6],[29668,6],[34694,6]]}},"component":{}}],["acycl",{"_index":4006,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[504,7]]}},"component":{}}],["ad",{"_index":454,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[5510,5],[6022,5]]},"/ml.html":{"position":[[3796,4],[3995,4]]},"/nos.html":{"position":[[3629,2]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3962,6]]},"/vantage.express.gcp.html":{"position":[[7444,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[25448,6],[25869,6]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[6468,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[6125,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[3962,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6114,6]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1341,6]]}},"component":{}}],["adam",{"_index":612,"title":{},"name":{},"text":{"/dbt.html":{"position":[[8,4]]},"/fastload.html":{"position":[[8,4]]},"/getting.started.utm.html":{"position":[[8,4],[5844,7],[6152,4]]},"/getting.started.vbox.html":{"position":[[8,4],[4670,7],[4978,4]]},"/getting.started.vmware.html":{"position":[[8,4],[4953,7],[5261,4]]},"/jdbc.html":{"position":[[8,4]]},"/jupyter.html":{"position":[[8,4]]},"/ml.html":{"position":[[8,4]]},"/mule.jdbc.example.html":{"position":[[8,4]]},"/nos.html":{"position":[[8,4]]},"/odbc.ubuntu.html":{"position":[[8,4]]},"/run-vantage-express-on-aws.html":{"position":[[8,4],[9728,7],[10036,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[8,4],[6508,7],[6816,4]]},"/segment.html":{"position":[[8,4]]},"/sto.html":{"position":[[8,4]]},"/vantage.express.gcp.html":{"position":[[8,4],[5535,7],[5843,4]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[8,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[8,4]]}},"component":{}}],["adapt",{"_index":3585,"title":{},"name":{},"text":{"/jupyter-demos/index.html":{"position":[[1413,8]]}},"component":{}}],["add",{"_index":362,"title":{"/jdbc.html#_add_dependency_to_your_maven_project":{"position":[[0,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_4_add_filters":{"position":[[8,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_4_add_filters_2":{"position":[[8,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_add_dataset_to_identify_vantage_tables_for_byom_evaluation_and_scoring":{"position":[[0,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_add_dataset_to_identify_vantage_tables_for_byom_evaluation_and_scoring":{"position":[[0,3]]},"/mule-teradata-connector/examples-configuration.html#add-connector-to-project":{"position":[[0,3]]},"/mule-teradata-connector/examples-configuration.html#add-connector-operation":{"position":[[0,3]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html#_add_a_teradata_connection_to_dbeaver":{"position":[[0,3]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[2973,3],[3138,3]]},"/geojson-to-vantage.html":{"position":[[935,3]]},"/getting.started.utm.html":{"position":[[4501,3]]},"/getting.started.vbox.html":{"position":[[3539,3]]},"/getting.started.vmware.html":{"position":[[3610,3]]},"/jdbc.html":{"position":[[364,3]]},"/jupyter.html":{"position":[[88,3],[1712,4],[4894,4]]},"/local.jupyter.hub.html":{"position":[[2675,4],[3739,3]]},"/run-vantage-express-on-aws.html":{"position":[[3465,3],[3580,3],[3725,3],[3883,3],[4245,3],[4409,3],[6785,3],[7647,3],[10132,3]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[753,3],[3565,3],[4427,3],[6912,3]]},"/segment.html":{"position":[[2172,3],[2342,3],[2547,3],[3736,3],[4022,3]]},"/vantage.express.gcp.html":{"position":[[2592,3],[3454,3],[5939,3]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[4853,3],[5468,3],[5488,3],[5543,3]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[81,3],[3031,3]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[86,3],[4103,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[379,3],[7146,3],[7313,3],[7495,3]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[2990,3],[3420,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1631,3],[2607,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1668,3],[2644,3]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1099,4]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[177,3],[241,3],[326,3],[802,3],[933,3],[1074,3],[1198,3],[1322,4],[2904,3],[3022,3]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2927,3],[2985,3]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[794,4],[896,3],[1132,3]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1963,3],[2271,3],[2876,3],[3105,3],[3404,3],[3699,3],[4061,3],[4429,3],[5091,3],[5451,3],[5737,3],[6514,3],[6819,3]]}},"component":{}}],["addit",{"_index":651,"title":{},"name":{},"text":{"/dbt.html":{"position":[[2863,10]]},"/fastload.html":{"position":[[7069,10]]},"/local.jupyter.hub.html":{"position":[[2680,10],[3058,10]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[5940,10],[10152,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[14200,9]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2408,10],[3678,10]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[664,10]]},"/mule-teradata-connector/reference.html":{"position":[[31088,10],[33990,10],[34326,10]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4024,8],[10672,10]]},"/regulus/regulus-magic-reference.html":{"position":[[232,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[8614,10]]}},"component":{}}],["addition",{"_index":471,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[6091,13]]},"/mule.jdbc.example.html":{"position":[[1947,13]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1153,13],[9201,13]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4143,12]]},"/regulus/regulus-magic-reference.html":{"position":[[5080,13]]}},"component":{}}],["address",{"_index":163,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3310,7]]},"/advanced-dbt.html":{"position":[[4309,7]]},"/odbc.ubuntu.html":{"position":[[1196,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[5563,7],[5611,7],[10615,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4199,7],[4244,9],[4376,7],[7379,8],[10324,7],[23287,7],[23670,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1837,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8881,7],[9662,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3590,9]]},"/regulus/install-regulus-docker-image.html":{"position":[[6261,9],[6322,9]]},"/regulus/regulus-magic-reference.html":{"position":[[489,7],[3858,9]]}},"component":{}}],["adjust",{"_index":359,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[2848,6]]},"/dbt.html":{"position":[[220,8],[1044,6]]},"/getting.started.utm.html":{"position":[[2013,6]]},"/ml.html":{"position":[[2453,6]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[6718,9]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2087,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[687,8],[9556,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3057,6],[3819,6]]}},"component":{}}],["admin",{"_index":1129,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[1054,5],[1114,5]]},"/getting.started.vbox.html":{"position":[[852,5]]},"/getting.started.vmware.html":{"position":[[849,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[1335,5],[1726,5],[2104,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1807,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1750,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[10242,5]]},"/query-service/send-queries-using-rest-api.html":{"position":[[560,5]]}},"component":{}}],["administr",{"_index":2465,"title":{},"name":{},"text":{"/sto.html":{"position":[[2341,13]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[3647,14]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2924,14]]}},"component":{}}],["ads_fv",{"_index":4161,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5531,6]]}},"component":{}}],["ads_fv:ag",{"_index":4183,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6626,12]]}},"component":{}}],["ads_fv:incom",{"_index":4184,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6639,16]]}},"component":{}}],["ads_fv:q1_trans_cnt",{"_index":4185,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6656,22]]}},"component":{}}],["ads_fv:q2_trans_cnt",{"_index":4186,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6679,22]]}},"component":{}}],["ads_fv:q3_trans_cnt",{"_index":4187,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6702,22]]}},"component":{}}],["ads_fv:q4_trans_cnt",{"_index":4188,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6725,22]]}},"component":{}}],["advanc",{"_index":171,"title":{"/advanced-dbt.html":{"position":[[0,8]]}},"name":{"/advanced-dbt.html":{"position":[[0,8]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3503,8]]},"/advanced-dbt.html":{"position":[[128,8],[262,8],[4826,8],[7013,8],[7198,8]]},"/geojson-to-vantage.html":{"position":[[2108,8],[7756,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8828,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[5919,10],[8505,8],[24477,10]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2113,8]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[2566,8],[4061,8]]},"/mule-teradata-connector/reference.html":{"position":[[1252,8]]},"/regulus/getting-started-with-regulus.html":{"position":[[3881,8]]}},"component":{}}],["advantag",{"_index":2447,"title":{},"name":{},"text":{"/sto.html":{"position":[[425,9]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[17254,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[774,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[19885,9]]}},"component":{}}],["adventur",{"_index":3207,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3526,9]]}},"component":{}}],["adventurework",{"_index":3185,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[777,14]]}},"component":{}}],["affect",{"_index":1963,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[4173,9]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[4086,9]]},"/mule-teradata-connector/reference.html":{"position":[[40075,8]]}},"component":{}}],["aforement",{"_index":486,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[6796,14]]}},"component":{}}],["after=network.target",{"_index":2274,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[10398,20]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7178,20]]},"/vantage.express.gcp.html":{"position":[[6205,20]]}},"component":{}}],["afterward",{"_index":4346,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[9092,10]]}},"component":{}}],["ag",{"_index":3388,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2768,6],[3304,3],[3468,4],[7232,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2929,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2966,3]]}},"component":{}}],["again",{"_index":1163,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[2830,5]]},"/getting.started.vbox.html":{"position":[[1868,5]]},"/getting.started.vmware.html":{"position":[[1939,5]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[5441,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4631,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[6618,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6978,5]]}},"component":{}}],["against",{"_index":665,"title":{},"name":{},"text":{"/dbt.html":{"position":[[3449,7]]},"/nos.html":{"position":[[5163,7]]},"/sto.html":{"position":[[7518,7]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1368,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11011,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9132,7],[10993,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[6957,7]]},"/mule-teradata-connector/reference.html":{"position":[[4972,7],[7264,7],[9482,7],[11621,7],[11970,7],[13189,7],[14958,7],[17475,7],[20157,7],[27228,7],[30228,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[183,7]]}},"component":{}}],["agent",{"_index":4000,"title":{},"name":{},"text":{"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[1485,5]]}},"component":{}}],["aggreg",{"_index":1745,"title":{},"name":{},"text":{"/nos.html":{"position":[[3269,12]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[5921,11]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2780,11]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1871,11]]}},"component":{}}],["ago",{"_index":4068,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[7098,3],[7231,3],[7363,3],[7495,3],[7661,3],[7826,3],[7959,3],[8083,3],[8189,3],[8330,3]]}},"component":{}}],["agre",{"_index":2217,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[6534,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3314,5]]},"/vantage.express.gcp.html":{"position":[[2341,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[7389,5]]}},"component":{}}],["agreement",{"_index":1389,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[5857,9]]},"/run-vantage-express-on-aws.html":{"position":[[6350,9]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3130,9]]},"/vantage.express.gcp.html":{"position":[[2157,9]]}},"component":{}}],["ahead",{"_index":3364,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1610,5]]}},"component":{}}],["ai",{"_index":1335,"title":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[57,2]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[20,2]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Give-permissions-to-Vertex-AI-to-access-your-bucket":{"position":[[27,2]]}},"name":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[57,2]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[11,2]]}},"text":{"/jupyter.html":{"position":[[1887,2]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[502,2],[555,2],[728,2],[756,2],[840,2],[1324,2],[1484,3],[6181,2],[6251,2],[6345,2]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[81,2],[328,2],[3639,2],[9536,2],[9622,2],[13015,2]]}},"component":{}}],["aim",{"_index":4119,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[10502,5]]}},"component":{}}],["aip",{"_index":3522,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[9902,3],[13071,3]]}},"component":{}}],["aip.pipelinejob",{"_index":3525,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[9955,16],[13124,16]]}},"component":{}}],["airbyt",{"_index":2438,"title":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_airbyte":{"position":[[17,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[38,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[4,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_launch_airbyte_open_source":{"position":[[7,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_airbyte_configuration":{"position":[[0,7]]}},"name":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[38,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[4,7]]}},"text":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1231,8],[1240,7],[1739,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[150,7],[419,8],[448,7],[802,8],[918,8],[947,7],[1097,8],[2337,7],[3223,8],[3379,8],[4475,8],[4555,7],[8048,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[86,7],[264,8],[411,7],[643,7],[1159,7],[1204,7],[1287,7],[1523,7],[1791,7],[1956,7],[2042,7],[2278,7],[3126,7],[4112,8],[4497,7],[5159,7],[5369,8],[5772,7],[6624,7],[7146,7],[7356,7],[7503,7],[7820,7],[7863,7],[7901,7],[7923,7],[7947,7]]}},"component":{}}],["airbyte_jaffle_shop",{"_index":3250,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1197,20],[2345,20],[2441,19]]}},"component":{}}],["airbyte’",{"_index":3290,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[489,9],[2245,9]]}},"component":{}}],["airflow",{"_index":4001,"title":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_and_execute_airflow":{"position":[[20,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_create_an_airflow_environment":{"position":[[10,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_create_the_airflow_environment_in_docker":{"position":[[11,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_run_an_airflow_dag":{"position":[[7,7]]}},"name":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8,7]]}},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[111,7],[220,7],[362,7],[421,7],[447,7],[484,7],[2182,7],[2266,7],[2277,7],[2569,7],[2639,7],[3570,7],[3793,7],[5280,9],[6285,7],[6348,9],[6507,7],[6636,7],[6684,7],[6897,7],[8578,7],[8789,7],[8938,7],[8958,7],[8973,7],[9339,7],[9961,8],[10072,7],[10154,7],[10224,8],[10562,7],[10615,7],[10723,7]]}},"component":{}}],["airflow.cfg",{"_index":4021,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2463,11]]}},"component":{}}],["airflow/config",{"_index":4022,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2483,14]]}},"component":{}}],["airflow_airflow",{"_index":4071,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[7135,15],[7268,15],[7400,15],[7565,15],[7863,15],[7996,15]]}},"component":{}}],["airflow_dbt_integration.pi",{"_index":4109,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[9021,27],[9163,26]]}},"component":{}}],["airflow_flower_1",{"_index":4083,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[7741,16]]}},"component":{}}],["airflow_nginx_1",{"_index":4098,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8255,15]]}},"component":{}}],["airflow_postgres_1",{"_index":4102,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8367,18]]}},"component":{}}],["airflow_redis_1",{"_index":4092,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8120,15]]}},"component":{}}],["airflow_uid=$(id",{"_index":4020,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2349,17]]}},"component":{}}],["airflowtest",{"_index":4052,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[5564,11],[5818,13]]}},"component":{}}],["albani",{"_index":1076,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[9995,6]]}},"component":{}}],["ald",{"_index":968,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4378,3]]}},"component":{}}],["algorithm",{"_index":3164,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3611,10]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4868,10],[5289,10],[5334,9],[5545,9],[5586,9],[5819,9],[6035,11]]},"/mule-teradata-connector/reference.html":{"position":[[37021,9],[37042,9],[37749,9],[37770,9],[39095,9],[39155,9],[39191,9]]}},"component":{}}],["alia",{"_index":3944,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[37429,5],[37518,5],[38269,5],[38282,5]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1386,5],[2957,5],[8915,5],[9361,5]]}},"component":{}}],["alias",{"_index":3280,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[6143,7]]}},"component":{}}],["align",{"_index":422,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[4540,5]]}},"component":{}}],["all_ord",{"_index":440,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[5071,10],[5850,9],[6164,10]]}},"component":{}}],["all_order_product",{"_index":444,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[5259,18],[5561,18],[5864,18]]}},"component":{}}],["alloc",{"_index":1135,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[1727,8]]},"/segment.html":{"position":[[480,10]]},"/regulus/install-regulus-docker-image.html":{"position":[[6310,8]]}},"component":{}}],["allow",{"_index":75,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1106,6]]},"/advanced-dbt.html":{"position":[[6506,5],[6889,5]]},"/create-parquet-files-in-object-storage.html":{"position":[[103,6],[982,6]]},"/dbt.html":{"position":[[3411,6],[4198,6]]},"/fastload.html":{"position":[[2048,6]]},"/geojson-to-vantage.html":{"position":[[896,5],[7462,5]]},"/jupyter.html":{"position":[[751,5],[1246,5]]},"/local.jupyter.hub.html":{"position":[[2215,5]]},"/nos.html":{"position":[[113,6]]},"/run-vantage-express-on-aws.html":{"position":[[3430,6],[11549,6]]},"/segment.html":{"position":[[2496,5],[3177,5],[3943,5],[4539,5]]},"/sto.html":{"position":[[355,6],[3067,5],[7606,6]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[698,8],[4101,6],[4725,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8646,6],[8765,6],[13670,6],[20939,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[401,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[406,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1307,6],[3209,5],[3565,5],[4620,5],[6435,5],[6444,5],[8437,6],[8827,7],[17555,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2641,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1457,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[6919,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[642,5],[3486,5],[5251,6]]},"/mule-teradata-connector/reference.html":{"position":[[2956,6],[4601,6],[5298,6],[6912,6],[7591,6],[9122,6],[10951,6],[11938,6],[16429,6],[19488,6],[25593,6],[29171,6],[38624,7],[40234,7],[41497,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1540,5],[2548,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1036,6],[1093,6],[5241,5]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[388,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2180,6]]}},"component":{}}],["allow=tcp:1025",{"_index":2618,"title":{},"name":{},"text":{"/vantage.express.gcp.html":{"position":[[7219,14]]}},"component":{}}],["along",{"_index":1007,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[5686,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2178,5]]}},"component":{}}],["alreadi",{"_index":323,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[1694,7],[2912,7]]},"/fastload.html":{"position":[[1752,7]]},"/getting.started.utm.html":{"position":[[3563,7]]},"/getting.started.vbox.html":{"position":[[2601,7]]},"/getting.started.vmware.html":{"position":[[2672,7]]},"/nos.html":{"position":[[6737,7]]},"/run-vantage-express-on-aws.html":{"position":[[4768,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[928,8]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[832,7]]},"/sto.html":{"position":[[233,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[3682,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2709,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1229,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[2377,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[5121,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1211,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1127,7]]},"/query-service/send-queries-using-rest-api.html":{"position":[[2455,7],[7870,7]]},"/regulus/getting-started-with-regulus.html":{"position":[[1939,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[1430,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1843,7]]}},"component":{}}],["also,replac",{"_index":577,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2547,12],[3271,12]]}},"component":{}}],["alter",{"_index":1498,"title":{},"name":{},"text":{"/ml.html":{"position":[[2155,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1047,8]]}},"component":{}}],["altern",{"_index":198,"title":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_read_nos_an_alternative_method_to_foreign_tables":{"position":[[14,11]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[4311,14]]},"/getting.started.vmware.html":{"position":[[1420,14]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2347,14],[20840,11]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[17461,11]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[964,13]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1001,13],[4492,11],[4879,11],[5254,11]]}},"component":{}}],["although",{"_index":4207,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[1171,8]]}},"component":{}}],["alway",{"_index":2700,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[10393,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[10009,6]]}},"component":{}}],["always_begin",{"_index":3916,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[31836,12]]}},"component":{}}],["always_join",{"_index":3874,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[3526,11],[5855,11],[8153,11],[9983,11],[12198,11],[13787,11],[15461,11],[18380,11],[21544,11],[24395,11],[28209,11]]}},"component":{}}],["amazon",{"_index":527,"title":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[45,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_about_amazon_appflow":{"position":[[6,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_create_a_salesforce_to_amazon_s3_flow":{"position":[[23,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_join_amazon_s3_data_to_in_database_tables":{"position":[[5,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_import_amazon_s3_data_to_vantage":{"position":[[7,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_export_vantage_data_to_amazon_s3_using_nos":{"position":[[23,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_create_an_amazon_s3_to_salesforce_flow":{"position":[[10,6]]}},"name":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[47,6]]}},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[1120,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[3939,7],[4546,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[433,6],[503,6],[597,6],[779,6],[1005,6],[1225,6],[1239,6],[1491,6],[2339,6],[2485,6],[2615,6],[2721,6],[3026,6],[3091,6],[3215,6],[3240,6],[3706,6],[3758,7],[3868,7],[4262,6],[4399,6],[4546,6],[5001,6],[5329,6],[5392,6],[5422,6],[5482,6],[6097,6],[6625,6],[8130,6],[8355,6],[8727,6],[8868,6],[9157,6],[9770,7],[10122,6],[15402,6],[15555,6],[19577,6],[24268,6],[24625,6],[24712,6],[25983,6],[26130,6],[26167,6]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[93,6],[233,6],[330,6],[398,6],[538,6],[568,6],[710,6],[746,6],[854,6],[1007,6],[1037,6],[1165,6],[1373,6],[1430,6],[1525,6],[1574,6],[1852,6],[1881,6],[1910,6],[1951,6],[1988,6],[2071,6],[2095,6],[2156,6],[3075,6],[3517,6],[4009,6],[4370,6],[4437,6],[6026,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[611,7]]}},"component":{}}],["ambros",{"_index":4003,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[21,7]]}},"component":{}}],["amd64",{"_index":2189,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[5174,8]]}},"component":{}}],["ami",{"_index":2184,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[5028,3]]}},"component":{}}],["amount",{"_index":703,"title":{},"name":{},"text":{"/fastload.html":{"position":[[353,7],[1607,7],[7402,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[5658,6]]},"/mule-teradata-connector/reference.html":{"position":[[744,6],[3704,6],[6034,6],[8332,6],[10161,6],[12376,6],[14145,6],[15639,6],[18698,6],[21859,6],[24714,6],[28381,6],[32421,6],[33752,6],[38566,6],[40883,6],[40943,6],[42064,6],[42124,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[212,7],[1692,7],[8947,7]]}},"component":{}}],["amp",{"_index":840,"title":{"/teradata-vantage-engine-architecture-and-concepts.html#_access_module_processor_amp":{"position":[[24,5]]}},"name":{},"text":{"/fastload.html":{"position":[[7200,4],[7235,4]]},"/sto.html":{"position":[[1350,3],[1377,5],[1428,4],[1681,4],[7743,4]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[615,6],[627,3],[654,5],[891,7],[950,4],[1534,5],[1570,4],[1854,3],[1894,5],[2435,4],[2493,3],[2593,3],[2684,3],[2887,4],[3081,4],[3294,4],[4594,6],[4677,3],[5913,3],[6156,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[8745,4],[8780,4]]}},"component":{}}],["amp(",{"_index":2585,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[4930,6],[4957,6]]}},"component":{}}],["analys",{"_index":1965,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[4354,7],[10628,7]]}},"component":{}}],["analysi",{"_index":1005,"title":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[20,8]]}},"name":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[20,8]]}},"text":{"/geojson-to-vantage.html":{"position":[[5631,9],[6811,8],[7576,8]]},"/nos.html":{"position":[[5474,8]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[329,9],[850,9],[3527,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13341,9]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[10414,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9493,9]]}},"component":{}}],["analyt",{"_index":395,"title":{"/ml.html#_install_vantage_analytics_library":{"position":[[16,9]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[38,9]]},"/other-integrations/integrate-teradata-vantage-with-knime.html#_about_knime_analytics_platform":{"position":[[12,9]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[3760,10],[4037,9]]},"/dbt.html":{"position":[[1902,10],[2134,9]]},"/geojson-to-vantage.html":{"position":[[167,9],[379,10],[520,9],[576,10],[666,9],[1359,9],[1449,10],[3002,9],[4163,10],[5111,8],[5310,10],[8939,9],[9476,8],[10610,9]]},"/getting.started.utm.html":{"position":[[467,9],[495,9]]},"/getting.started.vbox.html":{"position":[[467,9],[495,9]]},"/getting.started.vmware.html":{"position":[[467,9],[495,9]]},"/jupyter.html":{"position":[[226,9]]},"/ml.html":{"position":[[441,9],[825,9],[3773,9],[3909,8],[8931,9],[9097,9]]},"/mule.jdbc.example.html":{"position":[[1837,9],[1913,9],[2032,9]]},"/sto.html":{"position":[[7916,9]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[403,10]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[824,9],[1207,9],[1307,10],[1680,8],[4664,9],[13702,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[219,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[224,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[294,10],[1656,10],[1882,8],[2033,10]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[868,9],[968,10],[1341,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[1497,9]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[177,9],[2122,10]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[3079,9],[3522,10]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[3547,9],[5896,9],[5969,9],[7744,9]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[296,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[117,9],[386,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[117,9],[423,9]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[382,10],[402,8],[2913,9],[4662,8]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[114,9],[140,9],[200,9],[1757,9]]},"/query-service/send-queries-using-rest-api.html":{"position":[[246,9],[1462,9],[1520,9],[1613,9]]},"/regulus/install-regulus-docker-image.html":{"position":[[1186,10]]}},"component":{}}],["analytic_dataset",{"_index":4138,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1955,16],[4925,16]]}},"component":{}}],["analyz",{"_index":480,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[6519,7]]},"/ml.html":{"position":[[7243,7]]},"/nos.html":{"position":[[2197,7]]},"/sto.html":{"position":[[1119,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1066,7],[8672,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[8339,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3345,7]]}},"component":{}}],["ancona",{"_index":1073,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[9936,6]]}},"component":{}}],["android",{"_index":58,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[833,7]]}},"component":{}}],["annual_revenu",{"_index":2980,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[12458,15],[17288,15],[19092,15],[21630,14],[23074,15]]}},"component":{}}],["anoth",{"_index":637,"title":{},"name":{},"text":{"/dbt.html":{"position":[[2242,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[144,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[3194,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[19554,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2948,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[7785,7]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[983,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6837,7]]}},"component":{}}],["ansi",{"_index":373,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3300,4]]},"/dbt.html":{"position":[[1474,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2488,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3386,4]]}},"component":{}}],["answer",{"_index":1732,"title":{},"name":{},"text":{"/nos.html":{"position":[[1968,6],[5521,8],[6708,8]]}},"component":{}}],["anyon",{"_index":3310,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[2877,6]]}},"component":{}}],["anypoint",{"_index":1650,"title":{"/mule-teradata-connector/examples-configuration.html":{"position":[[6,8]]}},"name":{},"text":{"/mule.jdbc.example.html":{"position":[[209,8],[2688,8],[2713,8],[2765,8],[2963,8]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[53,8],[583,8],[3347,8],[4365,8],[4531,8],[4579,8]]},"/mule-teradata-connector/index.html":{"position":[[53,8],[467,8],[558,8],[622,8],[1497,8],[1563,8]]},"/mule-teradata-connector/reference.html":{"position":[[53,8]]},"/mule-teradata-connector/release-notes.html":{"position":[[53,8],[1052,8]]}},"component":{}}],["anyth",{"_index":1170,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[2996,8],[3140,8]]},"/getting.started.vbox.html":{"position":[[2034,8],[2178,8]]},"/getting.started.vmware.html":{"position":[[2105,8],[2249,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4628,8],[6164,9]]}},"component":{}}],["anywher",{"_index":3852,"title":{},"name":{},"text":{"/mule-teradata-connector/index.html":{"position":[[1136,8]]},"/mule-teradata-connector/release-notes.html":{"position":[[736,8]]}},"component":{}}],["aoa==6.0.0",{"_index":3682,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[5537,10]]}},"component":{}}],["aoa_byom_model",{"_index":3649,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4581,17]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[6277,17],[6422,17],[6568,17]]}},"component":{}}],["aoa_create_context",{"_index":3664,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4239,20],[4621,20],[4999,20]]}},"component":{}}],["aoa_feature_metadata",{"_index":3622,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2740,20]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2777,20]]}},"component":{}}],["aosta",{"_index":1070,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[9879,5]]}},"component":{}}],["apach",{"_index":2432,"title":{},"name":{},"text":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1064,6]]}},"component":{}}],["apache/airflow:2.2.4",{"_index":4065,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[7043,20],[7176,20],[7308,20],[7440,20],[7606,20],[7771,20],[7904,20]]}},"component":{}}],["api",{"_index":1107,"title":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_enable_data_catalog_api":{"position":[[20,3]]},"/query-service/send-queries-using-rest-api.html":{"position":[[24,3]]},"/query-service/send-queries-using-rest-api.html#_query_service_api_examples":{"position":[[14,3]]},"/query-service/send-queries-using-rest-api.html#_make_a_simple_api_request_with_basic_options":{"position":[[14,3]]}},"name":{"/query-service/send-queries-using-rest-api.html":{"position":[[24,3]]}},"text":{"/getting.started.utm.html":{"position":[[543,3]]},"/getting.started.vbox.html":{"position":[[543,3]]},"/getting.started.vmware.html":{"position":[[543,3]]},"/mule.jdbc.example.html":{"position":[[195,4]]},"/segment.html":{"position":[[1976,3],[2028,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[3427,3],[3439,3],[4582,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2008,4],[2141,4],[2336,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2850,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[933,3]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2077,3],[2113,3]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[5295,4]]},"/query-service/send-queries-using-rest-api.html":{"position":[[83,3],[280,4],[378,4],[1798,3],[5301,3],[12523,3]]},"/regulus/getting-started-with-regulus.html":{"position":[[615,3],[884,3]]},"/regulus/install-regulus-docker-image.html":{"position":[[7670,3],[7708,3],[7766,3]]},"/regulus/regulus-magic-reference.html":{"position":[[534,3]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[742,3],[1046,3],[1617,3],[1782,3]]}},"component":{}}],["apikey",{"_index":4402,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[919,8]]},"/regulus/regulus-magic-reference.html":{"position":[[446,8],[526,7]]}},"component":{}}],["apj.s3.amazonaws.com/taxi/2014/11/data_2014",{"_index":1847,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[990,43],[4090,43]]}},"component":{}}],["app",{"_index":56,"title":{"/mule-teradata-connector/examples-configuration.html#view-app-log":{"position":[[9,3]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[806,4]]},"/dbt.html":{"position":[[1825,3],[1935,3]]},"/jdbc.html":{"position":[[203,4]]},"/segment.html":{"position":[[384,3],[2717,3],[3549,4],[5132,3],[5229,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[3596,5],[3748,3],[3789,4],[3899,4],[4183,3]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1584,3]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[456,3],[512,3],[2316,4],[3520,3],[4480,3],[4522,3],[4633,3],[4675,3],[4811,3]]},"/mule-teradata-connector/index.html":{"position":[[150,3],[602,4]]},"/mule-teradata-connector/reference.html":{"position":[[150,3]]},"/mule-teradata-connector/release-notes.html":{"position":[[150,3]]},"/regulus/install-regulus-docker-image.html":{"position":[[4295,3],[4491,3],[4714,4],[4773,4],[7040,4],[7171,4]]}},"component":{}}],["appear",{"_index":159,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3280,8],[4673,7]]},"/advanced-dbt.html":{"position":[[5408,6]]},"/getting.started.utm.html":{"position":[[2976,7],[3099,6]]},"/getting.started.vbox.html":{"position":[[2014,7],[2137,6]]},"/getting.started.vmware.html":{"position":[[2085,7],[2208,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[7326,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[9812,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[10120,6]]}},"component":{}}],["append",{"_index":445,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[5307,6]]}},"component":{}}],["appflow",{"_index":2864,"title":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[52,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_about_amazon_appflow":{"position":[[13,7]]}},"name":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[54,7]]}},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[424,8],[440,7],[946,7],[1012,7],[1256,7],[1498,7],[2728,7],[3222,7],[3713,8],[3766,7],[3876,7],[4269,8],[4553,7],[5008,7],[5489,8],[5591,7],[6450,7],[6518,7],[25974,8],[26054,8]]}},"component":{}}],["appl",{"_index":1281,"title":{"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[31,5]]}},"name":{},"text":{"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[152,5],[235,5],[689,5],[734,5],[1087,5]]},"/jupyter-demos/index.html":{"position":[[555,5]]}},"component":{}}],["apple’",{"_index":114,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2106,7]]}},"component":{}}],["appli",{"_index":434,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[4852,7]]},"/dbt.html":{"position":[[3292,7]]},"/local.jupyter.hub.html":{"position":[[2107,5],[2882,5],[3969,5]]},"/sto.html":{"position":[[82,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2514,5],[2687,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1507,5],[1641,8]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1059,5],[1520,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[5063,5],[5890,5],[6699,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[4220,5],[4937,5],[7228,8]]}},"component":{}}],["applianc",{"_index":1244,"title":{},"name":{},"text":{"/getting.started.vbox.html":{"position":[[971,9],[1542,11],[1729,9]]}},"component":{}}],["applic",{"_index":40,"title":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_ingesting_data_from_saas_applications_third_party_tools":{"position":[[25,12]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[489,13],[677,12],[1769,12],[1955,11]]},"/advanced-dbt.html":{"position":[[435,11]]},"/getting.started.vbox.html":{"position":[[5669,12]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[776,12],[964,12]]},"/jdbc.html":{"position":[[150,12],[958,11]]},"/mule.jdbc.example.html":{"position":[[2948,11]]},"/odbc.ubuntu.html":{"position":[[1077,12],[1528,12],[1913,12]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[178,12]]},"/segment.html":{"position":[[357,12],[1890,12],[2412,11],[5478,12],[5495,11]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1387,12]]},"/sto.html":{"position":[[550,12],[642,12],[1850,12]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3847,10],[5177,12]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1141,12],[1384,12]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[5914,13]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[123,13]]},"/mule-teradata-connector/reference.html":{"position":[[1531,11],[2411,11],[35652,11]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[470,11]]},"/regulus/install-regulus-docker-image.html":{"position":[[6789,11]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[7095,11],[7721,11],[7778,11]]}},"component":{}}],["application/json",{"_index":4224,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[2221,19],[2366,19],[2712,19],[2801,19]]}},"component":{}}],["approach",{"_index":446,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[5329,8]]},"/sto.html":{"position":[[443,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[5552,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[14446,10]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[15577,10],[15770,8],[19650,9],[19816,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[137,8],[191,10]]},"/mule-teradata-connector/reference.html":{"position":[[20814,8]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[75,8],[5857,8]]}},"component":{}}],["appropi",{"_index":429,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[4709,11]]}},"component":{}}],["appropri",{"_index":184,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3708,11]]},"/local.jupyter.hub.html":{"position":[[1987,11],[2973,11]]},"/ml.html":{"position":[[1949,11]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[5195,11]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[3600,11],[3813,11]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1448,12]]},"/mule-teradata-connector/reference.html":{"position":[[996,12]]},"/regulus/install-regulus-docker-image.html":{"position":[[2325,11]]}},"component":{}}],["approv",{"_index":3648,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4451,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[6147,7]]}},"component":{}}],["approxim",{"_index":4009,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[887,13]]}},"component":{}}],["apps—ar",{"_index":62,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[925,8]]}},"component":{}}],["app’",{"_index":3842,"title":{},"name":{},"text":{"/mule-teradata-connector/examples-configuration.html":{"position":[[4760,5]]}},"component":{}}],["apr",{"_index":4560,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[6464,3],[6502,3],[7892,3],[7930,3],[7965,3],[7998,3]]}},"component":{}}],["april",{"_index":694,"title":{},"name":{},"text":{"/fastload.html":{"position":[[39,5]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[35,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1156,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1193,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[39,5]]}},"component":{}}],["apt",{"_index":1806,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[343,3],[388,3]]},"/run-vantage-express-on-aws.html":{"position":[[6082,3],[6096,3]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2862,3],[2876,3]]},"/vantage.express.gcp.html":{"position":[[1889,3],[1903,3]]}},"component":{}}],["aravind",{"_index":4392,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[16,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[16,7]]},"/regulus/regulus-magic-reference.html":{"position":[[16,7]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[16,7]]}},"component":{}}],["arbitrari",{"_index":746,"title":{},"name":{},"text":{"/fastload.html":{"position":[[2088,9]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2220,9]]}},"component":{}}],["architectur",{"_index":1113,"title":{"/segment.html#_architecture":{"position":[[0,12]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[24,12]]},"/teradata-vantage-engine-architecture-and-concepts.html#_teradata_vantage_engine_architecture_components":{"position":[[24,12]]},"/teradata-vantage-engine-architecture-and-concepts.html#_teradata_vantage_architecture_concepts":{"position":[[17,12]]},"/teradata-vantage-engine-architecture-and-concepts.html#_teradata_retrieval_architecture":{"position":[[19,12]]}},"name":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[24,12]]}},"text":{"/getting.started.utm.html":{"position":[[664,13]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[126,13],[252,12],[338,13],[422,12],[768,13],[2653,13],[3746,12],[4814,12],[5205,12],[6043,13],[6192,13]]},"/teradatasql.html":{"position":[[381,12]]}},"component":{}}],["area",{"_index":424,"title":{"/advanced-dbt.html#_staging_area":{"position":[[8,4]]},"/advanced-dbt.html#_core_area":{"position":[[5,4]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[4614,4]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[975,4]]}},"component":{}}],["arg",{"_index":1346,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[2158,5]]}},"component":{}}],["arm",{"_index":1297,"title":{},"name":{},"text":{"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[710,3],[814,3]]}},"component":{}}],["around",{"_index":2537,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[277,6]]}},"component":{}}],["array",{"_index":1029,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[7024,5],[7084,5],[7105,7]]},"/nos.html":{"position":[[683,5]]},"/mule-teradata-connector/reference.html":{"position":[[1439,5],[1867,5],[3291,5],[4562,5],[5173,5],[5623,5],[6888,5],[7466,5],[7918,5],[9098,5],[9683,5],[10927,5],[15159,5],[16405,5],[17096,5],[17241,5],[19464,5],[20359,5],[22585,5],[25569,5],[26488,5],[26839,5],[26985,5],[29147,5],[29842,5],[29987,5],[39918,5]]},"/query-service/send-queries-using-rest-api.html":{"position":[[3055,6],[10920,5]]}},"component":{}}],["arriv",{"_index":2872,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[848,7]]}},"component":{}}],["articl",{"_index":27,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[159,7],[2162,9],[3251,9]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[58,7],[1431,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[58,7],[6013,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[58,7],[3337,8],[3450,8],[3711,8],[3937,8],[4034,8],[4434,8],[4987,8],[5133,8],[5453,8],[5798,8],[5989,8],[7081,8],[7537,8],[7969,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[659,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[498,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[60,7]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[1453,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3386,7]]}},"component":{}}],["artifact",{"_index":2817,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[5722,8],[5866,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[4531,9],[5005,9]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1498,9],[4113,8],[7779,8],[10384,9]]}},"component":{}}],["artifict",{"_index":3537,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[10567,8]]}},"component":{}}],["ask",{"_index":1249,"title":{},"name":{},"text":{"/getting.started.vbox.html":{"position":[[1382,5]]},"/ml.html":{"position":[[2564,3],[2842,3],[3011,3]]},"/nos.html":{"position":[[1998,3]]},"/run-vantage-express-on-aws.html":{"position":[[8972,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5752,5]]},"/vantage.express.gcp.html":{"position":[[4779,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1114,3],[1703,3]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[2291,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1999,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2036,3]]}},"component":{}}],["assembl",{"_index":1328,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[1473,8]]}},"component":{}}],["assert",{"_index":456,"title":{"/advanced-dbt.html#_macro_assisted_assertions":{"position":[[15,10]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[5607,9]]}},"component":{}}],["asset",{"_index":3060,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[630,7]]}},"component":{}}],["assign",{"_index":2140,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[1567,6]]},"/segment.html":{"position":[[4591,6]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[938,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[7685,6]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2926,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[5147,8],[6612,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1735,6]]},"/mule-teradata-connector/reference.html":{"position":[[11465,11],[16928,11],[20000,11],[23122,11],[26097,11],[26438,11],[29675,11],[34701,11]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1680,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[5398,8]]},"/regulus/regulus-magic-reference.html":{"position":[[4406,8]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[2594,8],[3266,8],[3573,8]]}},"component":{}}],["assist",{"_index":245,"title":{"/advanced-dbt.html#_macro_assisted_assertions":{"position":[[6,8]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[6064,11]]},"/advanced-dbt.html":{"position":[[7343,11]]},"/create-parquet-files-in-object-storage.html":{"position":[[4405,11]]},"/dbt.html":{"position":[[4943,11]]},"/fastload.html":{"position":[[7634,11]]},"/geojson-to-vantage.html":{"position":[[10685,11]]},"/getting.started.utm.html":{"position":[[6614,11]]},"/getting.started.vbox.html":{"position":[[6210,11]]},"/getting.started.vmware.html":{"position":[[5723,11]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[1146,11]]},"/jdbc.html":{"position":[[1148,11]]},"/jupyter.html":{"position":[[7396,11]]},"/local.jupyter.hub.html":{"position":[[6167,11]]},"/ml.html":{"position":[[9168,11]]},"/mule.jdbc.example.html":{"position":[[3594,11]]},"/nos.html":{"position":[[8780,11]]},"/odbc.ubuntu.html":{"position":[[2005,11]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10893,11]]},"/run-vantage-express-on-aws.html":{"position":[[12552,11]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[8490,11]]},"/segment.html":{"position":[[5624,11]]},"/sto.html":{"position":[[7995,11]]},"/teradatasql.html":{"position":[[1080,11]]},"/vantage.express.gcp.html":{"position":[[7666,11]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[24872,11]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[6446,11]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[4648,11]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[26424,11]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[8966,11]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[6353,11]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[7354,11]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[8544,11]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[5297,11]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[7348,11]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9890,11]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[4956,11]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[1635,11]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[10917,11]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1881,11]]},"/query-service/send-queries-using-rest-api.html":{"position":[[12591,11]]},"/regulus/getting-started-with-regulus.html":{"position":[[4106,11]]},"/regulus/install-regulus-docker-image.html":{"position":[[9926,11]]},"/regulus/regulus-magic-reference.html":{"position":[[5197,11]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[7084,11]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[9194,11]]}},"component":{}}],["associ",{"_index":2152,"title":{"/mule-teradata-connector/reference.html#_associated_sources":{"position":[[0,10]]}},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[2376,9],[2454,9],[12137,11]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[8249,10]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2500,10]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[10940,10],[21065,10]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[10915,10],[12867,10]]},"/mule-teradata-connector/reference.html":{"position":[[1687,10],[2567,10],[35808,10]]},"/regulus/install-regulus-docker-image.html":{"position":[[6437,10],[6627,10]]},"/regulus/regulus-magic-reference.html":{"position":[[3772,10]]}},"component":{}}],["assum",{"_index":322,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[1662,7]]},"/getting.started.utm.html":{"position":[[3108,8]]},"/getting.started.vbox.html":{"position":[[2146,8]]},"/getting.started.vmware.html":{"position":[[2217,8]]},"/jdbc.html":{"position":[[447,7]]},"/local.jupyter.hub.html":{"position":[[3415,8]]},"/nos.html":{"position":[[5628,8],[5706,7],[5818,7]]},"/sto.html":{"position":[[2778,6],[5227,7],[5431,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[4402,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[3254,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[409,7],[2077,6]]}},"component":{}}],["assumpt",{"_index":1412,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[394,10]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[754,10]]}},"component":{}}],["astropi",{"_index":1436,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[3109,7]]}},"component":{}}],["async",{"_index":4349,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[9506,5],[10252,5]]}},"component":{}}],["asynchron",{"_index":4348,"title":{"/query-service/send-queries-using-rest-api.html#_use_asynchronous_queries":{"position":[[4,12]]}},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[9477,13],[10771,12]]}},"component":{}}],["attach",{"_index":2144,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[1869,6],[1913,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[1542,6],[1919,6],[2297,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[649,11]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[686,11]]}},"component":{}}],["attack",{"_index":3942,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[37185,8]]}},"component":{}}],["attempt",{"_index":3327,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[5803,8]]},"/mule-teradata-connector/reference.html":{"position":[[3742,8],[6072,8],[8370,8],[10199,8],[12414,8],[14183,8],[15677,8],[18736,8],[21897,8],[24752,8],[28419,8],[32459,8],[34633,7],[36069,8]]}},"component":{}}],["attract",{"_index":2458,"title":{},"name":{},"text":{"/sto.html":{"position":[[1697,10]]}},"component":{}}],["attribut",{"_index":817,"title":{},"name":{},"text":{"/fastload.html":{"position":[[4469,9]]},"/nos.html":{"position":[[8364,10]]},"/run-vantage-express-on-aws.html":{"position":[[1302,9],[1623,9]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[10968,11],[14596,10]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[10677,10],[10749,10],[10943,11],[11164,10],[15812,10],[19965,11]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[6098,10]]},"/mule-teradata-connector/reference.html":{"position":[[37494,9],[38829,9],[40445,10],[41708,10],[42332,10]]}},"component":{}}],["aug12_db",{"_index":4298,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[6554,8]]}},"component":{}}],["augment",{"_index":1092,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[10597,7]]}},"component":{}}],["august",{"_index":497,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[32,6]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[42,6]]},"/mule.jdbc.example.html":{"position":[[39,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[39,6]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[36,6]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[36,6]]},"/teradatasql.html":{"position":[[36,6]]},"/vantage.express.gcp.html":{"position":[[39,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[37,6]]}},"component":{}}],["australia",{"_index":1079,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[10050,9]]}},"component":{}}],["auth",{"_index":2405,"title":{"/regulus/using-regulus-workspace-cli.html#_project_auth_create":{"position":[[8,4]]},"/regulus/using-regulus-workspace-cli.html#_project_auth_list":{"position":[[8,4]]},"/regulus/using-regulus-workspace-cli.html#_project_auth_delete":{"position":[[8,4]]}},"name":{},"text":{"/segment.html":{"position":[[4410,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2557,4],[4796,4],[5462,4]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[5649,4],[6440,4],[6740,4]]}},"component":{}}],["auth_encod",{"_index":4218,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[2021,12],[2064,12]]}},"component":{}}],["auth_encoded.decode('utf",{"_index":4222,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[2148,24]]}},"component":{}}],["auth_encoded_jwt",{"_index":4228,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[2622,16],[2667,16]]}},"component":{}}],["auth_str",{"_index":4221,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[2126,8],[2258,8],[2644,8],[2749,8]]}},"component":{}}],["authent",{"_index":185,"title":{"/query-service/send-queries-using-rest-api.html#_http_basic_authentication":{"position":[[11,14]]},"/query-service/send-queries-using-rest-api.html#_jwt_authentication":{"position":[[4,14]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3720,14],[3826,14],[3980,14],[4182,14]]},"/jdbc.html":{"position":[[792,14]]},"/segment.html":{"position":[[3967,14]]},"/teradatasql.html":{"position":[[764,14]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1005,12],[1075,14],[1134,14],[2460,14],[2508,14],[2625,15],[2644,12],[2701,15]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[1430,14],[1491,15]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1656,15]]},"/regulus/install-regulus-docker-image.html":{"position":[[5621,12],[7596,15]]}},"component":{}}],["author",{"_index":10,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[0,7]]},"/advanced-dbt.html":{"position":[[0,7]]},"/create-parquet-files-in-object-storage.html":{"position":[[0,7]]},"/dbt.html":{"position":[[0,7]]},"/fastload.html":{"position":[[0,7]]},"/geojson-to-vantage.html":{"position":[[0,7]]},"/getting.started.utm.html":{"position":[[0,7]]},"/getting.started.vbox.html":{"position":[[0,7]]},"/getting.started.vmware.html":{"position":[[0,7]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[0,7]]},"/jdbc.html":{"position":[[0,7]]},"/jupyter.html":{"position":[[0,7]]},"/local.jupyter.hub.html":{"position":[[0,7]]},"/ml.html":{"position":[[0,7]]},"/mule.jdbc.example.html":{"position":[[0,7]]},"/nos.html":{"position":[[0,7],[7194,13],[7275,13],[7396,13]]},"/odbc.ubuntu.html":{"position":[[0,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[0,7]]},"/run-vantage-express-on-aws.html":{"position":[[0,7],[3229,9],[11344,9]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[0,7]]},"/segment.html":{"position":[[0,7]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[0,7]]},"/sto.html":{"position":[[0,7]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[0,7]]},"/teradatasql.html":{"position":[[0,7]]},"/vantage.express.gcp.html":{"position":[[0,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[0,7],[9027,13],[9125,13]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[0,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[0,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[0,7],[8685,13],[8752,13],[8891,13],[23985,13]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[0,7],[2474,9]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[0,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[0,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[0,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[0,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[0,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[0,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[0,7]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[0,7]]},"/mule-teradata-connector/index.html":{"position":[[0,7]]},"/mule-teradata-connector/reference.html":{"position":[[0,7]]},"/mule-teradata-connector/release-notes.html":{"position":[[0,7]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[0,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[0,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[0,7]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[0,7]]},"/query-service/send-queries-using-rest-api.html":{"position":[[0,7],[811,13],[1824,13],[2241,16],[2386,16],[2732,16],[2821,16]]},"/regulus/getting-started-with-regulus.html":{"position":[[0,7],[1053,13]]},"/regulus/install-regulus-docker-image.html":{"position":[[0,7],[865,9],[4302,9],[4351,9],[4860,13],[6946,10],[7568,9]]},"/regulus/regulus-magic-reference.html":{"position":[[0,7],[1828,13],[1904,13],[1964,13],[2074,14],[2115,13],[2193,13],[2344,13],[2390,13],[2437,13],[2567,13],[2632,14],[2734,13],[2783,13],[2843,14]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[0,7],[5588,13],[5826,13],[5921,13],[6157,13],[6364,14],[6664,14],[6928,13]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[0,7]]}},"component":{}}],["authorization('{\"access_id",{"_index":582,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2877,31],[3631,31]]}},"component":{}}],["authorization(aws_author",{"_index":1799,"title":{},"name":{},"text":{"/nos.html":{"position":[[8068,32]]}},"component":{}}],["authorization='{\"access_id\":\"\",\"access_key",{"_index":1792,"title":{},"name":{},"text":{"/nos.html":{"position":[[7035,48]]}},"component":{}}],["auto",{"_index":2139,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[1562,4]]},"/mule-teradata-connector/index.html":{"position":[[1369,4]]},"/mule-teradata-connector/reference.html":{"position":[[16960,4],[17010,4],[17061,4],[17156,4],[17208,4],[17299,4],[26703,4],[26753,4],[26804,4],[26899,4],[26952,4],[27043,4],[29707,4],[29757,4],[29807,4],[29902,4],[29954,4],[30045,4]]},"/mule-teradata-connector/release-notes.html":{"position":[[987,4]]}},"component":{}}],["auto_commit",{"_index":4334,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[8097,14],[8253,14]]}},"component":{}}],["autocommit",{"_index":4344,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[8566,13]]}},"component":{}}],["autom",{"_index":3647,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4213,9]]},"/regulus/install-regulus-docker-image.html":{"position":[[664,10]]}},"component":{}}],["automat",{"_index":1154,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[2496,13]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[5680,13]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[13923,13]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1264,13],[15511,13]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[5304,13]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[980,13]]},"/mule-teradata-connector/reference.html":{"position":[[17937,13],[23877,13],[30922,13]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3192,13]]},"/regulus/install-regulus-docker-image.html":{"position":[[6423,13],[6613,13]]},"/regulus/regulus-magic-reference.html":{"position":[[3758,13]]}},"component":{}}],["automot",{"_index":3575,"title":{},"name":{},"text":{"/jupyter-demos/index.html":{"position":[[586,10],[676,10],[773,10],[876,10],[1002,10],[1115,10]]}},"component":{}}],["autonom",{"_index":2632,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1318,10]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2044,10]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[979,10]]}},"component":{}}],["autostart",{"_index":1176,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[3370,9]]},"/getting.started.vbox.html":{"position":[[2408,9]]},"/getting.started.vmware.html":{"position":[[2479,9]]},"/run-vantage-express-on-aws.html":{"position":[[10155,10]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6935,10]]},"/vantage.express.gcp.html":{"position":[[5962,10]]}},"component":{}}],["auvergn",{"_index":986,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4624,8]]}},"component":{}}],["avail",{"_index":105,"title":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_native_object_store_nos_teradata_parallel_transporter_tpt":{"position":[[0,9]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_parallel_transporter_tpt_bteq":{"position":[[0,9]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_querygrid":{"position":[[0,9]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_airbyte":{"position":[[0,9]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2005,9],[2716,9],[4014,10],[4733,9]]},"/advanced-dbt.html":{"position":[[1854,9],[2446,9],[4418,9]]},"/geojson-to-vantage.html":{"position":[[5847,9],[10287,9]]},"/jdbc.html":{"position":[[485,9]]},"/jupyter.html":{"position":[[245,9]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[689,9]]},"/run-vantage-express-on-aws.html":{"position":[[1006,10]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[127,9],[710,9],[1505,9]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8867,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[238,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[243,9],[2171,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4861,9],[8544,9]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[329,9],[2391,9]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[696,9],[1561,9]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1031,12]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1928,9]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[7616,9]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1057,10]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4186,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[3947,9],[5937,9]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1297,9],[1417,9]]},"/mule-teradata-connector/reference.html":{"position":[[17030,9],[17184,9],[17327,9],[26773,9],[26927,9],[27078,9],[29777,9],[29930,9],[30080,9],[32015,12]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[1373,9]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1133,9],[4795,9]]},"/regulus/getting-started-with-regulus.html":{"position":[[3991,9]]}},"component":{}}],["averag",{"_index":1518,"title":{},"name":{},"text":{"/ml.html":{"position":[[3601,7]]},"/nos.html":{"position":[[3295,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[6122,7],[7431,7],[7575,8],[8024,7]]}},"component":{}}],["avg((dropoff_datetim",{"_index":2003,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[6251,21]]}},"component":{}}],["avg(cas",{"_index":1563,"title":{},"name":{},"text":{"/ml.html":{"position":[[5119,9],[5223,9],[5327,9],[5431,9],[5535,9],[5639,9]]}},"component":{}}],["avg(cast((dropoff_datetim",{"_index":2029,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[7769,27]]}},"component":{}}],["avg(flow",{"_index":1748,"title":{},"name":{},"text":{"/nos.html":{"position":[[3385,9]]}},"component":{}}],["avg_flow",{"_index":1749,"title":{},"name":{},"text":{"/nos.html":{"position":[[3395,8],[3498,8],[3536,8]]}},"component":{}}],["avg_trip_time_in_min",{"_index":2004,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[6308,21],[6522,21],[7840,21],[8406,21]]}},"component":{}}],["avoid",{"_index":1055,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[8880,5]]},"/getting.started.utm.html":{"position":[[4686,5]]},"/getting.started.vmware.html":{"position":[[3795,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[25923,5]]},"/mule-teradata-connector/reference.html":{"position":[[38091,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1169,5]]}},"component":{}}],["aw",{"_index":507,"title":{"/perform-time-series-analysis-using-teradata-vantage.html#_import_data_sets_from_aws_s3_using_vantage_nos":{"position":[[22,3]]},"/run-vantage-express-on-aws.html":{"position":[[23,3]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[4,3]]}},"name":{"/run-vantage-express-on-aws.html":{"position":[[23,3]]}},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[268,3],[763,3],[2697,3],[2730,3]]},"/getting.started.utm.html":{"position":[[564,3],[909,4],[1195,4]]},"/getting.started.vbox.html":{"position":[[564,3]]},"/getting.started.vmware.html":{"position":[[564,3]]},"/jupyter.html":{"position":[[1910,3]]},"/ml.html":{"position":[[688,4]]},"/nos.html":{"position":[[180,3]]},"/run-vantage-express-on-aws.html":{"position":[[114,4],[651,3],[720,3],[1120,3],[1283,3],[1601,3],[1905,3],[2214,3],[2611,3],[3221,3],[3486,3],[3607,3],[3759,3],[4115,3],[4281,3],[4439,3],[4567,3],[4789,3],[11336,3],[11645,3],[11781,3],[11880,3],[11987,3],[12100,3],[12179,3],[12279,3],[12354,3]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[734,3],[746,3],[3175,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1207,3],[1422,3],[2966,3],[4691,3],[4902,3],[5626,3],[8192,3],[8235,3],[9057,3],[25955,3]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[6242,3]]},"/jupyter-demos/index.html":{"position":[[73,4],[671,4],[1207,4],[1611,4],[2000,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[125,3],[607,3],[878,3],[1349,3]]},"/regulus/getting-started-with-regulus.html":{"position":[[474,3],[575,3],[993,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[1496,3],[1530,3],[1558,3],[1678,4],[2129,3],[5945,4],[5999,3]]},"/regulus/regulus-magic-reference.html":{"position":[[1056,4],[1115,3]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[712,3],[2424,4],[2480,4]]}},"component":{}}],["aws_access_key_id",{"_index":4397,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[501,18],[1112,18]]},"/regulus/install-regulus-docker-image.html":{"position":[[2054,18],[3803,18],[3822,22]]}},"component":{}}],["aws_access_key_id=\"${aws_access_key_id",{"_index":4449,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[2770,40]]}},"component":{}}],["aws_ami_id",{"_index":2199,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[5404,11]]}},"component":{}}],["aws_ami_id=$(aw",{"_index":2186,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[5078,16]]}},"component":{}}],["aws_author",{"_index":1793,"title":{},"name":{},"text":{"/nos.html":{"position":[[7289,17],[7501,17]]}},"component":{}}],["aws_custom_route_table_id",{"_index":2149,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[2254,26],[2531,26],[4315,26],[12225,26]]}},"component":{}}],["aws_custom_route_table_id=$(aw",{"_index":2147,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[2032,31]]}},"component":{}}],["aws_custom_security_group_id",{"_index":2167,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[3275,29],[4473,29],[5570,29],[11390,29],[11824,29]]}},"component":{}}],["aws_custom_security_group_id=$(aw",{"_index":2163,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[2984,34]]}},"component":{}}],["aws_default_route_table_id",{"_index":2178,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[4149,27]]}},"component":{}}],["aws_default_route_table_id=$(aw",{"_index":2175,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[3920,32]]}},"component":{}}],["aws_default_security_group_id",{"_index":2179,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[4601,30]]}},"component":{}}],["aws_default_security_group_id=$(aw",{"_index":2158,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[2794,35]]}},"component":{}}],["aws_instance_id",{"_index":2206,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[5845,17],[11688,16]]}},"component":{}}],["aws_instance_id=$(aw",{"_index":2198,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[5351,21]]}},"component":{}}],["aws_instance_public_ip=$(aw",{"_index":2203,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[5705,28]]}},"component":{}}],["aws_internet_gateway_id",{"_index":2145,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[1984,24],[2333,24],[3793,24],[11936,24],[12043,24]]}},"component":{}}],["aws_internet_gateway_id=$(aw",{"_index":2142,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[1726,29]]}},"component":{}}],["aws_region",{"_index":4407,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[1158,10]]}},"component":{}}],["aws_route_table_assoid",{"_index":2300,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[12152,23]]}},"component":{}}],["aws_route_table_assoid=$(aw",{"_index":2153,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[2421,28]]}},"component":{}}],["aws_secret_access_key",{"_index":4398,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[520,22],[1131,22]]},"/regulus/install-regulus-docker-image.html":{"position":[[2073,22],[3845,22],[3868,26]]}},"component":{}}],["aws_secret_access_key=\"${aws_secret_access_key",{"_index":4450,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[2819,48]]}},"component":{}}],["aws_session_token",{"_index":4399,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[547,17]]},"/regulus/install-regulus-docker-image.html":{"position":[[2100,18],[3895,18],[3914,22]]}},"component":{}}],["aws_session_token=\"${aws_session_token",{"_index":4451,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[2876,40]]}},"component":{}}],["aws_subnet_public_id",{"_index":2141,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[1647,21],[2490,21],[3641,21],[5614,21],[12315,21]]}},"component":{}}],["aws_subnet_public_id=$(aw",{"_index":2136,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[1404,26]]}},"component":{}}],["aws_vpc_id",{"_index":2134,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[1323,11],[1460,11],[1948,11],[2098,11],[2652,11],[3520,11],[11972,11],[12384,11]]}},"component":{}}],["aws_vpc_id=$(aw",{"_index":2130,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[1142,16]]}},"component":{}}],["awscli",{"_index":2122,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[738,6]]}},"component":{}}],["aws}:/root/.aw",{"_index":4472,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[4024,18],[9199,18]]}},"component":{}}],["ax",{"_index":4428,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[3490,4]]}},"component":{}}],["az",{"_index":1552,"title":{},"name":{},"text":{"/ml.html":{"position":[[4795,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[389,2],[624,2],[661,2],[773,2],[812,2],[949,2],[1208,2],[1264,2],[1455,3],[1531,2],[1599,2],[1655,2],[1908,2],[1977,2],[2033,2],[2286,2],[8137,2],[8285,2]]}},"component":{}}],["az/.blob.core.windows.net",{"_index":2699,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[10343,30]]}},"component":{}}],["az/myconsumerstorage.blob.core.windows.net/consumerdata",{"_index":2694,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[9761,61],[21372,60],[22118,60],[24663,60]]}},"component":{}}],["az_resident_ind",{"_index":1553,"title":{},"name":{},"text":{"/ml.html":{"position":[[4822,15]]}},"component":{}}],["azu",{"_index":3196,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2947,4]]}},"component":{}}],["azul",{"_index":1292,"title":{},"name":{},"text":{"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[401,4]]}},"component":{}}],["azur",{"_index":100,"title":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[23,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_about_azure_data_share":{"position":[[6,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_an_azure_blob_storage_account_and_container":{"position":[[10,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_accept_and_receive_data_using_azure_data_share":{"position":[[30,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_configure_nos_access_to_azure_blob_storage":{"position":[[24,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_query_the_dataset_in_azure_blob_storage":{"position":[[21,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[26,5]]}},"name":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[33,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[26,5]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1819,5]]},"/create-parquet-files-in-object-storage.html":{"position":[[288,5],[1131,5],[1151,5]]},"/getting.started.utm.html":{"position":[[914,6],[1200,6]]},"/jupyter.html":{"position":[[1935,5]]},"/ml.html":{"position":[[677,6]]},"/nos.html":{"position":[[200,5]]},"/run-vantage-express-on-aws.html":{"position":[[447,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[122,6],[309,5],[536,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[100,5],[158,5],[387,5],[552,5],[598,5],[684,5],[731,5],[751,5],[790,5],[810,5],[838,5],[900,5],[1002,5],[1996,5],[2742,5],[2795,5],[2909,5],[3166,5],[3829,5],[4550,5],[4570,5],[4600,5],[4630,5],[4650,5],[4794,5],[4873,5],[5188,5],[5249,5],[5866,5],[6061,5],[6228,5],[6346,5],[6508,5],[6720,5],[6782,5],[6810,6],[6928,6],[7864,5],[7978,5],[8620,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[53,5],[243,5],[689,5],[731,5],[1144,5],[1342,5],[1608,5],[1730,5],[1759,5],[2197,5],[2268,5],[2327,5],[3070,5],[3257,5],[3363,5],[3458,5],[3633,5],[3732,5],[4050,5],[7122,6],[7202,5],[7292,5]]},"/jupyter-demos/index.html":{"position":[[247,6],[869,6],[1395,6],[1790,6],[2200,6]]},"/regulus/regulus-magic-reference.html":{"position":[[1061,6]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[2429,6]]}},"component":{}}],["azure.storage.blob",{"_index":3192,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2549,18]]}},"component":{}}],["azureus",{"_index":2320,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[1350,9],[1741,9],[2119,9],[2431,10]]}},"component":{}}],["b",{"_index":993,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4842,1]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2519,1]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1651,1],[2807,4],[3497,2],[7271,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1348,1]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1385,1]]}},"component":{}}],["b.city_coord.st_sphericaldistance(l.city_coord",{"_index":991,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4729,47]]}},"component":{}}],["back",{"_index":593,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[3192,6]]},"/fastload.html":{"position":[[6607,6]]},"/geojson-to-vantage.html":{"position":[[1338,6],[7478,4]]},"/getting.started.utm.html":{"position":[[4328,4]]},"/getting.started.vbox.html":{"position":[[1668,4],[3366,4],[5621,4]]},"/getting.started.vmware.html":{"position":[[3437,4]]},"/jupyter.html":{"position":[[4693,4]]},"/local.jupyter.hub.html":{"position":[[5632,4]]},"/run-vantage-express-on-aws.html":{"position":[[6703,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3483,4]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1587,4],[5147,4]]},"/vantage.express.gcp.html":{"position":[[2510,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[5144,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[399,4],[767,4],[983,4],[6506,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3552,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[6984,4]]},"/regulus/getting-started-with-regulus.html":{"position":[[3624,4]]},"/regulus/regulus-magic-reference.html":{"position":[[4535,4]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[3504,4],[4924,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[8152,6]]}},"component":{}}],["backup",{"_index":4499,"title":{"/regulus/using-regulus-workspace-cli.html#_project_backup":{"position":[[8,6]]}},"name":{},"text":{"/regulus/regulus-magic-reference.html":{"position":[[4689,6]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1298,6],[1341,6],[3628,6]]}},"component":{}}],["balanc",{"_index":1520,"title":{},"name":{},"text":{"/ml.html":{"position":[[3617,7],[6528,8],[7960,8],[7983,7]]},"/segment.html":{"position":[[5297,9]]},"/vantage.express.gcp.html":{"position":[[531,8],[1029,8],[1317,8],[1605,8]]}},"component":{}}],["bank",{"_index":1513,"title":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_about_the_banking_warehouse":{"position":[[10,7]]}},"name":{},"text":{"/ml.html":{"position":[[3364,7],[3632,7]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3442,5],[4791,6],[5219,5],[5519,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2670,7]]}},"component":{}}],["bar",{"_index":3064,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2257,4]]}},"component":{}}],["bare",{"_index":2113,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[354,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[736,4]]}},"component":{}}],["base",{"_index":201,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[4353,5]]},"/advanced-dbt.html":{"position":[[6544,5]]},"/create-parquet-files-in-object-storage.html":{"position":[[751,5]]},"/dbt.html":{"position":[[143,5]]},"/getting.started.vbox.html":{"position":[[663,5]]},"/getting.started.vmware.html":{"position":[[660,5]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[307,5],[714,5],[770,5],[818,5],[958,5],[1027,5]]},"/jupyter.html":{"position":[[5535,5]]},"/local.jupyter.hub.html":{"position":[[381,5],[448,5],[2559,4],[3460,6]]},"/ml.html":{"position":[[3674,5]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[7584,5]]},"/run-vantage-express-on-aws.html":{"position":[[8837,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5617,5]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[5388,5]]},"/vantage.express.gcp.html":{"position":[[4644,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[641,5],[1763,5],[8241,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[587,4],[3904,4],[5361,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1965,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1424,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3439,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[231,5],[3037,5]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[5167,5],[7651,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[5093,4]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1877,5]]},"/mule-teradata-connector/release-notes.html":{"position":[[354,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[415,5],[4440,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[7060,4]]},"/query-service/send-queries-using-rest-api.html":{"position":[[2269,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[836,5],[2688,5],[3328,5],[5164,4],[5762,4],[7298,4],[7311,4],[7361,5],[8219,5],[8808,5]]}},"component":{}}],["base64",{"_index":4213,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[1786,7],[1913,6]]}},"component":{}}],["base64.b64encode(bytes(auth_encod",{"_index":4219,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[2079,36]]}},"component":{}}],["base_image='python",{"_index":3423,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[5154,19]]}},"component":{}}],["baselin",{"_index":475,"title":{"/advanced-dbt.html#_create_dimensional_model_with_baseline_data":{"position":[[30,8]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[6244,8],[6331,8]]}},"component":{}}],["bash",{"_index":2455,"title":{},"name":{},"text":{"/sto.html":{"position":[[1198,4],[1242,4],[1974,4],[1983,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2485,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1486,4]]}},"component":{}}],["basic",{"_index":430,"title":{"/perform-time-series-analysis-using-teradata-vantage.html#_basic_time_series_operations":{"position":[[0,5]]},"/query-service/send-queries-using-rest-api.html#_http_basic_authentication":{"position":[[5,5]]},"/query-service/send-queries-using-rest-api.html#_make_a_simple_api_request_with_basic_options":{"position":[[31,5]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[4767,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[3949,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[5781,5],[24338,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[3366,5],[3526,5],[3693,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[3403,5],[3563,5],[3730,5]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1643,5],[2137,6],[2329,5],[2403,6]]}},"component":{}}],["basic_auth_password=password",{"_index":3305,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1726,28]]}},"component":{}}],["basic_auth_username=airbyt",{"_index":3304,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1698,27]]}},"component":{}}],["basictestsi",{"_index":4381,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[11860,15],[12184,15]]}},"component":{}}],["basilicata",{"_index":961,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4290,10]]}},"component":{}}],["batch",{"_index":748,"title":{"/fastload.html#_batch_mode":{"position":[[0,5]]}},"name":{},"text":{"/fastload.html":{"position":[[2233,5],[6364,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1436,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[13500,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[5022,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[6312,5],[6458,5],[7073,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4464,5]]},"/query-service/send-queries-using-rest-api.html":{"position":[[11834,8],[12158,8]]}},"component":{}}],["batch\":fals",{"_index":4358,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[10508,14]]}},"component":{}}],["bay",{"_index":3231,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[5746,5]]}},"component":{}}],["be",{"_index":1968,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[4422,5],[6090,5]]},"/mule-teradata-connector/reference.html":{"position":[[34233,5]]}},"component":{}}],["bearer",{"_index":4229,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[2655,7],[2838,7]]}},"component":{}}],["becom",{"_index":195,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[4007,6]]},"/geojson-to-vantage.html":{"position":[[7594,6]]},"/mule-teradata-connector/reference.html":{"position":[[949,7]]}},"component":{}}],["bee",{"_index":2260,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[8795,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5575,4]]},"/vantage.express.gcp.html":{"position":[[4602,4]]}},"component":{}}],["befor",{"_index":361,"title":{"/mule-teradata-connector/index.html#_before_you_begin":{"position":[[0,6]]},"/regulus/getting-started-with-regulus.html#_before_you_begin":{"position":[[0,6]]},"/regulus/install-regulus-docker-image.html#_before_you_begin":{"position":[[0,6]]},"/regulus/using-regulus-workspace-cli.html#_before_you_begin":{"position":[[0,6]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[2929,6]]},"/create-parquet-files-in-object-storage.html":{"position":[[1905,6]]},"/getting.started.utm.html":{"position":[[1312,7]]},"/getting.started.vbox.html":{"position":[[1040,7]]},"/getting.started.vmware.html":{"position":[[997,7]]},"/nos.html":{"position":[[837,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[6186,6],[6328,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[20136,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1336,6],[4077,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[5939,6]]},"/mule-teradata-connector/index.html":{"position":[[583,6]]},"/mule-teradata-connector/reference.html":{"position":[[813,6],[3719,6],[6049,6],[8347,6],[10176,6],[12391,6],[14160,6],[15654,6],[18148,6],[18713,6],[20764,6],[21874,6],[24162,6],[24729,6],[28396,6],[32436,6],[34226,6],[38064,8],[38643,6],[38999,6]]},"/query-service/send-queries-using-rest-api.html":{"position":[[383,6]]},"/regulus/getting-started-with-regulus.html":{"position":[[2078,6],[2732,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[1978,6],[4645,6]]},"/regulus/regulus-magic-reference.html":{"position":[[1925,6]]}},"component":{}}],["before=runlevel2.target",{"_index":2276,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[10438,23]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7218,23]]},"/vantage.express.gcp.html":{"position":[[6245,23]]}},"component":{}}],["beforehand",{"_index":3027,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[19869,11]]}},"component":{}}],["begin",{"_index":790,"title":{"/mule-teradata-connector/index.html#_before_you_begin":{"position":[[11,5]]},"/regulus/getting-started-with-regulus.html#_before_you_begin":{"position":[[11,5]]},"/regulus/install-regulus-docker-image.html#_before_you_begin":{"position":[[11,5]]},"/regulus/using-regulus-workspace-cli.html#_before_you_begin":{"position":[[11,5]]}},"name":{},"text":{"/fastload.html":{"position":[[3645,5],[5650,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[6339,6]]},"/mule-teradata-connector/reference.html":{"position":[[31866,9]]}},"component":{}}],["begin($td_timecode_rang",{"_index":1973,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[4505,26]]}},"component":{}}],["begin(time_bucket_per)(d",{"_index":2038,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[8277,28]]}},"component":{}}],["behavior",{"_index":3652,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4678,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[6665,8]]},"/mule-teradata-connector/reference.html":{"position":[[20870,8],[23947,8],[27692,8],[31177,8]]}},"component":{}}],["behind",{"_index":2419,"title":{},"name":{},"text":{"/segment.html":{"position":[[5276,6]]},"/sto.html":{"position":[[1565,6]]}},"component":{}}],["below",{"_index":902,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[2334,5],[7982,5],[8680,5],[8786,5]]},"/getting.started.utm.html":{"position":[[2965,5],[3219,6]]},"/getting.started.vbox.html":{"position":[[2003,5],[2257,6]]},"/getting.started.vmware.html":{"position":[[2074,5],[2328,6]]},"/jupyter.html":{"position":[[2678,5],[5739,5]]},"/local.jupyter.hub.html":{"position":[[3705,5]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[897,5],[7640,6]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1109,6],[3837,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[14457,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1572,6],[2001,5],[3747,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[934,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[15638,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[515,6],[2965,6],[3109,6],[3183,5],[5233,5],[6847,6],[7412,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[5672,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3033,5],[4392,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1940,5],[4569,5]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[880,6]]}},"component":{}}],["best",{"_index":2426,"title":{},"name":{},"text":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[685,4]]},"/vantage.express.gcp.html":{"position":[[608,4]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[3441,4]]},"/mule-teradata-connector/reference.html":{"position":[[20809,4]]}},"component":{}}],["better",{"_index":3230,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[5618,7],[6302,6]]},"/mule-teradata-connector/reference.html":{"position":[[35180,6]]}},"component":{}}],["between",{"_index":679,"title":{},"name":{},"text":{"/dbt.html":{"position":[[4009,7]]},"/geojson-to-vantage.html":{"position":[[4705,7]]},"/getting.started.utm.html":{"position":[[4710,7]]},"/getting.started.vbox.html":{"position":[[5266,7]]},"/getting.started.vmware.html":{"position":[[3819,7]]},"/ml.html":{"position":[[8010,7]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[978,7]]},"/sto.html":{"position":[[5380,7],[6108,7]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2177,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[105,7],[1104,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2179,7],[7224,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[4827,7],[4875,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4996,7]]},"/mule-teradata-connector/index.html":{"position":[[132,7]]},"/mule-teradata-connector/reference.html":{"position":[[132,7]]},"/mule-teradata-connector/release-notes.html":{"position":[[132,7]]}},"component":{}}],["beyond",{"_index":117,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2137,6]]}},"component":{}}],["bf",{"_index":2567,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3057,5],[3164,4],[5476,5]]}},"component":{}}],["bi",{"_index":3,"title":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[31,2]]},"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_install_power_bi_desktop":{"position":[[14,2]]}},"name":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[40,2]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[211,2],[311,2],[430,2],[448,2],[643,2],[703,2],[779,2],[796,2],[876,2],[898,2],[1088,2],[1134,2],[1207,2],[1225,2],[1347,2],[1518,2],[1653,2],[1758,2],[1863,2],[1934,2],[1987,2],[2290,2],[2340,2],[2518,2],[2796,2],[2943,3],[3410,2],[4153,2],[4374,2],[4480,2],[4818,2],[4909,2],[5040,2],[5242,2],[5348,2],[5430,2],[5448,2],[5705,2],[5767,2],[5843,2],[5877,2],[5922,2],[5969,2],[6011,2]]},"/dbt.html":{"position":[[3279,2]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1711,2]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[6644,2]]}},"component":{}}],["bigint",{"_index":781,"title":{},"name":{},"text":{"/fastload.html":{"position":[[3251,7],[3269,6],[5594,7],[5612,6]]},"/mule-teradata-connector/reference.html":{"position":[[39762,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[4734,7],[4752,6]]}},"component":{}}],["bike",{"_index":3208,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3547,4],[3605,4],[6557,4],[6626,4]]}},"component":{}}],["bikebuy",{"_index":3229,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[5427,9],[6749,9]]}},"component":{}}],["bill",{"_index":2911,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[7370,8]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1898,7]]}},"component":{}}],["billing_c",{"_index":2946,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11520,13],[16251,13],[18055,13],[20485,12],[22037,13]]}},"component":{}}],["billing_countri",{"_index":2952,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11700,16],[16431,16],[18235,16],[20679,15],[22217,16]]}},"component":{}}],["billing_post_cod",{"_index":2950,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11637,18],[16368,18],[18172,18],[20612,17],[22154,18]]}},"component":{}}],["billing_st",{"_index":2948,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11576,14],[16307,14],[18111,14],[20548,13],[22093,14]]}},"component":{}}],["billing_street",{"_index":2944,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11463,15],[16194,15],[17998,15],[20420,14],[21980,15]]}},"component":{}}],["bin/activ",{"_index":3070,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[3070,13],[3144,13]]}},"component":{}}],["bin/bash",{"_index":2793,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2151,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1998,11],[2841,11]]}},"component":{}}],["binari",{"_index":1287,"title":{},"name":{},"text":{"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[205,6]]},"/ml.html":{"position":[[1575,7]]},"/sto.html":{"position":[[2116,6],[2192,6]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4888,6]]},"/mule-teradata-connector/reference.html":{"position":[[39848,6]]}},"component":{}}],["bind",{"_index":2378,"title":{},"name":{},"text":{"/segment.html":{"position":[[2562,7],[3751,7],[4037,7]]},"/mule-teradata-connector/reference.html":{"position":[[3035,8],[5367,8],[7660,8],[13631,8]]},"/regulus/regulus-magic-reference.html":{"position":[[379,4]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1532,4]]}},"component":{}}],["bit",{"_index":96,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1738,3],[1748,3]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[303,3],[385,3]]},"/teradatasql.html":{"position":[[170,3]]},"/mule-teradata-connector/reference.html":{"position":[[39733,3]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[5470,3]]}},"component":{}}],["blank",{"_index":3211,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3847,5]]}},"component":{}}],["blob",{"_index":509,"title":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_an_azure_blob_storage_account_and_container":{"position":[[16,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_configure_nos_access_to_azure_blob_storage":{"position":[[30,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_query_the_dataset_in_azure_blob_storage":{"position":[[27,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_load_data_from_blob_storage_into_vantage_optional":{"position":[[15,4]]}},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[294,4],[1137,4]]},"/nos.html":{"position":[[206,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[106,4],[737,4],[1008,4],[2002,4],[2149,4],[2288,4],[2442,4],[2801,4],[2915,4],[3058,4],[3092,4],[3120,4],[4556,4],[4879,4],[5255,4],[6067,4],[6352,4],[7870,4],[8626,4],[8688,4],[8780,4],[9063,4],[9493,4],[13825,4],[13967,4],[14060,4],[14144,4],[14268,4],[14321,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[249,4],[349,4],[1348,4],[1502,4],[1614,4],[1736,4],[2282,4],[2341,4],[2952,4],[3076,4],[3276,4],[3464,4],[3639,4],[4056,4],[7298,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6871,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3163,5]]},"/mule-teradata-connector/reference.html":{"position":[[39924,4]]}},"component":{}}],["blobservic",{"_index":3200,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3090,11]]}},"component":{}}],["blobservice.create_blob_from_text(containernam",{"_index":3203,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3171,48]]}},"component":{}}],["block",{"_index":805,"title":{},"name":{},"text":{"/fastload.html":{"position":[[4141,5],[4449,5],[4727,6]]},"/run-vantage-express-on-aws.html":{"position":[[1183,5],[1479,5],[2302,5],[5460,5]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2724,5],[3039,5],[5458,5]]},"/mule-teradata-connector/reference.html":{"position":[[36086,8],[36170,8],[36293,8],[36377,8]]}},"component":{}}],["blockblobservic",{"_index":3193,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2575,18]]}},"component":{}}],["blockblobservice(account_name=accountnam",{"_index":3201,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3104,42]]}},"component":{}}],["bloodp",{"_index":3627,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2879,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2916,7]]}},"component":{}}],["bmi",{"_index":3630,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2913,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2950,4]]}},"component":{}}],["bogusch",{"_index":12,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[14,8]]}},"component":{}}],["boolean",{"_index":3868,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[2165,7],[16979,7],[26722,7],[29726,7],[32084,7],[34995,7],[35635,7],[36095,7],[36302,7],[37086,7],[37867,7],[37942,7],[37993,7],[38083,7],[39058,7],[39947,7]]}},"component":{}}],["boost",{"_index":3227,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[5113,7],[5263,7],[5869,7]]}},"component":{}}],["boot",{"_index":115,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2114,4]]},"/getting.started.utm.html":{"position":[[1702,5],[2060,4],[2782,4]]},"/getting.started.vbox.html":{"position":[[1820,4]]},"/getting.started.vmware.html":{"position":[[1891,4]]}},"component":{}}],["bootabl",{"_index":1152,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[2367,8]]}},"component":{}}],["bootup",{"_index":1166,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[2898,6]]},"/getting.started.vbox.html":{"position":[[1936,6]]},"/getting.started.vmware.html":{"position":[[2007,6]]}},"component":{}}],["boston",{"_index":3369,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1916,6]]}},"component":{}}],["both",{"_index":23,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[103,4],[1730,4]]},"/advanced-dbt.html":{"position":[[5841,4],[6284,4]]},"/fastload.html":{"position":[[2212,4]]},"/getting.started.utm.html":{"position":[[595,4],[3334,5]]},"/getting.started.vbox.html":{"position":[[2372,5]]},"/getting.started.vmware.html":{"position":[[2443,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[340,4],[498,4],[13585,4],[14528,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[3929,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4724,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[708,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[432,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[5832,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[826,4]]},"/mule-teradata-connector/reference.html":{"position":[[26260,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3067,4]]}},"component":{}}],["boto3",{"_index":3144,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2603,6]]}},"component":{}}],["boto3.session().resource('s3').bucket(bucket).object(os.path.join(prefix",{"_index":3161,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3171,73]]}},"component":{}}],["bottom",{"_index":3210,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3810,6],[4277,6],[6096,6]]}},"component":{}}],["bound",{"_index":3872,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[3406,5],[5792,5],[8033,5]]}},"component":{}}],["boundari",{"_index":1009,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[5813,10]]}},"component":{}}],["boundaries_geo",{"_index":1050,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[8454,14],[9252,14]]}},"component":{}}],["box",{"_index":165,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3355,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[7316,3],[7369,3],[7647,3]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2293,3]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[1089,3]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1444,3]]}},"component":{}}],["branch",{"_index":3612,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1821,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1858,7]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[4160,6]]}},"component":{}}],["breakdown",{"_index":3294,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[872,9]]}},"component":{}}],["brew",{"_index":1247,"title":{},"name":{},"text":{"/getting.started.vbox.html":{"position":[[1144,4]]}},"component":{}}],["brick",{"_index":3593,"title":{},"name":{},"text":{"/jupyter-demos/index.html":{"position":[[2120,6]]}},"component":{}}],["bring",{"_index":217,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[5019,6]]},"/create-parquet-files-in-object-storage.html":{"position":[[419,5]]},"/getting.started.utm.html":{"position":[[514,5]]},"/getting.started.vbox.html":{"position":[[514,5]]},"/getting.started.vmware.html":{"position":[[514,5]]},"/nos.html":{"position":[[331,5],[870,5],[5280,5]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3493,5]]},"/sto.html":{"position":[[369,5],[7619,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[638,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[792,6]]}},"component":{}}],["broadcast",{"_index":2554,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1726,10]]}},"component":{}}],["brows",{"_index":686,"title":{},"name":{},"text":{"/dbt.html":{"position":[[4367,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[25808,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7826,6]]}},"component":{}}],["browser",{"_index":687,"title":{},"name":{},"text":{"/dbt.html":{"position":[[4449,7]]},"/fastload.html":{"position":[[1293,8]]},"/jupyter.html":{"position":[[2258,8],[6252,8]]},"/mule.jdbc.example.html":{"position":[[3073,7]]},"/run-vantage-express-on-aws.html":{"position":[[6427,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3207,8]]},"/vantage.express.gcp.html":{"position":[[2234,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[3184,7],[6958,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7908,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8843,8],[9530,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1168,8]]}},"component":{}}],["bteq",{"_index":1507,"title":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_parallel_transporter_tpt_bteq":{"position":[[54,4]]}},"name":{},"text":{"/ml.html":{"position":[[2775,4]]},"/run-vantage-express-on-aws.html":{"position":[[8745,4],[8778,4],[8906,4],[8919,5],[11120,5],[11126,4],[12505,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5525,4],[5558,4],[5686,4],[5699,5],[7900,5],[7906,4],[8443,4]]},"/segment.html":{"position":[[1190,4]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[729,5],[735,4]]},"/vantage.express.gcp.html":{"position":[[4552,4],[4585,4],[4713,4],[4726,5],[6927,5],[6933,4],[7619,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[5698,4]]}},"component":{}}],["bucket",{"_index":522,"title":{"/nos.html#_access_private_buckets":{"position":[[15,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-GCS-bucket":{"position":[[11,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Give-permissions-to-Vertex-AI-to-access-your-bucket":{"position":[[45,7]]}},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[809,6],[2539,7],[3107,7],[3263,7]]},"/fastload.html":{"position":[[1172,7],[6507,7]]},"/nos.html":{"position":[[797,7],[1046,6],[1204,7],[6789,7],[6824,7],[8290,6]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[705,6],[936,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1933,6],[1994,6],[2092,6],[3073,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[753,6],[1235,7],[1691,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[789,6],[2495,6],[2564,7],[3036,6],[3101,6],[3178,6],[3250,6],[5718,6],[6665,6],[7941,6],[8140,7],[8737,6],[9758,8],[23730,6],[24223,7],[24739,6],[26140,6],[26177,7],[26280,8],[26300,7]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[1440,7],[1535,7],[1862,7],[1920,6],[1998,7],[2081,7],[3086,6],[3502,6],[3527,7],[4019,6],[6132,7],[6187,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1482,6],[1540,6],[1585,6],[9647,6],[13813,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1026,7],[8052,7]]}},"component":{}}],["bucket/teradatasqllinux_3.3.0",{"_index":2851,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[3209,29]]}},"component":{}}],["bucket_nam",{"_index":3362,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1561,11],[9937,11],[13106,11]]}},"component":{}}],["buffer",{"_index":3974,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[40172,6],[40374,7],[40391,6],[40423,6],[40539,6],[40594,6],[40694,6],[40790,6],[40852,6],[41271,6],[41287,6],[41435,6],[41637,7],[41654,6],[41686,6],[41761,6],[41816,6],[41916,6],[42012,6],[42033,6],[42257,6],[42556,9],[42566,6]]}},"component":{}}],["build",{"_index":436,"title":{"/segment.html#_build_and_deploy":{"position":[[0,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_build_the_model":{"position":[[0,5]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[4988,8]]},"/create-parquet-files-in-object-storage.html":{"position":[[391,8]]},"/dbt.html":{"position":[[103,5],[2067,6]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[936,5]]},"/jdbc.html":{"position":[[988,5]]},"/jupyter.html":{"position":[[4838,6],[6178,5]]},"/local.jupyter.hub.html":{"position":[[651,6],[2574,5],[2639,6],[2737,5],[3824,5],[5238,5],[5302,5],[5367,5],[5437,5],[5511,5],[5556,5]]},"/ml.html":{"position":[[3229,5],[3573,5],[6412,5],[8972,5]]},"/mule.jdbc.example.html":{"position":[[3020,5]]},"/nos.html":{"position":[[303,8]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[7562,5]]},"/segment.html":{"position":[[1880,5],[1910,6]]},"/sto.html":{"position":[[1822,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[3480,5],[3791,5],[5594,5],[5603,5],[5627,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[17625,8],[17703,5]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[1594,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[142,6],[456,5],[3397,5],[3486,5],[7032,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[98,5],[6183,8],[6318,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[280,5],[3690,5],[4975,5],[6383,5],[10841,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[602,5],[2841,6]]}},"component":{}}],["build=fals",{"_index":1466,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[5568,11]]}},"component":{}}],["built",{"_index":653,"title":{},"name":{},"text":{"/dbt.html":{"position":[[2975,5]]},"/geojson-to-vantage.html":{"position":[[5102,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[8299,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[378,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3670,5]]}},"component":{}}],["bulk",{"_index":2644,"title":{"/mule-teradata-connector/reference.html#bulkDelete":{"position":[[0,4]]},"/mule-teradata-connector/reference.html#bulkInsert":{"position":[[0,4]]},"/mule-teradata-connector/reference.html#bulkUpdate":{"position":[[0,4]]}},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2478,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4577,4]]},"/mule-teradata-connector/index.html":{"position":[[1182,4]]},"/mule-teradata-connector/reference.html":{"position":[[2807,4],[2819,4],[2831,4]]},"/mule-teradata-connector/release-notes.html":{"position":[[782,4]]}},"component":{}}],["bulkload",{"_index":691,"title":{"/fastload.html":{"position":[[10,9]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[10,9]]}},"name":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[4,9]]}},"text":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1659,9]]}},"component":{}}],["bundl",{"_index":1323,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[1096,7],[6862,7]]},"/local.jupyter.hub.html":{"position":[[704,7],[2467,7],[3407,7],[3666,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1866,6],[3404,6]]}},"component":{}}],["busi",{"_index":67,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[984,8]]},"/advanced-dbt.html":{"position":[[6417,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1444,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2170,8]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[743,8],[1105,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2860,8]]},"/mule-teradata-connector/reference.html":{"position":[[38170,5]]}},"component":{}}],["button",{"_index":157,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3176,7]]},"/getting.started.utm.html":{"position":[[3198,6],[5214,6]]},"/getting.started.vbox.html":{"position":[[2236,6],[4040,6]]},"/getting.started.vmware.html":{"position":[[2307,6],[4323,6]]},"/run-vantage-express-on-aws.html":{"position":[[6540,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3320,6]]},"/vantage.express.gcp.html":{"position":[[2347,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[3646,7]]}},"component":{}}],["buy",{"_index":3209,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3599,3]]}},"component":{}}],["buyer",{"_index":3241,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[6562,6],[6631,5]]}},"component":{}}],["bynet",{"_index":2546,"title":{"/teradata-vantage-engine-architecture-and-concepts.html#_bynet":{"position":[[0,5]]}},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[859,6],[1618,5],[1678,5],[2002,5],[2289,5],[4444,5],[4901,5],[5045,5],[6124,6],[6420,5]]}},"component":{}}],["byom",{"_index":1106,"title":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[41,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[40,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_validate_permissions_in_sql_database_for_val_and_byom":{"position":[[49,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_add_dataset_to_identify_vantage_tables_for_byom_evaluation_and_scoring":{"position":[[43,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_model_lifecycle_for_a_new_byom":{"position":[[26,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_validate_permissions_in_sql_database_for_val_and_byom":{"position":[[49,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_add_dataset_to_identify_vantage_tables_for_byom_evaluation_and_scoring":{"position":[[43,4]]}},"name":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[32,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[70,4]]}},"text":{"/getting.started.utm.html":{"position":[[535,7]]},"/getting.started.vbox.html":{"position":[[535,7]]},"/getting.started.vmware.html":{"position":[[535,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[33,4],[659,6],[2522,4],[10943,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[315,4],[846,4],[930,4],[1219,4],[1303,4],[2259,4],[3241,4],[3263,4],[4104,4],[4170,4],[4284,4],[4801,4],[4934,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[883,4],[967,4],[1256,4],[1340,4],[2296,4],[3278,4],[3300,4],[6718,4]]}},"component":{}}],["byom.ipynb",{"_index":3641,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4020,10]]}},"component":{}}],["byte",{"_index":3982,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[41320,4],[42290,4],[42599,4]]}},"component":{}}],["byteint",{"_index":1226,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[5657,7]]},"/getting.started.vbox.html":{"position":[[4483,7]]},"/getting.started.vmware.html":{"position":[[4766,7]]},"/mule.jdbc.example.html":{"position":[[2435,7]]},"/run-vantage-express-on-aws.html":{"position":[[9541,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6321,7]]},"/vantage.express.gcp.html":{"position":[[5348,7]]}},"component":{}}],["c",{"_index":4510,"title":{},"name":{},"text":{"/regulus/using-regulus-workspace-cli.html":{"position":[[4496,2]]}},"component":{}}],["c3p0.idleconnectiontestperiod",{"_index":3929,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[35238,30]]}},"component":{}}],["c5n.metal",{"_index":2112,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[322,9],[5446,9]]}},"component":{}}],["ca",{"_index":1544,"title":{},"name":{},"text":{"/ml.html":{"position":[[4499,4]]}},"component":{}}],["ca_resident_ind",{"_index":1545,"title":{},"name":{},"text":{"/ml.html":{"position":[[4526,15]]}},"component":{}}],["cach",{"_index":1434,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[3099,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[14092,7]]},"/mule-teradata-connector/reference.html":{"position":[[33598,5],[33651,6],[33721,8],[34816,6],[34945,7]]}},"component":{}}],["calcul",{"_index":989,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4682,9]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[7997,9]]}},"component":{}}],["call",{"_index":52,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[690,6],[762,6],[5183,6]]},"/advanced-dbt.html":{"position":[[2051,6]]},"/dbt.html":{"position":[[1150,6],[3006,6]]},"/getting.started.utm.html":{"position":[[2431,6],[5145,6]]},"/getting.started.vbox.html":{"position":[[3971,6]]},"/getting.started.vmware.html":{"position":[[4254,6]]},"/jupyter.html":{"position":[[3486,4]]},"/ml.html":{"position":[[624,6],[1928,6],[6540,4],[6751,6],[6782,4],[7426,4],[7629,4]]},"/nos.html":{"position":[[5765,6],[5882,6]]},"/run-vantage-express-on-aws.html":{"position":[[9074,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[722,6],[5854,6]]},"/segment.html":{"position":[[1183,6],[1275,6]]},"/sto.html":{"position":[[2980,6],[3230,5],[3236,4],[3365,4],[3676,4],[3915,4],[5505,4]]},"/vantage.express.gcp.html":{"position":[[4881,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[3301,6],[3899,6],[6410,6],[6556,6],[6623,6],[14660,6]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3657,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[5896,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2196,6]]},"/mule-teradata-connector/reference.html":{"position":[[26671,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6673,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3163,6],[3925,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1547,6]]}},"component":{}}],["callback",{"_index":4474,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[4874,8],[6878,8]]}},"component":{}}],["camp",{"_index":116,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2119,5]]}},"component":{}}],["campaign",{"_index":3206,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3513,8]]}},"component":{}}],["cancel",{"_index":2218,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[6551,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3331,6]]},"/vantage.express.gcp.html":{"position":[[2358,6]]},"/mule-teradata-connector/reference.html":{"position":[[3754,6],[6084,6],[8382,6],[10211,6],[12426,6],[14195,6],[15689,6],[18748,6],[21909,6],[24764,6],[28431,6],[32471,6]]}},"component":{}}],["canva",{"_index":3213,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4010,7],[4188,7],[4531,7],[4950,6],[5151,7],[5203,6],[5659,6],[5786,7],[5954,7],[6009,6]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[2060,7],[3209,6],[3644,7]]}},"component":{}}],["can’t",{"_index":2445,"title":{},"name":{},"text":{"/sto.html":{"position":[[120,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4939,5]]}},"component":{}}],["capabilit",{"_index":3351,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[306,11]]}},"component":{}}],["capabl",{"_index":1964,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[4330,12],[10685,13]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[759,12]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2084,13],[4386,10]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[260,11],[13711,12]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[4586,13],[4618,12]]},"/regulus/install-regulus-docker-image.html":{"position":[[459,12]]}},"component":{}}],["capac",{"_index":2577,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[4072,9]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[797,8]]}},"component":{}}],["captur",{"_index":417,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[4352,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4052,7],[4140,8],[15591,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[700,7]]}},"component":{}}],["card",{"_index":1522,"title":{},"name":{},"text":{"/ml.html":{"position":[[3669,4],[3698,4],[6523,4]]}},"component":{}}],["care",{"_index":2450,"title":{},"name":{},"text":{"/sto.html":{"position":[[692,4]]},"/jupyter-demos/index.html":{"position":[[1137,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[703,4]]}},"component":{}}],["case",{"_index":258,"title":{"/advanced-dbt.html":{"position":[[17,5]]},"/mule-teradata-connector/index.html#_common_use_cases_for_the_connector":{"position":[[11,5]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[275,5],[2659,4]]},"/dbt.html":{"position":[[2267,5]]},"/fastload.html":{"position":[[3791,4],[6480,5]]},"/jupyter.html":{"position":[[5320,6]]},"/ml.html":{"position":[[414,6],[4190,5],[4260,5],[4324,5],[4395,5]]},"/segment.html":{"position":[[5164,6]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[89,5],[189,5],[1479,6],[1534,5]]},"/sto.html":{"position":[[1717,4]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1014,4],[2996,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[166,6]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[320,5],[497,4],[966,4],[1337,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2286,4],[7367,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[797,5],[2426,4],[4795,5],[5547,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[878,4],[916,4],[959,4],[1251,4],[1289,4],[1332,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[915,4],[953,4],[996,4],[1288,4],[1326,4],[1369,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[7040,5]]},"/mule-teradata-connector/reference.html":{"position":[[4227,4],[5140,4],[6554,4],[7432,4],[9650,4],[11789,4],[13357,4],[15126,4],[17643,4],[20325,4],[20800,4],[23447,4],[25235,4],[27396,4],[30396,4],[33180,4],[40729,4],[41951,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[4712,5]]},"/query-service/send-queries-using-rest-api.html":{"position":[[329,5]]},"/regulus/getting-started-with-regulus.html":{"position":[[3837,4],[3894,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[9818,6]]},"/regulus/regulus-magic-reference.html":{"position":[[2183,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[8025,5]]}},"component":{}}],["casespecif",{"_index":603,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[3496,12]]},"/fastload.html":{"position":[[3022,13],[3107,13],[3172,13],[3233,13],[5365,13],[5450,13],[5515,13],[5576,13]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3603,13]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[9673,13]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9326,13],[13584,13],[14187,12],[14250,13],[14301,13],[14353,13],[14411,13],[14465,12],[20279,13],[20344,13],[20406,13],[20471,13],[20534,13],[20598,13],[20665,13],[20731,13],[20787,13],[20841,13],[20907,13],[20971,13],[21036,13],[21104,13],[21171,13],[21230,13],[21293,13],[21373,13],[21430,13],[21484,13],[21548,13],[21616,13],[21681,13]]},"/regulus/getting-started-with-regulus.html":{"position":[[2247,13]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[4505,13],[4590,13],[4655,13],[4716,13]]}},"component":{}}],["cast",{"_index":927,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3265,4],[8981,4],[9093,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[21314,5],[22060,5],[24605,5]]}},"component":{}}],["cast(cast(json_report",{"_index":3638,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[3283,21],[4304,21]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[3320,21]]}},"component":{}}],["cast(geojson_clob",{"_index":942,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3566,18]]}},"component":{}}],["cast(nul",{"_index":2988,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[12981,9],[19193,9]]}},"component":{}}],["cast(payload.\"nam",{"_index":2939,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11312,19],[16043,19],[17847,19],[21829,19]]}},"component":{}}],["cast(payload.\"typ",{"_index":2981,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[12474,19],[17138,19],[18942,19],[22924,19]]}},"component":{}}],["cast(payload..cloud_cover_pct",{"_index":2762,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[13202,29],[16824,29],[20537,29],[24434,29]]}},"component":{}}],["cast(payload..countri",{"_index":2707,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11363,21],[14985,21],[18697,21],[22594,21]]}},"component":{}}],["cast(payload..doy_utc",{"_index":2712,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11497,21],[15119,21],[18831,21],[22728,21]]}},"component":{}}],["cast(payload..dst_offset_minut",{"_index":2718,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11676,32],[15298,32],[19010,32],[22907,32]]}},"component":{}}],["cast(payload..hour_utc",{"_index":2714,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11540,22],[15162,22],[18874,22],[22771,22]]}},"component":{}}],["cast(payload..humidity_relative_2m_pct",{"_index":2734,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[12239,38],[15861,38],[19574,38],[23471,38]]}},"component":{}}],["cast(payload..humidity_specific_2m_gpkg",{"_index":2736,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[12321,39],[15943,39],[19656,39],[23553,39]]}},"component":{}}],["cast(payload..postal_cod",{"_index":2705,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11308,25],[14930,25],[18642,25],[22539,25]]}},"component":{}}],["cast(payload..precipitation_in",{"_index":2758,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[13080,30],[16702,30],[20415,30],[24312,30]]}},"component":{}}],["cast(payload..pressure_2m_mb",{"_index":2738,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[12404,28],[16026,28],[19739,28],[23636,28]]}},"component":{}}],["cast(payload..pressure_mean_sea_level_mb",{"_index":2744,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[12546,40],[16168,40],[19881,40],[23778,40]]}},"component":{}}],["cast(payload..pressure_tendency_2m_mb",{"_index":2741,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[12466,37],[16088,37],[19801,37],[23698,37]]}},"component":{}}],["cast(payload..radiation_solar_total_wpm2",{"_index":2764,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[13261,40],[16883,40],[20596,40],[24493,40]]}},"component":{}}],["cast(payload..snowfall_in",{"_index":2760,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[13146,25],[16768,25],[20481,25],[24378,25]]}},"component":{}}],["cast(payload..temperature_air_2m_f",{"_index":2720,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11741,34],[15363,34],[19075,34],[22972,34]]}},"component":{}}],["cast(payload..temperature_dewpoint_2m_f",{"_index":2726,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11897,39],[15519,39],[19232,39],[23129,39]]}},"component":{}}],["cast(payload..temperature_feelslike_2m_f",{"_index":2728,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11981,40],[15603,40],[19316,40],[23213,40]]}},"component":{}}],["cast(payload..temperature_heatindex_2m_f",{"_index":2732,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[12153,40],[15775,40],[19488,40],[23385,40]]}},"component":{}}],["cast(payload..temperature_wetbulb_2m_f",{"_index":2723,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11815,38],[15437,38],[19150,38],[23047,38]]}},"component":{}}],["cast(payload..temperature_windchill_2m_f",{"_index":2730,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[12067,40],[15689,40],[19402,40],[23299,40]]}},"component":{}}],["cast(payload..time_valid_lcl",{"_index":2716,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11585,28],[15207,28],[18919,28],[22816,28]]}},"component":{}}],["cast(payload..time_valid_utc",{"_index":2709,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11406,28],[15028,28],[18740,28],[22637,28]]}},"component":{}}],["cast(payload..wind_direction_100m_deg",{"_index":2756,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[13000,37],[16622,37],[20335,37],[24232,37]]}},"component":{}}],["cast(payload..wind_direction_10m_deg",{"_index":2748,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[12702,36],[16324,36],[20037,36],[23934,36]]}},"component":{}}],["cast(payload..wind_direction_80m_deg",{"_index":2752,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[12850,36],[16472,36],[20185,36],[24082,36]]}},"component":{}}],["cast(payload..wind_speed_100m_mph",{"_index":2754,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[12928,33],[16550,33],[20263,33],[24160,33]]}},"component":{}}],["cast(payload..wind_speed_10m_mph",{"_index":2746,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[12632,32],[16254,32],[19967,32],[23864,32]]}},"component":{}}],["cast(payload..wind_speed_80m_mph",{"_index":2750,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[12780,32],[16402,32],[20115,32],[24012,32]]}},"component":{}}],["cast(payload.accountnumb",{"_index":2941,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11364,26],[16095,26],[17899,26],[21881,26]]}},"component":{}}],["cast(payload.annualrevenu",{"_index":2979,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[12415,26],[17245,26],[19049,26],[23031,26]]}},"component":{}}],["cast(payload.billingc",{"_index":2945,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11479,24],[16210,24],[18014,24],[21996,24]]}},"component":{}}],["cast(payload.billingcountri",{"_index":2951,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11656,27],[16387,27],[18191,27],[22173,27]]}},"component":{}}],["cast(payload.billingpostalcod",{"_index":2949,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11591,30],[16322,30],[18126,30],[22108,30]]}},"component":{}}],["cast(payload.billingst",{"_index":2947,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11534,25],[16265,25],[18069,25],[22051,25]]}},"component":{}}],["cast(payload.billingstreet",{"_index":2943,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11420,26],[16151,26],[17955,26],[21937,26]]}},"component":{}}],["cast(payload.customerpriority__c",{"_index":2974,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[12271,32],[16994,32],[18798,32],[22780,32]]}},"component":{}}],["cast(payload.descript",{"_index":2970,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[12152,24],[16883,24],[18687,24],[22669,24]]}},"component":{}}],["cast(payload.fax",{"_index":2956,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11759,16],[16490,16],[18294,16],[22276,16]]}},"component":{}}],["cast(payload.id",{"_index":2936,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11267,15],[15998,15],[17802,15],[21784,15]]}},"component":{}}],["cast(payload.industri",{"_index":2968,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[12104,21],[16835,21],[18639,21],[22621,21]]}},"component":{}}],["cast(payload.lastactivityd",{"_index":2985,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[12581,29],[17304,29],[19108,29],[23090,29]]}},"component":{}}],["cast(payload.numberofemploye",{"_index":2972,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[12207,30],[16938,30],[18742,30],[22724,30]]}},"component":{}}],["cast(payload.phon",{"_index":2953,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11717,18],[16448,18],[18252,18],[22234,18]]}},"component":{}}],["cast(payload.r",{"_index":2975,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[12330,19],[17053,19],[18857,19],[22839,19]]}},"component":{}}],["cast(payload.shippingc",{"_index":2960,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11858,25],[16589,25],[18393,25],[22375,25]]}},"component":{}}],["cast(payload.shippingcountri",{"_index":2966,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[12041,28],[16772,28],[18576,28],[22558,28]]}},"component":{}}],["cast(payload.shippingpostalcod",{"_index":2964,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11974,31],[16705,31],[18509,31],[22491,31]]}},"component":{}}],["cast(payload.shippingst",{"_index":2962,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11915,26],[16646,26],[18450,26],[22432,26]]}},"component":{}}],["cast(payload.shippingstreet",{"_index":2958,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11797,27],[16528,27],[18332,27],[22314,27]]}},"component":{}}],["cast(payload.sla__c",{"_index":2977,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[12374,19],[17097,19],[18901,19],[22883,19]]}},"component":{}}],["cast(payload.websit",{"_index":2983,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[12525,20],[17189,20],[18993,20],[22975,20]]}},"component":{}}],["cat",{"_index":2266,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[10221,3],[10327,3]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7001,3],[7107,3]]},"/vantage.express.gcp.html":{"position":[[6028,3],[6134,3]]}},"component":{}}],["catalog",{"_index":3057,"title":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[50,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_about_google_cloud_data_catalog":{"position":[[24,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_enable_data_catalog_api":{"position":[[12,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_install_teradata_data_catalog_connector":{"position":[[22,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_install_data_catalog_teradata_connector":{"position":[[13,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_explore_teradata_vantage_metadata_with_data_catalog":{"position":[[44,7]]}},"name":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[50,7]]}},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[141,7],[164,7],[263,8],[384,7],[439,7],[502,7],[582,7],[594,7],[643,7],[689,7],[1799,7],[2000,7],[2035,7],[2101,7],[2271,7],[2328,7],[2370,7],[2794,7],[4847,10],[5199,8],[8297,7],[8569,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2644,7],[2698,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2681,7],[2735,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1198,9]]}},"component":{}}],["categori",{"_index":3595,"title":{},"name":{},"text":{"/jupyter-demos/index.html":{"position":[[2214,8]]}},"component":{}}],["cc",{"_index":1561,"title":{},"name":{},"text":{"/ml.html":{"position":[[5080,4],[5357,4],[5669,4]]}},"component":{}}],["cc_acct_ind",{"_index":1562,"title":{},"name":{},"text":{"/ml.html":{"position":[[5107,11]]}},"component":{}}],["cc_avg_bal",{"_index":1567,"title":{},"name":{},"text":{"/ml.html":{"position":[[5420,10],[6682,11]]}},"component":{}}],["cc_avg_tran_amt",{"_index":1571,"title":{},"name":{},"text":{"/ml.html":{"position":[[5727,15]]}},"component":{}}],["cd",{"_index":297,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[895,2],[1004,2]]},"/dbt.html":{"position":[[496,2],[597,2]]},"/run-vantage-express-on-aws.html":{"position":[[6035,2]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2560,2]]},"/vantage.express.gcp.html":{"position":[[1842,2]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2161,2],[2193,2]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[3278,2]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1284,2]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2274,2],[5362,2],[5375,2],[5452,2],[5992,2],[6345,2]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2313,2]]}},"component":{}}],["ce",{"_index":4031,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3092,2],[3102,2]]},"/regulus/regulus-magic-reference.html":{"position":[[5056,2]]}},"component":{}}],["ce.repo",{"_index":4030,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3044,7]]}},"component":{}}],["cell",{"_index":1332,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[1738,6],[2583,4],[2662,5],[3788,6],[4371,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2392,4],[2622,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2237,4]]}},"component":{}}],["center",{"_index":3845,"title":{},"name":{},"text":{"/mule-teradata-connector/examples-configuration.html":{"position":[[4907,6]]},"/mule-teradata-connector/index.html":{"position":[[1625,6]]},"/mule-teradata-connector/reference.html":{"position":[[42802,6]]},"/mule-teradata-connector/release-notes.html":{"position":[[1113,6]]},"/regulus/getting-started-with-regulus.html":{"position":[[1898,6]]}},"component":{}}],["central",{"_index":3061,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[681,7]]}},"component":{}}],["central1",{"_index":2605,"title":{},"name":{},"text":{"/vantage.express.gcp.html":{"position":[[587,8],[864,8],[1152,8],[1440,8],[1729,8],[7375,8]]}},"component":{}}],["ceph_auth",{"_index":599,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[3424,10]]}},"component":{}}],["cert",{"_index":3948,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[38264,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[2495,4]]}},"component":{}}],["certain",{"_index":4171,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6083,7]]}},"component":{}}],["certif",{"_index":3939,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[37106,11],[37911,11],[38303,11]]},"/regulus/install-regulus-docker-image.html":{"position":[[5581,13],[5606,11],[5670,11],[5697,11],[5738,11],[5795,11]]}},"component":{}}],["cha",{"_index":3386,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2747,7],[3453,5],[7211,7]]}},"component":{}}],["chain",{"_index":3572,"title":{},"name":{},"text":{"/jupyter-demos/index.html":{"position":[[402,5],[904,6],[1429,6]]},"/mule-teradata-connector/reference.html":{"position":[[37923,6]]}},"component":{}}],["challeng",{"_index":415,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[4322,10]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1680,10]]}},"component":{}}],["chang",{"_index":339,"title":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_change_data_file_properties":{"position":[[0,6]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[2083,6],[4242,7],[5178,7]]},"/dbt.html":{"position":[[1178,6]]},"/local.jupyter.hub.html":{"position":[[1698,8],[2117,7],[2892,7],[3979,7]]},"/nos.html":{"position":[[4001,6]]},"/run-vantage-express-on-aws.html":{"position":[[11019,6],[11063,6],[11211,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7799,6],[7843,6],[7991,6]]},"/vantage.express.gcp.html":{"position":[[6826,6],[6870,6],[7018,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4040,6],[4127,7],[8220,6],[19939,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[8762,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[291,7]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[2121,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[5772,7],[6144,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3190,6],[3952,6]]},"/regulus/getting-started-with-regulus.html":{"position":[[98,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[98,7]]},"/regulus/regulus-magic-reference.html":{"position":[[98,7]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[98,7]]}},"component":{}}],["char",{"_index":3959,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[39803,4]]}},"component":{}}],["char(2",{"_index":2708,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11388,8],[15010,8],[17551,8],[18722,8],[22619,8]]}},"component":{}}],["charact",{"_index":601,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[3474,9]]},"/fastload.html":{"position":[[2998,9],[3083,9],[3148,9],[3209,9],[5341,9],[5426,9],[5491,9],[5552,9]]},"/geojson-to-vantage.html":{"position":[[1248,9],[2816,9],[8474,9]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3579,9]]},"/segment.html":{"position":[[4935,10]]},"/sto.html":{"position":[[5355,9]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[9651,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9304,9],[9382,9],[12999,9],[13564,9],[14167,9],[14230,9],[14281,9],[14333,9],[14391,9],[14445,9],[19211,9],[20255,9],[20320,9],[20382,9],[20447,9],[20510,9],[20574,9],[20641,9],[20707,9],[20763,9],[20817,9],[20883,9],[20947,9],[21012,9],[21080,9],[21147,9],[21206,9],[21269,9],[21349,9],[21406,9],[21460,9],[21524,9],[21592,9],[21657,9]]},"/regulus/getting-started-with-regulus.html":{"position":[[2223,9]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[4481,9],[4566,9],[4631,9],[4692,9]]}},"component":{}}],["charent",{"_index":980,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4532,9]]}},"component":{}}],["charg",{"_index":2110,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[230,7],[11594,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[8215,8]]},"/vantage.express.gcp.html":{"position":[[7284,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[14221,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[25939,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[13591,7]]}},"component":{}}],["chart",{"_index":4422,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[2515,8],[3154,8],[3434,8],[3504,6],[3511,6]]}},"component":{}}],["cheap",{"_index":2119,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[520,5]]}},"component":{}}],["cheaper",{"_index":2117,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[410,7]]}},"component":{}}],["check",{"_index":431,"title":{"/geojson-to-vantage.html#_optional_check_the_content_of_the_file":{"position":[[11,5]]},"/mule-teradata-connector/reference.html#standard-revocation-check":{"position":[[20,5]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[4783,6]]},"/create-parquet-files-in-object-storage.html":{"position":[[2597,5],[2701,5]]},"/fastload.html":{"position":[[1954,5]]},"/geojson-to-vantage.html":{"position":[[953,6],[9569,5],[10137,6]]},"/getting.started.utm.html":{"position":[[1928,5]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1276,5],[1326,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[7359,5],[7637,5],[8102,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2764,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[3996,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[10250,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2368,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2405,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[469,5]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[467,5],[4443,5]]},"/mule-teradata-connector/reference.html":{"position":[[36681,5],[36707,5],[38026,8]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[1039,5],[1221,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1745,5],[3338,5],[4465,5],[6887,5],[10472,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2049,5]]}},"component":{}}],["checkbox",{"_index":215,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[4947,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[7108,8],[7271,8]]}},"component":{}}],["checkout",{"_index":545,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[1762,8]]},"/mule-teradata-connector/reference.html":{"position":[[34986,8],[35034,8],[35129,8]]}},"component":{}}],["checkouttimeout",{"_index":3919,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[33946,15]]}},"component":{}}],["checkpoint",{"_index":791,"title":{},"name":{},"text":{"/fastload.html":{"position":[[3749,10],[3864,11],[3876,10],[5723,10]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[5614,10]]}},"component":{}}],["checksum",{"_index":551,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[1939,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[20170,8]]},"/regulus/getting-started-with-regulus.html":{"position":[[2112,8],[2766,8]]}},"component":{}}],["chillanki",{"_index":4126,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[13,9]]}},"component":{}}],["chinthanippu",{"_index":1284,"title":{},"name":{},"text":{"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[15,12]]}},"component":{}}],["chip",{"_index":1111,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[615,5],[706,6]]}},"component":{}}],["chipset",{"_index":3574,"title":{},"name":{},"text":{"/jupyter-demos/index.html":{"position":[[561,7]]}},"component":{}}],["chmod",{"_index":1445,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[4366,5]]},"/run-vantage-express-on-aws.html":{"position":[[4994,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[1093,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[4265,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4735,5],[5480,5],[5525,5]]}},"component":{}}],["choic",{"_index":2469,"title":{},"name":{},"text":{"/sto.html":{"position":[[2429,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[990,6],[17272,6]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[5562,6]]},"/mule-teradata-connector/reference.html":{"position":[[35187,6]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1097,7]]},"/regulus/getting-started-with-regulus.html":{"position":[[1317,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[900,6]]}},"component":{}}],["choos",{"_index":166,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3368,6],[5496,6]]},"/ml.html":{"position":[[2853,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[4458,6],[4707,6],[5034,6],[7736,6],[14577,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1524,6],[4508,6],[5137,6],[6144,6],[6194,6],[6577,6],[6932,6],[15799,6],[20059,6],[24705,6],[24728,6],[24822,6],[24910,6],[24952,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2134,6],[2568,6]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3488,6],[4802,6]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1058,6],[1987,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[10307,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[6066,8]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1747,6]]}},"component":{}}],["chosen",{"_index":447,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[5341,6]]}},"component":{}}],["chown",{"_index":1470,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[5675,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[5187,5]]}},"component":{}}],["chrome",{"_index":2215,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[6452,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3232,6]]},"/vantage.express.gcp.html":{"position":[[2259,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[3192,8]]}},"component":{}}],["cidr",{"_index":2131,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[1178,4],[1474,4],[2297,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[6205,5],[6254,6],[6302,4],[6397,5],[6465,5]]},"/regulus/regulus-magic-reference.html":{"position":[[3217,6],[3839,5],[3853,4]]}},"component":{}}],["cidrip",{"_index":2173,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[3390,11],[11509,11]]}},"component":{}}],["cipher",{"_index":3931,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[36539,6],[36586,6]]}},"component":{}}],["citi",{"_index":886,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[1661,7],[1813,6],[3146,5],[3198,4],[4717,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[14264,4],[23496,4],[23881,5]]}},"component":{}}],["cities',jmap",{"_index":919,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[2891,16]]}},"component":{}}],["cities_geo",{"_index":931,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3411,10],[4191,11],[4803,10],[4876,10],[9653,10]]}},"component":{}}],["citizen",{"_index":3587,"title":{},"name":{},"text":{"/jupyter-demos/index.html":{"position":[[1549,7]]}},"component":{}}],["city_coord",{"_index":939,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3515,10],[4265,10],[4787,10],[4860,10],[9794,10]]}},"component":{}}],["city_coord.st_sphericaldistance(city_coord",{"_index":997,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4921,43]]}},"component":{}}],["city_level_tran",{"_index":3129,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[8476,18]]}},"component":{}}],["city_nam",{"_index":933,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3429,10],[4015,10],[4211,9],[9784,9]]}},"component":{}}],["city_name='bordeaux",{"_index":992,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4820,21]]}},"component":{}}],["city_name='lvov",{"_index":995,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4893,17]]}},"component":{}}],["ck",{"_index":1557,"title":{},"name":{},"text":{"/ml.html":{"position":[[4942,4],[5149,4],[5461,4]]}},"component":{}}],["ck_acct_ind",{"_index":1558,"title":{},"name":{},"text":{"/ml.html":{"position":[[4969,11]]}},"component":{}}],["ck_avg_bal",{"_index":1565,"title":{},"name":{},"text":{"/ml.html":{"position":[[5212,10]]}},"component":{}}],["ck_avg_tran_amt",{"_index":1569,"title":{},"name":{},"text":{"/ml.html":{"position":[[5519,15]]}},"component":{}}],["clarifi",{"_index":4039,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4327,7]]}},"component":{}}],["class",{"_index":3221,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4861,6],[5107,5],[5257,5],[5740,5],[5863,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[5685,5],[5739,6]]},"/mule-teradata-connector/reference.html":{"position":[[35489,5],[35528,5]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[981,7],[1004,6]]}},"component":{}}],["classif",{"_index":3222,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4895,14],[6591,14]]}},"component":{}}],["classifi",{"_index":3956,"title":{"/mule-teradata-connector/reference.html#TypeClassifier":{"position":[[5,10]]}},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[39632,10],[39648,10],[42759,10],[42775,10]]}},"component":{}}],["classless",{"_index":4477,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[6223,9]]}},"component":{}}],["classpath",{"_index":3900,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[14077,10],[36863,9],[37335,9]]}},"component":{}}],["claus",{"_index":2025,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[7516,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[9923,7],[21121,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9624,6],[12923,7],[17693,6]]}},"component":{}}],["clean",{"_index":824,"title":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_clean_the_data":{"position":[[0,5]]}},"name":{},"text":{"/fastload.html":{"position":[[5078,5]]},"/sto.html":{"position":[[2948,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4834,5],[8541,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4360,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[13611,5]]}},"component":{}}],["cleanup",{"_index":2302,"title":{"/run-vantage-express-on-aws.html#_cleanup":{"position":[[0,7]]},"/run-vantage-express-on-microsoft-azure.html#_cleanup":{"position":[[0,7]]},"/vantage.express.gcp.html#_cleanup":{"position":[[0,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_cleanup_optional":{"position":[[0,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_cleanup_optional":{"position":[[0,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Cleanup":{"position":[[0,8]]}},"name":{},"text":{},"component":{}}],["cleanup_datacatalog.pi",{"_index":3133,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[8839,22]]}},"component":{}}],["clearscap",{"_index":863,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[509,10],[1348,10],[2991,10],[8928,10]]},"/mule.jdbc.example.html":{"position":[[1826,10],[1902,10],[2021,10]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[3536,10],[5885,10],[5958,10]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[106,10],[375,10]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[106,10],[412,10]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1451,10],[1509,10]]}},"component":{}}],["clermont",{"_index":984,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4591,8]]}},"component":{}}],["cli",{"_index":2129,"title":{"/regulus/using-regulus-workspace-cli.html":{"position":[[28,3]]},"/regulus/using-regulus-workspace-cli.html#_install_workspaces_cli":{"position":[[19,3]]},"/regulus/using-regulus-workspace-cli.html#_use_workspaces_cli":{"position":[[15,3]]},"/regulus/using-regulus-workspace-cli.html#_workspaces_cli_reference":{"position":[[11,3]]}},"name":{"/regulus/using-regulus-workspace-cli.html":{"position":[[24,3]]}},"text":{"/run-vantage-express-on-aws.html":{"position":[[1124,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[542,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4140,18]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4465,3],[4852,3],[5227,3]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1858,3],[1910,3]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3105,3]]},"/regulus/install-regulus-docker-image.html":{"position":[[1082,4],[1325,4],[1362,4],[7868,3],[7995,4],[8032,4]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[166,3],[198,5],[288,4],[374,3],[775,3],[870,3],[1478,3],[1537,3]]}},"component":{}}],["click",{"_index":142,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2876,5],[2990,5],[3009,5],[3025,5],[3118,5],[3155,5],[3486,5],[3496,6],[3783,5],[4853,8],[4937,5],[5392,5],[5520,5],[5566,5],[5602,5]]},"/getting.started.utm.html":{"position":[[1544,5],[1859,8],[1898,5],[1955,5],[5050,8]]},"/getting.started.vbox.html":{"position":[[1651,5],[1746,8],[3876,8],[5560,8]]},"/getting.started.vmware.html":{"position":[[1769,5],[4159,8]]},"/mule.jdbc.example.html":{"position":[[2730,5]]},"/run-vantage-express-on-aws.html":{"position":[[6262,5],[6520,8],[6654,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3042,5],[3300,8],[3434,5]]},"/vantage.express.gcp.html":{"position":[[2069,5],[2327,8],[2461,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[3586,5],[3624,5],[3720,5],[4814,5],[4847,5],[4892,5],[4996,5],[5015,5],[5295,5],[5462,5],[5482,5],[5502,5],[5537,5],[5712,5],[5807,5],[5847,5],[6873,5],[8178,5],[8255,5],[8280,5],[8530,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[3170,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[4252,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[5652,5],[5941,5],[6334,5],[6416,5],[6429,5],[6781,5],[7013,5],[7095,5],[7400,5],[7566,5],[7644,5],[7771,5],[7919,5],[8099,5],[8153,5],[8179,5],[8263,5],[24499,5],[25072,5],[25340,5],[25455,5],[25533,5],[25660,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2188,5],[2301,5],[2341,5],[2635,5],[8314,5],[8434,5]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2293,8],[3342,5],[4265,5],[5148,5],[5337,5],[5452,5],[5743,5],[5820,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1895,5],[1965,5],[3766,5],[3792,5],[4154,8],[4248,5],[4586,5],[5363,5],[6067,5],[6136,5],[6377,5],[6421,5]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1927,5],[2132,5],[2172,5],[3146,5],[3853,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2028,5],[2093,5],[10271,5],[10356,5],[13777,5]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[919,5],[1161,5],[1269,5],[1316,5],[1327,5],[2165,5],[2683,5],[2767,5],[3699,5],[4178,5],[4262,5]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[409,8],[1266,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1369,5],[10233,5],[10298,5],[10372,5]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[743,5],[788,5],[887,5],[956,5],[1053,5],[1220,5],[1514,5],[1650,5]]}},"component":{}}],["client",{"_index":291,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[740,6],[822,6],[2267,7],[2596,7]]},"/geojson-to-vantage.html":{"position":[[1192,6],[2936,6],[8813,6],[9418,6]]},"/mule.jdbc.example.html":{"position":[[1478,7]]},"/run-vantage-express-on-aws.html":{"position":[[8750,6],[8770,7],[8843,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5530,6],[5550,7],[5623,6]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1610,7],[5170,6]]},"/vantage.express.gcp.html":{"position":[[4557,6],[4577,7],[4650,6]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[5907,6]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2287,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[9539,6]]},"/mule-teradata-connector/reference.html":{"position":[[33769,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1063,7],[2736,6],[2752,6]]},"/query-service/send-queries-using-rest-api.html":{"position":[[164,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[4425,6],[4439,6],[4942,6],[4956,6],[6968,6],[6982,6],[7088,6],[7106,6]]},"/regulus/regulus-magic-reference.html":{"position":[[628,6]]}},"component":{}}],["client’",{"_index":356,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[2693,8]]}},"component":{}}],["clipboard",{"_index":1259,"title":{},"name":{},"text":{"/getting.started.vbox.html":{"position":[[5237,10]]}},"component":{}}],["cload",{"_index":331,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[1874,5]]}},"component":{}}],["clob",{"_index":879,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[1271,6],[2702,4],[2811,4],[5477,5],[8469,4],[9114,4]]},"/mule-teradata-connector/reference.html":{"position":[[39929,4]]}},"component":{}}],["clone",{"_index":295,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[861,5],[930,5]]},"/dbt.html":{"position":[[462,5],[531,5]]},"/mule.jdbc.example.html":{"position":[[73,5],[1486,5],[1535,5],[2835,6]]},"/segment.html":{"position":[[864,5],[897,5]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1149,5],[1227,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[990,5],[1016,5],[1081,5],[1341,5],[1416,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1027,5],[1053,5],[1118,5],[1378,5],[1453,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[5386,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2279,5],[2348,5],[2451,6]]}},"component":{}}],["close",{"_index":234,"title":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_close_and_delete_the_connection":{"position":[[0,5]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[5582,6]]},"/fastload.html":{"position":[[4709,5]]},"/getting.started.utm.html":{"position":[[4453,5]]},"/getting.started.vbox.html":{"position":[[3491,5]]},"/getting.started.vmware.html":{"position":[[3562,5]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[7122,5]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[2779,5]]},"/mule-teradata-connector/reference.html":{"position":[[18141,6],[20835,5],[24155,6]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1069,6],[1529,5]]}},"component":{}}],["closest",{"_index":2308,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[579,7]]},"/vantage.express.gcp.html":{"position":[[666,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[6086,7]]}},"component":{}}],["cloud",{"_index":530,"title":{"/vantage.express.gcp.html":{"position":[[30,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[39,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_about_google_cloud_data_catalog":{"position":[[13,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[7,5]]}},"name":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[39,5]]}},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[1192,5],[2608,5]]},"/getting.started.utm.html":{"position":[[280,5],[902,6],[928,6],[1214,6],[6462,5]]},"/getting.started.vbox.html":{"position":[[280,5],[6058,5]]},"/getting.started.vmware.html":{"position":[[280,5],[5571,5]]},"/jupyter.html":{"position":[[1881,5]]},"/ml.html":{"position":[[654,5],[670,6]]},"/run-vantage-express-on-aws.html":{"position":[[224,5],[437,5],[562,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[220,5]]},"/segment.html":{"position":[[182,5],[222,5],[303,5],[347,5],[374,5],[527,5],[734,5],[1712,5],[2046,5],[2468,5],[2502,5],[2724,5],[3539,5],[3589,5],[3631,6],[3705,5],[4803,5],[5219,5],[5437,5],[5468,5]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[321,5]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3699,6]]},"/vantage.express.gcp.html":{"position":[[119,5],[226,5],[318,5],[727,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1146,5],[1813,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1298,5],[1342,5],[1919,5],[1980,5],[2078,5],[3059,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1621,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[130,5],[470,5],[491,5],[807,5],[1474,7],[1820,5],[1921,5],[2317,5],[2505,5]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[918,5],[2735,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1075,5],[1355,5],[4489,5],[9633,5]]},"/jupyter-demos/index.html":{"position":[[64,5],[147,5],[163,6],[228,5],[662,5],[750,5],[766,6],[850,5],[1198,5],[1282,5],[1298,6],[1376,5],[1602,5],[1688,5],[1704,6],[1771,5],[1991,5],[2080,5],[2096,6],[2181,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[384,5],[5925,5]]},"/regulus/regulus-magic-reference.html":{"position":[[992,5]]}},"component":{}}],["cloud,imag",{"_index":2614,"title":{},"name":{},"text":{"/vantage.express.gcp.html":{"position":[[978,11],[1266,11],[1554,11]]}},"component":{}}],["cloud_cover_pct",{"_index":2763,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[13244,16],[16866,16],[18431,15],[20579,16],[24476,16]]}},"component":{}}],["cloudbuild.googleapis.com",{"_index":2364,"title":{},"name":{},"text":{"/segment.html":{"position":[[1751,25]]}},"component":{}}],["cloudrun",{"_index":2402,"title":{},"name":{},"text":{"/segment.html":{"position":[[4297,8]]}},"component":{}}],["cloudscap",{"_index":3342,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[7733,10]]}},"component":{}}],["cloud’",{"_index":2791,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[515,7]]}},"component":{}}],["cluster",{"_index":1411,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[100,9],[191,9],[1862,8],[2132,7],[2907,7],[3994,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[187,7],[999,7],[2981,7],[3097,8]]},"/mule-teradata-connector/reference.html":{"position":[[32174,7]]}},"component":{}}],["cmt",{"_index":1871,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1736,3],[1917,3],[2099,3],[2275,3],[2450,3],[2628,3],[2806,3],[2986,3],[3167,3],[3346,3]]}},"component":{}}],["cnxn",{"_index":1828,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[1300,4]]}},"component":{}}],["cnxn.cursor",{"_index":1831,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[1418,13]]}},"component":{}}],["code",{"_index":856,"title":{"/jdbc.html#_code_to_send_a_query":{"position":[[0,4]]},"/teradatasql.html#_code_to_send_a_query":{"position":[[0,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_prepare_code_templates":{"position":[[8,4]]}},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[223,5],[2039,4],[2329,4],[3382,4],[6862,6],[7687,4],[7977,4],[8311,6],[8675,4],[10088,4],[10230,6]]},"/jupyter.html":{"position":[[1658,5]]},"/ml.html":{"position":[[9081,7]]},"/sto.html":{"position":[[257,5]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[5813,5]]},"/teradatasql.html":{"position":[[665,4],[938,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11002,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[10973,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[4975,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[12778,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[935,4],[1308,4],[3249,4],[4178,4],[4852,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[296,4],[972,4],[1345,4],[3286,4],[3932,4],[3988,4],[4276,4],[5368,4],[5753,4],[6004,4],[6769,4]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1011,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[9800,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1783,4]]}},"component":{}}],["code/work",{"_index":2000,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[5951,10]]}},"component":{}}],["code_country_isoa3",{"_index":936,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3467,19],[4053,20],[4246,18]]}},"component":{}}],["code_hour.csv",{"_index":2662,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[5106,13]]}},"component":{}}],["coher",{"_index":46,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[581,9]]}},"component":{}}],["col1",{"_index":604,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[3511,4],[3813,5],[3939,4]]}},"component":{}}],["col2",{"_index":605,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[3527,4],[3819,5],[3944,4]]}},"component":{}}],["col3",{"_index":606,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[3539,4],[3825,4],[3949,4]]}},"component":{}}],["colexpr",{"_index":946,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3678,10]]}},"component":{}}],["collabor",{"_index":2583,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[4617,11]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[93,14]]},"/regulus/install-regulus-docker-image.html":{"position":[[7260,11]]},"/regulus/regulus-magic-reference.html":{"position":[[1167,13],[1473,13],[4392,13]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[3252,13]]}},"component":{}}],["collaps",{"_index":3996,"title":{},"name":{},"text":{"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[909,10]]}},"component":{}}],["collect",{"_index":37,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[456,10]]},"/advanced-dbt.html":{"position":[[5991,10]]},"/geojson-to-vantage.html":{"position":[[6602,10]]},"/nos.html":{"position":[[1001,9],[3339,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[149,9]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3343,10]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5098,10]]}},"component":{}}],["colon",{"_index":3897,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[11376,5],[16846,5],[19905,5],[23027,5],[26002,5],[26343,5],[26644,5],[29585,5]]}},"component":{}}],["column",{"_index":473,"title":{"/mule-teradata-connector/reference.html#ColumnType":{"position":[[0,6]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[6146,6]]},"/create-parquet-files-in-object-storage.html":{"position":[[1020,7]]},"/dbt.html":{"position":[[2514,8],[3541,6],[3575,6],[3682,6]]},"/fastload.html":{"position":[[4022,6],[4162,7]]},"/geojson-to-vantage.html":{"position":[[6931,7],[7418,6]]},"/ml.html":{"position":[[6647,8]]},"/nos.html":{"position":[[3014,8],[3032,7]]},"/sto.html":{"position":[[6169,7]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2792,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[10225,7],[10568,8],[10697,7],[11205,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9888,7],[10277,8],[10406,7],[11102,8],[15932,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4386,7],[4455,7],[4599,6],[4651,7],[4689,8],[4982,7],[5376,6],[5437,6],[5451,6],[6460,7],[6742,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[477,7],[5815,7],[5886,6],[5923,6],[7069,6],[7180,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6580,8],[6669,6],[6808,6],[6909,6],[6968,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[3275,7],[4296,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[3312,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[7050,6]]},"/mule-teradata-connector/reference.html":{"position":[[1227,6],[1426,6],[1448,6],[1483,6],[1854,6],[1876,6],[1911,6],[17081,6],[17120,6],[17228,6],[17265,6],[26824,6],[26863,6],[26972,6],[27009,6],[29827,6],[29866,6],[29974,6],[30011,6],[30687,8],[30711,6],[30758,6],[30887,6],[31421,6],[31451,6],[31505,6],[31629,6],[31659,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1740,7],[1825,6],[1911,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[3136,6],[3175,6],[3255,6],[3280,6],[4030,11],[5535,7]]}},"component":{}}],["column(",{"_index":2593,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[5764,9]]}},"component":{}}],["column1",{"_index":555,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2000,7],[2107,7],[2348,7]]}},"component":{}}],["column2",{"_index":558,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2027,7],[2356,7]]}},"component":{}}],["column3",{"_index":561,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2068,7],[2364,7]]}},"component":{}}],["columns=tot_age,tot_income,tot_cust_years,tot_children,single_ind,female_ind,married_ind,separated_ind,ck_acct_ind,sv_acct_ind,sv_avg_bal,ck_avg_bal,ca_resident_ind,ny_resident_ind,tx_resident_ind,il_resident_ind,az_resident_ind,oh_resident_ind",{"_index":1595,"title":{},"name":{},"text":{"/ml.html":{"position":[[6842,245]]}},"component":{}}],["com.teradata.jdbc.teradriv",{"_index":4200,"title":{},"name":{},"text":{"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1288,28]]}},"component":{}}],["combin",{"_index":237,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[5725,7],[5898,7]]},"/advanced-dbt.html":{"position":[[5365,11],[5710,11],[5755,11]]},"/sto.html":{"position":[[6638,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1260,8],[13555,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[224,7],[1986,8],[17651,9]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[921,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1711,8]]}},"component":{}}],["come",{"_index":3292,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[687,5]]},"/regulus/getting-started-with-regulus.html":{"position":[[3901,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[9825,6]]}},"component":{}}],["comma",{"_index":803,"title":{},"name":{},"text":{"/fastload.html":{"position":[[4088,5]]},"/mule-teradata-connector/reference.html":{"position":[[36471,5],[36562,5]]},"/query-service/send-queries-using-rest-api.html":{"position":[[5558,6],[5607,5]]}},"component":{}}],["command",{"_index":292,"title":{"/regulus/regulus-magic-reference.html":{"position":[[25,7]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[768,9],[1627,8],[3477,7]]},"/create-parquet-files-in-object-storage.html":{"position":[[1475,9]]},"/dbt.html":{"position":[[1651,7],[4407,7],[4663,8]]},"/fastload.html":{"position":[[1547,7],[2102,9]]},"/getting.started.utm.html":{"position":[[3159,7],[3519,7]]},"/getting.started.vbox.html":{"position":[[2197,7],[2557,7],[5700,7]]},"/getting.started.vmware.html":{"position":[[2268,7],[2628,7]]},"/jupyter.html":{"position":[[2190,8]]},"/ml.html":{"position":[[2792,8]]},"/run-vantage-express-on-aws.html":{"position":[[745,7],[4985,8],[6165,7],[6776,8],[6805,7],[7209,7],[8472,7],[8757,7],[8829,7],[10203,9]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[392,7],[1084,8],[2945,7],[3556,8],[3585,7],[3989,7],[5252,7],[5537,7],[5609,7],[6983,9],[8128,8]]},"/segment.html":{"position":[[1165,7],[2882,9]]},"/sto.html":{"position":[[1203,8],[1247,9]]},"/vantage.express.gcp.html":{"position":[[340,7],[560,7],[1972,7],[2583,8],[2612,7],[3016,7],[4279,7],[4564,7],[4636,7],[6010,9],[7155,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[9109,8],[9529,8],[10465,7],[10821,7],[11240,7],[13387,7],[14821,7],[17064,7],[17437,7],[20748,7],[21221,7],[21952,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9183,8]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2463,7],[3671,7],[4097,8],[8823,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2620,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[329,8],[2598,8],[2630,7],[4250,8],[4268,7],[4333,7],[7393,7],[7866,7],[8307,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1468,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[6842,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[965,7],[1668,7],[1862,7],[1914,8],[2135,8],[2503,7],[2672,8],[2760,8],[5980,7],[6126,7]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[4657,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1838,7],[1896,7],[1931,8],[1965,8],[3160,7],[3254,7],[3383,7],[4561,7],[4882,7],[5763,8],[6995,7],[8557,7],[8755,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3486,7]]},"/regulus/getting-started-with-regulus.html":{"position":[[684,8],[722,7],[1959,7],[2343,8],[2988,8],[3982,8],[4045,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[3040,7],[3640,8],[8409,7]]},"/regulus/regulus-magic-reference.html":{"position":[[220,8],[283,9],[753,7],[1265,7],[1685,7],[2133,7],[5133,8]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[175,7],[378,9],[417,7],[1453,9],[1708,8],[2033,8],[2096,7],[2657,8],[2946,8],[3175,8],[3474,8],[3769,8],[4211,8],[4861,8],[5161,8],[5293,7],[5521,8],[6283,8],[6584,8],[6992,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1412,7],[2234,9]]}},"component":{}}],["comment",{"_index":4038,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4312,8],[9819,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3601,8]]}},"component":{}}],["commerc",{"_index":627,"title":{},"name":{},"text":{"/dbt.html":{"position":[[1764,8]]}},"component":{}}],["commerci",{"_index":1271,"title":{},"name":{},"text":{"/getting.started.vmware.html":{"position":[[1059,10],[1092,10]]},"/sto.html":{"position":[[6374,10],[7359,10]]}},"component":{}}],["commit",{"_index":4335,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[8134,6]]}},"component":{}}],["commitid",{"_index":3691,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[5990,8]]}},"component":{}}],["commod",{"_index":2641,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1850,9]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1511,9]]}},"component":{}}],["common",{"_index":182,"title":{"/mule-teradata-connector/index.html#_common_use_cases_for_the_connector":{"position":[[0,6]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3689,7]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[307,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[3950,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2775,6]]},"/query-service/send-queries-using-rest-api.html":{"position":[[318,6]]}},"component":{}}],["commonli",{"_index":2542,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[564,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[8391,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[4279,8]]}},"component":{}}],["commun",{"_index":248,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[6093,9],[6159,9]]},"/advanced-dbt.html":{"position":[[7372,9],[7438,9]]},"/create-parquet-files-in-object-storage.html":{"position":[[4434,9],[4500,9]]},"/dbt.html":{"position":[[4972,9],[5038,9]]},"/fastload.html":{"position":[[7663,9],[7729,9]]},"/geojson-to-vantage.html":{"position":[[10714,9],[10780,9]]},"/getting.started.utm.html":{"position":[[6643,9],[6709,9]]},"/getting.started.vbox.html":{"position":[[6239,9],[6305,9]]},"/getting.started.vmware.html":{"position":[[5752,9],[5818,9]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[1175,9],[1241,9]]},"/jdbc.html":{"position":[[1177,9],[1243,9]]},"/jupyter.html":{"position":[[7425,9],[7491,9]]},"/local.jupyter.hub.html":{"position":[[6196,9],[6262,9]]},"/ml.html":{"position":[[9197,9],[9263,9]]},"/mule.jdbc.example.html":{"position":[[3623,9],[3689,9]]},"/nos.html":{"position":[[8809,9],[8875,9]]},"/odbc.ubuntu.html":{"position":[[2034,9],[2100,9]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10922,9],[10988,9]]},"/run-vantage-express-on-aws.html":{"position":[[12581,9],[12647,9]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[8519,9],[8585,9]]},"/segment.html":{"position":[[5653,9],[5719,9]]},"/sto.html":{"position":[[8024,9],[8090,9]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1659,14],[1767,13]]},"/teradatasql.html":{"position":[[1109,9],[1175,9]]},"/vantage.express.gcp.html":{"position":[[7695,9],[7761,9]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[24901,9],[24967,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[6475,9],[6541,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[4677,9],[4743,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[26453,9],[26519,9]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[8995,9],[9061,9]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[6382,9],[6448,9]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[7383,9],[7449,9]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[8573,9],[8639,9]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[7931,9],[7955,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[5326,9],[5392,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[7377,9],[7443,9]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9919,9],[9985,9]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[4985,9],[5051,9]]},"/mule-teradata-connector/index.html":{"position":[[118,13]]},"/mule-teradata-connector/reference.html":{"position":[[118,13]]},"/mule-teradata-connector/release-notes.html":{"position":[[118,13]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[323,9],[1664,9],[1730,9]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[10946,9],[11012,9]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1910,9],[1976,9]]},"/query-service/send-queries-using-rest-api.html":{"position":[[12620,9],[12686,9]]},"/regulus/getting-started-with-regulus.html":{"position":[[4135,9],[4201,9]]},"/regulus/install-regulus-docker-image.html":{"position":[[9955,9],[10021,9]]},"/regulus/regulus-magic-reference.html":{"position":[[642,13],[5226,9],[5292,9]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[7113,9],[7179,9]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[9223,9],[9289,9]]}},"component":{}}],["compani",{"_index":2637,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1526,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1728,9],[23827,8]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1187,9]]}},"component":{}}],["compar",{"_index":2103,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10547,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[5533,7],[5802,7],[6019,7],[6728,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[6113,7]]},"/mule-teradata-connector/reference.html":{"position":[[3103,8],[5435,8],[7728,8]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[806,10]]}},"component":{}}],["comparison",{"_index":3232,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[5841,10]]}},"component":{}}],["compat",{"_index":506,"title":{"/mule-teradata-connector/release-notes.html#_compatibility":{"position":[[0,13]]}},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[234,10]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[3707,10]]}},"component":{}}],["compil",{"_index":3515,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[9259,7],[9393,8],[12739,7]]}},"component":{}}],["compiler.compiler().compile(pipeline_func=run_new_data_scor",{"_index":3562,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[12861,61]]}},"component":{}}],["compiler.compiler().compile(pipeline_func=run_vantage_pipeline_vertex",{"_index":3519,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[9402,70]]}},"component":{}}],["complet",{"_index":524,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[842,8]]},"/geojson-to-vantage.html":{"position":[[5036,8],[7061,8]]},"/getting.started.utm.html":{"position":[[2883,10]]},"/getting.started.vbox.html":{"position":[[1921,10]]},"/getting.started.vmware.html":{"position":[[1992,10]]},"/jupyter.html":{"position":[[4784,8]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3475,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[4174,9],[6160,8],[8218,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[3143,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[7818,10],[13680,9],[25707,10]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1030,10],[3120,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6100,8],[7462,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[10183,9],[13472,10]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[138,8],[2266,8],[5273,8],[9236,8],[9371,8]]},"/mule-teradata-connector/index.html":{"position":[[1410,8]]},"/mule-teradata-connector/reference.html":{"position":[[20585,10],[20780,10],[21334,8],[27630,11]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6442,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1136,8],[8156,11],[10103,8]]},"/regulus/getting-started-with-regulus.html":{"position":[[1507,9]]},"/regulus/regulus-magic-reference.html":{"position":[[3072,9]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[6547,9],[7444,9],[7481,9]]}},"component":{}}],["complex",{"_index":676,"title":{},"name":{},"text":{"/dbt.html":{"position":[[3942,7]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1182,7]]},"/sto.html":{"position":[[88,7],[2034,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7512,7]]}},"component":{}}],["complic",{"_index":2023,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[7381,12]]}},"component":{}}],["compon",{"_index":84,"title":{"/teradata-vantage-engine-architecture-and-concepts.html#_teradata_vantage_engine_architecture_components":{"position":[[37,10]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-the-component-that-reads-data-from-Vantage":{"position":[[11,9]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-the-train-model-component":{"position":[[23,10]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-component-to-deploy-model":{"position":[[7,9]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1404,9]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[782,10],[1098,10],[1649,9],[4314,10],[6057,10],[6206,10]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3604,10],[3870,11],[4227,9],[4313,10],[4376,9],[4587,9],[4835,10],[4883,10],[4905,9],[4957,9],[5064,10],[5178,9],[5293,9],[5878,9],[5949,9],[5989,10],[6099,9],[7691,9],[8884,9],[10207,9],[10285,9],[11277,9],[12476,9]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3175,11]]},"/mule-teradata-connector/reference.html":{"position":[[18106,10],[24119,11],[30912,9],[31711,9]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[236,10]]},"/regulus/install-regulus-docker-image.html":{"position":[[581,11]]}},"component":{}}],["component(base_image='python",{"_index":3425,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[5318,31]]}},"component":{}}],["component(base_image='teradata/python",{"_index":3443,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[6303,38],[7867,38],[11449,38]]}},"component":{}}],["compos",{"_index":3291,"title":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_docker_compose_and_docker_environment_configuration_files":{"position":[[15,7]]},"/regulus/install-regulus-docker-image.html#_install_workspaces_using_docker_compose":{"position":[[32,7]]},"/regulus/install-regulus-docker-image.html#_install_jupyterlab_using_docker_compose":{"position":[[32,7]]}},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[628,7],[679,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4377,7],[4665,7],[4722,7],[4766,7],[4807,7],[4831,7],[4856,7],[4915,7],[4951,7],[4998,7],[5125,8],[6370,7],[8640,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[2590,7],[3260,8],[3374,8],[4137,7],[7976,7],[8740,8],[8854,8],[9312,7]]}},"component":{}}],["compose.yaml",{"_index":4035,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3509,12],[3601,12],[3639,12],[3748,12],[4243,12],[6331,13],[8476,12]]}},"component":{}}],["compose.yml",{"_index":4458,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[3445,11],[4080,11],[8925,11],[9255,11]]}},"component":{}}],["compound",{"_index":2896,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4530,8],[4638,8]]}},"component":{}}],["comprehens",{"_index":1033,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[7149,13]]}},"component":{}}],["compress",{"_index":1801,"title":{},"name":{},"text":{"/nos.html":{"position":[[8393,11]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[24047,11]]}},"component":{}}],["compression('snappi",{"_index":586,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2970,21]]},"/nos.html":{"position":[[8121,21]]}},"component":{}}],["comput",{"_index":93,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1624,9]]},"/getting.started.utm.html":{"position":[[389,9],[585,9],[2135,9]]},"/getting.started.vbox.html":{"position":[[389,9],[581,8]]},"/getting.started.vmware.html":{"position":[[389,9],[581,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3089,7],[3110,7]]},"/vantage.express.gcp.html":{"position":[[802,7],[1090,7],[1378,7],[1682,7],[7171,7],[7315,7],[7464,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1573,7],[2067,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1775,7],[2401,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1234,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1777,7],[1822,7],[13695,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[705,7],[775,9],[986,7]]},"/regulus/getting-started-with-regulus.html":{"position":[[282,7],[356,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[1117,13]]},"/regulus/regulus-magic-reference.html":{"position":[[3931,7],[4194,7]]}},"component":{}}],["compute/region",{"_index":2358,"title":{},"name":{},"text":{"/segment.html":{"position":[[1415,14],[3008,15],[3320,15],[3813,15]]}},"component":{}}],["compute@developer.gserviceaccount.com",{"_index":2381,"title":{},"name":{},"text":{"/segment.html":{"position":[[2624,37]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1863,38]]}},"component":{}}],["con",{"_index":906,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[2539,3],[8187,3]]},"/jupyter.html":{"position":[[3599,3]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[5603,4],[11800,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6254,3]]}},"component":{}}],["con.cursor",{"_index":912,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[2712,10],[8339,10],[9311,10]]}},"component":{}}],["con.execute('select",{"_index":3436,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[5613,19]]}},"component":{}}],["con.execute(f'cr",{"_index":3554,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[11805,20]]}},"component":{}}],["con=database_url",{"_index":3395,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2851,17]]}},"component":{}}],["concaten",{"_index":2906,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[7158,15]]}},"component":{}}],["concept",{"_index":280,"title":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[41,8]]},"/teradata-vantage-engine-architecture-and-concepts.html#_teradata_vantage_architecture_concepts":{"position":[[30,8]]}},"name":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[41,8]]}},"text":{"/advanced-dbt.html":{"position":[[456,8],[4839,8],[7026,8],[7211,9]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[90,8],[3828,8],[6283,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[7890,8]]}},"component":{}}],["concis",{"_index":1372,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[3647,7]]}},"component":{}}],["conclus",{"_index":2599,"title":{"/teradata-vantage-engine-architecture-and-concepts.html#_conclusion":{"position":[[0,10]]}},"name":{},"text":{},"component":{}}],["concurr",{"_index":2460,"title":{},"name":{},"text":{"/sto.html":{"position":[[1828,11],[1919,11],[7656,11]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[4426,13],[4711,13],[4964,12]]},"/mule-teradata-connector/reference.html":{"position":[[30986,10],[31776,10]]}},"component":{}}],["conda",{"_index":2825,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1782,5],[1974,5],[2077,5],[2268,5],[2605,5],[2707,5],[2765,5],[3876,5]]}},"component":{}}],["conda_python3",{"_index":3138,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2311,14]]}},"component":{}}],["condit",{"_index":672,"title":{},"name":{},"text":{"/dbt.html":{"position":[[3795,10]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1190,10]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[7322,9],[7501,9]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7293,10]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1514,9],[1883,9]]}},"component":{}}],["conduct",{"_index":2441,"title":{},"name":{},"text":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1343,10]]}},"component":{}}],["config",{"_index":2309,"title":{"/modelops/using-feast-feature-store-with-teradata-vantage.html#_offline_store_config":{"position":[[14,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html#_online_store_config":{"position":[[13,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_offline_store_config":{"position":[[14,6]]},"/regulus/using-regulus-workspace-cli.html#_workspaces_config":{"position":[[11,6]]}},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[664,6],[815,6]]},"/segment.html":{"position":[[1378,6],[1404,6],[1534,6],[1626,6],[2991,6],[3303,6],[3796,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[4591,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2732,6]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[2337,6],[3832,6]]},"/mule-teradata-connector/reference.html":{"position":[[1285,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2325,8],[2966,6]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1080,6],[1658,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3015,6]]}},"component":{}}],["config.json",{"_index":3683,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[5548,12],[5666,14]]}},"component":{}}],["configur",{"_index":199,"title":{"/advanced-dbt.html#_configure_dbt":{"position":[[0,9]]},"/dbt.html#_configure_dbt":{"position":[[0,9]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_configure_received_share":{"position":[[0,9]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_configure_nos_access_to_azure_blob_storage":{"position":[[0,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_2_configure_flow":{"position":[[8,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_2_configure_flow_2":{"position":[[8,9]]},"/cloud-guides/sagemaker-with-teradata-vantage.html#_create_an_endpoint_configuration":{"position":[[19,13]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_configure_dbt":{"position":[[0,9]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_airbyte_configuration":{"position":[[8,13]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_configuring_data_sync":{"position":[[0,11]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[25,9]]},"/mule-teradata-connector/examples-configuration.html#configure-input-source":{"position":[[0,9]]},"/mule-teradata-connector/examples-configuration.html#_configure_a_global_element_for_the_connector":{"position":[[0,9]]},"/mule-teradata-connector/reference.html#_configurations":{"position":[[0,14]]},"/mule-teradata-connector/reference.html#config":{"position":[[8,13]]},"/mule-teradata-connector/reference.html#_for_configurations":{"position":[[4,14]]},"/mule-teradata-connector/reference.html#_for_configurations_2":{"position":[[4,14]]},"/mule-teradata-connector/reference.html#_for_configurations_3":{"position":[[4,14]]},"/mule-teradata-connector/reference.html#_for_configurations_4":{"position":[[4,14]]},"/mule-teradata-connector/reference.html#_for_configurations_5":{"position":[[4,14]]},"/mule-teradata-connector/reference.html#_for_configurations_6":{"position":[[4,14]]},"/mule-teradata-connector/reference.html#_for_configurations_7":{"position":[[4,14]]},"/mule-teradata-connector/reference.html#_for_configurations_8":{"position":[[4,14]]},"/mule-teradata-connector/reference.html#_for_configurations_9":{"position":[[4,14]]},"/mule-teradata-connector/reference.html#_for_configurations_10":{"position":[[4,14]]},"/mule-teradata-connector/reference.html#_for_configurations_11":{"position":[[4,14]]},"/mule-teradata-connector/reference.html#_for_configurations_12":{"position":[[4,14]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[0,9]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_docker_compose_and_docker_environment_configuration_files":{"position":[[46,13]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_configure_dbt":{"position":[[0,9]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_configure_feast":{"position":[[0,9]]},"/regulus/install-regulus-docker-image.html":{"position":[[12,9]]},"/regulus/install-regulus-docker-image.html#_configure_and_set_up_workspaces":{"position":[[0,9]]}},"name":{"/mule-teradata-connector/examples-configuration.html":{"position":[[9,13]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[0,9]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[4334,9]]},"/advanced-dbt.html":{"position":[[796,13],[2729,9]]},"/dbt.html":{"position":[[929,9],[3606,10],[4243,13]]},"/getting.started.utm.html":{"position":[[2579,10],[2660,13],[2706,13],[3356,10]]},"/getting.started.vbox.html":{"position":[[2394,10]]},"/getting.started.vmware.html":{"position":[[2465,10]]},"/local.jupyter.hub.html":{"position":[[2340,11]]},"/mule.jdbc.example.html":{"position":[[792,10],[1399,10],[3416,9]]},"/odbc.ubuntu.html":{"position":[[732,9],[1851,9]]},"/run-vantage-express-on-aws.html":{"position":[[156,13],[780,10]]},"/segment.html":{"position":[[4781,9],[5384,13]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[3034,9],[7564,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[3690,10]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[779,13],[911,13],[974,13],[1589,13],[4019,13],[4065,14],[4525,13]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[6526,9]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3984,14],[4163,14],[4327,9],[4577,13],[5173,14],[5362,14],[5562,14],[5666,14],[5701,13],[5768,14]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1384,13]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1061,9],[1951,9],[2202,14],[3766,14],[7100,10]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[499,14],[3174,13],[3886,13],[3982,13],[4638,10],[5994,10],[7471,13],[7536,11],[7636,14]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[13824,10]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[153,13],[185,9],[281,9],[365,9],[539,11],[602,9],[810,9],[1540,9],[1813,10],[1916,9],[2088,13],[2211,13],[2234,9],[2817,13],[3413,9],[3449,9],[3536,9],[3659,13],[3745,13],[3794,13],[4341,13],[4426,13]]},"/mule-teradata-connector/index.html":{"position":[[1467,9],[1582,9]]},"/mule-teradata-connector/reference.html":{"position":[[380,9],[402,14],[492,14],[532,13],[668,14],[721,10],[774,13],[1009,9],[1388,9],[1816,9],[3214,13],[3251,13],[5197,13],[5546,13],[5583,13],[7490,13],[7841,13],[7878,13],[9707,13],[9881,13],[9918,13],[11837,13],[12035,13],[12072,13],[13405,13],[13685,13],[13722,13],[15183,13],[15359,13],[15396,13],[17701,13],[18278,13],[18315,13],[18619,9],[20383,13],[21442,13],[21479,13],[21780,9],[23496,13],[24292,13],[24329,13],[24635,9],[27444,13],[28107,13],[28144,13],[30454,13],[31299,13],[31336,13],[32222,10],[33229,13],[34409,13],[38591,13]]},"/mule-teradata-connector/release-notes.html":{"position":[[941,13]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[137,9],[5967,13],[8708,13]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2942,9],[3576,13],[6192,14]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1261,9]]},"/query-service/send-queries-using-rest-api.html":{"position":[[633,14],[5256,14],[10196,14],[12478,14]]},"/regulus/getting-started-with-regulus.html":{"position":[[376,9],[411,9]]},"/regulus/install-regulus-docker-image.html":{"position":[[1260,11],[2243,13],[2441,13],[3284,10],[4402,14],[4530,13],[5099,13],[6734,9],[8764,10]]},"/regulus/regulus-magic-reference.html":{"position":[[362,13],[692,10],[841,14]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[582,11],[656,9],[1015,9],[1515,13],[1935,14],[2243,14],[2848,14],[3077,14],[3376,14],[3671,14],[4033,14],[4401,14],[5063,14],[5423,14],[5709,14],[6486,14],[6791,14]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2981,13],[3057,9],[4152,13],[5485,13]]}},"component":{}}],["confirm",{"_index":302,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[1091,7]]},"/getting.started.utm.html":{"position":[[3396,7]]},"/getting.started.vbox.html":{"position":[[1391,7],[2434,7]]},"/getting.started.vmware.html":{"position":[[2505,7]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[2708,7],[4203,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1993,7]]}},"component":{}}],["congest",{"_index":2560,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1935,11]]}},"component":{}}],["congrat",{"_index":4432,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[3788,9]]},"/regulus/install-regulus-docker-image.html":{"position":[[9611,9]]}},"component":{}}],["connect",{"_index":30,"title":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_connect_to_teradata_vantage":{"position":[[0,7]]},"/geojson-to-vantage.html#_create_a_vantage_connection_and_load_our_file_in_a_staging_table":{"position":[[17,10]]},"/jdbc.html":{"position":[[0,7]]},"/teradatasql.html":{"position":[[0,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[0,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[0,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_setting_the_source_connection":{"position":[[19,10]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_setting_the_destination_connection":{"position":[[24,10]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_close_and_delete_the_connection":{"position":[[21,10]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_a_personal_connection":{"position":[[18,10]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_a_personal_connection":{"position":[[18,10]]},"/mule-teradata-connector/reference.html#_connection_types":{"position":[[0,10]]},"/mule-teradata-connector/reference.html#config_data-source":{"position":[[22,10]]},"/mule-teradata-connector/reference.html#config_teradata":{"position":[[9,10]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[29,10]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html#_add_a_teradata_connection_to_dbeaver":{"position":[[15,10]]},"/query-service/send-queries-using-rest-api.html#_connect_to_your_query_service_instance":{"position":[[0,7]]}},"name":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[0,7]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[29,10]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[192,7],[1481,7],[3168,7],[3428,7],[3599,10],[3789,8],[4441,9],[4528,11],[4700,11],[5933,7]]},"/advanced-dbt.html":{"position":[[2746,7]]},"/dbt.html":{"position":[[946,7]]},"/geojson-to-vantage.html":{"position":[[2214,10],[2365,11],[2508,10],[2947,7],[7862,10],[8013,11],[8156,10]]},"/getting.started.utm.html":{"position":[[4511,11],[4560,7],[4984,7],[5021,10],[5071,11]]},"/getting.started.vbox.html":{"position":[[3549,11],[3598,7],[3810,7],[3847,10],[3897,11]]},"/getting.started.vmware.html":{"position":[[3620,11],[3669,7],[4093,7],[4130,10],[4180,11]]},"/jdbc.html":{"position":[[91,7],[777,10],[891,7]]},"/jupyter.html":{"position":[[371,10],[564,7],[1275,12],[2911,10],[2932,7],[3027,7],[3196,10],[3238,10],[3956,10],[4005,10],[4054,10],[6753,7],[6973,10]]},"/ml.html":{"position":[[1272,10]]},"/mule.jdbc.example.html":{"position":[[1658,10],[1730,10]]},"/odbc.ubuntu.html":{"position":[[1879,12]]},"/run-vantage-express-on-aws.html":{"position":[[8925,7],[10905,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5705,7],[7685,7]]},"/teradatasql.html":{"position":[[85,7],[673,7],[749,10],[839,7]]},"/vantage.express.gcp.html":{"position":[[4732,7],[6712,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1231,9],[3371,12]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1605,9],[3586,9],[3692,10],[3738,9],[4673,11],[4769,12],[4835,11],[5562,7],[6179,10],[6212,11],[6294,10],[24849,10],[24928,11],[26074,13]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[93,7],[280,7],[892,9],[5000,10],[5661,10]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2628,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1693,7],[2594,7],[4539,7],[4961,7],[5232,10],[5670,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[419,11],[2003,11],[2104,12],[2157,11],[2222,10],[2255,11],[3229,10],[3294,10],[3941,10],[4093,10],[6126,8],[6505,11],[7132,10],[7171,11],[7245,11],[7575,12],[7828,11]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[4597,8],[4627,10],[9001,8]]},"/jupyter-demos/index.html":{"position":[[385,9],[597,9],[694,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1862,11],[1927,10],[2017,11],[2038,10],[2428,11],[4543,10]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1899,11],[1964,10],[2054,11],[2075,10],[2465,11],[6239,10],[6384,10],[6530,10]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[7924,10],[7976,10]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[2393,10],[2531,10],[2599,10],[2694,10],[2730,7],[3888,10],[4026,10],[4094,10],[4189,10],[4225,7]]},"/mule-teradata-connector/index.html":{"position":[[203,7],[1350,10]]},"/mule-teradata-connector/reference.html":{"position":[[203,7],[564,10],[597,10],[617,10],[632,10],[1023,10],[1080,11],[1188,11],[1407,10],[1558,12],[1835,10],[2106,10],[2286,7],[2438,12],[5148,12],[7440,12],[9658,12],[11797,12],[13365,12],[15134,12],[17651,12],[20333,12],[20462,10],[20600,10],[20676,10],[20853,11],[23455,12],[23581,10],[27404,12],[27533,10],[27652,10],[27854,11],[30404,12],[33188,12],[33328,11],[33416,11],[33510,11],[33669,11],[33795,10],[34186,10],[34298,11],[34972,10],[35012,10],[35118,10],[35157,10],[35207,11],[35679,12],[37159,11]]},"/mule-teradata-connector/release-notes.html":{"position":[[203,7],[968,10]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[101,10],[388,10],[522,11],[663,10],[1548,10]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[926,9],[1602,12]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2959,7],[3600,10]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[76,7],[1088,11],[1409,11],[1576,11],[1738,7]]},"/query-service/send-queries-using-rest-api.html":{"position":[[532,13],[840,7]]},"/regulus/getting-started-with-regulus.html":{"position":[[290,7],[758,7],[852,7],[1580,10],[1608,8],[1624,10],[3312,10]]},"/regulus/install-regulus-docker-image.html":{"position":[[238,7],[986,7],[7801,7],[8506,7],[9389,7]]},"/regulus/regulus-magic-reference.html":{"position":[[3965,10],[4155,10]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2612,7],[5896,10],[6992,10]]}},"component":{}}],["connection_arg",{"_index":3089,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4458,15]]}},"component":{}}],["connection_str",{"_index":3428,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[5422,18],[7939,18],[9059,18],[10110,20],[11577,18],[12555,18],[13277,20]]}},"component":{}}],["connector",{"_index":41,"title":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_install_teradata_data_catalog_connector":{"position":[[30,9]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_install_data_catalog_teradata_connector":{"position":[[30,9]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[44,9]]},"/mule-teradata-connector/examples-configuration.html#add-connector-to-project":{"position":[[8,9]]},"/mule-teradata-connector/examples-configuration.html#add-connector-operation":{"position":[[6,9]]},"/mule-teradata-connector/examples-configuration.html#_configure_a_global_element_for_the_connector":{"position":[[35,9]]},"/mule-teradata-connector/index.html":{"position":[[9,9]]},"/mule-teradata-connector/index.html#_common_use_cases_for_the_connector":{"position":[[25,9]]},"/mule-teradata-connector/reference.html":{"position":[[9,9]]},"/mule-teradata-connector/release-notes.html":{"position":[[9,9]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[507,10],[1538,9]]},"/advanced-dbt.html":{"position":[[6068,9]]},"/mule.jdbc.example.html":{"position":[[588,9],[678,9],[755,10],[779,9],[1022,10],[1048,9],[1190,9],[1386,9],[3437,9],[3513,10]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1286,10]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[181,9],[2043,9],[2378,9],[2417,9],[2802,9],[3222,9],[3272,9],[3322,9],[3661,9],[3753,9],[4087,9],[4178,9],[4281,9],[8646,10]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1881,10]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[3113,9],[3749,10],[4843,10]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[110,9],[3117,10]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[197,9],[249,9],[332,9],[400,10],[428,10],[551,10],[614,10],[697,9],[732,9],[824,10],[946,9],[1284,9],[1350,9],[1407,9],[1598,10],[2201,9],[2424,10],[2910,9],[2997,9],[3052,10],[3125,9],[3298,9],[3383,9],[3425,10],[3503,9],[3578,10],[3735,9],[3919,10],[4316,9],[4401,9],[4873,9]]},"/mule-teradata-connector/index.html":{"position":[[62,9],[95,10],[328,9],[372,9],[408,10],[476,10],[834,9],[1330,9],[1481,9],[1601,9]]},"/mule-teradata-connector/reference.html":{"position":[[62,9],[95,10],[332,9],[507,10],[1596,11],[2476,11],[27833,9],[35717,11]]},"/mule-teradata-connector/release-notes.html":{"position":[[62,9],[95,10],[396,9]]}},"component":{}}],["connector/tools/cleanup_datacatalog.pi",{"_index":3132,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[8703,38]]}},"component":{}}],["connector’",{"_index":3831,"title":{},"name":{},"text":{"/mule-teradata-connector/examples-configuration.html":{"position":[[308,11],[1025,11]]}},"component":{}}],["consid",{"_index":698,"title":{},"name":{},"text":{"/fastload.html":{"position":[[171,8]]},"/geojson-to-vantage.html":{"position":[[7347,8],[10352,8]]},"/getting.started.utm.html":{"position":[[862,8]]},"/local.jupyter.hub.html":{"position":[[1689,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[7156,8]]},"/mule-teradata-connector/reference.html":{"position":[[825,9],[31669,8],[38655,10]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1168,8]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5953,11]]}},"component":{}}],["consider",{"_index":2102,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10534,12]]},"/sto.html":{"position":[[7668,14]]}},"component":{}}],["consist",{"_index":50,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[646,8]]},"/advanced-dbt.html":{"position":[[3787,8]]},"/dbt.html":{"position":[[1939,8],[3830,8]]},"/ml.html":{"position":[[6626,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1082,8],[5797,10]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2869,8],[5086,10],[7429,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3499,12]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1120,12],[2689,8],[5254,12]]}},"component":{}}],["consol",{"_index":2902,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[5599,8]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1826,7],[2125,8],[8305,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2112,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1723,7]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[4595,7],[4705,8]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1357,7]]},"/regulus/getting-started-with-regulus.html":{"position":[[579,8]]},"/regulus/install-regulus-docker-image.html":{"position":[[2133,8]]}},"component":{}}],["constant",{"_index":1479,"title":{},"name":{},"text":{"/ml.html":{"position":[[374,8]]}},"component":{}}],["constitut",{"_index":3282,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[6574,10]]}},"component":{}}],["construct",{"_index":403,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3971,9]]},"/mule-teradata-connector/index.html":{"position":[[900,11]]},"/mule-teradata-connector/release-notes.html":{"position":[[500,11]]}},"component":{}}],["consult",{"_index":355,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[2671,7]]}},"component":{}}],["consum",{"_index":66,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[976,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[530,8],[927,8],[5337,8],[5623,9],[5692,8],[6177,8],[7854,9]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[589,7],[1058,7],[1390,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[225,7]]},"/mule-teradata-connector/reference.html":{"position":[[18155,9],[20576,8],[20755,8],[24169,9],[27621,8],[40266,7],[41529,7],[42524,8]]}},"component":{}}],["consumerdata",{"_index":2677,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[6494,13],[7923,12]]}},"component":{}}],["contact",{"_index":2887,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[3623,7]]},"/query-service/send-queries-using-rest-api.html":{"position":[[903,7]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[138,7]]}},"component":{}}],["contain",{"_index":669,"title":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_an_azure_blob_storage_account_and_container":{"position":[[41,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_use_custom_container":{"position":[[11,9]]}},"name":{},"text":{"/dbt.html":{"position":[[3694,7]]},"/fastload.html":{"position":[[3499,8],[4013,8]]},"/getting.started.utm.html":{"position":[[2380,8],[2449,7]]},"/jupyter.html":{"position":[[1213,8],[5055,8]]},"/local.jupyter.hub.html":{"position":[[313,8],[897,8],[1107,9],[1241,10],[3589,8]]},"/ml.html":{"position":[[7942,8]]},"/nos.html":{"position":[[976,8],[7236,9]]},"/run-vantage-express-on-aws.html":{"position":[[175,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[145,8]]},"/segment.html":{"position":[[969,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[5927,8]]},"/vantage.express.gcp.html":{"position":[[151,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2162,9],[2234,10],[2940,9],[3592,10],[3613,10],[3636,9],[3662,9],[5021,9],[5166,9],[6377,10],[6484,9],[7913,9],[9076,9],[10019,9],[10099,9],[10555,8],[21559,9],[21676,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1135,10],[1518,9],[3232,9],[3517,9],[3593,9],[3639,10],[5700,9],[5819,9],[5969,9],[6030,10],[6215,9],[6328,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1263,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[149,8],[7358,8],[10264,8],[10659,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4482,10]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[4862,9]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1197,9],[2987,9],[4092,9]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[459,9],[2253,8],[3659,8],[5823,8],[7192,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6569,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[4077,10],[4170,10],[4988,9],[5220,10],[6273,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4171,8],[4547,8],[4931,8],[5310,8],[5620,8],[7013,10]]},"/mule-teradata-connector/reference.html":{"position":[[3339,7],[4391,7],[5724,8],[6717,7],[7966,7],[8927,7],[10756,7],[11446,7],[12971,7],[14740,7],[16234,7],[16909,7],[19293,7],[19981,7],[22435,8],[23103,7],[25398,7],[26078,7],[26419,7],[28976,7],[29656,7],[33016,7],[34682,7],[37461,8],[40332,8],[41595,8]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3422,10],[3464,9],[3808,10],[3823,9],[4065,10],[4188,10],[5098,10],[6976,9],[9810,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1811,8],[5400,8],[5472,8],[5518,8]]},"/regulus/install-regulus-docker-image.html":{"position":[[558,8],[1888,10],[2375,9],[3082,9],[8451,9]]},"/regulus/regulus-magic-reference.html":{"position":[[1303,10]]}},"component":{}}],["container",{"_index":4023,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2521,16],[2582,13],[2681,16]]}},"component":{}}],["container_nam",{"_index":4460,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[3520,15]]}},"component":{}}],["containerd.io",{"_index":4032,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3109,13]]}},"component":{}}],["containername=\"mldata",{"_index":3199,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3032,22]]}},"component":{}}],["containerregistry.googleapis.com",{"_index":2365,"title":{},"name":{},"text":{"/segment.html":{"position":[[1777,32]]}},"component":{}}],["content",{"_index":22,"title":{"/geojson-to-vantage.html#_optional_check_the_content_of_the_file":{"position":[[21,7]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[90,7]]},"/advanced-dbt.html":{"position":[[2839,8],[3536,7]]},"/dbt.html":{"position":[[1035,8],[1710,7]]},"/odbc.ubuntu.html":{"position":[[802,8],[1129,8]]},"/sto.html":{"position":[[2741,8],[7079,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2613,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[17088,8],[20772,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[10107,7]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[4083,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2689,7]]},"/mule-teradata-connector/reference.html":{"position":[[20549,7],[20744,7],[21343,7],[27594,7],[30788,8],[31535,8],[41253,7],[42533,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3048,8],[3545,7]]},"/query-service/send-queries-using-rest-api.html":{"position":[[2205,8],[2350,8],[2696,8],[2784,9]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2694,8],[3564,7]]}},"component":{}}],["context",{"_index":2571,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3424,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[3629,8],[5392,7]]},"/mule-teradata-connector/reference.html":{"position":[[36522,8],[36617,8]]}},"component":{}}],["continu",{"_index":1841,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[123,12]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[4820,9],[5508,9],[5718,9],[5813,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[6340,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1900,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1937,9]]}},"component":{}}],["contract",{"_index":3767,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[5711,8]]}},"component":{}}],["contrari",{"_index":3026,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[19771,8]]}},"component":{}}],["contribut",{"_index":3596,"title":{},"name":{},"text":{"/jupyter-demos/index.html":{"position":[[2373,10],[2410,10]]}},"component":{}}],["control",{"_index":1081,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[10116,7],[10216,7]]},"/run-vantage-express-on-aws.html":{"position":[[7633,11],[7658,10],[7734,11],[7881,11],[8028,11]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4413,11],[4438,10],[4514,11],[4661,11],[4808,11]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3630,7]]},"/vantage.express.gcp.html":{"position":[[3440,11],[3465,10],[3541,11],[3688,11],[3835,11]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[8807,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8992,9]]},"/regulus/install-regulus-docker-image.html":{"position":[[635,8],[700,8]]}},"component":{}}],["controlvm",{"_index":2254,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[8302,9],[10718,9]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5082,9],[7498,9]]},"/vantage.express.gcp.html":{"position":[[4109,9],[6525,9]]}},"component":{}}],["conveni",{"_index":834,"title":{},"name":{},"text":{"/fastload.html":{"position":[[7034,10]]},"/geojson-to-vantage.html":{"position":[[3346,12],[5173,10]]},"/jupyter.html":{"position":[[1330,10],[5335,10]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[8579,10]]}},"component":{}}],["convent",{"_index":2482,"title":{},"name":{},"text":{"/sto.html":{"position":[[3590,11]]}},"component":{}}],["convers",{"_index":786,"title":{},"name":{},"text":{"/fastload.html":{"position":[[3531,10]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2823,10]]}},"component":{}}],["convert",{"_index":1155,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[2510,7]]},"/mule.jdbc.example.html":{"position":[[1342,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[885,7],[3266,9]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2777,7],[2857,7]]}},"component":{}}],["coordin",{"_index":924,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3127,11]]},"/nos.html":{"position":[[3083,11]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1835,12]]}},"component":{}}],["copi",{"_index":352,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[2552,7]]},"/jupyter.html":{"position":[[2340,4]]},"/local.jupyter.hub.html":{"position":[[3119,4],[3134,4],[4222,4],[4309,4],[4325,4],[4408,4],[4456,4],[4578,4],[4695,4],[4710,4],[4775,4],[4794,4],[5152,4]]},"/run-vantage-express-on-aws.html":{"position":[[1050,6],[6677,4],[6684,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3457,4],[3464,4]]},"/vantage.express.gcp.html":{"position":[[2484,4],[2491,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[4493,4],[8348,4],[13813,4],[13955,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[3426,4],[4121,4],[4208,4],[4224,4],[4307,4],[4355,4],[4389,4],[4417,4],[4449,4],[4482,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[15390,4],[15543,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[8590,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[312,4],[857,4],[1238,4],[3689,6],[5892,4],[7148,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2181,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6006,4],[9016,4]]},"/regulus/getting-started-with-regulus.html":{"position":[[443,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[2011,4],[4922,4]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[688,6],[1608,4]]}},"component":{}}],["copy/past",{"_index":1202,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[4692,10],[5156,10]]},"/getting.started.vbox.html":{"position":[[3982,10]]},"/getting.started.vmware.html":{"position":[[3801,10],[4265,10]]},"/run-vantage-express-on-aws.html":{"position":[[9085,10]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5865,10]]},"/vantage.express.gcp.html":{"position":[[4892,10]]}},"component":{}}],["core",{"_index":315,"title":{"/advanced-dbt.html#_core_area":{"position":[[0,4]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[1410,4],[5964,4],[6293,4]]},"/dbt.html":{"position":[[804,4]]},"/getting.started.utm.html":{"position":[[1013,4],[1778,5]]},"/getting.started.vbox.html":{"position":[[811,4]]},"/getting.started.vmware.html":{"position":[[808,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1527,4],[4015,5]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[7885,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1722,4],[1794,4]]}},"component":{}}],["corner",{"_index":2913,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[7805,7],[25694,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[2195,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2021,6]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[456,6]]}},"component":{}}],["cornerston",{"_index":4129,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[656,11]]}},"component":{}}],["correct",{"_index":664,"title":{},"name":{},"text":{"/dbt.html":{"position":[[3398,8]]},"/run-vantage-express-on-aws.html":{"position":[[8683,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5463,7]]},"/vantage.express.gcp.html":{"position":[[4490,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2730,8],[6906,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[3191,8],[3903,8]]}},"component":{}}],["correctli",{"_index":4033,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3367,10]]}},"component":{}}],["correspond",{"_index":2553,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1520,13]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1422,13],[3752,13]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6069,11]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[7143,13]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[2119,13]]}},"component":{}}],["cost",{"_index":2115,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[379,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1639,4],[14370,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1841,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1300,4]]},"/regulus/getting-started-with-regulus.html":{"position":[[2888,4]]}},"component":{}}],["count",{"_index":2200,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[5420,5]]},"/mule-teradata-connector/reference.html":{"position":[[36029,5],[38900,5]]},"/query-service/send-queries-using-rest-api.html":{"position":[[10702,10],[10956,6],[12038,9],[12362,9]]},"/regulus/getting-started-with-regulus.html":{"position":[[3374,5]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[4510,5]]}},"component":{}}],["count(cas",{"_index":1572,"title":{},"name":{},"text":{"/ml.html":{"position":[[5743,11],[5856,11],[5969,11],[6082,11]]}},"component":{}}],["counter",{"_index":3955,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[39501,7]]}},"component":{}}],["countri",{"_index":1010,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[5837,9],[6841,7],[8296,7],[9583,9]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11397,8],[15019,8],[17543,7],[18731,8],[22628,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[14425,7],[23583,7],[23905,7]]}},"component":{}}],["countries/r/countries.geojson",{"_index":1013,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[6094,31]]}},"component":{}}],["countries_geojson=wget.download('https://datahub.io/core/geo",{"_index":1012,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[6033,60]]}},"component":{}}],["countries_json",{"_index":1015,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[6180,14]]}},"component":{}}],["countries_json['featur",{"_index":1052,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[8642,28]]}},"component":{}}],["countries_json['features'][:1",{"_index":1038,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[7255,31]]}},"component":{}}],["country_nam",{"_index":934,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3440,13],[4026,13],[4221,12]]}},"component":{}}],["country_nm",{"_index":1048,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[8406,11],[9201,11],[9805,10]]}},"component":{}}],["coupl",{"_index":619,"title":{},"name":{},"text":{"/dbt.html":{"position":[[193,6]]},"/fastload.html":{"position":[[512,6],[7493,6]]},"/jupyter.html":{"position":[[546,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1901,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[366,6],[9038,6]]}},"component":{}}],["cover",{"_index":1235,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[6214,7]]},"/getting.started.vbox.html":{"position":[[5810,7]]},"/getting.started.vmware.html":{"position":[[5323,7]]},"/jupyter.html":{"position":[[6724,7]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[6025,7]]}},"component":{}}],["cp",{"_index":2796,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2212,2],[2290,2]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[3182,2],[3378,2]]}},"component":{}}],["cpu",{"_index":1125,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[965,3],[1774,3],[1812,5]]},"/getting.started.vbox.html":{"position":[[763,3]]},"/getting.started.vmware.html":{"position":[[760,3]]},"/run-vantage-express-on-aws.html":{"position":[[7580,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4360,4]]},"/vantage.express.gcp.html":{"position":[[3387,4]]}},"component":{}}],["cpu:latest",{"_index":2813,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[4016,10]]}},"component":{}}],["cpu’",{"_index":2195,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[5312,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[1129,5]]},"/vantage.express.gcp.html":{"position":[[502,5]]}},"component":{}}],["craft",{"_index":175,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3535,7]]}},"component":{}}],["crashdump",{"_index":4312,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[6942,10]]}},"component":{}}],["crd",{"_index":1880,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1823,3],[2005,3],[2185,3],[2362,3],[2540,3],[2718,3],[2894,3],[3075,3],[3256,3],[3435,3]]}},"component":{}}],["creat",{"_index":0,"title":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[0,6]]},"/advanced-dbt.html#_create_dimensional_model_with_baseline_data":{"position":[[0,6]]},"/create-parquet-files-in-object-storage.html":{"position":[[0,6]]},"/create-parquet-files-in-object-storage.html#_create_a_parquet_file_with_write_nos_function":{"position":[[0,6]]},"/dbt.html#_create_raw_data_tables":{"position":[[0,6]]},"/dbt.html#_create_the_dimensional_model":{"position":[[0,6]]},"/fastload.html#_create_a_database":{"position":[[0,6]]},"/geojson-to-vantage.html#_create_a_vantage_connection_and_load_our_file_in_a_staging_table":{"position":[[0,6]]},"/geojson-to-vantage.html#_create_and_our_geography_refernce_table":{"position":[[0,6]]},"/ml.html#_create_a_linear_regression_model":{"position":[[0,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_an_azure_blob_storage_account_and_container":{"position":[[0,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_a_data_share_account":{"position":[[0,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_a_share":{"position":[[0,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_a_foreign_table_definition":{"position":[[0,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_a_view":{"position":[[0,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_the_table_and_load_the_data_in_a_single_statement":{"position":[[0,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_the_table_and_load_the_data_in_multiple_statements":{"position":[[0,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_create_a_salesforce_to_amazon_s3_flow":{"position":[[0,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_5_review_and_create":{"position":[[19,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_create_foreign_table":{"position":[[0,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_create_view":{"position":[[0,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_create_an_amazon_s3_to_salesforce_flow":{"position":[[0,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_5_review_and_create_2":{"position":[[19,6]]},"/cloud-guides/sagemaker-with-teradata-vantage.html#_create_a_model":{"position":[[0,6]]},"/cloud-guides/sagemaker-with-teradata-vantage.html#_create_an_endpoint_configuration":{"position":[[0,6]]},"/cloud-guides/sagemaker-with-teradata-vantage.html#_create_endpoint":{"position":[[0,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-GCS-bucket":{"position":[[0,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-the-component-that-reads-data-from-Vantage":{"position":[[0,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-the-train-model-component":{"position":[[0,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-component-to-deploy-model":{"position":[[0,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-function-for-executing-the-pipeline":{"position":[[0,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-a-new-pipeline-to-score-new-data":{"position":[[0,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_a_new_project_or_use_an_existing_one":{"position":[[0,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_a_personal_connection":{"position":[[0,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_training_dataset":{"position":[[0,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_evaluation_dataset_1":{"position":[[0,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_evaluation_dataset_2":{"position":[[0,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_a_new_project_or_use_an_existing_one":{"position":[[0,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_a_personal_connection":{"position":[[0,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_training_dataset":{"position":[[0,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_evaluation_dataset_1":{"position":[[0,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_evaluation_dataset_2":{"position":[[0,6]]},"/mule-teradata-connector/examples-configuration.html#create-mule-project":{"position":[[0,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_create_a_vm":{"position":[[0,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_create_an_airflow_environment":{"position":[[0,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_create_the_airflow_environment_in_docker":{"position":[[0,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_create_the_dimensional_model":{"position":[[0,6]]},"/regulus/using-regulus-workspace-cli.html#_project_create":{"position":[[8,6]]},"/regulus/using-regulus-workspace-cli.html#_project_auth_create":{"position":[[13,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_create_a_database":{"position":[[0,6]]}},"name":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[0,6]]},"/create-parquet-files-in-object-storage.html":{"position":[[0,6]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[246,8],[957,7],[1184,8],[5307,6],[5688,7]]},"/advanced-dbt.html":{"position":[[1023,6],[1140,6],[1962,6],[2185,6],[2275,6],[2780,6],[3124,6],[6113,7],[6277,6]]},"/create-parquet-files-in-object-storage.html":{"position":[[1485,6],[1806,6],[1856,6],[2450,6],[2635,6],[2720,6],[3061,7],[3179,6],[3321,6]]},"/dbt.html":{"position":[[612,6],[980,6],[1276,6],[1305,6],[2313,6],[2529,6],[2782,6],[2855,7],[2887,6],[3165,7],[4718,6]]},"/fastload.html":{"position":[[1347,6],[1432,6],[2851,6],[2924,6],[3474,8],[5267,6],[6594,6],[6628,6],[6774,6]]},"/geojson-to-vantage.html":{"position":[[2347,7],[2396,8],[2499,6],[2627,6],[2746,8],[7995,7],[8044,8],[8147,6],[8268,6],[8373,8],[9059,6],[9151,6],[10482,6]]},"/getting.started.utm.html":{"position":[[5013,7],[5123,6],[5244,6],[5356,6],[5427,6],[5472,6],[6237,6]]},"/getting.started.vbox.html":{"position":[[3839,7],[3949,6],[4070,6],[4182,6],[4253,6],[4298,6],[5833,6]]},"/getting.started.vmware.html":{"position":[[4122,7],[4232,6],[4353,6],[4465,6],[4536,6],[4581,6],[5346,6]]},"/jupyter.html":{"position":[[2574,6],[3772,6],[4362,6],[5914,6]]},"/local.jupyter.hub.html":{"position":[[5723,6]]},"/ml.html":{"position":[[1673,6],[1910,6],[2039,6],[2118,6],[2346,6],[3751,8],[3850,6],[3984,6],[4000,6],[7186,7],[7309,7],[8882,6]]},"/mule.jdbc.example.html":{"position":[[2079,6],[2163,6],[2179,6],[2237,6],[2250,6]]},"/nos.html":{"position":[[3680,6],[3792,6],[3833,6],[3876,6],[3895,6],[3919,6],[4058,6],[5603,6],[5646,6],[5718,7],[5830,7],[5923,6],[7184,6],[7268,6],[7426,6],[7450,6]]},"/odbc.ubuntu.html":{"position":[[751,8],[1090,6]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3537,6],[4258,8],[7621,8]]},"/run-vantage-express-on-aws.html":{"position":[[679,6],[1037,6],[1094,6],[1131,6],[1163,6],[1381,6],[1435,6],[1699,6],[1760,6],[2011,6],[2068,6],[2181,6],[2222,6],[2587,6],[2619,6],[3185,6],[3494,6],[3615,6],[3767,6],[4123,6],[4289,6],[4447,6],[4575,6],[4704,6],[4777,6],[4797,6],[5286,6],[9052,6],[9128,6],[9240,6],[9311,6],[9356,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[332,6],[694,6],[782,6],[864,6],[937,6],[959,6],[1103,6],[1216,6],[1270,6],[1607,6],[1661,6],[1985,6],[2039,6],[5832,6],[5908,6],[6020,6],[6091,6],[6136,6]]},"/segment.html":{"position":[[580,6],[1253,6],[2083,6],[2245,6],[3366,6],[3449,6],[3471,6],[3582,6],[3960,6],[4191,6],[4275,6]]},"/sto.html":{"position":[[2958,6],[2991,6],[3085,6],[3122,6],[3513,6],[4325,8],[4402,6],[4433,6],[5735,6],[6668,6],[6716,6],[6808,6]]},"/vantage.express.gcp.html":{"position":[[476,6],[568,7],[820,6],[913,6],[1108,6],[1201,6],[1396,6],[1489,6],[4859,6],[4935,6],[5047,6],[5118,6],[5163,6],[7194,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[280,6],[2182,8],[2900,6],[2950,6],[2978,6],[3256,6],[3522,7],[3546,7],[3559,7],[3606,6],[3726,7],[3742,6],[3819,6],[3863,6],[4106,7],[4130,7],[4143,7],[4273,6],[4330,7],[5835,6],[5853,7],[5896,7],[6271,6],[6388,6],[6442,6],[6534,6],[6590,6],[7230,6],[7607,8],[9017,6],[9118,6],[9439,6],[9538,6],[11251,6],[13477,7],[14533,6],[14694,6],[14832,6],[14879,6],[17199,6],[17448,6],[17477,6],[21009,8],[22488,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1587,6],[1701,8],[3005,6],[3247,8],[3584,6],[5912,6],[6015,7],[6199,6],[6269,6],[6363,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1570,6],[1765,7],[2589,6],[2713,6],[3897,6],[4033,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2512,8],[3001,6],[3672,6],[4658,6],[5306,6],[5412,6],[5461,7],[5658,6],[5728,7],[6168,6],[6676,7],[7650,6],[7762,8],[8592,6],[8678,6],[8884,6],[9109,6],[9192,6],[10080,8],[11133,6],[13495,6],[13858,6],[14111,6],[15647,7],[15955,6],[17677,6],[17759,6],[19713,7],[19861,7],[20093,6],[24248,6],[24864,7],[25539,6],[25651,8],[26092,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[405,6],[1842,7],[5821,8],[5945,8],[6066,8],[6187,8],[6421,8],[6756,8],[7035,8],[7386,8],[7694,8],[8079,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2124,6],[2216,6],[3351,6],[3379,6],[3452,6],[3539,6],[3564,6],[4274,7],[4428,8],[4740,6],[4826,7],[5094,6],[5134,8],[5157,6],[5346,6],[5461,6],[5715,7],[5829,6]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[711,6],[971,6],[1188,6],[1636,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1218,6],[2069,6],[4633,8],[4751,7],[4861,7],[4958,7],[6520,6],[8167,7],[8319,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[2138,7],[3275,6],[3773,8],[5275,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[351,6],[744,7],[1620,6],[2102,6],[3104,6],[3195,6],[3593,6],[3843,6],[5083,7],[5211,6],[5869,6],[6286,8],[7768,7],[8850,6],[9678,6],[10340,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[174,6],[1649,6],[1961,8],[2452,6],[2620,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[174,6],[1686,6],[1998,8],[2489,6],[2657,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1545,6],[5674,8],[8164,6]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[218,6],[764,6]]},"/mule-teradata-connector/index.html":{"position":[[590,8]]},"/mule-teradata-connector/reference.html":{"position":[[1063,7],[2202,7],[32007,7]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[92,6],[1539,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[398,7],[653,6],[1461,6],[2068,6],[2171,6],[5236,7],[5553,6],[5806,6],[5879,6],[5952,6],[7003,7],[9227,7],[9429,8],[10782,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[87,8],[1546,6],[2132,6],[2993,6],[3650,6],[4878,6],[7115,7],[7169,6]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1100,6]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1061,6],[3094,7],[7886,6],[7970,7],[8184,6],[8603,7],[9019,6]]},"/regulus/getting-started-with-regulus.html":{"position":[[938,6],[1043,6],[1864,6],[2026,6],[2619,6],[2682,6],[3355,8]]},"/regulus/install-regulus-docker-image.html":{"position":[[1461,6],[3429,6],[4698,6],[7020,8],[7151,8],[8909,6]]},"/regulus/regulus-magic-reference.html":{"position":[[726,6],[766,7],[978,8],[1213,7],[1326,7],[1818,6],[1893,6],[2067,6],[2108,6],[2588,7],[2867,7],[4722,7]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1087,6],[1131,6],[2063,6],[2109,7],[2197,6],[4955,7],[5581,6],[5654,6],[6388,7],[6688,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1222,6],[1307,6],[2468,6],[2559,6],[2645,6],[3531,6],[4113,6],[4399,8],[8139,6],[8173,6],[8319,6]]}},"component":{}}],["create.sh",{"_index":2824,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1755,9],[1988,9]]}},"component":{}}],["create_context",{"_index":3140,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2479,15]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2427,15]]}},"component":{}}],["create_context(host",{"_index":3145,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2704,19]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2629,19]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6260,19]]}},"component":{}}],["created_timestamp_column=\"cr",{"_index":3734,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3937,35]]}},"component":{}}],["createdb.sql",{"_index":4144,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2603,12]]}},"component":{}}],["createmod",{"_index":4342,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[8518,13]]}},"component":{}}],["createtimestamp",{"_index":3330,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6173,16]]}},"component":{}}],["createvm",{"_index":2232,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[7440,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4220,8]]},"/vantage.express.gcp.html":{"position":[[3247,8]]}},"component":{}}],["creation",{"_index":278,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[388,9]]},"/geojson-to-vantage.html":{"position":[[8705,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[3123,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[7692,8],[25581,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[945,9]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6262,8]]}},"component":{}}],["credenti",{"_index":178,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3563,12],[4505,11],[4576,11]]},"/create-parquet-files-in-object-storage.html":{"position":[[2642,11]]},"/nos.html":{"position":[[6861,11],[6918,11],[7107,11],[7255,12]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[5636,11],[8665,12]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2537,12],[4773,11],[5439,11]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1635,11]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1793,12],[1809,11]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1830,12],[1846,11]]},"/mule-teradata-connector/index.html":{"position":[[659,11]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6201,11]]},"/query-service/send-queries-using-rest-api.html":{"position":[[825,11],[1580,11],[1857,12]]},"/regulus/getting-started-with-regulus.html":{"position":[[1091,12]]},"/regulus/install-regulus-docker-image.html":{"position":[[7553,11]]},"/regulus/regulus-magic-reference.html":{"position":[[1871,12]]}},"component":{}}],["credentials.json",{"_index":3094,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4743,16],[5409,16]]}},"component":{}}],["credit",{"_index":1521,"title":{},"name":{},"text":{"/ml.html":{"position":[[3662,6],[3691,6],[6516,6]]}},"component":{}}],["crim",{"_index":3401,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3238,4],[3398,7],[3436,5],[7186,9]]}},"component":{}}],["crl",{"_index":3935,"title":{"/mule-teradata-connector/reference.html#crl-file":{"position":[[0,3]]}},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[36735,3],[37937,4],[37954,3],[38453,3]]}},"component":{}}],["cron",{"_index":3321,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[5595,4],[5690,4]]}},"component":{}}],["cross",{"_index":994,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4844,5]]}},"component":{}}],["crucial",{"_index":3825,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9470,7]]}},"component":{}}],["csp",{"_index":4406,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[1087,3]]},"/regulus/install-regulus-docker-image.html":{"position":[[407,6],[910,3]]}},"component":{}}],["csv",{"_index":500,"title":{"/query-service/send-queries-using-rest-api.html#_request_a_response_in_csv_format":{"position":[[22,3]]}},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[152,4],[4217,4]]},"/dbt.html":{"position":[[2332,3],[2347,3],[2395,3],[2715,3],[4696,3]]},"/fastload.html":{"position":[[2914,3],[3953,3]]},"/jupyter.html":{"position":[[4681,3]]},"/nos.html":{"position":[[669,4],[778,3],[1135,3],[2038,3],[2423,3],[2513,3],[2597,3],[2714,3],[2813,3],[2909,3],[2997,3],[5290,3],[8588,4]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[784,3]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8934,4],[9481,3],[9738,3],[10178,7],[10790,3],[21351,5],[22097,5],[24642,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[930,3],[3289,4],[9835,5],[24126,7],[24767,3]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[4099,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2873,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[4192,3]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3953,3],[4020,3]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[9767,5]]},"/query-service/send-queries-using-rest-api.html":{"position":[[3066,4],[5317,3],[5380,4],[5389,3],[5641,3],[5785,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2338,3],[3770,3]]}},"component":{}}],["cti",{"_index":1063,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[9664,3]]}},"component":{}}],["ctl",{"_index":4503,"title":{},"name":{},"text":{"/regulus/using-regulus-workspace-cli.html":{"position":[[854,4]]}},"component":{}}],["ctri",{"_index":1064,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[9696,4]]}},"component":{}}],["ctry.boundaries_geo.st_contains(cty.city_coord)=1",{"_index":1065,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[9704,49]]}},"component":{}}],["ctry.country_nm",{"_index":1062,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[9632,15]]}},"component":{}}],["cty.city_coord",{"_index":1061,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[9616,15]]}},"component":{}}],["cty.city_nam",{"_index":1060,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[9601,14],[9760,13]]}},"component":{}}],["cumbersom",{"_index":2024,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[7394,10]]}},"component":{}}],["cur",{"_index":913,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[2729,4],[8356,4],[9328,4]]}},"component":{}}],["cur.execut",{"_index":914,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[2734,11],[8361,11],[9333,11]]}},"component":{}}],["curl",{"_index":726,"title":{},"name":{},"text":{"/fastload.html":{"position":[[1310,4]]},"/run-vantage-express-on-aws.html":{"position":[[6160,4],[6692,5],[6771,4],[6898,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2940,4],[3472,5],[3551,4],[3678,4]]},"/vantage.express.gcp.html":{"position":[[1967,4],[2499,5],[2578,4],[2705,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[6837,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4591,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1185,4]]}},"component":{}}],["curl/7.74.0",{"_index":4062,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6607,13]]}},"component":{}}],["currat",{"_index":1327,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[1464,8]]}},"component":{}}],["current",{"_index":1001,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[5340,9]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[915,7]]},"/local.jupyter.hub.html":{"position":[[3292,9]]},"/nos.html":{"position":[[645,10],[4008,7]]},"/teradatasql.html":{"position":[[353,9],[447,9]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[615,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4851,9],[25023,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1023,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[7144,9]]},"/mule-teradata-connector/reference.html":{"position":[[36855,7],[37327,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6171,7]]},"/regulus/getting-started-with-regulus.html":{"position":[[960,10]]},"/regulus/install-regulus-docker-image.html":{"position":[[5268,10]]},"/regulus/regulus-magic-reference.html":{"position":[[1093,7]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[2447,10]]}},"component":{}}],["current_d",{"_index":1833,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[1455,14]]}},"component":{}}],["current_tim",{"_index":3775,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6597,13]]}},"component":{}}],["current_time=$(d",{"_index":3773,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6525,19]]}},"component":{}}],["current_timestamp",{"_index":3758,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[5004,18],[5048,17]]},"/mule-teradata-connector/reference.html":{"position":[[2747,17],[2785,21]]}},"component":{}}],["cursor",{"_index":903,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[2389,6],[6980,7],[8037,6]]},"/odbc.ubuntu.html":{"position":[[1409,6]]}},"component":{}}],["cursor.execute(\"select",{"_index":1832,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[1432,22]]}},"component":{}}],["cursor.fetchal",{"_index":1834,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[1481,18]]}},"component":{}}],["curv",{"_index":3235,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[6186,6],[6227,6]]}},"component":{}}],["cust_id",{"_index":1526,"title":{},"name":{},"text":{"/ml.html":{"position":[[4047,7],[6389,10]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5518,12]]}},"component":{}}],["cust_id|cc_avg_b",{"_index":1613,"title":{},"name":{},"text":{"/ml.html":{"position":[[8142,18]]}},"component":{}}],["cust_titl",{"_index":3041,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[23836,11]]}},"component":{}}],["custom",{"_index":396,"title":{"/local.jupyter.hub.html#_customize_teradata_jupyter_docker_image":{"position":[[0,9]]},"/local.jupyter.hub.html#_customize_an_existing_docker_image_to_include_teradata_extensions":{"position":[[0,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_use_custom_container":{"position":[[4,6]]},"/mule-teradata-connector/reference.html#custom-ocsp-responder":{"position":[[0,6]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[3820,10],[6572,10]]},"/dbt.html":{"position":[[1868,8],[1951,10]]},"/jupyter.html":{"position":[[5699,6]]},"/local.jupyter.hub.html":{"position":[[60,9],[236,9],[414,8]]},"/ml.html":{"position":[[3372,9],[3640,8],[6200,8]]},"/run-vantage-express-on-aws.html":{"position":[[1103,6],[11759,6],[12081,6]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[877,9]]},"/vantage.express.gcp.html":{"position":[[895,6],[1183,6],[1471,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[474,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1128,6],[1511,6],[3225,6],[3486,6],[3510,6],[5962,6],[6023,6],[6208,6],[6321,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[859,13],[1775,6],[1967,6],[2042,7],[2147,6],[2598,6],[4477,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[182,8],[462,8],[5889,9],[24447,9]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[5311,6]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3577,8],[6543,8],[6917,9]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2892,10],[4791,9]]},"/jupyter-demos/index.html":{"position":[[1026,8],[2024,8]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[4742,10]]},"/mule-teradata-connector/reference.html":{"position":[[1149,6],[36713,6],[40010,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1047,13],[2678,10],[2717,10],[4743,10],[5469,8],[5494,11]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1202,14]]}},"component":{}}],["customer_id",{"_index":2938,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11299,12],[13540,11],[14143,11],[14494,14],[14806,12],[16030,12],[17834,12],[20231,11],[21735,14],[21816,12]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[5550,12]]}},"component":{}}],["customer_nam",{"_index":2940,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11349,14],[14839,14],[16080,14],[17884,14],[20293,13],[21866,14]]}},"component":{}}],["customer_ord",{"_index":655,"title":{},"name":{},"text":{"/dbt.html":{"position":[[3013,16]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[6362,16]]}},"component":{}}],["customer_pay",{"_index":657,"title":{},"name":{},"text":{"/dbt.html":{"position":[[3046,18]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[6395,18]]}},"component":{}}],["customer_typ",{"_index":2982,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[12510,14],[17174,14],[18978,14],[21498,13],[22960,14]]}},"component":{}}],["customer_websit",{"_index":2984,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[12563,17],[17227,17],[19031,17],[21562,16],[23013,17]]}},"component":{}}],["customeralternatekey",{"_index":3217,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4698,20]]}},"component":{}}],["customer’",{"_index":1418,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[1360,10]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[14716,10],[14750,10]]}},"component":{}}],["customiz",{"_index":3851,"title":{},"name":{},"text":{"/mule-teradata-connector/index.html":{"position":[[971,13]]},"/mule-teradata-connector/release-notes.html":{"position":[[571,13]]}},"component":{}}],["cut",{"_index":2194,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[5276,3]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2741,3]]}},"component":{}}],["cz!/tmp/helloworld.pi",{"_index":2480,"title":{},"name":{},"text":{"/sto.html":{"position":[[3292,25]]}},"component":{}}],["cz!/tmp/urlparser.pi",{"_index":2512,"title":{},"name":{},"text":{"/sto.html":{"position":[[5559,24]]}},"component":{}}],["d",{"_index":589,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[3045,2]]},"/nos.html":{"position":[[1296,2],[2154,2],[3472,1],[7089,2],[8189,2]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1050,2],[4150,2]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2746,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13252,1],[19464,1],[24139,2]]},"/regulus/install-regulus-docker-image.html":{"position":[[4149,1],[9324,1]]}},"component":{}}],["daemon",{"_index":2293,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[10805,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7585,6]]},"/vantage.express.gcp.html":{"position":[[6612,6]]}},"component":{}}],["dag",{"_index":4005,"title":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_run_an_airflow_dag":{"position":[[15,3]]}},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[492,3],[2294,6],[8900,3],[10041,3],[10142,4],[10451,4]]}},"component":{}}],["daniel",{"_index":259,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[8,6]]}},"component":{}}],["dashboard",{"_index":3306,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[2015,10],[2267,10]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[12331,9]]}},"component":{}}],["data",{"_index":8,"title":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_install_the_net_data_provider_for_teradata":{"position":[[17,4]]},"/advanced-dbt.html#_data_warehouse_setup":{"position":[[0,4]]},"/advanced-dbt.html#_the_data_models":{"position":[[4,4]]},"/advanced-dbt.html#_create_dimensional_model_with_baseline_data":{"position":[[39,4]]},"/advanced-dbt.html#_test_the_data":{"position":[[9,4]]},"/dbt.html#_create_raw_data_tables":{"position":[[11,4]]},"/dbt.html#_test_the_data":{"position":[[9,4]]},"/fastload.html#_get_sample_data":{"position":[[11,4]]},"/geojson-to-vantage.html":{"position":[[25,4]]},"/geojson-to-vantage.html#_use_your_data":{"position":[[9,4]]},"/ml.html#_sample_data":{"position":[[7,4]]},"/nos.html":{"position":[[6,4]]},"/nos.html#_explore_data_with_nos":{"position":[[8,4]]},"/nos.html#_query_data_with_nos":{"position":[[6,4]]},"/nos.html#_load_data_from_nos_into_vantage":{"position":[[5,4]]},"/nos.html#_export_data_from_vantage_to_object_storage":{"position":[[7,4]]},"/perform-time-series-analysis-using-teradata-vantage.html#_import_data_sets_from_aws_s3_using_vantage_nos":{"position":[[7,4]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[17,4]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_ingesting_data_from_external_object_store":{"position":[[10,4]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_ingesting_data_from_local_files":{"position":[[10,4]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_move_data_from_different_systems_for_unified_query_processing":{"position":[[5,4]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_ingesting_data_from_saas_applications_third_party_tools":{"position":[[10,4]]},"/sto.html#_passing_data_stored_in_vantage_to_script":{"position":[[8,4]]},"/teradata-vantage-engine-architecture-and-concepts.html#_teradata_data_distribution":{"position":[[9,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[14,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_about_azure_data_share":{"position":[[12,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_a_data_share_account":{"position":[[9,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_accept_and_receive_data_using_azure_data_share":{"position":[[19,4],[36,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_load_data_from_blob_storage_into_vantage_optional":{"position":[[5,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_the_table_and_load_the_data_in_a_single_statement":{"position":[[30,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_the_table_and_load_the_data_in_multiple_statements":{"position":[[30,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_3_map_data_fields":{"position":[[12,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_change_data_file_properties":{"position":[[7,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_exploring_data_using_nos":{"position":[[10,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_join_amazon_s3_data_to_in_database_tables":{"position":[[15,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_import_amazon_s3_data_to_vantage":{"position":[[17,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_export_vantage_data_to_amazon_s3_using_nos":{"position":[[15,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_3_map_data_fields_2":{"position":[[12,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[45,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_about_google_cloud_data_catalog":{"position":[[19,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_enable_data_catalog_api":{"position":[[7,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_install_teradata_data_catalog_connector":{"position":[[17,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_install_data_catalog_teradata_connector":{"position":[[8,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_explore_teradata_vantage_metadata_with_data_catalog":{"position":[[39,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html#_load_data":{"position":[[5,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_load_data":{"position":[[5,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_import_data":{"position":[[7,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_clean_the_data":{"position":[[10,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[22,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_sample_data_loading":{"position":[[7,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[20,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_configuring_data_sync":{"position":[[12,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_data_sync_validation":{"position":[[0,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Setting-up-Vantage-and-loading-data":{"position":[[31,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Download-sample-data":{"position":[[16,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Load-training-data-to-Vantage":{"position":[[14,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-the-component-that-reads-data-from-Vantage":{"position":[[32,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-a-new-pipeline-to-score-new-data":{"position":[[35,5]]},"/mule-teradata-connector/reference.html#config_data-source":{"position":[[0,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_test_the_data":{"position":[[9,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_generate_training_data":{"position":[[18,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_get_sample_data":{"position":[[11,4]]}},"name":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[49,4]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[17,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[14,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[45,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[22,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[20,4]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[299,5],[345,4],[384,4],[409,4],[571,4],[1268,4],[1298,4],[1391,4],[1562,4],[1674,4],[2259,4],[2468,4],[2653,4],[2889,5],[3003,5],[3385,4],[3413,4],[3452,4],[4081,4],[4227,4],[4399,4],[4630,4],[4728,4],[5148,4],[5200,5],[5733,4],[5855,4],[5906,4],[5986,4]]},"/advanced-dbt.html":{"position":[[173,4],[1686,4],[1719,4],[1946,4],[2357,4],[2387,4],[2405,4],[3668,4],[3782,4],[3956,4],[4212,4],[4428,5],[4555,4],[4651,4],[5237,4],[6253,5],[6340,5],[6539,4],[6653,4],[6757,4],[6843,5],[6958,5],[7116,4],[7140,4]]},"/create-parquet-files-in-object-storage.html":{"position":[[123,4],[378,4],[402,4],[483,4],[1157,4],[1233,4],[2151,5],[3877,4],[4078,4],[4202,4],[4268,4],[4333,4]]},"/dbt.html":{"position":[[97,5],[1812,4],[1887,4],[1921,4],[2052,4],[2188,4],[2372,6],[2492,4],[2544,4],[2701,4],[3332,5],[3365,4],[3461,5],[3748,4],[3921,4],[4025,4],[4073,4],[4599,4],[4631,4],[4752,4]]},"/fastload.html":{"position":[[269,4],[364,4],[501,5],[1113,5],[1618,4],[2156,4],[2891,4],[3378,5],[3526,4],[3592,4],[4512,5],[4679,4],[6585,5],[6749,4],[6991,4],[7281,4],[7413,4],[7562,4]]},"/geojson-to-vantage.html":{"position":[[274,4],[437,4],[1295,4],[1536,4],[3312,4],[4125,4],[5411,4],[6673,4],[9028,4],[9297,4],[9461,4],[10346,5]]},"/getting.started.utm.html":{"position":[[2457,5],[5394,4],[5942,5],[6485,4]]},"/getting.started.vbox.html":{"position":[[4220,4],[4768,5],[6081,4]]},"/getting.started.vmware.html":{"position":[[4503,4],[5051,5],[5594,4]]},"/jupyter.html":{"position":[[3708,4],[4338,4],[4442,4],[7096,4]]},"/ml.html":{"position":[[908,5],[3196,4],[3317,5],[3783,4],[6363,4]]},"/mule.jdbc.example.html":{"position":[[2154,5]]},"/nos.html":{"position":[[133,4],[290,4],[314,4],[725,4],[996,4],[1139,5],[2182,4],[3264,4],[5250,5],[5294,4],[5422,4],[5552,4],[6070,4],[6681,4],[6723,4],[7638,4],[7721,4],[7834,4],[8226,4],[8323,4],[8453,4],[8573,4],[8639,4]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[77,4],[118,4],[324,4],[675,4],[773,4],[885,4],[3484,4],[4210,4],[4301,4],[4366,4],[10477,4],[10759,4]]},"/run-vantage-express-on-aws.html":{"position":[[9278,4],[9826,5],[12402,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[1177,4],[2588,4],[6058,4],[6606,5],[8340,4]]},"/segment.html":{"position":[[121,4],[288,4],[395,4],[2198,4],[2372,4],[2443,4],[5063,4],[5514,4]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[105,4],[249,4],[339,4],[418,4],[596,4],[973,4],[1460,4],[1609,4],[1755,4]]},"/sto.html":{"position":[[110,4],[393,4],[487,4],[545,4],[1777,4],[1946,5],[4061,4],[4210,4],[4265,4],[5632,4],[6506,4],[7033,4],[7526,4],[7638,5]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[383,4],[744,4],[1875,4],[2460,4],[2564,4],[3029,4],[3190,4],[3335,4],[3940,4],[4272,4],[4523,4],[5277,4],[5368,4],[5541,5],[5604,4],[5977,4],[6366,4],[6386,4],[6488,4],[6510,4]]},"/vantage.express.gcp.html":{"position":[[5085,4],[5633,5],[7516,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[164,4],[317,4],[393,4],[455,4],[507,4],[525,4],[592,5],[604,4],[690,4],[711,4],[757,4],[844,4],[906,4],[922,4],[960,4],[970,4],[1078,5],[1174,4],[1191,4],[1496,4],[1959,4],[2130,4],[2278,4],[2432,4],[2505,4],[2959,4],[3012,4],[3023,4],[3110,4],[3751,4],[3835,4],[3969,4],[4224,4],[4315,5],[4505,4],[4538,4],[4576,4],[4606,4],[4752,4],[4782,4],[4800,4],[5194,4],[5872,4],[5930,4],[6045,4],[6104,4],[6205,4],[6514,4],[6599,4],[6664,5],[6709,4],[6726,4],[6817,4],[6981,4],[7103,4],[7203,4],[7243,4],[7445,4],[7752,4],[7780,4],[7825,4],[7984,4],[8022,4],[8089,4],[8118,4],[8393,4],[8471,4],[8503,5],[8612,4],[8680,4],[8732,5],[8772,4],[8862,4],[8926,4],[9964,5],[10655,4],[10845,4],[11030,5],[13535,4],[13750,5],[13776,4],[13838,4],[13892,4],[13980,5],[14050,4],[14080,4],[14136,4],[14246,4],[14313,4],[14475,4],[14563,5],[14717,4],[14873,5],[17020,4],[17245,5],[17348,4],[18585,4],[20960,4],[21184,4],[21244,4],[22458,4],[24825,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[631,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[100,4],[368,5],[479,4],[589,4],[612,4],[872,4],[897,4],[1099,4],[1287,4],[1332,4],[1554,4],[1627,4],[1675,4],[2222,4],[2302,4],[2466,4],[2605,4],[3063,4],[3129,4],[3284,4],[4047,4],[4135,4],[5071,4],[5162,5],[5354,4],[5384,4],[5756,5],[6267,4],[6484,4],[6711,4],[6818,4],[7956,5],[7973,4],[8025,4],[8112,4],[8347,4],[8457,4],[8539,4],[8878,5],[9688,5],[9979,4],[10132,4],[10364,4],[10650,4],[10765,4],[11014,5],[12786,4],[14539,5],[15412,4],[15466,4],[15565,5],[15603,4],[15671,5],[17384,4],[17576,4],[17737,4],[19473,5],[19587,4],[25109,4],[25914,5],[26203,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[136,4],[159,4],[258,4],[379,4],[434,4],[497,4],[529,4],[577,4],[625,4],[638,4],[835,4],[852,4],[1157,4],[1794,4],[1995,4],[2030,4],[2096,4],[2266,4],[2323,4],[2365,4],[2789,4],[5194,4],[8292,4],[8564,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[361,4],[524,4],[615,4],[691,4],[795,4],[817,4],[993,4],[1084,4],[1285,4],[1417,4],[1507,4],[1547,4],[1945,5],[1975,4],[2047,4],[2769,4],[2950,4],[3979,4],[4057,5],[4158,4],[4206,4],[4572,4],[5977,4],[6092,4],[6170,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[205,5],[233,4],[334,4],[418,4],[1480,4],[1535,4],[1576,4],[1722,4],[2694,4],[2865,4],[3353,4],[3448,4],[3622,4],[3939,4],[3957,4],[4298,4],[4351,5],[4370,5],[4487,4],[4573,4],[4755,4],[5310,4],[5315,5],[5519,5],[5706,4],[6996,4],[7139,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[92,5],[132,4],[428,4],[675,5],[692,4],[868,4],[963,4],[2273,5],[2847,4],[2976,4],[3055,5],[3326,4],[3426,4],[3672,4],[3929,4],[4172,4],[4217,6],[4301,4],[4368,4],[4461,4],[4501,4],[4535,4],[4621,4],[5275,4],[5871,5],[5881,4],[6873,4],[6969,5],[7246,4],[7325,4],[7495,5],[7555,4],[8028,4],[8134,4],[8227,4],[8353,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[214,4],[760,4],[862,4],[4321,4],[4429,4],[5458,4],[6109,4],[6791,4],[6899,5],[7047,4],[7202,4],[7299,4],[7385,4],[7448,4],[7626,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[119,4],[479,4],[791,4],[928,4],[1036,4],[2976,4],[3971,4],[4034,4],[4392,4],[4750,4],[4822,4],[4870,4],[5923,5],[6089,5],[7742,5],[10646,5],[10751,5],[12019,6],[12214,4],[12431,4],[12502,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[228,4],[892,4],[1265,4],[4238,4],[4709,4],[5098,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[228,4],[929,4],[1302,4],[6696,4],[7149,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[676,4],[1017,4],[3203,4],[3438,4],[3459,4],[3538,4],[5435,4],[9488,4]]},"/mule-teradata-connector/index.html":{"position":[[255,4],[1048,4],[1233,4]]},"/mule-teradata-connector/reference.html":{"position":[[255,4],[575,4],[1110,4],[1166,4],[9816,4],[15292,4],[17810,4],[18169,5],[21074,4],[24183,5],[28042,4],[35453,4],[40346,4],[41609,4],[42487,4]]},"/mule-teradata-connector/release-notes.html":{"position":[[255,4],[648,4],[833,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[286,4],[321,5],[558,4],[2318,6],[2334,6],[9415,4],[9756,4],[10739,4],[10835,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[98,4],[167,4],[447,4],[475,4],[596,5],[619,4],[682,4],[803,4],[818,4],[847,4],[918,4],[1175,4],[1209,4],[1555,4],[1610,4],[1688,4],[1832,4],[1989,5],[2832,4],[4694,5],[4730,4],[4842,4],[4958,4],[5193,4],[5214,4],[5293,4],[5887,4],[5997,4],[6910,4]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[164,4],[221,4],[1667,4]]},"/query-service/send-queries-using-rest-api.html":{"position":[[4274,8],[5599,4],[11267,8]]},"/regulus/getting-started-with-regulus.html":{"position":[[315,4],[1905,5],[2285,4],[2542,4],[2563,4],[2654,5],[2932,4],[3181,4],[3213,4],[3413,4],[3556,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[274,4],[533,4],[787,4],[971,4],[1032,5],[1169,4],[2261,4],[2432,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[101,4],[223,4],[355,5],[967,5],[1475,4],[1586,4],[1703,4],[2288,4],[2342,4],[2535,4],[3758,4],[4852,4],[8130,5],[8294,4],[8536,4],[8826,4],[8958,4],[9122,4]]}},"component":{}}],["data=payload",{"_index":4377,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[11702,13]]}},"component":{}}],["data=payload_json",{"_index":4238,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[3652,18],[5910,18],[8368,18],[9752,18]]}},"component":{}}],["data_fil",{"_index":3510,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[9085,9]]}},"component":{}}],["data_sourc",{"_index":3799,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[8279,12]]}},"component":{}}],["data_source_name,project_id,last_updated_timestamp,data_source_proto",{"_index":3800,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[8292,70]]}},"component":{}}],["data_stats.json",{"_index":3645,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4073,15]]}},"component":{}}],["data_t",{"_index":3552,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[11636,11],[11891,12],[12171,11],[12614,11],[13370,13]]}},"component":{}}],["databas",{"_index":150,"title":{"/fastload.html#_create_a_database":{"position":[[9,8]]},"/teradata-vantage-engine-architecture-and-concepts.html#_parallel_database_extension_pde":{"position":[[9,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_join_amazon_s3_data_to_in_database_tables":{"position":[[26,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_validate_permissions_in_sql_database_for_val_and_byom":{"position":[[28,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_validate_permissions_in_sql_database_for_val_and_byom":{"position":[[28,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_create_a_database":{"position":[[9,8]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3034,8],[3108,9],[3136,9],[3195,9],[3637,8]]},"/advanced-dbt.html":{"position":[[731,8],[759,8],[1989,9],[2042,8],[2131,8],[2212,8],[2258,8],[2282,8],[2587,8],[2684,8],[2770,9],[3722,8],[6059,8]]},"/create-parquet-files-in-object-storage.html":{"position":[[1035,8],[1371,8],[1447,9]]},"/dbt.html":{"position":[[970,9],[1088,8],[1141,8],[1222,8],[1295,9],[1312,8],[1829,8],[2614,9]]},"/fastload.html":{"position":[[1356,8],[1439,8],[2074,8],[2392,9],[2593,9],[2624,8],[2746,8],[4693,8],[5066,8],[5171,8]]},"/getting.started.utm.html":{"position":[[108,8],[372,8],[2393,8],[3344,8],[3413,8],[3843,8],[4309,8],[4575,8],[5062,8],[5136,8],[5251,8]]},"/getting.started.vbox.html":{"position":[[108,8],[372,8],[2382,8],[2451,8],[2881,8],[3347,8],[3613,8],[3888,8],[3962,8],[4077,8]]},"/getting.started.vmware.html":{"position":[[108,8],[372,8],[2453,8],[2522,8],[2952,8],[3418,8],[3684,8],[4171,8],[4245,8],[4360,8]]},"/jdbc.html":{"position":[[473,8]]},"/jupyter.html":{"position":[[1315,9],[4705,9],[6944,8]]},"/local.jupyter.hub.html":{"position":[[872,9]]},"/ml.html":{"position":[[1686,8],[1841,8],[1919,8],[2012,8],[2046,8],[3023,8],[3882,8],[3957,9],[3967,8],[6733,8],[7619,9]]},"/mule.jdbc.example.html":{"position":[[157,8],[529,8],[746,8],[770,8],[1181,8],[1214,8],[2095,8],[2170,8],[2186,8],[3428,8],[3504,8]]},"/nos.html":{"position":[[3814,9],[3846,8],[3883,8],[3926,8],[4016,8],[4038,8],[5177,8],[5726,8],[5838,8]]},"/odbc.ubuntu.html":{"position":[[835,8],[882,8],[931,8],[1340,8],[1618,8]]},"/run-vantage-express-on-aws.html":{"position":[[8896,9],[9065,8],[9135,8],[11145,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5676,9],[5845,8],[5915,8],[7925,8]]},"/segment.html":{"position":[[422,9],[1012,9],[1266,8],[2792,10]]},"/sto.html":{"position":[[917,8],[1637,8],[2928,8],[2971,8],[2998,8],[3103,8],[3404,8],[3413,8],[3616,8],[4376,9],[4386,8],[7690,8],[7795,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2107,8],[2231,9],[2425,9],[3531,8],[3587,8],[4229,8],[6234,8],[6459,8]]},"/teradatasql.html":{"position":[[129,8],[499,8],[892,8]]},"/vantage.express.gcp.html":{"position":[[4703,9],[4872,8],[4942,8],[6952,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[800,9],[2337,9],[4640,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[452,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[457,8],[4186,10]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2674,9],[14643,8],[15615,8],[17749,9]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[3715,9],[4567,9],[6532,10]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[800,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1734,8],[1901,8],[2239,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[447,8],[4217,8],[4552,9],[5240,8],[5409,10],[6051,8],[6287,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2507,8],[10929,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1487,8],[1579,9],[2179,9],[2201,9],[2264,9],[2715,9],[3057,9],[4567,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1524,8],[1616,9],[2216,9],[2238,9],[2301,9],[2752,9],[3094,9],[6263,9],[6408,9],[6554,9]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2644,8],[2997,9],[5581,9],[5861,9],[7894,8],[8001,9],[8088,13],[8199,9]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[2384,8],[2549,9],[2757,9],[3879,8],[4044,9],[4252,9]]},"/mule-teradata-connector/index.html":{"position":[[177,9],[1032,8],[1127,8]]},"/mule-teradata-connector/reference.html":{"position":[[177,9],[1071,8],[1276,8],[1398,8],[1826,8],[2121,8],[2301,8],[2324,8],[2358,8],[3057,8],[4122,8],[5389,8],[6450,8],[7682,8],[8750,8],[9826,9],[10579,8],[11980,9],[12794,8],[13541,8],[14563,8],[15304,9],[16057,8],[17822,9],[19116,8],[21093,9],[22277,8],[23745,9],[25131,8],[27824,8],[28052,9],[28799,8],[32839,8],[35558,8]]},"/mule-teradata-connector/release-notes.html":{"position":[[177,9],[387,8],[632,8],[727,8],[959,8],[1005,8]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[498,8],[513,8],[549,8],[722,9],[877,8],[924,9],[1012,8],[1054,9],[1291,8]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[210,9],[587,9],[1226,9],[3865,8],[5625,8],[5658,8],[5729,8],[6098,8],[9363,10],[9650,8],[9685,9],[10659,9],[10817,9]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[126,9],[393,8],[1259,8],[2983,9],[3101,8],[3154,8],[3234,8],[3627,9],[3863,8],[3916,8],[3996,8],[4244,9],[4411,13],[4526,8],[6375,8],[7008,8],[7241,9]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[777,10],[814,8],[1138,8],[1233,8],[1677,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[256,8],[855,8],[1623,8],[1676,8],[2476,9],[2490,8],[7984,8]]},"/regulus/getting-started-with-regulus.html":{"position":[[1854,9],[2362,10],[3007,10]]},"/regulus/install-regulus-docker-image.html":{"position":[[493,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1231,8],[1314,8],[2206,8],[2414,9],[2549,9],[2635,9],[2743,9],[2850,8],[2892,8]]}},"component":{}}],["database.xml",{"_index":1662,"title":{},"name":{},"text":{"/mule.jdbc.example.html":{"position":[[1626,13]]}},"component":{}}],["database=dbload",{"_index":4157,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5390,16]]}},"component":{}}],["database=v",{"_index":1593,"title":{},"name":{},"text":{"/ml.html":{"position":[[6808,14],[7660,14]]}},"component":{}}],["database=yaml.safe_load(open(\"feature_store.yaml\"))[\"offline_store\"][\"databas",{"_index":3731,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3769,81]]}},"component":{}}],["database_url",{"_index":3378,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2393,12],[10131,12],[13298,13]]}},"component":{}}],["database_url=$database_url",{"_index":3381,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2624,26]]}},"component":{}}],["database_url='teradatasql://dbc:dbc@34.121.78.209/mldb",{"_index":3380,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2563,55]]}},"component":{}}],["databasenam",{"_index":3328,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6148,13],[6232,12]]}},"component":{}}],["databasename\":\"dbc",{"_index":4254,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[4285,21]]}},"component":{}}],["databasename\":\"em",{"_index":4259,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[4464,20]]}},"component":{}}],["databasename\":\"emem",{"_index":4269,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[4827,22]]}},"component":{}}],["databasename\":\"emwork",{"_index":4274,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[5002,24]]}},"component":{}}],["databasename\":\"user10",{"_index":4264,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[4650,24]]}},"component":{}}],["databasename,usedspace_in_gb,maxspace_in_gb,percentage_used,remainingspace_in_gb",{"_index":4281,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[5973,80]]}},"component":{}}],["datacatalog",{"_index":3072,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[3201,11],[3251,11],[3301,11],[3640,11],[3732,11],[3767,11],[3830,11],[4066,11],[4224,11],[4356,22],[8262,23],[8682,11],[8864,11]]}},"component":{}}],["dataconnector",{"_index":4563,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[6698,13],[6830,13]]}},"component":{}}],["datafram",{"_index":1368,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[3547,10]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2566,9],[2840,9]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2514,9],[2721,9],[2794,9],[2813,10]]}},"component":{}}],["dataframe('analytic_dataset').to_panda",{"_index":4177,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6404,41]]}},"component":{}}],["dataframe.from_t",{"_index":3194,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2752,24]]}},"component":{}}],["dataframemapp",{"_index":3461,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[6773,15],[7168,17]]}},"component":{}}],["datalink",{"_index":3966,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[39938,8]]}},"component":{}}],["dataload",{"_index":4417,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[2327,9],[2352,9],[2972,9],[2997,9]]}},"component":{}}],["datasci",{"_index":1320,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[827,11]]}},"component":{}}],["datasens",{"_index":1672,"title":{},"name":{},"text":{"/mule.jdbc.example.html":{"position":[[3541,10]]}},"component":{}}],["dataset",{"_index":329,"title":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_query_the_dataset_in_azure_blob_storage":{"position":[[10,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_add_dataset_to_identify_vantage_tables_for_byom_evaluation_and_scoring":{"position":[[4,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_training_dataset":{"position":[[16,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_evaluation_dataset_1":{"position":[[18,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_evaluation_dataset_2":{"position":[[18,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_add_dataset_to_identify_vantage_tables_for_byom_evaluation_and_scoring":{"position":[[4,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_training_dataset":{"position":[[16,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_evaluation_dataset_1":{"position":[[18,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_evaluation_dataset_2":{"position":[[18,7]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[1845,8],[1922,8],[4273,7]]},"/create-parquet-files-in-object-storage.html":{"position":[[182,9],[198,8]]},"/geojson-to-vantage.html":{"position":[[115,7],[682,8],[1596,7],[1820,8],[5156,8],[7070,7],[7337,9],[9523,8],[10575,7]]},"/ml.html":{"position":[[3353,7],[6475,7]]},"/nos.html":{"position":[[760,7],[829,7],[941,7],[3181,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10648,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[119,7],[866,7],[2835,7],[3081,7],[3799,8],[4833,8],[4857,8],[4940,8],[5045,8],[5180,7],[5315,7],[5374,8],[5472,9],[5492,9],[7623,8],[7663,7],[8516,9],[9695,7],[10486,8],[21328,7],[22074,7],[24619,7]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2807,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4466,7],[4993,9],[5078,8],[6487,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[354,7],[709,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1931,7],[2317,8],[4339,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2465,7],[2490,7],[2517,8],[2598,8],[2611,8],[2627,7],[3406,7],[3571,7],[3738,7],[4432,7],[4514,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2502,7],[2527,7],[2554,8],[2635,8],[2648,8],[2664,7],[3443,7],[3608,7],[3775,7],[6076,7],[6210,7],[6355,7],[6501,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1615,8],[2062,8],[4707,8]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2023,7],[2112,7],[2659,7],[6100,8],[7086,7]]}},"component":{}}],["dataset2",{"_index":3651,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4642,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[6629,8]]}},"component":{}}],["datasourc",{"_index":3870,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[2210,10],[34800,10]]}},"component":{}}],["datatyp",{"_index":1735,"title":{},"name":{},"text":{"/nos.html":{"position":[[2241,8],[3061,8]]}},"component":{}}],["datawarehouse/lak",{"_index":3260,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[4515,19]]}},"component":{}}],["date",{"_index":559,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2035,4],[3532,4]]},"/getting.started.utm.html":{"position":[[5579,4],[5616,4]]},"/getting.started.vbox.html":{"position":[[4405,4],[4442,4]]},"/getting.started.vmware.html":{"position":[[4688,4],[4725,4]]},"/mule.jdbc.example.html":{"position":[[2357,4],[2394,4]]},"/run-vantage-express-on-aws.html":{"position":[[9463,4],[9500,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6243,4],[6280,4]]},"/vantage.express.gcp.html":{"position":[[5270,4],[5307,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13701,4],[13730,4],[13758,5],[17337,5],[19141,5],[21714,4],[23123,5]]},"/mule-teradata-connector/reference.html":{"position":[[39828,4]]},"/mule-teradata-connector/release-notes.html":{"position":[[308,5]]}},"component":{}}],["dateofbirth",{"_index":1220,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[5567,11],[5788,12],[6042,11]]},"/getting.started.vbox.html":{"position":[[4393,11],[4614,12],[4868,11]]},"/getting.started.vmware.html":{"position":[[4676,11],[4897,12],[5151,11]]},"/mule.jdbc.example.html":{"position":[[2345,11],[2557,12],[3241,14]]},"/run-vantage-express-on-aws.html":{"position":[[9451,11],[9672,12],[9926,11]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6231,11],[6452,12],[6706,11]]},"/vantage.express.gcp.html":{"position":[[5258,11],[5479,12],[5733,11]]}},"component":{}}],["datetim",{"_index":1688,"title":{},"name":{},"text":{"/nos.html":{"position":[[1347,8],[2669,8],[4231,8],[5990,9],[6039,8],[6164,8]]}},"component":{}}],["datetime.date(2022",{"_index":1837,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[1647,20]]}},"component":{}}],["day",{"_index":862,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[368,3],[375,3]]},"/getting.started.vmware.html":{"position":[[1409,3]]},"/mule.jdbc.example.html":{"position":[[248,3]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4583,5],[5039,4]]},"/mule-teradata-connector/reference.html":{"position":[[3916,4],[6245,4],[8544,4],[10373,4],[12588,4],[14357,4],[15851,4],[18910,4],[22071,4],[24925,4],[28593,4],[32633,4],[34110,4],[38781,4]]}},"component":{}}],["db",{"_index":532,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[1497,2],[1626,3],[1681,3]]},"/getting.started.utm.html":{"position":[[3726,3],[4043,3],[4061,3],[4088,3],[4125,3],[4143,3],[4215,3],[4233,3]]},"/getting.started.vbox.html":{"position":[[2764,3],[3081,3],[3099,3],[3126,3],[3163,3],[3181,3],[3253,3],[3271,3]]},"/getting.started.vmware.html":{"position":[[2835,3],[3152,3],[3170,3],[3197,3],[3234,3],[3252,3],[3324,3],[3342,3]]},"/jupyter.html":{"position":[[3193,2],[3953,2],[4002,2]]},"/run-vantage-express-on-aws.html":{"position":[[8443,2],[8514,3]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5223,2],[5294,3]]},"/segment.html":{"position":[[1049,2]]},"/vantage.express.gcp.html":{"position":[[4250,2],[4321,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2194,2],[2730,2],[3072,2]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2231,2],[2767,2],[3109,2]]}},"component":{}}],["db.parquet_t",{"_index":548,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[1873,16],[2169,16],[2220,16],[2271,16],[2791,17]]}},"component":{}}],["db.parquet_table_to_read_file_on_no",{"_index":596,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[3351,36],[3835,37]]}},"component":{}}],["db:bad_sql_syntax",{"_index":3895,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[5265,17],[7558,17],[9775,17],[11905,17],[13473,17],[15251,17],[17769,17],[20989,17],[23658,17],[27962,17],[30468,17]]}},"component":{}}],["db:connect",{"_index":3892,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[5211,15],[7504,15],[9721,15],[11851,15],[13419,15],[15197,15],[17715,15],[21007,15],[23676,15],[27980,15],[30486,15]]}},"component":{}}],["db:query_execut",{"_index":3893,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[5227,18],[7520,18],[9737,18],[11867,18],[13435,18],[15213,18],[17731,18],[21023,18],[23692,18],[27996,18],[30502,18]]}},"component":{}}],["db:retry_exhaust",{"_index":3894,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[5246,18],[7539,18],[9756,18],[11886,18],[13454,18],[15232,18],[17750,18],[28015,18],[30521,18]]}},"component":{}}],["db_connection_str",{"_index":1366,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[3404,20],[3605,21]]}},"component":{}}],["db_password",{"_index":4216,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[1995,11],[2052,11]]}},"component":{}}],["db_test_example_dag.pi",{"_index":4110,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[9049,23],[9266,22],[9563,22],[9586,22]]}},"component":{}}],["db_user",{"_index":4215,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[1986,8],[2036,7]]}},"component":{}}],["dbc",{"_index":756,"title":{},"name":{},"text":{"/fastload.html":{"position":[[2484,3]]},"/getting.started.utm.html":{"position":[[4608,3],[5105,3]]},"/getting.started.vbox.html":{"position":[[3646,3],[3931,3]]},"/getting.started.vmware.html":{"position":[[3717,3],[4214,3]]},"/ml.html":{"position":[[2144,4],[2180,4],[2231,4],[2283,4],[2335,4],[2382,4],[2716,3],[2730,3]]},"/nos.html":{"position":[[3747,3],[3810,3]]},"/run-vantage-express-on-aws.html":{"position":[[9002,4],[9034,3],[11050,3],[11087,3],[11160,3],[11235,3],[11257,3]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5782,4],[5814,3],[7830,3],[7867,3],[7940,3],[8015,3],[8037,3]]},"/segment.html":{"position":[[2118,5],[2284,5]]},"/sto.html":{"position":[[3073,3],[3158,4]]},"/vantage.express.gcp.html":{"position":[[4809,4],[4841,3],[6857,3],[6894,3],[6967,3],[7042,3],[7064,3]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[5741,4],[5837,5],[5910,5]]},"/query-service/send-queries-using-rest-api.html":{"position":[[6054,3],[8487,6],[11884,6],[12208,6]]}},"component":{}}],["dbc','dbc",{"_index":4217,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[2009,11]]}},"component":{}}],["dbc.dbcinfo",{"_index":1370,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[3585,13],[4407,11],[4506,11]]},"/query-service/send-queries-using-rest-api.html":{"position":[[2911,12],[3484,14],[5760,14],[8869,12],[9178,14],[9315,12],[9595,14],[10493,14]]}},"component":{}}],["dbc.dbcinfov",{"_index":4201,"title":{},"name":{},"text":{"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1497,12]]}},"component":{}}],["dbc.dbqlampdatatbl",{"_index":4388,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[12136,21]]}},"component":{}}],["dbc.tablesv",{"_index":3332,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6214,11]]}},"component":{}}],["dbcmgr.alertrequest",{"_index":4380,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[11811,22]]}},"component":{}}],["dbcmngr",{"_index":4304,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[6711,7]]}},"component":{}}],["dbcname=192.168.86.33;uid=dbc;pwd=dbc",{"_index":1825,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[1146,37]]}},"component":{}}],["dbeaver",{"_index":3992,"title":{"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[43,7]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html#_add_a_teradata_connection_to_dbeaver":{"position":[[29,7]]}},"name":{"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[43,7]]}},"text":{"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[137,8],[292,7],[315,7],[336,7],[761,7],[1208,7],[1399,7],[1584,8]]}},"component":{}}],["dbt",{"_index":257,"title":{"/advanced-dbt.html":{"position":[[9,3]]},"/advanced-dbt.html#_configure_dbt":{"position":[[10,3]]},"/advanced-dbt.html#_the_dbt_models":{"position":[[4,3]]},"/dbt.html":{"position":[[0,3]]},"/dbt.html#_install_dbt":{"position":[[8,3]]},"/dbt.html#_configure_dbt":{"position":[[10,3]]},"/dbt.html#_run_dbt":{"position":[[4,3]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[72,3]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_install_dbt":{"position":[[8,3]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_configure_dbt":{"position":[[10,3]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_the_jaffle_shop_dbt_project":{"position":[[16,3]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_dbt_transformations":{"position":[[0,3]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[35,3]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_a_test_dbt_project":{"position":[[15,3]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_dbt":{"position":[[0,3]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_configure_dbt":{"position":[[10,3]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_run_dbt":{"position":[[4,3]]}},"name":{"/advanced-dbt.html":{"position":[[9,3]]},"/dbt.html":{"position":[[0,3]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[72,3]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[35,3]]}},"text":{"/advanced-dbt.html":{"position":[[94,3],[195,3],[1065,3],[1385,3],[1415,3],[1510,3],[1558,3],[1636,3],[1760,3],[2003,3],[2739,3],[2925,3],[3069,4],[3174,3],[3454,3],[3621,3],[3928,4],[4835,3],[6195,4],[6259,3],[6388,3],[6826,4],[7022,3],[7207,3]]},"/dbt.html":{"position":[[93,3],[165,3],[654,3],[758,3],[809,3],[904,3],[939,3],[1117,3],[1628,3],[1785,3],[2032,3],[2428,3],[2557,3],[2775,3],[2812,3],[2851,3],[2951,3],[3161,3],[3288,3],[3407,3],[3811,3],[4194,3],[4264,3],[4490,3],[4543,3],[4659,3],[4706,4],[4732,4],[4757,4],[4812,4],[4832,3],[4849,3],[4867,3]]},"/geojson-to-vantage.html":{"position":[[10427,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[88,3],[253,3],[320,3],[758,3],[1260,3],[1481,3],[1532,3],[1627,3],[1653,3],[1666,3],[1679,3],[1868,3],[2567,3],[2607,3],[3129,3],[3246,3],[3612,4],[3627,3],[4112,4],[4133,3],[6772,3],[6792,3],[6915,3],[7309,3],[7689,3],[7719,3],[7949,3],[8002,3],[8246,3],[8303,3],[8333,4],[8358,4],[8413,4],[8433,3],[8450,3],[8468,3]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[167,4],[4016,4],[5044,3],[5057,3],[5195,3],[5212,3],[5371,3],[5378,3],[5963,3],[6001,4],[6033,4],[9298,3],[9331,3],[10775,3],[10831,3]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[308,3],[466,4],[592,3],[1478,3],[1513,3],[1651,4],[1707,3],[2174,4],[2804,3],[2952,3],[3130,3],[3463,3],[3892,3],[4600,3],[4871,3],[4908,3],[6844,3],[6964,4],[7335,3],[7353,3]]}},"component":{}}],["dbt+feast",{"_index":4123,"title":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[21,9]]}},"name":{},"text":{},"component":{}}],["dbt/profiles.yml",{"_index":364,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3028,17]]}},"component":{}}],["dbt_airbyte_demo",{"_index":3252,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1827,17],[2366,17]]}},"component":{}}],["dbt_project.yml",{"_index":4145,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2616,15]]}},"component":{}}],["dbt_sourc",{"_index":4156,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5361,10]]}},"component":{}}],["dbt_transform",{"_index":4142,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2535,19],[3277,19]]}},"component":{}}],["dbt’",{"_index":639,"title":{},"name":{},"text":{"/dbt.html":{"position":[[2285,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[4239,5]]}},"component":{}}],["db}.pima_patient_diagnos",{"_index":3632,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2976,26],[3473,26],[3640,26],[3807,26]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[3013,26],[3510,26],[3677,26],[3844,26]]}},"component":{}}],["db}.pima_patient_featur",{"_index":3623,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2797,25]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2834,25]]}},"component":{}}],["dd",{"_index":1223,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[5600,4],[5637,4]]},"/getting.started.vbox.html":{"position":[[4426,4],[4463,4]]},"/getting.started.vmware.html":{"position":[[4709,4],[4746,4]]},"/mule.jdbc.example.html":{"position":[[2378,4],[2415,4]]},"/run-vantage-express-on-aws.html":{"position":[[9484,4],[9521,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6264,4],[6301,4]]},"/vantage.express.gcp.html":{"position":[[5291,4],[5328,4]]}},"component":{}}],["ddbhh:mi",{"_index":1742,"title":{},"name":{},"text":{"/nos.html":{"position":[[2704,9]]}},"component":{}}],["ddbhh:mi:ss",{"_index":2710,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11467,13],[11646,13],[15089,13],[15268,13],[17604,13],[17697,13],[18801,13],[18980,13],[22698,13],[22877,13]]}},"component":{}}],["ddl",{"_index":2992,"title":{"/mule-teradata-connector/reference.html#executeDdl":{"position":[[8,3]]}},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13479,3],[13837,3],[14085,3]]},"/mule-teradata-connector/index.html":{"position":[[1258,5]]},"/mule-teradata-connector/reference.html":{"position":[[2858,3],[11958,3]]},"/mule-teradata-connector/release-notes.html":{"position":[[858,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2942,5],[3076,3],[4804,7],[5821,3]]}},"component":{}}],["ddlerrorlist",{"_index":4525,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3359,12]]}},"component":{}}],["de",{"_index":3600,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[22,2]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[22,2]]}},"component":{}}],["deactiv",{"_index":2859,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[3882,10]]}},"component":{}}],["debian_frontend=noninteract",{"_index":1807,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[357,30]]}},"component":{}}],["debug",{"_index":384,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3458,5],[3471,5]]},"/dbt.html":{"position":[[1632,5],[1645,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2611,5],[2624,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3467,5],[3480,5]]}},"component":{}}],["debug:google.auth._default:check",{"_index":3092,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4664,35],[5330,35]]}},"component":{}}],["debug:google.auth.transport.requests:mak",{"_index":3097,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4858,43],[5519,43]]}},"component":{}}],["debug:urllib3.connectionpool:https://oauth2.googleapis.com:443",{"_index":3101,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[5042,62],[5703,62]]}},"component":{}}],["debug:urllib3.connectionpool:start",{"_index":3099,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4952,37],[5613,37]]}},"component":{}}],["decemb",{"_index":2106,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[39,8]]}},"component":{}}],["decid",{"_index":644,"title":{},"name":{},"text":{"/dbt.html":{"position":[[2480,6]]},"/nos.html":{"position":[[848,6],[5405,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[960,6]]}},"component":{}}],["decim",{"_index":2775,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[19113,7],[23010,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13979,7],[14014,7]]},"/mule-teradata-connector/reference.html":{"position":[[39795,7]]}},"component":{}}],["decimal(10,2",{"_index":562,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2076,14],[3544,13]]}},"component":{}}],["decimal(15,2",{"_index":4424,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[2873,14],[2893,14]]}},"component":{}}],["decimal(15,4",{"_index":4423,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[2852,14]]}},"component":{}}],["decimal(2,1",{"_index":2742,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[12507,13],[16129,13],[18107,13],[19842,13],[23739,13]]}},"component":{}}],["decimal(3,1",{"_index":2724,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11857,13],[11940,13],[12281,13],[12364,13],[12668,13],[12816,13],[12965,13],[15479,13],[15562,13],[15903,13],[15986,13],[16290,13],[16438,13],[16587,13],[17799,13],[17839,13],[18001,13],[18040,13],[18181,13],[18251,13],[18322,13],[19192,13],[19275,13],[19616,13],[19699,13],[20003,13],[20151,13],[20300,13],[23089,13],[23172,13],[23513,13],[23596,13],[23900,13],[24048,13],[24197,13]]}},"component":{}}],["decimal(3,2",{"_index":1737,"title":{},"name":{},"text":{"/nos.html":{"position":[[2410,12],[2500,12],[2800,12],[2896,12]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[13114,13],[13175,13],[16736,13],[16797,13],[18391,13],[18417,13],[20449,13],[20510,13],[24346,13],[24407,13]]}},"component":{}}],["decimal(4,1",{"_index":2721,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11779,13],[12025,13],[12111,13],[12197,13],[12742,13],[12890,13],[13041,13],[15401,13],[15647,13],[15733,13],[15819,13],[16364,13],[16512,13],[16663,13],[17760,13],[17880,13],[17921,13],[17962,13],[18218,13],[18288,13],[18360,13],[19360,13],[19446,13],[19532,13],[20077,13],[20225,13],[20376,13],[23257,13],[23343,13],[23429,13],[23974,13],[24122,13],[24273,13]]}},"component":{}}],["decimal(5,1",{"_index":2739,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[12436,13],[12590,13],[13305,13],[16058,13],[16212,13],[16927,13],[18069,13],[18148,13],[18483,12],[19771,13],[19925,13],[20640,13],[23668,13],[23822,13],[24537,13]]}},"component":{}}],["decis",{"_index":2633,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1329,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2055,8]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[990,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[5121,8],[5271,8],[5877,8]]}},"component":{}}],["declar",{"_index":747,"title":{},"name":{},"text":{"/fastload.html":{"position":[[2112,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[5198,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2244,7]]}},"component":{}}],["decommiss",{"_index":3569,"title":{},"name":{},"text":{"/jupyter-demos/index.html":{"position":[[12,15]]}},"component":{}}],["decoupl",{"_index":4134,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1192,8]]}},"component":{}}],["decreas",{"_index":2578,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[4139,9]]}},"component":{}}],["dedic",{"_index":1127,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[991,8]]},"/getting.started.vbox.html":{"position":[[789,8]]},"/getting.started.vmware.html":{"position":[[786,8]]}},"component":{}}],["deep",{"_index":2810,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[3625,4],[3880,4]]}},"component":{}}],["def",{"_index":3427,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[5394,3],[6435,3],[7921,3],[9026,3],[11557,3],[12531,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4195,3],[4574,3],[4955,3]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6109,3]]}},"component":{}}],["default",{"_index":189,"title":{"/mule-teradata-connector/reference.html#config":{"position":[[0,7]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3887,8]]},"/advanced-dbt.html":{"position":[[5299,7]]},"/create-parquet-files-in-object-storage.html":{"position":[[1950,8],[1959,7]]},"/getting.started.utm.html":{"position":[[1429,7],[1847,8],[2168,7],[2850,7]]},"/getting.started.vbox.html":{"position":[[1239,7],[1638,8],[1888,7]]},"/getting.started.vmware.html":{"position":[[1629,7],[1959,7]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[803,7],[900,7]]},"/mule.jdbc.example.html":{"position":[[2916,7]]},"/run-vantage-express-on-aws.html":{"position":[[2728,7],[3900,7],[4222,7],[4677,7],[11030,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[557,7],[763,9],[7810,7]]},"/segment.html":{"position":[[1343,7]]},"/vantage.express.gcp.html":{"position":[[6837,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[5399,7],[5775,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[3464,7],[6228,7],[8005,8],[14038,7],[20181,8],[20190,7],[25006,7],[25230,9]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2678,7],[4300,7]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3630,7],[3848,8],[4252,8],[4608,9],[5080,8],[5233,7],[5808,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1124,7],[1179,7],[2303,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1627,7],[2588,7],[3580,7],[3703,7],[3837,7],[4586,7],[5129,7],[5180,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1769,7],[1814,7],[2491,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[5629,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2816,7]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[4826,7]]},"/mule-teradata-connector/reference.html":{"position":[[394,7],[439,7],[1315,7],[1743,7],[3191,7],[3785,8],[4234,7],[5189,7],[5523,7],[6134,8],[6561,7],[7482,7],[7818,7],[8413,8],[9699,7],[9858,7],[10242,8],[11829,7],[12012,7],[12457,8],[13397,7],[13662,7],[14226,8],[15175,7],[15336,7],[15720,8],[17693,7],[18255,7],[18779,8],[20375,7],[21419,7],[21940,8],[23488,7],[24269,7],[24814,8],[25242,7],[27436,7],[28084,7],[28462,8],[30446,7],[31276,7],[32502,8],[33221,7],[33266,7],[33889,9],[34277,9],[35349,7],[35595,7],[35948,7],[36214,7],[36421,7],[36767,7],[37239,7],[37614,8],[37826,7],[38199,7],[38402,7],[38486,7],[38862,7],[39233,7],[39559,7],[39684,7],[40052,7],[40141,7],[40503,7],[40812,7],[41101,7],[41404,7],[42380,7],[42686,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1654,7]]},"/regulus/getting-started-with-regulus.html":{"position":[[1398,7],[2123,8],[2132,7],[2777,8],[2786,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[5980,7],[6129,7],[6148,7],[6197,7],[6457,7],[6474,7],[6647,7]]},"/regulus/regulus-magic-reference.html":{"position":[[620,7],[3407,7],[3495,7],[3596,7],[3792,7]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[4554,7]]}},"component":{}}],["default_vm_nam",{"_index":2230,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[7410,18]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4190,18]]},"/vantage.express.gcp.html":{"position":[[3217,18]]}},"component":{}}],["default_vm_name=\"vantag",{"_index":2228,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[7356,24]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4136,24]]},"/vantage.express.gcp.html":{"position":[[3163,24]]}},"component":{}}],["default`].groupid",{"_index":2162,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[2944,19]]}},"component":{}}],["defaults,nofail",{"_index":2344,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[2798,15]]}},"component":{}}],["defaults.group=tdv",{"_index":2312,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[826,19]]}},"component":{}}],["defaults.loc",{"_index":2310,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[675,18]]}},"component":{}}],["defauth_az",{"_index":2691,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[9139,10],[9615,10]]}},"component":{}}],["defauth_s3",{"_index":2916,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[8905,10],[9268,10]]}},"component":{}}],["defin",{"_index":181,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3655,7]]},"/advanced-dbt.html":{"position":[[4760,6],[6361,7]]},"/create-parquet-files-in-object-storage.html":{"position":[[3408,7]]},"/dbt.html":{"position":[[3424,6],[3481,7]]},"/fastload.html":{"position":[[2141,6],[3405,7],[4134,6],[4188,6],[4442,6],[4637,6],[5775,6]]},"/geojson-to-vantage.html":{"position":[[8778,7],[8845,6],[10393,8]]},"/jupyter.html":{"position":[[2900,6],[3182,6],[3942,6],[3991,6]]},"/ml.html":{"position":[[7562,6]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10318,7]]},"/segment.html":{"position":[[1966,6]]},"/sto.html":{"position":[[197,7],[7876,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[9153,7],[9599,7],[10400,7],[20855,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[8919,7],[9252,7],[10016,7],[12812,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4216,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1800,6],[2326,7],[5754,7],[6757,7],[6932,6],[6989,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[377,7],[4622,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1529,6],[5261,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[3222,6],[4097,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[3259,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3512,6],[6262,7]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[2960,6]]},"/mule-teradata-connector/reference.html":{"position":[[1200,6],[32311,7],[34754,7],[37563,8],[39282,7],[42425,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5267,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[888,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2273,6],[2367,6],[3659,6],[3733,6],[3782,6]]}},"component":{}}],["definit",{"_index":658,"title":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_a_foreign_table_definition":{"position":[[23,10]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html#_repo_definition":{"position":[[5,10]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_feature_repository_definition":{"position":[[19,10]]}},"name":{},"text":{"/dbt.html":{"position":[[3083,11]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2203,10],[8754,10],[9462,10],[9857,10],[10233,10],[14767,10],[22410,10]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2533,10],[9574,10],[9896,10],[15722,10]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[447,10],[898,11],[4872,10]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[6432,11],[6671,11]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2545,10]]},"/mule-teradata-connector/index.html":{"position":[[1238,10]]},"/mule-teradata-connector/release-notes.html":{"position":[[838,10]]},"/regulus/getting-started-with-regulus.html":{"position":[[3665,11]]},"/regulus/regulus-magic-reference.html":{"position":[[4576,10],[4710,11],[4784,10],[4967,11]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[3536,11],[3861,11],[4943,11]]}},"component":{}}],["definition.pi",{"_index":3721,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3056,13]]}},"component":{}}],["delay",{"_index":2408,"title":{},"name":{},"text":{"/segment.html":{"position":[[4506,5],[4530,5]]}},"component":{}}],["deleg",{"_index":842,"title":{},"name":{},"text":{"/fastload.html":{"position":[[7222,9]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[8767,9]]}},"component":{}}],["delet",{"_index":1147,"title":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_close_and_delete_the_connection":{"position":[[10,6]]},"/mule-teradata-connector/reference.html#bulkDelete":{"position":[[5,6]]},"/mule-teradata-connector/reference.html#delete":{"position":[[0,6]]},"/regulus/using-regulus-workspace-cli.html#_project_delete":{"position":[[8,6]]},"/regulus/using-regulus-workspace-cli.html#_project_auth_delete":{"position":[[13,6]]}},"name":{},"text":{"/getting.started.utm.html":{"position":[[2157,6]]},"/run-vantage-express-on-aws.html":{"position":[[11603,6],[11631,6],[11752,6],[11789,6],[11856,6],[11995,6],[12070,6],[12187,6],[12254,6],[12287,6],[12339,6],[12362,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[8224,6],[8294,6]]},"/vantage.express.gcp.html":{"position":[[7293,6],[7333,6],[7487,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[5417,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[7546,7],[26063,6],[26113,6],[26228,6],[26289,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[5244,10],[5283,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[7234,6],[7809,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[8604,6],[13645,6],[13786,7],[13794,6]]},"/mule-teradata-connector/reference.html":{"position":[[2812,6],[2843,6],[2963,6],[3134,6],[9808,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8411,6]]},"/regulus/regulus-magic-reference.html":{"position":[[1234,6],[1430,8],[1519,7],[2804,7]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[2976,6],[3034,6],[6644,6],[6745,6],[6945,7]]}},"component":{}}],["delete+insert",{"_index":441,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[5104,13]]}},"component":{}}],["delimit",{"_index":1674,"title":{},"name":{},"text":{"/nos.html":{"position":[[701,11]]},"/sto.html":{"position":[[5370,9]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3266,11]]}},"component":{}}],["deliv",{"_index":2588,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[5127,8]]}},"component":{}}],["deliveri",{"_index":3583,"title":{},"name":{},"text":{"/jupyter-demos/index.html":{"position":[[1142,8]]}},"component":{}}],["demand",{"_index":2903,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[6773,7],[25064,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[5058,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[7109,6]]},"/regulus/getting-started-with-regulus.html":{"position":[[265,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[327,7]]}},"component":{}}],["demo",{"_index":271,"title":{"/advanced-dbt.html#_demo_project_setup":{"position":[[0,4]]},"/jupyter-demos/index.html":{"position":[[17,5]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[298,4],[1649,4]]},"/jupyter.html":{"position":[[4723,4],[6674,4]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[985,4],[4085,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[948,4],[4309,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1792,4],[4390,4]]},"/jupyter-demos/index.html":{"position":[[2346,4],[2397,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[298,4],[869,4],[907,4],[950,4],[1124,4],[1242,4],[1280,4],[1323,4],[1459,4],[1625,5],[1678,5],[1716,4],[1781,4],[2103,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[279,4],[906,4],[944,4],[987,4],[1161,4],[1279,4],[1317,4],[1360,4],[1496,4],[1662,5],[1715,5],[1753,4],[1818,4],[2140,4],[5774,4],[5841,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2107,4],[2360,5]]},"/regulus/getting-started-with-regulus.html":{"position":[[2509,5],[2649,4],[3148,5],[3208,4]]}},"component":{}}],["demo/feature_repo",{"_index":3713,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2446,17]]}},"component":{}}],["demo/test_workflow.pi",{"_index":3823,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9312,21]]}},"component":{}}],["demo_feast_driver_hourly_stat",{"_index":3757,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4943,30]]}},"component":{}}],["demo_model",{"_index":3397,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3121,11],[8401,13],[11377,10],[13355,14]]}},"component":{}}],["demonstr",{"_index":515,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[456,12]]},"/dbt.html":{"position":[[69,12],[4519,12]]},"/fastload.html":{"position":[[404,12],[7369,12]]},"/geojson-to-vantage.html":{"position":[[66,12],[5009,12],[10265,14]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[989,12]]},"/jdbc.html":{"position":[[71,12],[871,12]]},"/jupyter.html":{"position":[[5086,11],[5745,11]]},"/local.jupyter.hub.html":{"position":[[928,11]]},"/mule.jdbc.example.html":{"position":[[120,12]]},"/odbc.ubuntu.html":{"position":[[69,12],[1689,12]]},"/run-vantage-express-on-aws.html":{"position":[[71,12]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[69,12]]},"/segment.html":{"position":[[5319,12]]},"/sto.html":{"position":[[1543,12]]},"/teradatasql.html":{"position":[[65,12],[819,12]]},"/vantage.express.gcp.html":{"position":[[69,12]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[5940,12]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[64,12],[1149,13],[7978,12]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[7271,12]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[526,12]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[72,12],[1519,12]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[83,12]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6820,12]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[263,12],[8914,12]]}},"component":{}}],["demonstrat",{"_index":4203,"title":{},"name":{},"text":{"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1719,11]]}},"component":{}}],["denorm",{"_index":654,"title":{},"name":{},"text":{"/dbt.html":{"position":[[2981,12]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[6324,12]]}},"component":{}}],["denot",{"_index":461,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[5767,7]]}},"component":{}}],["dep",{"_index":321,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[1640,4]]}},"component":{}}],["departmentcod",{"_index":1225,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[5642,14],[5813,14],[6065,14]]},"/getting.started.vbox.html":{"position":[[4468,14],[4639,14],[4891,14]]},"/getting.started.vmware.html":{"position":[[4751,14],[4922,14],[5174,14]]},"/mule.jdbc.example.html":{"position":[[2420,14],[2582,14],[3317,17]]},"/run-vantage-express-on-aws.html":{"position":[[9526,14],[9697,14],[9949,14]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6306,14],[6477,14],[6729,14]]},"/vantage.express.gcp.html":{"position":[[5333,14],[5504,14],[5756,14]]}},"component":{}}],["depend",{"_index":224,"title":{"/jdbc.html#_add_dependency_to_your_maven_project":{"position":[[4,10]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[5206,9]]},"/advanced-dbt.html":{"position":[[1077,13],[1443,10],[1545,12]]},"/dbt.html":{"position":[[666,13],[786,13],[837,10]]},"/fastload.html":{"position":[[7059,6]]},"/jdbc.html":{"position":[[398,10]]},"/ml.html":{"position":[[6660,9]]},"/odbc.ubuntu.html":{"position":[[329,13],[1816,13]]},"/sto.html":{"position":[[2211,12]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[14109,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1272,13],[1509,13],[1560,10]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[723,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[760,9]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1346,9]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1091,12],[1202,12]]},"/mule-teradata-connector/reference.html":{"position":[[32028,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2195,13],[5902,9]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[8604,6]]}},"component":{}}],["dependent=cc_avg_b",{"_index":1596,"title":{},"name":{},"text":{"/ml.html":{"position":[[7088,21]]}},"component":{}}],["deploy",{"_index":838,"title":{"/local.jupyter.hub.html":{"position":[[0,6]]},"/segment.html#_deployment":{"position":[[0,10]]},"/segment.html#_build_and_deploy":{"position":[[10,6]]},"/cloud-guides/sagemaker-with-teradata-vantage.html#_deploy_the_model":{"position":[[0,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#The-first-pipeline-to-train-and-deploy-a-model-using-Kubeflow":{"position":[[32,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-component-to-deploy-model":{"position":[[20,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Test-the-deployed-model":{"position":[[9,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[22,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[22,6]]},"/regulus/using-regulus-workspace-cli.html#_project_engine_deploy":{"position":[[15,6]]}},"name":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[0,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[0,6]]}},"text":{"/fastload.html":{"position":[[7166,11]]},"/local.jupyter.hub.html":{"position":[[434,10]]},"/ml.html":{"position":[[347,10]]},"/segment.html":{"position":[[2706,6],[2903,6],[5121,6],[5243,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3685,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1784,6],[4160,10],[7189,8]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1445,6]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[1638,6],[4646,6],[5863,8],[6230,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[159,6],[500,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1537,10]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[150,6],[193,11],[437,6],[603,7],[10617,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4459,6],[4773,11],[4971,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[6155,6],[6295,6],[6440,6],[6779,8],[6857,11],[6975,6],[7033,12]]},"/mule-teradata-connector/reference.html":{"position":[[1546,9],[1624,10],[2426,9],[2504,10],[35624,10],[35667,9],[35745,10]]},"/regulus/getting-started-with-regulus.html":{"position":[[255,6],[1248,6],[1461,10],[1531,11]]},"/regulus/install-regulus-docker-image.html":{"position":[[227,6],[357,8],[679,12],[3500,7],[6022,6],[8977,7]]},"/regulus/regulus-magic-reference.html":{"position":[[1932,9],[2147,9],[2983,6],[3026,10],[3096,11],[3393,9],[3911,10],[4253,8]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1150,6],[1218,6],[4274,6],[4349,6],[4755,11],[4811,11],[4898,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[8711,11]]}},"component":{}}],["deploy_model",{"_index":3417,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[4145,12],[7925,13]]}},"component":{}}],["deploy_model(connection_string,test_model_data.outputs['output_model",{"_index":3514,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[9187,71]]}},"component":{}}],["deployments/execut",{"_index":3650,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4599,22]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[6586,22]]}},"component":{}}],["deprec",{"_index":696,"title":{},"name":{},"text":{"/fastload.html":{"position":[[55,11],[135,11]]}},"component":{}}],["depth",{"_index":3298,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1235,5]]}},"component":{}}],["deriv",{"_index":526,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[1058,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[3603,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[287,6]]}},"component":{}}],["describ",{"_index":28,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[167,9]]},"/dbt.html":{"position":[[3526,9]]},"/fastload.html":{"position":[[86,9]]},"/jdbc.html":{"position":[[934,9]]},"/jupyter.html":{"position":[[2668,9]]},"/local.jupyter.hub.html":{"position":[[1899,9],[2143,9],[2918,9]]},"/run-vantage-express-on-aws.html":{"position":[[2834,8],[3023,8],[3957,8],[5099,8],[5738,8]]},"/segment.html":{"position":[[3240,8]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1169,9]]},"/teradatasql.html":{"position":[[912,9]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[66,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[667,9],[1562,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[506,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[67,9],[15628,9]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[68,9]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[1461,9]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[490,9]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[59,9]]}},"component":{}}],["descript",{"_index":2156,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[2704,11],[3415,14],[11534,14]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1269,12]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1995,12],[5859,11],[12194,12],[16925,12],[18729,12],[21244,11],[22711,12],[24417,11]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[930,12]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1694,12],[2082,12],[2663,12],[3384,12],[3547,12],[3714,12]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1731,12],[2119,12],[2700,12],[3421,12],[3584,12],[3751,12]]},"/mule-teradata-connector/reference.html":{"position":[[427,11],[1303,11],[1731,11],[3179,11],[5511,11],[7806,11],[9846,11],[12000,11],[13650,11],[15324,11],[18243,11],[21407,11],[24257,11],[28072,11],[31264,11],[33254,11],[35337,11],[35583,11],[35936,11],[36202,11],[36409,11],[36755,11],[37227,11],[37814,11],[38187,11],[38390,11],[38474,11],[38850,11],[39547,11],[39672,11],[40040,11],[40129,11],[41089,11],[41392,11],[42368,11],[42674,11]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[863,11]]},"/query-service/send-queries-using-rest-api.html":{"position":[[10150,13]]},"/regulus/install-regulus-docker-image.html":{"position":[[5134,11],[5958,11],[6760,11]]},"/regulus/regulus-magic-reference.html":{"position":[[340,12],[713,12],[1221,12],[1527,12],[1805,12],[2596,12],[2812,12],[2970,12],[3984,12],[4209,12],[4362,12],[4522,12],[4730,12],[4984,12]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1493,12],[1791,12],[2050,12],[2315,11],[2677,12],[2963,12],[3222,12],[3491,12],[3816,12],[4105,11],[4261,12],[4473,11],[4873,12],[5208,12],[5568,12],[5781,11],[6333,12],[6631,12],[6863,11]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3680,11]]}},"component":{}}],["description='an",{"_index":3508,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[8963,15],[12447,15]]}},"component":{}}],["description=teradata",{"_index":1822,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[910,20]]}},"component":{}}],["description=vm1",{"_index":2273,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[10382,15]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7162,15]]},"/vantage.express.gcp.html":{"position":[[6189,15]]}},"component":{}}],["design",{"_index":63,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[934,8]]},"/jupyter.html":{"position":[[5487,8]]},"/local.jupyter.hub.html":{"position":[[2783,10],[3870,10]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[268,8],[5739,10]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[4348,8],[4448,8]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[95,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[188,9]]}},"component":{}}],["desir",{"_index":2586,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[5001,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[14588,7]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[3155,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1947,7]]}},"component":{}}],["desktop",{"_index":31,"title":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_install_power_bi_desktop":{"position":[[17,7]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[214,7],[433,8],[669,7],[706,7],[879,8],[1210,8],[1228,7],[1521,7],[1656,8],[1761,7],[1866,8],[1937,7],[1990,7],[2293,8],[2343,8],[2521,7],[2799,8],[4483,7],[4821,8],[4912,8],[5043,8],[5245,7],[5351,7],[5433,8],[5451,7],[5708,8],[5770,8],[5846,8],[5880,7],[5925,7],[5972,7],[6014,7]]},"/getting.started.utm.html":{"position":[[3262,7],[3452,7],[4348,7],[4798,8]]},"/getting.started.vbox.html":{"position":[[2300,7],[2490,7],[3386,7]]},"/getting.started.vmware.html":{"position":[[2371,7],[2561,7],[3457,7],[3907,8]]},"/ml.html":{"position":[[1239,8],[1490,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[705,8],[1320,7]]}},"component":{}}],["desktop/v",{"_index":1504,"title":{},"name":{},"text":{"/ml.html":{"position":[[2505,13]]}},"component":{}}],["destin",{"_index":2150,"title":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_setting_the_destination_connection":{"position":[[12,11]]}},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[2285,11]]},"/segment.html":{"position":[[4819,11],[5556,11]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[7694,11]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1567,13],[6005,11],[6114,12],[6638,11],[6861,12],[6977,11],[24306,12],[24563,11],[24672,12],[24801,11],[25152,12],[25243,11],[25287,11]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1082,11]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[295,12],[392,11],[3359,11],[3398,12],[3866,12],[4179,12],[4347,12],[4365,12],[4451,12],[4535,11],[4653,12],[4934,12],[5104,12],[5214,11],[5478,12],[6394,11],[7563,11],[7715,11],[7849,11]]}},"component":{}}],["destroy",{"_index":3928,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[34832,8]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[4886,7]]}},"component":{}}],["detach",{"_index":2298,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[11888,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[2728,6],[8259,6]]}},"component":{}}],["detail",{"_index":1295,"title":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_1_specify_flow_details":{"position":[[21,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_1_specify_flow_details_2":{"position":[[21,7]]}},"name":{},"text":{"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[680,8]]},"/jupyter.html":{"position":[[3395,8],[4211,8]]},"/local.jupyter.hub.html":{"position":[[322,8],[2302,8],[5882,8]]},"/segment.html":{"position":[[4772,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[4341,7],[8264,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[24696,8],[24813,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[4297,6]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4034,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1019,7],[3174,8],[5142,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[751,8],[1557,8],[3059,8],[4473,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[10302,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1664,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1701,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[5374,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3752,7]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[499,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[8025,7],[9840,7],[10006,7]]},"/regulus/getting-started-with-regulus.html":{"position":[[663,7],[749,8]]},"/regulus/install-regulus-docker-image.html":{"position":[[8604,8],[9487,8]]},"/regulus/regulus-magic-reference.html":{"position":[[1549,7],[1611,7],[1978,7],[2207,7],[5106,8]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1693,7],[2018,7],[2642,7],[2931,7],[3160,7],[3459,7],[3754,7],[4196,7],[4846,7],[5146,7],[5230,8],[5506,7],[6268,7],[6569,7],[6977,7]]}},"component":{}}],["detect",{"_index":1733,"title":{},"name":{},"text":{"/nos.html":{"position":[[2013,6]]}},"component":{}}],["determin",{"_index":1118,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[794,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[6803,10],[7440,9],[10713,9],[25094,10],[25380,9]]},"/mule-teradata-connector/reference.html":{"position":[[33490,10],[33616,10],[34156,10],[39324,9]]}},"component":{}}],["dev",{"_index":301,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[984,3],[3214,4],[3378,3]]},"/dbt.html":{"position":[[1392,4],[1552,3]]},"/local.jupyter.hub.html":{"position":[[5564,3]]},"/odbc.ubuntu.html":{"position":[[426,3]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2392,3],[2405,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3305,3],[3318,4]]}},"component":{}}],["dev.git",{"_index":623,"title":{},"name":{},"text":{"/dbt.html":{"position":[[577,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[5432,7]]}},"component":{}}],["dev/cdrom",{"_index":1265,"title":{},"name":{},"text":{"/getting.started.vbox.html":{"position":[[5731,10]]}},"component":{}}],["dev/sdc",{"_index":2328,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[2606,8]]}},"component":{}}],["dev/sdc1",{"_index":2336,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[2672,9],[2692,9]]}},"component":{}}],["develop",{"_index":519,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[666,10]]},"/getting.started.utm.html":{"position":[[4900,11],[4970,13]]},"/getting.started.vbox.html":{"position":[[3726,11],[3796,13]]},"/getting.started.vmware.html":{"position":[[4009,11],[4079,13]]},"/nos.html":{"position":[[470,10]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[489,10]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[592,11]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[3499,10],[5541,9]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[650,12],[1119,12],[2173,9],[4387,9]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[138,7]]},"/jupyter-demos/index.html":{"position":[[354,11],[977,11],[1502,11],[1891,11],[2300,11]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[543,10],[5639,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1327,11]]},"/regulus/install-regulus-docker-image.html":{"position":[[1621,9]]}},"component":{}}],["devic",{"_index":59,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[841,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[195,7]]},"/run-vantage-express-on-aws.html":{"position":[[5466,6],[7757,6],[7904,6],[8051,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4537,6],[4684,6],[4831,6]]},"/vantage.express.gcp.html":{"position":[[3564,6],[3711,6],[3858,6]]}},"component":{}}],["devicename=/dev/sda1,ebs={volumesize=70",{"_index":2201,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[5481,40]]}},"component":{}}],["devtest",{"_index":3190,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1065,7]]}},"component":{}}],["df",{"_index":3465,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[6888,2]]}},"component":{}}],["df.to_sql('hous",{"_index":3394,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2830,20]]}},"component":{}}],["df=pandas.read_fwf('housing.csv",{"_index":3382,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2683,33]]}},"component":{}}],["df_feature_view",{"_index":3777,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6795,16]]}},"component":{}}],["di",{"_index":3389,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2775,6],[3473,4],[7239,6]]}},"component":{}}],["diabet",{"_index":3604,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[289,8],[2681,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2718,8]]}},"component":{}}],["diabetes→model_modul",{"_index":3690,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[5887,22]]}},"component":{}}],["diagram",{"_index":401,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3913,8]]},"/dbt.html":{"position":[[2023,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[362,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[6210,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2957,7],[3547,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2795,8]]}},"component":{}}],["dialect",{"_index":620,"title":{},"name":{},"text":{"/dbt.html":{"position":[[240,7]]}},"component":{}}],["dialog",{"_index":2685,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[7309,6]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1539,7]]}},"component":{}}],["dictionari",{"_index":1093,"title":{"/geojson-to-vantage.html#_open_the_geojson_file_and_type_it_as_a_dictionary":{"position":[[39,10]]}},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6960,10]]}},"component":{}}],["didn’t",{"_index":1238,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[6439,6]]},"/getting.started.vbox.html":{"position":[[6035,6]]},"/getting.started.vmware.html":{"position":[[5548,6]]},"/nos.html":{"position":[[6656,6]]},"/jupyter-demos/index.html":{"position":[[2332,6]]}},"component":{}}],["differ",{"_index":438,"title":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_move_data_from_different_systems_for_unified_query_processing":{"position":[[15,9]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[5024,9]]},"/jupyter.html":{"position":[[6451,9],[6732,9]]},"/ml.html":{"position":[[7999,10]]},"/run-vantage-express-on-aws.html":{"position":[[8636,10]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5416,10]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[75,9],[986,9],[1582,9]]},"/vantage.express.gcp.html":{"position":[[4443,10]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8079,9],[17338,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[10667,9],[10691,9],[20068,9]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[5576,9]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[3857,9]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[4960,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2588,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2625,9]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3165,9],[4337,9],[7100,9]]},"/mule-teradata-connector/reference.html":{"position":[[3015,9],[5347,9],[7640,9]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[976,9],[8529,9]]}},"component":{}}],["digest",{"_index":3952,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[39148,6]]}},"component":{}}],["digit",{"_index":3592,"title":{},"name":{},"text":{"/jupyter-demos/index.html":{"position":[[2110,7]]}},"component":{}}],["dim_custom",{"_index":661,"title":{},"name":{},"text":{"/dbt.html":{"position":[[3173,13]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[6531,13]]}},"component":{}}],["dimens",{"_index":482,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[6553,10]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[11969,9]]}},"component":{}}],["dimension",{"_index":404,"title":{"/advanced-dbt.html#_create_dimensional_model_with_baseline_data":{"position":[[7,11]]},"/dbt.html#_create_the_dimensional_model":{"position":[[11,11]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_dimensional_models_marts":{"position":[[0,11]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_create_the_dimensional_model":{"position":[[11,11]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[3995,11],[6216,11],[6302,11],[7128,11]]},"/dbt.html":{"position":[[1845,11],[2088,11],[2793,11],[3224,11],[3377,11],[3950,11],[4038,11],[4619,11]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[3019,11],[3494,11],[6194,11],[6589,11],[6885,11],[7520,11],[8061,11],[8215,11]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[4889,11]]}},"component":{}}],["dipedfunc",{"_index":3631,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2918,10]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2955,10]]}},"component":{}}],["dir",{"_index":1435,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[3105,3]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[5358,3]]}},"component":{}}],["direct",{"_index":784,"title":{},"name":{},"text":{"/fastload.html":{"position":[[3395,9]]},"/getting.started.utm.html":{"position":[[1884,6]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1714,11]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[496,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[6763,9]]}},"component":{}}],["direction=in",{"_index":2619,"title":{},"name":{},"text":{"/vantage.express.gcp.html":{"position":[[7236,12]]}},"component":{}}],["directli",{"_index":129,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2591,9],[3390,8],[3436,8],[5991,8]]},"/geojson-to-vantage.html":{"position":[[5290,8],[5602,8],[7611,8]]},"/local.jupyter.hub.html":{"position":[[1834,8]]},"/nos.html":{"position":[[6930,8]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[745,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8598,8],[20965,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[6954,8],[7038,10],[17581,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4759,8]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[1319,9]]}},"component":{}}],["directori",{"_index":298,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[915,10],[3018,9],[3059,9],[4478,9],[4747,9],[4917,9]]},"/dbt.html":{"position":[[516,10],[2379,10],[4323,10]]},"/fastload.html":{"position":[[975,9]]},"/getting.started.utm.html":{"position":[[1455,9]]},"/getting.started.vmware.html":{"position":[[1684,9]]},"/local.jupyter.hub.html":{"position":[[3694,10],[4413,9],[5737,9]]},"/mule.jdbc.example.html":{"position":[[2815,9]]},"/run-vantage-express-on-aws.html":{"position":[[5983,9]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2508,9]]},"/sto.html":{"position":[[3543,9],[5771,9],[6752,9]]},"/vantage.express.gcp.html":{"position":[[1790,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[3457,9],[4312,9],[5515,9]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[8751,10],[8769,9]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2009,10],[7782,10]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1212,10]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2464,10]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2190,9],[2234,9],[2498,10],[2647,10],[3578,10],[4038,11],[5216,11],[5259,9],[5299,9],[5981,10],[6038,10],[6293,9],[8586,9]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2333,10],[2416,9]]},"/regulus/install-regulus-docker-image.html":{"position":[[2223,9],[2304,9],[2676,11],[4053,9],[8207,11],[9228,9]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[829,9],[5564,10],[5625,10]]}},"component":{}}],["directqueri",{"_index":169,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3470,11]]}},"component":{}}],["disabl",{"_index":1139,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[2047,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[3613,9]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1445,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[7157,9]]},"/mule-teradata-connector/reference.html":{"position":[[33702,8],[35003,8]]}},"component":{}}],["disassoci",{"_index":2299,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[12108,12]]}},"component":{}}],["discard",{"_index":3923,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[34239,10]]}},"component":{}}],["disconnect",{"_index":4557,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[6364,13],[7399,13]]}},"component":{}}],["discount",{"_index":3003,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[14005,8]]}},"component":{}}],["discov",{"_index":2934,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11175,10]]}},"component":{}}],["discover_dag.pi",{"_index":4115,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[9695,15]]}},"component":{}}],["discover_dag.txt",{"_index":4111,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[9073,17]]}},"component":{}}],["discoveri",{"_index":3059,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[534,9]]}},"component":{}}],["discret",{"_index":3046,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[24077,12]]}},"component":{}}],["discuss",{"_index":3137,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[1345,9]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[7596,9]]}},"component":{}}],["disk",{"_index":1122,"title":{"/teradata-vantage-engine-architecture-and-concepts.html#_virtual_disks_vdisks":{"position":[[8,5]]}},"name":{},"text":{"/getting.started.utm.html":{"position":[[943,4],[2237,4],[2359,4],[2410,5],[2571,4]]},"/getting.started.vbox.html":{"position":[[741,4]]},"/getting.started.vmware.html":{"position":[[738,4]]},"/run-vantage-express-on-aws.html":{"position":[[5345,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[1161,4],[1182,5],[1211,4],[1459,4],[1537,4],[1602,4],[1849,4],[1914,4],[1980,4],[2227,4],[2292,4],[2593,5]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[911,5],[2306,6],[2539,5],[2834,4],[3307,5],[3370,5],[3403,5],[5442,4],[6172,4]]},"/vantage.express.gcp.html":{"position":[[540,5]]},"/mule-teradata-connector/reference.html":{"position":[[14096,5],[41281,5],[42548,4]]}},"component":{}}],["disk,imag",{"_index":2612,"title":{},"name":{},"text":{"/vantage.express.gcp.html":{"position":[[949,10],[1237,10],[1525,10]]}},"component":{}}],["disk1",{"_index":1149,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[2325,6]]},"/run-vantage-express-on-aws.html":{"position":[[7814,11]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4594,11]]},"/vantage.express.gcp.html":{"position":[[3621,11]]}},"component":{}}],["disk2",{"_index":1150,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[2333,6]]},"/run-vantage-express-on-aws.html":{"position":[[7961,11]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4741,11]]},"/vantage.express.gcp.html":{"position":[[3768,11]]}},"component":{}}],["disk3",{"_index":1151,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[2341,5]]},"/run-vantage-express-on-aws.html":{"position":[[8108,11]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4888,11]]},"/vantage.express.gcp.html":{"position":[[3915,11]]}},"component":{}}],["disk=boot=yes,devic",{"_index":2610,"title":{},"name":{},"text":{"/vantage.express.gcp.html":{"position":[[920,20],[1208,20],[1496,20]]}},"component":{}}],["disk_id",{"_index":2327,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[1968,8],[2346,8]]}},"component":{}}],["disk_id=$(az",{"_index":2326,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[1836,12],[2214,12]]}},"component":{}}],["disk_uuid=$(blkid",{"_index":2338,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[2709,17]]}},"component":{}}],["diskid",{"_index":2324,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[1445,7],[1591,7]]}},"component":{}}],["display",{"_index":211,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[4715,8]]},"/jupyter.html":{"position":[[2096,7],[6071,7]]},"/segment.html":{"position":[[3618,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[7709,9],[7862,9],[25598,9],[25751,9]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[2145,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6786,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[5841,9]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[5301,8]]}},"component":{}}],["display_name=\"housing_training_deploy",{"_index":3526,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[9972,39]]}},"component":{}}],["display_name=\"new_data_h",{"_index":3564,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[13141,32]]}},"component":{}}],["distanc",{"_index":990,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4696,8]]}},"component":{}}],["distinct",{"_index":2931,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[10800,8]]},"/mule-teradata-connector/reference.html":{"position":[[39902,8]]}},"component":{}}],["distribut",{"_index":1483,"title":{"/teradata-vantage-engine-architecture-and-concepts.html#_teradata_data_distribution":{"position":[[14,12]]}},"name":{},"text":{"/ml.html":{"position":[[921,11]]},"/run-vantage-express-on-aws.html":{"position":[[257,11]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[435,11],[5249,12],[5357,10],[5694,11],[6391,13],[6493,12]]}},"component":{}}],["dln",{"_index":780,"title":{},"name":{},"text":{"/fastload.html":{"position":[[3247,3],[4839,4],[5590,3],[6162,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[4730,3],[5065,4]]}},"component":{}}],["dn",{"_index":1361,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[3097,3]]},"/run-vantage-express-on-aws.html":{"position":[[1257,3],[1346,3]]}},"component":{}}],["do",{"_index":2929,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[10144,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6158,5]]}},"component":{}}],["doc",{"_index":579,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2623,4]]},"/dbt.html":{"position":[[4268,4],[4470,5],[4494,4],[4817,4],[4836,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7723,4],[7929,5],[7953,4],[8418,4],[8437,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[737,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3999,4]]}},"component":{}}],["docker",{"_index":1318,"title":{"/jupyter.html#_teradata_jupyter_docker_image":{"position":[[17,6]]},"/local.jupyter.hub.html#_use_teradata_jupyter_docker_image":{"position":[[21,6]]},"/local.jupyter.hub.html#_install_teradata_jupyter_docker_image_in_your_registry":{"position":[[25,6]]},"/local.jupyter.hub.html#_use_teradata_jupyter_docker_image_in_jupyterhub":{"position":[[21,6]]},"/local.jupyter.hub.html#_customize_teradata_jupyter_docker_image":{"position":[[27,6]]},"/local.jupyter.hub.html#_customize_an_existing_docker_image_to_include_teradata_extensions":{"position":[[22,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_docker":{"position":[[8,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_docker_compose_and_docker_environment_configuration_files":{"position":[[8,6],[27,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_create_the_airflow_environment_in_docker":{"position":[[34,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[36,6]]},"/regulus/install-regulus-docker-image.html#_install_workspaces_using_docker_engine":{"position":[[25,6]]},"/regulus/install-regulus-docker-image.html#_install_workspaces_using_docker_compose":{"position":[[25,6]]},"/regulus/install-regulus-docker-image.html#_install_jupyterlab_using_docker_engine":{"position":[[25,6]]},"/regulus/install-regulus-docker-image.html#_install_jupyterlab_using_docker_compose":{"position":[[25,6]]}},"name":{"/regulus/install-regulus-docker-image.html":{"position":[[16,6]]}},"text":{"/jupyter.html":{"position":[[779,6],[1047,6],[1083,6],[1805,6],[1963,6],[2079,6],[2986,6],[3118,6],[4825,6],[4877,6],[5395,6],[5599,6],[5714,6],[5900,6],[5931,6],[6054,6],[6171,6],[6478,7],[6844,6]]},"/local.jupyter.hub.html":{"position":[[222,6],[258,6],[633,6],[1100,6],[1234,6],[1342,6],[1460,6],[1569,6],[1644,6],[1661,6],[1752,6],[1821,6],[2499,6],[2749,6],[3438,6],[3788,6],[3836,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[3493,6],[3799,6],[5587,6],[5620,6],[5677,6],[5793,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[621,6],[672,6],[698,6],[730,6],[1313,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[6305,6],[7006,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[408,6],[2509,6],[2720,6],[2729,6],[2745,6],[2768,6],[2784,6],[2800,6],[2826,6],[2845,6],[2931,6],[3060,7],[3085,6],[3095,6],[3129,6],[3177,6],[3269,6],[3303,6],[3331,6],[3347,6],[3485,6],[3502,6],[3594,6],[3632,6],[3741,6],[3801,6],[4236,6],[4370,6],[4849,6],[4908,6],[4944,6],[4991,6],[5118,6],[6243,6],[6324,6],[6363,6],[6929,6],[8049,7],[8155,8],[8296,7],[8422,6],[8469,6],[8633,6]]},"/regulus/getting-started-with-regulus.html":{"position":[[435,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[1286,7],[1683,7],[1715,7],[1795,6],[1908,6],[1926,6],[1938,6],[2569,6],[2583,6],[2606,6],[2716,6],[3253,6],[3321,6],[3367,6],[3438,6],[4073,6],[4130,6],[7955,6],[7969,6],[8046,6],[8140,6],[8247,6],[8733,6],[8801,6],[8847,6],[8918,6],[9248,6],[9305,6]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[680,7]]}},"component":{}}],["dockerfil",{"_index":1432,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[2623,10],[2723,10],[3725,10],[3810,10]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[3765,10],[5636,10]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3526,10],[3618,10],[3656,10],[4127,10],[4260,10],[6309,10],[8497,10]]}},"component":{}}],["dockerhub",{"_index":4482,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[8068,9]]}},"component":{}}],["document",{"_index":26,"title":{"/dbt.html#_generate_documentation":{"position":[[9,13]]},"/geojson-to-vantage.html#_option_1_load_a_geojson_document_into_vantage":{"position":[[25,8]]},"/geojson-to-vantage.html#_get_and_load_the_geojson_document":{"position":[[25,8]]},"/geojson-to-vantage.html#_load_the_geojson_document_in_vantage":{"position":[[17,8]]},"/geojson-to-vantage.html#_option_2_prepare_a_geojson_document_with_python_and_load_it_into_vantage":{"position":[[28,8]]},"/geojson-to-vantage.html#_get_and_load_the_geojson_document_2":{"position":[[25,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_generate_documentation":{"position":[[9,13]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[139,14]]},"/advanced-dbt.html":{"position":[[2702,14]]},"/create-parquet-files-in-object-storage.html":{"position":[[1275,13],[1330,14],[1779,14]]},"/dbt.html":{"position":[[4174,10],[4220,13],[4378,14],[4798,13],[4853,13],[4887,13]]},"/geojson-to-vantage.html":{"position":[[485,8],[990,11],[1227,8],[1401,8],[2240,10],[3048,8],[5045,8],[5219,8],[5274,8],[5326,9],[5456,8],[5523,8],[6348,8],[7441,10],[7888,10]]},"/getting.started.utm.html":{"position":[[200,8]]},"/getting.started.vbox.html":{"position":[[200,8]]},"/getting.started.vmware.html":{"position":[[200,8]]},"/jdbc.html":{"position":[[672,13]]},"/local.jupyter.hub.html":{"position":[[1934,14],[2167,14],[2393,14]]},"/mule.jdbc.example.html":{"position":[[3376,8]]},"/segment.html":{"position":[[5568,13]]},"/vantage.express.gcp.html":{"position":[[741,14]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1109,14],[2578,14]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[5770,14],[6184,14],[6254,14],[6348,14]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1562,13]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[1363,9]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7539,11],[7670,13],[7837,14],[8399,13],[8454,13],[8488,13]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[7871,13],[7909,13]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[498,13],[517,8]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[850,8],[9453,13]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[203,8],[7339,13],[7373,13]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1015,8],[1238,8]]},"/regulus/getting-started-with-regulus.html":{"position":[[177,8]]},"/regulus/install-regulus-docker-image.html":{"position":[[1213,8],[4730,14]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[222,8],[301,9]]}},"component":{}}],["doesn't",{"_index":3363,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1592,7]]}},"component":{}}],["doesn’t",{"_index":365,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3074,7]]},"/fastload.html":{"position":[[1795,7],[7051,7]]},"/getting.started.vmware.html":{"position":[[1241,7]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[884,7]]},"/jupyter.html":{"position":[[743,7],[5408,7],[5451,7]]},"/ml.html":{"position":[[358,7]]},"/segment.html":{"position":[[464,7],[5182,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[10129,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9795,7]]},"/mule-teradata-connector/reference.html":{"position":[[1653,7],[2533,7],[35774,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1890,7],[8596,7]]}},"component":{}}],["domain",{"_index":4479,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[6239,6]]}},"component":{}}],["don't",{"_index":535,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[1530,5]]}},"component":{}}],["done",{"_index":320,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[1600,4]]},"/getting.started.utm.html":{"position":[[2628,4]]},"/ml.html":{"position":[[9049,4]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[5973,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[3164,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[25889,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2717,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[6606,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[5048,4]]},"/regulus/regulus-magic-reference.html":{"position":[[4032,4],[4979,4]]}},"component":{}}],["don’t",{"_index":316,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[1461,5]]},"/create-parquet-files-in-object-storage.html":{"position":[[1429,5],[2490,5],[3214,5]]},"/dbt.html":{"position":[[855,5]]},"/getting.started.utm.html":{"position":[[2984,5]]},"/getting.started.vbox.html":{"position":[[2022,5]]},"/getting.started.vmware.html":{"position":[[1153,5],[2093,5]]},"/ml.html":{"position":[[181,5],[7229,5]]},"/run-vantage-express-on-aws.html":{"position":[[991,5],[4754,5],[6367,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[914,5],[3147,5]]},"/segment.html":{"position":[[549,5]]},"/sto.html":{"position":[[464,5],[613,5],[2536,5]]},"/vantage.express.gcp.html":{"position":[[2174,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[6255,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1578,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1243,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[1424,5],[1516,5],[6381,5],[6561,5]]},"/regulus/regulus-magic-reference.html":{"position":[[3706,5]]}},"component":{}}],["dot",{"_index":2703,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11137,3]]}},"component":{}}],["doubl",{"_index":1206,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[5043,6]]},"/getting.started.vbox.html":{"position":[[1739,6],[3869,6]]},"/getting.started.vmware.html":{"position":[[1762,6],[4152,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[5008,6],[11129,7],[11144,6]]},"/mule-teradata-connector/reference.html":{"position":[[39780,6]]}},"component":{}}],["down",{"_index":3051,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[24896,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8648,4],[8691,5]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1331,5]]}},"component":{}}],["down/hardstop",{"_index":1186,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[3888,14]]},"/getting.started.vbox.html":{"position":[[2926,14]]},"/getting.started.vmware.html":{"position":[[2997,14]]}},"component":{}}],["download",{"_index":128,"title":{"/getting.started.utm.html#_download_required_software":{"position":[[0,8]]},"/getting.started.vbox.html#_download_required_software":{"position":[[0,8]]},"/getting.started.vmware.html#_download_required_software":{"position":[[0,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Download-sample-data":{"position":[[0,8]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2557,8],[2601,8],[2730,9]]},"/fastload.html":{"position":[[677,8],[821,10],[866,10],[939,10]]},"/geojson-to-vantage.html":{"position":[[1791,8]]},"/getting.started.utm.html":{"position":[[1294,9],[1475,10],[1516,10],[2257,10]]},"/getting.started.vbox.html":{"position":[[1022,9],[1586,10]]},"/getting.started.vmware.html":{"position":[[979,9],[1704,10],[1745,10]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[273,8],[369,8],[406,8],[495,9]]},"/local.jupyter.hub.html":{"position":[[1447,8],[3351,8],[3513,9],[3534,8],[5932,8],[5978,8]]},"/ml.html":{"position":[[964,9],[978,8]]},"/mule.jdbc.example.html":{"position":[[234,8]]},"/run-vantage-express-on-aws.html":{"position":[[5974,8],[6176,8],[6223,8],[6282,8],[6562,9],[6731,8],[6825,8],[7119,10]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2499,8],[2956,8],[3003,8],[3062,8],[3342,9],[3511,8],[3605,8],[3899,10]]},"/segment.html":{"position":[[1195,9]]},"/vantage.express.gcp.html":{"position":[[1781,8],[1983,8],[2030,8],[2089,8],[2369,9],[2538,8],[2632,8],[2926,10]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1730,8],[1817,8],[3268,8],[3355,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1065,8],[1110,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[768,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2326,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[584,11],[632,8],[797,8],[837,8],[883,8],[921,8],[1170,8],[1210,8],[1256,8],[1294,8],[3860,8],[3962,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[621,11],[669,8],[834,8],[874,8],[920,8],[958,8],[1207,8],[1247,8],[1293,8],[1331,8]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3766,9]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[624,8],[682,10],[936,10]]},"/regulus/getting-started-with-regulus.html":{"position":[[2479,8],[3118,8]]},"/regulus/install-regulus-docker-image.html":{"position":[[1694,8],[3048,9],[8417,9]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[751,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[531,8],[675,10],[720,10],[793,10]]}},"component":{}}],["downloads/v",{"_index":1488,"title":{},"name":{},"text":{"/ml.html":{"position":[[1315,15],[1593,15]]}},"component":{}}],["doy_utc",{"_index":2713,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11531,8],[15153,8],[17618,7],[18865,8],[22762,8]]}},"component":{}}],["dpkg",{"_index":1816,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[677,4]]}},"component":{}}],["drag",{"_index":1260,"title":{},"name":{},"text":{"/getting.started.vbox.html":{"position":[[5252,4]]},"/ml.html":{"position":[[1206,4],[1420,4],[1455,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[108,4],[3927,4],[4443,4],[4919,4],[5098,4],[5170,4],[5626,4],[5731,4],[5973,4]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[2028,4],[3174,4]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1171,8]]}},"component":{}}],["dramat",{"_index":33,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[267,8]]}},"component":{}}],["drift",{"_index":3355,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[963,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4243,5],[4701,5],[5103,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[6688,5],[7154,5]]}},"component":{}}],["drive",{"_index":1146,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[2149,7],[2180,6],[2213,6],[2647,7]]},"/getting.started.vbox.html":{"position":[[5594,6]]}},"component":{}}],["driven",{"_index":389,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3625,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4087,6]]}},"component":{}}],["driver",{"_index":92,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1614,6]]},"/geojson-to-vantage.html":{"position":[[5714,6]]},"/jdbc.html":{"position":[[386,6],[764,7],[1027,6],[1089,6]]},"/jupyter.html":{"position":[[1196,8],[1628,6],[7163,6]]},"/local.jupyter.hub.html":{"position":[[773,7]]},"/odbc.ubuntu.html":{"position":[[102,6],[470,6],[817,8],[849,6],[896,6],[945,6],[1354,6],[1598,9],[1632,6],[1801,6],[1931,6]]},"/teradatasql.html":{"position":[[138,6],[207,6],[457,6],[901,7],[1021,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[10677,6],[11313,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1606,8],[3606,6],[7129,7]]},"/mule-teradata-connector/reference.html":{"position":[[2094,6],[3735,6],[6065,6],[8363,6],[10192,6],[12407,6],[14176,6],[15670,6],[18729,6],[21890,6],[24745,6],[28412,6],[32452,6],[35415,6],[35480,6]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[572,6],[664,7],[823,7],[974,6],[997,6]]},"/query-service/send-queries-using-rest-api.html":{"position":[[176,8]]}},"component":{}}],["driver=/opt/teradata/client/17.10/odbc_64/lib/tdataodbc_sb64.so",{"_index":1823,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[958,63]]}},"component":{}}],["driver_hourly_stats:acc_r",{"_index":3761,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[5115,31],[7490,31]]}},"component":{}}],["driver_hourly_stats:avg_daily_trip",{"_index":3762,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[5147,37],[7555,37]]}},"component":{}}],["driver_hourly_stats:conv_r",{"_index":3760,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[5082,32],[7522,32]]}},"component":{}}],["driver_id",{"_index":3756,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4911,10],[7057,9],[7192,9],[7272,12],[7293,11],[7317,11],[7337,12],[7358,11],[7382,11],[7420,12],[7444,12]]}},"component":{}}],["driver_perform",{"_index":3748,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4298,22]]}},"component":{}}],["driver_repo.pi",{"_index":3711,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2380,14]]}},"component":{}}],["driver_stats_fv",{"_index":3735,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3975,15]]}},"component":{}}],["driver_stats_sourc",{"_index":3730,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3731,19]]}},"component":{}}],["drop",{"_index":765,"title":{},"name":{},"text":{"/fastload.html":{"position":[[2760,4],[2784,4],[2813,4],[5185,4],[5209,4],[5238,4]]},"/getting.started.vbox.html":{"position":[[5261,4]]},"/ml.html":{"position":[[1213,4],[1427,5],[1464,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[24891,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[117,4],[4376,4],[4671,5]]},"/mule-teradata-connector/reference.html":{"position":[[4476,8],[6802,8],[9012,8],[10841,8],[13056,8],[14825,8],[16319,8],[19378,8],[22499,8],[25483,8],[29061,8],[33101,8]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1326,4]]},"/regulus/getting-started-with-regulus.html":{"position":[[1918,4],[2002,4],[2660,4],[3561,4],[3578,4],[3602,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[4226,6],[4267,6],[4311,6],[4355,6]]}},"component":{}}],["dropoff_datetim",{"_index":1852,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1112,16],[3666,16],[3935,16]]}},"component":{}}],["dropoff_latitud",{"_index":1860,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1239,16],[3816,16],[4043,16]]}},"component":{}}],["dropoff_longitud",{"_index":1859,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1221,17],[3791,17],[4023,17]]}},"component":{}}],["dsl",{"_index":3418,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[4241,3],[4284,3]]}},"component":{}}],["dsl.pipelin",{"_index":3506,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[8919,14],[12406,14]]}},"component":{}}],["dst_offset_minut",{"_index":2719,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11721,19],[15343,19],[17711,18],[19055,19],[22952,19]]}},"component":{}}],["dt",{"_index":2037,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[8268,2]]}},"component":{}}],["dt%h:%m:%",{"_index":3774,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6553,13]]}},"component":{}}],["dtacop",{"_index":4565,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[6795,7]]}},"component":{}}],["dtype=float32",{"_index":3743,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4154,15],[4193,15]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5632,15],[5669,15]]}},"component":{}}],["dtype=int64",{"_index":3741,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4116,13],[4239,13]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5712,13],[5753,13],[5794,13],[5835,13]]}},"component":{}}],["due",{"_index":412,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[4281,3]]}},"component":{}}],["duplic",{"_index":740,"title":{},"name":{},"text":{"/fastload.html":{"position":[[1864,9]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1959,9],[7336,9]]}},"component":{}}],["durat",{"_index":2002,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[6135,8],[7444,8]]}},"component":{}}],["dure",{"_index":1043,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[7558,6],[9547,6]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[918,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[849,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3712,6],[6746,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[4467,6]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[4963,6]]}},"component":{}}],["dvd",{"_index":1261,"title":{},"name":{},"text":{"/getting.started.vbox.html":{"position":[[5553,3]]}},"component":{}}],["dw",{"_index":2660,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[4688,3]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[792,2]]}},"component":{}}],["dyi",{"_index":520,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[677,3]]},"/nos.html":{"position":[[481,3]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[500,3]]}},"component":{}}],["dynam",{"_index":3848,"title":{},"name":{},"text":{"/mule-teradata-connector/index.html":{"position":[[888,11]]},"/mule-teradata-connector/reference.html":{"position":[[766,7],[38583,7]]},"/mule-teradata-connector/release-notes.html":{"position":[[488,11]]}},"component":{}}],["e",{"_index":626,"title":{},"name":{},"text":{"/dbt.html":{"position":[[1762,1]]},"/jupyter.html":{"position":[[1993,1],[5814,1],[5943,1]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2905,1],[5402,1]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2015,1],[2858,1]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[8578,2]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2347,1]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1139,1],[2205,1],[2338,2]]}},"component":{}}],["e.g",{"_index":788,"title":{},"name":{},"text":{"/fastload.html":{"position":[[3616,4]]},"/ml.html":{"position":[[1297,5],[1583,5]]},"/run-vantage-express-on-aws.html":{"position":[[6297,4],[6892,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3077,4],[3672,5]]},"/vantage.express.gcp.html":{"position":[[2104,4],[2699,5],[7451,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[10163,5]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3428,5],[4777,5],[5205,5],[5505,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2549,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4577,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[6273,3],[6418,3],[6564,3]]},"/mule-teradata-connector/reference.html":{"position":[[16859,5]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1395,5]]}},"component":{}}],["e2b46ec98274",{"_index":4073,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[7163,12]]}},"component":{}}],["each",{"_index":426,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[4661,4],[4694,4]]},"/dbt.html":{"position":[[2390,4],[3536,4],[3570,4]]},"/geojson-to-vantage.html":{"position":[[3156,4],[3169,5],[6721,4],[7009,4]]},"/getting.started.utm.html":{"position":[[2566,4]]},"/ml.html":{"position":[[3475,4]]},"/nos.html":{"position":[[3027,4]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[180,4],[1525,4]]},"/sto.html":{"position":[[1345,4],[1676,4]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[622,4],[2488,4],[4341,4],[4672,4],[5908,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[10735,4],[13986,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1312,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[10444,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[6086,4],[6827,4],[7064,4],[7595,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6549,4],[6635,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[4952,4],[8879,4],[10201,5],[10280,4]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1774,4]]},"/mule-teradata-connector/reference.html":{"position":[[11316,4],[11481,4],[16786,4],[16944,4],[19845,4],[20016,4],[22967,4],[23138,4],[25942,4],[26113,4],[26283,4],[26454,4],[26584,4],[29525,4],[29691,4],[34717,4],[39513,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4183,4]]},"/query-service/send-queries-using-rest-api.html":{"position":[[5492,4],[5508,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[6541,4],[7787,4]]},"/regulus/regulus-magic-reference.html":{"position":[[3686,4]]}},"component":{}}],["earli",{"_index":876,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[939,5]]},"/regulus/getting-started-with-regulus.html":{"position":[[113,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[113,5]]},"/regulus/regulus-magic-reference.html":{"position":[[113,5]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[113,5]]}},"component":{}}],["earlier",{"_index":1026,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[6632,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[6684,7]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[947,8]]}},"component":{}}],["easi",{"_index":1032,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[7128,4]]},"/nos.html":{"position":[[5268,4]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10614,4]]},"/sto.html":{"position":[[6573,4]]}},"component":{}}],["easier",{"_index":1496,"title":{},"name":{},"text":{"/ml.html":{"position":[[1863,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[10992,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[10963,6]]}},"component":{}}],["easili",{"_index":590,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[3122,6]]},"/sto.html":{"position":[[129,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8799,6],[13501,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[416,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[421,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[8468,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[3277,6],[8757,6]]}},"component":{}}],["east",{"_index":2898,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4881,4]]}},"component":{}}],["eb",{"_index":2827,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1829,3],[2110,3]]}},"component":{}}],["ec02012022",{"_index":1394,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[6195,10]]}},"component":{}}],["ec06172022.zip",{"_index":2852,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[3239,14],[3337,14]]}},"component":{}}],["ec2",{"_index":2111,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[318,3],[1159,3],[1287,3],[1431,3],[1605,3],[1756,3],[1909,3],[2064,3],[2218,3],[2450,3],[2615,3],[2830,3],[3019,3],[3225,3],[3490,3],[3611,3],[3763,3],[3953,3],[4119,3],[4285,3],[4443,3],[4571,3],[4793,3],[5095,3],[5373,3],[5734,3],[11340,3],[11649,3],[11785,3],[11884,3],[11991,3],[12104,3],[12183,3],[12283,3],[12358,3]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2212,3],[2931,3]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[129,3],[871,3],[1353,3],[1730,3],[2220,3]]}},"component":{}}],["echo",{"_index":2342,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[2757,4]]},"/segment.html":{"position":[[2110,4],[2276,4]]},"/sto.html":{"position":[[1169,4],[1966,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2341,4],[5497,4]]}},"component":{}}],["eci",{"_index":4567,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[6886,3]]}},"component":{}}],["ecosystem",{"_index":2630,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1241,10]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[902,10]]}},"component":{}}],["edg",{"_index":3692,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[7028,4]]}},"component":{}}],["edit",{"_index":218,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[5065,4],[5171,4]]},"/create-parquet-files-in-object-storage.html":{"position":[[628,8]]},"/ml.html":{"position":[[1993,4]]},"/mule.jdbc.example.html":{"position":[[1587,4]]},"/nos.html":{"position":[[432,8]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[451,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[144,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[3526,9]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1315,7],[6049,4],[10398,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[5178,9],[6810,9],[6896,9]]}},"component":{}}],["editor",{"_index":220,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[5101,6]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[78,7]]}},"component":{}}],["ef",{"_index":4176,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6386,6]]}},"component":{}}],["effect",{"_index":71,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1051,12]]}},"component":{}}],["effici",{"_index":692,"title":{"/fastload.html":{"position":[[20,11]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[20,11]]}},"name":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[14,11]]}},"text":{"/fastload.html":{"position":[[330,11],[1578,9]]},"/geojson-to-vantage.html":{"position":[[5615,11],[5768,10]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1669,11]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[4738,9],[5230,9],[5594,9],[5967,9]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2517,11]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9668,9]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[4652,9]]},"/regulus/install-regulus-docker-image.html":{"position":[[6345,11]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[442,12]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[189,11],[1663,9]]}},"component":{}}],["eg",{"_index":898,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[2140,4],[7788,4]]}},"component":{}}],["ein",{"_index":774,"title":{},"name":{},"text":{"/fastload.html":{"position":[[3036,3],[4784,4],[5379,3],[6107,4],[6844,4],[6922,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[4519,3],[5010,4],[8389,4],[8467,4]]}},"component":{}}],["elabor",{"_index":3722,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3076,10]]}},"component":{}}],["elaps",{"_index":4573,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[7584,7],[7650,7],[7705,7],[7760,7]]}},"component":{}}],["elast",{"_index":2638,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1555,11]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1757,11]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1216,11]]}},"component":{}}],["element",{"_index":73,"title":{"/mule-teradata-connector/examples-configuration.html#_configure_a_global_element_for_the_connector":{"position":[[19,7]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1073,8],[4793,8]]},"/fastload.html":{"position":[[2896,8]]},"/sto.html":{"position":[[5154,7]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[384,7],[2253,7],[3468,7],[3557,7],[3786,7],[4333,7],[4418,7]]},"/mule-teradata-connector/index.html":{"position":[[514,8],[534,8]]},"/mule-teradata-connector/reference.html":{"position":[[37896,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[725,8]]}},"component":{}}],["elements—pow",{"_index":61,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[861,14]]}},"component":{}}],["elev",{"_index":1248,"title":{},"name":{},"text":{"/getting.started.vbox.html":{"position":[[1303,8],[1404,8]]}},"component":{}}],["elig",{"_index":3855,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[838,8],[957,9],[38666,8]]}},"component":{}}],["elimin",{"_index":4434,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[508,11]]}},"component":{}}],["elt",{"_index":283,"title":{"/advanced-dbt.html#_mocking_the_elt_process":{"position":[[12,3]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[492,3],[4160,3]]},"/geojson-to-vantage.html":{"position":[[728,3],[10449,3]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1254,3]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[7364,3]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[720,3]]}},"component":{}}],["elt(extract",{"_index":4155,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[4558,11]]}},"component":{}}],["em",{"_index":4283,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[6133,2]]}},"component":{}}],["email",{"_index":2665,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[5557,5],[5605,5],[6746,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[23848,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1831,5]]}},"component":{}}],["embed",{"_index":2888,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[3774,8],[3884,8]]}},"component":{}}],["ember",{"_index":853,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[39,5]]}},"component":{}}],["emem",{"_index":4288,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[6293,4]]}},"component":{}}],["emerg",{"_index":3584,"title":{},"name":{},"text":{"/jupyter-demos/index.html":{"position":[[1316,8]]}},"component":{}}],["emji",{"_index":4292,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[6419,4]]}},"component":{}}],["employ",{"_index":437,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[5017,6],[5288,6]]}},"component":{}}],["employe",{"_index":1213,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[5450,8]]},"/getting.started.vbox.html":{"position":[[4276,8]]},"/getting.started.vmware.html":{"position":[[4559,8]]},"/mule.jdbc.example.html":{"position":[[1143,9]]},"/run-vantage-express-on-aws.html":{"position":[[9334,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6114,8]]},"/vantage.express.gcp.html":{"position":[[5141,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[896,8]]}},"component":{}}],["empti",{"_index":737,"title":{},"name":{},"text":{"/fastload.html":{"position":[[1724,5],[2861,5]]},"/ml.html":{"position":[[2756,6],[2807,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4107,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3408,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1818,5]]}},"component":{}}],["emul",{"_index":1115,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[724,7],[1606,7]]}},"component":{}}],["emview",{"_index":4307,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[6787,7]]}},"component":{}}],["emwork",{"_index":4290,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[6367,6]]}},"component":{}}],["enabl",{"_index":517,"title":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_enable_data_catalog_api":{"position":[[0,6]]}},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[605,7]]},"/getting.started.utm.html":{"position":[[3753,7]]},"/getting.started.vbox.html":{"position":[[2791,7]]},"/getting.started.vmware.html":{"position":[[2862,7]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[190,6]]},"/ml.html":{"position":[[1412,7]]},"/nos.html":{"position":[[409,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[428,7]]},"/run-vantage-express-on-aws.html":{"position":[[1250,6],[1339,6],[1555,6],[8541,7],[10829,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5321,7],[7609,6]]},"/segment.html":{"position":[[1689,6],[1744,6]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[358,7],[1641,7],[2041,6],[2245,7],[4462,7]]},"/vantage.express.gcp.html":{"position":[[1042,6],[1330,6],[1618,6],[4348,7],[6636,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[404,7],[1518,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1327,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1064,7],[1720,7],[3415,7],[3453,7],[4033,6],[4717,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1179,7],[1906,7],[1988,6],[2347,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[937,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4206,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3552,8],[9631,7],[9777,8]]},"/mule-teradata-connector/index.html":{"position":[[187,8],[844,7]]},"/mule-teradata-connector/reference.html":{"position":[[187,8],[22609,7],[36444,7],[36505,7],[36531,7],[36600,7]]},"/mule-teradata-connector/release-notes.html":{"position":[[187,8]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[1096,6],[1254,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3296,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5307,8],[7411,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[524,7],[2511,8]]},"/regulus/install-regulus-docker-image.html":{"position":[[212,7],[5514,8],[5543,8],[7057,6]]}},"component":{}}],["encod",{"_index":4212,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[1772,7],[1849,7],[2277,7]]}},"component":{}}],["encompass",{"_index":459,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[5689,11]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[3141,12]]}},"component":{}}],["encrypt",{"_index":2877,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1278,8],[5899,10],[6272,11],[8033,10],[8066,10],[8205,10],[8243,10],[24457,10]]}},"component":{}}],["end",{"_index":822,"title":{},"name":{},"text":{"/fastload.html":{"position":[[4998,3],[6321,3]]},"/ml.html":{"position":[[4242,3],[4306,3],[4376,3],[4447,3],[4518,4],[4592,4],[4666,4],[4740,4],[4814,4],[4888,4],[4961,4],[5030,4],[5099,4],[5204,4],[5308,4],[5412,4],[5511,4],[5615,4],[5719,4],[5835,4],[5948,4],[6061,4],[6174,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9858,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[8234,15]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[189,3],[196,3],[7437,3],[7444,3]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9267,3],[9274,3]]},"/mule-teradata-connector/reference.html":{"position":[[20540,4],[20725,5],[27582,4],[37854,3]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[6492,3],[7799,4],[7920,3],[7989,4]]}},"component":{}}],["endpoint",{"_index":2651,"title":{"/cloud-guides/sagemaker-with-teradata-vantage.html#_create_an_endpoint_configuration":{"position":[[10,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html#_create_endpoint":{"position":[[7,8]]}},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[3433,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[4675,8],[5164,8],[5353,8],[5468,8],[5553,8],[5657,8],[5692,8],[5759,8],[5836,9],[5879,8],[6259,9]]},"/query-service/send-queries-using-rest-api.html":{"position":[[7948,9],[8683,9],[9243,9],[9927,9],[10842,9],[11530,9]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1769,8]]}},"component":{}}],["endpoint=$service_url",{"_index":2404,"title":{},"name":{},"text":{"/segment.html":{"position":[[4379,21]]}},"component":{}}],["enforc",{"_index":2891,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4187,8]]}},"component":{}}],["eng",{"_index":3539,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[10867,3]]}},"component":{}}],["engin",{"_index":268,"title":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[17,6]]},"/teradata-vantage-engine-architecture-and-concepts.html#_teradata_vantage_engine_architecture_components":{"position":[[17,6]]},"/teradata-vantage-engine-architecture-and-concepts.html#_parsing_engines_pe":{"position":[[8,7]]},"/regulus/install-regulus-docker-image.html#_install_workspaces_using_docker_engine":{"position":[[32,6]]},"/regulus/install-regulus-docker-image.html#_install_jupyterlab_using_docker_engine":{"position":[[32,6]]},"/regulus/using-regulus-workspace-cli.html#_project_engine_deploy":{"position":[[8,6]]},"/regulus/using-regulus-workspace-cli.html#_project_engine_suspend":{"position":[[8,6]]},"/regulus/using-regulus-workspace-cli.html#_project_engine_list":{"position":[[8,6]]}},"name":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[17,6]]}},"text":{"/advanced-dbt.html":{"position":[[178,11]]},"/run-vantage-express-on-aws.html":{"position":[[216,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[186,7]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[119,6],[233,7],[817,6],[844,7],[1075,6],[1182,7],[1219,6],[4354,6],[4844,6],[5095,7],[5115,6],[6109,7],[6413,6]]},"/vantage.express.gcp.html":{"position":[[192,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8841,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[8518,6]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[1315,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1785,7],[1830,6],[5525,6],[8137,6],[8224,7],[10819,6],[10907,7],[11722,6],[13703,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4479,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[6175,7],[6320,7],[6466,7]]},"/mule-teradata-connector/index.html":{"position":[[500,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2852,6]]},"/regulus/getting-started-with-regulus.html":{"position":[[1263,6],[3747,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[259,6],[350,6],[430,7],[1093,7],[1663,6],[2576,6],[5355,6],[5418,6],[6185,7],[6290,7],[6413,6],[6603,6],[7962,6]]},"/regulus/regulus-magic-reference.html":{"position":[[510,6],[1952,7],[2167,7],[2998,6],[3285,7],[3374,6],[3472,6],[3573,6],[3748,6],[3887,7],[3939,6],[4012,6],[4202,6],[4245,7],[4604,7]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1165,6],[1211,6],[1290,7],[1375,7],[1405,6],[2398,6],[3522,6],[3847,6],[4289,6],[4342,6],[4536,6],[4631,7],[4913,6],[5012,6],[5267,6],[5338,7],[5375,6]]}},"component":{}}],["engine.connect",{"_index":3434,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[5583,16],[11780,16]]}},"component":{}}],["engine.yml",{"_index":4489,"title":{},"name":{},"text":{"/regulus/regulus-magic-reference.html":{"position":[[874,10]]}},"component":{}}],["enhanc",{"_index":464,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[5934,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[8773,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9506,8],[9730,9]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[4604,8]]}},"component":{}}],["enjoy",{"_index":1386,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[5555,5]]}},"component":{}}],["enough",{"_index":1124,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[958,6]]},"/getting.started.vbox.html":{"position":[[756,6]]},"/getting.started.vmware.html":{"position":[[753,6]]},"/segment.html":{"position":[[5200,6]]}},"component":{}}],["enrich",{"_index":956,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4151,6]]}},"component":{}}],["ensur",{"_index":146,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2947,6],[4921,6]]},"/dbt.html":{"position":[[3349,6]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[5561,7],[5958,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[6125,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2126,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1915,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[6857,6]]}},"component":{}}],["enter",{"_index":160,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3289,5],[3746,5],[5980,5]]},"/getting.started.utm.html":{"position":[[2744,5],[2824,5],[2990,5],[3134,5],[3319,5]]},"/getting.started.vbox.html":{"position":[[1782,5],[1862,5],[2028,5],[2172,5],[2357,5]]},"/getting.started.vmware.html":{"position":[[1853,5],[1933,5],[2099,5],[2243,5],[2428,5]]},"/jupyter.html":{"position":[[2136,7],[6229,5],[6343,5]]},"/ml.html":{"position":[[2769,5],[2820,5],[3073,5],[3093,6]]},"/nos.html":{"position":[[7092,8]]},"/run-vantage-express-on-aws.html":{"position":[[8996,5],[9121,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5776,5],[5901,6]]},"/vantage.express.gcp.html":{"position":[[4803,5],[4928,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[3346,5],[3654,5],[3961,5],[4354,5],[4904,5],[5307,5],[5599,5],[7416,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4121,5],[6382,5],[7614,8],[25503,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3999,5],[4178,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3869,5],[5027,5]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1614,8],[1900,5],[2717,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[12364,5]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[880,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2034,6]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1337,5],[1421,5],[1477,5]]},"/regulus/getting-started-with-regulus.html":{"position":[[821,5],[1693,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[8569,5],[9452,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3040,7],[7051,8],[7086,8]]}},"component":{}}],["enterpris",{"_index":2548,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[958,10],[2953,11]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1645,10],[3476,11]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3247,11],[9404,10]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5002,11]]},"/regulus/install-regulus-docker-image.html":{"position":[[7441,10]]}},"component":{}}],["entir",{"_index":411,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[4266,6]]},"/fastload.html":{"position":[[5120,6]]},"/geojson-to-vantage.html":{"position":[[7368,6],[7665,9]]},"/sto.html":{"position":[[2561,6]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[5499,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[624,6]]}},"component":{}}],["entiti",{"_index":399,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3896,6]]},"/dbt.html":{"position":[[2003,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[392,8],[447,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2940,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2823,6],[2933,6],[3003,6],[3107,6],[3430,6],[3597,6],[3764,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2860,6],[2970,6],[3040,6],[3144,6],[3467,6],[3634,6],[3801,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3102,7],[3333,7],[4514,8],[4654,6],[7122,6],[8209,8]]},"/mule-teradata-connector/reference.html":{"position":[[37858,8]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2775,6],[5088,7]]}},"component":{}}],["entities=[driv",{"_index":3738,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4034,18]]}},"component":{}}],["entity(nam",{"_index":4159,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5480,11]]}},"component":{}}],["entity(name=\"driv",{"_index":3726,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3615,21]]}},"component":{}}],["entity_df=entitydf",{"_index":4182,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6595,19]]}},"component":{}}],["entity_df=f",{"_index":3755,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4889,14]]}},"component":{}}],["entity_key_serialization_vers",{"_index":4152,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[4298,33]]}},"component":{}}],["entity_name,project_id,last_updated_timestamp,entity_proto",{"_index":3798,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[8218,60]]}},"component":{}}],["entity_row",{"_index":3776,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6689,12],[6911,11],[7402,11]]}},"component":{}}],["entity_rows=entity_row",{"_index":3791,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[7670,24]]}},"component":{}}],["entitydf",{"_index":4170,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5935,10],[6393,8],[6497,8]]}},"component":{}}],["entitydf.reset_index(inplace=tru",{"_index":4178,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6446,34]]}},"component":{}}],["entitydf[['cust_id','event_timestamp",{"_index":4180,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6508,39]]}},"component":{}}],["entri",{"_index":3079,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[3692,5],[4236,5],[4308,5],[5149,7],[5230,7],[5267,7]]}},"component":{}}],["entrypoint",{"_index":4094,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8164,13]]}},"component":{}}],["entrypoint.",{"_index":4090,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8057,14],[8304,14]]}},"component":{}}],["enumer",{"_index":3862,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[1946,12],[3505,12],[3835,12],[5834,12],[6164,12],[8132,12],[8463,12],[9962,12],[10292,12],[12177,12],[12507,12],[13766,12],[14276,12],[15440,12],[15770,12],[18359,12],[18829,12],[21523,12],[21990,12],[24374,12],[24844,12],[28188,12],[28512,12],[31815,12],[31950,12],[32552,12],[34029,12],[38700,12],[39712,12],[41299,12],[42269,12],[42578,12]]}},"component":{}}],["env",{"_index":307,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[1225,3]]},"/dbt.html":{"position":[[722,3]]},"/local.jupyter.hub.html":{"position":[[4045,3]]},"/segment.html":{"position":[[3035,3]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1788,3],[1980,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1328,3]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1660,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2262,4],[2284,4],[2619,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2108,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2145,3]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2374,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2251,3]]},"/regulus/install-regulus-docker-image.html":{"position":[[2739,3],[2766,3],[2815,3],[2872,3],[8270,3]]},"/regulus/regulus-magic-reference.html":{"position":[[924,5],[987,4]]}},"component":{}}],["env/bin/activ",{"_index":311,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[1304,16]]},"/dbt.html":{"position":[[733,16]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1339,16]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2262,16]]}},"component":{}}],["env=aw",{"_index":4405,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[1024,7]]}},"component":{}}],["env\\scripts\\activ",{"_index":313,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[1340,20]]}},"component":{}}],["envioron",{"_index":2790,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[474,13]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[479,13]]}},"component":{}}],["environ",{"_index":191,"title":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_set_environment_variables":{"position":[[4,11]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Setup-the-notebook-environment":{"position":[[19,12]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_create_an_airflow_environment":{"position":[[18,11]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_docker_compose_and_docker_environment_configuration_files":{"position":[[34,11]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_create_the_airflow_environment_in_docker":{"position":[[19,11]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3911,11]]},"/advanced-dbt.html":{"position":[[1043,11],[1151,11],[1249,11],[1788,12],[2944,11]]},"/dbt.html":{"position":[[632,11],[693,12]]},"/getting.started.utm.html":{"position":[[3270,12],[6263,12]]},"/getting.started.vbox.html":{"position":[[2308,12],[5859,12]]},"/getting.started.vmware.html":{"position":[[2379,12],[5372,12]]},"/jupyter.html":{"position":[[135,12],[726,11]]},"/local.jupyter.hub.html":{"position":[[1391,12]]},"/mule.jdbc.example.html":{"position":[[1766,12],[1934,12]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2411,12]]},"/sto.html":{"position":[[2011,11]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1040,13]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[128,12],[604,11],[2866,11],[5937,11]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[133,12],[2154,12],[2611,11]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[6251,11]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2834,12]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[548,11],[1017,11],[1668,12],[2691,12]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[530,12]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1238,11],[1299,12],[1385,11]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[3557,12]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[103,11],[2406,11]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1508,11]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1545,11]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[1125,12]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[429,12],[2085,11],[2596,12],[3700,11],[6250,11],[8539,13],[10431,11],[10570,11]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2152,11],[2222,12]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1541,12]]},"/regulus/getting-started-with-regulus.html":{"position":[[478,11],[592,11]]},"/regulus/install-regulus-docker-image.html":{"position":[[942,11],[2031,11],[2146,11],[2177,11],[3752,12],[9036,12]]},"/regulus/regulus-magic-reference.html":{"position":[[998,11]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[716,11],[2343,11],[2362,11]]}},"component":{}}],["environment’",{"_index":1666,"title":{},"name":{},"text":{"/mule.jdbc.example.html":{"position":[[2042,13]]}},"component":{}}],["eof",{"_index":1836,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[1511,3]]},"/run-vantage-express-on-aws.html":{"position":[[10323,3],[10791,3]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7103,3],[7571,3]]},"/vantage.express.gcp.html":{"position":[[6130,3],[6598,3]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2224,7],[2825,3],[2943,7],[3893,3]]}},"component":{}}],["equal",{"_index":3781,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[7205,5]]},"/mule-teradata-connector/reference.html":{"position":[[41047,5],[42226,5]]}},"component":{}}],["equival",{"_index":3319,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[5427,11]]},"/mule-teradata-connector/reference.html":{"position":[[33932,10]]}},"component":{}}],["error",{"_index":386,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3494,7]]},"/dbt.html":{"position":[[1668,7]]},"/fastload.html":{"position":[[2687,5],[2712,5],[3413,5],[3430,5]]},"/geojson-to-vantage.html":{"position":[[10224,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[24982,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2647,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[3735,5],[4009,6]]},"/mule-teradata-connector/reference.html":{"position":[[5161,6],[7453,7],[9671,6],[11810,6],[13378,6],[15147,6],[17664,6],[20346,7],[23468,7],[27417,6],[30417,6],[33201,7],[40765,5],[41007,5],[41987,5],[42186,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3503,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2451,5],[5969,5],[6039,5],[6106,5],[6176,5],[6243,5],[6313,5],[7266,5],[7305,5]]}},"component":{}}],["errorfil",{"_index":783,"title":{},"name":{},"text":{"/fastload.html":{"position":[[3384,10],[3671,10],[5676,10]]}},"component":{}}],["errorlist",{"_index":4554,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[6072,9],[6209,9],[6346,9]]}},"component":{}}],["errors='ignor",{"_index":3471,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[7009,16],[7059,16]]}},"component":{}}],["escap",{"_index":2472,"title":{},"name":{},"text":{"/sto.html":{"position":[[2579,6]]}},"component":{}}],["escobar",{"_index":3599,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[14,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[14,7]]}},"component":{}}],["especi",{"_index":837,"title":{},"name":{},"text":{"/fastload.html":{"position":[[7143,10]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1105,10]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[8688,10]]}},"component":{}}],["essenti",{"_index":2597,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[6273,9]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6139,11]]}},"component":{}}],["establish",{"_index":2915,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[8794,12],[14631,11]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[3682,9]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[7964,9]]},"/mule-teradata-connector/index.html":{"position":[[106,11]]},"/mule-teradata-connector/reference.html":{"position":[[106,11]]},"/mule-teradata-connector/release-notes.html":{"position":[[106,11]]},"/regulus/getting-started-with-regulus.html":{"position":[[1568,9],[1638,12]]}},"component":{}}],["estim",{"_index":1614,"title":{},"name":{},"text":{"/ml.html":{"position":[[8161,9]]}},"component":{}}],["eta",{"_index":3686,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[5704,6]]}},"component":{}}],["eta=0.2",{"_index":3172,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3880,7]]}},"component":{}}],["etc",{"_index":861,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[315,6],[10237,5]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1094,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[5535,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1391,4],[7909,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1788,4]]}},"component":{}}],["etc/default/virtualbox",{"_index":2267,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[10227,23]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7007,23]]},"/vantage.express.gcp.html":{"position":[[6034,23]]}},"component":{}}],["etc/fstab",{"_index":2345,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[2822,10]]}},"component":{}}],["etc/odbcinst.ini",{"_index":1820,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[765,17]]}},"component":{}}],["etc/systemd/system/vantag",{"_index":2270,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[10331,27]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7111,27]]},"/vantage.express.gcp.html":{"position":[[6138,27]]}},"component":{}}],["etc/td",{"_index":4445,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[2417,7]]}},"component":{}}],["etc/td/tl",{"_index":4447,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[2476,11]]}},"component":{}}],["etl",{"_index":638,"title":{},"name":{},"text":{"/dbt.html":{"position":[[2250,3]]}},"component":{}}],["evalu",{"_index":1601,"title":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_add_dataset_to_identify_vantage_tables_for_byom_evaluation_and_scoring":{"position":[[48,10]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_evaluation_dataset_1":{"position":[[7,10]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_evaluation_dataset_2":{"position":[[7,10]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_add_dataset_to_identify_vantage_tables_for_byom_evaluation_and_scoring":{"position":[[48,10]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_evaluation_dataset_1":{"position":[[7,10]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_evaluation_dataset_2":{"position":[[7,10]]}},"name":{},"text":{"/ml.html":{"position":[[7390,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[5978,8],[6110,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2530,10],[3538,8],[3560,10],[3586,10],[3705,8],[3727,10],[3753,10],[4120,10],[4223,10],[4387,8],[4403,10],[4622,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2567,10],[3575,8],[3597,10],[3623,10],[3742,8],[3764,10],[3790,10],[4556,8],[4734,10],[5112,10],[6031,8],[6047,10],[6609,8]]},"/mule-teradata-connector/reference.html":{"position":[[4963,8],[7255,8],[9473,8],[11612,8],[13180,8],[14949,8],[17466,8],[20148,8],[23275,9],[27219,8],[30219,8]]}},"component":{}}],["evaluate(context",{"_index":3668,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4578,17]]}},"component":{}}],["evaluation.pi",{"_index":3644,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4059,13]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4520,14]]}},"component":{}}],["even",{"_index":741,"title":{},"name":{},"text":{"/fastload.html":{"position":[[1883,4]]},"/ml.html":{"position":[[326,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2304,4],[14403,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2628,4]]},"/mule-teradata-connector/reference.html":{"position":[[25702,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[726,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1978,4]]}},"component":{}}],["evenli",{"_index":2592,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[5706,6]]}},"component":{}}],["event",{"_index":2347,"title":{"/segment.html":{"position":[[6,6]]}},"name":{},"text":{"/segment.html":{"position":[[83,6],[282,5],[335,6],[1327,7],[3407,6],[3464,6],[4290,6],[4363,6],[4887,6],[4914,5],[4974,5],[5352,6],[5407,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4081,5]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6640,5],[6765,5],[6893,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4562,5]]}},"component":{}}],["event_timestamp",{"_index":3750,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4720,15],[4922,15],[4980,15]]}},"component":{}}],["eventu",{"_index":3708,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1799,10]]}},"component":{}}],["everyth",{"_index":3169,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3829,10],[4233,10],[5061,10],[5245,10],[5789,10]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1302,10]]}},"component":{}}],["exact",{"_index":3856,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[928,5]]}},"component":{}}],["exactli",{"_index":648,"title":{},"name":{},"text":{"/dbt.html":{"position":[[2828,7]]},"/nos.html":{"position":[[7766,7]]}},"component":{}}],["examin",{"_index":1330,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[1677,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4281,7],[9144,7]]}},"component":{}}],["exampl",{"_index":236,"title":{"/mule.jdbc.example.html#_example_service":{"position":[[0,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[54,7]]},"/mule-teradata-connector/index.html#_examples":{"position":[[0,8]]},"/query-service/send-queries-using-rest-api.html#_query_service_api_examples":{"position":[[18,8]]}},"name":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[45,7]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[0,8]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[5668,7]]},"/advanced-dbt.html":{"position":[[781,7]]},"/create-parquet-files-in-object-storage.html":{"position":[[2143,7],[2684,8]]},"/dbt.html":{"position":[[3638,8]]},"/fastload.html":{"position":[[6353,7]]},"/geojson-to-vantage.html":{"position":[[924,7],[3211,9],[5001,7],[5491,8],[5788,8],[6390,7],[6828,8],[7167,8],[9500,8],[10152,8]]},"/getting.started.utm.html":{"position":[[3791,8]]},"/getting.started.vbox.html":{"position":[[2829,8]]},"/getting.started.vmware.html":{"position":[[2900,8]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[352,8]]},"/jupyter.html":{"position":[[4741,8],[6115,8]]},"/local.jupyter.hub.html":{"position":[[2328,8],[2615,7],[3717,7]]},"/mule.jdbc.example.html":{"position":[[60,7],[456,7],[1511,7],[1579,7],[2940,7]]},"/run-vantage-express-on-aws.html":{"position":[[6440,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3220,8]]},"/segment.html":{"position":[[162,7],[5100,7]]},"/vantage.express.gcp.html":{"position":[[2247,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[7953,7],[10325,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[5507,8],[6041,8],[7259,8],[7486,8],[7910,8],[13355,8],[19796,7],[19981,8],[24599,8],[25426,8],[25799,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[5224,8],[5242,7],[7136,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1098,8],[4239,7],[4523,7],[4986,8],[5058,8],[5664,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3791,7],[3827,7],[8979,7],[12463,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[5382,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1276,9],[2054,7],[3045,7],[4748,7],[6816,7],[9278,7],[9295,8]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1904,8]]},"/mule-teradata-connector/index.html":{"position":[[1454,8]]},"/mule-teradata-connector/reference.html":{"position":[[2721,8],[11394,8],[19923,8],[23045,8],[24095,8],[26020,8],[26361,8],[26662,8],[29603,8]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[335,8],[539,8],[4936,7],[5316,7],[8447,7],[9214,7],[9302,7],[9382,7],[9716,7],[9887,7],[10683,7]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1468,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[306,8],[958,9],[998,8],[1068,8],[1109,8],[1221,8],[2866,8],[5579,7],[8067,8],[8824,8],[9270,8],[12424,9]]},"/regulus/install-regulus-docker-image.html":{"position":[[7393,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1569,8],[2757,8]]}},"component":{}}],["example_queri",{"_index":4233,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[3452,14],[5728,14]]}},"component":{}}],["exce",{"_index":3978,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[40620,7],[41842,7]]}},"component":{}}],["exceed",{"_index":3886,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[4437,9],[6763,9],[8973,9],[10802,9],[13017,9],[14786,9],[16280,9],[19339,9],[22460,9],[25444,9],[29022,9],[33062,9]]}},"component":{}}],["excel",{"_index":241,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[5944,5]]},"/geojson-to-vantage.html":{"position":[[9440,9]]}},"component":{}}],["except",{"_index":3501,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[8558,6],[8565,9]]},"/query-service/send-queries-using-rest-api.html":{"position":[[10716,14],[12052,13],[12376,13]]}},"component":{}}],["excess",{"_index":3887,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[4451,6],[6777,6],[8987,6],[10816,6],[13031,6],[14800,6],[16294,6],[19353,6],[22474,6],[25458,6],[29036,6],[33076,6]]}},"component":{}}],["exchang",{"_index":3834,"title":{},"name":{},"text":{"/mule-teradata-connector/examples-configuration.html":{"position":[[1181,9]]}},"component":{}}],["excit",{"_index":2471,"title":{},"name":{},"text":{"/sto.html":{"position":[[2462,9]]}},"component":{}}],["exclud",{"_index":3216,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4677,7]]}},"component":{}}],["execstart=/usr/bin/vboxmanag",{"_index":2287,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[10619,29]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7399,29]]},"/vantage.express.gcp.html":{"position":[[6426,29]]}},"component":{}}],["execstop=/usr/bin/vboxmanag",{"_index":2288,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[10689,28]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7469,28]]},"/vantage.express.gcp.html":{"position":[[6496,28]]}},"component":{}}],["execut",{"_index":351,"title":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_executing_transformations":{"position":[[0,9]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-function-for-executing-the-pipeline":{"position":[[20,9]]},"/mule-teradata-connector/reference.html#executeDdl":{"position":[[0,7]]},"/mule-teradata-connector/reference.html#executeScript":{"position":[[0,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[0,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_and_execute_airflow":{"position":[[12,7]]}},"name":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[0,7]]}},"text":{"/advanced-dbt.html":{"position":[[2527,7],[6185,9],[6377,10],[6853,9]]},"/create-parquet-files-in-object-storage.html":{"position":[[1394,7],[1582,7],[1636,7]]},"/dbt.html":{"position":[[3435,7]]},"/getting.started.utm.html":{"position":[[3502,7]]},"/getting.started.vbox.html":{"position":[[2540,7]]},"/getting.started.vmware.html":{"position":[[2611,7]]},"/jupyter.html":{"position":[[2176,9]]},"/ml.html":{"position":[[2191,7],[2242,7],[2294,7]]},"/sto.html":{"position":[[7809,7]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1459,9],[1477,7],[3611,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[10978,10]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[3625,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1408,9],[6727,9],[6943,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3038,7],[8871,7],[9549,7],[10317,9],[11323,7],[12318,8],[12984,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4818,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4447,7],[4834,7],[5209,7],[6735,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2256,7],[2475,7]]},"/mule-teradata-connector/index.html":{"position":[[1079,7],[1274,7]]},"/mule-teradata-connector/reference.html":{"position":[[2850,7],[2862,7],[2984,7],[3115,9],[4536,7],[5316,7],[5447,9],[6862,7],[7609,7],[7740,9],[9072,7],[10901,7],[11945,9],[12146,7],[13506,8],[13575,8],[13968,7],[16379,7],[19438,7],[20530,9],[20715,9],[22559,7],[25543,7],[27572,9],[29121,7],[32122,8]]},"/mule-teradata-connector/release-notes.html":{"position":[[679,7],[874,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2627,8],[5751,7]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1547,7]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[779,10]]}},"component":{}}],["exercis",{"_index":4120,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[10532,8]]}},"component":{}}],["exhaust",{"_index":3861,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[1672,10],[2552,10],[33567,9],[33851,10],[35793,10]]}},"component":{}}],["exist",{"_index":342,"title":{"/local.jupyter.hub.html#_customize_an_existing_docker_image_to_include_teradata_extensions":{"position":[[13,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_a_new_project_or_use_an_existing_one":{"position":[[31,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_a_new_project_or_use_an_existing_one":{"position":[[31,8]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[2122,8],[3082,5]]},"/dbt.html":{"position":[[1213,8]]},"/fastload.html":{"position":[[2739,6]]},"/local.jupyter.hub.html":{"position":[[182,8],[249,8],[1371,8],[3269,8],[3429,8],[3779,8],[4026,8]]},"/ml.html":{"position":[[302,7]]},"/sto.html":{"position":[[2492,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1319,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[5185,5],[6309,6],[6912,6],[7554,6]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[5544,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1223,5],[3336,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[2338,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1600,6],[8596,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1493,8]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[944,8],[3225,8],[3987,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[2463,5]]},"/regulus/getting-started-with-regulus.html":{"position":[[1947,7],[1995,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[2314,6]]},"/regulus/regulus-magic-reference.html":{"position":[[248,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[6014,6],[6151,6],[6288,6]]}},"component":{}}],["expand",{"_index":2573,"title":{"/teradata-vantage-engine-architecture-and-concepts.html#_linear_growth_and_expandability":{"position":[[18,13]]}},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3902,10],[6338,14]]},"/mule-teradata-connector/reference.html":{"position":[[40398,7],[40606,7],[40712,7],[41661,7],[41828,7],[41934,7]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[895,9]]}},"component":{}}],["expect",{"_index":98,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1790,8]]},"/dbt.html":{"position":[[3650,6]]},"/fastload.html":{"position":[[4180,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[13900,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2692,8],[15474,9]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7148,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1931,9]]}},"component":{}}],["experi",{"_index":1384,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[5295,10]]},"/mule.jdbc.example.html":{"position":[[1847,11],[1923,10]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3775,12],[3853,11],[3891,11],[4140,10],[4177,10],[4206,10],[5775,10],[6055,11]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[5906,10],[5979,10],[7754,10]]},"/jupyter-demos/index.html":{"position":[[1035,11],[2033,10]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1472,12],[1530,10]]},"/regulus/install-regulus-docker-image.html":{"position":[[763,10]]}},"component":{}}],["experiment",{"_index":3349,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[173,16]]}},"component":{}}],["expess",{"_index":2213,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[6216,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2996,6]]},"/vantage.express.gcp.html":{"position":[[2023,6]]}},"component":{}}],["expir",{"_index":2667,"title":{"/mule-teradata-connector/reference.html#ExpirationPolicy":{"position":[[0,10]]}},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[5643,10]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4015,8]]},"/mule-teradata-connector/reference.html":{"position":[[685,10],[703,10],[851,11],[900,7],[34316,7],[38679,10]]}},"component":{}}],["explain",{"_index":2535,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[66,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[157,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3153,7],[4382,9]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[9833,7]]}},"component":{}}],["explan",{"_index":3268,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[5151,11]]}},"component":{}}],["explicit",{"_index":3095,"title":{"/query-service/send-queries-using-rest-api.html#_use_explicit_session_to_submit_a_query":{"position":[[4,8]]}},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4764,8],[5430,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[7623,8],[7853,8],[8532,11],[9029,8]]}},"component":{}}],["explicitli",{"_index":2689,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8709,10]]}},"component":{}}],["explor",{"_index":488,"title":{"/nos.html#_explore_data_with_nos":{"position":[[0,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_exploring_data_using_nos":{"position":[[0,9]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_explore_teradata_vantage_metadata_with_data_catalog":{"position":[[0,7]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[6985,8]]},"/create-parquet-files-in-object-storage.html":{"position":[[370,7]]},"/geojson-to-vantage.html":{"position":[[6336,7]]},"/jupyter.html":{"position":[[1288,7],[3700,7],[4330,7],[6554,8],[6960,8],[7123,8]]},"/ml.html":{"position":[[3305,7],[3555,7]]},"/nos.html":{"position":[[282,7],[817,7]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1443,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[849,9],[1054,7],[1951,7],[2122,7],[4805,8],[8660,7],[21172,7],[21232,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2294,7],[2458,7],[5344,9],[8327,7],[12761,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[211,7],[2057,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1282,7],[10359,8]]},"/regulus/getting-started-with-regulus.html":{"position":[[3871,9]]}},"component":{}}],["exploratori",{"_index":1757,"title":{},"name":{},"text":{"/nos.html":{"position":[[3636,11]]}},"component":{}}],["export",{"_index":516,"title":{"/nos.html#_export_data_from_vantage_to_object_storage":{"position":[[0,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_export_vantage_data_to_amazon_s3_using_nos":{"position":[[0,6]]}},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[476,6],[4071,6],[4261,6]]},"/nos.html":{"position":[[7714,6],[7827,6],[8632,6]]},"/run-vantage-express-on-aws.html":{"position":[[7292,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2702,6],[4072,6]]},"/segment.html":{"position":[[1507,6],[1560,6],[2814,6],[3199,6]]},"/vantage.express.gcp.html":{"position":[[3099,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[5045,6],[5369,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[3332,6],[3371,6],[3414,6],[3458,6],[3494,6],[3532,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[504,7]]}},"component":{}}],["expos",{"_index":663,"title":{},"name":{},"text":{"/dbt.html":{"position":[[3265,6]]},"/getting.started.utm.html":{"position":[[2082,6]]},"/jdbc.html":{"position":[[585,6]]},"/mule.jdbc.example.html":{"position":[[170,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[3532,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[6630,6]]}},"component":{}}],["exposur",{"_index":2880,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1448,8]]}},"component":{}}],["express",{"_index":518,"title":{"/getting.started.utm.html":{"position":[[12,7]]},"/getting.started.utm.html#_run_vantage_express":{"position":[[12,7]]},"/getting.started.vbox.html":{"position":[[12,7]]},"/getting.started.vbox.html#_run_vantage_express":{"position":[[12,7]]},"/getting.started.vmware.html":{"position":[[12,7]]},"/getting.started.vmware.html#_run_vantage_express":{"position":[[12,7]]},"/run-vantage-express-on-aws.html":{"position":[[12,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[12,7]]},"/vantage.express.gcp.html":{"position":[[12,7]]}},"name":{"/run-vantage-express-on-aws.html":{"position":[[12,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[12,7]]}},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[650,7]]},"/fastload.html":{"position":[[2417,7]]},"/getting.started.utm.html":{"position":[[364,7],[436,7],[644,7],[817,7],[887,7],[1184,7],[1251,8],[1494,7],[2205,7],[4383,8],[4879,8],[6301,7],[6375,7],[6545,7]]},"/getting.started.vbox.html":{"position":[[364,7],[436,7],[717,7],[939,7],[1721,7],[3421,8],[3705,8],[5897,7],[5971,7],[6141,7]]},"/getting.started.vmware.html":{"position":[[364,7],[436,7],[714,7],[936,8],[1211,7],[1455,7],[1538,8],[1723,7],[3492,8],[3988,8],[5410,7],[5484,7],[5654,7]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[141,7],[461,7],[543,7],[595,8],[649,7],[871,7],[1076,7]]},"/jdbc.html":{"position":[[549,7]]},"/jupyter.html":{"position":[[3054,7]]},"/ml.html":{"position":[[639,7],[718,7],[1090,7],[1161,7],[2660,7]]},"/nos.html":{"position":[[454,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[473,7]]},"/run-vantage-express-on-aws.html":{"position":[[103,7],[127,7],[246,7],[509,7],[598,7],[3565,7],[3696,7],[3851,7],[4210,7],[4375,7],[4536,7],[4665,7],[6005,8],[6193,8],[6311,7],[6748,7],[7381,8],[8364,7],[8598,7],[8712,7],[8949,7],[10144,7],[10665,7],[10736,7],[10844,7],[10876,7],[10924,7],[12462,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[101,7],[137,7],[256,7],[1243,7],[1303,7],[1489,7],[1576,7],[1634,7],[1694,7],[1879,7],[1953,7],[2012,7],[2072,7],[2257,7],[2331,7],[2530,8],[2973,8],[3091,7],[3528,7],[4161,8],[5144,7],[5378,7],[5492,7],[5729,7],[6924,7],[7445,7],[7516,7],[7624,7],[7656,7],[7704,7],[8177,7],[8400,7]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1213,9]]},"/sto.html":{"position":[[136,9],[2026,7]]},"/vantage.express.gcp.html":{"position":[[101,7],[143,7],[262,7],[844,7],[1132,7],[1420,7],[1711,7],[1812,8],[2000,8],[2118,7],[2555,7],[3188,8],[4171,7],[4405,7],[4519,7],[4756,7],[5951,7],[6472,7],[6543,7],[6651,7],[6683,7],[6731,7],[7209,7],[7357,7],[7502,7],[7576,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[5600,10],[5695,10]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1337,7],[4471,7],[13664,7],[13760,7]]},"/jupyter-demos/index.html":{"position":[[49,7],[132,7],[213,7],[326,7],[429,7],[525,7],[647,7],[735,7],[835,7],[949,7],[1068,7],[1183,7],[1267,7],[1361,7],[1474,7],[1587,7],[1673,7],[1756,7],[1863,7],[1976,7],[2065,7],[2166,7],[2272,7]]},"/mule-teradata-connector/reference.html":{"position":[[4949,10],[5017,10],[7241,10],[7309,10],[9459,10],[9527,10],[11598,10],[11666,10],[13166,10],[13234,10],[14935,10],[15003,10],[17452,10],[17520,10],[20134,10],[20202,10],[23259,10],[23313,10],[27205,10],[27273,10],[30205,10],[30273,10],[34461,12],[39264,10],[39302,11],[41371,9],[42347,9],[42653,9]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1298,7],[5689,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2799,7]]}},"component":{}}],["express.servic",{"_index":2271,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[10359,15]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7139,15]]},"/vantage.express.gcp.html":{"position":[[6166,15]]}},"component":{}}],["express/vantageexpress17.20_sles12_202108300444.7z?expires=1638719978&signature=gkbknvery_long_signature__&key",{"_index":2224,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[6968,110]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3748,110]]},"/vantage.express.gcp.html":{"position":[[2775,110]]}},"component":{}}],["ext_dir",{"_index":1458,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[5174,8],[5191,8]]}},"component":{}}],["ext_dir=/opt/teradata/jupyterext/packag",{"_index":1442,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[4086,41]]}},"component":{}}],["extend",{"_index":3413,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3723,9]]},"/mule-teradata-connector/release-notes.html":{"position":[[364,8]]}},"component":{}}],["extens",{"_index":1253,"title":{"/getting.started.vbox.html#_updating_virtualbox_guest_extensions":{"position":[[26,10]]},"/local.jupyter.hub.html":{"position":[[24,10]]},"/local.jupyter.hub.html#_customize_an_existing_docker_image_to_include_teradata_extensions":{"position":[[55,10]]},"/teradata-vantage-engine-architecture-and-concepts.html#_parallel_database_extension_pde":{"position":[[18,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[27,10]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[27,10]]}},"name":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[27,10]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[27,10]]}},"text":{"/getting.started.vbox.html":{"position":[[5035,10],[5315,10],[5439,10],[5502,11],[5542,10]]},"/jupyter.html":{"position":[[101,10],[211,10],[986,11],[1230,10],[1499,11],[1697,9],[4965,10],[5184,10],[5888,11],[6043,10],[7210,10],[7238,10]]},"/local.jupyter.hub.html":{"position":[[162,10],[291,11],[794,10],[967,10],[3245,10],[3388,10],[3623,10],[3760,10],[5078,10],[6009,10]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2116,9],[6243,9],[6468,10]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[10153,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[94,10],[204,10],[333,10],[387,10],[705,10],[800,10],[1025,10],[1110,10],[1402,9],[1463,10],[1756,10],[1847,10],[2055,9],[2136,11],[2403,10],[3294,10],[3385,10],[3841,10],[4731,10],[5562,10],[6058,10]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[99,10],[209,10],[338,10],[392,10],[544,10],[822,9],[1030,10],[1091,10],[1300,11],[1317,9],[1389,9],[1457,9],[1558,11],[1730,11],[1949,10],[2911,11],[3102,10],[3505,10],[4361,10]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9817,9]]}},"component":{}}],["extern",{"_index":504,"title":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_ingesting_data_from_external_object_store":{"position":[[20,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[13,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[30,8]]}},"name":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[13,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[30,8]]}},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[222,8],[1087,8],[3390,8],[4341,8]]},"/ml.html":{"position":[[2353,8]]},"/nos.html":{"position":[[7483,8]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[428,8],[1765,8]]},"/sto.html":{"position":[[3129,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1967,8],[9581,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2310,8],[4760,8],[8448,8],[9234,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[123,8],[973,8]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8869,8]]},"/regulus/getting-started-with-regulus.html":{"position":[[306,8]]}},"component":{}}],["external_ap",{"_index":4321,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[7238,11]]}},"component":{}}],["extract",{"_index":410,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[4164,9]]},"/create-parquet-files-in-object-storage.html":{"position":[[996,7]]},"/geojson-to-vantage.html":{"position":[[3061,7],[6752,7],[6877,7],[7510,7]]},"/mule.jdbc.example.html":{"position":[[806,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3463,7],[5882,10]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[5960,7],[6084,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[174,7],[5054,10]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[110,7],[7291,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[724,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1456,7]]}},"component":{}}],["extract(month",{"_index":1573,"title":{},"name":{},"text":{"/ml.html":{"position":[[5760,15],[5873,15],[5986,15],[6099,15]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[4604,13],[6420,13],[7952,13]]}},"component":{}}],["extralarg",{"_index":4409,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[1382,11]]},"/regulus/regulus-magic-reference.html":{"position":[[3330,10]]}},"component":{}}],["f",{"_index":1037,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[7250,1],[8637,1]]},"/ml.html":{"position":[[4288,3]]},"/run-vantage-express-on-aws.html":{"position":[[5281,1]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[7260,1]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[5634,1]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2336,1]]},"/regulus/regulus-magic-reference.html":{"position":[[611,4]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[2490,2],[4643,2],[5888,1],[5992,1],[6001,2],[6240,1]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[5323,1]]}},"component":{}}],["f\"{context.artifact_output_path}/model.joblib",{"_index":3666,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4318,47]]}},"component":{}}],["f12",{"_index":2216,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[6465,3]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3245,3]]},"/vantage.express.gcp.html":{"position":[[2272,3]]}},"component":{}}],["f2",{"_index":2341,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[2753,3]]}},"component":{}}],["f5",{"_index":1209,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[5236,2]]},"/getting.started.vbox.html":{"position":[[4062,2]]},"/getting.started.vmware.html":{"position":[[4345,2]]}},"component":{}}],["f['geometri",{"_index":1036,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[7231,14]]}},"component":{}}],["f['properties']['admin",{"_index":1034,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[7176,27],[8558,27]]}},"component":{}}],["f['properties']['iso_a3",{"_index":1035,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[7204,26],[8586,26]]}},"component":{}}],["fabric",{"_index":2423,"title":{},"name":{},"text":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[344,6]]}},"component":{}}],["face",{"_index":2126,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[969,6]]}},"component":{}}],["facilit",{"_index":466,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[5980,10]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2316,11]]}},"component":{}}],["factori",{"_index":3578,"title":{},"name":{},"text":{"/jupyter-demos/index.html":{"position":[[704,9]]}},"component":{}}],["factual",{"_index":481,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[6531,7]]}},"component":{}}],["fail",{"_index":2890,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[3986,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[3760,6],[4002,6]]},"/mule-teradata-connector/reference.html":{"position":[[1635,5],[2515,5],[18227,5],[24241,5],[35618,5],[35756,5],[38078,4],[39027,6]]},"/regulus/getting-started-with-regulus.html":{"position":[[1967,5]]}},"component":{}}],["failur",{"_index":3947,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[38110,7]]}},"component":{}}],["fairli",{"_index":1031,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[7121,6]]}},"component":{}}],["fallback",{"_index":549,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[1890,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[20122,8]]},"/mule-teradata-connector/reference.html":{"position":[[37984,8]]},"/regulus/getting-started-with-regulus.html":{"position":[[2064,8],[2718,8]]}},"component":{}}],["fals",{"_index":3048,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[24107,9]]},"/mule-teradata-connector/reference.html":{"position":[[2250,5],[17055,5],[26798,5],[29801,5],[35314,6],[36113,6],[36320,6],[39430,6]]},"/query-service/send-queries-using-rest-api.html":{"position":[[11843,6],[12167,6]]},"/regulus/regulus-magic-reference.html":{"position":[[605,5]]}},"component":{}}],["false`].routetableid",{"_index":2177,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[4072,22]]}},"component":{}}],["familiar",{"_index":99,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1805,8]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[4283,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2707,8]]},"/mule-teradata-connector/index.html":{"position":[[431,8]]}},"component":{}}],["family=ubuntu",{"_index":2615,"title":{},"name":{},"text":{"/vantage.express.gcp.html":{"position":[[990,13],[1278,13],[1566,13]]}},"component":{}}],["fantast",{"_index":882,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[1497,9]]}},"component":{}}],["far",{"_index":1788,"title":{},"name":{},"text":{"/nos.html":{"position":[[6762,4],[7590,4]]},"/sto.html":{"position":[[4082,4]]}},"component":{}}],["fare_amount",{"_index":1862,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1269,11]]}},"component":{}}],["fashion",{"_index":2645,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2483,8]]}},"component":{}}],["fast",{"_index":735,"title":{},"name":{},"text":{"/fastload.html":{"position":[[1662,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1756,5]]}},"component":{}}],["faster",{"_index":1255,"title":{},"name":{},"text":{"/getting.started.vbox.html":{"position":[[5108,6]]}},"component":{}}],["fastload",{"_index":693,"title":{"/fastload.html":{"position":[[37,8]]},"/fastload.html#_run_fastload":{"position":[[4,8]]},"/fastload.html#_fastload_vs_nos":{"position":[[0,8]]}},"name":{"/fastload.html":{"position":[[0,8]]}},"text":{"/fastload.html":{"position":[[96,8],[304,8],[428,9],[1523,9],[1533,8],[1637,9],[1974,8],[1994,8],[2316,8],[2350,8],[3465,8],[3730,8],[3915,8],[4048,8],[6431,8],[7517,9],[7537,8]]},"/ml.html":{"position":[[2783,8]]}},"component":{}}],["favor",{"_index":2440,"title":{},"name":{},"text":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1324,7]]}},"component":{}}],["favorit",{"_index":728,"title":{},"name":{},"text":{"/fastload.html":{"position":[[1386,8]]},"/geojson-to-vantage.html":{"position":[[10440,8]]},"/segment.html":{"position":[[1063,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1261,8]]}},"component":{}}],["favourit",{"_index":887,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[1678,9],[2922,9],[5908,9],[9404,9]]}},"component":{}}],["fax",{"_index":2957,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11792,4],[16523,4],[18327,4],[20801,3],[22309,4]]}},"component":{}}],["fct_order",{"_index":662,"title":{},"name":{},"text":{"/dbt.html":{"position":[[3191,10]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[6549,10]]}},"component":{}}],["fct_orders.order_id",{"_index":668,"title":{},"name":{},"text":{"/dbt.html":{"position":[[3662,19]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7160,19]]}},"component":{}}],["feast",{"_index":3693,"title":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[20,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_feast":{"position":[[0,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_configure_feast":{"position":[[10,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_run_feast":{"position":[[4,5]]}},"name":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[20,5]]}},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[426,5],[492,5],[609,6],[1076,5],[1489,5],[1524,5],[1561,5],[1649,5],[1727,5],[1788,5],[1904,5],[1941,5],[2292,5],[2497,5],[2681,5],[2732,5],[2850,5],[4771,5],[5228,5],[5289,5],[5348,5],[5416,5],[6179,5],[6567,5],[9380,5],[9621,6],[9753,5],[9842,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[316,6],[531,5],[882,5],[1391,5],[1437,5],[2050,5],[2179,5],[3570,5],[3680,5],[6852,5],[7128,6],[7387,5],[7476,5]]}},"component":{}}],["feast_teradata.offline.teradata.teradataofflinestor",{"_index":3719,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2938,52],[5802,52]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[4185,52]]}},"component":{}}],["feast’",{"_index":3701,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[102,7]]}},"component":{}}],["featur",{"_index":230,"title":{"/mule-teradata-connector/release-notes.html#_features":{"position":[[0,8]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_feature_repository_definition":{"position":[[0,7]]}},"name":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[12,7]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[5359,8]]},"/create-parquet-files-in-object-storage.html":{"position":[[90,7]]},"/geojson-to-vantage.html":{"position":[[3161,7],[3175,7],[6726,7],[7295,8],[7388,7],[10297,8]]},"/jupyter.html":{"position":[[4558,8],[5472,9],[7002,8]]},"/nos.html":{"position":[[100,7]]},"/sto.html":{"position":[[342,7],[2679,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2272,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[405,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[666,7],[7092,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2690,7],[2761,8],[2845,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2727,7],[2798,8],[2882,9]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[183,8],[704,7],[719,8],[827,7],[924,8],[993,7],[3132,7],[3219,8],[3378,8],[3387,7],[3403,7],[3430,7],[3472,7],[3519,8],[3574,7],[4480,8],[5071,10],[6049,8],[6099,8],[6277,7],[6363,8],[6436,8],[6643,9],[6676,8],[6706,8],[6762,8],[6842,8],[7177,8],[9415,7],[9707,7],[9802,7]]},"/mule-teradata-connector/release-notes.html":{"position":[[450,9]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[552,8],[888,8],[1003,8],[1111,8],[2065,8],[4974,8],[5133,8],[5142,7],[5158,7],[5185,7],[5227,7],[5274,8],[5329,7],[6019,7],[6615,10],[6950,8],[7037,8],[7180,7],[7436,7]]},"/query-service/send-queries-using-rest-api.html":{"position":[[12414,9]]}},"component":{}}],["feature_identifier_column",{"_index":3779,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6983,27]]}},"component":{}}],["feature_repo",{"_index":3710,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2366,13]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2486,13]]}},"component":{}}],["feature_servic",{"_index":3816,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[8987,16]]}},"component":{}}],["feature_service_nam",{"_index":3817,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9004,22]]}},"component":{}}],["feature_service_proto",{"_index":3818,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9063,22]]}},"component":{}}],["feature_store.yml",{"_index":3712,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2395,17]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2517,17]]}},"component":{}}],["feature_view",{"_index":3801,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[8363,13]]}},"component":{}}],["feature_view_nam",{"_index":3820,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9110,19]]}},"component":{}}],["feature_view_name,project_id,last_updated_timestamp,feature_view_proto,user_metadata",{"_index":3804,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[8509,86],[8617,86]]}},"component":{}}],["feature_view_name,project_id,last_updated_timestamp,materialized_intervals,feature_view_proto,user_metadata",{"_index":3802,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[8377,109]]}},"component":{}}],["feature_view_proto",{"_index":3821,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9166,19]]}},"component":{}}],["feature_views.pi",{"_index":4141,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2500,16]]}},"component":{}}],["features=features_to_fetch",{"_index":3790,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[7642,27]]}},"component":{}}],["features_to_fetch",{"_index":3787,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[7468,17]]}},"component":{}}],["featurestor",{"_index":3751,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4784,12]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6149,12]]}},"component":{}}],["featurestore(repo_path=\"feature_repo",{"_index":3752,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4805,38]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6215,38]]}},"component":{}}],["featureview",{"_index":3736,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3993,12]]}},"component":{}}],["featureview(name=\"ads_fv\",entities=[customer],source=dbt_sourc",{"_index":4162,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5540,64]]}},"component":{}}],["feb",{"_index":852,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[35,3]]}},"component":{}}],["februari",{"_index":2622,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[33,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[35,8]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[35,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[35,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[33,8]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[33,8]]},"/mule-teradata-connector/index.html":{"position":[[33,8]]},"/mule-teradata-connector/reference.html":{"position":[[33,8]]},"/mule-teradata-connector/release-notes.html":{"position":[[33,8],[314,8]]}},"component":{}}],["fed",{"_index":2507,"title":{},"name":{},"text":{"/sto.html":{"position":[[5253,3]]}},"component":{}}],["fee",{"_index":2768,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[14237,4]]}},"component":{}}],["feed",{"_index":2513,"title":{},"name":{},"text":{"/sto.html":{"position":[[5657,4]]}},"component":{}}],["female_ind",{"_index":1539,"title":{},"name":{},"text":{"/ml.html":{"position":[[4313,10]]}},"component":{}}],["ferrand",{"_index":985,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4600,7]]}},"component":{}}],["fetch",{"_index":1683,"title":{},"name":{},"text":{"/nos.html":{"position":[[1189,5],[2174,5],[6671,5]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[914,5],[4200,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[14040,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2030,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1654,7],[3079,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6430,5],[6623,8],[7154,8],[7229,5]]},"/mule-teradata-connector/reference.html":{"position":[[4062,5],[4107,5],[6390,5],[6435,5],[8690,5],[8735,5],[10519,5],[10564,5],[12734,5],[12779,5],[14503,5],[14548,5],[15997,5],[16042,5],[19056,5],[19101,5],[22217,5],[22262,5],[25071,5],[25116,5],[28739,5],[28784,5],[32779,5],[32824,5]]}},"component":{}}],["fetchsiz",{"_index":3901,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[17986,9],[23976,9]]}},"component":{}}],["few",{"_index":673,"title":{},"name":{},"text":{"/dbt.html":{"position":[[3849,3]]},"/geojson-to-vantage.html":{"position":[[210,3]]},"/sto.html":{"position":[[4349,3],[4424,3]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[3094,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[8387,3],[15573,3]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7448,3]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4422,3],[5909,3]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[9237,3],[10017,3]]},"/regulus/getting-started-with-regulus.html":{"position":[[1492,3]]},"/regulus/regulus-magic-reference.html":{"position":[[3057,3]]}},"component":{}}],["fiction",{"_index":285,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[526,9],[3596,9]]},"/dbt.html":{"position":[[1752,9]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2796,9]]}},"component":{}}],["fictiti",{"_index":1512,"title":{},"name":{},"text":{"/ml.html":{"position":[[3342,10]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[9392,10]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2648,10]]}},"component":{}}],["field",{"_index":428,"title":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_3_map_data_fields":{"position":[[17,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_3_map_data_fields_2":{"position":[[17,6]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[4699,6]]},"/getting.started.vbox.html":{"position":[[1568,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[5979,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4539,6],[4647,7],[6891,6],[6947,6],[7031,6],[7057,6],[7087,7],[7206,5],[25182,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[12354,6]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[707,7],[1262,6],[2158,6],[2225,5],[3759,5],[3808,7]]},"/mule-teradata-connector/reference.html":{"position":[[33243,5],[35326,5],[35572,5],[35925,5],[36191,5],[36398,5],[36744,5],[37216,5],[37803,5],[38176,5],[38379,5],[38463,5],[38839,5],[39536,5],[39661,5],[40029,5],[40118,5],[41078,5],[41381,5],[42357,5],[42663,5]]},"/query-service/send-queries-using-rest-api.html":{"position":[[3155,5],[3195,5],[5344,5],[10133,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[4824,7],[5869,7]]}},"component":{}}],["field(",{"_index":2904,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[7125,8]]}},"component":{}}],["field(name=\"acc_r",{"_index":3744,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4170,22]]}},"component":{}}],["field(name=\"ag",{"_index":4163,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5614,17]]}},"component":{}}],["field(name=\"avg_daily_trip",{"_index":3745,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4209,29]]}},"component":{}}],["field(name=\"conv_r",{"_index":3742,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4130,23]]}},"component":{}}],["field(name=\"driver_id",{"_index":3740,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4092,23]]}},"component":{}}],["field(name=\"incom",{"_index":4164,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5648,20]]}},"component":{}}],["field(name=\"q1_trans_cnt",{"_index":4165,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5685,26]]}},"component":{}}],["field(name=\"q2_trans_cnt",{"_index":4166,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5726,26]]}},"component":{}}],["field(name=\"q3_trans_cnt",{"_index":4167,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5767,26]]}},"component":{}}],["field(name=\"q4_trans_cnt",{"_index":4168,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5808,26]]}},"component":{}}],["field=title_only&cont",{"_index":3655,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[5224,24]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[7275,24]]}},"component":{}}],["figur",{"_index":2663,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[5142,6]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[3364,6],[4382,6]]}},"component":{}}],["file",{"_index":134,"title":{"/create-parquet-files-in-object-storage.html":{"position":[[15,5]]},"/create-parquet-files-in-object-storage.html#_create_a_parquet_file_with_write_nos_function":{"position":[[17,4]]},"/geojson-to-vantage.html#_open_the_geojson_file_and_type_it_as_a_dictionary":{"position":[[17,4]]},"/geojson-to-vantage.html#_optional_check_the_content_of_the_file":{"position":[[36,4]]},"/geojson-to-vantage.html#_create_a_vantage_connection_and_load_our_file_in_a_staging_table":{"position":[[41,4]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_ingesting_data_from_local_files":{"position":[[26,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_change_data_file_properties":{"position":[[12,4]]},"/mule-teradata-connector/reference.html#crl-file":{"position":[[4,4]]},"/mule-teradata-connector/reference.html#repeatable-file-store-iterable":{"position":[[11,4]]},"/mule-teradata-connector/reference.html#repeatable-file-store-stream":{"position":[[11,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_docker_compose_and_docker_environment_configuration_files":{"position":[[60,5]]}},"name":{"/create-parquet-files-in-object-storage.html":{"position":[[15,5]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2710,5],[2753,4],[4600,4]]},"/advanced-dbt.html":{"position":[[2791,4],[3046,5],[3412,4],[4449,4],[4904,4]]},"/create-parquet-files-in-object-storage.html":{"position":[[138,5],[537,4],[2469,4],[3079,4],[3140,4],[3762,4],[4109,4]]},"/dbt.html":{"position":[[987,4],[1586,4],[2336,6],[2351,5],[2399,4],[2449,5],[2719,6],[3521,4],[4257,6],[4305,5],[4700,5]]},"/fastload.html":{"position":[[832,4],[877,4],[950,5],[1094,7],[1204,7],[1327,4],[2918,5],[3419,6],[3436,5],[3957,4],[4104,5],[4464,4],[4498,4],[4526,4],[4591,5],[4597,4],[6029,4],[6417,4],[6490,4],[7318,5]]},"/geojson-to-vantage.html":{"position":[[2437,5],[7660,4]]},"/getting.started.utm.html":{"position":[[1527,5],[2242,5],[2275,5],[2481,5]]},"/getting.started.vbox.html":{"position":[[1528,4],[1563,4],[1601,5]]},"/getting.started.vmware.html":{"position":[[1756,5],[1787,5]]},"/jdbc.html":{"position":[[431,5]]},"/jupyter.html":{"position":[[2248,4],[4685,4],[6549,4]]},"/local.jupyter.hub.html":{"position":[[1891,4],[2820,4],[3584,4],[3673,4],[3907,4],[4238,5],[4440,4],[4609,6],[4788,5],[4891,4]]},"/ml.html":{"position":[[943,5],[1033,4],[1222,4],[1473,4]]},"/mule.jdbc.example.html":{"position":[[2794,4]]},"/nos.html":{"position":[[148,5],[782,5],[2042,6],[3001,5],[3078,4],[8347,5],[8379,5]]},"/odbc.ubuntu.html":{"position":[[760,4],[1105,4]]},"/run-vantage-express-on-aws.html":{"position":[[6837,4],[7130,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3617,4],[3910,5]]},"/segment.html":{"position":[[990,4]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[259,5],[612,6],[796,6]]},"/sto.html":{"position":[[2518,5],[2667,5],[5454,4]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2730,4],[3045,4],[3230,4],[5464,4]]},"/vantage.express.gcp.html":{"position":[[2644,4],[2937,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[5120,4],[5233,4],[5289,5],[9485,4],[10310,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[4137,5],[4339,4],[4544,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1333,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[877,4],[902,4],[3143,5],[3294,5],[6989,5],[8117,4],[9149,4],[9785,4],[9984,5],[24771,4],[25299,5],[26151,5],[26208,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[3618,6],[8792,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2285,4],[2966,5],[3067,4],[4077,5],[4129,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3062,4],[3314,5],[3652,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1442,4],[1978,4],[2040,4],[2515,4],[4196,5],[7760,5]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1665,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[514,4],[2154,5],[3957,4],[4024,4],[4072,4],[4165,4],[4804,4],[5966,4],[6018,4],[6070,4],[9317,4],[9671,6],[9710,4],[12847,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[556,5],[607,5],[717,5],[860,4],[897,5],[940,5],[1233,4],[1270,5],[1313,5],[3883,5],[3944,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[593,5],[644,5],[754,5],[897,4],[934,5],[977,5],[1270,4],[1307,5],[1350,5],[4113,4],[5305,4],[5566,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2172,5],[2191,4]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[167,6],[853,4],[1129,5],[4729,4],[4770,4]]},"/mule-teradata-connector/reference.html":{"position":[[14023,4],[14041,4],[18575,4],[21736,4],[24591,4],[36739,4],[36877,4],[37349,4],[37593,4],[38457,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2398,4],[2475,4],[3537,5],[3667,5],[3761,4],[4271,5],[4295,6],[4412,6],[6058,4],[8508,5],[8608,5],[8722,5],[9106,5],[9156,6],[9761,5],[9805,4],[9920,5],[9930,4],[10045,5],[10195,4],[10214,4],[10314,5],[10354,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3000,4],[3421,4],[3645,4]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[693,5],[727,5],[752,4],[900,4],[927,4]]},"/regulus/getting-started-with-regulus.html":{"position":[[2473,5],[2492,4],[3112,5],[3131,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[2266,5],[2500,5],[3457,5],[4092,4],[8937,5],[9267,4]]},"/regulus/regulus-magic-reference.html":{"position":[[885,5]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[790,4],[963,5],[2537,4],[4690,4],[6048,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[686,4],[731,4],[804,5],[948,7],[1058,7],[1202,4],[2515,4],[2581,4],[2652,4],[3540,4],[3625,4],[3722,5],[3774,4],[4866,4],[5499,4],[6961,4],[7371,5],[8035,4],[8863,5]]}},"component":{}}],["file(",{"_index":3054,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[26239,7]]}},"component":{}}],["file:///home/jovyan/.local/share/jupyter/runtime/jpserv",{"_index":1347,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[2267,57]]}},"component":{}}],["file=/tmp/vantage_password.txt",{"_index":2375,"title":{},"name":{},"text":{"/segment.html":{"position":[[2377,30]]}},"component":{}}],["file=/tmp/vantage_user.txt",{"_index":2372,"title":{},"name":{},"text":{"/segment.html":{"position":[[2203,26]]}},"component":{}}],["file_load",{"_index":4536,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3670,9],[5352,9],[5755,9],[7471,9]]}},"component":{}}],["file_nam",{"_index":3431,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[5496,9]]}},"component":{}}],["file_with_instruction.fastload",{"_index":828,"title":{},"name":{},"text":{"/fastload.html":{"position":[[6442,30]]}},"component":{}}],["filepath=notebooks/sql/data/salescenter.csv",{"_index":4419,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[2392,43]]}},"component":{}}],["filepath=notebooks/sql/data/salesdemo.csv",{"_index":4426,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[3035,41]]}},"component":{}}],["filereaderdirectorypath",{"_index":4519,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3180,23]]}},"component":{}}],["filereaderfilenam",{"_index":4520,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3209,18]]}},"component":{}}],["filereaderformat",{"_index":4521,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3247,16]]}},"component":{}}],["filereaderopenmod",{"_index":4522,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3278,18]]}},"component":{}}],["filereaderskiprow",{"_index":4524,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3336,18]]}},"component":{}}],["filereadertextdelimit",{"_index":4523,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3306,23]]}},"component":{}}],["filesystem",{"_index":3605,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[694,11]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[731,11]]}},"component":{}}],["filetyp",{"_index":1736,"title":{},"name":{},"text":{"/nos.html":{"position":[[2250,8]]}},"component":{}}],["filing_typ",{"_index":771,"title":{},"name":{},"text":{"/fastload.html":{"position":[[2975,11],[4771,12],[5318,11],[6094,12],[6831,12],[6909,12]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[4458,11],[4997,12],[8376,12],[8454,12]]}},"component":{}}],["fill",{"_index":716,"title":{},"name":{},"text":{"/fastload.html":{"position":[[1042,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[5814,4],[24371,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3407,4],[3785,4],[4754,4],[5188,4],[5488,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[3923,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[896,8]]}},"component":{}}],["filter",{"_index":221,"title":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_4_add_filters":{"position":[[12,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_4_add_filters_2":{"position":[[12,7]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[5119,6]]},"/run-vantage-express-on-aws.html":{"position":[[2863,7],[3052,7],[3983,7],[5119,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[5207,6],[7430,6],[7514,6],[25370,6],[25438,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4604,8]]},"/mule-teradata-connector/reference.html":{"position":[[30777,6],[31524,6]]}},"component":{}}],["filter=\"$(gcloud",{"_index":2362,"title":{},"name":{},"text":{"/segment.html":{"position":[[1609,16]]}},"component":{}}],["final",{"_index":820,"title":{},"name":{},"text":{"/fastload.html":{"position":[[4625,8]]},"/geojson-to-vantage.html":{"position":[[9070,5]]},"/getting.started.utm.html":{"position":[[5900,8]]},"/getting.started.vbox.html":{"position":[[4726,8]]},"/getting.started.vmware.html":{"position":[[5009,8]]},"/run-vantage-express-on-aws.html":{"position":[[9784,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6564,8]]},"/vantage.express.gcp.html":{"position":[[5591,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1370,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[8196,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[7769,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[592,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[4818,8]]}},"component":{}}],["financi",{"_index":3580,"title":{},"name":{},"text":{"/jupyter-demos/index.html":{"position":[[793,9]]}},"component":{}}],["find",{"_index":476,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[6405,4]]},"/create-parquet-files-in-object-storage.html":{"position":[[1265,4]]},"/dbt.html":{"position":[[3074,4]]},"/jupyter.html":{"position":[[1379,4]]},"/mule.jdbc.example.html":{"position":[[1640,4]]},"/nos.html":{"position":[[5343,4]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[7426,4]]},"/run-vantage-express-on-aws.html":{"position":[[816,4],[6593,4],[7786,7],[7933,7],[8080,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[448,4],[3373,4],[4566,7],[4713,7],[4860,7]]},"/vantage.express.gcp.html":{"position":[[396,4],[2400,4],[3593,7],[3740,7],[3887,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2428,4],[2485,4],[2549,4],[2609,4],[2673,4],[4823,4],[4885,4],[4954,4],[5019,4],[5088,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4158,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[6423,4],[6662,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2072,4]]},"/jupyter-demos/index.html":{"position":[[2339,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2152,4]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[708,4],[969,4]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[319,4]]}},"component":{}}],["finish",{"_index":823,"title":{},"name":{},"text":{"/fastload.html":{"position":[[5028,9]]},"/getting.started.utm.html":{"position":[[306,6]]},"/getting.started.vbox.html":{"position":[[306,6]]},"/getting.started.vmware.html":{"position":[[306,6]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4217,8]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[925,7],[1333,7]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[1275,7]]}},"component":{}}],["finland",{"_index":966,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4361,7]]}},"component":{}}],["finström",{"_index":967,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4369,8]]}},"component":{}}],["firefox",{"_index":1204,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[4813,7]]},"/getting.started.vmware.html":{"position":[[3922,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[3201,8]]}},"component":{}}],["firewal",{"_index":2294,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[10976,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7756,8]]},"/vantage.express.gcp.html":{"position":[[6783,8],[7179,8],[7415,8],[7472,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[4518,8]]}},"component":{}}],["first",{"_index":547,"title":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#The-first-pipeline-to-train-and-deploy-a-model-using-Kubeflow":{"position":[[4,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[34,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[34,5]]},"/regulus/getting-started-with-regulus.html#_run_your_first_workload":{"position":[[9,5]]}},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[1800,5]]},"/dbt.html":{"position":[[2929,5]]},"/fastload.html":{"position":[[2359,6],[3487,5],[3936,5],[4003,5]]},"/geojson-to-vantage.html":{"position":[[695,5],[7570,5]]},"/getting.started.utm.html":{"position":[[242,5],[2353,5],[4401,5],[5421,5]]},"/getting.started.vbox.html":{"position":[[242,5],[1074,6],[1358,5],[3439,5],[4247,5]]},"/getting.started.vmware.html":{"position":[[242,5],[3510,5],[4530,5]]},"/nos.html":{"position":[[1107,5],[1157,5]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[890,6],[4376,6],[7599,6]]},"/run-vantage-express-on-aws.html":{"position":[[9305,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6085,5]]},"/segment.html":{"position":[[2482,5]]},"/sto.html":{"position":[[2844,6]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1156,5]]},"/vantage.express.gcp.html":{"position":[[5112,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8372,5],[17193,5],[21003,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[8616,5],[12806,5],[17619,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2876,6]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[1327,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1557,5],[5065,5],[6280,5],[6354,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[3297,6],[6235,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1779,5],[2070,5],[2151,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[388,5],[457,5],[763,5],[866,5],[4191,6],[4370,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4403,6],[7833,5]]},"/mule-teradata-connector/reference.html":{"position":[[21177,5],[37576,5],[37974,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3154,5]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[579,6]]},"/query-service/send-queries-using-rest-api.html":{"position":[[8178,5]]},"/regulus/getting-started-with-regulus.html":{"position":[[1911,6],[3827,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[4595,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[4050,5]]}},"component":{}}],["first_nam",{"_index":3040,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[23815,11]]}},"component":{}}],["firstnam",{"_index":1217,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[5522,9],[5767,10],[6023,9]]},"/getting.started.vbox.html":{"position":[[4348,9],[4593,10],[4849,9]]},"/getting.started.vmware.html":{"position":[[4631,9],[4876,10],[5132,9]]},"/mule.jdbc.example.html":{"position":[[2300,9],[2536,10],[3279,12]]},"/run-vantage-express-on-aws.html":{"position":[[9406,9],[9651,10],[9907,9]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6186,9],[6431,10],[6687,9]]},"/vantage.express.gcp.html":{"position":[[5213,9],[5458,10],[5714,9]]}},"component":{}}],["fit",{"_index":3977,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[40360,3],[41623,3]]}},"component":{}}],["fivetran",{"_index":636,"title":{},"name":{},"text":{"/dbt.html":{"position":[[2230,8]]}},"component":{}}],["fix",{"_index":1004,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[5407,3]]}},"component":{}}],["flag",{"_index":4506,"title":{},"name":{},"text":{"/regulus/using-regulus-workspace-cli.html":{"position":[[1665,6],[1990,6],[2298,6],[2305,4],[2903,6],[3132,6],[3431,6],[3726,6],[4088,6],[4095,4],[4456,6],[4463,4],[5118,6],[5478,6],[5764,6],[5771,4],[5890,5],[5994,5],[6242,5],[6541,6],[6846,6],[6853,4]]}},"component":{}}],["flattened_json_data",{"_index":3271,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[5419,19],[5706,19]]}},"component":{}}],["fleuri",{"_index":3700,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[63,6]]}},"component":{}}],["flexibl",{"_index":875,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[907,11]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8013,8]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[909,8]]},"/regulus/install-regulus-docker-image.html":{"position":[[6332,8]]}},"component":{}}],["float",{"_index":1961,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3737,6],[3761,6],[3784,6],[3809,6],[3833,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3243,6],[3297,6],[3318,6],[3377,6]]},"/mule-teradata-connector/reference.html":{"position":[[39769,5]]}},"component":{}}],["float,b",{"_index":3409,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3357,7]]}},"component":{}}],["float,cha",{"_index":3403,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3265,10]]}},"component":{}}],["float,di",{"_index":3406,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3308,9]]}},"component":{}}],["float,indu",{"_index":3402,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3253,11]]}},"component":{}}],["float,lstat",{"_index":3410,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3365,11]]}},"component":{}}],["float,rm",{"_index":3405,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3288,8]]}},"component":{}}],["flow",{"_index":1676,"title":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_create_a_salesforce_to_amazon_s3_flow":{"position":[[33,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_1_specify_flow_details":{"position":[[16,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_2_configure_flow":{"position":[[18,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_run_flow":{"position":[[4,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_create_an_amazon_s3_to_salesforce_flow":{"position":[[34,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_1_specify_flow_details_2":{"position":[[16,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_2_configure_flow_2":{"position":[[18,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_run_flow_2":{"position":[[4,4]]},"/mule-teradata-connector/examples-configuration.html#add-connector-operation":{"position":[[33,4]]}},"name":{},"text":{"/nos.html":{"position":[[991,4],[1334,4],[2495,4],[4218,4],[5972,5],[6021,5],[6148,4]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1919,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1342,7],[3016,6],[3975,5],[4094,4],[5113,6],[5339,4],[5446,4],[5471,4],[5665,5],[5808,5],[5822,4],[5854,4],[6026,5],[6536,4],[6750,4],[7657,5],[7687,4],[7728,4],[7754,4],[7781,4],[7836,4],[24257,4],[24365,5],[24379,4],[24412,4],[24584,5],[25031,4],[25041,4],[25546,5],[25576,4],[25617,4],[25643,4],[25670,4],[25725,4],[26108,4],[26124,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[5511,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[7453,4]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[320,5],[359,5],[1492,4],[1645,4],[1769,4],[1860,4],[2938,5]]},"/mule-teradata-connector/index.html":{"position":[[553,4],[1073,5]]},"/mule-teradata-connector/reference.html":{"position":[[20525,4],[20710,4],[20775,4],[27567,4]]},"/mule-teradata-connector/release-notes.html":{"position":[[673,5]]}},"component":{}}],["flower",{"_index":4107,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8966,6]]}},"component":{}}],["fn",{"_index":3871,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[2693,3],[2781,3]]}},"component":{}}],["focu",{"_index":1417,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[1301,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[10832,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[945,5]]}},"component":{}}],["folder",{"_index":2664,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[5222,6],[5363,6],[5441,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2579,6],[3645,6],[3867,7],[3957,6],[3982,6],[4004,6],[4027,6],[4224,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[5593,6],[5612,7]]}},"component":{}}],["follow",{"_index":101,"title":{"/install-teradata-studio-on-mac-m1-m2.html#_steps_to_follow":{"position":[[9,6]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1893,9],[5791,9]]},"/advanced-dbt.html":{"position":[[311,10],[1617,9],[2233,9],[2829,9],[3803,9],[3886,9],[3985,9],[4816,9]]},"/create-parquet-files-in-object-storage.html":{"position":[[1465,9],[3157,6],[3789,9]]},"/dbt.html":{"position":[[1025,9],[1107,9],[1993,9],[2078,9],[4061,7],[4397,9]]},"/fastload.html":{"position":[[1415,9]]},"/geojson-to-vantage.html":{"position":[[1736,9],[5966,9]]},"/getting.started.utm.html":{"position":[[457,9],[2024,9],[3077,9],[3681,9],[5995,9]]},"/getting.started.vbox.html":{"position":[[457,9],[607,9],[2115,9],[2719,9],[4821,9],[5690,9]]},"/getting.started.vmware.html":{"position":[[457,9],[607,9],[2186,9],[2790,9],[5104,9]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[224,6]]},"/jupyter.html":{"position":[[6575,9]]},"/local.jupyter.hub.html":{"position":[[1032,9],[5862,9]]},"/ml.html":{"position":[[3493,9]]},"/mule.jdbc.example.html":{"position":[[3094,9],[3175,9]]},"/nos.html":{"position":[[7909,9]]},"/odbc.ubuntu.html":{"position":[[792,9],[1119,9]]},"/run-vantage-express-on-aws.html":{"position":[[700,6],[9879,9],[10193,9]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6659,9],[6973,9]]},"/sto.html":{"position":[[2731,9],[3210,9],[4869,9],[7154,9]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3709,7]]},"/vantage.express.gcp.html":{"position":[[550,9],[5686,9],[6000,9]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2880,6],[3236,6],[3808,6],[4253,6],[6670,6],[9095,9],[9515,9],[10451,9],[10807,9],[11226,9],[13373,9],[14807,9],[17050,9],[17423,9],[18559,9],[20734,9],[21211,9],[21938,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[5760,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2784,9],[3359,9],[5286,6],[9173,9],[11111,9],[14529,9],[25322,9],[26034,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2453,9],[8813,9]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2006,9],[3793,9]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1874,9],[2357,9]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2929,6],[3537,9],[4701,9],[7856,9]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1314,6],[1403,6],[3050,9],[3854,9],[12068,9],[12768,9],[13624,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[996,9],[1520,6],[4907,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[315,9],[1033,9],[1557,6],[6912,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1848,9],[2487,9],[2750,9],[4445,7],[5932,6],[8175,9]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1950,6],[3063,6],[3258,9],[3589,6],[4276,9],[4491,8]]},"/mule-teradata-connector/reference.html":{"position":[[20503,9]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[1420,9]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8820,9]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2765,9],[2852,9],[3038,9],[3120,9],[3882,9]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1287,9],[2856,9],[5569,9],[8057,9],[8814,9],[9260,9]]},"/regulus/getting-started-with-regulus.html":{"position":[[463,10]]},"/regulus/install-regulus-docker-image.html":{"position":[[571,9],[1390,10],[2550,9],[4629,9],[4787,9],[5004,10],[5073,9],[5900,9],[6709,9],[7936,9]]},"/regulus/regulus-magic-reference.html":{"position":[[204,9]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1725,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1290,9],[2684,9],[3554,9]]}},"component":{}}],["footprint",{"_index":2108,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[146,9]]}},"component":{}}],["forc",{"_index":3358,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1200,5]]}},"component":{}}],["foreign",{"_index":594,"title":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_a_foreign_table_definition":{"position":[[9,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_read_nos_an_alternative_method_to_foreign_tables":{"position":[[36,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_create_foreign_table":{"position":[[7,7]]}},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[3199,7],[3337,7]]},"/fastload.html":{"position":[[6614,7],[6635,7]]},"/nos.html":{"position":[[3695,7],[3904,7],[4065,7],[5751,7],[5868,7],[7435,7],[7457,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8740,7],[9448,7],[9554,7],[9843,7],[10374,7],[10536,7],[10754,7],[11080,7],[11103,7],[13630,7],[14012,7],[14616,7],[14753,7],[20866,7],[21020,7],[22396,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[8423,7],[8601,7],[8844,7],[9118,7],[9208,7],[9560,7],[9990,7],[10064,7],[10166,7],[10245,7],[10463,7],[11060,7],[12822,7],[13274,7],[14610,7],[15488,7],[15708,7],[15834,7],[17482,7],[17636,7],[19664,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3288,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5043,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[8159,7],[8180,7]]}},"component":{}}],["forev",{"_index":3891,"title":{"/mule-teradata-connector/reference.html#reconnect-forever":{"position":[[10,7]]}},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[5112,7],[7404,7],[9622,7],[11761,7],[13329,7],[15098,7],[17615,7],[20297,7],[23419,7],[27368,7],[30368,7],[33152,7],[35884,7]]}},"component":{}}],["forget",{"_index":536,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[1536,6],[2496,6],[3220,6]]}},"component":{}}],["form",{"_index":145,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2929,4]]},"/fastload.html":{"position":[[1251,4],[6708,4]]},"/geojson-to-vantage.html":{"position":[[322,4]]},"/mule.jdbc.example.html":{"position":[[637,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[10603,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6978,4]]},"/mule-teradata-connector/reference.html":{"position":[[1240,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[7051,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[8253,4]]}},"component":{}}],["format",{"_index":502,"title":{"/query-service/send-queries-using-rest-api.html#_request_a_response_in_csv_format":{"position":[[26,6]]}},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[175,6],[542,7],[1249,7],[2040,6],[4239,8]]},"/geojson-to-vantage.html":{"position":[[134,6],[760,6],[1552,7],[5427,10]]},"/getting.started.utm.html":{"position":[[2543,7],[5584,6],[5621,6]]},"/getting.started.vbox.html":{"position":[[4410,6],[4447,6]]},"/getting.started.vmware.html":{"position":[[4693,6],[4730,6]]},"/local.jupyter.hub.html":{"position":[[1508,6]]},"/mule.jdbc.example.html":{"position":[[566,7],[2362,6],[2399,6]]},"/nos.html":{"position":[[730,8],[8311,7],[8610,8]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[788,6]]},"/run-vantage-express-on-aws.html":{"position":[[9468,6],[9505,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6248,6],[6285,6]]},"/segment.html":{"position":[[3338,6]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3063,6]]},"/vantage.express.gcp.html":{"position":[[5275,6],[5312,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8905,7],[8957,8],[9731,6],[11451,6],[11630,6],[15073,6],[15252,6],[17588,6],[17681,6],[18785,6],[18964,6],[21344,6],[22090,6],[22682,6],[22861,6],[24635,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[920,6],[934,7],[7994,7],[8581,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[777,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[3340,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[2564,7],[2769,7],[7063,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[66,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[7264,7]]},"/mule-teradata-connector/reference.html":{"position":[[2709,7]]},"/query-service/send-queries-using-rest-api.html":{"position":[[2965,9],[2989,6],[3014,7],[3087,6],[3499,9],[5321,7],[5337,6],[5393,6],[5775,9],[8923,9],[8947,6],[9193,9],[9369,9],[9393,6],[9610,9]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[3214,7],[3808,7],[4253,7],[5200,7],[5560,7],[6325,7],[6623,7],[7034,7]]}},"component":{}}],["format'y4",{"_index":1741,"title":{},"name":{},"text":{"/nos.html":{"position":[[2691,9]]}},"component":{}}],["format=\"value(project_numb",{"_index":2363,"title":{},"name":{},"text":{"/segment.html":{"position":[[1657,31]]}},"component":{}}],["formerli",{"_index":2659,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[4674,9]]}},"component":{}}],["formula",{"_index":2905,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[7150,7]]}},"component":{}}],["forum",{"_index":249,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[6103,5]]},"/advanced-dbt.html":{"position":[[7382,5]]},"/create-parquet-files-in-object-storage.html":{"position":[[4444,5]]},"/dbt.html":{"position":[[4982,5]]},"/fastload.html":{"position":[[7673,5]]},"/geojson-to-vantage.html":{"position":[[10724,5]]},"/getting.started.utm.html":{"position":[[6653,5]]},"/getting.started.vbox.html":{"position":[[6249,5]]},"/getting.started.vmware.html":{"position":[[5762,5]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[1185,5]]},"/jdbc.html":{"position":[[1187,5]]},"/jupyter.html":{"position":[[7435,5]]},"/local.jupyter.hub.html":{"position":[[6206,5]]},"/ml.html":{"position":[[9207,5]]},"/mule.jdbc.example.html":{"position":[[3633,5]]},"/nos.html":{"position":[[8819,5]]},"/odbc.ubuntu.html":{"position":[[2044,5]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10932,5]]},"/run-vantage-express-on-aws.html":{"position":[[12591,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[8529,5]]},"/segment.html":{"position":[[5663,5]]},"/sto.html":{"position":[[8034,5]]},"/teradatasql.html":{"position":[[1119,5]]},"/vantage.express.gcp.html":{"position":[[7705,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[24911,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[6485,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[4687,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[26463,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[9005,5]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[6392,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[7393,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[8583,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[5336,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[7387,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9929,5]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[4995,5]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[1674,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[10956,5]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1920,5]]},"/query-service/send-queries-using-rest-api.html":{"position":[[12630,5]]},"/regulus/getting-started-with-regulus.html":{"position":[[4145,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[9965,5]]},"/regulus/regulus-magic-reference.html":{"position":[[5236,5]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[7123,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[9233,5]]}},"component":{}}],["forward",{"_index":868,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[720,7]]},"/jdbc.html":{"position":[[693,7]]},"/segment.html":{"position":[[326,8],[5398,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7710,8]]}},"component":{}}],["found",{"_index":483,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[6669,5]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[4361,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[724,5]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1647,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1908,5]]}},"component":{}}],["four",{"_index":2882,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1562,4]]}},"component":{}}],["fourth",{"_index":72,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1066,6]]}},"component":{}}],["fra",{"_index":981,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4542,3],[4633,3]]}},"component":{}}],["fraction",{"_index":3226,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[5041,8]]}},"component":{}}],["frame",{"_index":1376,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[4459,6]]}},"component":{}}],["fraud",{"_index":3590,"title":{},"name":{},"text":{"/jupyter-demos/index.html":{"position":[[1808,5]]}},"component":{}}],["free",{"_index":104,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1950,4],[2418,4]]},"/advanced-dbt.html":{"position":[[648,4]]},"/create-parquet-files-in-object-storage.html":{"position":[[931,4]]},"/dbt.html":{"position":[[375,4]]},"/fastload.html":{"position":[[636,4]]},"/geojson-to-vantage.html":{"position":[[1122,4]]},"/getting.started.vmware.html":{"position":[[1401,4]]},"/jdbc.html":{"position":[[313,4]]},"/jupyter.html":{"position":[[282,4],[493,4]]},"/local.jupyter.hub.html":{"position":[[559,4]]},"/ml.html":{"position":[[611,4]]},"/mule.jdbc.example.html":{"position":[[410,4]]},"/nos.html":{"position":[[604,4]]},"/odbc.ubuntu.html":{"position":[[247,4]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[623,4]]},"/segment.html":{"position":[[823,4]]},"/sto.html":{"position":[[818,4]]},"/teradatasql.html":{"position":[[600,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2698,4],[2778,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[275,4],[1250,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[280,4],[693,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2922,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1723,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[1786,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[648,4],[718,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[627,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[580,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[515,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[552,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[356,4]]},"/mule-teradata-connector/index.html":{"position":[[784,4]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[251,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1310,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1350,4]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[393,4]]},"/query-service/send-queries-using-rest-api.html":{"position":[[731,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[1562,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[490,4]]}},"component":{}}],["french",{"_index":977,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4509,6],[4608,6]]}},"component":{}}],["frequenc",{"_index":3341,"title":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_replication_frequency":{"position":[[12,9]]}},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[7672,10]]},"/mule-teradata-connector/reference.html":{"position":[[35971,9],[36237,9]]}},"component":{}}],["fresh",{"_index":3311,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[3284,5]]}},"component":{}}],["fro",{"_index":1156,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[2523,3]]}},"component":{}}],["fromport",{"_index":2170,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[3348,11],[11463,11]]}},"component":{}}],["full",{"_index":742,"title":{},"name":{},"text":{"/fastload.html":{"position":[[1928,4]]},"/run-vantage-express-on-aws.html":{"position":[[6118,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2898,4]]},"/segment.html":{"position":[[4851,4]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[744,4]]},"/vantage.express.gcp.html":{"position":[[1925,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8307,4],[8343,4],[13697,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[10727,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[259,4],[4916,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[259,4],[6921,4]]},"/mule-teradata-connector/reference.html":{"position":[[40802,5],[42024,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2023,4]]}},"component":{}}],["full_feature_names=tru",{"_index":4189,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6751,23]]}},"component":{}}],["fulli",{"_index":2109,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[186,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[156,5]]},"/vantage.express.gcp.html":{"position":[[162,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1025,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[515,5]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[261,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[1103,5]]}},"component":{}}],["function",{"_index":531,"title":{"/create-parquet-files-in-object-storage.html#_create_a_parquet_file_with_write_nos_function":{"position":[[37,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-function-for-executing-the-pipeline":{"position":[[7,8]]}},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[1212,13],[1305,13],[1412,9],[1590,8],[1644,8]]},"/dbt.html":{"position":[[2296,13]]},"/geojson-to-vantage.html":{"position":[[530,9],[1376,10],[3017,9],[3253,8],[5120,9],[5675,10],[8969,8],[9485,10]]},"/getting.started.vbox.html":{"position":[[1275,13]]},"/jupyter.html":{"position":[[259,10]]},"/ml.html":{"position":[[1705,9],[2125,8],[2161,8]]},"/nos.html":{"position":[[7789,8],[8512,13]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[284,15],[400,15],[6006,14],[7350,14]]},"/run-vantage-express-on-aws.html":{"position":[[192,10]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[162,10]]},"/segment.html":{"position":[[4987,13]]},"/sto.html":{"position":[[205,8],[7884,9]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1194,9],[1791,10],[1824,10],[1989,9],[2671,9],[3490,9]]},"/vantage.express.gcp.html":{"position":[[168,10]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1349,10]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[252,10]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[257,10]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[563,13],[821,8],[2075,10],[8308,15],[8405,9]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1010,10]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[8859,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4186,8],[4565,8],[4946,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[5304,14],[9386,14]]},"/mule-teradata-connector/reference.html":{"position":[[2619,8],[2677,8],[2697,11],[2738,8]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[411,10],[4671,9],[6059,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1515,9]]}},"component":{}}],["functionality/oper",{"_index":2099,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10417,25]]}},"component":{}}],["further",{"_index":244,"title":{"/create-parquet-files-in-object-storage.html#_further_reading":{"position":[[0,7]]},"/dbt.html#_further_reading":{"position":[[0,7]]},"/fastload.html#_further_reading":{"position":[[0,7]]},"/getting.started.utm.html#_further_reading":{"position":[[0,7]]},"/getting.started.vbox.html#_further_reading":{"position":[[0,7]]},"/getting.started.vmware.html#_further_reading":{"position":[[0,7]]},"/jdbc.html#_further_reading":{"position":[[0,7]]},"/jupyter.html#_further_reading":{"position":[[0,7]]},"/local.jupyter.hub.html#_further_reading":{"position":[[0,7]]},"/ml.html#_further_reading":{"position":[[0,7]]},"/mule.jdbc.example.html#_further_reading":{"position":[[0,7]]},"/nos.html#_further_reading":{"position":[[0,7]]},"/odbc.ubuntu.html#_further_reading":{"position":[[0,7]]},"/perform-time-series-analysis-using-teradata-vantage.html#_further_reading":{"position":[[0,7]]},"/run-vantage-express-on-aws.html#_further_reading":{"position":[[0,7]]},"/run-vantage-express-on-microsoft-azure.html#_further_reading":{"position":[[0,7]]},"/segment.html#_further_reading":{"position":[[0,7]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_further_reading":{"position":[[0,7]]},"/sto.html#_further_reading":{"position":[[0,7]]},"/teradata-vantage-engine-architecture-and-concepts.html#_further_reading":{"position":[[0,7]]},"/teradatasql.html#_further_reading":{"position":[[0,7]]},"/vantage.express.gcp.html#_further_reading":{"position":[[0,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_further_reading":{"position":[[0,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html#_further_reading":{"position":[[0,7]]},"/cloud-guides/sagemaker-with-teradata-vantage.html#_further_reading":{"position":[[0,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_further_reading":{"position":[[0,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_further_reading":{"position":[[0,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_further_reading":{"position":[[0,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_further_reading":{"position":[[0,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_further_reading":{"position":[[0,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html#_further_reading":{"position":[[0,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_further_reading":{"position":[[0,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_further_reading":{"position":[[0,7]]},"/other-integrations/integrate-teradata-vantage-with-knime.html#_further_reading":{"position":[[0,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_further_reading":{"position":[[0,7]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[6056,7]]},"/advanced-dbt.html":{"position":[[7335,7]]},"/create-parquet-files-in-object-storage.html":{"position":[[4397,7]]},"/dbt.html":{"position":[[4935,7]]},"/fastload.html":{"position":[[7328,7],[7626,7]]},"/geojson-to-vantage.html":{"position":[[10677,7]]},"/getting.started.utm.html":{"position":[[6606,7]]},"/getting.started.vbox.html":{"position":[[6202,7]]},"/getting.started.vmware.html":{"position":[[5715,7]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[1138,7]]},"/jdbc.html":{"position":[[1140,7]]},"/jupyter.html":{"position":[[7388,7]]},"/local.jupyter.hub.html":{"position":[[6159,7]]},"/ml.html":{"position":[[9160,7]]},"/mule.jdbc.example.html":{"position":[[3586,7]]},"/nos.html":{"position":[[8772,7]]},"/odbc.ubuntu.html":{"position":[[1997,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3519,7],[4715,7],[6046,7],[10885,7]]},"/run-vantage-express-on-aws.html":{"position":[[12544,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[8482,7]]},"/segment.html":{"position":[[5616,7]]},"/sto.html":{"position":[[7987,7]]},"/teradatasql.html":{"position":[[1072,7]]},"/vantage.express.gcp.html":{"position":[[7658,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[24864,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[6438,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[4640,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13333,7],[26416,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[8958,7]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[678,7],[6345,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[7346,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[8536,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[2902,7],[7095,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[5289,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[7340,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9882,7]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[4948,7]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[1627,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[10909,7]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1873,7]]},"/query-service/send-queries-using-rest-api.html":{"position":[[12583,7]]},"/regulus/getting-started-with-regulus.html":{"position":[[4098,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[9918,7]]},"/regulus/regulus-magic-reference.html":{"position":[[5189,7]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[7076,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[8873,7],[9186,7]]}},"component":{}}],["fusion",{"_index":113,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2092,7]]},"/getting.started.vmware.html":{"position":[[1345,6],[1579,6]]}},"component":{}}],["futur",{"_index":205,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[4521,6]]}},"component":{}}],["g",{"_index":4509,"title":{},"name":{},"text":{"/regulus/using-regulus-workspace-cli.html":{"position":[[4128,2]]}},"component":{}}],["gageheight",{"_index":1690,"title":{},"name":{},"text":{"/nos.html":{"position":[[1370,10],[2885,10],[4254,10],[5978,11],[6027,11],[6153,10]]}},"component":{}}],["gageheight2",{"_index":1686,"title":{},"name":{},"text":{"/nos.html":{"position":[[1322,11],[2398,11],[4206,11]]}},"component":{}}],["gain",{"_index":1099,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[82,4]]},"/getting.started.vbox.html":{"position":[[82,4]]},"/getting.started.vmware.html":{"position":[[82,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[4162,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9451,7]]}},"component":{}}],["gamma=4",{"_index":3173,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3888,7]]}},"component":{}}],["gateway",{"_index":83,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1396,7],[4086,8],[4232,8]]},"/run-vantage-express-on-aws.html":{"position":[[1718,7],[1776,7],[1885,7],[1929,7],[1973,7],[2206,7],[2322,7],[3751,7],[3872,8],[11872,7],[11904,7],[11925,7],[12011,7],[12032,7]]}},"component":{}}],["gather",{"_index":858,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[241,9]]}},"component":{}}],["gb",{"_index":2317,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[1258,2],[1649,2],[2027,2]]},"/mule-teradata-connector/reference.html":{"position":[[41331,2],[42301,2],[42610,2]]}},"component":{}}],["gc",{"_index":508,"title":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-GCS-bucket":{"position":[[7,3]]}},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[283,4]]},"/nos.html":{"position":[[195,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1478,3],[1719,3]]}},"component":{}}],["gcloud",{"_index":2346,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[8121,6]]},"/segment.html":{"position":[[629,6],[1371,6],[1397,6],[1728,6],[1903,6],[2068,6],[2148,6],[2230,6],[2318,6],[2531,6],[2892,6],[2982,8],[3294,8],[3428,6],[3554,6],[3716,6],[3787,8],[4006,6],[4247,6]]},"/vantage.express.gcp.html":{"position":[[333,6],[795,6],[1083,6],[1371,6],[1675,6],[7148,6],[7164,6],[7308,6],[7457,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2484,6],[2550,6],[2725,6]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[2439,7]]}},"component":{}}],["gcp",{"_index":333,"title":{},"name":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[0,3]]}},"text":{"/advanced-dbt.html":{"position":[[1889,6],[4575,3]]},"/regulus/regulus-magic-reference.html":{"position":[[1068,4]]}},"component":{}}],["gcpuser",{"_index":3090,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4577,7]]}},"component":{}}],["gcr.io/$project_id/seg",{"_index":2369,"title":{},"name":{},"text":{"/segment.html":{"position":[[1930,26],[2918,26]]}},"component":{}}],["gcr.io/deeplearn",{"_index":2811,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[3977,19]]}},"component":{}}],["gen1",{"_index":2626,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[775,4],[4594,5]]}},"component":{}}],["gen2",{"_index":529,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[1175,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[784,5],[4624,5]]}},"component":{}}],["gender",{"_index":4136,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1753,7]]}},"component":{}}],["gener",{"_index":474,"title":{"/dbt.html#_generate_documentation":{"position":[[0,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_generate_documentation":{"position":[[0,8]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_generate_training_data":{"position":[[0,8]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[6203,8]]},"/dbt.html":{"position":[[4211,8],[4273,8],[4773,8],[4822,9]]},"/run-vantage-express-on-aws.html":{"position":[[8812,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5592,7]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[5788,8]]},"/vantage.express.gcp.html":{"position":[[4619,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4419,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7646,10],[7728,8],[8374,8],[8423,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[3978,9]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1702,9],[2359,7],[3854,7]]},"/mule-teradata-connector/reference.html":{"position":[[4351,9],[6677,9],[8887,9],[10716,9],[12931,9],[14700,9],[16194,9],[16965,8],[17015,9],[17066,9],[17161,9],[17213,9],[17304,9],[19253,9],[20923,9],[22395,9],[25358,9],[26708,8],[26758,9],[26809,9],[26904,9],[26957,9],[27048,9],[27744,9],[28936,9],[29712,8],[29762,9],[29812,9],[29907,9],[29959,9],[30050,9],[30602,9],[32976,9],[40096,9]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1933,9],[2094,8],[5869,8],[6073,9],[7068,8],[7204,9]]},"/regulus/getting-started-with-regulus.html":{"position":[[1557,10],[1712,9]]},"/regulus/install-regulus-docker-image.html":{"position":[[4457,9],[5083,7],[5779,8],[5827,9],[7681,10],[7777,9]]},"/regulus/regulus-magic-reference.html":{"position":[[3122,10]]}},"component":{}}],["generate_training_data.pi",{"_index":4143,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2577,25]]}},"component":{}}],["geo_json",{"_index":894,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[1987,9],[6170,9]]}},"component":{}}],["geo_json.read",{"_index":896,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[2011,15]]}},"component":{}}],["geofeatur",{"_index":1025,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[6616,11]]}},"component":{}}],["geograph",{"_index":848,"title":{"/geojson-to-vantage.html":{"position":[[4,10]]}},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[104,10],[261,12],[1523,12],[10564,10]]}},"component":{}}],["geographi",{"_index":1094,"title":{"/geojson-to-vantage.html#_create_and_our_geography_refernce_table":{"position":[[15,9]]}},"name":{},"text":{},"component":{}}],["geographykey",{"_index":3218,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4723,13]]}},"component":{}}],["geojson",{"_index":849,"title":{"/geojson-to-vantage.html#_option_1_load_a_geojson_document_into_vantage":{"position":[[17,7]]},"/geojson-to-vantage.html#_get_and_load_the_geojson_document":{"position":[[17,7]]},"/geojson-to-vantage.html#_load_the_geojson_document_in_vantage":{"position":[[9,7]]},"/geojson-to-vantage.html#_option_2_prepare_a_geojson_document_with_python_and_load_it_into_vantage":{"position":[[20,7]]},"/geojson-to-vantage.html#_get_and_load_the_geojson_document_2":{"position":[[17,7]]},"/geojson-to-vantage.html#_open_the_geojson_file_and_type_it_as_a_dictionary":{"position":[[9,7]]}},"name":{"/geojson-to-vantage.html":{"position":[[0,7]]}},"text":{"/geojson-to-vantage.html":{"position":[[126,7],[429,7],[1219,7],[1544,7],[3040,7]]}},"component":{}}],["geojson_clob",{"_index":917,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[2798,12]]}},"component":{}}],["geojson_nm",{"_index":915,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[2773,11],[3552,10]]}},"component":{}}],["geojson_nm='c",{"_index":944,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3625,19]]}},"component":{}}],["geojson_src",{"_index":911,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[2648,11],[2761,11],[2870,11],[3607,11]]}},"component":{}}],["geolog",{"_index":1678,"title":{},"name":{},"text":{"/nos.html":{"position":[[1023,10]]}},"component":{}}],["geom",{"_index":955,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4009,5]]}},"component":{}}],["geometri",{"_index":922,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3106,8],[3274,8],[3303,8],[3703,13],[4116,8],[6889,8],[8322,11],[8990,8],[9019,8],[9105,8]]}},"component":{}}],["geomfromgeojson",{"_index":926,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3237,15],[8953,15]]}},"component":{}}],["geomfromgeojson(boundaries_geo",{"_index":1058,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[9213,32]]}},"component":{}}],["geomfromgeojson(geom",{"_index":937,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3487,21]]}},"component":{}}],["geospati",{"_index":855,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[156,10],[1438,10],[9450,10],[10325,10]]}},"component":{}}],["get",{"_index":86,"title":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_getting_started":{"position":[[0,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html#_getting_started":{"position":[[0,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_getting_started":{"position":[[0,7]]}},"name":{"/regulus/getting-started-with-regulus.html":{"position":[[0,7]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1438,7]]},"/dbt.html":{"position":[[2176,7]]},"/nos.html":{"position":[[8716,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10829,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[268,7],[1112,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1061,7],[1392,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1098,7],[1429,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1755,7]]},"/mule-teradata-connector/reference.html":{"position":[[40797,4],[42019,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1888,7]]},"/regulus/regulus-magic-reference.html":{"position":[[317,7]]}},"component":{}}],["get_context",{"_index":3141,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2495,12]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2443,12]]}},"component":{}}],["get_training_data",{"_index":4172,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6113,20]]}},"component":{}}],["getpass",{"_index":890,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[1783,7],[2469,7],[6013,7],[8117,7]]}},"component":{}}],["getting.started.dbt",{"_index":4124,"title":{},"name":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[0,19]]}},"text":{},"component":{}}],["getting.started.utm",{"_index":1097,"title":{},"name":{"/getting.started.utm.html":{"position":[[0,19]]}},"text":{},"component":{}}],["getting.started.vbox",{"_index":1241,"title":{},"name":{"/getting.started.vbox.html":{"position":[[0,20]]}},"text":{},"component":{}}],["getting.started.vmwar",{"_index":1268,"title":{},"name":{"/getting.started.vmware.html":{"position":[[0,22]]}},"text":{},"component":{}}],["gettingstarteddemo.ipynb",{"_index":1402,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[6633,25]]}},"component":{}}],["git",{"_index":299,"title":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[40,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_model_lifecycle_for_a_new_git":{"position":[[26,3]]}},"name":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[70,3]]}},"text":{"/advanced-dbt.html":{"position":[[926,3]]},"/dbt.html":{"position":[[527,3]]},"/mule.jdbc.example.html":{"position":[[1531,3],[2846,3]]},"/segment.html":{"position":[[893,3]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1223,3],[1482,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[986,3],[1012,3],[1077,3],[1337,3],[1412,3],[1858,3],[4009,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[345,3],[1023,3],[1049,3],[1114,3],[1374,3],[1449,3],[1895,3],[3901,3],[4023,3],[5952,3],[6939,3]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[5142,4],[5164,3],[5382,3]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2344,3],[7482,3]]},"/regulus/install-regulus-docker-image.html":{"position":[[5221,3],[5251,3]]},"/regulus/regulus-magic-reference.html":{"position":[[4922,3]]}},"component":{}}],["git@github.com:teradata/seg",{"_index":2354,"title":{},"name":{},"text":{"/segment.html":{"position":[[903,31]]}},"component":{}}],["github",{"_index":1352,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[2687,7],[4766,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[194,7],[2404,7]]},"/regulus/getting-started-with-regulus.html":{"position":[[2502,6],[3141,6],[3685,6],[3947,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[1401,6],[1445,6],[4282,6],[4478,6],[4574,6],[4679,6],[4723,6],[5301,7],[6744,7],[6782,6],[6871,6],[6961,6],[7010,6],[7081,6],[7141,6],[7180,6],[7216,6],[7291,6],[7328,6],[7434,6],[7521,7],[7546,6],[9871,6]]},"/regulus/regulus-magic-reference.html":{"position":[[821,6],[1285,6],[4805,6]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1849,7],[2133,6],[3293,7],[3555,6],[3890,6]]}},"component":{}}],["gitref",{"_index":4501,"title":{},"name":{},"text":{"/regulus/regulus-magic-reference.html":{"position":[[4858,7],[4914,7]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[3990,6],[4133,6]]}},"component":{}}],["give",{"_index":537,"title":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Give-permissions-to-Vertex-AI-to-access-your-bucket":{"position":[[0,4]]}},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[1546,4]]},"/local.jupyter.hub.html":{"position":[[5627,4]]},"/segment.html":{"position":[[3659,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[5139,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[6284,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[2936,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[7271,5]]}},"component":{}}],["given",{"_index":3284,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[6841,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4692,5]]},"/mule-teradata-connector/reference.html":{"position":[[4407,5],[6733,5],[8943,5],[10772,5],[12987,5],[14756,5],[16250,5],[19309,5],[25414,5],[28992,5],[33032,5],[33364,5],[33452,5]]}},"component":{}}],["global",{"_index":1494,"title":{"/mule-teradata-connector/examples-configuration.html#_configure_a_global_element_for_the_connector":{"position":[[12,6]]}},"name":{},"text":{"/ml.html":{"position":[[1776,6]]},"/segment.html":{"position":[[5285,6]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[377,6],[2246,6],[3461,6],[3550,6],[3779,6],[4326,6],[4411,6]]},"/mule-teradata-connector/index.html":{"position":[[527,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[5478,6]]}},"component":{}}],["globalid",{"_index":1215,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[5504,8],[5690,8],[5757,9],[6014,8]]},"/getting.started.vbox.html":{"position":[[4330,8],[4516,8],[4583,9],[4840,8]]},"/getting.started.vmware.html":{"position":[[4613,8],[4799,8],[4866,9],[5123,8]]},"/mule.jdbc.example.html":{"position":[[2282,8],[2468,8],[2526,9],[3300,11]]},"/run-vantage-express-on-aws.html":{"position":[[9388,8],[9574,8],[9641,9],[9898,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6168,8],[6354,8],[6421,9],[6678,8]]},"/vantage.express.gcp.html":{"position":[[5195,8],[5381,8],[5448,9],[5705,8]]}},"component":{}}],["gnome",{"_index":1177,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[3470,5],[3594,5]]},"/getting.started.vbox.html":{"position":[[2508,5],[2632,5],[5654,5]]},"/getting.started.vmware.html":{"position":[[2579,5],[2703,5]]},"/ml.html":{"position":[[2392,5]]}},"component":{}}],["go",{"_index":207,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[4591,5]]},"/fastload.html":{"position":[[956,2],[2269,5],[2572,5]]},"/geojson-to-vantage.html":{"position":[[7475,2]]},"/getting.started.utm.html":{"position":[[1445,2],[1967,2],[3434,2],[4325,2],[4780,2],[4888,2],[4924,3]]},"/getting.started.vbox.html":{"position":[[1522,2],[2472,2],[3363,2],[3714,2],[3750,3]]},"/getting.started.vmware.html":{"position":[[1674,2],[2543,2],[3434,2],[3889,2],[3997,2],[4033,3]]},"/jupyter.html":{"position":[[346,2],[2129,2],[6104,2],[6659,2]]},"/local.jupyter.hub.html":{"position":[[1404,2],[3309,2]]},"/ml.html":{"position":[[949,2],[1894,2],[3213,5],[3546,5]]},"/mule.jdbc.example.html":{"position":[[3058,2]]},"/nos.html":{"position":[[919,5]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[6036,2]]},"/run-vantage-express-on-aws.html":{"position":[[6202,2],[11096,2]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2982,2],[7876,2]]},"/sto.html":{"position":[[2899,5]]},"/vantage.express.gcp.html":{"position":[[2009,2],[6903,2]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[3567,2],[4191,2],[6024,5],[8458,2]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1775,2],[3313,2]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[5585,2],[26157,2]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[8286,2]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2089,2]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1773,2]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2557,2]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1194,2],[5875,2]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1607,2],[1702,2],[13677,2]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[5735,2],[5854,2]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[492,2]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[347,2],[1339,2],[10273,2]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[508,2]]},"/regulus/install-regulus-docker-image.html":{"position":[[4043,2],[9218,2]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1570,2]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[810,2]]}},"component":{}}],["goe",{"_index":1285,"title":{},"name":{},"text":{"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[72,4]]}},"component":{}}],["good",{"_index":1017,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[6221,4]]},"/nos.html":{"position":[[5534,4]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[811,4]]},"/sto.html":{"position":[[2094,4]]}},"component":{}}],["googl",{"_index":330,"title":{"/vantage.express.gcp.html":{"position":[[23,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[43,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[32,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_about_google_cloud_data_catalog":{"position":[[6,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[0,6]]}},"name":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[43,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[32,6]]}},"text":{"/advanced-dbt.html":{"position":[[1867,6]]},"/create-parquet-files-in-object-storage.html":{"position":[[276,6],[1185,6]]},"/getting.started.utm.html":{"position":[[921,6],[1207,6]]},"/jupyter.html":{"position":[[1874,6]]},"/ml.html":{"position":[[663,6]]},"/nos.html":{"position":[[188,6]]},"/run-vantage-express-on-aws.html":{"position":[[430,6]]},"/segment.html":{"position":[[175,6],[296,6],[520,6],[727,6],[1705,6],[2039,6],[4796,6],[5430,6]]},"/vantage.express.gcp.html":{"position":[[112,6],[311,6],[720,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[488,6],[508,6],[1291,6],[1335,6],[1912,6],[3618,6],[5693,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[123,6],[463,6],[484,6],[1766,6],[1914,6],[2118,6],[2310,6],[2525,6],[2580,6],[2604,6],[3194,6],[3244,6],[3294,6],[3633,6],[3725,6],[4059,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[377,6],[733,6],[3361,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[224,6],[281,6],[836,6],[911,6],[1023,6],[2441,6],[2662,6],[2728,6],[3089,6],[4995,6],[7025,6],[7330,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1068,6],[1348,6],[4482,6]]},"/jupyter-demos/index.html":{"position":[[156,6],[759,6],[1291,6],[1697,6],[2089,6]]}},"component":{}}],["google'",{"_index":3347,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[87,8]]}},"component":{}}],["google.cloud.aiplatform",{"_index":3521,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[9582,23],[9875,23],[13044,23]]}},"component":{}}],["google_application_credenti",{"_index":3073,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[3339,31]]}},"component":{}}],["govern",{"_index":3586,"title":{},"name":{},"text":{"/jupyter-demos/index.html":{"position":[[1538,10],[1616,10],[1711,10],[1797,10],[1916,10]]}},"component":{}}],["gpt",{"_index":2330,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[2632,3]]}},"component":{}}],["grab",{"_index":721,"title":{},"name":{},"text":{"/fastload.html":{"position":[[1186,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1040,4]]}},"component":{}}],["grant",{"_index":539,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[1576,5],[1630,5]]},"/ml.html":{"position":[[1943,5],[2112,5],[2149,5],[2185,5],[2236,5],[2288,5],[2340,5]]},"/sto.html":{"position":[[3116,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[2351,8]]}},"component":{}}],["granular",{"_index":3579,"title":{},"name":{},"text":{"/jupyter-demos/index.html":{"position":[[784,8]]}},"component":{}}],["graph",{"_index":3289,"title":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_lineage_graph":{"position":[[8,5]]}},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[7852,6],[9853,6],[10224,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[512,6]]}},"component":{}}],["greater",{"_index":3912,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[30840,7],[31587,7]]}},"component":{}}],["green",{"_index":3531,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[10244,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1880,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1917,5]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1609,5]]}},"component":{}}],["grep",{"_index":2339,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[2729,4]]}},"component":{}}],["group",{"_index":1587,"title":{},"name":{},"text":{"/ml.html":{"position":[[6337,5]]},"/nos.html":{"position":[[3474,5]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[4643,5],[4734,5],[6340,5],[7502,5],[7872,5]]},"/run-vantage-express-on-aws.html":{"position":[[2605,5],[2635,5],[2668,5],[2694,5],[2745,6],[2783,5],[2852,6],[3041,6],[3201,5],[3248,5],[3266,5],[4432,6],[4557,6],[4694,6],[5560,5],[11363,5],[11381,5],[11775,5],[11805,5],[11815,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[716,5],[743,5],[776,5],[806,5],[855,5],[8278,6],[8288,5],[8328,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[3295,5],[3893,5],[6404,5],[6550,5],[7160,5],[7435,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[4132,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13254,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[6181,5]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[4138,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1721,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1758,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3421,5],[3582,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5176,5],[5337,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[6491,6],[6519,6],[6586,6],[6664,5]]},"/regulus/regulus-magic-reference.html":{"position":[[3664,6],[3731,6],[3809,5]]}},"component":{}}],["group=root",{"_index":2279,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[10498,10]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7278,10]]},"/vantage.express.gcp.html":{"position":[[6305,10]]}},"component":{}}],["group`].groupid",{"_index":2164,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[3149,16]]}},"component":{}}],["growth",{"_index":2598,"title":{"/teradata-vantage-engine-architecture-and-concepts.html#_linear_growth_and_expandability":{"position":[[7,6]]}},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[6327,6]]}},"component":{}}],["gs",{"_index":3524,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[9927,7],[13096,7]]}},"component":{}}],["gs://$bucket_nam",{"_index":3366,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1653,17],[1684,17]]}},"component":{}}],["gs://teradata",{"_index":2797,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2215,13]]}},"component":{}}],["gsheet_airbyte_td",{"_index":3312,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[3660,18],[4601,17],[5249,17],[6060,18],[6247,19],[6296,18]]}},"component":{}}],["gsutil",{"_index":2795,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2205,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1639,7],[1674,6]]}},"component":{}}],["guarante",{"_index":457,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[5654,9]]},"/segment.html":{"position":[[5190,9]]}},"component":{}}],["guessmainpid=no",{"_index":2285,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[10583,15]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7363,15]]},"/vantage.express.gcp.html":{"position":[[6390,15]]}},"component":{}}],["guest",{"_index":1252,"title":{"/getting.started.vbox.html#_updating_virtualbox_guest_extensions":{"position":[[20,5]]}},"name":{},"text":{"/getting.started.vbox.html":{"position":[[5029,5],[5291,6],[5309,5],[5433,5],[5496,5],[5536,5]]}},"component":{}}],["gui",{"_index":1173,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[3054,4]]},"/getting.started.vbox.html":{"position":[[2092,4]]},"/getting.started.vmware.html":{"position":[[2163,4]]}},"component":{}}],["guid",{"_index":20,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[75,5],[1454,5]]},"/getting.started.utm.html":{"position":[[6200,5],[6566,5]]},"/getting.started.vbox.html":{"position":[[5796,5],[6162,5]]},"/getting.started.vmware.html":{"position":[[5309,5],[5675,5]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[266,6],[670,5]]},"/jupyter.html":{"position":[[7308,5],[7348,5]]},"/local.jupyter.hub.html":{"position":[[1276,6],[6079,5],[6119,5]]},"/ml.html":{"position":[[9120,5]]},"/nos.html":{"position":[[8732,5]]},"/odbc.ubuntu.html":{"position":[[1957,5]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10845,5]]},"/run-vantage-express-on-aws.html":{"position":[[12483,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[8421,5]]},"/vantage.express.gcp.html":{"position":[[7597,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[6128,5],[6168,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[4431,5],[4471,5]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[151,5],[2183,5],[4397,6]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[284,5],[1128,6]]},"/query-service/send-queries-using-rest-api.html":{"position":[[658,6],[5281,6],[10221,6],[12503,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[8682,5],[9565,5]]},"/regulus/regulus-magic-reference.html":{"position":[[333,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[9086,5]]}},"component":{}}],["guidanc",{"_index":354,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[2608,8]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[358,8]]}},"component":{}}],["h",{"_index":4507,"title":{},"name":{},"text":{"/regulus/using-regulus-workspace-cli.html":{"position":[[1673,2],[1998,2],[2623,2],[2911,2],[3140,2],[3439,2],[3734,2],[4177,2],[4827,2],[5126,2],[5486,2],[6249,2],[6549,2],[6958,2]]}},"component":{}}],["hail",{"_index":1407,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[8,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[8,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[8,7]]}},"component":{}}],["hand",{"_index":174,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3530,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[886,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[10523,5]]}},"component":{}}],["handl",{"_index":2581,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[4400,6],[4479,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[24988,9]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1607,7]]}},"component":{}}],["happen",{"_index":649,"title":{},"name":{},"text":{"/dbt.html":{"position":[[2836,8]]},"/sto.html":{"position":[[1137,8],[1360,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[9978,6]]}},"component":{}}],["har",{"_index":2639,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1624,10]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1826,10]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1285,10]]}},"component":{}}],["hardli",{"_index":2463,"title":{},"name":{},"text":{"/sto.html":{"position":[[1991,6]]}},"component":{}}],["hardwar",{"_index":1134,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[1711,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3505,8],[3974,8]]}},"component":{}}],["harri",{"_index":3698,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[40,6]]}},"component":{}}],["hasdiabet",{"_index":3633,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[3033,11]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[3070,11]]}},"component":{}}],["hash",{"_index":2589,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[5300,4],[5346,7],[5716,4],[5778,6],[5808,4]]},"/mule-teradata-connector/reference.html":{"position":[[39053,4],[39090,4],[39183,7],[39415,4]]}},"component":{}}],["hashamp()+1",{"_index":2456,"title":{},"name":{},"text":{"/sto.html":{"position":[[1452,11]]}},"component":{}}],["hat",{"_index":4014,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1406,3]]}},"component":{}}],["have",{"_index":1044,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[7639,6],[8886,6]]},"/nos.html":{"position":[[3491,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[13793,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[12799,6],[15370,6]]},"/query-service/send-queries-using-rest-api.html":{"position":[[864,6]]}},"component":{}}],["haven’t",{"_index":3066,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2701,7]]},"/mule-teradata-connector/reference.html":{"position":[[18202,7],[24216,7]]}},"component":{}}],["hdd",{"_index":2246,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[7773,3],[7920,3],[8067,3]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4553,3],[4700,3],[4847,3]]},"/vantage.express.gcp.html":{"position":[[3580,3],[3727,3],[3874,3]]}},"component":{}}],["head",{"_index":2154,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[2576,4],[5265,4],[6698,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3478,4]]},"/vantage.express.gcp.html":{"position":[[2505,4]]}},"component":{}}],["header",{"_index":801,"title":{},"name":{},"text":{"/fastload.html":{"position":[[4029,8]]},"/run-vantage-express-on-aws.html":{"position":[[6883,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3663,8]]},"/vantage.express.gcp.html":{"position":[[2690,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[2193,7],[2684,7]]}},"component":{}}],["header=non",{"_index":3154,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3030,12]]}},"component":{}}],["headers=head",{"_index":4237,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[3635,16],[5893,16],[8351,16],[9735,16],[10388,16],[11134,16],[11685,16]]}},"component":{}}],["headless",{"_index":2253,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[8282,8],[10680,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5062,8],[7460,8]]},"/vantage.express.gcp.html":{"position":[[4089,8],[6487,8]]}},"component":{}}],["health",{"_index":3588,"title":{},"name":{},"text":{"/jupyter-demos/index.html":{"position":[[1634,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6577,7]]}},"component":{}}],["healthcar",{"_index":3582,"title":{},"name":{},"text":{"/jupyter-demos/index.html":{"position":[[1126,10],[1212,10],[1305,10],[1402,10],[1527,10]]}},"component":{}}],["healthcheck",{"_index":3620,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2403,11]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2440,11]]}},"component":{}}],["healthi",{"_index":4069,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[7116,9],[7249,9],[7381,9],[7513,9],[7679,9],[7844,9],[7977,9],[8101,9],[8207,9],[8348,9]]}},"component":{}}],["hello",{"_index":2452,"title":{"/sto.html#_hello_world":{"position":[[0,5]]}},"name":{},"text":{"/sto.html":{"position":[[935,6],[993,5],[1087,5],[1100,5],[1174,5],[2441,5],[3956,5],[3969,5],[4025,5]]}},"component":{}}],["helloworld.pi",{"_index":2476,"title":{},"name":{},"text":{"/sto.html":{"position":[[2701,13],[3275,16]]}},"component":{}}],["help",{"_index":252,"title":{"/regulus/regulus-magic-reference.html#_help":{"position":[[0,5]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[6192,5]]},"/advanced-dbt.html":{"position":[[5626,4],[7471,5]]},"/create-parquet-files-in-object-storage.html":{"position":[[4533,5]]},"/dbt.html":{"position":[[5071,5]]},"/fastload.html":{"position":[[7762,5]]},"/geojson-to-vantage.html":{"position":[[10813,5]]},"/getting.started.utm.html":{"position":[[6742,5]]},"/getting.started.vbox.html":{"position":[[6338,5]]},"/getting.started.vmware.html":{"position":[[5851,5]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[1274,5]]},"/jdbc.html":{"position":[[1276,5]]},"/jupyter.html":{"position":[[1403,8],[7524,5]]},"/local.jupyter.hub.html":{"position":[[6295,5]]},"/ml.html":{"position":[[9296,5]]},"/mule.jdbc.example.html":{"position":[[3722,5]]},"/nos.html":{"position":[[8908,5]]},"/odbc.ubuntu.html":{"position":[[2133,5]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[11021,5]]},"/run-vantage-express-on-aws.html":{"position":[[12680,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[8618,5]]},"/segment.html":{"position":[[5752,5]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1816,5]]},"/sto.html":{"position":[[8123,5]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[6544,5]]},"/teradatasql.html":{"position":[[1208,5]]},"/vantage.express.gcp.html":{"position":[[7794,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[25000,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[6574,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[4776,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[26552,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[9094,5]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[71,4],[6481,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[7482,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[8672,5]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[7979,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[13849,5]]},"/jupyter-demos/index.html":{"position":[[2435,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[5425,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[7476,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[10018,5]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[86,4],[4902,4],[5084,5]]},"/mule-teradata-connector/index.html":{"position":[[1620,4],[1646,5]]},"/mule-teradata-connector/reference.html":{"position":[[42797,4],[42823,5]]},"/mule-teradata-connector/release-notes.html":{"position":[[1108,4],[1134,5]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[948,4],[1763,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[11045,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[212,5],[7529,5]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[2009,5]]},"/query-service/send-queries-using-rest-api.html":{"position":[[338,4],[12719,5]]},"/regulus/getting-started-with-regulus.html":{"position":[[644,5],[653,5],[4234,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[9790,4],[10054,5]]},"/regulus/regulus-magic-reference.html":{"position":[[5074,5],[5115,4],[5149,5],[5325,5]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1678,5],[2003,5],[2628,4],[2916,5],[3145,5],[3444,5],[3739,5],[4182,4],[4832,4],[5131,5],[5491,5],[6254,4],[6554,5],[6963,4],[7212,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[9322,5]]}},"component":{}}],["henc",{"_index":2101,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10507,5]]}},"component":{}}],["here",{"_index":650,"title":{},"name":{},"text":{"/dbt.html":{"position":[[2845,5]]},"/fastload.html":{"position":[[5103,4]]},"/geojson-to-vantage.html":{"position":[[1199,4],[6592,4],[7304,5]]},"/jupyter.html":{"position":[[1789,5]]},"/local.jupyter.hub.html":{"position":[[2604,4]]},"/nos.html":{"position":[[1299,4],[8192,5]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1053,4]]},"/run-vantage-express-on-aws.html":{"position":[[847,5],[1017,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[343,5],[479,5]]},"/sto.html":{"position":[[1043,4],[1146,5],[5422,5]]},"/vantage.express.gcp.html":{"position":[[427,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[7254,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[932,4],[1710,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1625,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[3638,4],[6942,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1100,4],[1131,4],[4894,6],[10576,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1836,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1873,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6042,4]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1127,4]]}},"component":{}}],["herein",{"_index":1428,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[1912,6]]}},"component":{}}],["herrera",{"_index":260,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[15,7]]}},"component":{}}],["hidden",{"_index":188,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3877,6]]}},"component":{}}],["hide",{"_index":2702,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11044,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11024,4]]}},"component":{}}],["hierarch",{"_index":3995,"title":{},"name":{},"text":{"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[836,14],[1074,14]]}},"component":{}}],["high",{"_index":839,"title":{},"name":{},"text":{"/fastload.html":{"position":[[7185,4]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[366,4],[1700,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[8730,4]]}},"component":{}}],["higher",{"_index":4017,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1799,8]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[319,7]]}},"component":{}}],["highli",{"_index":2561,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2021,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9661,6],[9786,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[7420,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[477,6]]}},"component":{}}],["highlight",{"_index":1161,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[2764,11]]},"/getting.started.vbox.html":{"position":[[1802,11]]},"/getting.started.vmware.html":{"position":[[1873,11]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[21583,11]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9631,12],[9924,12]]}},"component":{}}],["histori",{"_index":2900,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4965,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[5825,8]]}},"component":{}}],["hit",{"_index":1208,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[5192,7]]},"/getting.started.vbox.html":{"position":[[4018,7]]},"/getting.started.vmware.html":{"position":[[4301,7]]}},"component":{}}],["hoc",{"_index":1756,"title":{},"name":{},"text":{"/nos.html":{"position":[[3632,3]]}},"component":{}}],["hold",{"_index":768,"title":{},"name":{},"text":{"/fastload.html":{"position":[[2882,4]]},"/getting.started.utm.html":{"position":[[5445,4]]},"/getting.started.vbox.html":{"position":[[4271,4]]},"/getting.started.vmware.html":{"position":[[4554,4]]},"/run-vantage-express-on-aws.html":{"position":[[9329,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6109,4]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3325,4]]},"/vantage.express.gcp.html":{"position":[[5136,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3743,4]]}},"component":{}}],["hole",{"_index":2295,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[10985,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7765,5]]},"/vantage.express.gcp.html":{"position":[[6792,5]]}},"component":{}}],["home",{"_index":147,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2974,4],[5409,4]]},"/local.jupyter.hub.html":{"position":[[5619,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2229,4],[5254,4],[5294,4],[5353,4],[10162,4]]},"/regulus/getting-started-with-regulus.html":{"position":[[161,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[161,4]]},"/regulus/regulus-magic-reference.html":{"position":[[161,4]]}},"component":{}}],["home/.dbt",{"_index":3253,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1998,10]]}},"component":{}}],["home/.dbt/profiles.yml",{"_index":358,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[2796,23]]},"/dbt.html":{"position":[[992,23]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3005,23]]}},"component":{}}],["home/.feast/feature_repo/feature_store.yml",{"_index":4149,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3695,43]]}},"component":{}}],["home/.loc",{"_index":1472,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[5758,12]]}},"component":{}}],["home/ec2",{"_index":2854,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[3396,9],[3523,9]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2244,9],[5327,9],[9115,9]]}},"component":{}}],["home/jovyan/jupyterlabroot",{"_index":4485,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[8343,27]]}},"component":{}}],["home/jupyt",{"_index":2794,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2164,13],[4435,13],[4468,13],[4509,13]]}},"component":{}}],["home=/home/jovyan",{"_index":1441,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[4066,17]]}},"component":{}}],["homepag",{"_index":4473,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[4832,8]]}},"component":{}}],["home’",{"_index":363,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3011,6]]}},"component":{}}],["host",{"_index":369,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3234,5]]},"/dbt.html":{"position":[[1412,5]]},"/geojson-to-vantage.html":{"position":[[2072,4],[7720,4]]},"/getting.started.utm.html":{"position":[[2130,4],[4722,4]]},"/getting.started.vbox.html":{"position":[[5278,4]]},"/getting.started.vmware.html":{"position":[[3831,4]]},"/jdbc.html":{"position":[[620,4]]},"/jupyter.html":{"position":[[150,6]]},"/mule.jdbc.example.html":{"position":[[1885,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[143,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[148,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2155,5]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[456,5],[3428,5],[3480,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3929,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2112,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2149,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2991,5],[5855,5],[8077,8]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1824,4]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[710,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4033,4],[6155,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3338,5],[4238,5],[4400,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1492,4]]},"/regulus/getting-started-with-regulus.html":{"position":[[912,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[1648,4],[6859,7]]},"/regulus/regulus-magic-reference.html":{"position":[[439,6],[472,5],[707,5],[1031,7]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[2408,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2711,4],[2725,4],[3113,6]]}},"component":{}}],["host.docker.intern",{"_index":1360,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[3076,20]]}},"component":{}}],["host=$teradata2dc_teradata_serv",{"_index":3082,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[3904,33]]}},"component":{}}],["host=tdhost",{"_index":908,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[2571,12],[8219,12]]}},"component":{}}],["hostnam",{"_index":755,"title":{},"name":{},"text":{"/fastload.html":{"position":[[2471,8]]},"/ml.html":{"position":[[2580,9],[2688,9]]},"/run-vantage-express-on-aws.html":{"position":[[1261,8],[1350,9]]},"/segment.html":{"position":[[2752,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[786,8]]}},"component":{}}],["hour",{"_index":1970,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[4441,4],[5897,4],[8011,5],[8065,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[5512,5],[5520,6],[5529,5],[5569,6]]},"/mule-teradata-connector/reference.html":{"position":[[3910,5],[6239,5],[8538,5],[10367,5],[12582,5],[14351,5],[15845,5],[18904,5],[22065,5],[24919,5],[28587,5],[32627,5],[34104,5],[38775,5]]}},"component":{}}],["hour_utc",{"_index":2715,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11575,9],[15197,9],[17635,8],[18909,9],[22806,9]]}},"component":{}}],["hous",{"_index":3344,"title":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[46,7]]}},"name":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[37,7]]}},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1923,7],[2368,5],[5640,9]]}},"component":{}}],["housing.csv",{"_index":3374,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2338,11]]}},"component":{}}],["housing_predict",{"_index":3566,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[13420,21],[13552,20]]}},"component":{}}],["housing_rf",{"_index":3495,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[8344,12],[13326,13]]}},"component":{}}],["hr",{"_index":1207,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[5152,3],[5260,2]]},"/getting.started.vbox.html":{"position":[[3978,3],[4086,2]]},"/getting.started.vmware.html":{"position":[[4261,3],[4369,2]]},"/mule.jdbc.example.html":{"position":[[2195,2]]},"/run-vantage-express-on-aws.html":{"position":[[9081,3],[9144,2]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5861,3],[5924,2]]},"/vantage.express.gcp.html":{"position":[[4888,3],[4951,2]]}},"component":{}}],["hr.employe",{"_index":1214,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[5489,12],[5742,12],[5962,13]]},"/getting.started.vbox.html":{"position":[[4315,12],[4568,12],[4788,13]]},"/getting.started.vmware.html":{"position":[[4598,12],[4851,12],[5071,13]]},"/mule.jdbc.example.html":{"position":[[869,12],[2267,12],[2511,12]]},"/run-vantage-express-on-aws.html":{"position":[[9373,12],[9626,12],[9846,13]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6153,12],[6406,12],[6626,13]]},"/vantage.express.gcp.html":{"position":[[5180,12],[5433,12],[5653,13]]}},"component":{}}],["html",{"_index":685,"title":{},"name":{},"text":{"/dbt.html":{"position":[[4300,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7755,4]]}},"component":{}}],["http",{"_index":1396,"title":{"/query-service/send-queries-using-rest-api.html#_http_basic_authentication":{"position":[[0,4]]}},"name":{},"text":{"/jupyter.html":{"position":[[6224,4]]},"/mule.jdbc.example.html":{"position":[[486,4],[583,4],[610,4],[673,4],[1017,4],[1043,4],[1381,4],[1473,4]]},"/run-vantage-express-on-aws.html":{"position":[[6878,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3658,4]]},"/vantage.express.gcp.html":{"position":[[2685,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4994,5],[5655,5]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1741,4]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1638,4]]}},"component":{}}],["http/1.1",{"_index":3102,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[5118,9],[5779,9]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6585,9]]}},"component":{}}],["http://127.0.0.1:8888/lab?token=5fb43e674367c6895e8c2404188aa550b5c7bdf96f5b4a3a",{"_index":1351,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[2461,80]]}},"component":{}}],["http://:3000",{"_index":4456,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[3233,14],[4247,14],[4846,13],[5048,14]]}},"component":{}}],["http://:3000/auth/github/callback",{"_index":4475,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[4888,33]]}},"component":{}}],["http://:4000",{"_index":4114,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[9541,14]]}},"component":{}}],["http://:5555",{"_index":4108,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[9002,13]]}},"component":{}}],["http://:8080/home",{"_index":4106,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8908,17]]}},"component":{}}],["http://:8081/?lastnam",{"_index":1653,"title":{},"name":{},"text":{"/mule.jdbc.example.html":{"position":[[643,25]]}},"component":{}}],["http://d289lrf5tw1zls.cloudfront.net/database/teradata",{"_index":2223,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[6912,55]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3692,55]]},"/vantage.express.gcp.html":{"position":[[2719,55]]}},"component":{}}],["http://d5c2323ae5db:8888/lab?token=5fb43e674367c6895e8c2404188aa550b5c7bdf96f5b4a3a",{"_index":1350,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[2374,83]]}},"component":{}}],["http://geojson.xyz",{"_index":880,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[1464,19]]}},"component":{}}],["http://localhost:8000",{"_index":3303,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1588,22]]}},"component":{}}],["http://localhost:8081/?lastname=smith",{"_index":1656,"title":{},"name":{},"text":{"/mule.jdbc.example.html":{"position":[[1067,38]]}},"component":{}}],["http://localhost:8081/?lastname=testowski",{"_index":1669,"title":{},"name":{},"text":{"/mule.jdbc.example.html":{"position":[[3113,42]]}},"component":{}}],["http://localhost:8888",{"_index":4400,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[795,21]]},"/regulus/install-regulus-docker-image.html":{"position":[[8543,21],[9426,21]]}},"component":{}}],["http://localhost:8888?token=96a3ab874a03779c400966bf492fe270c2221cdcc74b61",{"_index":1397,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[6261,76]]}},"component":{}}],["https://:1443",{"_index":4209,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[1259,15]]}},"component":{}}],["https://:1443/systems//queri",{"_index":4232,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[3398,32],[5674,32],[9109,32],[9526,32],[11601,32]]}},"component":{}}],["https://:1443/systems//queries/1366025",{"_index":4354,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[10272,40]]}},"component":{}}],["https://:1443/systems//queries/1366025/result",{"_index":4369,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[11010,48]]}},"component":{}}],["https://:1443/systems//sess",{"_index":4336,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[8207,33]]}},"component":{}}],["https://aws.amazon.com/fre",{"_index":4438,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[1583,29]]}},"component":{}}],["https://azure.microsoft.com/en",{"_index":2304,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[349,30]]}},"component":{}}],["https://azure.microsoft.com/free/[fre",{"_index":2674,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[6280,38]]}},"component":{}}],["https://clearscape.teradata.com",{"_index":126,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2426,32]]},"/advanced-dbt.html":{"position":[[656,32]]},"/create-parquet-files-in-object-storage.html":{"position":[[939,32]]},"/dbt.html":{"position":[[383,32]]},"/fastload.html":{"position":[[644,32]]},"/geojson-to-vantage.html":{"position":[[1130,32]]},"/jdbc.html":{"position":[[321,32]]},"/jupyter.html":{"position":[[290,32],[501,32]]},"/local.jupyter.hub.html":{"position":[[567,32]]},"/mule.jdbc.example.html":{"position":[[418,32]]},"/nos.html":{"position":[[612,32]]},"/odbc.ubuntu.html":{"position":[[255,32]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[631,32]]},"/segment.html":{"position":[[831,32]]},"/sto.html":{"position":[[826,32]]},"/teradatasql.html":{"position":[[608,32]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2706,32]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[283,32],[1258,32]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[288,32],[701,32]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2930,32]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1731,32]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[1794,32]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[656,32]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[635,32]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[588,32]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[523,32]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[560,32]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[364,32]]},"/mule-teradata-connector/index.html":{"position":[[792,32]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[259,32]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1358,32]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[401,32]]},"/query-service/send-queries-using-rest-api.html":{"position":[[739,32]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[498,32]]}},"component":{}}],["https://cloud.google.com/sdk/docs/instal",{"_index":2353,"title":{},"name":{},"text":{"/segment.html":{"position":[[651,42]]},"/vantage.express.gcp.html":{"position":[[433,42]]}},"component":{}}],["https://cloudaffaire.com/how",{"_index":2128,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[1062,28]]}},"component":{}}],["https://console.cloud.google.com",{"_index":2352,"title":{},"name":{},"text":{"/segment.html":{"position":[[594,34]]}},"component":{}}],["https://console.cloud.google.com/cloudpubsub/topic/list",{"_index":2412,"title":{},"name":{},"text":{"/segment.html":{"position":[[4692,56]]}},"component":{}}],["https://datahub.io",{"_index":1011,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[5860,19]]}},"component":{}}],["https://docs.aws.amazon.com/cli/latest/userguide/get",{"_index":2123,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[853,56]]}},"component":{}}],["https://docs.aws.amazon.com/general/latest/gr/aw",{"_index":2893,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4304,49]]}},"component":{}}],["https://docs.docker.com/compose/instal",{"_index":4457,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[3387,41],[8867,41]]}},"component":{}}],["https://docs.docker.com/dock",{"_index":4439,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[1727,30]]}},"component":{}}],["https://docs.microsoft.com/en",{"_index":2306,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[485,29]]}},"component":{}}],["https://download.docker.com/linux/centos/dock",{"_index":4029,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2996,47]]}},"component":{}}],["https://downloads.teradata.com/download/cdn/connectivity/odbc/17.10.x.x/tdodbc1710__ubuntu_x8664.17.10.00.14",{"_index":1811,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[494,108]]}},"component":{}}],["https://downloads.teradata.com/download/connectivity/jdbc",{"_index":4194,"title":{},"name":{},"text":{"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[514,57]]}},"component":{}}],["https://downloads.teradata.com/download/tools/regulu",{"_index":4502,"title":{},"name":{},"text":{"/regulus/using-regulus-workspace-cli.html":{"position":[[800,53]]}},"component":{}}],["https://downloads.teradata.com/download/tools/vantag",{"_index":2821,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1138,53]]}},"component":{}}],["https://downloads.teradata.com/sites/default/files/2022",{"_index":4512,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1076,55]]}},"component":{}}],["https://github.com",{"_index":4436,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[1475,20]]}},"component":{}}],["https://github.com/airbytehq/airbyte.git",{"_index":3299,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1243,40]]}},"component":{}}],["https://github.com/docker/compose/releas",{"_index":4042,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4475,42]]}},"component":{}}],["https://github.com/docker/compose/releases/download/1.29.2/dock",{"_index":4043,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4599,65]]}},"component":{}}],["https://github.com/googlecloudplatform/datacatalog",{"_index":3130,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[8595,50]]}},"component":{}}],["https://github.com/teradata/jaffle_shop",{"_index":622,"title":{},"name":{},"text":{"/dbt.html":{"position":[[537,39]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[5392,39]]}},"component":{}}],["https://github.com/teradata/jdbc",{"_index":1303,"title":{},"name":{},"text":{"/jdbc.html":{"position":[[163,32]]}},"component":{}}],["https://github.com/teradata/modelop",{"_index":3608,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1087,36],[1422,36],[1744,36]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1124,36],[1459,36],[1781,36],[5804,36]]}},"component":{}}],["https://github.com/teradata/mul",{"_index":1660,"title":{},"name":{},"text":{"/mule.jdbc.example.html":{"position":[[1541,32]]}},"component":{}}],["https://github.com/teradata/quickstarts/blob/main/modules/root/attachments/vantag",{"_index":1353,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[2695,82]]}},"component":{}}],["https://github.com/teradata/teddy_retailers_dbt",{"_index":300,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[936,47]]}},"component":{}}],["https://github.com/willfleury/modelop",{"_index":3607,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1022,38],[1353,38]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1059,38],[1390,38]]}},"component":{}}],["https://github.company.com",{"_index":4481,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[7402,27]]}},"component":{}}],["https://github.td.teradata.com/rc255085/tdatapipeline.git",{"_index":4139,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2354,57]]}},"component":{}}],["https://hub.docker.com/r/teradata/regulu",{"_index":4483,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[8081,41]]}},"component":{}}],["https://oauth2.googleapis.com/token",{"_index":3098,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4916,35],[5577,35]]}},"component":{}}],["https://pypi.org/project/teradatasql",{"_index":901,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[2287,37],[7935,37]]}},"component":{}}],["https://pypi.org/project/teradatasqlalchemi",{"_index":1365,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[3346,44],[4162,44]]}},"component":{}}],["https://repo.anaconda.com/miniconda/miniconda3",{"_index":2837,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2384,46]]}},"component":{}}],["https://s3.amazonaws.com/ir",{"_index":723,"title":{},"name":{},"text":{"/fastload.html":{"position":[[1222,28]]}},"component":{}}],["https://td",{"_index":1680,"title":{},"name":{},"text":{"/nos.html":{"position":[[1059,10]]}},"component":{}}],["https://www.mulesoft.com/platform/studio",{"_index":1651,"title":{},"name":{},"text":{"/mule.jdbc.example.html":{"position":[[263,41]]}},"component":{}}],["htzz03i7",{"_index":4328,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[7499,8]]}},"component":{}}],["hub",{"_index":1334,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[1869,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[1933,4]]}},"component":{}}],["humdity_specific_2m_gpkg",{"_index":2737,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[12378,25],[16000,25],[18015,24],[19713,25],[23610,25]]}},"component":{}}],["humidity_relative_2m_pct",{"_index":2735,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[12295,25],[15917,25],[17976,24],[19630,25],[23527,25]]}},"component":{}}],["hundr",{"_index":845,"title":{},"name":{},"text":{"/fastload.html":{"position":[[7442,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[8987,8]]}},"component":{}}],["hyper",{"_index":3685,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[5637,5]]}},"component":{}}],["hyperparamet",{"_index":3168,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3803,15]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[5683,18]]}},"component":{}}],["i.",{"_index":1510,"title":{},"name":{},"text":{"/ml.html":{"position":[[2954,4],[3145,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[3068,6],[3149,6],[3300,6],[5832,5],[6312,5],[6729,6],[24389,6],[24779,5],[25967,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1867,5],[8335,5],[8470,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[809,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[9310,5]]}},"component":{}}],["iam",{"_index":2376,"title":{},"name":{},"text":{"/segment.html":{"position":[[2551,3],[3561,3],[3740,3],[4026,3]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[1827,3],[3478,3],[4813,3]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1708,3]]}},"component":{}}],["ibberson",{"_index":14,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[28,8]]}},"component":{}}],["icon",{"_index":138,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2827,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2047,4]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[430,4],[612,5]]}},"component":{}}],["id",{"_index":941,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3563,2]]},"/getting.started.utm.html":{"position":[[2176,3],[2600,3]]},"/jupyter.html":{"position":[[6184,2]]},"/ml.html":{"position":[[2035,3],[2595,3]]},"/nos.html":{"position":[[7329,3]]},"/run-vantage-express-on-aws.html":{"position":[[1320,2],[1457,2],[1644,2],[1945,2],[1981,2],[2095,2],[2251,2],[2330,2],[2487,2],[2528,2],[2649,2],[3272,2],[5032,2],[5401,2],[5566,3],[5611,2],[5841,3],[7084,24],[11387,2],[11684,3],[11821,2],[11933,2],[11969,2],[12040,2],[12149,2],[12222,2],[12312,2],[12381,2]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[1505,4],[1895,4],[2273,4],[3864,24]]},"/segment.html":{"position":[[1076,4],[1451,2]]},"/vantage.express.gcp.html":{"position":[[2891,24]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3225,3],[3431,4],[11204,6],[11996,9],[12102,2]]},"/mule-teradata-connector/reference.html":{"position":[[11409,2],[16871,2],[19938,2],[23060,2],[26035,2],[26376,2],[29618,2],[30684,2],[30884,2],[31626,2],[31689,3],[35372,2],[39261,2]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6986,2]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[850,3]]},"/query-service/send-queries-using-rest-api.html":{"position":[[8994,2],[9858,2],[9956,2],[10871,2],[11564,3]]},"/regulus/install-regulus-docker-image.html":{"position":[[4432,2],[4949,2],[6975,2],[6989,2],[7120,2]]},"/regulus/regulus-magic-reference.html":{"position":[[2465,2]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[4783,2],[4800,2],[5854,3]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[5749,2],[6899,3]]}},"component":{}}],["id\":1366025",{"_index":4350,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[9815,14]]}},"component":{}}],["id'",{"_index":2157,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[2789,4]]}},"component":{}}],["id,values=$aws_vpc_id",{"_index":2160,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[2881,22],[3070,22],[4001,22]]}},"component":{}}],["id=$teradata2dc_datacatalog_location_id",{"_index":3081,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[3851,39]]}},"component":{}}],["id=$teradata2dc_datacatalog_project_id",{"_index":3080,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[3787,38]]}},"component":{}}],["idea",{"_index":1476,"title":{},"name":{},"text":{"/ml.html":{"position":[[140,5]]},"/sto.html":{"position":[[1560,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[7283,4]]}},"component":{}}],["ident",{"_index":3914,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[31189,9]]},"/regulus/install-regulus-docker-image.html":{"position":[[5645,9]]}},"component":{}}],["identifi",{"_index":1966,"title":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_add_dataset_to_identify_vantage_tables_for_byom_evaluation_and_scoring":{"position":[[15,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_add_dataset_to_identify_vantage_tables_for_byom_evaluation_and_scoring":{"position":[[15,8]]}},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[4389,8],[6057,8]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1544,10]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[3983,10]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[7087,8]]},"/mule-teradata-connector/reference.html":{"position":[[35387,10],[39108,8]]}},"component":{}}],["idl",{"_index":3854,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[808,4],[34139,4],[34293,4],[38513,4],[38638,4]]}},"component":{}}],["ids=$teradata2dc_datacatalog_project_id",{"_index":3134,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[8884,39]]}},"component":{}}],["ignor",{"_index":2910,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[7335,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[6048,7],[6185,7],[6322,7]]}},"component":{}}],["ignoresigpipe=no",{"_index":2283,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[10549,16]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7329,16]]},"/vantage.express.gcp.html":{"position":[[6356,16]]}},"component":{}}],["igor",{"_index":4002,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8,4]]}},"component":{}}],["il",{"_index":1550,"title":{},"name":{},"text":{"/ml.html":{"position":[[4721,4]]}},"component":{}}],["il_resident_ind",{"_index":1551,"title":{},"name":{},"text":{"/ml.html":{"position":[[4748,15]]}},"component":{}}],["illustr",{"_index":281,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[468,11]]}},"component":{}}],["imag",{"_index":1278,"title":{"/jupyter.html#_teradata_jupyter_docker_image":{"position":[[24,5]]},"/local.jupyter.hub.html#_use_teradata_jupyter_docker_image":{"position":[[28,5]]},"/local.jupyter.hub.html#_install_teradata_jupyter_docker_image_in_your_registry":{"position":[[32,5]]},"/local.jupyter.hub.html#_use_teradata_jupyter_docker_image_in_jupyterhub":{"position":[[28,5]]},"/local.jupyter.hub.html#_customize_teradata_jupyter_docker_image":{"position":[[34,5]]},"/local.jupyter.hub.html#_customize_an_existing_docker_image_to_include_teradata_extensions":{"position":[[29,5]]}},"name":{"/regulus/install-regulus-docker-image.html":{"position":[[23,5]]}},"text":{"/getting.started.vmware.html":{"position":[[1816,5]]},"/jupyter.html":{"position":[[786,7],[1054,5],[1090,5],[4832,5],[4884,6],[5044,5],[5402,5],[5606,5],[5721,7],[5772,5],[5795,6],[6851,5]]},"/local.jupyter.hub.html":{"position":[[229,6],[265,5],[640,5],[694,6],[886,5],[1019,5],[1349,5],[1467,6],[1562,6],[1630,5],[1730,5],[1828,5],[2039,6],[2243,5],[2506,6],[2548,5],[2564,5],[2665,5],[2756,6],[2772,5],[2855,5],[2875,6],[3278,5],[3445,5],[3795,6],[3843,6],[3859,5],[3942,5],[3962,6],[4450,5]]},"/run-vantage-express-on-aws.html":{"position":[[290,6],[5056,5],[5108,6],[5395,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[1315,5],[1706,5],[2084,5]]},"/segment.html":{"position":[[2912,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[3500,5],[3650,6],[3671,6],[3806,5],[3894,6],[3909,5],[3965,6],[4349,5],[5366,5],[5613,6],[5684,5],[5800,5],[5859,6],[5905,6],[6225,5]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[4980,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[5098,5],[5202,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1417,6],[6989,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[1802,6],[1824,6],[1915,5],[2613,5],[3547,6],[8053,5],[8147,5],[8997,6]]}},"component":{}}],["image::sagemak",{"_index":3182,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[5577,16]]}},"component":{}}],["image:tag",{"_index":1439,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[4035,9]]}},"component":{}}],["imagename:imagetag",{"_index":2816,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[5647,18]]}},"component":{}}],["images[*].[name,imageid,creationd",{"_index":2190,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[5193,39]]}},"component":{}}],["imagin",{"_index":674,"title":{},"name":{},"text":{"/dbt.html":{"position":[[3861,7]]}},"component":{}}],["immedi",{"_index":1027,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[6801,9]]},"/run-vantage-express-on-aws.html":{"position":[[7229,11]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4009,11]]},"/vantage.express.gcp.html":{"position":[[3036,11]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[2948,11]]},"/mule-teradata-connector/reference.html":{"position":[[21273,11],[23612,11]]}},"component":{}}],["immers",{"_index":47,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[600,10]]}},"component":{}}],["implement",{"_index":442,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[5145,11],[7178,11]]},"/create-parquet-files-in-object-storage.html":{"position":[[310,16]]},"/fastload.html":{"position":[[155,15],[7097,11]]},"/geojson-to-vantage.html":{"position":[[10102,9]]},"/getting.started.vbox.html":{"position":[[5218,10]]},"/nos.html":{"position":[[222,16]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4197,9]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[147,14],[5696,10]]},"/mule-teradata-connector/reference.html":{"position":[[1043,14]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1529,11],[8642,11]]}},"component":{}}],["import",{"_index":167,"title":{"/perform-time-series-analysis-using-teradata-vantage.html#_import_data_sets_from_aws_s3_using_vantage_nos":{"position":[[0,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_import_amazon_s3_data_to_vantage":{"position":[[0,6]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_import_data":{"position":[[0,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[11,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[11,6]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3378,6]]},"/create-parquet-files-in-object-storage.html":{"position":[[4192,9]]},"/geojson-to-vantage.html":{"position":[[1829,6],[2443,6],[2462,6],[6021,6],[6126,6],[8091,6],[8110,6]]},"/getting.started.utm.html":{"position":[[2223,9],[2470,6]]},"/getting.started.vbox.html":{"position":[[1535,6],[1660,7]]},"/jupyter.html":{"position":[[2806,6],[2882,6],[3160,6],[3809,9],[3843,6]]},"/mule.jdbc.example.html":{"position":[[2739,6]]},"/nos.html":{"position":[[7628,9],[8563,9]]},"/odbc.ubuntu.html":{"position":[[1262,6]]},"/sto.html":{"position":[[4935,6],[4969,6],[4986,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2271,6],[2425,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2598,6]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[1154,6],[2401,6],[2430,6],[2472,6],[2559,6],[2576,6],[2596,6]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1473,6],[2346,6],[2378,6],[2420,6],[2507,6],[2524,6],[2568,6],[3932,6],[4291,6],[4342,8],[4566,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7635,10]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1144,6],[2659,6],[2673,6],[4198,6],[4263,6],[4304,6],[5019,6],[5478,6],[6545,6],[6594,6],[6640,6],[6696,6],[6731,6],[6766,6],[6789,6],[6830,6],[6868,6],[7994,6],[8012,6],[8038,6],[8079,6],[8117,6],[9386,6],[9571,6],[9868,6],[10765,6],[10791,6],[10809,6],[11678,6],[11704,6],[13037,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[280,8],[4146,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2800,9],[4777,6],[7793,9]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[9947,8],[10173,6],[10381,6]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1878,6],[1894,6],[1906,6],[2528,6],[2544,6]]}},"component":{}}],["import/upd",{"_index":3714,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2520,15]]}},"component":{}}],["improv",{"_index":844,"title":{},"name":{},"text":{"/fastload.html":{"position":[[7336,7]]},"/getting.started.vbox.html":{"position":[[5138,8]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10513,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1886,13]]},"/mule-teradata-connector/reference.html":{"position":[[3082,8],[5414,8],[7707,8],[35046,7],[35272,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[8881,7]]}},"component":{}}],["in",{"_index":2489,"title":{},"name":{},"text":{"/sto.html":{"position":[[4472,3],[4527,3],[4678,3],[4763,3]]}},"component":{}}],["in_dln",{"_index":815,"title":{},"name":{},"text":{"/fastload.html":{"position":[[4392,6],[4972,8],[5979,6],[6295,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3992,6],[5198,8]]}},"component":{}}],["in_ein",{"_index":809,"title":{},"name":{},"text":{"/fastload.html":{"position":[[4252,6],[4897,8],[5839,6],[6220,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3862,6],[5123,8]]}},"component":{}}],["in_filing_typ",{"_index":808,"title":{},"name":{},"text":{"/fastload.html":{"position":[[4223,14],[4880,16],[5810,14],[6203,16]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3835,14],[5106,16]]}},"component":{}}],["in_object_id",{"_index":816,"title":{},"name":{},"text":{"/fastload.html":{"position":[[4414,12],[4981,13],[6001,12],[6304,13]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[4012,12],[5207,13]]}},"component":{}}],["in_return_id",{"_index":806,"title":{},"name":{},"text":{"/fastload.html":{"position":[[4195,12],[4865,14],[5782,12],[6188,14]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3809,12],[5091,14]]}},"component":{}}],["in_return_typ",{"_index":814,"title":{},"name":{},"text":{"/fastload.html":{"position":[[4363,14],[4955,16],[5950,14],[6278,16]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3965,14],[5181,16]]}},"component":{}}],["in_sub_d",{"_index":811,"title":{},"name":{},"text":{"/fastload.html":{"position":[[4303,11],[4922,13],[5890,11],[6245,13]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3909,11],[5148,13]]}},"component":{}}],["in_tax_period",{"_index":810,"title":{},"name":{},"text":{"/fastload.html":{"position":[[4274,13],[4906,15],[5861,13],[6229,15]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3882,13],[5132,15]]}},"component":{}}],["in_taxpayer_nam",{"_index":813,"title":{},"name":{},"text":{"/fastload.html":{"position":[[4330,16],[4936,18],[5917,16],[6259,18]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3934,16],[5162,18]]}},"component":{}}],["incid",{"_index":196,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[4268,8]]}},"component":{}}],["includ",{"_index":21,"title":{"/local.jupyter.hub.html#_customize_an_existing_docker_image_to_include_teradata_extensions":{"position":[[38,7]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[81,8]]},"/advanced-dbt.html":{"position":[[1429,8],[4222,8],[5221,8],[5595,8],[7221,9]]},"/dbt.html":{"position":[[823,8]]},"/getting.started.utm.html":{"position":[[444,8]]},"/getting.started.vbox.html":{"position":[[444,8],[1266,8]]},"/getting.started.vmware.html":{"position":[[444,8]]},"/jupyter.html":{"position":[[1851,9],[4594,9]]},"/local.jupyter.hub.html":{"position":[[274,7],[3209,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[203,9]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1020,8]]},"/sto.html":{"position":[[1160,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[165,9],[824,7],[4513,9]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[723,7],[8036,9],[9873,7],[10298,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[5332,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9590,7],[15873,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1546,8],[3972,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1670,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[4495,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[396,9],[4422,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[433,9],[6066,9]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1260,8]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[2648,9],[4143,9]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[702,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1135,9],[3833,8]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[235,9]]},"/query-service/send-queries-using-rest-api.html":{"position":[[2887,9],[3247,7],[5659,8],[8088,8],[8845,9],[9291,9],[10037,9]]},"/regulus/install-regulus-docker-image.html":{"position":[[821,8]]},"/regulus/regulus-magic-reference.html":{"position":[[2007,8]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1922,8],[2230,8],[2835,8],[3064,8],[3363,8],[3658,8],[4020,8],[4388,8],[5050,8],[5410,8],[5696,8],[6473,8],[6778,8]]}},"component":{}}],["include_hashby('tru",{"_index":588,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[3017,22]]}},"component":{}}],["include_ord",{"_index":3047,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[24090,16]]}},"component":{}}],["include_ordering('tru",{"_index":587,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2992,24]]},"/nos.html":{"position":[[8159,24]]}},"component":{}}],["includecolumn",{"_index":4230,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[3208,17],[3519,17],[5792,17]]}},"component":{}}],["incom",{"_index":2584,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[4654,8]]}},"component":{}}],["inconveni",{"_index":1003,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[5391,12]]}},"component":{}}],["incorpor",{"_index":463,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[5899,12]]}},"component":{}}],["increas",{"_index":2575,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3952,9],[4044,8],[4112,9]]}},"component":{}}],["increment",{"_index":272,"title":{"/advanced-dbt.html#_incremental_materializations":{"position":[[0,11]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[322,11],[4366,11],[5001,12],[6931,11],[7231,11]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8315,12],[17375,10]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[5033,11]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6023,13],[6585,11]]},"/mule-teradata-connector/reference.html":{"position":[[33473,9],[40435,9],[40551,9],[41698,9],[41773,9]]}},"component":{}}],["incur",{"_index":2297,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[11584,9]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[8205,9]]},"/vantage.express.gcp.html":{"position":[[7274,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[25929,9]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[13581,9]]}},"component":{}}],["indefinit",{"_index":3918,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[33910,13]]}},"component":{}}],["indetermin",{"_index":972,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4437,13]]}},"component":{}}],["index",{"_index":472,"title":{},"name":{"/index.html":{"position":[[0,5]]},"/jupyter-demos/index.html":{"position":[[0,5]]},"/mule-teradata-connector/index.html":{"position":[[0,5]]}},"text":{"/advanced-dbt.html":{"position":[[6124,5]]},"/create-parquet-files-in-object-storage.html":{"position":[[2099,5],[3715,6]]},"/fastload.html":{"position":[[3286,5],[5629,5],[7007,6]]},"/getting.started.utm.html":{"position":[[5682,5]]},"/getting.started.vbox.html":{"position":[[4508,5]]},"/getting.started.vmware.html":{"position":[[4791,5]]},"/ml.html":{"position":[[6383,5]]},"/mule.jdbc.example.html":{"position":[[2460,5]]},"/nos.html":{"position":[[6086,6]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[89,7],[3852,5],[10263,5],[10348,5]]},"/run-vantage-express-on-aws.html":{"position":[[9566,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6346,5]]},"/sto.html":{"position":[[7049,6]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[5428,5],[5519,7],[5632,5],[5758,5]]},"/vantage.express.gcp.html":{"position":[[5373,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[10422,5],[17036,5],[18513,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[10038,5],[13819,5],[14058,5],[14488,5],[17400,6],[20086,6],[21729,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3177,5],[3392,5]]},"/mule-teradata-connector/reference.html":{"position":[[17088,7],[17127,7],[26831,7],[26870,7],[29834,7],[29873,7]]},"/regulus/getting-started-with-regulus.html":{"position":[[2272,5],[2919,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[4769,5],[8552,6]]}},"component":{}}],["index=fals",{"_index":3155,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3043,12]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2869,12]]}},"component":{}}],["index_2020.csv",{"_index":819,"title":{},"name":{},"text":{"/fastload.html":{"position":[[4576,14]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3230,16],[6966,17]]}},"component":{}}],["indic",{"_index":452,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[5451,9]]},"/fastload.html":{"position":[[1833,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[7376,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[7875,8],[9954,8],[25764,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[10915,9]]},"/mule-teradata-connector/reference.html":{"position":[[2173,9],[3682,9],[4080,9],[6012,9],[6408,9],[8310,9],[8708,9],[10139,9],[10537,9],[12354,9],[12752,9],[14123,9],[14521,9],[15617,9],[16015,9],[16987,9],[17140,9],[17283,9],[18676,9],[19074,9],[21837,9],[22235,9],[24692,9],[25089,9],[26730,9],[26883,9],[27027,9],[28359,9],[28757,9],[29734,9],[29886,9],[30029,9],[32399,9],[32797,9],[35507,9],[37504,9]]},"/query-service/send-queries-using-rest-api.html":{"position":[[9446,10]]},"/regulus/install-regulus-docker-image.html":{"position":[[5486,9]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1928,8]]}},"component":{}}],["individu",{"_index":2550,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1238,10],[3467,10]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[3800,10]]}},"component":{}}],["indu",{"_index":3385,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2738,8],[3446,6],[7202,8]]}},"component":{}}],["industri",{"_index":2969,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[12142,9],[16873,9],[18677,9],[21185,8],[22659,9]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[291,9]]}},"component":{}}],["infer",{"_index":643,"title":{},"name":{},"text":{"/dbt.html":{"position":[[2467,9]]},"/nos.html":{"position":[[3113,5]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[4704,9],[4965,9],[5384,9]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[862,10],[5489,9]]}},"component":{}}],["info",{"_index":3533,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[10439,4]]}},"component":{}}],["info:root",{"_index":3085,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4106,10],[6519,10],[7144,10],[7820,10],[8223,10]]}},"component":{}}],["info:root:0",{"_index":3104,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[5137,11],[5255,11]]}},"component":{}}],["info:root:1/38",{"_index":3115,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[6269,14]]}},"component":{}}],["info:root:2/38",{"_index":3121,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[6872,14]]}},"component":{}}],["info:root:38/38",{"_index":3125,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[7513,15]]}},"component":{}}],["info:root:entri",{"_index":3113,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[6165,15],[6284,15],[6405,15],[6887,15],[7019,15],[7529,15],[7678,15]]}},"component":{}}],["info:root:look",{"_index":3105,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[5208,17]]}},"component":{}}],["info:root:process",{"_index":3119,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[6606,20],[7239,20],[7932,20]]}},"component":{}}],["info:root:scrap",{"_index":3088,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4424,19]]}},"component":{}}],["info:root:start",{"_index":3096,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4812,18],[5478,18],[6566,18],[7199,18],[7892,18]]}},"component":{}}],["info:root:tag",{"_index":3106,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[5798,13],[5922,13],[6043,13],[6742,13],[7372,13],[8065,13]]}},"component":{}}],["info:root:thi",{"_index":3086,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4159,14],[4262,14]]}},"component":{}}],["infodata\":\"15.10.07.02",{"_index":4373,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[11361,24],[11412,24]]}},"component":{}}],["infodata\":\"standard",{"_index":4371,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[11313,21]]}},"component":{}}],["infokey\":\"languag",{"_index":4370,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[11278,19]]}},"component":{}}],["infokey\":\"releas",{"_index":4372,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[11340,20]]}},"component":{}}],["infokey\":\"vers",{"_index":4374,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[11391,20]]}},"component":{}}],["inform",{"_index":226,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[5272,11],[5816,12]]},"/fastload.html":{"position":[[3508,11]]},"/getting.started.utm.html":{"position":[[3537,6],[5459,12]]},"/getting.started.vbox.html":{"position":[[2575,6],[4285,12]]},"/getting.started.vmware.html":{"position":[[2646,6],[4568,12]]},"/mule.jdbc.example.html":{"position":[[3394,11]]},"/run-vantage-express-on-aws.html":{"position":[[9343,12]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6123,12]]},"/sto.html":{"position":[[5717,6],[6698,6]]},"/vantage.express.gcp.html":{"position":[[5150,12]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1093,11],[2562,11]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[191,11],[259,11],[661,11],[4287,12],[5787,11],[5972,11],[6493,12],[7593,11],[7733,11],[13386,11],[14733,11],[14770,12],[23295,11],[23344,11],[23678,12],[23710,11],[24344,11],[24530,11],[25482,11],[25622,11]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1585,11]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2003,11],[2713,11]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[675,11],[2404,11],[2635,12],[3899,11],[4130,12]]},"/query-service/send-queries-using-rest-api.html":{"position":[[930,12]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[342,11],[5239,11]]}},"component":{}}],["infra_nam",{"_index":3807,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[8718,12]]}},"component":{}}],["infra_proto",{"_index":3809,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[8767,12]]}},"component":{}}],["infrastructur",{"_index":2642,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1860,15],[2075,14]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2409,14]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1521,15]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1214,15]]}},"component":{}}],["ingest",{"_index":390,"title":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[22,9]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_ingesting_data_from_external_object_store":{"position":[[0,9]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_ingesting_data_from_local_files":{"position":[[0,9]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_ingesting_data_from_saas_applications_third_party_tools":{"position":[[0,9]]}},"name":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[22,9]]}},"text":{"/advanced-dbt.html":{"position":[[3673,8],[4637,9]]},"/fastload.html":{"position":[[6574,6],[7389,6]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[805,6]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[110,10],[242,6],[852,9],[1366,10],[1465,9]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[417,7],[4505,11],[4607,11],[4619,20],[5304,6],[5501,9]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[5862,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[8119,6],[8934,6]]}},"component":{}}],["ingress",{"_index":2165,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[3207,7],[3254,7],[11369,7]]}},"component":{}}],["inher",{"_index":2579,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[4196,8]]}},"component":{}}],["init",{"_index":2226,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[7252,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4032,4]]},"/vantage.express.gcp.html":{"position":[[3059,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1670,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1655,4],[1950,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[7079,4],[7212,4],[7344,4],[7476,4],[7642,4],[7807,4],[7940,4]]}},"component":{}}],["init.pi",{"_index":3646,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4089,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4089,7]]}},"component":{}}],["initi",{"_index":347,"title":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_initial_setup":{"position":[[0,7]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[2349,7],[2379,7]]},"/getting.started.utm.html":{"position":[[3861,13],[4075,12]]},"/getting.started.vbox.html":{"position":[[2899,13],[3113,12]]},"/getting.started.vmware.html":{"position":[[2970,13],[3184,12]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1945,11]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1640,10]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[2205,8]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1480,9],[1633,9],[1757,9],[1848,9]]},"/mule-teradata-connector/reference.html":{"position":[[40164,7],[40224,9],[40632,7],[41427,7],[41487,9],[41854,7]]},"/mule-teradata-connector/release-notes.html":{"position":[[335,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3663,12],[6136,10]]},"/regulus/install-regulus-docker-image.html":{"position":[[3167,11],[4181,11],[9356,11]]}},"component":{}}],["inlin",{"_index":1791,"title":{},"name":{},"text":{"/nos.html":{"position":[[6906,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[9703,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9362,6]]}},"component":{}}],["inman",{"_index":4004,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[29,5]]}},"component":{}}],["innov",{"_index":3577,"title":{},"name":{},"text":{"/jupyter-demos/index.html":{"position":[[615,10],[1151,10]]}},"component":{}}],["input",{"_index":683,"title":{},"name":{},"text":{"/dbt.html":{"position":[[4138,7]]},"/fastload.html":{"position":[[2124,5]]},"/ml.html":{"position":[[6596,5],[7486,5]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3973,5],[4063,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3962,5],[5222,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3905,6],[4013,6],[4158,6],[4324,6],[4658,5],[5933,5]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1563,5],[3240,5]]},"/mule-teradata-connector/reference.html":{"position":[[3274,5],[4834,5],[5606,5],[7126,5],[7901,5],[9344,5],[11184,5],[11198,5],[11261,5],[16651,5],[16665,5],[16728,5],[19710,5],[19724,5],[19787,5],[22832,5],[22846,5],[22909,5],[25808,5],[25821,5],[25884,5],[26129,5],[26265,5],[29393,5],[29407,5],[29470,5],[39609,5],[42736,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2041,5]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[2561,6],[4710,6],[6068,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2256,5]]}},"component":{}}],["input[dataset",{"_index":3448,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[6465,15]]}},"component":{}}],["input[model",{"_index":3489,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[7977,13]]}},"component":{}}],["input_fil",{"_index":3447,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[6452,10]]}},"component":{}}],["input_model",{"_index":3488,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[7963,11]]}},"component":{}}],["insecur",{"_index":3938,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[37077,8]]}},"component":{}}],["insert",{"_index":564,"title":{"/sto.html#_inserting_script_output_into_a_table":{"position":[[0,9]]},"/mule-teradata-connector/reference.html#bulkInsert":{"position":[[5,6]]},"/mule-teradata-connector/reference.html#insert":{"position":[[0,6]]}},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2157,6],[2208,6],[2259,6]]},"/fastload.html":{"position":[[1741,7],[1857,6],[2171,8],[4648,6],[4734,6],[6057,6]]},"/geojson-to-vantage.html":{"position":[[2856,8],[8514,8]]},"/getting.started.utm.html":{"position":[[5382,6],[5713,6],[5730,6]]},"/getting.started.vbox.html":{"position":[[4208,6],[4539,6],[4556,6],[5514,6]]},"/getting.started.vmware.html":{"position":[[4491,6],[4822,6],[4839,6]]},"/mule.jdbc.example.html":{"position":[[2483,6],[2499,6]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3860,6],[4227,6]]},"/run-vantage-express-on-aws.html":{"position":[[9266,6],[9597,6],[9614,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6046,6],[6377,6],[6394,6]]},"/sto.html":{"position":[[6093,8]]},"/vantage.express.gcp.html":{"position":[[5073,6],[5404,6],[5421,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[18606,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[959,7],[19622,7],[19756,8],[19902,6],[21750,6],[25211,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3406,6]]},"/mule-teradata-connector/reference.html":{"position":[[2824,6],[2877,6],[3465,7],[5305,7],[5466,6],[5702,9],[8092,7],[15284,7]]},"/regulus/getting-started-with-regulus.html":{"position":[[2572,9],[3222,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1832,7],[1952,6],[2303,8],[2524,6],[2673,6],[4943,8]]}},"component":{}}],["inservic",{"_index":2861,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[4239,12]]}},"component":{}}],["insid",{"_index":3860,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[1216,6],[18056,6],[24069,6]]},"/regulus/regulus-magic-reference.html":{"position":[[4587,6]]}},"component":{}}],["insight",{"_index":49,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[627,9],[993,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[305,9]]}},"component":{}}],["inspect",{"_index":642,"title":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Inspect-model-metrics":{"position":[[0,7]]}},"name":{},"text":{"/dbt.html":{"position":[[2437,7]]},"/sto.html":{"position":[[7067,7]]}},"component":{}}],["instal",{"_index":91,"title":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_install_power_bi_desktop":{"position":[[0,7]]},"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_install_the_net_data_provider_for_teradata":{"position":[[0,7]]},"/dbt.html#_install_dbt":{"position":[[0,7]]},"/fastload.html#_install_ttu":{"position":[[0,7]]},"/getting.started.utm.html#_installation":{"position":[[0,12]]},"/getting.started.utm.html#_run_utm_installer":{"position":[[8,9]]},"/getting.started.vbox.html#_installation":{"position":[[0,12]]},"/getting.started.vbox.html#_run_installers":{"position":[[4,10]]},"/getting.started.vmware.html#_installation":{"position":[[0,12]]},"/getting.started.vmware.html#_run_installers":{"position":[[4,10]]},"/local.jupyter.hub.html#_install_teradata_jupyter_docker_image_in_your_registry":{"position":[[0,7]]},"/ml.html#_install_vantage_analytics_library":{"position":[[0,7]]},"/odbc.ubuntu.html#_installation":{"position":[[0,12]]},"/run-vantage-express-on-aws.html#_installation":{"position":[[0,12]]},"/run-vantage-express-on-microsoft-azure.html#_installation":{"position":[[0,12]]},"/vantage.express.gcp.html#_installation":{"position":[[0,12]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_install_teradata_data_catalog_connector":{"position":[[0,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_install_virtualenv":{"position":[[0,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_install_data_catalog_teradata_connector":{"position":[[0,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_install_dbt":{"position":[[0,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_and_execute_airflow":{"position":[[0,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_python":{"position":[[0,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_docker":{"position":[[0,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_docker_compose_and_docker_environment_configuration_files":{"position":[[0,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_a_test_dbt_project":{"position":[[0,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[0,7]]},"/regulus/install-regulus-docker-image.html#_install_workspaces":{"position":[[0,7]]},"/regulus/install-regulus-docker-image.html#_install_workspaces_using_docker_engine":{"position":[[0,7]]},"/regulus/install-regulus-docker-image.html#_install_workspaces_using_docker_compose":{"position":[[0,7]]},"/regulus/install-regulus-docker-image.html#_install_a_regulus_interface":{"position":[[0,7]]},"/regulus/install-regulus-docker-image.html#_install_jupyterlab_using_docker_engine":{"position":[[0,7]]},"/regulus/install-regulus-docker-image.html#_install_jupyterlab_using_docker_compose":{"position":[[0,7]]},"/regulus/using-regulus-workspace-cli.html#_install_workspaces_cli":{"position":[[0,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_install_ttu":{"position":[[0,7]]}},"name":{"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[0,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[0,7]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1602,7],[1708,12],[2504,7],[2570,9],[2614,7]]},"/advanced-dbt.html":{"position":[[718,10],[1373,7],[1475,7],[1502,7],[1523,7]]},"/dbt.html":{"position":[[451,10],[750,7],[869,7],[896,7]]},"/geojson-to-vantage.html":{"position":[[1755,10],[5985,10]]},"/getting.started.utm.html":{"position":[[177,7],[1081,7],[1374,7],[1401,9],[6404,9],[6553,12]]},"/getting.started.vbox.html":{"position":[[177,7],[879,7],[1119,7],[1177,7],[1211,9],[5382,8],[6000,9],[6149,12]]},"/getting.started.vmware.html":{"position":[[177,7],[876,7],[1330,7],[1547,7],[1601,9],[1660,7],[5513,9],[5662,12]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[89,12],[178,7],[253,12],[286,7],[551,7],[657,12],[1009,7]]},"/jupyter.html":{"position":[[2591,7],[2842,7],[3879,7],[7295,12]]},"/local.jupyter.hub.html":{"position":[[1263,12],[3050,7],[3086,7],[4203,7],[4872,7],[4954,7],[5061,7],[5225,7],[5289,7],[5354,7],[5424,7],[5498,7],[5790,7],[6066,12]]},"/ml.html":{"position":[[601,7],[875,7],[1054,8],[1143,9],[1738,10],[1759,7],[1812,10],[2431,12],[2544,7],[2636,7],[2890,8],[2921,10],[3062,10],[3127,7],[3929,10]]},"/odbc.ubuntu.html":{"position":[[321,7],[392,7],[448,7],[1043,12],[1775,7]]},"/run-vantage-express-on-aws.html":{"position":[[582,7],[766,9],[821,12],[6053,7],[6104,7],[10754,9],[12470,12]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[240,7],[413,9],[453,12],[2833,7],[2884,7],[7534,9],[8408,12]]},"/segment.html":{"position":[[636,10]]},"/sto.html":{"position":[[2235,9],[2657,9],[5402,7],[5600,10]]},"/teradatasql.html":{"position":[[214,9],[244,7]]},"/vantage.express.gcp.html":{"position":[[246,7],[361,9],[401,12],[1860,7],[1911,7],[6561,9],[7584,12]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1087,7],[2103,8],[2266,7],[2342,7],[2386,7],[2418,7],[2475,7],[2539,7],[2599,7],[2663,7],[2728,7],[2768,7],[2789,7],[3852,10],[4102,7],[4525,7],[4607,7],[4714,7],[4813,7],[4875,7],[4944,7],[5009,7],[5078,7],[5227,7],[5273,7],[5294,7],[6115,12]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[999,7],[1412,9],[1484,9],[1702,8],[1852,12],[1920,8],[2031,8],[2061,12],[2249,7],[2274,12],[2799,7],[2874,8],[3354,7],[3449,7],[3480,7],[3582,7],[3644,7],[3705,7],[3760,7],[3822,7],[4418,12]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[3578,7],[3797,9]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1931,9],[1964,9],[1978,9],[2013,7],[2768,7],[2857,7],[2943,7],[3014,7],[3088,7],[3186,7],[3236,7],[3286,7]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2326,7],[2364,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1666,7],[2069,7],[2137,7],[2250,7],[2319,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[846,10],[1473,7],[1592,7],[1619,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1180,7],[1253,7],[2538,10],[5129,10],[6243,7]]},"/jupyter-demos/index.html":{"position":[[301,7],[924,7],[1449,7],[1838,7],[2247,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1377,13],[1477,7],[1516,7]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[300,10],[352,12]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[103,7],[370,12],[458,10],[1764,9],[1869,9],[1949,7],[2005,12],[2050,7],[2122,7],[2152,7],[2561,7],[2875,7],[2906,7],[3052,7],[3077,7],[3357,9],[3723,13],[3780,8],[4094,7],[4156,7],[4343,9],[4362,7],[4864,13],[5081,9],[5134,7],[5156,7],[6426,12],[6757,12],[6905,12],[8429,12],[10551,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1414,9],[1452,12],[1490,9],[1517,12]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[440,9],[469,12]]},"/query-service/send-queries-using-rest-api.html":{"position":[[578,7],[619,13],[1360,9],[5242,13],[10182,13],[12464,13]]},"/regulus/getting-started-with-regulus.html":{"position":[[364,7],[399,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[1245,10],[1707,7],[2514,7],[3295,8],[3345,13],[3359,7],[7911,7],[8669,12],[8775,8],[8825,13],[8839,7],[9552,12]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[269,7],[571,10],[644,7]]}},"component":{}}],["install.html",{"_index":2124,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[918,13]]}},"component":{}}],["install.packages('tdplyr',repos=c('https://r",{"_index":2806,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2907,45],[5404,45]]}},"component":{}}],["instanc",{"_index":119,"title":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[62,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html#_steps_to_integrate_with_notebook_instance":{"position":[[33,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Setup-a-Vantage-instance":{"position":[[16,9]]},"/query-service/send-queries-using-rest-api.html#_connect_to_your_query_service_instance":{"position":[[30,8]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2191,8],[2371,8]]},"/advanced-dbt.html":{"position":[[572,9],[601,8],[2165,8],[2890,9]]},"/create-parquet-files-in-object-storage.html":{"position":[[588,9],[884,8],[1846,9]]},"/dbt.html":{"position":[[299,9],[328,8],[1078,9],[1256,8]]},"/fastload.html":{"position":[[560,9],[589,8]]},"/geojson-to-vantage.html":{"position":[[1046,9],[1075,8]]},"/jdbc.html":{"position":[[237,9],[266,8]]},"/jupyter.html":{"position":[[446,8]]},"/local.jupyter.hub.html":{"position":[[512,8],[4922,8]]},"/ml.html":{"position":[[544,9],[572,8]]},"/mule.jdbc.example.html":{"position":[[334,9],[363,8],[1799,8],[2120,9]]},"/nos.html":{"position":[[392,9],[557,8]]},"/odbc.ubuntu.html":{"position":[[171,9],[200,8],[1229,9]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[377,9],[576,8]]},"/run-vantage-express-on-aws.html":{"position":[[332,8],[365,8],[5381,9],[5432,8],[5747,9],[5832,8],[8957,9],[11663,9],[11675,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5737,9]]},"/segment.html":{"position":[[148,9],[713,8],[776,8]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1053,10]]},"/sto.html":{"position":[[742,9],[771,8]]},"/teradatasql.html":{"position":[[437,9],[553,8]]},"/vantage.express.gcp.html":{"position":[[810,9],[1098,9],[1386,9],[4764,9],[7323,9]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2622,9],[2651,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1175,8],[1203,8],[1609,9],[1689,8],[4575,8],[6301,8],[6395,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[579,9],[618,8],[646,8],[885,9],[1055,9],[1616,8],[3915,9],[4217,8],[4498,8],[4572,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2846,9],[2875,8],[26325,8],[26353,8]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1647,9],[1676,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[1710,9],[1739,8],[2142,9],[2234,9],[2263,9],[3651,8],[3708,9],[4470,9]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[572,9],[601,8],[2025,8],[2059,9]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[551,9],[580,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[354,9],[533,8],[4048,8],[5307,9],[7416,9]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2451,8],[3080,9],[13710,9],[13738,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[361,8],[468,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[398,8],[505,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[280,9],[309,8]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[2285,9],[3485,9]]},"/mule-teradata-connector/index.html":{"position":[[238,8],[737,8]]},"/mule-teradata-connector/reference.html":{"position":[[238,8],[788,8],[912,8],[983,9],[23811,10],[38605,8],[40205,9],[40524,10],[40833,10],[41171,9],[41468,9]]},"/mule-teradata-connector/release-notes.html":{"position":[[238,8]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[175,9],[204,8]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1385,9],[1446,8]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1268,9],[1303,8],[3091,9],[3268,8],[3853,9],[4030,8]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[292,9],[346,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[684,8],[1422,8]]},"/regulus/install-regulus-docker-image.html":{"position":[[4393,8],[4521,8],[5425,9]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[4501,8],[4583,8],[4604,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[414,9],[443,8],[2807,9],[6752,8],[6862,10],[6939,8]]}},"component":{}}],["instance'",{"_index":2829,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2099,10]]}},"component":{}}],["instances[0].instanceid",{"_index":2202,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[5646,25]]}},"component":{}}],["instance’",{"_index":2826,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1818,10]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2144,10]]}},"component":{}}],["instead",{"_index":81,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1311,8]]},"/getting.started.vmware.html":{"position":[[1352,8]]},"/nos.html":{"position":[[3824,8],[6696,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[5120,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[299,7]]},"/mule-teradata-connector/reference.html":{"position":[[23856,8],[37958,7]]}},"component":{}}],["instruct",{"_index":469,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[6045,9]]},"/dbt.html":{"position":[[2766,8]]},"/fastload.html":{"position":[[3721,8],[6392,12]]},"/local.jupyter.hub.html":{"position":[[331,12],[364,12],[1172,12],[2311,12]]},"/mule.jdbc.example.html":{"position":[[1200,9]]},"/nos.html":{"position":[[8201,8]]},"/run-vantage-express-on-aws.html":{"position":[[724,13],[834,12]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[466,12]]},"/vantage.express.gcp.html":{"position":[[414,12]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2193,12],[4304,12]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1414,12]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4423,12]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1465,12],[1530,12],[4862,8]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[482,12]]},"/regulus/install-regulus-docker-image.html":{"position":[[8613,13],[9496,13]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[253,12]]}},"component":{}}],["int",{"_index":770,"title":{},"name":{},"text":{"/fastload.html":{"position":[[2970,4],[3040,4],[3056,4],[5313,4],[5383,4],[5399,4]]},"/nos.html":{"position":[[2593,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13526,3],[13611,4],[13773,3],[13796,3],[13893,3],[13915,4],[13931,3],[13954,3],[16972,4],[18776,4],[21323,4],[22758,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[3361,4],[4382,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[3398,4]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[4516,3]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[4453,4],[4523,4],[4539,4]]}},"component":{}}],["integ",{"_index":1216,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[5513,8]]},"/getting.started.vbox.html":{"position":[[4339,8]]},"/getting.started.vmware.html":{"position":[[4622,8]]},"/mule.jdbc.example.html":{"position":[[2291,8]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3627,8],[7830,9]]},"/run-vantage-express-on-aws.html":{"position":[[9397,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6177,8]]},"/vantage.express.gcp.html":{"position":[[5204,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11522,8],[11566,8],[11712,8],[13235,8],[15144,8],[15188,8],[15334,8],[16857,8],[17626,8],[17644,8],[17730,8],[18447,8],[18856,8],[18900,8],[19046,8],[20570,8],[22753,8],[22797,8],[22943,8],[24467,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[684,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[523,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3229,8]]},"/mule-teradata-connector/reference.html":{"position":[[39754,7]]},"/regulus/getting-started-with-regulus.html":{"position":[[2174,7],[2828,7]]}},"component":{}}],["integer,nox",{"_index":3404,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3276,11]]}},"component":{}}],["integer,ptratio",{"_index":3408,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3341,15]]}},"component":{}}],["integer,tax",{"_index":3407,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3329,11]]}},"component":{}}],["integr",{"_index":265,"title":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[0,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_integration":{"position":[[0,11]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[0,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html#_integration":{"position":[[0,11]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html#_steps_to_integrate_with_notebook_instance":{"position":[[9,9]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[0,9]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[0,9]]},"/other-integrations/integrate-teradata-vantage-with-knime.html#_integration_procedure":{"position":[[0,11]]}},"name":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[0,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[0,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[0,9]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[0,9]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[0,9]]}},"text":{"/advanced-dbt.html":{"position":[[79,11],[4773,9]]},"/getting.started.utm.html":{"position":[[547,11]]},"/getting.started.vbox.html":{"position":[[547,11]]},"/getting.started.vmware.html":{"position":[[547,11]]},"/jupyter.html":{"position":[[186,10],[7174,11]]},"/local.jupyter.hub.html":{"position":[[135,9]]},"/segment.html":{"position":[[935,11]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1400,10],[1662,11]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[179,10],[1003,9],[1538,11]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[184,10]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1039,11],[1406,10],[1864,11],[2126,10]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1061,10],[1323,11],[1881,11],[5847,11],[5971,11],[6092,11],[6213,11],[6333,11],[6447,11],[6663,11],[6782,11],[6936,11],[7061,11],[7296,11],[7412,11],[7578,11],[7720,11],[7989,11],[8105,11],[8349,11]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[83,9],[205,9]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[278,9]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[558,9],[9595,11]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[9316,11],[10713,9]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[330,10],[7295,9]]},"/regulus/install-regulus-docker-image.html":{"position":[[713,11],[914,13],[5255,12],[5931,13]]}},"component":{}}],["integrations.iam.gserviceaccount.com",{"_index":2411,"title":{},"name":{},"text":{"/segment.html":{"position":[[4613,36]]}},"component":{}}],["intel",{"_index":1109,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[600,5],[1591,5]]},"/getting.started.vbox.html":{"position":[[657,5]]},"/getting.started.vmware.html":{"position":[[654,5]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[760,5],[948,5],[1017,5]]}},"component":{}}],["intelahci",{"_index":2244,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[7669,9]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4449,9]]},"/vantage.express.gcp.html":{"position":[[3476,9]]}},"component":{}}],["intelliflex",{"_index":2566,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2907,12]]}},"component":{}}],["intellig",{"_index":478,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[6426,12]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1453,12]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2179,12]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1114,12]]}},"component":{}}],["intend",{"_index":2264,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[10083,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6863,6]]},"/vantage.express.gcp.html":{"position":[[5890,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1745,6]]}},"component":{}}],["inter",{"_index":4478,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[6233,5]]}},"component":{}}],["interact",{"_index":48,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[615,11],[6139,8]]},"/advanced-dbt.html":{"position":[[3347,11],[7418,8]]},"/create-parquet-files-in-object-storage.html":{"position":[[4480,8]]},"/dbt.html":{"position":[[1521,11],[5018,8]]},"/fastload.html":{"position":[[2217,11],[2286,11],[2332,11],[7709,8]]},"/geojson-to-vantage.html":{"position":[[6287,11],[10760,8]]},"/getting.started.utm.html":{"position":[[6689,8]]},"/getting.started.vbox.html":{"position":[[6285,8]]},"/getting.started.vmware.html":{"position":[[5798,8]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[1221,8]]},"/jdbc.html":{"position":[[1223,8]]},"/jupyter.html":{"position":[[5005,11],[7471,8]]},"/local.jupyter.hub.html":{"position":[[846,11],[6242,8]]},"/ml.html":{"position":[[9243,8]]},"/mule.jdbc.example.html":{"position":[[3669,8]]},"/nos.html":{"position":[[8855,8]]},"/odbc.ubuntu.html":{"position":[[2080,8]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10968,8]]},"/run-vantage-express-on-aws.html":{"position":[[12627,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[8565,8]]},"/segment.html":{"position":[[5699,8]]},"/sto.html":{"position":[[8070,8]]},"/teradatasql.html":{"position":[[1155,8]]},"/vantage.express.gcp.html":{"position":[[7741,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[24947,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[6521,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[4723,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[26499,8]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[9041,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[6428,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[7429,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[8619,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[5372,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[7423,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9965,8]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[5031,8]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[1710,8]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[10626,8],[10992,8]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1956,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[12666,8]]},"/regulus/getting-started-with-regulus.html":{"position":[[4181,8]]},"/regulus/install-regulus-docker-image.html":{"position":[[10001,8]]},"/regulus/regulus-magic-reference.html":{"position":[[5272,8]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[7159,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[9269,8]]}},"component":{}}],["interest",{"_index":860,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[305,9],[6785,11]]},"/nos.html":{"position":[[5433,11]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[8461,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[6112,8]]},"/regulus/getting-started-with-regulus.html":{"position":[[3857,10]]},"/regulus/install-regulus-docker-image.html":{"position":[[9751,10]]}},"component":{}}],["interfac",{"_index":1159,"title":{"/regulus/install-regulus-docker-image.html#_install_a_regulus_interface":{"position":[[18,9]]}},"name":{},"text":{"/getting.started.utm.html":{"position":[[2604,10]]},"/jupyter.html":{"position":[[5255,10],[5541,9],[7064,10]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[7213,10]]},"/regulus/getting-started-with-regulus.html":{"position":[[1655,9]]},"/regulus/install-regulus-docker-image.html":{"position":[[928,10],[7888,10]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[188,9],[499,10]]}},"component":{}}],["intermedi",{"_index":677,"title":{},"name":{},"text":{"/dbt.html":{"position":[[3991,12]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[6337,12],[7607,12]]}},"component":{}}],["intermediari",{"_index":2562,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2138,12]]}},"component":{}}],["intern",{"_index":719,"title":{},"name":{},"text":{"/fastload.html":{"position":[[1126,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2140,9],[2220,9],[2284,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2177,9],[2257,9],[2321,9]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[980,8]]}},"component":{}}],["internet",{"_index":1843,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[232,8]]},"/run-vantage-express-on-aws.html":{"position":[[960,8],[1709,8],[1767,8],[1876,8],[1920,8],[1964,8],[2197,8],[3742,8],[3863,8],[10941,9],[11326,9],[11863,8],[11895,8],[11916,8],[12002,8],[12023,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7721,9],[8106,8]]},"/vantage.express.gcp.html":{"position":[[6748,9],[7133,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1366,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1452,9],[4572,10]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[943,9],[1622,9]]}},"component":{}}],["internetgateway.{internetgatewayid:internetgatewayid",{"_index":2143,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[1794,55]]}},"component":{}}],["interpret",{"_index":878,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[1174,11],[1697,11],[5927,11],[8730,12]]}},"component":{}}],["interv",{"_index":3759,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[5025,8]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1689,8]]},"/mule-teradata-connector/reference.html":{"position":[[30589,8]]}},"component":{}}],["introduc",{"_index":1296,"title":{},"name":{},"text":{"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[699,10]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9558,9]]}},"component":{}}],["introduct",{"_index":2301,"title":{"/modelops/using-feast-feature-store-with-teradata-vantage.html#_introduction":{"position":[[0,12]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_introduction":{"position":[[0,12]]}},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[12489,12]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[8427,12]]},"/vantage.express.gcp.html":{"position":[[7603,12]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[7086,12]]}},"component":{}}],["introductori",{"_index":270,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[236,12]]}},"component":{}}],["invit",{"_index":2670,"title":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_open_invitation":{"position":[[5,10]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_accept_invitation":{"position":[[7,10]]}},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[5969,11],[6216,11],[6756,10],[6828,10],[6891,10],[6914,10],[6992,12]]}},"component":{}}],["invok",{"_index":2392,"title":{},"name":{},"text":{"/segment.html":{"position":[[3528,6],[3606,7],[3650,8],[3698,6]]},"/mule-teradata-connector/reference.html":{"position":[[23711,7]]}},"component":{}}],["invoker@$project_id.iam.gserviceaccount.com",{"_index":2394,"title":{},"name":{},"text":{"/segment.html":{"position":[[3872,43],[4448,43]]}},"component":{}}],["involv",{"_index":872,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[833,8]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[95,9]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[4783,8]]}},"component":{}}],["io",{"_index":57,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[824,4]]}},"component":{}}],["ioapic",{"_index":2237,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[7532,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4312,6]]},"/vantage.express.gcp.html":{"position":[[3339,6]]}},"component":{}}],["iodbc",{"_index":1810,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[430,5]]}},"component":{}}],["ip",{"_index":162,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3307,2]]},"/jupyter.html":{"position":[[3142,2]]},"/odbc.ubuntu.html":{"position":[[1193,2]]},"/run-vantage-express-on-aws.html":{"position":[[1581,2],[1684,2],[3309,2],[11424,2]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[1429,2],[1820,2],[2198,2]]},"/segment.html":{"position":[[2764,2]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4196,2],[4354,2],[4373,2]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8878,2],[9659,2]]},"/regulus/install-regulus-docker-image.html":{"position":[[5362,2],[6319,2]]},"/regulus/regulus-magic-reference.html":{"position":[[486,2]]}},"component":{}}],["ipaddr",{"_index":3415,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3912,6],[9734,6]]}},"component":{}}],["ipprotocol",{"_index":2168,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[3324,16],[11439,16]]}},"component":{}}],["iprang",{"_index":2172,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[3378,11],[11497,11]]}},"component":{}}],["ipykernel",{"_index":2848,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2815,9]]}},"component":{}}],["ipynb",{"_index":3346,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[59,6]]}},"component":{}}],["ipython",{"_index":1331,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[1685,7],[3737,7],[3887,7],[3926,7],[4572,7],[4754,7],[7198,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1216,7],[1298,7]]}},"component":{}}],["ir",{"_index":729,"title":{},"name":{},"text":{"/fastload.html":{"position":[[1448,3],[2620,3],[2755,4],[5180,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1323,3]]}},"component":{}}],["irs.irs_return",{"_index":4534,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3513,17],[7150,17]]}},"component":{}}],["irs.irs_returns_et",{"_index":4530,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3435,20]]}},"component":{}}],["irs.irs_returns_lg",{"_index":4528,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3396,20]]}},"component":{}}],["irs.irs_returns_uv",{"_index":4532,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3474,20]]}},"component":{}}],["irs_return",{"_index":763,"title":{},"name":{},"text":{"/fastload.html":{"position":[[2671,11],[2771,12],[2946,11],[3659,11],[4746,11],[5196,12],[5289,11],[5664,11],[6069,11]]}},"component":{}}],["irs_returns_err1",{"_index":766,"title":{},"name":{},"text":{"/fastload.html":{"position":[[2795,17],[3682,17],[5220,17],[5687,17]]}},"component":{}}],["irs_returns_err2",{"_index":767,"title":{},"name":{},"text":{"/fastload.html":{"position":[[2824,17],[3700,17],[5249,17],[5705,17]]}},"component":{}}],["irs_returns_et",{"_index":4555,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[6125,16]]}},"component":{}}],["irs_returns_lg",{"_index":4552,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[5988,16]]}},"component":{}}],["irs_returns_no",{"_index":830,"title":{},"name":{},"text":{"/fastload.html":{"position":[[6649,15],[6968,15]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[8194,15],[8513,15]]}},"component":{}}],["irs_returns_nos_n",{"_index":832,"title":{},"name":{},"text":{"/fastload.html":{"position":[[6796,22]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[8341,22]]}},"component":{}}],["irs_returns_uv",{"_index":4556,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[6262,16]]}},"component":{}}],["ish",{"_index":1515,"title":{},"name":{},"text":{"/ml.html":{"position":[[3386,3],[3411,3],[3444,3]]}},"component":{}}],["iso",{"_index":1028,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[6858,3]]},"/getting.started.utm.html":{"position":[[1698,3]]}},"component":{}}],["iso_a3_cd",{"_index":1049,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[8431,9],[9191,9]]}},"component":{}}],["isol",{"_index":2543,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[634,8]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2818,8]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[2495,10],[3990,10]]},"/mule-teradata-connector/reference.html":{"position":[[1936,9],[2064,9]]}},"component":{}}],["issu",{"_index":387,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3521,5]]},"/dbt.html":{"position":[[1695,5]]},"/fastload.html":{"position":[[3552,7],[3608,7]]},"/geojson-to-vantage.html":{"position":[[5438,6]]},"/getting.started.utm.html":{"position":[[4703,6],[6386,5]]},"/getting.started.vbox.html":{"position":[[5982,5]]},"/getting.started.vmware.html":{"position":[[3812,6],[5495,5]]},"/sto.html":{"position":[[2637,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2674,5]]},"/mule-teradata-connector/reference.html":{"position":[[17917,7],[23934,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3530,5]]}},"component":{}}],["it'",{"_index":1363,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[3282,4],[4098,4]]}},"component":{}}],["ita",{"_index":962,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4301,3]]}},"component":{}}],["itali",{"_index":960,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4284,5],[9930,5],[9989,5]]}},"component":{}}],["item",{"_index":3873,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[3440,4],[5674,4],[8067,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[10265,4]]}},"component":{}}],["item_id",{"_index":3001,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13907,7],[14075,9],[14992,8]]}},"component":{}}],["iter",{"_index":3902,"title":{"/mule-teradata-connector/reference.html#repeatable-in-memory-iterable":{"position":[[21,8]]},"/mule-teradata-connector/reference.html#repeatable-file-store-iterable":{"position":[[22,8]]}},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[18555,8],[18586,8],[18610,8],[21716,8],[21747,8],[21771,8],[24571,8],[24602,8],[24626,8]]}},"component":{}}],["itself",{"_index":923,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3115,6],[6898,6]]},"/getting.started.utm.html":{"position":[[2402,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[10660,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[10369,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[5066,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[7017,7]]}},"component":{}}],["it’",{"_index":511,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[327,4]]},"/dbt.html":{"position":[[138,4]]},"/fastload.html":{"position":[[3776,4],[4081,4]]},"/getting.started.vmware.html":{"position":[[1361,4]]},"/jupyter.html":{"position":[[800,4],[1325,4],[5482,4]]},"/ml.html":{"position":[[3323,4]]},"/nos.html":{"position":[[239,4]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[5935,4]]},"/run-vantage-express-on-aws.html":{"position":[[347,4]]},"/segment.html":{"position":[[432,4]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1317,4]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[3436,4]]},"/mule-teradata-connector/reference.html":{"position":[[38650,4]]}},"component":{}}],["i’ll",{"_index":753,"title":{},"name":{},"text":{"/fastload.html":{"position":[[2445,4],[2842,4]]}},"component":{}}],["i’m",{"_index":759,"title":{},"name":{},"text":{"/fastload.html":{"position":[[2568,3],[2603,3]]},"/jupyter.html":{"position":[[1795,3],[2959,3],[3066,3]]}},"component":{}}],["i’v",{"_index":752,"title":{},"name":{},"text":{"/fastload.html":{"position":[[2402,4]]},"/jupyter.html":{"position":[[2623,4],[6137,4]]},"/nos.html":{"position":[[1312,4]]},"/sto.html":{"position":[[1056,4]]}},"component":{}}],["j",{"_index":2932,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[10867,2]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[5350,1]]}},"component":{}}],["jaffl",{"_index":617,"title":{"/dbt.html#_about_the_jaffle_shop_warehouse":{"position":[[10,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_the_jaffle_shop_dbt_project":{"position":[[4,6]]}},"name":{},"text":{"/dbt.html":{"position":[[169,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[257,6],[342,6],[697,6],[782,6],[3203,6],[4137,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[5183,6]]}},"component":{}}],["jaffle_shop",{"_index":624,"title":{},"name":{},"text":{"/dbt.html":{"position":[[585,11],[600,11],[1157,12],[1283,11],[1321,11],[1370,12],[1455,11],[1735,11],[2602,11]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2779,11]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[5440,11],[5455,11],[5580,11],[5891,13],[6184,11],[9403,11]]}},"component":{}}],["januari",{"_index":17,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[51,7]]},"/getting.started.utm.html":{"position":[[39,7]]},"/getting.started.vbox.html":{"position":[[39,7]]},"/getting.started.vmware.html":{"position":[[39,7]]},"/odbc.ubuntu.html":{"position":[[39,7]]},"/segment.html":{"position":[[39,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[84,7]]}},"component":{}}],["jar",{"_index":4196,"title":{},"name":{},"text":{"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[922,4]]}},"component":{}}],["java",{"_index":1302,"title":{},"name":{},"text":{"/jdbc.html":{"position":[[145,4],[953,4]]},"/mule-teradata-connector/reference.html":{"position":[[35523,4]]}},"component":{}}],["java_object",{"_index":3963,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[39890,11]]}},"component":{}}],["jdbc",{"_index":1300,"title":{"/jdbc.html":{"position":[[25,4]]}},"name":{"/jdbc.html":{"position":[[0,4]]}},"text":{"/jdbc.html":{"position":[[125,4],[381,4],[925,5],[1022,4],[1084,4]]},"/mule.jdbc.example.html":{"position":[[1506,4],[1574,4]]},"/mule-teradata-connector/reference.html":{"position":[[2267,4],[3730,4],[6060,4],[8358,4],[10187,4],[11291,4],[12402,4],[14171,4],[15665,4],[16761,4],[18724,4],[19820,4],[21885,4],[22942,4],[24740,4],[25917,4],[26227,4],[26559,4],[28407,4],[29500,4],[32447,4],[35410,4],[35475,4]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[659,4]]}},"component":{}}],["jdbc.teradriv",{"_index":4197,"title":{},"name":{},"text":{"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1036,16]]}},"component":{}}],["jdbc:teradata:///user=,password",{"_index":1663,"title":{},"name":{},"text":{"/mule.jdbc.example.html":{"position":[[1676,32]]}},"component":{}}],["jdk",{"_index":1289,"title":{},"name":{},"text":{"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[313,3],[389,3],[1033,3]]},"/jdbc.html":{"position":[[354,3]]}},"component":{}}],["jeremi",{"_index":4191,"title":{},"name":{},"text":{"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[8,6]]}},"component":{}}],["jiang",{"_index":1408,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[16,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[16,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[16,5]]}},"component":{}}],["jmap",{"_index":895,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[1997,4],[2004,4]]}},"component":{}}],["job",{"_index":795,"title":{},"name":{},"text":{"/fastload.html":{"position":[[3819,4],[5020,3]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3299,4],[3367,4],[3395,3],[3419,3],[3580,3],[3743,4],[4291,5],[4350,3],[5051,3],[5290,3],[6161,3]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[9691,3],[9775,4],[9789,3],[9949,3],[13118,3],[13468,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4787,3]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2384,4],[2393,3],[2568,3],[3621,3],[3666,3],[5310,4],[5681,3],[5745,3],[6522,3],[7422,3],[7467,3],[7950,3],[7985,3]]}},"component":{}}],["job.submit",{"_index":3530,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[10148,12],[13446,12]]}},"component":{}}],["joblib",{"_index":3462,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[6796,6],[8045,6]]}},"component":{}}],["joblib.dump",{"_index":3441,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[6052,11]]}},"component":{}}],["joblib.dump(model",{"_index":3665,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4299,18]]}},"component":{}}],["joblib.dump(pipelin",{"_index":3485,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[7641,21]]}},"component":{}}],["joblib.load(f\"{context.artifact_input_path}/model.joblib",{"_index":3669,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4668,58],[5046,58]]}},"component":{}}],["joblib.load(input_model.path",{"_index":3491,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[8243,29]]}},"component":{}}],["jobvars.txt",{"_index":4515,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2657,11],[5337,11]]}},"component":{}}],["job’",{"_index":3178,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[4422,5]]}},"component":{}}],["johnson",{"_index":3053,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[25852,7]]}},"component":{}}],["join",{"_index":227,"title":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_join_amazon_s3_data_to_in_database_tables":{"position":[[0,4]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[5287,7]]},"/dbt.html":{"position":[[2994,4]]},"/geojson-to-vantage.html":{"position":[[4850,4],[9673,4]]},"/ml.html":{"position":[[3806,5],[6226,4],[6284,4]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2800,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2309,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[580,4],[2633,4],[13295,6],[14587,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[6350,4]]},"/mule-teradata-connector/reference.html":{"position":[[3581,7],[5910,7],[8208,7],[10038,7],[12253,7],[13842,7],[15516,7],[18435,7],[21599,4],[24450,7],[28264,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5976,4]]}},"component":{}}],["join_if_poss",{"_index":3875,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[3538,16],[3644,16],[5867,16],[5974,16],[8165,16],[8272,16],[9995,16],[10101,16],[12210,16],[12316,16],[13799,16],[13900,16],[15473,16],[15579,16],[18392,16],[18498,16],[21556,16],[21659,16],[24407,16],[24514,16],[28221,16],[28321,16]]}},"component":{}}],["join_key",{"_index":4160,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5506,9]]}},"component":{}}],["join_keys=[\"driver_id",{"_index":3727,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3637,24]]}},"component":{}}],["joinedd",{"_index":1224,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[5605,10],[5801,11],[6054,10]]},"/getting.started.vbox.html":{"position":[[4431,10],[4627,11],[4880,10]]},"/getting.started.vmware.html":{"position":[[4714,10],[4910,11],[5163,10]]},"/mule.jdbc.example.html":{"position":[[2383,10],[2570,11],[3204,13]]},"/run-vantage-express-on-aws.html":{"position":[[9489,10],[9685,11],[9938,10]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6269,10],[6465,11],[6718,10]]},"/vantage.express.gcp.html":{"position":[[5296,10],[5492,11],[5745,10]]}},"component":{}}],["journal",{"_index":550,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[1912,8],[1930,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[20143,8],[20161,8]]},"/regulus/getting-started-with-regulus.html":{"position":[[2085,8],[2103,8],[2739,8],[2757,8]]}},"component":{}}],["jovyan",{"_index":1449,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[4568,6],[5664,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[5176,6]]}},"component":{}}],["jovyan:us",{"_index":1471,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[5684,12]]}},"component":{}}],["json",{"_index":501,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[157,5],[4222,4]]},"/geojson-to-vantage.html":{"position":[[2673,4],[3012,4],[3588,5],[5321,4],[5518,4],[5549,4],[5648,4],[6133,4],[6251,4],[7436,4]]},"/mule.jdbc.example.html":{"position":[[561,4],[1365,5],[3185,4]]},"/nos.html":{"position":[[674,4],[8593,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8939,5],[10169,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[7989,4],[9144,4],[9827,7],[10499,4],[10645,4],[12994,4],[19206,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[3612,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[472,4],[3335,4],[4592,4],[5065,4],[5270,4],[5945,4],[6041,4],[8023,4],[8129,4],[8263,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[2559,4],[2764,4],[6866,4],[6936,5],[7058,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[9312,4],[9705,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[9782,6]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1901,4],[2551,4],[3037,4],[3050,4],[3075,4],[3106,4]]}},"component":{}}],["json(8388096",{"_index":2919,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9348,13]]}},"component":{}}],["json).jsonextractvalue('$.predicted_hasdiabet",{"_index":3639,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[3308,49],[4329,49]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[3345,49]]}},"component":{}}],["json.dumps(payload",{"_index":4235,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[3574,19],[5832,19],[8290,19],[9674,19],[10328,19],[11074,19]]}},"component":{}}],["json.load(geo_json",{"_index":1016,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[6197,19]]}},"component":{}}],["json_key",{"_index":2930,"title":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_json_keys_table_operator":{"position":[[0,9]]}},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[10781,10],[10816,9],[11195,9]]}},"component":{}}],["json_tabl",{"_index":940,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3531,10]]}},"component":{}}],["jsoncol",{"_index":943,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3594,7]]}},"component":{}}],["jsonextractvalu",{"_index":3277,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[5986,16]]}},"component":{}}],["jsonpath",{"_index":947,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3689,11],[3745,11],[3805,11],[3869,11],[3933,11]]}},"component":{}}],["jt(id",{"_index":954,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4002,6]]}},"component":{}}],["juli",{"_index":614,"title":{},"name":{},"text":{"/dbt.html":{"position":[[39,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[36,4]]}},"component":{}}],["june",{"_index":2788,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[36,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[36,4]]}},"component":{}}],["jupter",{"_index":3184,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[389,6]]}},"component":{}}],["jupyt",{"_index":1311,"title":{"/jupyter.html":{"position":[[19,7]]},"/jupyter.html#_teradata_jupyter_docker_image":{"position":[[9,7]]},"/local.jupyter.hub.html":{"position":[[16,7]]},"/local.jupyter.hub.html#_use_teradata_jupyter_docker_image":{"position":[[13,7]]},"/local.jupyter.hub.html#_install_teradata_jupyter_docker_image_in_your_registry":{"position":[[17,7]]},"/local.jupyter.hub.html#_use_teradata_jupyter_docker_image_in_jupyterhub":{"position":[[13,7]]},"/local.jupyter.hub.html#_customize_teradata_jupyter_docker_image":{"position":[[19,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[19,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[19,7]]},"/jupyter-demos/index.html":{"position":[[0,7]]}},"name":{"/jupyter.html":{"position":[[0,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[19,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[19,7]]}},"text":{"/jupyter.html":{"position":[[117,7],[168,7],[409,7],[590,7],[929,7],[1039,7],[1075,7],[1222,7],[1430,7],[1562,7],[1767,7],[1861,7],[2164,7],[2199,7],[4817,7],[4957,7],[5176,7],[5387,7],[5591,7],[5645,7],[5706,7],[5880,7],[6377,8],[6788,7],[6836,7],[7230,7],[7287,7]]},"/local.jupyter.hub.html":{"position":[[154,7],[214,7],[809,7],[1065,7],[1334,7],[1430,7],[1813,7],[2491,7],[3335,7],[3380,7],[3752,7],[4910,7],[4935,7],[5204,7],[5268,7],[5333,7],[5403,7],[5477,7],[5544,7],[5710,7],[6001,7],[6058,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[110,7],[161,7],[325,7],[466,7],[579,7],[697,7],[1017,7],[1394,7],[1455,7],[1748,7],[1801,7],[1839,7],[2047,7],[2229,9],[2323,7],[3286,7],[3339,7],[3377,7],[4563,7],[4588,7],[5554,7],[6050,7],[6107,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[115,7],[166,7],[330,7],[471,7],[536,7],[814,7],[1011,7],[1083,7],[1204,7],[1281,7],[1500,8],[1711,7],[2195,8],[2892,7],[3094,7],[3430,7],[3497,7],[3956,7],[4353,7],[4410,7]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[6064,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1648,7],[2042,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[5927,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[431,7],[1500,7],[1549,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[468,7],[1537,7],[1586,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[8123,8],[8661,7],[8710,7],[8968,8],[9544,7],[9593,7]]}},"component":{}}],["jupyter/datasci",{"_index":1343,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[2050,19],[4848,19]]},"/local.jupyter.hub.html":{"position":[[665,19]]}},"component":{}}],["jupyter:latest",{"_index":4486,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[8390,14],[9021,14]]}},"component":{}}],["jupyter:us",{"_index":2815,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[5196,13]]}},"component":{}}],["jupyter_enable_lab=y",{"_index":1340,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[1995,22]]}},"component":{}}],["jupyter_hom",{"_index":4484,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[8173,12],[8326,16],[9100,15]]}},"component":{}}],["jupyterextens",{"_index":1401,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[6595,17]]}},"component":{}}],["jupyterhub",{"_index":1405,"title":{"/local.jupyter.hub.html":{"position":[[38,10]]},"/local.jupyter.hub.html#_use_teradata_jupyter_docker_image_in_jupyterhub":{"position":[[37,10]]}},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[89,10],[423,10],[465,10],[1157,10],[1380,10],[1851,10],[1923,10],[2156,10],[2286,11],[2382,10]]}},"component":{}}],["jupyterlab",{"_index":1392,"title":{"/regulus/getting-started-with-regulus.html":{"position":[[25,10]]},"/regulus/install-regulus-docker-image.html#_install_jupyterlab_using_docker_engine":{"position":[[8,10]]},"/regulus/install-regulus-docker-image.html#_install_jupyterlab_using_docker_compose":{"position":[[8,10]]},"/regulus/regulus-magic-reference.html":{"position":[[8,10]]}},"name":{},"text":{"/jupyter.html":{"position":[[6156,10]]},"/local.jupyter.hub.html":{"position":[[1121,10],[1205,10]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[4264,11]]},"/regulus/getting-started-with-regulus.html":{"position":[[240,10],[705,10],[769,10],[3845,11],[4004,11],[4028,10]]},"/regulus/install-regulus-docker-image.html":{"position":[[1057,10],[7843,10],[7899,11],[8440,10],[8517,10],[8814,10],[9293,11],[9335,10],[9400,10],[9739,11]]},"/regulus/regulus-magic-reference.html":{"position":[[180,10],[306,10]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[472,10],[539,11]]}},"component":{}}],["jupytersystemenv",{"_index":2857,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[3561,16]]}},"component":{}}],["jwt",{"_index":4211,"title":{"/query-service/send-queries-using-rest-api.html#_jwt_authentication":{"position":[[0,3]]}},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[1652,3],[2507,3]]}},"component":{}}],["k3",{"_index":2192,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[5257,2]]}},"component":{}}],["kaggl",{"_index":3356,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1105,6],[1291,6],[1966,7],[1988,6],[2309,7]]}},"component":{}}],["kaggle.json",{"_index":3371,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2142,11],[2165,11]]}},"component":{}}],["kaggle_key",{"_index":3373,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2289,11]]}},"component":{}}],["kaggle_usernam",{"_index":3372,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2267,16]]}},"component":{}}],["kb",{"_index":3983,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[41325,2],[42295,2],[42604,2]]}},"component":{}}],["keep",{"_index":787,"title":{},"name":{},"text":{"/fastload.html":{"position":[[3577,5]]},"/sto.html":{"position":[[2940,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[26271,4]]},"/mule-teradata-connector/reference.html":{"position":[[41184,4],[42482,4]]},"/query-service/send-queries-using-rest-api.html":{"position":[[975,4]]},"/regulus/getting-started-with-regulus.html":{"position":[[3914,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[9838,4]]}},"component":{}}],["kept",{"_index":3975,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[40248,4],[41511,4]]}},"component":{}}],["kerbero",{"_index":200,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[4344,8]]},"/geojson-to-vantage.html":{"position":[[2151,11],[7799,11]]}},"component":{}}],["kernel",{"_index":1165,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[2869,7]]},"/getting.started.vbox.html":{"position":[[1489,6],[1907,7]]},"/getting.started.vmware.html":{"position":[[1978,7]]},"/jupyter.html":{"position":[[656,6],[1121,6],[4916,7],[5117,6],[5156,6],[6699,7],[6936,7]]},"/local.jupyter.hub.html":{"position":[[729,7],[959,7],[3234,6],[3615,7],[4211,6],[4318,6],[4884,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[365,6],[1099,6],[2125,6],[2283,6],[3830,6],[4110,6],[4217,6],[4537,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[370,6],[1019,6],[1289,6],[1719,6],[1938,6],[2184,7],[2900,6],[3371,6]]},"/regulus/regulus-magic-reference.html":{"position":[[270,6],[5059,7]]}},"component":{}}],["kernel.json",{"_index":1448,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[4428,11]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[4327,11]]}},"component":{}}],["kernel_nam",{"_index":2845,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2733,14],[2780,14]]}},"component":{}}],["kernel_name=\"teradatasql",{"_index":2843,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2668,25]]}},"component":{}}],["kernelspec",{"_index":1455,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[4943,10]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2331,10],[4596,10]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[3438,10]]}},"component":{}}],["kevin",{"_index":11,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[8,5]]}},"component":{}}],["key",{"_index":433,"title":{"/mule-teradata-connector/reference.html#KeyStore":{"position":[[0,3]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[4806,5]]},"/create-parquet-files-in-object-storage.html":{"position":[[2581,3],[2741,4],[3305,3]]},"/dbt.html":{"position":[[3629,4]]},"/fastload.html":{"position":[[3629,3]]},"/getting.started.utm.html":{"position":[[5239,4]]},"/getting.started.vbox.html":{"position":[[4065,4]]},"/getting.started.vmware.html":{"position":[[4348,4]]},"/nos.html":{"position":[[7325,3],[7362,5]]},"/run-vantage-express-on-aws.html":{"position":[[4737,3],[4804,3],[4815,3],[4832,3],[4921,4],[4951,3],[5526,3],[5543,3]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[897,3],[985,3],[1020,4],[1050,3],[1368,3],[1389,3],[1759,3],[1780,3],[2137,3],[2158,3]]},"/segment.html":{"position":[[1980,3],[2032,3]]},"/sto.html":{"position":[[6120,3]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1820,3],[4773,3]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[9276,3],[9421,3],[21060,4],[21823,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[8718,4],[12862,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[3583,3]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1273,3],[2979,3],[4084,3]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7127,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1071,3],[1130,3],[2504,3],[2552,3],[2621,3],[2697,3],[2757,3]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2203,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2830,4],[3010,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2867,4],[3047,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[5516,3],[7711,4]]},"/mule-teradata-connector/reference.html":{"position":[[3370,4],[5756,4],[7997,4],[11237,4],[16704,4],[16974,4],[17025,4],[17076,4],[17171,4],[17223,4],[17314,4],[19763,4],[20630,4],[22885,4],[25860,4],[26177,4],[26717,4],[26768,4],[26819,4],[26914,4],[26967,4],[27058,4],[27682,4],[29446,4],[29721,4],[29772,4],[29822,4],[29917,4],[29969,4],[30060,4],[34370,4],[36650,3],[36660,3],[37382,3],[37451,3],[37483,5],[37531,3],[37582,3],[37623,3],[37684,4],[37738,3],[37792,3],[39582,3],[40106,4],[42709,3]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[1476,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1474,3]]},"/regulus/getting-started-with-regulus.html":{"position":[[619,3],[888,4],[1225,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[4453,3],[4970,4],[5682,3],[5709,4],[5819,3],[7674,3],[7712,3],[7770,3]]},"/regulus/regulus-magic-reference.html":{"position":[[538,3],[2278,5],[2385,4],[2404,3]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[746,4],[1050,4],[1621,4],[1786,4],[5847,3],[6185,3]]}},"component":{}}],["key.pem",{"_index":2182,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[4882,7],[5012,7],[5878,7]]}},"component":{}}],["key/valu",{"_index":2519,"title":{},"name":{},"text":{"/sto.html":{"position":[[6061,9]]}},"component":{}}],["key=name,value=vantag",{"_index":2174,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[3541,23],[3672,23],[3827,23],[4186,23],[4351,23],[4512,23],[4641,23]]}},"component":{}}],["keyboardputscancod",{"_index":2255,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[8323,19]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5103,19]]},"/vantage.express.gcp.html":{"position":[[4130,19]]}},"component":{}}],["keymateri",{"_index":2181,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[4844,13]]}},"component":{}}],["kfp",{"_index":3360,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1310,3]]}},"component":{}}],["kfp.v2",{"_index":3518,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[9379,6]]}},"component":{}}],["kfp.v2.dsl",{"_index":3419,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[4270,10],[4293,10]]}},"component":{}}],["killmode=process",{"_index":2284,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[10566,16]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7346,16]]},"/vantage.express.gcp.html":{"position":[[6373,16]]}},"component":{}}],["km",{"_index":2914,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[8196,3],[8239,3]]}},"component":{}}],["knime",{"_index":4190,"title":{"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[32,5]]},"/other-integrations/integrate-teradata-vantage-with-knime.html#_about_knime_analytics_platform":{"position":[[6,5]]}},"name":{"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[32,5]]}},"text":{"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[108,5],[134,5],[434,5],[463,5],[736,6],[1113,5],[1751,5]]}},"component":{}}],["know",{"_index":802,"title":{},"name":{},"text":{"/fastload.html":{"position":[[4071,4]]},"/geojson-to-vantage.html":{"position":[[10539,4]]},"/nos.html":{"position":[[3143,4]]},"/sto.html":{"position":[[1226,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[421,4]]}},"component":{}}],["krutik",{"_index":2420,"title":{},"name":{},"text":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[8,6]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[8,6]]},"/teradatasql.html":{"position":[[8,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[8,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[8,6]]}},"component":{}}],["kubeflow",{"_index":3361,"title":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#The-first-pipeline-to-train-and-deploy-a-model-using-Kubeflow":{"position":[[53,9]]}},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1519,9],[3686,8],[3752,8],[4209,8],[6231,8]]}},"component":{}}],["kubernet",{"_index":1414,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[481,11]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[5001,10]]}},"component":{}}],["kwarg",{"_index":3663,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4228,10],[4610,10],[4988,10]]}},"component":{}}],["kzxadtqp",{"_index":4325,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[7379,8]]}},"component":{}}],["l",{"_index":996,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4911,1]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4597,1]]}},"component":{}}],["la",{"_index":3601,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[25,2]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[25,2]]}},"component":{}}],["lab",{"_index":1329,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[1570,3],[1775,3],[2172,3],[2207,3]]},"/local.jupyter.hub.html":{"position":[[4918,3],[5552,3]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[4571,3]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1893,4],[8361,4]]}},"component":{}}],["lab/locations/u",{"_index":3109,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[5859,16],[5983,16],[6104,16],[6225,16],[6345,16],[6459,16],[6675,16],[6794,16],[6948,16],[7073,16],[7308,16],[7424,16],[7590,16],[7732,16],[8001,16],[8117,16]]}},"component":{}}],["lab3",{"_index":2860,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[3964,5]]}},"component":{}}],["label",{"_index":3242,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[6579,7],[6684,8],[6784,6]]}},"component":{}}],["labextens",{"_index":1460,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[5212,12],[5276,12],[5341,12],[5411,12],[5485,12]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1509,14]]}},"component":{}}],["lake",{"_index":528,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[1162,4]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[211,4],[1035,4],[3017,5],[3147,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[762,4],[1196,6],[4581,4],[4611,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[857,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3262,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[836,5],[5017,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[279,5]]}},"component":{}}],["lambda",{"_index":2871,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[814,6]]}},"component":{}}],["land",{"_index":689,"title":{},"name":{},"text":{"/dbt.html":{"position":[[4476,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[7833,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7935,7]]}},"component":{}}],["lang",{"_index":3656,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[5249,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[7300,5]]}},"component":{}}],["languag",{"_index":744,"title":{"/sto.html#_supported_languages":{"position":[[10,9]]}},"name":{},"text":{"/fastload.html":{"position":[[2025,9],[2039,8]]},"/sto.html":{"position":[[268,8],[2060,9]]},"/mule-teradata-connector/index.html":{"position":[[1249,8]]},"/mule-teradata-connector/release-notes.html":{"position":[[849,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1085,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2157,9],[2171,8]]}},"component":{}}],["laptop",{"_index":1307,"title":{},"name":{},"text":{"/jdbc.html":{"position":[[565,7]]}},"component":{}}],["larg",{"_index":413,"title":{"/fastload.html":{"position":[[4,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[4,5]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[4292,5]]},"/fastload.html":{"position":[[252,5],[347,5],[1601,5],[7396,5]]},"/geojson-to-vantage.html":{"position":[[984,5],[1258,5],[5059,5]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1653,5]]},"/sto.html":{"position":[[2512,5]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[727,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[17408,6]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[7133,5]]},"/regulus/getting-started-with-regulus.html":{"position":[[1372,6]]},"/regulus/regulus-magic-reference.html":{"position":[[3324,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[84,5],[206,5],[1686,5],[8941,5]]}},"component":{}}],["last",{"_index":15,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[37,4]]},"/advanced-dbt.html":{"position":[[23,4]]},"/create-parquet-files-in-object-storage.html":{"position":[[18,4]]},"/dbt.html":{"position":[[25,4]]},"/fastload.html":{"position":[[25,4],[3859,4]]},"/geojson-to-vantage.html":{"position":[[21,4]]},"/getting.started.utm.html":{"position":[[25,4]]},"/getting.started.vbox.html":{"position":[[25,4]]},"/getting.started.vmware.html":{"position":[[25,4]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[28,4]]},"/jdbc.html":{"position":[[25,4]]},"/jupyter.html":{"position":[[25,4]]},"/local.jupyter.hub.html":{"position":[[22,4]]},"/ml.html":{"position":[[25,4]]},"/mule.jdbc.example.html":{"position":[[25,4]]},"/nos.html":{"position":[[25,4]]},"/odbc.ubuntu.html":{"position":[[25,4]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[21,4]]},"/run-vantage-express-on-aws.html":{"position":[[25,4],[6602,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[25,4],[3382,4]]},"/segment.html":{"position":[[25,4]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[22,4]]},"/sto.html":{"position":[[25,4],[3910,4]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[22,4]]},"/teradatasql.html":{"position":[[22,4]]},"/vantage.express.gcp.html":{"position":[[25,4],[2409,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[19,4],[8427,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[22,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[22,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[21,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[21,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[21,4],[5728,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[19,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[22,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[22,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[7686,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[34,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[34,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[70,4],[4575,4]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[19,4]]},"/mule-teradata-connector/index.html":{"position":[[19,4]]},"/mule-teradata-connector/reference.html":{"position":[[19,4],[37891,4]]},"/mule-teradata-connector/release-notes.html":{"position":[[19,4]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[25,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[35,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[23,4]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[18,4]]},"/query-service/send-queries-using-rest-api.html":{"position":[[21,4]]},"/regulus/getting-started-with-regulus.html":{"position":[[24,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[24,4]]},"/regulus/regulus-magic-reference.html":{"position":[[24,4]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[24,4],[5314,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[25,4]]}},"component":{}}],["last_activity_d",{"_index":2986,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[12627,18],[17343,18],[19147,18],[21695,18],[23129,18]]}},"component":{}}],["last_nam",{"_index":1657,"title":{},"name":{},"text":{"/mule.jdbc.example.html":{"position":[[1159,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[23804,10]]}},"component":{}}],["last_updated_timestamp",{"_index":3808,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[8743,23],[8842,23],[8942,23],[9039,23],[9142,23]]}},"component":{}}],["lastaltertimestamp",{"_index":3331,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6190,18]]}},"component":{}}],["lastnam",{"_index":1219,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[5545,8],[5778,9],[6033,8]]},"/getting.started.vbox.html":{"position":[[4371,8],[4604,9],[4859,8]]},"/getting.started.vmware.html":{"position":[[4654,8],[4887,9],[5142,8]]},"/mule.jdbc.example.html":{"position":[[888,8],[899,9],[2323,8],[2547,9],[3338,11]]},"/run-vantage-express-on-aws.html":{"position":[[9429,8],[9662,9],[9917,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6209,8],[6442,9],[6697,8]]},"/vantage.express.gcp.html":{"position":[[5236,8],[5469,9],[5724,8]]}},"component":{}}],["latenc",{"_index":3704,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[940,8],[5465,7]]}},"component":{}}],["later",{"_index":764,"title":{},"name":{},"text":{"/fastload.html":{"position":[[2725,6]]},"/jupyter.html":{"position":[[1142,7]]},"/ml.html":{"position":[[3512,5]]},"/teradatasql.html":{"position":[[188,6],[324,6],[518,5]]},"/mule-teradata-connector/index.html":{"position":[[653,5]]},"/mule-teradata-connector/release-notes.html":{"position":[[1046,5],[1076,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[5109,5]]}},"component":{}}],["latest",{"_index":130,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2626,6]]},"/advanced-dbt.html":{"position":[[4235,6],[5779,6]]},"/getting.started.utm.html":{"position":[[1225,6],[1351,6]]},"/getting.started.vbox.html":{"position":[[913,6]]},"/getting.started.vmware.html":{"position":[[910,6]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[419,6]]},"/local.jupyter.hub.html":{"position":[[2100,6]]},"/run-vantage-express-on-aws.html":{"position":[[5042,6],[6275,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3055,6]]},"/vantage.express.gcp.html":{"position":[[2082,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2759,6],[2791,6],[2807,6],[4531,6]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[637,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[3632,7]]}},"component":{}}],["latin",{"_index":773,"title":{},"name":{},"text":{"/fastload.html":{"position":[[3012,5],[3097,5],[3162,5],[3223,5],[5355,5],[5440,5],[5505,5],[5566,5]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3593,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13578,5],[14181,5],[14244,5],[14295,5],[14347,5],[14405,5],[14459,5],[20269,5],[20334,5],[20396,5],[20461,5],[20524,5],[20588,5],[20655,5],[20721,5],[20777,5],[20831,5],[20897,5],[20961,5],[21026,5],[21094,5],[21161,5],[21220,5],[21283,5],[21363,5],[21420,5],[21474,5],[21538,5],[21606,5],[21671,5]]},"/regulus/getting-started-with-regulus.html":{"position":[[2237,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[4495,5],[4580,5],[4645,5],[4706,5]]}},"component":{}}],["launch",{"_index":1199,"title":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_launch_airbyte_open_source":{"position":[[0,6]]}},"name":{},"text":{"/getting.started.utm.html":{"position":[[4360,6]]},"/getting.started.vbox.html":{"position":[[3398,6]]},"/getting.started.vmware.html":{"position":[[3469,6]]},"/run-vantage-express-on-aws.html":{"position":[[1690,6]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[4454,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1811,6],[4592,6],[5369,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1979,8],[2033,8]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1378,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[6168,6]]}},"component":{}}],["layer",{"_index":2563,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2160,5]]}},"component":{}}],["layout",{"_index":3259,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[3964,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[4970,7]]}},"component":{}}],["lazili",{"_index":3907,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[24002,6]]}},"component":{}}],["ldap",{"_index":187,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3849,4],[3975,4],[4038,4],[4177,4]]},"/geojson-to-vantage.html":{"position":[[2145,5],[7793,5]]}},"component":{}}],["lead",{"_index":2498,"title":{},"name":{},"text":{"/sto.html":{"position":[[5029,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[867,4],[23316,5],[23661,4],[23705,4],[24944,4],[25843,4]]},"/mule-teradata-connector/reference.html":{"position":[[17886,4]]}},"component":{}}],["lead(",{"_index":2870,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[391,7],[975,7]]}},"component":{}}],["leakag",{"_index":4133,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1180,7]]}},"component":{}}],["learn",{"_index":542,"title":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[40,8]]}},"name":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[40,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[27,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[27,8]]}},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[1706,5],[4056,7]]},"/geojson-to-vantage.html":{"position":[[399,5]]},"/jupyter.html":{"position":[[6809,7]]},"/ml.html":{"position":[[125,8],[8867,7]]},"/mule.jdbc.example.html":{"position":[[3524,5]]},"/nos.html":{"position":[[8433,7]]},"/sto.html":{"position":[[6486,7],[7491,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[3630,8],[3885,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[283,8],[1618,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[67,8],[480,8],[1826,8],[3377,8],[3424,8],[3746,8],[4790,8],[7015,5],[7060,8],[7110,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[577,6],[3812,6],[6125,5],[6206,7],[10490,5],[11548,8]]},"/jupyter-demos/index.html":{"position":[[288,5],[911,5],[1436,5],[1825,5],[2234,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4892,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[6897,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4220,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[994,8]]},"/regulus/getting-started-with-regulus.html":{"position":[[3960,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[9765,8]]}},"component":{}}],["learn','sklearn",{"_index":3445,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[6402,15]]}},"component":{}}],["learn==0.24.2",{"_index":3677,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[5458,13]]}},"component":{}}],["learnt",{"_index":2104,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10603,6]]}},"component":{}}],["leav",{"_index":1506,"title":{},"name":{},"text":{"/ml.html":{"position":[[2750,5],[2801,5]]},"/mule.jdbc.example.html":{"position":[[2882,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[5883,5],[24441,5]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3823,5],[4227,5],[5055,5],[5783,5]]}},"component":{}}],["left",{"_index":151,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3050,5]]},"/geojson-to-vantage.html":{"position":[[9668,4]]},"/jdbc.html":{"position":[[743,5]]},"/ml.html":{"position":[[6215,4],[6273,4]]},"/teradatasql.html":{"position":[[732,5]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3311,4],[4723,4],[5412,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3817,4]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[451,4]]}},"component":{}}],["legaci",{"_index":4199,"title":{},"name":{},"text":{"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1154,8],[1249,8]]}},"component":{}}],["length",{"_index":2692,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[9710,6],[21901,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9369,6]]}},"component":{}}],["less",{"_index":1787,"title":{},"name":{},"text":{"/nos.html":{"position":[[6628,4],[7151,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6876,4]]}},"component":{}}],["let",{"_index":2461,"title":{},"name":{},"text":{"/sto.html":{"position":[[1866,7]]}},"component":{}}],["let'",{"_index":3377,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2381,5],[10583,5]]}},"component":{}}],["let’",{"_index":546,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[1794,5],[3775,5]]},"/dbt.html":{"position":[[2523,5]]},"/fastload.html":{"position":[[1180,5],[1341,5],[2304,5],[2366,5]]},"/geojson-to-vantage.html":{"position":[[5880,5]]},"/getting.started.utm.html":{"position":[[5350,5],[5707,5],[5909,5]]},"/getting.started.vbox.html":{"position":[[4176,5],[4533,5],[4735,5]]},"/getting.started.vmware.html":{"position":[[4459,5],[4816,5],[5018,5]]},"/jupyter.html":{"position":[[4309,5]]},"/ml.html":{"position":[[1904,5],[3299,5],[3736,5],[7274,5],[7343,5],[8029,5]]},"/nos.html":{"position":[[739,5],[1101,5],[3243,5],[3282,5],[7806,5]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[799,5],[860,5],[3457,5],[4383,5],[6030,5],[7524,5],[7606,5],[7991,5]]},"/run-vantage-express-on-aws.html":{"position":[[9234,5],[9591,5],[9793,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6014,5],[6371,5],[6573,5]]},"/sto.html":{"position":[[859,5],[1113,5],[2772,5],[4038,5],[4235,5],[5396,5],[7061,5]]},"/vantage.express.gcp.html":{"position":[[5041,5],[5398,5],[5600,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[23322,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[569,5],[2446,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[606,5],[2483,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1539,5],[2071,5],[4458,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1034,5],[1216,5]]}},"component":{}}],["lev",{"_index":4476,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[5325,3]]}},"component":{}}],["level",{"_index":2462,"title":{},"name":{},"text":{"/sto.html":{"position":[[1931,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[5238,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9722,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[3817,6]]},"/mule-teradata-connector/reference.html":{"position":[[2074,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[5333,5]]}},"component":{}}],["leverag",{"_index":402,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3936,8]]},"/geojson-to-vantage.html":{"position":[[91,8]]},"/sto.html":{"position":[[579,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[223,10],[13684,8],[21853,8]]},"/regulus/install-regulus-docker-image.html":{"position":[[446,8]]}},"component":{}}],["librari",{"_index":1105,"title":{"/jupyter.html#_teradata_libraries":{"position":[[9,9]]},"/ml.html#_install_vantage_analytics_library":{"position":[[26,7]]}},"name":{},"text":{"/getting.started.utm.html":{"position":[[505,8]]},"/getting.started.vbox.html":{"position":[[505,8]]},"/getting.started.vmware.html":{"position":[[505,8]]},"/jupyter.html":{"position":[[624,9],[972,9],[1172,10],[1485,9],[2612,10],[3832,10],[4946,10],[5137,10],[6901,10]]},"/local.jupyter.hub.html":{"position":[[759,9],[991,10]]},"/ml.html":{"position":[[451,7],[835,7],[3918,7],[8941,7],[9107,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2756,7],[2808,7],[5255,9],[5313,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2197,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2350,8],[2419,10]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2294,7],[2367,10]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1600,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1637,9],[5323,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1091,7],[1504,7],[1733,8],[1768,7],[5243,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1406,7],[1482,7]]}},"component":{}}],["libraries.ipynb",{"_index":1354,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[2790,15]]}},"component":{}}],["licens",{"_index":1272,"title":{},"name":{},"text":{"/getting.started.vmware.html":{"position":[[1103,8],[1182,8]]},"/jupyter.html":{"position":[[5849,7]]},"/local.jupyter.hub.html":{"position":[[4601,7],[4780,7]]},"/run-vantage-express-on-aws.html":{"position":[[6342,7],[6384,7],[6509,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3122,7],[3164,7],[3289,7]]},"/vantage.express.gcp.html":{"position":[[2149,7],[2191,7],[2316,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[4408,8]]}},"component":{}}],["license.txt",{"_index":2814,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[4454,13]]}},"component":{}}],["life",{"_index":633,"title":{},"name":{},"text":{"/dbt.html":{"position":[[2159,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[9809,4]]}},"component":{}}],["lifecycl",{"_index":2820,"title":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_model_lifecycle_for_a_new_byom":{"position":[[6,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_model_lifecycle_for_a_new_git":{"position":[[6,9]]}},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[769,9],[901,9],[964,9],[1579,9],[4009,9],[4055,9],[4515,9],[4581,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[264,9],[4921,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[264,9],[6926,9]]}},"component":{}}],["lift",{"_index":3238,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[6222,4]]}},"component":{}}],["light",{"_index":4202,"title":{},"name":{},"text":{"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1615,5]]}},"component":{}}],["lightli",{"_index":866,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[587,7],[6654,7]]}},"component":{}}],["lightweight",{"_index":873,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[847,11]]},"/jupyter.html":{"position":[[5518,12]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1354,11]]}},"component":{}}],["likelihood",{"_index":3240,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[6525,10]]}},"component":{}}],["limit",{"_index":1000,"title":{"/segment.html#_limitations":{"position":[[0,11]]}},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[5188,8],[5350,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[221,7]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[951,7]]},"/sto.html":{"position":[[2320,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[5217,5]]},"/mule-teradata-connector/reference.html":{"position":[[4288,5],[4428,5],[6614,5],[6754,5],[8824,5],[8964,5],[10653,5],[10793,5],[12868,5],[13008,5],[14637,5],[14777,5],[16131,5],[16271,5],[19190,5],[19330,5],[22451,5],[25295,5],[25435,5],[28873,5],[29013,5],[32913,5],[33053,5],[34913,6],[40470,5],[41071,6],[41733,5],[42250,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2118,12]]}},"component":{}}],["line",{"_index":732,"title":{},"name":{},"text":{"/fastload.html":{"position":[[1555,4]]},"/geojson-to-vantage.html":{"position":[[214,5]]},"/nos.html":{"position":[[696,4]]},"/run-vantage-express-on-aws.html":{"position":[[753,4],[8765,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[400,4],[5545,4]]},"/segment.html":{"position":[[1173,4]]},"/sto.html":{"position":[[5001,4],[5280,4],[5288,5],[5327,4],[5335,5]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2624,4]]},"/vantage.express.gcp.html":{"position":[[348,4],[4572,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2842,4]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[4665,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1846,5]]},"/query-service/send-queries-using-rest-api.html":{"position":[[5483,4],[5513,4]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[183,4],[425,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1420,4]]}},"component":{}}],["line.strip",{"_index":2501,"title":{},"name":{},"text":{"/sto.html":{"position":[[5067,12]]}},"component":{}}],["lineag",{"_index":3287,"title":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_lineage_graph":{"position":[[0,7]]}},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7560,7]]}},"component":{}}],["linear",{"_index":1588,"title":{"/ml.html#_create_a_linear_regression_model":{"position":[[9,6]]},"/teradata-vantage-engine-architecture-and-concepts.html#_linear_growth_and_expandability":{"position":[[0,6]]}},"name":{},"text":{"/ml.html":{"position":[[6420,6],[6578,6],[8980,6]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2382,6],[4082,6],[6320,6]]}},"component":{}}],["linear_regression_demo",{"_index":1591,"title":{},"name":{},"text":{"/ml.html":{"position":[[6758,23],[7534,23]]}},"component":{}}],["linear_regression_scor",{"_index":1604,"title":{},"name":{},"text":{"/ml.html":{"position":[[7586,25],[7907,23],[8074,23]]}},"component":{}}],["linearli",{"_index":2572,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3893,8]]}},"component":{}}],["linearscor",{"_index":1602,"title":{},"name":{},"text":{"/ml.html":{"position":[[7447,11]]}},"component":{}}],["link",{"_index":235,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[5612,5],[5651,5],[5801,5]]},"/run-vantage-express-on-aws.html":{"position":[[6291,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3071,5]]},"/sto.html":{"position":[[3531,4],[5753,4],[6734,4]]},"/vantage.express.gcp.html":{"position":[[2098,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8543,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2433,5],[2490,5],[2554,5],[2614,5],[2678,5],[4828,5],[4890,5],[4959,5],[5024,5],[5093,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[7929,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[2893,5],[2998,4],[3044,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[9802,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[3897,5]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[851,4]]},"/regulus/getting-started-with-regulus.html":{"position":[[3954,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[9878,5]]}},"component":{}}],["link:https://docs.teradata.com/search/documents?query=modelops&sort=last_update&virtu",{"_index":3654,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[5136,87]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[7187,87]]}},"component":{}}],["linux",{"_index":312,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[1330,6]]},"/fastload.html":{"position":[[760,5],[805,5]]},"/getting.started.utm.html":{"position":[[2776,5],[2863,5]]},"/getting.started.vbox.html":{"position":[[648,5],[1814,5],[1901,5]]},"/getting.started.vmware.html":{"position":[[645,5],[1885,5],[1972,5]]},"/local.jupyter.hub.html":{"position":[[3454,5],[3492,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[1202,5]]},"/segment.html":{"position":[[1218,6]]},"/teradatasql.html":{"position":[[335,6],[346,6],[368,5]]},"/vantage.express.gcp.html":{"position":[[770,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1873,5],[3411,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1119,5],[2438,5],[3947,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2897,5],[3172,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1096,5],[10587,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[614,5],[659,5]]}},"component":{}}],["list",{"_index":153,"title":{"/query-service/send-queries-using-rest-api.html#_get_a_list_of_active_or_queued_queries":{"position":[[6,4]]},"/regulus/using-regulus-workspace-cli.html#_workspaces_user_list":{"position":[[16,4]]},"/regulus/using-regulus-workspace-cli.html#_project_list":{"position":[[8,4]]},"/regulus/using-regulus-workspace-cli.html#_project_user_list":{"position":[[13,4]]},"/regulus/using-regulus-workspace-cli.html#_project_engine_list":{"position":[[15,4]]},"/regulus/using-regulus-workspace-cli.html#_project_auth_list":{"position":[[13,4]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3067,4]]},"/advanced-dbt.html":{"position":[[1196,6]]},"/fastload.html":{"position":[[1933,4]]},"/geojson-to-vantage.html":{"position":[[1625,4],[5657,4],[7144,4],[8085,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[605,4],[635,4]]},"/segment.html":{"position":[[1600,4]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[121,5],[1497,4]]},"/vantage.express.gcp.html":{"position":[[690,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[6973,4],[21048,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[8379,5],[10732,4],[12850,4],[24901,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[13687,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6730,4],[6943,4]]},"/mule-teradata-connector/reference.html":{"position":[[3319,4],[3435,4],[5641,4],[5669,4],[7946,4],[8062,4],[17112,4],[17257,4],[26516,4],[26855,4],[27001,4],[29858,4],[30003,4],[36487,4],[36578,4]]},"/mule-teradata-connector/release-notes.html":{"position":[[442,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3414,4],[10134,4]]},"/query-service/send-queries-using-rest-api.html":{"position":[[10112,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[6215,4],[6502,4]]},"/regulus/regulus-magic-reference.html":{"position":[[1540,4],[1663,6],[1789,7],[2825,4],[3647,4],[3845,4],[4231,4],[4384,4],[5006,4]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1445,4],[1684,4],[1813,4],[1894,4],[2009,4],[2633,4],[2699,4],[2768,4],[2807,4],[2922,4],[3151,4],[3244,4],[3335,4],[3450,4],[3745,4],[4187,4],[4837,4],[5137,4],[5382,4],[5497,4],[6259,4],[6346,4],[6445,4],[6560,4],[6968,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2028,4]]}},"component":{}}],["list_pric",{"_index":3002,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13968,10]]}},"component":{}}],["listen",{"_index":1652,"title":{},"name":{},"text":{"/mule.jdbc.example.html":{"position":[[598,7]]},"/segment.html":{"position":[[72,7],[1957,8],[2945,8],[2962,8],[3257,8],[3767,8]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1748,8]]},"/mule-teradata-connector/index.html":{"position":[[998,8]]},"/mule-teradata-connector/release-notes.html":{"position":[[598,8]]}},"component":{}}],["littl",{"_index":4208,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[1195,6]]}},"component":{}}],["ln",{"_index":4046,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4779,2]]}},"component":{}}],["load",{"_index":214,"title":{"/geojson-to-vantage.html#_option_1_load_a_geojson_document_into_vantage":{"position":[[10,4]]},"/geojson-to-vantage.html#_get_and_load_the_geojson_document":{"position":[[8,4]]},"/geojson-to-vantage.html#_load_the_geojson_document_in_vantage":{"position":[[0,4]]},"/geojson-to-vantage.html#_option_2_prepare_a_geojson_document_with_python_and_load_it_into_vantage":{"position":[[53,4]]},"/geojson-to-vantage.html#_get_and_load_the_geojson_document_2":{"position":[[8,4]]},"/geojson-to-vantage.html#_create_a_vantage_connection_and_load_our_file_in_a_staging_table":{"position":[[32,4]]},"/nos.html#_load_data_from_nos_into_vantage":{"position":[[0,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_load_data_from_blob_storage_into_vantage_optional":{"position":[[0,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_the_table_and_load_the_data_in_a_single_statement":{"position":[[21,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_the_table_and_load_the_data_in_multiple_statements":{"position":[[21,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html#_load_data":{"position":[[0,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_load_data":{"position":[[0,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[27,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_sample_data_loading":{"position":[[12,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[15,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Setting-up-Vantage-and-loading-data":{"position":[[23,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Load-training-data-to-Vantage":{"position":[[0,4]]}},"name":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[27,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[15,4]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[4890,4],[4988,4],[5165,5]]},"/advanced-dbt.html":{"position":[[1702,6],[1911,4],[2344,4],[2370,4],[4174,5],[4563,6],[6621,7]]},"/fastload.html":{"position":[[342,4],[464,4],[3366,7],[3651,7],[4719,7],[5002,8],[5656,7],[6325,8],[6740,4],[7435,6]]},"/geojson-to-vantage.html":{"position":[[465,4],[631,4],[976,4],[1212,4],[1568,4],[2417,7],[2664,4],[5029,4],[5566,4],[6238,7],[6716,4],[6909,4],[6942,4],[7356,7],[8065,7],[8287,4],[9540,6]]},"/jdbc.html":{"position":[[755,4]]},"/jupyter.html":{"position":[[1603,4],[3921,4]]},"/local.jupyter.hub.html":{"position":[[1553,4],[1576,4],[1723,6]]},"/ml.html":{"position":[[891,4],[3291,7]]},"/segment.html":{"position":[[5292,4]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[413,4],[591,4],[1750,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2497,7],[3105,4],[8720,7],[14378,7],[14466,4],[14554,4],[14864,4],[17236,4],[17312,6],[17356,7],[18576,4],[22446,7]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[1483,4],[2033,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1571,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[137,4],[182,4],[365,6],[433,6],[883,6],[958,4],[3349,6],[4180,6],[4296,4],[4373,8],[4466,8],[4496,4],[4540,6],[8033,6],[8139,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[118,4],[209,4],[7376,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[7701,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[988,4]]},"/mule-teradata-connector/index.html":{"position":[[250,4]]},"/mule-teradata-connector/reference.html":{"position":[[250,4],[14031,5],[17843,7],[18005,6],[18215,6],[21377,6],[23995,6],[24229,6]]},"/mule-teradata-connector/release-notes.html":{"position":[[250,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[316,4],[553,4],[9438,6],[9734,4],[10793,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[519,6],[733,4],[4570,4]]},"/regulus/getting-started-with-regulus.html":{"position":[[2280,4],[2927,4],[3422,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[201,4],[318,4],[1450,5],[1578,7],[1622,4],[1641,4],[1726,4],[2085,4],[2329,4],[2956,4],[3088,4],[3692,5],[4899,4],[5238,7],[6600,4],[8285,4],[8980,6]]}},"component":{}}],["load.txt",{"_index":4535,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3587,9],[5325,8]]}},"component":{}}],["load/unload",{"_index":3246,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[7266,11]]}},"component":{}}],["load_ext",{"_index":1375,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[3975,9]]}},"component":{}}],["loaderrortable1",{"_index":4529,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3417,15],[4285,16]]}},"component":{}}],["loaderrortable2",{"_index":4531,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3456,15],[4329,16]]}},"component":{}}],["loadlogt",{"_index":4527,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3381,12],[4244,13]]}},"component":{}}],["loadtargett",{"_index":4533,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3495,15],[4373,16],[4419,16],[4962,16]]}},"component":{}}],["lob",{"_index":3904,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[20643,4]]}},"component":{}}],["local",{"_index":727,"title":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_ingesting_data_from_local_files":{"position":[[20,5]]}},"name":{},"text":{"/fastload.html":{"position":[[1332,8],[2433,8]]},"/getting.started.utm.html":{"position":[[139,5],[1135,5],[6427,7]]},"/getting.started.vbox.html":{"position":[[139,5],[6023,7]]},"/getting.started.vmware.html":{"position":[[139,5],[5536,7]]},"/jupyter.html":{"position":[[2999,5],[3040,5],[4675,5],[5653,7],[5778,8]]},"/local.jupyter.hub.html":{"position":[[1094,5],[1228,5],[5730,6]]},"/ml.html":{"position":[[734,5],[1007,5],[1098,8]]},"/run-vantage-express-on-aws.html":{"position":[[606,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[264,7]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[606,5]]},"/sto.html":{"position":[[2807,5],[5490,5]]},"/vantage.express.gcp.html":{"position":[[270,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[8745,5]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2960,5]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[663,8],[1531,5],[6135,5],[7523,8]]},"/jupyter-demos/index.html":{"position":[[445,5],[1084,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2911,5],[5775,5]]},"/mule-teradata-connector/reference.html":{"position":[[31971,5],[32060,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1424,8],[1500,8],[4158,5]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[450,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1557,8],[1979,6],[2615,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[2360,5]]},"/regulus/regulus-magic-reference.html":{"position":[[2525,5],[2539,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1207,8],[2785,5]]}},"component":{}}],["local.jupyter.hub",{"_index":1406,"title":{},"name":{"/local.jupyter.hub.html":{"position":[[0,17]]}},"text":{},"component":{}}],["localfile)).upload_fileobj(trainfil",{"_index":3162,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3245,37]]}},"component":{}}],["localhost",{"_index":754,"title":{},"name":{},"text":{"/fastload.html":{"position":[[2454,9]]},"/getting.started.utm.html":{"position":[[4592,9]]},"/getting.started.vbox.html":{"position":[[3630,9]]},"/getting.started.vmware.html":{"position":[[3701,9]]},"/jdbc.html":{"position":[[498,9]]},"/ml.html":{"position":[[2698,9]]}},"component":{}}],["localhost/dbc",{"_index":2263,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[9014,13],[11197,13]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5794,13],[7977,13]]},"/vantage.express.gcp.html":{"position":[[4821,13],[7004,13]]}},"component":{}}],["localhost/dbc,dbc",{"_index":758,"title":{},"name":{},"text":{"/fastload.html":{"position":[[2521,18],[5152,18]]}},"component":{}}],["locat",{"_index":503,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[211,7],[3451,8],[3568,8]]},"/dbt.html":{"position":[[2361,7]]},"/fastload.html":{"position":[[4564,8]]},"/ml.html":{"position":[[1783,8]]},"/nos.html":{"position":[[2259,8],[4197,8]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1077,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[610,9],[640,9]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[4977,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2135,7],[3492,8],[4076,8],[9628,8],[9752,8],[9914,8],[9974,8],[10275,8],[10334,8],[10577,8],[10599,8],[11053,8],[13784,8],[21112,8],[21363,8],[21514,8],[22109,8],[22306,9],[24654,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[5992,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2471,7],[9281,8],[9414,8],[9615,8],[9698,8],[9867,8],[10286,8],[10308,8],[11033,8],[12914,8],[13029,8],[19241,8],[23935,8]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[3842,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[4107,8],[4953,8],[4987,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1044,9]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1983,7],[3192,7],[4202,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[4297,8],[4399,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[5571,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1316,7]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1058,8],[4834,8]]},"/mule-teradata-connector/reference.html":{"position":[[14009,8],[36806,8],[37278,8]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8618,9]]},"/regulus/getting-started-with-regulus.html":{"position":[[2446,6],[3087,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[2276,8],[2366,8],[2385,8],[4100,7],[6115,9],[6156,8],[9275,7]]}},"component":{}}],["location('/s3/.s3.amazonaws.com/parquet_file_on_nos.parquet",{"_index":581,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2815,61]]}},"component":{}}],["location('/s3/s3.amazonaws.com/ir",{"_index":831,"title":{},"name":{},"text":{"/fastload.html":{"position":[[6673,34]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[8218,34]]}},"component":{}}],["location('/s3/td",{"_index":1759,"title":{},"name":{},"text":{"/nos.html":{"position":[[4097,16],[7527,16]]}},"component":{}}],["location('your",{"_index":1797,"title":{},"name":{},"text":{"/nos.html":{"position":[[8034,14]]}},"component":{}}],["location(char(120",{"_index":2783,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[21999,20]]}},"component":{}}],["location='/s3/no",{"_index":1846,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[967,17],[4067,17]]}},"component":{}}],["location='/s3/td",{"_index":1684,"title":{},"name":{},"text":{"/nos.html":{"position":[[1235,16],[2065,16],[3411,16],[6979,16]]}},"component":{}}],["location…payload",{"_index":2696,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[10208,16]]}},"component":{}}],["lock",{"_index":1084,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[10207,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2751,4]]}},"component":{}}],["log",{"_index":751,"title":{"/mule-teradata-connector/examples-configuration.html#view-app-log":{"position":[[13,3]]}},"name":{},"text":{"/fastload.html":{"position":[[2372,3],[2557,6],[5045,7]]},"/jupyter.html":{"position":[[2086,4],[6061,4]]},"/local.jupyter.hub.html":{"position":[[2276,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[6422,3]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1566,3],[1760,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[10335,4]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[460,3],[516,4],[4484,3],[4679,3],[4725,3],[4766,3],[4815,3]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2301,6],[5716,3],[6794,3],[10482,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[4664,3],[5321,3],[5342,8],[7529,3]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2443,3],[5391,4],[5560,3],[5685,4],[5870,3],[6650,3],[6781,3]]}},"component":{}}],["log4j2.xml",{"_index":3843,"title":{},"name":{},"text":{"/mule-teradata-connector/examples-configuration.html":{"position":[[4775,13]]}},"component":{}}],["log_mech",{"_index":3720,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3023,9],[5887,9]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[4281,9]]}},"component":{}}],["loggingon",{"_index":4343,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[8553,12]]}},"component":{}}],["logic",{"_index":1054,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[8857,5]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[7405,5]]},"/sto.html":{"position":[[96,5],[181,5],[251,5],[380,5],[1746,5],[2042,6],[2501,5],[7625,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4745,5],[5123,5]]}},"component":{}}],["login",{"_index":179,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3628,5]]},"/geojson-to-vantage.html":{"position":[[2117,5],[7765,5]]},"/getting.started.utm.html":{"position":[[2925,5],[3167,5]]},"/getting.started.vbox.html":{"position":[[1963,5],[2205,5]]},"/getting.started.vmware.html":{"position":[[2034,5],[2276,5]]},"/run-vantage-express-on-aws.html":{"position":[[11131,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7911,5]]},"/vantage.express.gcp.html":{"position":[[6938,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8966,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[3783,5],[3893,5],[5630,5],[6368,5],[8622,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2562,5],[2611,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1974,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2323,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2360,5]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1378,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[7492,6]]}},"component":{}}],["logmech",{"_index":370,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3256,8]]},"/dbt.html":{"position":[[1434,8]]},"/geojson-to-vantage.html":{"position":[[2172,7],[7820,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[8124,11]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[4447,11]]}},"component":{}}],["logoff",{"_index":826,"title":{},"name":{},"text":{"/fastload.html":{"position":[[5095,7],[6334,7]]}},"component":{}}],["logon",{"_index":757,"title":{},"name":{},"text":{"/fastload.html":{"position":[[2515,5],[5146,5]]},"/getting.started.utm.html":{"position":[[3742,6]]},"/getting.started.vbox.html":{"position":[[2780,6]]},"/getting.started.vmware.html":{"position":[[2851,6]]},"/run-vantage-express-on-aws.html":{"position":[[8530,6],[9007,6],[11190,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5310,6],[5787,6],[7970,6]]},"/vantage.express.gcp.html":{"position":[[4337,6],[4814,6],[6997,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2109,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1135,5],[1750,5],[3248,5]]}},"component":{}}],["logrot",{"_index":4027,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2814,9],[2833,9]]}},"component":{}}],["long",{"_index":4007,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[758,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[4500,4]]}},"component":{}}],["longer",{"_index":3056,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[26368,6]]}},"component":{}}],["longnvarchar",{"_index":3970,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[39976,12]]}},"component":{}}],["longvarbinari",{"_index":3962,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[39865,13]]}},"component":{}}],["longvarchar",{"_index":3960,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[39816,11]]}},"component":{}}],["look",{"_index":239,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[5779,4]]},"/create-parquet-files-in-object-storage.html":{"position":[[2332,4],[3913,4]]},"/fastload.html":{"position":[[5134,5]]},"/geojson-to-vantage.html":{"position":[[6780,4]]},"/getting.started.utm.html":{"position":[[1157,4],[2681,4]]},"/ml.html":{"position":[[8042,4]]},"/nos.html":{"position":[[1120,4],[5135,5],[5427,5]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[873,4],[7534,4]]},"/sto.html":{"position":[[3454,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11085,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[6234,7],[6333,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1845,5]]},"/jupyter-demos/index.html":{"position":[[2360,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2458,5]]},"/query-service/send-queries-using-rest-api.html":{"position":[[214,7]]},"/regulus/regulus-magic-reference.html":{"position":[[3953,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[5401,4]]}},"component":{}}],["lookup",{"_index":3766,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[5473,6]]}},"component":{}}],["lost",{"_index":2828,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1878,4]]}},"component":{}}],["lot",{"_index":1326,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[1357,3],[5230,3],[7039,3]]},"/sto.html":{"position":[[1770,3],[3993,3]]}},"component":{}}],["low",{"_index":2640,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1635,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1837,3]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1296,3]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[936,3],[5461,3]]}},"component":{}}],["lower",{"_index":3979,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[40673,5],[41032,5],[41895,5],[42211,5]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1451,5]]}},"component":{}}],["lowest",{"_index":1100,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[227,6]]},"/getting.started.vbox.html":{"position":[[227,6]]},"/getting.started.vmware.html":{"position":[[227,6]]}},"component":{}}],["ls",{"_index":3365,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1647,2]]}},"component":{}}],["lstat",{"_index":3392,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2812,8],[3500,6],[7276,9]]}},"component":{}}],["lts,size=70,type=pd",{"_index":2616,"title":{},"name":{},"text":{"/vantage.express.gcp.html":{"position":[[1009,19],[1297,19],[1585,19]]}},"component":{}}],["m",{"_index":305,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[1218,1]]},"/dbt.html":{"position":[[715,1]]},"/jupyter.html":{"position":[[2836,1],[3873,1]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1321,1]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1174,1],[1247,1]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6550,2]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4694,2]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2244,1]]}},"component":{}}],["m1",{"_index":1133,"title":{},"name":{"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[31,2]]}},"text":{"/getting.started.utm.html":{"position":[[1619,2]]}},"component":{}}],["m1/2",{"_index":1110,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[610,4],[701,4]]}},"component":{}}],["m1/m2",{"_index":1119,"title":{"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[41,5]]}},"name":{},"text":{"/getting.started.utm.html":{"position":[[828,5]]},"/getting.started.vbox.html":{"position":[[680,5]]},"/getting.started.vmware.html":{"position":[[677,5]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[162,5],[744,5],[1097,6]]}},"component":{}}],["m2",{"_index":1282,"title":{},"name":{"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[34,2]]}},"text":{},"component":{}}],["mac",{"_index":106,"title":{"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[37,3]]}},"name":{"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[27,3]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2019,5]]},"/advanced-dbt.html":{"position":[[1325,4]]},"/getting.started.utm.html":{"position":[[581,3],[1597,5],[1622,6]]},"/getting.started.vmware.html":{"position":[[1308,4]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[158,3],[241,3],[740,3],[1093,3]]},"/jupyter-demos/index.html":{"position":[[541,3]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1087,3]]}},"component":{}}],["machin",{"_index":109,"title":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[32,7]]}},"name":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[32,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[19,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[19,7]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2055,8]]},"/getting.started.utm.html":{"position":[[145,8],[1045,8],[1141,8]]},"/getting.started.vbox.html":{"position":[[145,8],[843,8],[1454,7]]},"/getting.started.vmware.html":{"position":[[145,8],[840,8]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[168,9],[750,9]]},"/jdbc.html":{"position":[[625,8]]},"/jupyter.html":{"position":[[3005,7],[3151,8]]},"/ml.html":{"position":[[117,7],[740,7],[1013,8]]},"/mule.jdbc.example.html":{"position":[[3455,8]]},"/odbc.ubuntu.html":{"position":[[312,8]]},"/run-vantage-express-on-aws.html":{"position":[[282,7],[799,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[431,8]]},"/sto.html":{"position":[[2813,7],[5496,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3808,8]]},"/vantage.express.gcp.html":{"position":[[379,8],[879,7],[1167,7],[1455,7]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[275,7],[1610,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[59,7],[472,7],[1818,7],[3369,7],[3416,7],[3738,7],[4782,7],[5758,7],[7052,7],[7102,7]]},"/jupyter-demos/index.html":{"position":[[342,7],[451,7],[965,7],[1090,7],[1490,7],[1879,7],[2288,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[13,7],[747,7],[824,7],[1102,8],[1716,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[986,7]]}},"component":{}}],["maco",{"_index":709,"title":{},"name":{},"text":{"/fastload.html":{"position":[[753,6],[799,5]]},"/getting.started.vbox.html":{"position":[[669,6],[686,5]]},"/getting.started.vmware.html":{"position":[[666,6],[683,5],[1285,6]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[930,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[1196,5]]},"/segment.html":{"position":[[1225,7]]},"/teradatasql.html":{"position":[[301,5]]},"/vantage.express.gcp.html":{"position":[[764,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2891,5],[3166,5]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[977,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[607,6],[653,5]]}},"component":{}}],["macro",{"_index":275,"title":{"/advanced-dbt.html#_macro_assisted_assertions":{"position":[[0,5]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[359,6],[5636,5],[7269,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2559,6]]}},"component":{}}],["made",{"_index":3909,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[27073,4],[30075,4],[34644,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[4790,4]]}},"component":{}}],["magic",{"_index":1374,"title":{"/regulus/regulus-magic-reference.html":{"position":[[19,5]]}},"name":{"/regulus/regulus-magic-reference.html":{"position":[[8,5]]}},"text":{"/jupyter.html":{"position":[[3763,5],[4032,5],[4302,6]]},"/sto.html":{"position":[[1395,5]]},"/regulus/getting-started-with-regulus.html":{"position":[[678,5],[716,5],[2337,5],[2982,5],[3443,5],[3976,5],[4039,5]]},"/regulus/regulus-magic-reference.html":{"position":[[214,5],[277,5],[5014,6]]}},"component":{}}],["main",{"_index":144,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2924,4]]},"/getting.started.vbox.html":{"position":[[1680,4]]},"/sto.html":{"position":[[4157,4]]},"/mule-teradata-connector/reference.html":{"position":[[34604,4]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[625,4]]}},"component":{}}],["mainli",{"_index":4147,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2701,6]]}},"component":{}}],["maintain",{"_index":2467,"title":{},"name":{},"text":{"/sto.html":{"position":[[2378,8]]},"/mule-teradata-connector/reference.html":{"position":[[33347,9],[33435,9]]},"/regulus/install-regulus-docker-image.html":{"position":[[4555,10]]}},"component":{}}],["mainten",{"_index":4121,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[10758,11]]}},"component":{}}],["major",{"_index":2545,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[762,5],[6037,5]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[887,5]]}},"component":{}}],["make",{"_index":761,"title":{"/query-service/send-queries-using-rest-api.html#_make_a_simple_api_request_with_basic_options":{"position":[[0,4]]}},"name":{},"text":{"/fastload.html":{"position":[[2637,6]]},"/geojson-to-vantage.html":{"position":[[1713,4],[5732,4],[5943,4]]},"/getting.started.utm.html":{"position":[[2281,4],[2551,4]]},"/getting.started.vbox.html":{"position":[[5091,5]]},"/jupyter.html":{"position":[[4979,4]]},"/local.jupyter.hub.html":{"position":[[820,4]]},"/ml.html":{"position":[[1855,4]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2008,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1338,7],[8852,5],[10984,4],[13937,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2064,7],[5671,4],[8529,5],[10955,4],[11077,4],[15525,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[999,7],[2206,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[686,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4840,4],[6892,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1295,4],[2777,4],[3791,4],[4016,4],[4084,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1390,4],[2472,4],[4437,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[7839,4],[7917,4]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1397,4]]},"/mule-teradata-connector/index.html":{"position":[[1228,4]]},"/mule-teradata-connector/reference.html":{"position":[[17005,4],[17179,4],[17322,4],[26748,4],[26922,4],[29752,4],[29925,4],[31721,5],[36081,4]]},"/mule-teradata-connector/release-notes.html":{"position":[[828,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1106,4],[4634,6]]},"/query-service/send-queries-using-rest-api.html":{"position":[[400,4]]},"/regulus/getting-started-with-regulus.html":{"position":[[1769,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[1367,4],[1997,4],[2285,4],[7719,4]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[551,4]]}},"component":{}}],["manag",{"_index":228,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[5318,6]]},"/advanced-dbt.html":{"position":[[1058,6],[3162,6]]},"/dbt.html":{"position":[[647,6]]},"/geojson-to-vantage.html":{"position":[[10161,6],[10200,6]]},"/getting.started.vbox.html":{"position":[[1167,9]]},"/jupyter.html":{"position":[[1259,6],[6984,11]]},"/segment.html":{"position":[[494,10],[2059,8],[3277,7]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1231,6],[2756,10],[2845,10],[5884,10]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[886,7],[913,7],[959,7],[1046,7],[3728,7],[6283,7],[6377,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1031,7],[4729,8],[4752,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[521,7],[557,10]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[267,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1253,6],[1743,10],[1910,10]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[208,8],[1508,7]]},"/jupyter-demos/index.html":{"position":[[803,10],[1235,10],[1641,10],[1944,10],[2223,10]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2973,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[967,6],[2167,6]]},"/query-service/send-queries-using-rest-api.html":{"position":[[155,8]]},"/regulus/install-regulus-docker-image.html":{"position":[[538,11],[648,7],[1109,7],[4322,6]]},"/regulus/regulus-magic-reference.html":{"position":[[3976,7]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1260,6]]}},"component":{}}],["managed_infra",{"_index":3806,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[8704,13]]}},"component":{}}],["mandatori",{"_index":2098,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10391,9]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4426,9],[5913,9]]}},"component":{}}],["mani",{"_index":238,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[5743,4]]},"/dbt.html":{"position":[[3900,4]]},"/getting.started.utm.html":{"position":[[164,4]]},"/getting.started.vbox.html":{"position":[[164,4]]},"/getting.started.vmware.html":{"position":[[164,4]]},"/jupyter.html":{"position":[[4547,4],[5315,4]]},"/ml.html":{"position":[[1116,4]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[4402,4],[6070,4]]},"/segment.html":{"position":[[5159,4]]},"/sto.html":{"position":[[6048,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[176,4]]},"/mule-teradata-connector/reference.html":{"position":[[4094,4],[6422,4],[8722,4],[10551,4],[12766,4],[14535,4],[16029,4],[19088,4],[22249,4],[25103,4],[28771,4],[32811,4],[33505,4],[33631,4],[34171,4],[37470,4]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[1120,4]]}},"component":{}}],["manifest",{"_index":4508,"title":{},"name":{},"text":{"/regulus/using-regulus-workspace-cli.html":{"position":[[2495,8],[2519,8],[4648,8],[4672,8],[6006,8],[6030,8]]}},"component":{}}],["manipul",{"_index":1006,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[5662,12]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4509,12]]}},"component":{}}],["mansur",{"_index":3699,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[47,6]]}},"component":{}}],["manual",{"_index":2413,"title":{},"name":{},"text":{"/segment.html":{"position":[[4761,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[6878,8],[25169,8]]},"/regulus/regulus-magic-reference.html":{"position":[[2089,8]]}},"component":{}}],["map",{"_index":553,"title":{"/geojson-to-vantage.html#_use_the_map_from_vantage":{"position":[[8,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_3_map_data_fields":{"position":[[8,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_3_map_data_fields_2":{"position":[[8,3]]}},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[1984,3],[3435,3]]},"/geojson-to-vantage.html":{"position":[[289,5],[2678,3]]},"/getting.started.utm.html":{"position":[[2145,3],[2187,3],[2295,3],[2633,7]]},"/run-vantage-express-on-aws.html":{"position":[[1673,3],[5473,7]]},"/segment.html":{"position":[[4898,3]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3376,3]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[7719,3],[8187,3],[8207,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[6887,3],[6901,7],[6939,3],[6995,8],[7022,4],[7080,6],[7240,9],[20215,3],[25178,3],[25192,7],[25305,8],[25332,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[7156,11]]},"/mule-teradata-connector/reference.html":{"position":[[3327,5],[5649,4],[5720,3],[7954,5],[11224,3],[16691,3],[19750,3],[22872,3],[25847,3],[26164,3],[29433,3],[34357,3],[35550,3]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6033,8]]}},"component":{}}],["map’",{"_index":3899,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[11433,5],[16896,5],[19963,5],[23085,5],[26060,5],[26401,5],[29643,5],[34669,5]]}},"component":{}}],["mariehamn",{"_index":965,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4351,9]]}},"component":{}}],["marit",{"_index":4137,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1761,7]]}},"component":{}}],["mark",{"_index":3532,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[10256,6]]}},"component":{}}],["market",{"_index":3205,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3503,9],[3912,10]]},"/jupyter-demos/index.html":{"position":[[2012,9]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9584,7]]}},"component":{}}],["marketo",{"_index":2873,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1171,8]]}},"component":{}}],["married_ind",{"_index":1540,"title":{},"name":{},"text":{"/ml.html":{"position":[[4383,11]]}},"component":{}}],["mart",{"_index":489,"title":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_dimensional_models_marts":{"position":[[19,7]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[7145,5]]},"/dbt.html":{"position":[[4636,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[4038,6],[8232,5]]}},"component":{}}],["marts/core/intermedi",{"_index":659,"title":{},"name":{},"text":{"/dbt.html":{"position":[[3114,26]]}},"component":{}}],["marts/core/schema.yml",{"_index":666,"title":{},"name":{},"text":{"/dbt.html":{"position":[[3492,24]]}},"component":{}}],["mask",{"_index":2907,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[7188,5]]}},"component":{}}],["massiv",{"_index":2538,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[286,9],[2048,9]]}},"component":{}}],["master",{"_index":3613,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1829,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1866,6]]}},"component":{}}],["match",{"_index":360,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[2862,5]]},"/dbt.html":{"position":[[1058,5]]},"/getting.started.vbox.html":{"position":[[5345,5]]},"/ml.html":{"position":[[2001,5]]},"/mule.jdbc.example.html":{"position":[[1755,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2400,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[5162,5]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2672,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2124,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1418,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[10420,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3071,5],[3833,5]]}},"component":{}}],["materi",{"_index":273,"title":{"/advanced-dbt.html#_incremental_materializations":{"position":[[12,16]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[334,16],[4946,16],[7243,17]]},"/mule.jdbc.example.html":{"position":[[3487,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[3701,12],[6163,11]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[798,12],[953,11],[5422,12],[6037,11],[6323,16],[6350,12],[6403,16],[6507,17],[6573,11]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[540,11]]}},"component":{}}],["materialize_increment",{"_index":3768,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[5988,23],[6185,24]]}},"component":{}}],["matplotlib",{"_index":1380,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[4641,11]]}},"component":{}}],["matplotlib==3.3.1",{"_index":3679,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[5485,17]]}},"component":{}}],["matter",{"_index":2635,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1479,6],[13759,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2205,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1140,6]]}},"component":{}}],["maven",{"_index":1304,"title":{"/jdbc.html#_add_dependency_to_your_maven_project":{"position":[[23,5]]}},"name":{},"text":{"/jdbc.html":{"position":[[358,5],[417,5],[975,5]]}},"component":{}}],["mavgtyp",{"_index":2033,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[8201,8]]}},"component":{}}],["max",{"_index":2407,"title":{},"name":{},"text":{"/segment.html":{"position":[[4496,3]]},"/mule-teradata-connector/reference.html":{"position":[[4263,3],[6589,3],[8799,3],[10628,3],[12843,3],[14612,3],[16106,3],[19165,3],[22326,3],[25270,3],[28848,3],[32888,3],[33289,3],[33732,3],[34015,3],[34135,3],[34567,3],[34733,3],[38509,3],[38885,3],[40479,3],[40848,3],[41742,3],[42029,3],[42631,3]]}},"component":{}}],["max(cas",{"_index":1542,"title":{},"name":{},"text":{"/ml.html":{"position":[[4468,9],[4542,9],[4616,9],[4690,9],[4764,9],[4838,9],[4912,9],[4981,9],[5050,9]]}},"component":{}}],["max_depth",{"_index":3688,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[5716,12]]}},"component":{}}],["max_depth=5",{"_index":3174,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3896,11]]}},"component":{}}],["maxidletim",{"_index":3949,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[38817,11]]}},"component":{}}],["maximum",{"_index":3885,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[4302,7],[6628,7],[8838,7],[10667,7],[12882,7],[14651,7],[16145,7],[19204,7],[22346,7],[25309,7],[28887,7],[32927,7],[33310,7],[38558,7],[38917,7],[40875,7],[40935,7],[41153,7],[41227,7],[42056,7],[42116,7],[42437,7]]}},"component":{}}],["maxinmemorys",{"_index":3984,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[41352,15]]}},"component":{}}],["maxobjectsize('16mb",{"_index":585,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2948,21]]}},"component":{}}],["maxspace_in_gb\":11.546071618795395",{"_index":4261,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[4526,36]]}},"component":{}}],["maxspace_in_gb\":1510.521079641879",{"_index":4256,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[4345,35]]}},"component":{}}],["maxspace_in_gb\":4.656612873077393",{"_index":4271,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[4890,35],[5050,35]]}},"component":{}}],["maxspace_in_gb\":9.313225746154785",{"_index":4266,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[4715,35]]}},"component":{}}],["maxwait",{"_index":3921,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[34117,9]]}},"component":{}}],["mb",{"_index":3367,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1681,2]]},"/mule-teradata-connector/reference.html":{"position":[[41328,2],[42298,2],[42607,2]]}},"component":{}}],["mb/sec",{"_index":4571,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[7541,6]]}},"component":{}}],["mean",{"_index":829,"title":{},"name":{},"text":{"/fastload.html":{"position":[[6520,6]]},"/nos.html":{"position":[[1959,5]]},"/run-vantage-express-on-aws.html":{"position":[[8579,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5359,5]]},"/sto.html":{"position":[[2288,5]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[5240,5]]},"/vantage.express.gcp.html":{"position":[[4386,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1291,5]]},"/mule-teradata-connector/reference.html":{"position":[[877,4],[17966,5],[21262,5],[23956,5],[31047,7],[33899,5],[34287,5],[40679,5],[41062,5],[41901,5],[42241,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6626,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[8065,6]]}},"component":{}}],["meaning",{"_index":3279,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[6132,10]]}},"component":{}}],["meant",{"_index":1085,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[10251,5]]}},"component":{}}],["mech",{"_index":3618,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2329,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2366,5]]}},"component":{}}],["mechan",{"_index":897,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[2123,9],[7771,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[320,11]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1384,10]]}},"component":{}}],["media/dvd",{"_index":1266,"title":{},"name":{},"text":{"/getting.started.vbox.html":{"position":[[5742,11]]}},"component":{}}],["media/dvd/vboxlinuxadditions.run",{"_index":1267,"title":{},"name":{},"text":{"/getting.started.vbox.html":{"position":[[5754,33]]}},"component":{}}],["medium",{"_index":2247,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[7779,6],[7926,6],[8073,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4559,6],[4706,6],[4853,6]]},"/vantage.express.gcp.html":{"position":[[3586,6],[3733,6],[3880,6]]},"/regulus/getting-started-with-regulus.html":{"position":[[1364,7]]},"/regulus/regulus-magic-reference.html":{"position":[[3317,6]]}},"component":{}}],["medv",{"_index":3393,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2821,8],[7085,6]]}},"component":{}}],["meet",{"_index":4132,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1064,4]]}},"component":{}}],["member",{"_index":250,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[6169,8]]},"/advanced-dbt.html":{"position":[[7448,8]]},"/create-parquet-files-in-object-storage.html":{"position":[[4510,8]]},"/dbt.html":{"position":[[5048,8]]},"/fastload.html":{"position":[[7739,8]]},"/geojson-to-vantage.html":{"position":[[10790,8]]},"/getting.started.utm.html":{"position":[[6719,8]]},"/getting.started.vbox.html":{"position":[[6315,8]]},"/getting.started.vmware.html":{"position":[[5828,8]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[1251,8]]},"/jdbc.html":{"position":[[1253,8]]},"/jupyter.html":{"position":[[7501,8]]},"/local.jupyter.hub.html":{"position":[[6272,8]]},"/ml.html":{"position":[[9273,8]]},"/mule.jdbc.example.html":{"position":[[3699,8]]},"/nos.html":{"position":[[8885,8]]},"/odbc.ubuntu.html":{"position":[[2110,8]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10998,8]]},"/run-vantage-express-on-aws.html":{"position":[[12657,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[8595,8]]},"/segment.html":{"position":[[5729,8]]},"/sto.html":{"position":[[8100,8]]},"/teradatasql.html":{"position":[[1185,8]]},"/vantage.express.gcp.html":{"position":[[7771,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[24977,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[6551,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[4753,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[26529,8]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[9071,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[6458,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[7459,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[8649,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[5402,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[7453,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9995,8]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[5061,8]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[1740,8]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[11022,8]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1986,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[12696,8]]},"/regulus/getting-started-with-regulus.html":{"position":[[4211,8]]},"/regulus/install-regulus-docker-image.html":{"position":[[10031,8]]},"/regulus/regulus-magic-reference.html":{"position":[[5302,8]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[7189,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[9299,8]]}},"component":{}}],["member=serviceaccount:$project_numb",{"_index":2380,"title":{},"name":{},"text":{"/segment.html":{"position":[[2586,37]]}},"component":{}}],["member=serviceaccount:cloud",{"_index":2393,"title":{},"name":{},"text":{"/segment.html":{"position":[[3833,27]]}},"component":{}}],["member=serviceaccount:servic",{"_index":2396,"title":{},"name":{},"text":{"/segment.html":{"position":[[4061,29]]}},"component":{}}],["memori",{"_index":1018,"title":{"/mule-teradata-connector/reference.html#repeatable-in-memory-iterable":{"position":[[14,6]]},"/mule-teradata-connector/reference.html#repeatable-in-memory-stream":{"position":[[14,6]]}},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[6259,7]]},"/getting.started.utm.html":{"position":[[1752,6]]},"/run-vantage-express-on-aws.html":{"position":[[7544,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4324,6]]},"/vantage.express.gcp.html":{"position":[[3351,6]]},"/mule-teradata-connector/reference.html":{"position":[[17910,6],[18548,6],[21389,7],[21709,6],[23927,6],[24564,6],[40256,6],[40486,6],[40893,6],[40953,6],[41127,6],[41192,7],[41519,6],[41749,6],[42074,6],[42134,6],[42406,6],[42445,6],[42495,7],[42638,6]]}},"component":{}}],["mention",{"_index":388,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3564,10]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[832,9]]}},"component":{}}],["menu",{"_index":1205,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[4939,4]]},"/getting.started.vbox.html":{"position":[[1554,5],[3765,4]]},"/getting.started.vmware.html":{"position":[[4048,4]]},"/mule.jdbc.example.html":{"position":[[2993,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2177,5],[2252,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3316,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[10260,4]]}},"component":{}}],["merchandis",{"_index":2524,"title":{},"name":{},"text":{"/sto.html":{"position":[[6340,11],[6400,11],[7325,11],[7385,11]]}},"component":{}}],["mere",{"_index":425,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[4630,6]]}},"component":{}}],["merg",{"_index":2556,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1785,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1776,6]]}},"component":{}}],["mergeblockratio",{"_index":552,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[1967,16]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[20198,16]]},"/regulus/getting-started-with-regulus.html":{"position":[[2140,15],[2794,15]]}},"component":{}}],["messag",{"_index":1181,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[3691,8],[3803,8]]},"/getting.started.vbox.html":{"position":[[2729,8],[2841,8]]},"/getting.started.vmware.html":{"position":[[2800,8],[2912,8]]},"/mule.jdbc.example.html":{"position":[[722,7],[1318,7]]},"/sto.html":{"position":[[1016,9],[1066,7],[3879,9],[3935,7]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1911,7],[4495,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[7665,7],[7846,7],[7902,7],[25554,7],[25735,7],[25791,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2752,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[3217,7],[3929,7]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1716,7]]},"/mule-teradata-connector/reference.html":{"position":[[4369,7],[6695,7],[8905,7],[10734,7],[12949,7],[14718,7],[16212,7],[19271,7],[22413,7],[25376,7],[28954,7],[30616,7],[32370,7],[32994,7],[38943,7],[39034,7],[39131,8],[39140,7],[39341,7],[39518,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1914,8],[6482,7],[6798,9]]},"/regulus/regulus-magic-reference.html":{"position":[[5120,8]]}},"component":{}}],["met",{"_index":2646,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2857,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[5263,3]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1527,4],[1896,3]]}},"component":{}}],["metadata",{"_index":2897,"title":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_explore_teradata_vantage_metadata_with_data_catalog":{"position":[[25,8]]}},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4738,9]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[223,8],[339,8],[367,8],[548,8],[613,8],[723,8],[752,8],[2082,8],[4400,23],[4444,8],[4539,23],[4640,23],[5318,11],[8514,8],[8550,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[5837,9]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2612,8]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3878,9]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[7025,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[3262,9],[5449,9]]},"/regulus/getting-started-with-regulus.html":{"position":[[3645,8]]},"/regulus/regulus-magic-reference.html":{"position":[[4556,8],[4764,8]]}},"component":{}}],["metal",{"_index":2114,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[359,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[741,5]]}},"component":{}}],["method",{"_index":186,"title":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_read_nos_an_alternative_method_to_foreign_tables":{"position":[[26,6]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3735,6],[3995,6]]},"/geojson-to-vantage.html":{"position":[[409,7],[701,6]]},"/jupyter.html":{"position":[[1820,6]]},"/ml.html":{"position":[[8911,6]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[6522,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[3384,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1550,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[6909,6],[19916,6],[25200,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[5044,6],[5979,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[7788,7]]},"/mule-teradata-connector/reference.html":{"position":[[38035,6]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[1445,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1838,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[2560,8],[7946,8]]}},"component":{}}],["methodolog",{"_index":3657,"title":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_understand_where_we_are_in_the_methodology":{"position":[[31,11]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_understand_where_we_are_in_the_methodology":{"position":[[31,11]]}},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[329,11]]}},"component":{}}],["metric",{"_index":3233,"title":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Inspect-model-metrics":{"position":[[14,8]]}},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[6157,7],[6251,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[4106,6],[4355,8],[6738,7],[10513,7],[10559,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2573,7],[4670,7],[4718,7],[5127,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2610,7],[6105,7],[6657,7],[6705,7],[7178,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[7524,8]]}},"component":{}}],["metric_accuraci",{"_index":3481,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[7468,15],[7572,16],[7625,15]]}},"component":{}}],["metrics.mean_squared_error(y_pred,test[target",{"_index":3482,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[7486,47]]}},"component":{}}],["mexico",{"_index":1069,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[9872,6]]}},"component":{}}],["microsecond",{"_index":3879,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[3868,12],[4000,13],[6197,12],[6328,13],[8496,12],[8628,13],[10325,12],[10457,13],[12540,12],[12672,13],[14309,12],[14441,13],[15803,12],[15935,13],[18862,12],[18994,13],[22023,12],[22155,13],[24877,12],[25009,13],[28545,12],[28677,13],[32585,12],[32717,13],[34062,12],[38733,12]]}},"component":{}}],["microsoft",{"_index":24,"title":{},"name":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[23,9]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[108,9],[2538,9],[4280,9]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[112,9]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[6772,9]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2187,9],[2258,9]]},"/jupyter-demos/index.html":{"position":[[237,9],[859,9],[1385,9],[1780,9],[2190,9]]}},"component":{}}],["migrat",{"_index":2867,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[92,7]]}},"component":{}}],["million",{"_index":2895,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4469,7]]}},"component":{}}],["millisecond",{"_index":3880,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[3881,12],[4017,12],[6210,12],[6345,12],[8509,12],[8645,12],[10338,12],[10474,12],[12553,12],[12689,12],[14322,12],[14458,12],[15816,12],[15952,12],[18875,12],[19011,12],[22036,12],[22172,12],[24890,12],[25026,12],[28558,12],[28694,12],[32598,12],[32734,12],[34075,12],[36015,13],[36267,12],[38746,12]]}},"component":{}}],["mimic",{"_index":325,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[1740,6]]}},"component":{}}],["min",{"_index":2409,"title":{},"name":{},"text":{"/segment.html":{"position":[[4520,3]]},"/mule-teradata-connector/reference.html":{"position":[[33377,3],[34584,3]]}},"component":{}}],["min(t1.ag",{"_index":1529,"title":{},"name":{},"text":{"/ml.html":{"position":[[4085,12]]}},"component":{}}],["min(t1.gend",{"_index":1538,"title":{},"name":{},"text":{"/ml.html":{"position":[[4271,14]]}},"component":{}}],["min(t1.incom",{"_index":1527,"title":{},"name":{},"text":{"/ml.html":{"position":[[4055,15]]}},"component":{}}],["min(t1.marital_statu",{"_index":1535,"title":{},"name":{},"text":{"/ml.html":{"position":[[4201,22],[4335,22],[4406,22]]}},"component":{}}],["min(t1.nbr_children",{"_index":1533,"title":{},"name":{},"text":{"/ml.html":{"position":[[4152,21]]}},"component":{}}],["min(t1.years_with_bank",{"_index":1531,"title":{},"name":{},"text":{"/ml.html":{"position":[[4109,24]]}},"component":{}}],["min_child_weight=6",{"_index":3175,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3908,18]]}},"component":{}}],["mind",{"_index":1477,"title":{},"name":{},"text":{"/ml.html":{"position":[[171,5],[297,4]]},"/query-service/send-queries-using-rest-api.html":{"position":[[983,4]]}},"component":{}}],["miniconda",{"_index":2833,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2291,9],[2345,9],[3010,9]]}},"component":{}}],["minimize=fals",{"_index":1467,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[5582,14]]}},"component":{}}],["minimum",{"_index":2695,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[9830,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9547,8]]},"/mule-teradata-connector/reference.html":{"position":[[736,7],[3696,7],[6026,7],[8324,7],[10153,7],[12368,7],[14137,7],[15631,7],[18690,7],[21851,7],[24706,7],[28373,7],[32413,7],[33398,7]]}},"component":{}}],["minium",{"_index":4056,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6119,7]]}},"component":{}}],["minut",{"_index":1668,"title":{},"name":{},"text":{"/mule.jdbc.example.html":{"position":[[3050,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[6163,7],[6293,6],[7472,7],[8042,7],[8080,7]]},"/run-vantage-express-on-aws.html":{"position":[[7157,8],[7283,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3937,8],[4063,8]]},"/vantage.express.gcp.html":{"position":[[2964,8],[3090,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[3098,7]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3776,8]]},"/mule-teradata-connector/reference.html":{"position":[[3902,7],[6231,7],[8530,7],[10359,7],[12574,7],[14343,7],[15837,7],[18896,7],[22057,7],[24911,7],[28579,7],[32619,7],[34096,7],[38767,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6408,8],[7090,7],[7108,7],[7223,7],[7241,7],[7355,7],[7373,7],[7487,7],[7505,7],[7653,7],[7671,7],[7818,7],[7836,7],[7951,7],[7969,7],[8075,7],[8093,7],[8181,7],[8199,7],[8322,7],[8340,7],[10021,7]]},"/regulus/getting-started-with-regulus.html":{"position":[[1496,7]]},"/regulus/regulus-magic-reference.html":{"position":[[3061,7]]}},"component":{}}],["minute(4",{"_index":2030,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[7815,9]]}},"component":{}}],["minutes(15",{"_index":2005,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[6354,12],[7886,12]]}},"component":{}}],["mirror",{"_index":3317,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[4701,9]]}},"component":{}}],["miss",{"_index":1042,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[7551,6]]}},"component":{}}],["mix",{"_index":1321,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[866,3]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1408,5]]}},"component":{}}],["mkdir",{"_index":2209,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[6014,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2539,5]]},"/vantage.express.gcp.html":{"position":[[1821,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2178,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2355,5],[3142,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2260,5],[2285,5],[5365,5],[5467,5],[5995,5]]}},"component":{}}],["mkfs.xf",{"_index":2335,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[2663,8]]}},"component":{}}],["mklabel",{"_index":2329,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[2624,7]]}},"component":{}}],["mkpart",{"_index":2331,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[2636,6]]}},"component":{}}],["ml",{"_index":1336,"title":{"/ml.html":{"position":[[6,2]]}},"name":{"/ml.html":{"position":[[0,2]]}},"text":{"/jupyter.html":{"position":[[1941,2]]},"/ml.html":{"position":[[218,2],[478,2],[794,2],[8889,2]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1346,2]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[535,2],[820,2]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2072,2]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1007,2]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[4467,2],[6275,2]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[76,4],[211,2],[368,2],[443,2],[737,2],[925,2],[1463,2],[1543,2],[1645,2],[1787,2],[2203,2],[5285,3]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[157,2],[331,2]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[581,2],[1201,2],[2896,2]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1803,2]]}},"component":{}}],["ml.m4.xlarg",{"_index":3165,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3638,12]]}},"component":{}}],["mldb",{"_index":3379,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2502,4],[8454,6],[10996,6]]}},"component":{}}],["mldb.hous",{"_index":3420,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[4705,12]]}},"component":{}}],["mldb.pmmlpredict",{"_index":3555,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[11869,16]]}},"component":{}}],["mlop",{"_index":1481,"title":{},"name":{},"text":{"/ml.html":{"position":[[399,6]]}},"component":{}}],["mm",{"_index":1222,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[5597,2],[5634,2]]},"/getting.started.vbox.html":{"position":[[4423,2],[4460,2]]},"/getting.started.vmware.html":{"position":[[4706,2],[4743,2]]},"/mule.jdbc.example.html":{"position":[[2375,2],[2412,2]]},"/nos.html":{"position":[[2701,2]]},"/run-vantage-express-on-aws.html":{"position":[[9481,2],[9518,2]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6261,2],[6298,2]]},"/vantage.express.gcp.html":{"position":[[5288,2],[5325,2]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11464,2],[11643,2],[15086,2],[15265,2],[17601,2],[17694,2],[18798,2],[18977,2],[22695,2],[22874,2]]}},"component":{}}],["mobaxterm",{"_index":4012,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1186,10],[2430,10]]}},"component":{}}],["mobil",{"_index":55,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[799,6],[918,6]]}},"component":{}}],["mock",{"_index":336,"title":{"/advanced-dbt.html#_mocking_the_elt_process":{"position":[[0,7]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[1941,4]]}},"component":{}}],["mod",{"_index":3636,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[3184,3],[3516,3],[3683,3],[3850,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[3221,3],[3553,3],[3720,3],[3887,3]]}},"component":{}}],["mode",{"_index":749,"title":{"/fastload.html#_batch_mode":{"position":[[6,4]]}},"name":{},"text":{"/fastload.html":{"position":[[2239,5],[2298,5],[2344,5],[6370,5]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[4069,4]]},"/query-service/send-queries-using-rest-api.html":{"position":[[11306,6]]}},"component":{}}],["model",{"_index":168,"title":{"/advanced-dbt.html#_the_data_models":{"position":[[9,6]]},"/advanced-dbt.html#_the_dbt_models":{"position":[[8,6]]},"/advanced-dbt.html#_create_dimensional_model_with_baseline_data":{"position":[[19,5]]},"/dbt.html#_create_the_dimensional_model":{"position":[[23,5]]},"/ml.html":{"position":[[9,6]]},"/ml.html#_create_a_linear_regression_model":{"position":[[27,5]]},"/cloud-guides/sagemaker-with-teradata-vantage.html#_train_the_model":{"position":[[10,5]]},"/cloud-guides/sagemaker-with-teradata-vantage.html#_deploy_the_model":{"position":[[11,5]]},"/cloud-guides/sagemaker-with-teradata-vantage.html#_create_a_model":{"position":[[9,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_train_the_model":{"position":[[10,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_build_the_model":{"position":[[10,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_score_the_model":{"position":[[10,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_staging_models":{"position":[[8,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_dimensional_models_marts":{"position":[[12,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_model_testing":{"position":[[0,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#The-first-pipeline-to-train-and-deploy-a-model-using-Kubeflow":{"position":[[41,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-the-train-model-component":{"position":[[17,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-component-to-deploy-model":{"position":[[27,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Inspect-model-metrics":{"position":[[8,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Test-the-deployed-model":{"position":[[18,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[45,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_model_lifecycle_for_a_new_byom":{"position":[[0,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[44,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_model_lifecycle_for_a_new_git":{"position":[[0,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_create_the_dimensional_model":{"position":[[23,5]]}},"name":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[36,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[36,6]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3418,6]]},"/advanced-dbt.html":{"position":[[4007,6],[4471,6],[4518,7],[4619,6],[4867,6],[4974,6],[5055,7],[5082,6],[5278,6],[5580,6],[5683,5],[5883,7],[5969,7],[6228,5],[6314,6]]},"/dbt.html":{"position":[[203,6],[1857,5],[2100,6],[2805,6],[3236,5],[3389,5],[3824,5],[3962,6],[4050,5],[4725,6],[4792,5]]},"/geojson-to-vantage.html":{"position":[[6662,5]]},"/getting.started.utm.html":{"position":[[529,5]]},"/getting.started.vbox.html":{"position":[[529,5]]},"/getting.started.vmware.html":{"position":[[529,5]]},"/ml.html":{"position":[[134,5],[157,5],[481,5],[3244,6],[3581,5],[6438,5],[6585,6],[6706,5],[7317,5],[7357,5],[7513,5],[8892,6],[8998,5],[9034,6]]},"/sto.html":{"position":[[1708,5]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[441,5],[644,5],[775,5],[892,5],[1113,5],[1182,5],[1265,5],[1627,6],[4493,6],[4525,5],[4639,6],[4691,6],[4747,6],[4766,5],[4999,5],[5101,6],[5119,5],[5266,5],[5396,6],[5435,5],[5854,5],[6017,5],[6209,6],[6220,5],[6278,6]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[489,6],[829,6],[3433,5],[4424,6],[4799,5],[4825,6],[5181,5],[5496,5],[5637,5],[5690,5],[5925,5],[5941,5],[5987,5],[6119,5],[6286,5],[6360,5],[6411,5],[6618,5],[6830,5],[6883,5],[6944,5],[7069,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[3031,5],[3506,5],[3652,6],[3677,6],[3811,5],[3828,6],[4719,7],[4745,5],[4855,5],[4952,5],[5116,7],[5211,6],[5319,5],[5734,5],[6062,5],[6206,5],[6560,7],[6601,5],[6832,5],[6897,5],[7337,6],[7423,5],[7532,6],[7620,6],[8073,5],[8326,6],[8393,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[160,7],[232,7],[446,6],[558,5],[615,5],[653,5],[738,5],[913,5],[953,5],[2938,5],[3012,6],[3157,5],[4092,5],[4127,5],[4185,5],[4348,6],[5899,5],[6040,5],[7711,5],[7797,6],[8590,5],[10474,6],[10598,5],[10706,5],[11362,5],[12112,5],[12165,5],[12520,8]]},"/jupyter-demos/index.html":{"position":[[1333,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[303,5],[1129,7],[1464,7],[1786,6],[2559,5],[4013,6],[4109,5],[4664,5],[4695,5],[4939,6],[5113,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[284,5],[349,6],[1166,7],[1501,7],[1823,6],[2596,5],[3905,6],[3975,6],[4293,5],[4654,5],[4660,5],[5032,5],[5038,5],[5606,5],[5779,5],[5846,7],[5930,6],[5968,5],[6099,5],[6132,5],[6651,5],[6682,5],[6943,6],[7164,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[772,5],[856,5],[5483,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[9420,5],[10744,9]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[584,7],[1025,7],[2124,7],[2566,6],[2862,6],[2899,9],[4901,6],[6995,5],[7100,5]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1806,6]]}},"component":{}}],["model.pmml",{"_index":3642,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4031,10]]}},"component":{}}],["model/model_modul",{"_index":3659,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4068,20]]}},"component":{}}],["model_definitions/your",{"_index":3658,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4045,22]]}},"component":{}}],["model_definitions→python",{"_index":3689,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[5862,24]]}},"component":{}}],["model_fil",{"_index":3496,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[8357,10],[8508,10],[8521,11],[8773,10],[8786,11]]}},"component":{}}],["model_id",{"_index":3398,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3133,9],[3183,11],[8333,8],[8498,9],[8696,9],[8763,9]]}},"component":{}}],["model_id=\\'{model_nam",{"_index":3556,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[11942,26]]}},"component":{}}],["model_modules/requirements.txt",{"_index":3675,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[5403,33]]}},"component":{}}],["model_nam",{"_index":3550,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[11601,11],[12090,11],[12579,11],[13312,13]]}},"component":{}}],["model_t",{"_index":3551,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[11618,12],[11922,13],[12118,12],[12596,12],[13340,14]]}},"component":{}}],["modelcontext",{"_index":3662,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4214,13],[4596,13],[4974,13]]}},"component":{}}],["modeldata",{"_index":3542,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[11045,9],[11148,9],[11160,10]]}},"component":{}}],["modeldatabase=v",{"_index":1606,"title":{},"name":{},"text":{"/ml.html":{"position":[[7694,18]]}},"component":{}}],["modelop",{"_index":3597,"title":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[0,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[0,8]]}},"name":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[57,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[57,8]]}},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[127,9],[198,9],[406,9],[752,9],[762,8],[810,8],[1137,8],[1183,8],[1707,8],[1985,8],[4951,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[127,9],[198,9],[359,9],[443,9],[789,9],[799,8],[847,8],[1174,8],[1220,8],[1744,8],[2022,8],[4507,8],[4894,8],[5269,8],[6817,8],[6955,8]]}},"component":{}}],["modelops_train",{"_index":3611,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1531,17]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1568,17]]}},"component":{}}],["models/marts/cor",{"_index":3283,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[6702,20]]}},"component":{}}],["models/marts/core/intermedi",{"_index":3281,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[6463,33]]}},"component":{}}],["models/marts/core/schema.yml",{"_index":3285,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7000,30]]}},"component":{}}],["models/staging/schema.yml",{"_index":3286,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7035,28]]}},"component":{}}],["modeltablename=linear_regression_demo",{"_index":1607,"title":{},"name":{},"text":{"/ml.html":{"position":[[7713,38]]}},"component":{}}],["modern",{"_index":2629,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1139,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[800,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[675,6]]}},"component":{}}],["modifi",{"_index":206,"title":{"/advanced-dbt.html#_teradata_modifiers":{"position":[[9,9]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[4563,6]]},"/advanced-dbt.html":{"position":[[421,9],[5921,9],[7290,10]]},"/geojson-to-vantage.html":{"position":[[2027,6],[7675,6]]},"/local.jupyter.hub.html":{"position":[[1871,6],[2804,6],[3891,6]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[7488,9]]},"/run-vantage-express-on-aws.html":{"position":[[1291,6],[1609,6],[11245,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[8025,6]]},"/vantage.express.gcp.html":{"position":[[7052,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[7174,6],[7623,6],[25512,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[2665,6],[8196,6]]}},"component":{}}],["modifyvm",{"_index":2236,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[7510,8],[8131,8],[8193,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4290,8],[4911,8],[4973,8]]},"/vantage.express.gcp.html":{"position":[[3317,8],[3938,8],[4000,8]]}},"component":{}}],["modul",{"_index":314,"title":{"/teradata-vantage-engine-architecture-and-concepts.html#_access_module_processor_amp":{"position":[[7,6]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[1398,7],[1419,6]]},"/dbt.html":{"position":[[771,6],[813,6]]},"/jupyter.html":{"position":[[7275,7]]},"/local.jupyter.hub.html":{"position":[[1418,7],[3323,7],[6046,7]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[598,6],[873,6],[4576,6],[6138,6],[6433,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1789,7],[3327,7],[6095,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1192,7],[4398,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1485,6],[2731,7],[3944,6],[3988,7],[4303,6],[4474,6],[4552,6],[4578,7],[4934,6],[5135,6],[5187,6],[5348,8],[5643,6],[5711,8],[5911,7],[5993,6],[6125,6],[7191,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1494,6],[1536,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4138,7]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1307,8]]},"/regulus/install-regulus-docker-image.html":{"position":[[8649,7],[9532,7]]}},"component":{}}],["mohammad",{"_index":3697,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[31,8]]}},"component":{}}],["mohammmad",{"_index":3694,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[8,9]]}},"component":{}}],["mojav",{"_index":2602,"title":{},"name":{},"text":{"/teradatasql.html":{"position":[[314,6]]}},"component":{}}],["moment",{"_index":3857,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[934,6]]}},"component":{}}],["money",{"_index":1102,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[271,5]]},"/getting.started.vbox.html":{"position":[[271,5]]},"/getting.started.vmware.html":{"position":[[271,5]]}},"component":{}}],["monitor",{"_index":3350,"title":{},"name":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[11,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[11,7]]}},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[221,10]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2551,7],[4135,10],[4249,11],[4264,10],[4656,7],[4687,7],[5084,10]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2588,7],[6643,7],[6674,7],[7135,10]]}},"component":{}}],["monolith",{"_index":4441,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[1813,10]]}},"component":{}}],["month",{"_index":1971,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[4453,5]]}},"component":{}}],["monthli",{"_index":1519,"title":{},"name":{},"text":{"/ml.html":{"position":[[3609,7],[6508,7]]}},"component":{}}],["more",{"_index":149,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3018,6],[3684,4],[4788,4],[5811,4]]},"/create-parquet-files-in-object-storage.html":{"position":[[1270,4],[1712,4]]},"/dbt.html":{"position":[[2116,4],[3905,4],[3937,4]]},"/fastload.html":{"position":[[2700,5]]},"/geojson-to-vantage.html":{"position":[[902,4]]},"/jupyter.html":{"position":[[1128,5],[5330,4],[7079,4]]},"/mule.jdbc.example.html":{"position":[[3389,4],[3530,4]]},"/nos.html":{"position":[[5469,4]]},"/segment.html":{"position":[[5255,4]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1272,4]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3969,4],[4886,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1088,4],[2557,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4282,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1580,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3763,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[6455,4],[7021,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1014,4],[3061,4],[4413,4],[7479,4],[7507,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[746,4],[1552,4],[3054,4],[4468,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[4851,4],[10496,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[5369,4]]},"/mule-teradata-connector/reference.html":{"position":[[4653,4],[6964,4],[9174,4],[11003,4],[16481,4],[19540,4],[21144,4],[22662,4],[23796,4],[25641,4],[29223,4],[39297,4],[40341,4],[40911,4],[41203,4],[41604,4],[42092,4],[42506,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4226,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2878,4]]},"/regulus/getting-started-with-regulus.html":{"position":[[744,4]]}},"component":{}}],["mortar",{"_index":3594,"title":{},"name":{},"text":{"/jupyter-demos/index.html":{"position":[[2131,6]]}},"component":{}}],["motion",{"_index":2878,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1295,7]]}},"component":{}}],["mount",{"_index":1264,"title":{},"name":{},"text":{"/getting.started.vbox.html":{"position":[[5725,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2578,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4054,7]]}},"component":{}}],["move",{"_index":701,"title":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_move_data_from_different_systems_for_unified_query_processing":{"position":[[0,4]]}},"name":{},"text":{"/fastload.html":{"position":[[247,4]]},"/jupyter.html":{"position":[[3519,4],[4433,4]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[7568,6],[8017,6]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[946,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[5345,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[79,4]]}},"component":{}}],["movement",{"_index":2431,"title":{},"name":{},"text":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1029,8]]}},"component":{}}],["movingaverag",{"_index":2032,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[8111,13]]}},"component":{}}],["mpp",{"_index":2539,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[316,6],[418,3],[2078,5],[2253,3],[3726,4],[5201,3]]}},"component":{}}],["mta_tax",{"_index":1864,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1291,7]]}},"component":{}}],["much",{"_index":675,"title":{},"name":{},"text":{"/dbt.html":{"position":[[3932,4]]},"/mule-teradata-connector/reference.html":{"position":[[40585,4],[41807,4]]}},"component":{}}],["mule",{"_index":1645,"title":{"/mule.jdbc.example.html":{"position":[[30,4]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[56,4]]},"/mule-teradata-connector/examples-configuration.html#create-mule-project":{"position":[[9,4]]},"/mule-teradata-connector/examples-configuration.html#add-connector-to-project":{"position":[[26,4]]},"/mule-teradata-connector/index.html":{"position":[[21,4]]},"/mule-teradata-connector/reference.html":{"position":[[31,4]]},"/mule-teradata-connector/release-notes.html":{"position":[[35,4]]}},"name":{},"text":{"/mule.jdbc.example.html":{"position":[[464,4],[578,4]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[118,4],[227,4],[267,4],[777,4],[866,4],[902,4],[964,4],[1142,4],[1365,4],[1977,4],[2721,4],[3090,4],[3326,4],[4216,4],[4643,4]]},"/mule-teradata-connector/index.html":{"position":[[145,4],[487,4],[507,6],[548,4],[1544,4]]},"/mule-teradata-connector/reference.html":{"position":[[145,4],[820,4],[967,4]]},"/mule-teradata-connector/release-notes.html":{"position":[[145,4],[408,4],[1031,4]]}},"component":{}}],["mule.jdbc.exampl",{"_index":1646,"title":{},"name":{"/mule.jdbc.example.html":{"position":[[0,17]]}},"text":{},"component":{}}],["mule_home/logs/.log",{"_index":3844,"title":{},"name":{},"text":{"/mule-teradata-connector/examples-configuration.html":{"position":[[4843,20]]}},"component":{}}],["mulesoft",{"_index":1647,"title":{},"name":{},"text":{"/mule.jdbc.example.html":{"position":[[86,8],[200,8]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[4893,8]]},"/mule-teradata-connector/index.html":{"position":[[1611,8]]},"/mule-teradata-connector/reference.html":{"position":[[42788,8]]},"/mule-teradata-connector/release-notes.html":{"position":[[1099,8]]}},"component":{}}],["mulesoft’",{"_index":3987,"title":{},"name":{},"text":{"/mule-teradata-connector/release-notes.html":{"position":[[376,10]]}},"component":{}}],["multi",{"_index":2557,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1848,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1615,5]]}},"component":{}}],["multicast",{"_index":2555,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1737,10]]}},"component":{}}],["multipl",{"_index":133,"title":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_the_table_and_load_the_data_in_multiple_statements":{"position":[[38,8]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2701,8]]},"/advanced-dbt.html":{"position":[[5415,8]]},"/dbt.html":{"position":[[3300,8],[3591,8],[4650,8]]},"/fastload.html":{"position":[[7309,8]]},"/jupyter.html":{"position":[[6870,8]]},"/local.jupyter.hub.html":{"position":[[2194,8],[2352,8]]},"/ml.html":{"position":[[469,8],[6638,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[465,8],[1885,8],[4296,8],[4693,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[465,8],[14334,8],[17170,8],[17303,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7085,8],[8294,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[7235,8]]},"/mule-teradata-connector/index.html":{"position":[[1205,8]]},"/mule-teradata-connector/release-notes.html":{"position":[[805,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[7674,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[8854,8]]}},"component":{}}],["multiply(:valu",{"_index":3908,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[26676,16]]}},"component":{}}],["multiset",{"_index":595,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[3328,8]]},"/fastload.html":{"position":[[1904,8],[2931,8],[5274,8],[6781,8]]},"/nos.html":{"position":[[5930,8]]},"/sto.html":{"position":[[6815,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[9545,8],[14886,8],[17484,8],[22495,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9199,8],[20031,8]]},"/regulus/getting-started-with-regulus.html":{"position":[[2033,8],[2689,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1999,8],[8326,8]]}},"component":{}}],["mvn",{"_index":1309,"title":{},"name":{},"text":{"/jdbc.html":{"position":[[850,3]]}},"component":{}}],["myconsumerstorag",{"_index":2676,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[6462,17],[7891,17],[9174,19]]}},"component":{}}],["myconsumerstorage_rg",{"_index":2675,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[6417,20]]}},"component":{}}],["mydatashareconsum",{"_index":2679,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[6630,19],[7504,19]]}},"component":{}}],["mydatashareconsumer_rg",{"_index":2678,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[6563,22],[7477,22]]}},"component":{}}],["mydatashareprovid",{"_index":2656,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[4006,19]]}},"component":{}}],["mydatashareprovider_rg",{"_index":2655,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[3906,22]]}},"component":{}}],["myenv/scripts/activ",{"_index":3251,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1447,25]]}},"component":{}}],["mylist",{"_index":2529,"title":{},"name":{},"text":{"/sto.html":{"position":[[6428,6],[6449,6],[6459,6],[7413,6],[7434,6],[7444,6]]}},"component":{}}],["myparamnam",{"_index":3898,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[11414,14],[16876,15],[19943,15],[23065,15],[26040,15],[26381,15],[29623,15]]}},"component":{}}],["myproviderstorag",{"_index":2650,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[3404,17],[4961,17]]}},"component":{}}],["myproviderstorage_rg",{"_index":2649,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[3308,20]]}},"component":{}}],["mysql",{"_index":1648,"title":{},"name":{},"text":{"/mule.jdbc.example.html":{"position":[[95,5]]}},"component":{}}],["myvpc",{"_index":2155,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[2679,5],[3133,6]]}},"component":{}}],["n",{"_index":1877,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1801,1],[1982,1],[2163,1],[2340,1],[2517,1],[2695,1],[2871,1],[3053,1],[3234,1],[3412,1]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[790,1],[1224,1],[1470,1],[1615,1],[1860,1],[1993,1],[2238,1],[8312,1]]},"/segment.html":{"position":[[2116,1],[2282,1]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[5852,5]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[5662,1],[5897,2],[6753,1],[6886,2]]}},"component":{}}],["n1",{"_index":2193,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[5271,2]]}},"component":{}}],["name",{"_index":161,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3299,4],[4869,5],[4974,5],[5639,4]]},"/create-parquet-files-in-object-storage.html":{"position":[[2523,4],[3247,4]]},"/geojson-to-vantage.html":{"position":[[2077,5],[2088,4],[2642,5],[6849,4],[7725,5],[7736,4],[8304,6]]},"/jupyter.html":{"position":[[3101,4]]},"/local.jupyter.hub.html":{"position":[[1495,4],[1711,4],[2046,5]]},"/ml.html":{"position":[[2021,4],[3032,4]]},"/nos.html":{"position":[[2236,4],[3051,5]]},"/run-vantage-express-on-aws.html":{"position":[[2674,4],[4819,4],[5530,4],[6842,5],[7451,4],[7622,4],[7809,4],[7956,4],[8103,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[968,4],[1281,4],[1372,4],[1554,4],[1586,4],[1672,4],[1763,4],[1931,4],[1963,4],[2050,4],[2141,4],[2309,4],[2341,4],[3622,5],[4231,4],[4402,4],[4589,4],[4736,4],[4883,4],[8155,4]]},"/segment.html":{"position":[[3626,4]]},"/sto.html":{"position":[[3625,5]]},"/vantage.express.gcp.html":{"position":[[2649,5],[3258,4],[3429,4],[3616,4],[3763,4],[3910,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[3362,4],[3672,5],[3988,5],[4368,4],[5323,4],[5407,5],[6457,4],[6618,4],[9213,4],[9350,5],[9889,4],[10010,4],[10029,5],[10109,5],[10315,5],[10934,5],[11191,4],[11212,5],[21550,4],[21569,5],[21686,5],[21751,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1372,4],[2728,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[3752,5],[5827,4],[6138,5],[6307,4],[6650,5],[9606,4],[9735,5],[9790,4],[10523,4],[10909,5],[15948,6],[24070,6],[24384,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3423,4],[4772,4],[5200,4],[5272,4],[5500,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1264,4],[2006,4],[2973,5],[2997,5],[3877,4],[4078,5],[4102,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1725,4],[1819,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[3595,4],[3825,4],[4677,4],[4715,4],[6386,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1547,5],[9331,4],[12135,4],[12187,4],[12250,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1672,5],[1689,4],[1733,4],[2049,5],[2077,4],[2652,5],[3372,5],[3532,5],[3699,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1709,5],[1726,4],[1770,4],[2086,5],[2114,4],[2689,5],[3409,5],[3569,5],[3736,5],[5331,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2102,4],[7903,5]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[888,4],[2153,4],[2861,4]]},"/mule-teradata-connector/reference.html":{"position":[[417,4],[462,4],[478,4],[556,5],[1293,4],[1721,4],[3169,4],[3239,4],[3361,5],[4875,4],[5501,4],[5571,4],[5747,5],[7166,4],[7796,4],[7866,4],[7988,5],[9385,4],[9836,4],[9906,4],[11250,4],[11524,4],[11990,4],[12060,4],[13092,4],[13640,4],[13710,4],[14861,4],[15314,4],[15384,4],[16717,4],[17235,5],[17272,5],[17378,4],[18233,4],[18303,4],[19776,4],[20059,4],[21397,4],[21467,4],[22898,4],[23177,4],[24247,4],[24317,4],[25873,4],[26190,4],[26979,5],[27016,5],[27130,4],[28062,4],[28132,4],[29459,4],[29981,5],[30018,5],[30131,4],[31254,4],[31324,4],[31376,4],[31439,4],[31647,4],[34383,4],[35429,4],[35441,4],[35495,4],[39597,4],[42724,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[7024,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[301,6]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[854,4],[1347,4]]},"/query-service/send-queries-using-rest-api.html":{"position":[[806,4],[3143,4],[3161,5],[3287,5]]},"/regulus/getting-started-with-regulus.html":{"position":[[1208,6],[1304,4],[1444,6],[1807,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[7204,4]]},"/regulus/regulus-magic-reference.html":{"position":[[478,4],[808,4],[952,4],[1150,4],[1404,4],[1456,4],[1763,4],[2271,6],[2317,4],[2338,5],[2358,4],[2581,6],[2685,5],[2707,4],[2728,5],[2748,4],[2797,6],[2941,4],[3240,4],[4100,4],[4333,4],[4493,4],[4660,4],[4882,4]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[4167,5],[5902,4],[5935,4],[6891,4],[6903,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2730,4],[2864,5]]}},"component":{}}],["name\":\"databasenam",{"_index":4247,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[4044,22]]}},"component":{}}],["name\":\"maxspace_in_gb",{"_index":4251,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[4132,24]]}},"component":{}}],["name\":\"percentage_us",{"_index":4252,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[4177,25]]}},"component":{}}],["name\":\"remainingspace_in_gb",{"_index":4253,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[4223,30]]}},"component":{}}],["name\":\"usedspace_in_gb",{"_index":4249,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[4086,25]]}},"component":{}}],["name=\"driver_hourly_stat",{"_index":3737,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4006,27]]}},"component":{}}],["name='new",{"_index":3559,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[12421,9]]}},"component":{}}],["name='run",{"_index":3507,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[8934,9]]}},"component":{}}],["name=name,values=ubuntu/images/hvm",{"_index":2187,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[5127,35]]}},"component":{}}],["name=v",{"_index":2611,"title":{},"name":{},"text":{"/vantage.express.gcp.html":{"position":[[941,7],[1229,7],[1517,7]]}},"component":{}}],["name=vpc",{"_index":2159,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[2871,9],[3060,9],[3991,9]]}},"component":{}}],["names=['crim",{"_index":3383,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2717,14]]}},"component":{}}],["namespac",{"_index":3314,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[4123,9],[4252,10],[4280,9],[4382,9],[4505,10],[4569,9],[5040,10],[5087,9],[5137,9]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1037,9]]}},"component":{}}],["naming('rang",{"_index":1800,"title":{},"name":{},"text":{"/nos.html":{"position":[[8143,15]]}},"component":{}}],["nanosecond",{"_index":3878,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[3856,11],[3987,12],[6185,11],[6315,12],[8484,11],[8615,12],[10313,11],[10444,12],[12528,11],[12659,12],[14297,11],[14428,12],[15791,11],[15922,12],[18850,11],[18981,12],[22011,11],[22142,12],[24865,11],[24996,12],[28533,11],[28664,12],[32573,11],[32704,12],[34050,11],[38721,11]]}},"component":{}}],["nat",{"_index":2242,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[7574,3]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4354,3]]},"/vantage.express.gcp.html":{"position":[[3381,3]]}},"component":{}}],["nativ",{"_index":80,"title":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_native_object_store_nos_teradata_parallel_transporter_tpt":{"position":[[26,6]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1289,8]]},"/create-parquet-files-in-object-storage.html":{"position":[[49,6],[4138,6]]},"/fastload.html":{"position":[[6543,6],[6761,6]]},"/geojson-to-vantage.html":{"position":[[502,6],[611,6],[1369,6],[3288,6],[9004,6]]},"/nos.html":{"position":[[59,6],[8484,6],[8696,6]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10809,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[234,6],[1910,6],[8568,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[532,6],[2253,6],[8275,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[606,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[8088,6],[8306,6]]}},"component":{}}],["natpf1",{"_index":2249,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[8153,6],[8215,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4933,6],[4995,6]]},"/vantage.express.gcp.html":{"position":[[3960,6],[4022,6]]}},"component":{}}],["natur",{"_index":2448,"title":{},"name":{},"text":{"/sto.html":{"position":[[601,7]]}},"component":{}}],["navig",{"_index":209,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[4656,9]]},"/jupyter.html":{"position":[[1393,9]]},"/run-vantage-express-on-aws.html":{"position":[[6473,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3253,8]]},"/vantage.express.gcp.html":{"position":[[2280,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[4207,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[434,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[439,8]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2166,10]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[957,8],[1021,9]]},"/regulus/getting-started-with-regulus.html":{"position":[[3293,9]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[404,8]]}},"component":{}}],["nb",{"_index":1039,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[7287,3]]}},"component":{}}],["nb_user",{"_index":1450,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[4684,8]]}},"component":{}}],["nb_user=jovyan",{"_index":1440,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[4049,14]]}},"component":{}}],["nchar",{"_index":3968,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[39961,5]]}},"component":{}}],["nclob",{"_index":3971,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[39989,5]]}},"component":{}}],["necessari",{"_index":416,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[4339,9]]},"/ml.html":{"position":[[2476,10]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[7633,10],[25522,10]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3677,9],[4385,10]]},"/regulus/install-regulus-docker-image.html":{"position":[[1857,9]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[332,9]]}},"component":{}}],["need",{"_index":82,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1363,4],[1594,4],[1884,4],[2359,4],[4172,4],[4250,4],[6051,4]]},"/advanced-dbt.html":{"position":[[589,4],[2965,4],[3116,4],[7330,4]]},"/create-parquet-files-in-object-storage.html":{"position":[[554,4],[792,4],[872,4],[1354,4],[3149,4],[4392,4]]},"/dbt.html":{"position":[[316,4],[4930,4]]},"/fastload.html":{"position":[[239,4],[577,4],[3902,4],[4062,5],[7621,4]]},"/geojson-to-vantage.html":{"position":[[1011,5],[1063,4],[2047,6],[2197,4],[5200,4],[5242,4],[6991,4],[7695,6],[7845,4],[10672,4]]},"/getting.started.utm.html":{"position":[[855,6],[1329,4],[2005,4],[6601,4]]},"/getting.started.vbox.html":{"position":[[1057,4],[1434,4],[5336,5],[6197,4]]},"/getting.started.vmware.html":{"position":[[1014,4],[1322,4],[1511,4],[5710,4]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[1133,4]]},"/jdbc.html":{"position":[[254,4],[577,4],[1135,4]]},"/jupyter.html":{"position":[[434,4],[2121,4],[3689,4],[5511,4],[6096,4],[7383,4]]},"/local.jupyter.hub.html":{"position":[[500,4],[2422,4],[6154,4]]},"/ml.html":{"position":[[510,4],[561,4],[9155,4]]},"/mule.jdbc.example.html":{"position":[[351,4],[3581,4]]},"/nos.html":{"position":[[358,4],[545,4],[8767,4]]},"/odbc.ubuntu.html":{"position":[[188,4],[1992,4]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[343,4],[564,4],[7373,7],[10880,4]]},"/run-vantage-express-on-aws.html":{"position":[[671,4],[941,4],[4725,4],[10960,4],[12539,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[885,4],[7740,4],[8477,4]]},"/segment.html":{"position":[[764,4],[1478,4],[2488,4],[2859,4],[5611,4]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1147,5]]},"/sto.html":{"position":[[74,4],[708,4],[759,4],[1814,4],[2224,4],[2854,4],[7756,4],[7982,4]]},"/teradatasql.html":{"position":[[541,4],[1067,4]]},"/vantage.express.gcp.html":{"position":[[6767,4],[7653,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2639,4],[10044,4],[10259,7],[10290,4],[21621,4],[24859,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1191,4],[3924,4],[6433,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[634,4],[1472,5],[4095,4],[4635,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2775,4],[2863,4],[3185,5],[8047,4],[26263,4],[26375,6],[26411,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1664,4],[8953,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[1146,4],[1727,4],[6340,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[589,4],[963,4],[1563,4],[7341,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[568,4],[8531,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[440,4],[521,4],[997,4],[2920,7],[7106,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1471,4],[2904,4],[5037,4],[5303,6],[6148,4],[9625,5],[13603,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[456,4],[562,6],[600,6],[1610,6],[3889,7],[5284,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[493,4],[599,6],[637,6],[1647,6],[3915,4],[7335,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[246,4],[297,4],[452,4],[1832,4],[9877,4]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[659,4],[4943,4]]},"/mule-teradata-connector/index.html":{"position":[[725,4]]},"/mule-teradata-connector/reference.html":{"position":[[18017,7],[24014,7],[31072,4]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[192,4],[639,4],[1622,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4164,6],[4578,7],[5797,8],[6136,4],[9609,5],[9935,5],[10904,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[857,5],[1078,6],[1291,4]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[334,4],[602,4],[1868,4]]},"/query-service/send-queries-using-rest-api.html":{"position":[[570,4],[672,4],[7660,5],[12578,4]]},"/regulus/getting-started-with-regulus.html":{"position":[[4093,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[524,4],[3116,6],[8485,6],[9913,4]]},"/regulus/regulus-magic-reference.html":{"position":[[5184,4]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1954,4],[2262,4],[2867,4],[3096,4],[3395,4],[3690,4],[4052,4],[4420,4],[5082,4],[5442,4],[5728,4],[6505,4],[6810,4],[7071,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[71,4],[431,4],[3029,4],[9181,4]]}},"component":{}}],["nest",{"_index":2118,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[467,6]]},"/vantage.express.gcp.html":{"position":[[1049,6],[1337,6],[1625,6]]}},"component":{}}],["net",{"_index":89,"title":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_install_the_net_data_provider_for_teradata":{"position":[[12,4]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1557,4],[1669,4],[2463,4],[2648,4]]}},"component":{}}],["network",{"_index":1141,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[2072,7]]},"/run-vantage-express-on-aws.html":{"position":[[6406,7],[6485,7],[6579,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3186,7],[3265,7],[3359,7]]},"/vantage.express.gcp.html":{"position":[[2213,7],[2292,7],[2386,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[14229,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[4141,9]]},"/jupyter-demos/index.html":{"position":[[90,7],[488,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1513,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[5365,7],[5390,7],[6365,8]]}},"component":{}}],["never",{"_index":3924,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[34310,5]]}},"component":{}}],["new",{"_index":267,"title":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-a-new-pipeline-to-score-new-data":{"position":[[9,3],[31,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_a_new_project_or_use_an_existing_one":{"position":[[9,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_model_lifecycle_for_a_new_byom":{"position":[[22,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_a_new_project_or_use_an_existing_one":{"position":[[9,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_model_lifecycle_for_a_new_git":{"position":[[22,3]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[166,3],[1032,3],[5468,3]]},"/dbt.html":{"position":[[621,3]]},"/fastload.html":{"position":[[151,3]]},"/geojson-to-vantage.html":{"position":[[7518,3]]},"/getting.started.utm.html":{"position":[[4507,3],[5085,3],[5132,3]]},"/getting.started.vbox.html":{"position":[[3545,3],[3911,3],[3958,3]]},"/getting.started.vmware.html":{"position":[[3616,3],[4194,3],[4241,3]]},"/jupyter.html":{"position":[[1423,3],[2557,3]]},"/local.jupyter.hub.html":{"position":[[2582,3],[2745,3],[2851,3],[3832,3],[3938,3]]},"/ml.html":{"position":[[568,3],[1682,3]]},"/nos.html":{"position":[[692,3],[3842,3],[5539,4]]},"/run-vantage-express-on-aws.html":{"position":[[688,3],[9061,3]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[703,3],[5841,3]]},"/segment.html":{"position":[[1262,3]]},"/sto.html":{"position":[[2099,4],[2924,3],[2967,3]]},"/vantage.express.gcp.html":{"position":[[4868,3]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[7239,3]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[523,3],[1596,3],[3014,3],[5921,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[387,3],[863,3],[971,3],[5067,3],[6175,3],[23657,3],[23701,3],[25218,3],[25839,3]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4990,3],[5651,3]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2281,3],[2305,3],[2388,3],[2618,3],[3461,3]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[978,5],[1983,3],[3798,4],[6913,3]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1227,3],[2078,3]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[2218,3],[2406,3],[3290,3]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[787,3],[924,3],[1032,3],[2109,3],[2972,3],[9687,3],[10642,3],[10747,3],[12210,3],[12498,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[99,3],[183,3],[1637,3],[1972,3],[2013,3],[2399,3],[2461,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[99,3],[183,3],[1674,3],[2009,3],[2050,3],[2436,3],[2498,3],[3971,3],[5964,3]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6095,3]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[532,3],[773,3],[860,3]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[384,3],[509,3]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1470,3]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2141,3]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[810,3],[1109,3]]},"/query-service/send-queries-using-rest-api.html":{"position":[[7980,3]]},"/regulus/getting-started-with-regulus.html":{"position":[[947,3]]},"/regulus/install-regulus-docker-image.html":{"position":[[7762,3]]},"/regulus/regulus-magic-reference.html":{"position":[[735,3],[776,3]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1096,3]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[4122,3]]}},"component":{}}],["new_image_nam",{"_index":1426,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[1778,14]]}},"component":{}}],["new_password",{"_index":2296,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[11275,13]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[8055,13]]},"/vantage.express.gcp.html":{"position":[[7082,13]]}},"component":{}}],["newdata",{"_index":3546,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[11171,7]]}},"component":{}}],["newlead",{"_index":2869,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[322,8],[695,8],[23220,8],[23392,8],[23422,8],[23918,8]]}},"component":{}}],["newli",{"_index":1599,"title":{},"name":{},"text":{"/ml.html":{"position":[[7303,5]]},"/nos.html":{"position":[[3870,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[6009,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[19707,5]]}},"component":{}}],["next",{"_index":216,"title":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_next_steps":{"position":[[0,4]]},"/getting.started.utm.html#_next_steps":{"position":[[0,4]]},"/getting.started.vbox.html#_next_steps":{"position":[[0,4]]},"/getting.started.vmware.html#_next_steps":{"position":[[0,4]]},"/run-vantage-express-on-aws.html#_next_steps":{"position":[[0,4]]},"/run-vantage-express-on-microsoft-azure.html#_next_steps":{"position":[[0,4]]},"/vantage.express.gcp.html#_next_steps":{"position":[[0,4]]},"/regulus/getting-started-with-regulus.html#_next_steps":{"position":[[0,4]]},"/regulus/install-regulus-docker-image.html#_next_steps":{"position":[[0,4]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[4956,4]]},"/getting.started.utm.html":{"position":[[1868,5],[1904,5],[2805,4],[4547,4]]},"/getting.started.vbox.html":{"position":[[1614,4],[1843,4],[3585,4]]},"/getting.started.vmware.html":{"position":[[1914,4],[3656,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[4898,5],[5002,5],[5301,5],[7651,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[5947,5],[6787,5],[7406,5],[7572,5],[24505,5],[25078,5],[25346,5],[25461,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2654,4],[2665,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[6854,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[3446,5]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[5861,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[5858,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6611,5]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[2189,4],[3723,4]]},"/mule-teradata-connector/reference.html":{"position":[[30804,4],[31551,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3232,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[5884,5],[6693,5]]}},"component":{}}],["nginx",{"_index":4037,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3970,5],[8149,5]]}},"component":{}}],["nguyen",{"_index":3829,"title":{},"name":{},"text":{"/mule-teradata-connector/examples-configuration.html":{"position":[[12,6]]},"/mule-teradata-connector/index.html":{"position":[[12,6]]},"/mule-teradata-connector/reference.html":{"position":[[12,6]]},"/mule-teradata-connector/release-notes.html":{"position":[[12,6]]}},"component":{}}],["nic1",{"_index":2241,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[7569,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4349,4]]},"/vantage.express.gcp.html":{"position":[[3376,4]]}},"component":{}}],["nice",{"_index":1796,"title":{},"name":{},"text":{"/nos.html":{"position":[[7679,4]]}},"component":{}}],["nl",{"_index":3030,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[23414,2],[23434,3]]}},"component":{}}],["no",{"_index":499,"title":{"/fastload.html#_fastload_vs_nos":{"position":[[13,3]]},"/nos.html#_explore_data_with_nos":{"position":[[18,3]]},"/nos.html#_query_data_with_nos":{"position":[[16,3]]},"/nos.html#_load_data_from_nos_into_vantage":{"position":[[15,3]]},"/perform-time-series-analysis-using-teradata-vantage.html#_import_data_sets_from_aws_s3_using_vantage_nos":{"position":[[43,3]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_native_object_store_nos_teradata_parallel_transporter_tpt":{"position":[[46,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_configure_nos_access_to_azure_blob_storage":{"position":[[10,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_exploring_data_using_nos":{"position":[[21,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_export_vantage_data_to_amazon_s3_using_nos":{"position":[[39,3]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_tpt_vs_nos":{"position":[[8,3]]}},"name":{"/nos.html":{"position":[[0,3]]}},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[71,5],[598,3],[1326,3],[1775,3],[3188,3],[3770,4],[4160,6],[4167,3],[4248,3]]},"/fastload.html":{"position":[[6565,5],[7018,3],[7208,3]]},"/nos.html":{"position":[[81,5],[402,3],[656,3],[5571,3],[6691,4],[8506,5],[8538,3],[8619,3]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[420,3],[768,4]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[204,4],[209,3],[516,4],[1645,3]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[254,5],[1930,5],[2109,4],[2193,3],[2250,4],[3044,3],[8588,5],[8913,3],[13910,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[552,5],[801,3],[2273,5],[2443,4],[2523,3],[2577,4],[5365,3],[5408,3],[8081,3],[8418,4],[15484,3]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3316,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5071,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[8110,5],[8563,3],[8753,3]]}},"component":{}}],["node",{"_index":1492,"title":{"/teradata-vantage-engine-architecture-and-concepts.html#_node":{"position":[[0,4]]}},"name":{},"text":{"/ml.html":{"position":[[1538,6]]},"/nos.html":{"position":[[6752,6]]},"/sto.html":{"position":[[2147,5],[2265,6]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3125,5],[3411,5],[3776,5],[4012,5],[4305,5],[6260,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[10434,4]]},"/mule-teradata-connector/reference.html":{"position":[[32074,4],[32151,4]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1163,4],[1559,4],[1592,4]]},"/regulus/regulus-magic-reference.html":{"position":[[3180,6],[3352,5],[3381,5]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[4543,6]]}},"component":{}}],["nodep",{"_index":1503,"title":{},"name":{},"text":{"/ml.html":{"position":[[2498,6]]}},"component":{}}],["non",{"_index":670,"title":{},"name":{},"text":{"/dbt.html":{"position":[[3710,3]]},"/ml.html":{"position":[[3687,3]]},"/run-vantage-express-on-aws.html":{"position":[[2724,3]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7208,3]]},"/mule-teradata-connector/reference.html":{"position":[[1470,3],[1898,3],[18595,3],[21756,3],[24611,3],[36166,3],[36373,3]]},"/regulus/install-regulus-docker-image.html":{"position":[[5173,4],[6805,4],[6891,4]]}},"component":{}}],["none",{"_index":1080,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[10070,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[8257,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[5132,4],[5793,4]]},"/mule-teradata-connector/reference.html":{"position":[[1967,4],[31849,4],[31928,4]]}},"component":{}}],["nonprofit",{"_index":717,"title":{},"name":{},"text":{"/fastload.html":{"position":[[1055,9],[1080,9]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[909,9],[934,9]]}},"component":{}}],["nopi",{"_index":2701,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[10428,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[10044,6]]}},"component":{}}],["normal",{"_index":2459,"title":{},"name":{},"text":{"/sto.html":{"position":[[1794,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11095,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[3005,11],[3434,11],[3470,10],[4642,10],[4763,10],[4873,10],[4970,10],[6254,10],[8175,10],[8273,10]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6445,13]]}},"component":{}}],["nos_read",{"_index":2786,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[22366,8]]}},"component":{}}],["not_configur",{"_index":3867,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[2033,14],[2130,14]]}},"component":{}}],["not_support",{"_index":3876,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[3555,13],[5884,13],[8182,13],[10012,13],[12227,13],[13816,13],[15490,13],[18409,13],[21573,13],[24424,13],[28238,13]]}},"component":{}}],["note",{"_index":132,"title":{"/mule-teradata-connector/release-notes.html":{"position":[[27,5]]}},"name":{"/mule-teradata-connector/release-notes.html":{"position":[[8,5]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2681,4],[4028,4]]},"/geojson-to-vantage.html":{"position":[[10060,4]]},"/sto.html":{"position":[[3693,5],[5205,5],[5300,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1742,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[23271,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1624,4],[2769,4]]},"/mule-teradata-connector/index.html":{"position":[[356,6],[390,5]]},"/mule-teradata-connector/reference.html":{"position":[[316,6],[350,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1278,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2911,4]]}},"component":{}}],["notebook",{"_index":1312,"title":{"/jupyter.html":{"position":[[27,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[53,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html#_steps_to_integrate_with_notebook_instance":{"position":[[24,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Setup-the-notebook-environment":{"position":[[10,8]]},"/jupyter-demos/index.html":{"position":[[8,8]]}},"name":{},"text":{"/jupyter.html":{"position":[[125,9],[176,9],[417,9],[598,9],[663,8],[892,9],[1574,9],[1779,9],[1841,9],[1899,10],[1924,10],[1944,9],[2070,8],[2561,8],[2640,8],[2974,8],[4728,8],[4868,8],[5071,9],[5286,8],[5565,8],[5921,9],[6585,9],[6615,9],[6796,9]]},"/local.jupyter.hub.html":{"position":[[685,8],[913,9],[1073,8],[2444,9],[2704,10],[3124,9],[3139,11],[3645,10],[4587,9],[4700,9],[4715,12]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[118,9],[169,9],[875,10],[894,9],[921,10],[967,10],[1054,10],[1600,8],[3018,8],[3114,8],[3184,9],[3258,9],[3736,10],[4394,9],[4422,12],[5925,8],[6291,9],[6385,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[123,9],[174,9],[570,8],[876,8],[1046,8],[1607,8],[1809,8],[1889,8],[2090,8],[3906,8],[4208,8],[4288,9],[4314,9],[4489,8],[4563,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2133,8],[2225,8],[2254,8],[6072,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[396,8],[1318,8],[1656,9],[1904,10],[1974,8],[2016,8],[2050,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[5935,9],[5945,9]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[47,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[439,9],[685,8],[828,8],[851,8],[1201,8],[1224,8],[1557,8],[4806,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[476,9],[722,8],[865,8],[888,8],[1238,8],[1261,8],[1594,8],[4419,8],[4477,8],[4806,8],[4864,8],[5181,8],[5239,8],[6723,8]]},"/regulus/install-regulus-docker-image.html":{"position":[[8718,9],[9601,9]]}},"component":{}}],["notebooks:/home/jovyan/jupyterlabroot",{"_index":1390,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[5983,37]]}},"component":{}}],["notepad",{"_index":3191,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1280,7]]}},"component":{}}],["noth",{"_index":2540,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[330,7],[2645,7],[3738,7]]}},"component":{}}],["notic",{"_index":697,"title":{},"name":{},"text":{"/fastload.html":{"position":[[67,6]]}},"component":{}}],["notif",{"_index":2666,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[5585,13]]}},"component":{}}],["novemb",{"_index":1301,"title":{},"name":{},"text":{"/jdbc.html":{"position":[[39,8]]},"/jupyter.html":{"position":[[39,8]]},"/local.jupyter.hub.html":{"position":[[36,8]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[4462,9],[6174,9]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[49,8]]}},"component":{}}],["now",{"_index":357,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[2725,3],[3382,4]]},"/create-parquet-files-in-object-storage.html":{"position":[[2328,3],[3048,3],[3115,3],[3722,3]]},"/dbt.html":{"position":[[925,3],[1556,4],[2577,3],[2726,3]]},"/fastload.html":{"position":[[1515,3],[2540,4],[2847,3],[3307,4]]},"/geojson-to-vantage.html":{"position":[[2908,3],[4094,3],[6332,3],[6650,3],[9055,3],[9371,3],[10531,3]]},"/getting.started.utm.html":{"position":[[4296,3],[4651,3],[5702,4]]},"/getting.started.vbox.html":{"position":[[3334,3],[4528,4]]},"/getting.started.vmware.html":{"position":[[3405,3],[3760,3],[4811,4]]},"/jupyter.html":{"position":[[2869,4],[3482,3],[4279,3]]},"/ml.html":{"position":[[1669,3],[3251,4],[6408,3],[7221,4]]},"/mule.jdbc.example.html":{"position":[[3016,3]]},"/nos.html":{"position":[[2170,3],[3131,3]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[4196,3],[4267,3],[6026,3],[7530,3]]},"/run-vantage-express-on-aws.html":{"position":[[9586,4],[11297,3]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6366,4],[8077,3]]},"/sto.html":{"position":[[1219,3],[3318,3],[3672,3],[5619,3],[7056,4]]},"/vantage.express.gcp.html":{"position":[[5393,4],[7104,3]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[5887,3],[5944,3],[13459,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[23649,3]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[5846,3]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[5470,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3573,3],[8840,3],[9517,3],[12980,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1951,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1988,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1818,4],[3146,3],[4453,4],[6235,3]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3276,4],[6680,3]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2938,3],[3391,4],[4817,3]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1390,3]]}},"component":{}}],["nox",{"_index":3387,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2755,6],[3459,4],[7219,6]]}},"component":{}}],["null",{"_index":557,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2021,5],[2062,5]]},"/dbt.html":{"position":[[3714,4]]},"/ml.html":{"position":[[5830,4],[5943,4],[6056,4],[6169,4]]},"/nos.html":{"position":[[3514,5],[4471,4],[4476,4],[4514,4],[4587,4],[4704,4],[4821,4],[4938,4],[5055,4],[5060,4],[5098,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[21320,4],[22066,4],[24611,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13534,5],[13710,5],[13739,5],[13781,5],[13804,4],[13901,5],[13939,5],[13962,5],[13999,5],[14033,4],[14204,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7212,4]]},"/mule-teradata-connector/reference.html":{"position":[[39879,4]]},"/regulus/getting-started-with-regulus.html":{"position":[[2186,5],[2840,5]]}},"component":{}}],["num_of_employe",{"_index":2973,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[12254,16],[16977,16],[18781,16],[21307,15],[22763,16]]}},"component":{}}],["num_round=100",{"_index":3170,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3857,13]]}},"component":{}}],["num_row",{"_index":4240,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[3685,8],[3770,9]]}},"component":{}}],["number",{"_index":591,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[3169,6]]},"/fastload.html":{"position":[[7190,6]]},"/jupyter.html":{"position":[[6514,6]]},"/nos.html":{"position":[[1933,8]]},"/segment.html":{"position":[[1462,7]]},"/sto.html":{"position":[[1418,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6752,6]]},"/mule-teradata-connector/reference.html":{"position":[[3675,6],[4073,6],[4272,6],[4310,6],[4413,7],[5182,6],[6005,6],[6401,6],[6598,6],[6636,6],[6739,7],[7475,6],[8303,6],[8701,6],[8808,6],[8846,6],[8949,7],[9692,6],[10132,6],[10530,6],[10637,6],[10675,6],[10778,7],[11822,6],[12347,6],[12745,6],[12852,6],[12890,6],[12993,7],[13390,6],[14116,6],[14514,6],[14621,6],[14659,6],[14762,7],[15168,6],[15610,6],[16008,6],[16115,6],[16153,6],[16256,7],[17105,6],[18669,6],[19067,6],[19174,6],[19212,6],[19315,7],[21830,6],[22228,6],[22335,6],[22354,6],[24685,6],[25082,6],[25279,6],[25317,6],[25420,7],[26848,6],[28352,6],[28750,6],[28857,6],[28895,6],[28998,7],[29851,6],[32392,6],[32790,6],[32897,6],[32935,6],[33038,7],[33303,6],[33318,6],[33391,6],[33406,6],[33483,6],[33609,6],[33741,6],[34149,6],[34747,6],[34772,6],[35375,6],[35981,6],[36035,6],[36046,6],[36247,6],[38523,6],[38906,6],[38925,6],[40089,6],[40184,6],[40195,6],[40561,6],[40864,6],[41142,6],[41161,6],[41447,6],[41458,6],[41783,6],[42045,6],[42418,6]]},"/query-service/send-queries-using-rest-api.html":{"position":[[3340,6],[3880,6],[8778,6]]},"/regulus/regulus-magic-reference.html":{"position":[[3358,6]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[4520,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[8735,6]]}},"component":{}}],["number_of_amp",{"_index":2457,"title":{},"name":{},"text":{"/sto.html":{"position":[[1467,15],[1492,14]]}},"component":{}}],["numer",{"_index":3958,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[39787,7]]}},"component":{}}],["numtimesprg",{"_index":3625,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2855,12]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2892,12]]}},"component":{}}],["nvarchar",{"_index":3969,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[39967,8]]}},"component":{}}],["ny",{"_index":1546,"title":{},"name":{},"text":{"/ml.html":{"position":[[4573,4]]}},"component":{}}],["ny_resident_ind",{"_index":1547,"title":{},"name":{},"text":{"/ml.html":{"position":[[4600,15]]}},"component":{}}],["nyc_taxi_trip_t",{"_index":2026,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[7660,16],[8130,16]]}},"component":{}}],["nyoka==4.3.0",{"_index":3681,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[5524,12]]}},"component":{}}],["nyse:tdc",{"_index":2521,"title":{},"name":{},"text":{"/sto.html":{"position":[[6279,9],[7264,9]]}},"component":{}}],["o",{"_index":2221,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[6790,1],[6904,1]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[651,1],[1511,1],[1901,1],[2279,1],[3570,1],[3684,1]]},"/vantage.express.gcp.html":{"position":[[2597,1],[2711,1]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2455,1],[3312,1]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[15211,2]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4698,1]]}},"component":{}}],["o+w",{"_index":4051,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[5531,3]]}},"component":{}}],["o.customer_id",{"_index":3020,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[15271,13],[15289,13]]}},"component":{}}],["o.order_d",{"_index":3010,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[14950,12]]}},"component":{}}],["o.order_id",{"_index":3008,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[14894,10],[15324,10]]}},"component":{}}],["o.order_statu",{"_index":3009,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[14918,14]]}},"component":{}}],["oauth",{"_index":3297,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1042,5],[2596,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[4289,5],[4485,5],[4708,5],[4767,5],[7034,5],[7165,5]]}},"component":{}}],["oauth2.googleapis.com:443",{"_index":3100,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[5016,25],[5677,25]]}},"component":{}}],["ob",{"_index":495,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[8,4]]}},"component":{}}],["object",{"_index":327,"title":{"/create-parquet-files-in-object-storage.html":{"position":[[24,6]]},"/nos.html":{"position":[[21,6]]},"/nos.html#_export_data_from_vantage_to_object_storage":{"position":[[28,6]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_ingesting_data_from_external_object_store":{"position":[[29,6]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_native_object_store_nos_teradata_parallel_transporter_tpt":{"position":[[33,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_objective":{"position":[[0,9]]}},"name":{"/create-parquet-files-in-object-storage.html":{"position":[[24,6]]}},"text":{"/advanced-dbt.html":{"position":[[1817,9]]},"/create-parquet-files-in-object-storage.html":{"position":[[56,6],[245,6],[504,6],[767,6],[1096,6],[2664,6],[3092,6],[4117,6],[4145,6],[4289,6],[4350,6]]},"/fastload.html":{"position":[[6550,6],[7289,6],[7577,6]]},"/geojson-to-vantage.html":{"position":[[1264,6],[5065,6],[9136,6]]},"/getting.started.utm.html":{"position":[[6500,6]]},"/getting.started.vbox.html":{"position":[[6096,6]]},"/getting.started.vmware.html":{"position":[[5609,6]]},"/jupyter.html":{"position":[[1296,7],[6953,6]]},"/nos.html":{"position":[[66,6],[157,6],[5366,6],[7208,6],[7410,6],[7648,6],[7742,6],[7870,6],[8049,6],[8273,6],[8463,6],[8491,6],[8660,6],[8703,6]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10774,6],[10816,6]]},"/run-vantage-express-on-aws.html":{"position":[[12417,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[8355,6]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[268,6],[437,6],[1624,6]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1289,7],[1380,7],[3198,6],[3223,6]]},"/vantage.express.gcp.html":{"position":[[7531,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[241,6],[1644,6],[1917,6],[1976,6],[2047,6],[8575,6],[9041,6],[9951,6],[10122,6],[10630,6],[10857,7],[11023,6],[11184,6],[13522,6],[13651,6],[17393,6],[20982,6],[21089,7],[21195,7],[21255,7],[21922,7],[21984,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[539,6],[1846,6],[2260,6],[2319,6],[2381,6],[4931,7],[4973,8],[4992,8],[6564,8],[6613,7],[8282,6],[8699,6],[8766,6],[9675,6],[10339,6],[10504,6],[11001,6],[12891,7],[17598,6],[24970,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1305,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[6046,7]]},"/mule-teradata-connector/reference.html":{"position":[[3300,6],[4344,6],[5632,6],[6670,6],[7927,6],[8880,6],[10709,6],[11215,6],[12924,6],[14693,6],[16187,6],[16682,6],[19246,6],[19741,6],[20368,6],[22388,6],[22863,6],[23481,6],[25351,6],[25838,6],[26155,6],[27429,6],[28929,6],[29424,6],[32969,6],[33214,6],[34348,6],[39437,6],[39450,6],[39467,6],[40111,6],[41134,7]]},"/query-service/send-queries-using-rest-api.html":{"position":[[2975,9],[3042,7],[3080,6],[3111,6],[3509,9],[8933,9],[9203,9],[9379,9],[9620,9]]},"/regulus/getting-started-with-regulus.html":{"position":[[1067,6],[3658,6]]},"/regulus/regulus-magic-reference.html":{"position":[[1318,7],[1842,6],[1858,6],[1918,6],[2371,6],[2415,6],[2475,6],[2511,6],[2545,6],[2619,6],[2761,6],[2830,6],[4569,6],[4703,6],[4777,6],[4960,6]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[3529,6],[3854,6],[4936,6],[5606,6],[5948,6],[6112,6],[6196,6],[6351,6],[6651,6],[6915,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[5981,6],[6118,6],[6255,6],[8095,6],[8834,6],[9137,6]]}},"component":{}}],["object_id",{"_index":782,"title":{},"name":{},"text":{"/fastload.html":{"position":[[3259,9],[4844,9],[5602,9],[6167,9]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[4742,9],[5070,9]]}},"component":{}}],["objective='binary:logist",{"_index":3177,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3941,27]]}},"component":{}}],["objectlength",{"_index":2784,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[22020,12]]}},"component":{}}],["obtain",{"_index":3370,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1952,8]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1728,8]]},"/mule-teradata-connector/reference.html":{"position":[[30628,8],[33786,6]]}},"component":{}}],["occur",{"_index":3903,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[20513,7],[20879,6],[27701,6]]}},"component":{}}],["ocsp",{"_index":3933,"title":{"/mule-teradata-connector/reference.html#custom-ocsp-responder":{"position":[[7,4]]}},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[36720,4],[37969,4],[38248,4],[38323,4]]}},"component":{}}],["octob",{"_index":3606,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[781,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[818,8]]}},"component":{}}],["od_ir",{"_index":4539,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[4176,8],[5854,7],[5888,7],[5916,7],[5945,7],[6021,7],[6082,7],[6158,7],[6219,7],[6295,7],[6356,7],[6387,7],[6444,7],[6484,7]]}},"component":{}}],["odbc",{"_index":1802,"title":{"/odbc.ubuntu.html":{"position":[[17,4]]},"/odbc.ubuntu.html#_use_odbc":{"position":[[4,4]]}},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[97,4],[465,4],[742,5],[811,5],[844,4],[891,4],[940,4],[1349,4],[1591,6],[1627,4],[1713,4],[1787,4],[1861,4],[1926,4]]}},"component":{}}],["odbc.ubuntu",{"_index":1804,"title":{},"name":{"/odbc.ubuntu.html":{"position":[[0,11]]}},"text":{},"component":{}}],["of",{"_index":2569,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3242,6]]}},"component":{}}],["offer",{"_index":702,"title":{},"name":{},"text":{"/fastload.html":{"position":[[297,6]]},"/getting.started.utm.html":{"position":[[4428,7]]},"/getting.started.vbox.html":{"position":[[3466,7]]},"/getting.started.vmware.html":{"position":[[1249,5],[1392,6],[3537,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[269,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[625,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[129,6]]}},"component":{}}],["offici",{"_index":859,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[279,9]]},"/run-vantage-express-on-aws.html":{"position":[[711,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[483,8],[5339,8]]}},"component":{}}],["offlin",{"_index":3702,"title":{"/modelops/using-feast-feature-store-with-teradata-vantage.html#_offline_store_config":{"position":[[0,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html#_offline_store_usage":{"position":[[0,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_offline_store_config":{"position":[[0,7]]}},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[227,7],[579,7],[627,7],[696,7],[754,7],[1034,7],[4365,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3763,7]]}},"component":{}}],["offline_stor",{"_index":3718,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2917,14],[5781,14]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[4164,14]]}},"component":{}}],["offlinestor",{"_index":3705,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1128,12],[2329,13]]}},"component":{}}],["offload",{"_index":2534,"title":{},"name":{},"text":{"/sto.html":{"position":[[7647,8]]}},"component":{}}],["oh",{"_index":1554,"title":{},"name":{},"text":{"/ml.html":{"position":[[4869,4]]}},"component":{}}],["oh_resident_ind",{"_index":1555,"title":{},"name":{},"text":{"/ml.html":{"position":[[4896,15]]}},"component":{}}],["oi",{"_index":3019,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[15226,3]]}},"component":{}}],["oi.item_id",{"_index":3011,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[14978,10]]}},"component":{}}],["oi.order_id",{"_index":3022,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[15337,11]]}},"component":{}}],["oi.product_id",{"_index":3012,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[15001,13]]}},"component":{}}],["ok",{"_index":170,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3492,3]]},"/sto.html":{"position":[[1212,3],[1952,3],[2437,3]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[2773,2],[4268,3]]}},"component":{}}],["okay",{"_index":1174,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[3193,4]]},"/getting.started.vbox.html":{"position":[[2231,4]]},"/getting.started.vmware.html":{"position":[[2302,4]]}},"component":{}}],["ol_ir",{"_index":4562,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[6634,7],[6984,7],[7012,7],[7043,7],[7078,7],[7113,7],[7168,7],[7209,7],[7244,7],[7283,7],[7322,7],[7391,7],[7504,7],[7533,7],[7576,7],[7642,7],[7697,7],[7752,7],[7815,7],[7872,7],[7912,7]]}},"component":{}}],["old",{"_index":4514,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2439,3],[4098,3]]}},"component":{}}],["old_image_nam",{"_index":1425,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[1763,14]]}},"component":{}}],["oliva",{"_index":3602,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[28,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[28,5]]}},"component":{}}],["on",{"_index":125,"title":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_a_new_project_or_use_an_existing_one":{"position":[[40,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_a_new_project_or_use_an_existing_one":{"position":[[40,3]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2410,3],[4781,3]]},"/advanced-dbt.html":{"position":[[640,3],[813,3]]},"/create-parquet-files-in-object-storage.html":{"position":[[923,3]]},"/dbt.html":{"position":[[367,3],[2417,3]]},"/fastload.html":{"position":[[628,3]]},"/geojson-to-vantage.html":{"position":[[829,3],[1114,3]]},"/getting.started.utm.html":{"position":[[1009,3]]},"/getting.started.vbox.html":{"position":[[596,3],[807,3]]},"/getting.started.vmware.html":{"position":[[596,3],[804,3]]},"/jdbc.html":{"position":[[305,3]]},"/jupyter.html":{"position":[[485,3],[2355,3]]},"/local.jupyter.hub.html":{"position":[[551,3],[2586,3]]},"/mule.jdbc.example.html":{"position":[[402,3],[711,3]]},"/nos.html":{"position":[[596,3]]},"/odbc.ubuntu.html":{"position":[[239,3]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[615,3]]},"/run-vantage-express-on-aws.html":{"position":[[1002,3],[4784,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[339,3],[944,4]]},"/segment.html":{"position":[[587,3],[815,3],[5265,3]]},"/sto.html":{"position":[[154,3],[810,3],[1291,4],[5268,3],[5275,4],[7735,3]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[4879,3]]},"/teradatasql.html":{"position":[[592,3]]},"/vantage.express.gcp.html":{"position":[[650,3]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[132,3],[2690,3],[6266,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1242,3],[3869,3],[3952,3]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[685,3],[1344,3],[1443,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2914,3],[19881,3]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1715,3]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[169,3],[1778,3]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[640,3],[1016,3],[1210,3],[6325,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[619,3],[2082,4],[5198,3]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[572,3],[4871,3]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[11273,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[507,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[544,3]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[348,3]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1550,3],[1712,3]]},"/mule-teradata-connector/index.html":{"position":[[776,3]]},"/mule-teradata-connector/reference.html":{"position":[[1959,3],[3518,3],[3848,3],[4646,3],[5847,3],[6177,3],[6957,3],[7750,3],[8145,3],[8476,3],[9167,3],[9975,3],[10305,3],[10996,3],[12190,3],[12520,3],[13779,3],[14289,3],[15453,3],[15783,3],[16474,3],[18372,3],[18842,3],[19533,3],[20492,3],[21154,3],[21536,3],[22003,3],[22655,3],[23789,3],[24387,3],[24857,3],[25634,3],[28201,3],[28525,3],[29216,3],[30612,3],[31828,3],[31963,3],[32565,3],[34042,3],[38047,3],[38713,3],[39290,3],[39725,3],[41312,3],[42282,3],[42591,3]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[243,3],[697,4],[971,3]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1502,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1342,3]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[385,3]]},"/query-service/send-queries-using-rest-api.html":{"position":[[723,3],[3102,3]]},"/regulus/install-regulus-docker-image.html":{"position":[[1468,3],[2539,3],[7925,3]]},"/regulus/regulus-magic-reference.html":{"position":[[353,3]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1506,3]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[482,3],[4126,4]]}},"component":{}}],["on(select",{"_index":2514,"title":{},"name":{},"text":{"/sto.html":{"position":[[5849,9],[6892,9]]}},"component":{}}],["on_demand_feature_view",{"_index":3819,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9086,23]]}},"component":{}}],["onc",{"_index":203,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[4427,4],[5534,4]]},"/fastload.html":{"position":[[5011,4]]},"/getting.started.utm.html":{"position":[[297,4],[2615,4],[3226,4],[4444,4],[4855,4]]},"/getting.started.vbox.html":{"position":[[297,4],[2264,4],[3482,4],[3681,4]]},"/getting.started.vmware.html":{"position":[[297,4],[2335,4],[3553,4],[3964,4]]},"/ml.html":{"position":[[2969,4]]},"/mule.jdbc.example.html":{"position":[[2705,4]]},"/run-vantage-express-on-aws.html":{"position":[[5917,4],[8699,4],[8911,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2442,4],[5479,4],[5691,4]]},"/sto.html":{"position":[[1337,4],[1667,4]]},"/vantage.express.gcp.html":{"position":[[4506,4],[4718,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[859,4],[2492,4],[2843,4],[8202,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1674,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[722,4],[5249,4],[7004,4],[7745,4],[10059,4],[25634,4],[25876,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[4404,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2493,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1951,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[13459,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6381,5]]},"/mule-teradata-connector/reference.html":{"position":[[17870,5],[23850,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[442,4],[8673,4],[10086,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[2619,4],[3137,4],[4151,4],[8153,4],[9326,4]]}},"component":{}}],["onehotencod",{"_index":4135,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1714,14]]}},"component":{}}],["ongo",{"_index":3906,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[20968,7],[27789,7]]}},"component":{}}],["onlin",{"_index":53,"title":{"/modelops/using-feast-feature-store-with-teradata-vantage.html#_online_store":{"position":[[0,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html#_online_store_config":{"position":[[0,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html#_online_store_usage":{"position":[[0,6]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[717,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2835,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[216,6],[591,6],[820,6],[892,6],[1059,6],[5443,6],[5546,6],[5657,6],[5962,6],[6065,6],[6636,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3780,6]]}},"component":{}}],["onlinestor",{"_index":3706,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1141,11],[2347,12],[5727,11]]}},"component":{}}],["onpoint_history_post",{"_index":2661,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[5083,22]]}},"component":{}}],["onto",{"_index":3839,"title":{},"name":{},"text":{"/mule-teradata-connector/examples-configuration.html":{"position":[[3193,4]]}},"component":{}}],["op_ir",{"_index":4568,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[6903,7]]}},"component":{}}],["op_irs[1",{"_index":4564,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[6741,10],[6819,10],[6875,10],[6919,10],[7354,10]]}},"component":{}}],["open",{"_index":139,"title":{"/geojson-to-vantage.html#_open_the_geojson_file_and_type_it_as_a_dictionary":{"position":[[0,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_open_invitation":{"position":[[0,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_launch_airbyte_open_source":{"position":[[15,4]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2840,7],[5087,5]]},"/dbt.html":{"position":[[4439,4]]},"/geojson-to-vantage.html":{"position":[[1518,4],[1669,4],[2381,5],[2912,4],[5899,4],[8029,5],[10559,4]]},"/getting.started.utm.html":{"position":[[1934,4],[4747,4]]},"/getting.started.vbox.html":{"position":[[958,4]]},"/getting.started.vmware.html":{"position":[[3856,4]]},"/jupyter.html":{"position":[[2238,4],[2550,4],[6521,4],[6566,4]]},"/ml.html":{"position":[[2387,4]]},"/mule.jdbc.example.html":{"position":[[2668,4]]},"/run-vantage-express-on-aws.html":{"position":[[6397,4],[10968,4],[11301,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3177,4],[7748,4],[8081,4],[8143,4]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1304,4]]},"/vantage.express.gcp.html":{"position":[[2204,4],[6775,4],[7108,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[3157,4],[6947,5],[8004,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[3179,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[4258,5],[4279,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2622,5]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2244,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1158,4],[1379,4],[3271,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[162,4],[7898,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[98,4],[651,4],[1167,4],[1964,4],[2050,4],[3134,4],[7511,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1430,4],[2160,4],[4505,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4796,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[5910,4],[6713,4]]},"/mule-teradata-connector/reference.html":{"position":[[20481,4],[20695,4],[27552,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6832,4]]},"/regulus/getting-started-with-regulus.html":{"position":[[3284,4]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[912,4]]}},"component":{}}],["open(countries_geojson",{"_index":1014,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[6143,23]]}},"component":{}}],["open(output_file.path",{"_index":3437,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[5655,22]]}},"component":{}}],["open(trainfilenam",{"_index":3159,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3145,19]]}},"component":{}}],["open(world_c",{"_index":893,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[1965,18]]}},"component":{}}],["open.html",{"_index":1349,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[2327,9]]}},"component":{}}],["openapi",{"_index":4389,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[12527,7]]}},"component":{}}],["openjdk",{"_index":3990,"title":{},"name":{},"text":{"/mule-teradata-connector/release-notes.html":{"position":[[1082,7]]}},"component":{}}],["opensuse_64",{"_index":2235,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[7487,11]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4267,11]]},"/vantage.express.gcp.html":{"position":[[3294,11]]}},"component":{}}],["oper",{"_index":310,"title":{"/perform-time-series-analysis-using-teradata-vantage.html#_basic_time_series_operations":{"position":[[18,10]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_json_keys_table_operator":{"position":[[16,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_read_nos_table_operator":{"position":[[15,8]]},"/mule-teradata-connector/examples-configuration.html#add-connector-operation":{"position":[[16,9]]},"/mule-teradata-connector/reference.html#_operations":{"position":[[0,10]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[1279,9]]},"/getting.started.utm.html":{"position":[[1632,9]]},"/getting.started.vbox.html":{"position":[[617,9]]},"/getting.started.vmware.html":{"position":[[617,9]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10182,11],[10742,10]]},"/sto.html":{"position":[[320,8],[508,7],[1589,8],[4113,8],[7577,8],[7597,8],[7857,9],[7944,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2189,9],[3596,10],[3650,9]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11159,8],[20909,9],[20930,8],[21160,8],[21881,8],[22381,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11211,8],[12726,8],[17525,9],[17546,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[7278,9]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[342,9],[2920,9],[2978,9],[3029,9],[3163,10],[3183,9],[3308,10],[3393,10],[3620,9],[3688,10]]},"/mule-teradata-connector/index.html":{"position":[[1007,9],[1093,10]]},"/mule-teradata-connector/reference.html":{"position":[[2650,10],[2946,9],[2970,10],[3141,9],[3601,10],[5288,9],[5473,9],[5930,10],[7581,9],[7768,9],[8228,10],[9798,9],[10058,10],[11928,9],[12273,10],[13496,9],[13862,10],[15274,9],[15536,10],[17792,9],[18033,9],[18455,10],[20447,10],[20913,9],[21047,9],[21222,9],[21319,10],[21616,10],[23566,10],[23634,9],[24046,9],[24470,10],[27518,10],[27734,9],[27890,9],[28284,10],[30545,9],[31009,9],[31153,9],[31219,9],[35086,9]]},"/mule-teradata-connector/release-notes.html":{"position":[[607,9],[693,10]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1883,10]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[893,9]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1554,10],[1627,9],[1646,8],[1731,9],[2090,8],[4185,8],[4795,8],[4871,8],[4904,9],[5229,8],[5825,8],[6605,8],[6712,8],[6853,8],[6890,8],[6930,8]]}},"component":{}}],["operation",{"_index":1091,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[10511,15]]},"/ml.html":{"position":[[195,14]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4404,14],[4791,14],[5166,14]]}},"component":{}}],["operation’",{"_index":3889,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[4907,11],[4984,11],[7198,11],[7276,11],[9417,11],[9494,11],[11556,11],[11633,11],[13124,11],[13201,11],[14893,11],[14970,11],[17410,11],[17487,11],[20091,11],[20169,11],[23220,11],[23289,11],[27162,11],[27240,11],[30163,11],[30240,11]]}},"component":{}}],["operator($file_reader(schema_ir",{"_index":4542,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[5260,35]]}},"component":{}}],["opt/conda",{"_index":1454,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[4899,10],[5650,10],[5697,10]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[4552,10],[5162,10],[5210,10]]}},"component":{}}],["opt/download",{"_index":2210,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[6020,14],[6038,14]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2545,14],[2563,14],[2779,14]]},"/vantage.express.gcp.html":{"position":[[1827,14],[1845,14]]}},"component":{}}],["opt/teradata/client/17.10/tbuild/checkpoint",{"_index":4547,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[5636,44]]}},"component":{}}],["opt/teradata/client/17.10/tbuild/log",{"_index":4546,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[5575,38]]}},"component":{}}],["opt/teradata/client/17.10/tbuild/logs/file_load",{"_index":4548,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[5690,48]]}},"component":{}}],["opt/teradata/client/17.10/tbuild/twbcfg.ini",{"_index":4545,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[5504,46]]}},"component":{}}],["optic",{"_index":1263,"title":{},"name":{},"text":{"/getting.started.vbox.html":{"position":[[5585,8]]}},"component":{}}],["optim",{"_index":276,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[366,10],[4023,9]]},"/geojson-to-vantage.html":{"position":[[963,8]]},"/getting.started.utm.html":{"position":[[209,9]]},"/getting.started.vbox.html":{"position":[[209,9],[5454,7]]},"/getting.started.vmware.html":{"position":[[209,9]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10447,9]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[163,7],[626,9]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1421,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1837,9]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1498,9]]},"/jupyter-demos/index.html":{"position":[[98,12]]}},"component":{}}],["option",{"_index":172,"title":{"/geojson-to-vantage.html#_option_1_load_a_geojson_document_into_vantage":{"position":[[0,6]]},"/geojson-to-vantage.html#_option_2_prepare_a_geojson_document_with_python_and_load_it_into_vantage":{"position":[[0,6]]},"/geojson-to-vantage.html#_optional_check_the_content_of_the_file":{"position":[[0,10]]},"/jupyter.html#_options":{"position":[[0,7]]},"/run-vantage-express-on-aws.html#_optional_setup":{"position":[[0,8]]},"/run-vantage-express-on-microsoft-azure.html#_optional_setup":{"position":[[0,8]]},"/vantage.express.gcp.html#_optional_setup":{"position":[[0,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_load_data_from_blob_storage_into_vantage_optional":{"position":[[41,10]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_cleanup_optional":{"position":[[8,10]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_cleanup_optional":{"position":[[8,10]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html#_optional_ssh_tunneling":{"position":[[0,9]]},"/query-service/send-queries-using-rest-api.html#_make_a_simple_api_request_with_basic_options":{"position":[[37,7]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3512,7],[3589,6],[3816,6],[3867,6],[4607,7]]},"/getting.started.utm.html":{"position":[[2065,6]]},"/jupyter.html":{"position":[[679,6],[1014,7],[1527,7],[1540,6],[6742,7]]},"/local.jupyter.hub.html":{"position":[[124,7],[355,8],[5779,10]]},"/ml.html":{"position":[[2959,6],[2985,6],[3135,6]]},"/run-vantage-express-on-aws.html":{"position":[[418,7]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[232,6],[581,6],[720,8],[816,6],[936,6],[1332,6],[1571,6]]},"/sto.html":{"position":[[158,6],[2304,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[3146,10]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2816,10],[3202,6],[5321,10]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[5082,7],[5168,6],[5871,11],[7388,11],[7554,11],[24429,11]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[757,10]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[2110,10],[2460,10],[2580,10],[3955,10],[4075,10]]},"/mule-teradata-connector/reference.html":{"position":[[4615,10],[6926,10],[9136,10],[10965,10],[16443,10],[19502,10],[22624,10],[25603,10],[29185,10],[30642,11]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[365,8],[1244,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8386,9]]},"/regulus/getting-started-with-regulus.html":{"position":[[1032,10]]},"/regulus/install-regulus-docker-image.html":{"position":[[5557,7]]},"/regulus/regulus-magic-reference.html":{"position":[[582,10],[1133,10],[1439,10],[2047,11],[3341,10],[3427,10],[3528,10],[3625,10],[3828,10],[4473,10],[4903,10]]}},"component":{}}],["oracl",{"_index":2434,"title":{},"name":{},"text":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1078,7]]}},"component":{}}],["orchestr",{"_index":1089,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[10457,13]]},"/regulus/install-regulus-docker-image.html":{"position":[[608,13]]}},"component":{}}],["order",{"_index":397,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3831,7],[4079,6],[5206,5],[5543,6],[5830,6],[6583,7]]},"/dbt.html":{"position":[[1881,5],[1962,7]]},"/fastload.html":{"position":[[1650,5]]},"/getting.started.utm.html":{"position":[[2317,6]]},"/nos.html":{"position":[[8011,5]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[105,6],[4699,5],[6459,5],[8170,5],[8321,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[21499,5],[22272,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[240,5],[13364,8],[13437,7],[13487,7],[13508,6],[13619,5],[14545,7],[14658,7],[14727,5],[15204,6],[15349,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2828,6],[2903,6],[4893,6],[6154,5]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6267,5]]},"/mule-teradata-connector/reference.html":{"position":[[31133,5]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[808,8]]},"/regulus/getting-started-with-regulus.html":{"position":[[2608,5],[3269,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1744,5]]}},"component":{}}],["order_d",{"_index":2996,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13690,10],[14966,11]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[5613,11]]}},"component":{}}],["order_id",{"_index":449,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[5380,8],[5725,8],[6137,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13517,8],[13825,11],[13884,8],[14064,10],[14908,9]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[5493,9]]}},"component":{}}],["order_item",{"_index":2990,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13445,11],[13845,12],[13871,12],[14553,12],[14666,11],[15214,11]]}},"component":{}}],["order_pay",{"_index":656,"title":{},"name":{},"text":{"/dbt.html":{"position":[[3030,15]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[6379,15]]}},"component":{}}],["order_product",{"_index":398,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3853,15],[4090,14]]}},"component":{}}],["order_statu",{"_index":2993,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13598,12],[14936,13]]}},"component":{}}],["organ",{"_index":718,"title":{},"name":{},"text":{"/fastload.html":{"position":[[1065,14]]},"/getting.started.vmware.html":{"position":[[1070,13]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[412,13]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[3842,9],[3909,12]]},"/regulus/install-regulus-docker-image.html":{"position":[[7187,12],[7223,12]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[919,14]]}},"component":{}}],["organiz",{"_index":3296,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[966,14]]}},"component":{}}],["organization’",{"_index":409,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[4145,14]]}},"component":{}}],["origin",{"_index":616,"title":{},"name":{},"text":{"/dbt.html":{"position":[[156,8]]},"/geojson-to-vantage.html":{"position":[[5265,8],[7379,8],[7490,8]]},"/mule.jdbc.example.html":{"position":[[1461,11]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[244,8],[4124,8]]}},"component":{}}],["orm",{"_index":1088,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[10378,3]]}},"component":{}}],["os",{"_index":2314,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[1158,2]]},"/vantage.express.gcp.html":{"position":[[975,2],[1263,2],[1551,2]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2610,2]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2680,2],[10816,2]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[4702,2]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1414,2]]}},"component":{}}],["os.environ[\"dbc_pwd",{"_index":4175,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6318,22],[6352,22]]}},"component":{}}],["os.environ[\"latest_vm",{"_index":4174,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6282,24]]}},"component":{}}],["osbox",{"_index":4550,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[5779,7]]}},"component":{}}],["ostyp",{"_index":2234,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[7480,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4260,6]]},"/vantage.express.gcp.html":{"position":[[3287,6]]}},"component":{}}],["otherwis",{"_index":143,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2895,10]]},"/local.jupyter.hub.html":{"position":[[3523,10]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[3959,10]]}},"component":{}}],["out",{"_index":580,"title":{"/segment.html#_try_it_out":{"position":[[7,3]]}},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2707,3]]},"/fastload.html":{"position":[[1960,3]]},"/ml.html":{"position":[[262,3]]},"/nos.html":{"position":[[5348,3]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[1520,3]]},"/sto.html":{"position":[[4895,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[7521,3]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[475,3]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4471,3]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2055,3]]}},"component":{}}],["outbound",{"_index":4015,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1593,8]]}},"component":{}}],["outcom",{"_index":3890,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[5028,7],[7320,7],[9538,7],[11677,7],[13245,7],[15014,7],[17531,7],[20213,7],[23324,7],[27284,7],[30284,7]]}},"component":{}}],["outer",{"_index":1581,"title":{},"name":{},"text":{"/ml.html":{"position":[[6220,5],[6278,5]]}},"component":{}}],["outlin",{"_index":2422,"title":{},"name":{},"text":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[66,8]]},"/regulus/install-regulus-docker-image.html":{"position":[[1222,8]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[632,8]]}},"component":{}}],["outparam",{"_index":4367,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[10734,13],[12070,12],[12394,12]]}},"component":{}}],["output",{"_index":367,"title":{"/sto.html#_inserting_script_output_into_a_table":{"position":[[17,6]]},"/mule-teradata-connector/reference.html#_output":{"position":[[0,6]]},"/mule-teradata-connector/reference.html#_output_2":{"position":[[0,6]]},"/mule-teradata-connector/reference.html#_output_3":{"position":[[0,6]]},"/mule-teradata-connector/reference.html#_output_4":{"position":[[0,6]]},"/mule-teradata-connector/reference.html#_output_5":{"position":[[0,6]]},"/mule-teradata-connector/reference.html#_output_6":{"position":[[0,6]]},"/mule-teradata-connector/reference.html#_output_7":{"position":[[0,6]]},"/mule-teradata-connector/reference.html#_output_8":{"position":[[0,6]]},"/mule-teradata-connector/reference.html#_output_9":{"position":[[0,6]]},"/mule-teradata-connector/reference.html#_output_10":{"position":[[0,6]]},"/mule-teradata-connector/reference.html#_output_11":{"position":[[0,6]]},"/mule-teradata-connector/reference.html#_output_12":{"position":[[0,6]]},"/mule-teradata-connector/reference.html#OutputParameter":{"position":[[0,6]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[3205,8]]},"/dbt.html":{"position":[[1383,8],[4166,7]]},"/ml.html":{"position":[[7202,6]]},"/odbc.ubuntu.html":{"position":[[1572,6]]},"/run-vantage-express-on-aws.html":{"position":[[1235,6],[1540,6],[1854,6],[2165,6],[2362,6],[2562,6],[2756,6],[2968,6],[3170,6],[3451,6],[4099,6],[4860,6],[5235,6],[5676,6],[11707,6]]},"/sto.html":{"position":[[6138,6],[6553,7],[6596,6],[7164,7]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2816,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[10548,6],[10596,6],[10878,7],[12703,7],[13266,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4043,6]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[4151,6],[4199,6],[4551,6],[4565,6],[5022,6]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3972,6],[4258,6],[5071,6],[6077,6],[6386,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2396,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3945,7],[4064,7],[4098,7],[4331,7],[4738,7],[4782,6],[6004,6]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[4554,6]]},"/mule-teradata-connector/reference.html":{"position":[[4919,6],[4996,6],[7210,7],[7288,6],[9429,6],[9506,6],[11568,6],[11645,6],[13136,6],[13213,6],[14905,6],[14982,6],[17422,6],[17499,6],[20103,7],[20181,6],[23232,6],[23301,7],[26137,6],[26275,7],[26470,6],[26497,6],[26524,6],[27174,7],[27252,6],[30175,6],[30252,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[500,6],[2031,6],[3309,8]]},"/regulus/regulus-magic-reference.html":{"position":[[674,7],[1197,7],[1503,7],[1797,7],[2559,7],[2775,7],[2962,7],[3895,7],[4121,7],[4354,7],[4514,7],[4681,7],[4937,7]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1717,7],[2042,7],[2669,7],[2955,7],[3184,7],[3196,6],[3483,7],[3778,7],[3790,6],[4223,7],[4235,6],[5170,7],[5182,6],[5530,7],[5542,6],[6295,7],[6307,6],[6593,7],[6605,6],[7004,7],[7016,6]]}},"component":{}}],["output=text",{"_index":2205,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[5818,11]]}},"component":{}}],["output[dataset",{"_index":3421,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[4761,16],[5459,15]]}},"component":{}}],["output[metr",{"_index":3452,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[6526,15],[7752,15]]}},"component":{}}],["output[model",{"_index":3450,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[6495,14]]}},"component":{}}],["output_fil",{"_index":3430,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[5446,12],[5686,12]]}},"component":{}}],["output_file.path",{"_index":3432,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[5508,16]]}},"component":{}}],["output_file.write(','.join([str(i",{"_index":3440,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[5800,34]]}},"component":{}}],["output_file.write('crim,zn,indus,chas,nox,rm,age,dis,rad,tax,ptratio,b,lstat,medv\\n",{"_index":3439,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[5699,85]]}},"component":{}}],["output_metr",{"_index":3451,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[6510,15],[10369,14]]}},"component":{}}],["output_metrics.log_metric('accuraci",{"_index":3483,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[7534,37]]}},"component":{}}],["output_model",{"_index":3449,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[6481,13]]}},"component":{}}],["output_model.metadata['accuraci",{"_index":3484,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[7589,33]]}},"component":{}}],["output_model.path",{"_index":3486,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[7663,18]]}},"component":{}}],["outputdatabase=v",{"_index":1597,"title":{},"name":{},"text":{"/ml.html":{"position":[[7110,19],[7752,19]]}},"component":{}}],["outputtablename=linear_regression_demo",{"_index":1598,"title":{},"name":{},"text":{"/ml.html":{"position":[[7130,41]]}},"component":{}}],["outputtablename=linear_regression_scor",{"_index":1608,"title":{},"name":{},"text":{"/ml.html":{"position":[[7772,40]]}},"component":{}}],["ova",{"_index":1245,"title":{},"name":{},"text":{"/getting.started.vbox.html":{"position":[[981,6],[1597,3]]}},"component":{}}],["over",{"_index":704,"title":{},"name":{},"text":{"/fastload.html":{"position":[[469,4],[488,4]]},"/geojson-to-vantage.html":{"position":[[1633,4]]},"/ml.html":{"position":[[1879,4]]},"/mule.jdbc.example.html":{"position":[[185,4]]},"/run-vantage-express-on-aws.html":{"position":[[385,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1350,4],[4462,4],[8815,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[323,4],[342,4]]}},"component":{}}],["overrid",{"_index":1427,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[1882,8],[2811,8],[3898,8]]},"/mule-teradata-connector/reference.html":{"position":[[34509,8],[34652,8]]}},"component":{}}],["overridden",{"_index":3920,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[33976,10]]}},"component":{}}],["overview",{"_index":254,"title":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_overview":{"position":[[0,8]]},"/advanced-dbt.html#_overview":{"position":[[0,8]]},"/create-parquet-files-in-object-storage.html#_overview":{"position":[[0,8]]},"/dbt.html#_overview":{"position":[[0,8]]},"/fastload.html#_overview":{"position":[[0,8]]},"/geojson-to-vantage.html#_overview":{"position":[[0,8]]},"/getting.started.utm.html#_overview":{"position":[[0,8]]},"/getting.started.vbox.html#_overview":{"position":[[0,8]]},"/getting.started.vmware.html#_overview":{"position":[[0,8]]},"/install-teradata-studio-on-mac-m1-m2.html#_overview":{"position":[[0,8]]},"/jdbc.html#_overview":{"position":[[0,8]]},"/jupyter.html#_overview":{"position":[[0,8]]},"/local.jupyter.hub.html#_overview":{"position":[[0,8]]},"/ml.html#_overview":{"position":[[0,8]]},"/mule.jdbc.example.html#_overview":{"position":[[0,8]]},"/nos.html#_overview":{"position":[[0,8]]},"/odbc.ubuntu.html#_overview":{"position":[[0,8]]},"/perform-time-series-analysis-using-teradata-vantage.html#_overview":{"position":[[0,8]]},"/run-vantage-express-on-aws.html#_overview":{"position":[[0,8]]},"/run-vantage-express-on-microsoft-azure.html#_overview":{"position":[[0,8]]},"/segment.html#_overview":{"position":[[0,8]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_overview":{"position":[[0,8]]},"/sto.html#_overview":{"position":[[0,8]]},"/teradata-vantage-engine-architecture-and-concepts.html#_overview":{"position":[[0,8]]},"/teradatasql.html#_overview":{"position":[[0,8]]},"/vantage.express.gcp.html#_overview":{"position":[[0,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_overview":{"position":[[0,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_overview":{"position":[[0,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html#_overview":{"position":[[0,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_overview":{"position":[[0,8]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_overview":{"position":[[0,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html#_overview":{"position":[[0,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_overview":{"position":[[0,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_overview":{"position":[[0,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_overview":{"position":[[0,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_overview":{"position":[[0,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_overview":{"position":[[0,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html#_overview":{"position":[[0,8]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html#_overview":{"position":[[0,8]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_overview":{"position":[[0,8]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_overview":{"position":[[0,8]]},"/other-integrations/integrate-teradata-vantage-with-knime.html#_overview":{"position":[[0,8]]},"/query-service/send-queries-using-rest-api.html#_overview":{"position":[[0,8]]},"/regulus/getting-started-with-regulus.html#_overview":{"position":[[0,8]]},"/regulus/install-regulus-docker-image.html#_overview":{"position":[[0,8]]},"/regulus/regulus-magic-reference.html#_overview":{"position":[[0,8]]},"/regulus/using-regulus-workspace-cli.html#_overview":{"position":[[0,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_overview":{"position":[[0,8]]}},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[4235,8]]}},"component":{}}],["own",{"_index":2570,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3282,5]]}},"component":{}}],["owner_id",{"_index":3042,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[23863,9]]}},"component":{}}],["ownership",{"_index":1469,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[5637,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[5149,9]]}},"component":{}}],["p",{"_index":1338,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[1980,1],[5965,1]]},"/ml.html":{"position":[[1308,1]]},"/run-vantage-express-on-aws.html":{"position":[[8403,1]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5183,1]]},"/vantage.express.gcp.html":{"position":[[4210,1]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2362,1],[2525,1],[3149,1]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2292,1]]}},"component":{}}],["p2050601.m570.l1313.tr0.trc0.h0.xteradata",{"_index":2523,"title":{},"name":{},"text":{"/sto.html":{"position":[[6297,42],[7282,42]]}},"component":{}}],["p7zip",{"_index":2211,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[6112,5],[6123,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2892,5],[2903,5]]},"/vantage.express.gcp.html":{"position":[[1919,5],[1930,5]]}},"component":{}}],["pablo",{"_index":3598,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[8,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[8,5]]}},"component":{}}],["packag",{"_index":888,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[1746,8],[5554,7],[5976,8]]},"/getting.started.utm.html":{"position":[[477,9]]},"/getting.started.vbox.html":{"position":[[477,9],[1159,7]]},"/getting.started.vmware.html":{"position":[[477,9]]},"/jupyter.html":{"position":[[7324,7]]},"/local.jupyter.hub.html":{"position":[[2432,8],[2691,8],[3069,8],[3399,7],[5807,7],[5839,7],[5900,7],[5955,7],[6095,7]]},"/teradatasql.html":{"position":[[276,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1412,7],[1767,7],[1858,7],[1899,7],[2065,7],[3305,7],[3396,7],[3436,7],[5573,9],[6144,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[832,7],[1102,7],[1255,7],[1675,7],[3113,7],[4447,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1681,8],[2101,7],[2241,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2527,7],[4245,9],[5280,8],[6255,8],[9606,8]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4171,8]]}},"component":{}}],["package_path",{"_index":3517,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[9352,13]]}},"component":{}}],["package_path='score_new_data_pipeline_sql.json",{"_index":3563,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[12923,48]]}},"component":{}}],["package_path='train_housing_pipeline.json",{"_index":3520,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[9473,43]]}},"component":{}}],["packages_to_instal",{"_index":3424,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[5231,19]]}},"component":{}}],["packages_to_install=['pandas==1.3.5','scikit",{"_index":3442,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[6161,44],[6357,44],[11503,44]]}},"component":{}}],["packages_to_install=['teradatasqlalchemi",{"_index":3426,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[5350,43]]}},"component":{}}],["page",{"_index":251,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[6187,4]]},"/advanced-dbt.html":{"position":[[7466,4]]},"/create-parquet-files-in-object-storage.html":{"position":[[4528,4]]},"/dbt.html":{"position":[[4484,5],[5066,4]]},"/fastload.html":{"position":[[7757,4]]},"/geojson-to-vantage.html":{"position":[[2275,4],[7923,4],[10808,4]]},"/getting.started.utm.html":{"position":[[6737,4]]},"/getting.started.vbox.html":{"position":[[6333,4]]},"/getting.started.vmware.html":{"position":[[5846,4]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[505,5],[1269,4]]},"/jdbc.html":{"position":[[1271,4]]},"/jupyter.html":{"position":[[7519,4]]},"/local.jupyter.hub.html":{"position":[[308,4],[1438,4],[3343,4],[5872,5],[5941,4],[5987,4],[6290,4]]},"/ml.html":{"position":[[9291,4]]},"/mule.jdbc.example.html":{"position":[[3717,4]]},"/nos.html":{"position":[[8903,4]]},"/odbc.ubuntu.html":{"position":[[2128,4]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[11016,4]]},"/run-vantage-express-on-aws.html":{"position":[[6232,4],[12675,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3012,4],[8613,4]]},"/segment.html":{"position":[[5747,4]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1811,4]]},"/sto.html":{"position":[[8118,4]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[6539,4]]},"/teradatasql.html":{"position":[[1203,4]]},"/vantage.express.gcp.html":{"position":[[2039,4],[7789,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[4244,4],[24995,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1809,4],[3347,4],[6569,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[4771,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[25833,5],[26547,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2617,4],[2659,5],[9089,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[6476,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[7477,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7943,5],[8667,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[7974,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[13844,4]]},"/jupyter-demos/index.html":{"position":[[2430,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4275,4],[4791,4],[5420,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[7471,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[10013,4]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[5079,4]]},"/mule-teradata-connector/index.html":{"position":[[1641,4]]},"/mule-teradata-connector/reference.html":{"position":[[17977,5],[23967,5],[42818,4]]},"/mule-teradata-connector/release-notes.html":{"position":[[1129,4]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[1758,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[10167,5],[10293,4],[11040,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[7524,4]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[2004,4]]},"/query-service/send-queries-using-rest-api.html":{"position":[[12714,4]]},"/regulus/getting-started-with-regulus.html":{"position":[[166,5],[4229,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[166,5],[7657,5],[10049,4]]},"/regulus/regulus-magic-reference.html":{"position":[[166,5],[576,5],[5320,4]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1599,4],[7207,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[9317,4]]}},"component":{}}],["paid",{"_index":1273,"title":{},"name":{},"text":{"/getting.started.vmware.html":{"position":[[1368,4]]}},"component":{}}],["pair",{"_index":2180,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[4741,5],[4808,4],[7079,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[901,5],[3859,4]]},"/sto.html":{"position":[[6071,6]]},"/vantage.express.gcp.html":{"position":[[2886,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[10534,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1478,4]]}},"component":{}}],["palett",{"_index":3833,"title":{},"name":{},"text":{"/mule-teradata-connector/examples-configuration.html":{"position":[[1147,7],[1982,7],[3095,7],[3331,7]]}},"component":{}}],["panda",{"_index":1358,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[2889,6],[3167,6],[3215,6],[3491,6],[3540,6],[4452,6]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2583,6]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2531,6],[2807,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2666,6],[6135,6],[6552,6]]}},"component":{}}],["pandas==1.5.0",{"_index":3446,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[6418,16]]}},"component":{}}],["pane",{"_index":3212,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3996,4],[4126,5],[4629,4],[5021,5],[5410,5]]}},"component":{}}],["panel",{"_index":1251,"title":{},"name":{},"text":{"/getting.started.vbox.html":{"position":[[1696,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[8427,6]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[4728,6],[5417,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2415,5],[2440,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2452,5],[2477,5]]}},"component":{}}],["parallel",{"_index":111,"title":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_native_object_store_nos_teradata_parallel_transporter_tpt":{"position":[[62,8]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_parallel_transporter_tpt_bteq":{"position":[[26,8]]},"/teradata-vantage-engine-architecture-and-concepts.html#_parallel_database_extension_pde":{"position":[[0,8]]},"/teradata-vantage-engine-architecture-and-concepts.html#_teradata_parallelism":{"position":[[9,11]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[46,8]]}},"name":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[40,8]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2072,9]]},"/fastload.html":{"position":[[195,8],[7251,9]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[369,8],[530,8],[656,12],[1695,8]]},"/sto.html":{"position":[[592,8],[1657,9],[7725,9],[7823,9]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[296,8],[689,8],[2058,8],[2098,8],[2332,11],[4170,11],[4249,8],[4470,8],[4632,8],[4748,8],[5024,8],[6225,8],[6353,12],[6450,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2375,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[7245,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9678,8]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3939,10]]},"/regulus/install-regulus-docker-image.html":{"position":[[484,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[145,8],[5426,8],[5796,8],[6579,8],[6677,8],[8796,9]]}},"component":{}}],["param",{"_index":2518,"title":{},"name":{},"text":{"/sto.html":{"position":[[6010,6]]}},"component":{}}],["param_key",{"_index":2516,"title":{},"name":{},"text":{"/sto.html":{"position":[[5927,11],[6187,9],[6970,11],[7172,9]]}},"component":{}}],["param_valu",{"_index":2517,"title":{},"name":{},"text":{"/sto.html":{"position":[[5954,12],[6197,12],[6852,12],[6997,12],[7182,12]]}},"component":{}}],["paramet",{"_index":899,"title":{"/mule-teradata-connector/reference.html#_parameters":{"position":[[0,10]]},"/mule-teradata-connector/reference.html#_parameters_2":{"position":[[0,10]]},"/mule-teradata-connector/reference.html#_parameters_3":{"position":[[0,10]]},"/mule-teradata-connector/reference.html#_parameters_4":{"position":[[0,10]]},"/mule-teradata-connector/reference.html#_parameters_5":{"position":[[0,10]]},"/mule-teradata-connector/reference.html#_parameters_6":{"position":[[0,10]]},"/mule-teradata-connector/reference.html#_parameters_7":{"position":[[0,10]]},"/mule-teradata-connector/reference.html#_parameters_8":{"position":[[0,10]]},"/mule-teradata-connector/reference.html#_parameters_9":{"position":[[0,10]]},"/mule-teradata-connector/reference.html#_parameters_10":{"position":[[0,10]]},"/mule-teradata-connector/reference.html#_parameters_11":{"position":[[0,10]]},"/mule-teradata-connector/reference.html#_parameters_12":{"position":[[0,10]]},"/mule-teradata-connector/reference.html#_parameters_13":{"position":[[0,10]]},"/mule-teradata-connector/reference.html#_parameters_14":{"position":[[0,10]]},"/mule-teradata-connector/reference.html#_parameters_15":{"position":[[0,10]]},"/mule-teradata-connector/reference.html#ParameterType":{"position":[[0,9]]},"/mule-teradata-connector/reference.html#OutputParameter":{"position":[[7,9]]}},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[2180,9],[2225,10],[7828,9],[7873,10]]},"/jdbc.html":{"position":[[807,10]]},"/ml.html":{"position":[[6455,10],[7459,10]]},"/mule.jdbc.example.html":{"position":[[993,9],[1741,10]]},"/sto.html":{"position":[[4905,11],[5699,11]]},"/teradatasql.html":{"position":[[779,10]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[4664,10],[5251,9],[9748,10],[12078,11]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[5643,10]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6665,10],[6715,9],[6923,9]]},"/mule-teradata-connector/reference.html":{"position":[[366,10],[3025,9],[3280,10],[3351,9],[3393,9],[4546,9],[4571,9],[4591,9],[4665,10],[4758,11],[4797,9],[5357,9],[5612,10],[5737,9],[5779,9],[6872,9],[6897,9],[6976,10],[7058,11],[7097,9],[7650,9],[7907,10],[7978,9],[8020,9],[9082,9],[9107,9],[9186,10],[9268,11],[9307,9],[10911,9],[10936,9],[11015,10],[11108,11],[11147,9],[11204,10],[11267,9],[11321,9],[11486,10],[13621,9],[16389,9],[16414,9],[16493,10],[16575,11],[16614,9],[16671,10],[16734,9],[16791,9],[16949,10],[19448,9],[19473,9],[19552,10],[19634,11],[19673,9],[19730,10],[19793,9],[19850,9],[20021,10],[22569,9],[22594,9],[22674,10],[22756,11],[22795,9],[22852,10],[22915,9],[22972,9],[23143,10],[25553,9],[25578,9],[25653,10],[25740,11],[25779,9],[25827,10],[25890,9],[25947,9],[26118,10],[26144,10],[26200,9],[26288,9],[26459,10],[26477,10],[26504,9],[26531,10],[26589,9],[29131,9],[29156,9],[29235,10],[29317,11],[29356,9],[29413,10],[29476,9],[29530,9],[29696,10],[34722,10],[39615,9],[42742,9]]},"/query-service/send-queries-using-rest-api.html":{"position":[[5212,11]]},"/regulus/getting-started-with-regulus.html":{"position":[[1334,9]]},"/regulus/regulus-magic-reference.html":{"position":[[1590,9],[1705,11]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1979,10],[2287,10],[2892,10],[3121,10],[3420,10],[3715,10],[4077,10],[4445,10],[5107,10],[5467,10],[5753,10],[6530,10],[6835,10]]}},"component":{}}],["parameter",{"_index":1654,"title":{},"name":{},"text":{"/mule.jdbc.example.html":{"position":[[938,13]]}},"component":{}}],["parameter_valu",{"_index":3529,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[10091,18],[13258,18]]}},"component":{}}],["parent",{"_index":3684,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[5586,6]]}},"component":{}}],["parquet",{"_index":493,"title":{"/create-parquet-files-in-object-storage.html":{"position":[[7,7]]},"/create-parquet-files-in-object-storage.html#_create_a_parquet_file_with_write_nos_function":{"position":[[9,7]]}},"name":{"/create-parquet-files-in-object-storage.html":{"position":[[7,7]]}},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[167,7],[529,7],[1241,7],[2461,7],[3071,7],[3691,11],[3754,7],[4101,7],[4231,7]]},"/nos.html":{"position":[[717,7],[8303,7],[8602,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8949,7],[10186,12]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[912,7],[3134,8],[9841,9]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[9773,8]]}},"component":{}}],["pars",{"_index":864,"title":{"/teradata-vantage-engine-architecture-and-concepts.html#_parsing_engines_pe":{"position":[[0,7]]}},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[543,5],[1390,5],[3030,5],[5133,5],[5208,5],[5508,5]]},"/sto.html":{"position":[[4889,5]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[836,7],[1174,7],[1211,7],[1411,5],[4346,7],[4836,7],[5087,7],[5107,7],[6101,7],[6405,7]]}},"component":{}}],["parse_qsl",{"_index":2496,"title":{},"name":{},"text":{"/sto.html":{"position":[[4976,9]]}},"component":{}}],["parse_qsl(parsed_url.queri",{"_index":2505,"title":{},"name":{},"text":{"/sto.html":{"position":[[5122,27]]}},"component":{}}],["parsed_url",{"_index":2502,"title":{},"name":{},"text":{"/sto.html":{"position":[[5080,10]]}},"component":{}}],["part",{"_index":1508,"title":{},"name":{},"text":{"/ml.html":{"position":[[2866,4],[3518,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2599,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4788,4],[5454,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1710,4]]},"/mule-teradata-connector/reference.html":{"position":[[20957,4],[27778,4],[27929,4]]}},"component":{}}],["parti",{"_index":79,"title":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_ingesting_data_from_saas_applications_third_party_tools":{"position":[[45,5]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1262,5]]}},"component":{}}],["partial",{"_index":2933,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[10870,7],[12695,7],[17441,7]]}},"component":{}}],["partit",{"_index":1162,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[2787,10],[4259,10]]},"/getting.started.vbox.html":{"position":[[1825,10],[3297,10]]},"/getting.started.vmware.html":{"position":[[1896,10],[3368,10]]},"/nos.html":{"position":[[7990,9]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[8147,9]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[5305,13],[5721,13]]}},"component":{}}],["partner",{"_index":2624,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[488,9]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1873,7],[8341,7]]}},"component":{}}],["partprob",{"_index":2337,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[2682,9]]}},"component":{}}],["pass",{"_index":1308,"title":{"/sto.html#_passing_data_stored_in_vantage_to_script":{"position":[[0,7]]}},"name":{},"text":{"/jdbc.html":{"position":[[772,4]]},"/jupyter.html":{"position":[[5805,7]]},"/mule.jdbc.example.html":{"position":[[688,6],[1003,6],[1291,6]]},"/sto.html":{"position":[[4051,4],[4287,4],[6525,4]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1503,6]]},"/teradatasql.html":{"position":[[744,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2771,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[3246,7],[3958,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[4645,6],[4817,4],[4862,7],[5149,4],[6156,4],[8823,4],[9725,4],[10529,4]]},"/mule-teradata-connector/reference.html":{"position":[[1661,4],[2541,4],[35782,4]]}},"component":{}}],["pass=$teradata2dc_teradata_password",{"_index":3084,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4000,35]]}},"component":{}}],["passeng",{"_index":1967,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[4407,10],[6075,10]]}},"component":{}}],["passenger_cnt",{"_index":2028,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[7755,13],[8245,17],[8392,13]]}},"component":{}}],["passenger_cnt_smavg",{"_index":2041,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[8428,19]]}},"component":{}}],["passenger_count",{"_index":1853,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1129,15],[3697,15],[3954,16],[4572,15],[4790,15],[6506,15]]}},"component":{}}],["password",{"_index":121,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2216,9],[3773,9]]},"/advanced-dbt.html":{"position":[[3246,9]]},"/dbt.html":{"position":[[1424,9]]},"/fastload.html":{"position":[[2505,9]]},"/getting.started.utm.html":{"position":[[4633,9]]},"/getting.started.vbox.html":{"position":[[3671,9]]},"/getting.started.vmware.html":{"position":[[3742,9]]},"/ml.html":{"position":[[2603,9],[2720,9]]},"/mule.jdbc.example.html":{"position":[[1976,10],[2069,9]]},"/nos.html":{"position":[[7333,8]]},"/odbc.ubuntu.html":{"position":[[1252,9]]},"/run-vantage-express-on-aws.html":{"position":[[8388,9],[8986,9],[11038,8],[11074,8],[11180,9],[11222,8],[11264,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5168,9],[5766,9],[7818,8],[7854,8],[7960,9],[8002,8],[8044,8]]},"/vantage.express.gcp.html":{"position":[[4195,9],[4793,9],[6845,8],[6881,8],[6987,9],[7029,8],[7071,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[9221,8],[9379,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[6406,9],[8979,8],[9074,10]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2745,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2670,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2112,8],[2171,8],[2471,9]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[476,8],[3444,9],[3500,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3013,9],[5877,9],[7884,9]]},"/mule-teradata-connector/reference.html":{"position":[[2342,8],[2367,8],[36923,8],[36943,8],[37627,8],[37647,8],[37689,8],[37709,8]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[746,9]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[5784,9],[6170,9],[8948,9]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3350,9],[4271,9],[6341,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1698,8],[1747,10]]},"/regulus/getting-started-with-regulus.html":{"position":[[1545,8],[1683,9],[1703,8]]},"/regulus/regulus-magic-reference.html":{"position":[[3110,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2874,8],[2901,9],[3169,10]]}},"component":{}}],["password=\"abcd",{"_index":4055,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[5862,16],[5935,16]]}},"component":{}}],["password=db",{"_index":534,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[1514,12]]}},"component":{}}],["password=getpass.getpass",{"_index":910,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[2597,27]]}},"component":{}}],["password=tdpassword",{"_index":1046,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[8245,20]]}},"component":{}}],["past",{"_index":353,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[2564,7]]},"/getting.started.utm.html":{"position":[[3583,5]]},"/getting.started.vbox.html":{"position":[[2621,5]]},"/getting.started.vmware.html":{"position":[[2692,5]]},"/jupyter.html":{"position":[[2349,5]]},"/run-vantage-express-on-aws.html":{"position":[[6759,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3539,7]]},"/sto.html":{"position":[[2550,5]]},"/vantage.express.gcp.html":{"position":[[2566,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[5901,5]]}},"component":{}}],["path",{"_index":350,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[2498,4],[6471,4],[6717,4]]},"/ml.html":{"position":[[2468,4]]},"/run-vantage-express-on-aws.html":{"position":[[4955,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[1054,4]]},"/sto.html":{"position":[[3721,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[7800,4],[8562,5]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[4184,4],[5029,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1738,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1775,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[7846,4],[8011,4]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[4734,4]]},"/mule-teradata-connector/reference.html":{"position":[[13983,4],[36790,4],[37262,4],[38425,4],[38441,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[4089,5],[4334,4]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[2511,4],[4664,4],[6022,4]]}},"component":{}}],["path//output",{"_index":3179,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[4591,13]]}},"component":{}}],["pathak",{"_index":2421,"title":{},"name":{},"text":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[15,6]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[15,6]]},"/teradatasql.html":{"position":[[15,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[15,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[15,6]]}},"component":{}}],["patientid",{"_index":3624,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2835,9],[3015,9],[3174,9],[3506,9],[3673,9],[3840,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2872,9],[3052,9],[3211,9],[3543,9],[3710,9],[3877,9]]}},"component":{}}],["pattern",{"_index":869,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[732,7]]}},"component":{}}],["paul",{"_index":13,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[23,4]]}},"component":{}}],["paus",{"_index":3343,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[7799,5]]}},"component":{}}],["pay",{"_index":1239,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[6454,3]]},"/getting.started.vbox.html":{"position":[[6050,3]]},"/getting.started.vmware.html":{"position":[[5563,3]]},"/run-vantage-express-on-aws.html":{"position":[[554,3]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[212,3]]},"/vantage.express.gcp.html":{"position":[[218,3]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1593,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1795,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1254,6]]}},"component":{}}],["payload",{"_index":1041,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[7396,7]]},"/segment.html":{"position":[[5018,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[9687,7],[10590,8],[10689,7],[10714,7],[10872,10],[10960,7],[14630,7],[21276,10]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9340,7],[9880,7],[10214,9],[10299,8],[10398,7],[10423,7],[10616,9],[10838,7],[10935,7],[12944,9],[15848,7]]},"/mule-teradata-connector/reference.html":{"position":[[3473,10],[5059,10],[5802,10],[7351,10],[8100,10],[9569,10],[11708,10],[13276,10],[15045,10],[17562,10],[20244,10],[23366,10],[27315,10],[30315,10],[31122,7]]},"/query-service/send-queries-using-rest-api.html":{"position":[[3431,7],[5707,7],[8241,7],[9142,7],[9559,7],[11634,10]]}},"component":{}}],["payload_json",{"_index":4234,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[3559,12],[5817,12],[8275,12],[9659,12],[10313,12],[11059,12]]}},"component":{}}],["payment",{"_index":629,"title":{},"name":{},"text":{"/dbt.html":{"position":[[1974,9]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[4990,8]]},"/jupyter-demos/index.html":{"position":[[1325,7]]}},"component":{}}],["payment_typ",{"_index":1861,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1256,12]]}},"component":{}}],["payments`that",{"_index":3257,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2914,14]]}},"component":{}}],["payrat",{"_index":3295,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[885,7]]}},"component":{}}],["pbi_enableteradataldap",{"_index":193,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3933,23]]}},"component":{}}],["pd",{"_index":1362,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[3177,2]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2593,2]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2541,2]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[6562,2]]}},"component":{}}],["pd.read_csv(input_file.path",{"_index":3466,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[6893,28]]}},"component":{}}],["pd.read_sql(\"select",{"_index":1369,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[3558,19]]}},"component":{}}],["pde",{"_index":1182,"title":{"/teradata-vantage-engine-architecture-and-concepts.html#_parallel_database_extension_pde":{"position":[[28,5]]}},"name":{},"text":{"/getting.started.utm.html":{"position":[[3700,3],[3875,3],[3903,3],[3933,3],[3961,3],[3991,3],[4017,3],[4099,3],[4189,3],[4270,3]]},"/getting.started.vbox.html":{"position":[[2738,3],[2913,3],[2941,3],[2971,3],[2999,3],[3029,3],[3055,3],[3137,3],[3227,3],[3308,3]]},"/getting.started.vmware.html":{"position":[[2809,3],[2984,3],[3012,3],[3042,3],[3070,3],[3100,3],[3126,3],[3208,3],[3298,3],[3379,3]]},"/run-vantage-express-on-aws.html":{"position":[[8488,3]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5268,3]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2126,5],[2241,3],[6253,6]]},"/vantage.express.gcp.html":{"position":[[4295,3]]}},"component":{}}],["pdestat",{"_index":1178,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[3510,8],[3635,8],[3817,8]]},"/getting.started.vbox.html":{"position":[[2548,8],[2673,8],[2855,8]]},"/getting.started.vmware.html":{"position":[[2619,8],[2744,8],[2926,8]]},"/run-vantage-express-on-aws.html":{"position":[[8453,8],[8654,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5233,8],[5434,8]]},"/vantage.express.gcp.html":{"position":[[4260,8],[4461,8]]}},"component":{}}],["pdisk",{"_index":1153,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[2438,6]]}},"component":{}}],["pe",{"_index":1198,"title":{"/teradata-vantage-engine-architecture-and-concepts.html#_parsing_engines_pe":{"position":[[16,4]]}},"name":{},"text":{"/getting.started.utm.html":{"position":[[4256,2]]},"/getting.started.vbox.html":{"position":[[3294,2]]},"/getting.started.vmware.html":{"position":[[3365,2]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[852,6],[4361,4],[6117,6]]}},"component":{}}],["pend",{"_index":2994,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13637,8]]}},"component":{}}],["peopl",{"_index":64,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[950,6]]},"/jupyter.html":{"position":[[5210,6],[5500,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[84,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[84,6]]}},"component":{}}],["per",{"_index":462,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[5826,3]]},"/nos.html":{"position":[[3315,3]]},"/sto.html":{"position":[[7739,3]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3704,3]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1724,3]]},"/mule-teradata-connector/reference.html":{"position":[[30624,3],[33658,3]]},"/query-service/send-queries-using-rest-api.html":{"position":[[3118,3]]},"/regulus/regulus-magic-reference.html":{"position":[[5129,3]]}},"component":{}}],["percent",{"_index":2987,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[12771,7]]}},"component":{}}],["percentage_used\":0.0",{"_index":4276,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[5086,22]]}},"component":{}}],["percentage_used\":0.006488017745513208",{"_index":4262,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[4563,39]]}},"component":{}}],["percentage_used\":0.13187072",{"_index":4272,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[4926,29]]}},"component":{}}],["percentage_used\":0.20566016",{"_index":4267,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[4751,29]]}},"component":{}}],["percentage_used\":21.03670247964377",{"_index":4257,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[4381,36]]}},"component":{}}],["perform",{"_index":835,"title":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[0,7]]}},"name":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[0,7]]}},"text":{"/fastload.html":{"position":[[7128,8],[7344,12]]},"/geojson-to-vantage.html":{"position":[[8686,8]]},"/getting.started.vbox.html":{"position":[[5462,12]]},"/ml.html":{"position":[[7326,7],[7366,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10522,11]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[371,11],[1805,8],[4056,11],[4241,7],[5578,11]]},"/vantage.express.gcp.html":{"position":[[613,12]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[17295,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[3514,11]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[5502,8],[5609,8],[5829,8],[6292,9],[6840,10]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[3258,8],[4360,7],[4671,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[4133,11],[7804,11]]},"/jupyter-demos/index.html":{"position":[[1223,11]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9740,12]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[3010,8]]},"/mule-teradata-connector/index.html":{"position":[[860,7],[1197,7]]},"/mule-teradata-connector/reference.html":{"position":[[1579,9],[2459,9],[3091,11],[5423,11],[7716,11],[17894,11],[18046,9],[21291,10],[23647,10],[23911,11],[24059,9],[31080,7],[35054,12],[35099,9],[35280,12],[35700,9],[37138,10]]},"/mule-teradata-connector/release-notes.html":{"position":[[460,7],[797,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4116,10]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1602,7],[1860,10]]},"/regulus/install-regulus-docker-image.html":{"position":[[4617,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[7512,11],[8673,8],[8889,12]]}},"component":{}}],["period",{"_index":408,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[4117,12]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[8088,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11151,7]]},"/mule-teradata-connector/reference.html":{"position":[[35219,12]]}},"component":{}}],["perm=10e7",{"_index":533,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[1503,10]]}},"component":{}}],["perm=5000000000",{"_index":4054,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[5846,15],[5919,15]]}},"component":{}}],["perman",{"_index":343,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[2310,9]]},"/dbt.html":{"position":[[1336,9]]},"/fastload.html":{"position":[[1455,9]]},"/getting.started.utm.html":{"position":[[5266,9]]},"/getting.started.vbox.html":{"position":[[4092,9]]},"/getting.started.vmware.html":{"position":[[4375,9]]},"/ml.html":{"position":[[2062,9]]},"/mule.jdbc.example.html":{"position":[[2201,9]]},"/nos.html":{"position":[[3662,9],[3948,9]]},"/run-vantage-express-on-aws.html":{"position":[[9150,9]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5930,9]]},"/sto.html":{"position":[[3014,9]]},"/vantage.express.gcp.html":{"position":[[4957,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[19721,9],[19842,9]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1330,9]]}},"component":{}}],["permiss",{"_index":122,"title":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Give-permissions-to-Vertex-AI-to-access-your-bucket":{"position":[[5,11]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_validate_permissions_in_sql_database_for_val_and_byom":{"position":[[9,11]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_validate_permissions_in_sql_database_for_val_and_byom":{"position":[[9,11]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2245,10]]},"/create-parquet-files-in-object-storage.html":{"position":[[827,11]]},"/ml.html":{"position":[[1961,11],[3863,11]]},"/nos.html":{"position":[[3774,11]]},"/run-vantage-express-on-aws.html":{"position":[[3312,11],[11427,11]]},"/segment.html":{"position":[[3684,10]]},"/sto.html":{"position":[[2868,11]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4787,11]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[1831,10]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[2830,11]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2378,11]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2415,11]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[638,11]]},"/regulus/install-regulus-docker-image.html":{"position":[[2337,10]]}},"component":{}}],["persist",{"_index":2766,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[13802,10],[13944,10]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1797,8],[2050,10]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[15379,10],[15532,10],[17711,10]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[4664,10]]}},"component":{}}],["person",{"_index":1415,"title":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_a_personal_connection":{"position":[[9,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_a_personal_connection":{"position":[[9,8]]}},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[1056,8],[1196,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[954,8]]},"/jupyter-demos/index.html":{"position":[[176,15],[1013,12]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2029,8],[2063,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2066,8],[2100,8]]}},"component":{}}],["perspect",{"_index":266,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[142,12]]},"/getting.started.utm.html":{"position":[[4912,11]]},"/getting.started.vbox.html":{"position":[[3738,11]]},"/getting.started.vmware.html":{"position":[[4021,11]]}},"component":{}}],["phase",{"_index":2698,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[10284,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[7072,5],[7107,5],[7563,6],[7623,6],[7678,6],[7733,6],[7790,5]]}},"component":{}}],["phone",{"_index":2955,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11752,6],[16483,6],[18287,6],[20745,5],[22269,6]]}},"component":{}}],["phrase",{"_index":2697,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[10244,6]]}},"component":{}}],["physic",{"_index":2100,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10492,10]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3383,8],[3767,8]]}},"component":{}}],["pi",{"_index":2096,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10354,5]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[5434,4]]}},"component":{}}],["pick",{"_index":1969,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[4428,6],[6096,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[6656,4]]},"/mule-teradata-connector/reference.html":{"position":[[30970,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[10055,6],[10100,6]]}},"component":{}}],["pickup_datetim",{"_index":1851,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1096,15],[3636,15],[3918,16],[6275,15],[7799,15]]}},"component":{}}],["pickup_datetime)=11",{"_index":1976,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[4623,19],[6439,19],[7971,19]]}},"component":{}}],["pickup_latitud",{"_index":1856,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1176,15],[3768,15],[4005,15]]}},"component":{}}],["pickup_longitud",{"_index":1855,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1159,16],[3744,16],[3987,17]]}},"component":{}}],["pictur",{"_index":3249,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[507,7]]}},"component":{}}],["piec",{"_index":1254,"title":{},"name":{},"text":{"/getting.started.vbox.html":{"position":[[5051,5]]}},"component":{}}],["pima",{"_index":3621,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2658,4],[2676,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2695,4],[2713,4]]}},"component":{}}],["pima_patient_featur",{"_index":3635,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[3146,21]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[3183,21]]}},"component":{}}],["pima_patient_predict",{"_index":3634,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[3082,24]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[3119,24]]}},"component":{}}],["pip",{"_index":318,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[1498,3]]},"/dbt.html":{"position":[[892,3]]},"/jupyter.html":{"position":[[2838,3],[3875,3]]},"/local.jupyter.hub.html":{"position":[[3082,3]]},"/odbc.ubuntu.html":{"position":[[444,3]]},"/teradatasql.html":{"position":[[240,3]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2414,3],[2471,3],[2535,3],[2595,3],[2659,3],[2724,3],[2764,3],[4809,3],[4871,3],[4940,3],[5005,3],[5074,3],[5223,3],[5269,3]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1428,4],[2795,3],[3578,3],[3640,3],[3701,3],[3756,3],[3818,3]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1974,3],[2939,3],[3010,3],[3084,3],[3232,3],[3282,3]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2359,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2133,3],[2314,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1615,3]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1176,3],[1249,3]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1512,3]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2138,3]]}},"component":{}}],["pip.ex",{"_index":3071,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[3178,7]]}},"component":{}}],["pip3",{"_index":4019,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2147,4]]}},"component":{}}],["pipelin",{"_index":514,"title":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[23,9]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#The-first-pipeline-to-train-and-deploy-a-model-using-Kubeflow":{"position":[[10,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-function-for-executing-the-pipeline":{"position":[[34,9]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-a-new-pipeline-to-score-new-data":{"position":[[13,8]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[7,8]]}},"name":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[14,9]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[35,8]]}},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[407,8]]},"/geojson-to-vantage.html":{"position":[[10407,8]]},"/ml.html":{"position":[[221,8]]},"/nos.html":{"position":[[319,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[823,9]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[334,10],[362,10],[415,8],[716,8],[769,8],[831,9],[872,8],[983,8],[3622,9],[3642,9],[3660,9],[3695,9],[3761,9],[4218,8],[7130,8],[8232,8],[8901,9],[8952,10],[8987,8],[9271,9],[9561,9],[10170,8],[10401,8],[11249,8],[12049,8],[12306,8],[12436,10],[12751,8],[12788,8],[12996,8],[13018,10]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[291,9]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[103,8],[172,8],[1560,8]]}},"component":{}}],["pipeline.fit(train[featur",{"_index":3477,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[7381,29]]}},"component":{}}],["pipeline.predict(test[featur",{"_index":3480,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[7435,32]]}},"component":{}}],["pipeline_root=pipeline_root_path",{"_index":3528,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[10057,33],[13224,33]]}},"component":{}}],["pipeline_root_path",{"_index":3523,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[9906,18],[13075,18]]}},"component":{}}],["piplin",{"_index":3516,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[9285,7]]}},"component":{}}],["place",{"_index":381,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3420,6]]},"/dbt.html":{"position":[[1594,6]]},"/fastload.html":{"position":[[1696,6]]},"/geojson-to-vantage.html":{"position":[[1588,7]]},"/jupyter.html":{"position":[[5675,5]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[555,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[662,5],[4695,5],[4717,5],[8163,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[19569,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3429,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1790,6]]}},"component":{}}],["plain",{"_index":1333,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[1761,5]]},"/mule.jdbc.example.html":{"position":[[3471,5]]}},"component":{}}],["plan",{"_index":2552,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1469,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1098,4]]}},"component":{}}],["platform",{"_index":332,"title":{"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[48,8]]},"/other-integrations/integrate-teradata-vantage-with-knime.html#_about_knime_analytics_platform":{"position":[[22,8]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[1880,8]]},"/dbt.html":{"position":[[2198,9]]},"/fastload.html":{"position":[[733,10]]},"/jupyter.html":{"position":[[1890,8]]},"/local.jupyter.hub.html":{"position":[[3551,8]]},"/segment.html":{"position":[[228,9],[3268,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[969,10],[1962,8],[3514,8]]},"/vantage.express.gcp.html":{"position":[[125,9]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1152,8],[1411,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[538,9],[3997,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[3974,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1632,8],[2137,8]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[813,8],[1072,8],[2511,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[292,9]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[924,8],[1375,9],[1413,8]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[4540,9]]},"/mule-teradata-connector/reference.html":{"position":[[891,8]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[713,9],[994,9]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[7324,10]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[124,9],[150,8],[1767,8]]},"/regulus/install-regulus-docker-image.html":{"position":[[198,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[587,10]]}},"component":{}}],["platform.sh",{"_index":3302,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1434,11]]}},"component":{}}],["player",{"_index":1270,"title":{},"name":{},"text":{"/getting.started.vmware.html":{"position":[[1051,7],[1138,7],[1274,6],[1562,6]]}},"component":{}}],["player/fus",{"_index":1279,"title":{},"name":{},"text":{"/getting.started.vmware.html":{"position":[[1832,14]]}},"component":{}}],["pleas",{"_index":246,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[6076,6]]},"/advanced-dbt.html":{"position":[[2664,6],[7355,6]]},"/create-parquet-files-in-object-storage.html":{"position":[[4417,6]]},"/dbt.html":{"position":[[4955,6]]},"/fastload.html":{"position":[[7646,6]]},"/geojson-to-vantage.html":{"position":[[10697,6]]},"/getting.started.utm.html":{"position":[[6626,6]]},"/getting.started.vbox.html":{"position":[[6222,6]]},"/getting.started.vmware.html":{"position":[[5735,6]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[1158,6]]},"/jdbc.html":{"position":[[1160,6]]},"/jupyter.html":{"position":[[7408,6]]},"/local.jupyter.hub.html":{"position":[[1252,6],[2371,6],[6179,6]]},"/ml.html":{"position":[[1986,6],[9180,6]]},"/mule.jdbc.example.html":{"position":[[3606,6]]},"/nos.html":{"position":[[8792,6]]},"/odbc.ubuntu.html":{"position":[[2017,6]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10905,6]]},"/run-vantage-express-on-aws.html":{"position":[[12564,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[8502,6]]},"/segment.html":{"position":[[5636,6]]},"/sto.html":{"position":[[8007,6]]},"/teradatasql.html":{"position":[[1092,6]]},"/vantage.express.gcp.html":{"position":[[7678,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[24884,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[5740,6],[6458,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[3925,6],[4660,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[26436,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[8978,6]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[6365,6]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[7366,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[927,6],[8556,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[714,6],[1503,6],[3068,6],[4481,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[5309,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[7360,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[5319,6],[9902,6]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[4968,6]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[1647,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[10929,6]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1893,6]]},"/query-service/send-queries-using-rest-api.html":{"position":[[968,6],[12603,6]]},"/regulus/getting-started-with-regulus.html":{"position":[[4118,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[9938,6]]},"/regulus/regulus-magic-reference.html":{"position":[[5209,6]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[7096,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[9206,6]]}},"component":{}}],["plenti",{"_index":1731,"title":{},"name":{},"text":{"/nos.html":{"position":[[1923,6]]}},"component":{}}],["plglcconc",{"_index":3626,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2868,10]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2905,10]]}},"component":{}}],["plot",{"_index":1379,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[4627,8]]}},"component":{}}],["plu",{"_index":3835,"title":{},"name":{},"text":{"/mule-teradata-connector/examples-configuration.html":{"position":[[2175,4],[3709,4]]}},"component":{}}],["plug",{"_index":3994,"title":{},"name":{},"text":{"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[425,4]]}},"component":{}}],["plugin",{"_index":690,"title":{},"name":{},"text":{"/dbt.html":{"position":[[4880,6]]},"/getting.started.vbox.html":{"position":[[1496,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[8481,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2308,9]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[7366,6]]}},"component":{}}],["pm",{"_index":3324,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[5750,2]]}},"component":{}}],["pmml",{"_index":3640,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[3939,4],[3973,4],[4830,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[6747,4]]}},"component":{}}],["pmmlpipelin",{"_index":3464,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[6837,12],[7141,14],[8086,12]]}},"component":{}}],["podman",{"_index":4025,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2668,6],[2861,6]]}},"component":{}}],["point",{"_index":338,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[2030,6],[2110,5]]},"/dbt.html":{"position":[[1129,6],[1201,5]]},"/fastload.html":{"position":[[4484,6]]},"/geojson-to-vantage.html":{"position":[[295,6],[4305,5],[4382,5],[4455,5],[4546,5],[4637,5],[9825,5],[9885,5],[9943,5],[10002,5]]},"/getting.started.utm.html":{"position":[[4825,5]]},"/getting.started.vmware.html":{"position":[[3934,5]]},"/ml.html":{"position":[[7473,5]]},"/nos.html":{"position":[[3236,6]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[82,6]]},"/sto.html":{"position":[[3793,9]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1752,5],[1761,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2219,6],[9937,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2549,6],[9661,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[3698,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[5752,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2437,5]]},"/mule-teradata-connector/reference.html":{"position":[[14050,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[9516,8],[9670,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3142,6],[3213,5],[3904,6],[3975,5]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[909,5]]}},"component":{}}],["poitier",{"_index":976,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4501,7]]}},"component":{}}],["poitou",{"_index":979,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4525,6]]}},"component":{}}],["polici",{"_index":2377,"title":{"/mule-teradata-connector/reference.html#ExpirationPolicy":{"position":[[11,6]]},"/mule-teradata-connector/reference.html#RedeliveryPolicy":{"position":[[11,6]]}},"name":{},"text":{"/segment.html":{"position":[[2555,6],[3744,6],[4030,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[3199,6],[3853,6]]},"/mule-teradata-connector/reference.html":{"position":[[696,6],[714,6],[32286,6],[32304,6],[32321,6]]}},"component":{}}],["policymak",{"_index":3589,"title":{},"name":{},"text":{"/jupyter-demos/index.html":{"position":[[1722,12]]}},"component":{}}],["poll",{"_index":3716,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2827,5]]},"/mule-teradata-connector/reference.html":{"position":[[30809,5],[30997,6],[31556,5],[31787,6],[32265,7]]}},"component":{}}],["pom",{"_index":1305,"title":{},"name":{},"text":{"/jdbc.html":{"position":[[423,3]]}},"component":{}}],["pom.xml",{"_index":3832,"title":{},"name":{},"text":{"/mule-teradata-connector/examples-configuration.html":{"position":[[1121,7]]}},"component":{}}],["pool",{"_index":3837,"title":{"/mule-teradata-connector/reference.html#_working_with_pooling_profiles":{"position":[[13,7]]},"/mule-teradata-connector/reference.html#_working_with_pooling_profiles_2":{"position":[[13,7]]},"/mule-teradata-connector/reference.html#_working_with_pooling_profiles_3":{"position":[[13,7]]},"/mule-teradata-connector/reference.html#pooling-profile":{"position":[[0,7]]}},"name":{},"text":{"/mule-teradata-connector/examples-configuration.html":{"position":[[2610,7],[4105,7]]},"/mule-teradata-connector/index.html":{"position":[[1361,7]]},"/mule-teradata-connector/reference.html":{"position":[[1338,7],[1354,7],[1418,7],[1766,7],[1782,7],[1846,7],[20415,7],[23528,7],[23607,4],[27476,7],[33293,4],[33342,4],[33381,4],[33430,4],[33559,4],[33662,6],[33843,4],[34208,6],[34393,7],[34571,4],[34588,4],[34827,4]]},"/mule-teradata-connector/release-notes.html":{"position":[[925,7]]}},"component":{}}],["popul",{"_index":563,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2118,8]]},"/dbt.html":{"position":[[2686,9],[4675,8]]},"/fastload.html":{"position":[[1715,8],[1760,9]]},"/geojson-to-vantage.html":{"position":[[1577,10]]},"/mule.jdbc.example.html":{"position":[[2130,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[5318,9]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4523,12],[4661,12]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[994,8]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1018,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1809,8],[1851,9]]}},"component":{}}],["popular",{"_index":2468,"title":{},"name":{},"text":{"/sto.html":{"position":[[2421,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[261,7]]}},"component":{}}],["popup",{"_index":2214,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[6360,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3140,6]]},"/vantage.express.gcp.html":{"position":[[2167,6]]}},"component":{}}],["port",{"_index":1145,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[2117,5]]},"/getting.started.vbox.html":{"position":[[5577,4]]},"/jdbc.html":{"position":[[511,4],[596,4],[701,6]]},"/jupyter.html":{"position":[[6461,4],[6509,4]]},"/ml.html":{"position":[[1286,4]]},"/run-vantage-express-on-aws.html":{"position":[[7748,4],[7895,4],[8042,4],[11309,4],[11565,10]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4528,4],[4675,4],[4822,4],[8089,4],[8148,4],[8187,4]]},"/vantage.express.gcp.html":{"position":[[3555,4],[3702,4],[3849,4],[7116,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[3552,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4265,4],[6084,4],[6393,4]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1833,4]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[716,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[7018,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[3110,5],[3693,6],[8479,5],[9070,6]]}},"component":{}}],["portal",{"_index":2647,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[3172,6]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1150,7],[1765,7],[3263,7]]}},"component":{}}],["posit",{"_index":2564,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2166,10]]}},"component":{}}],["possibl",{"_index":1790,"title":{},"name":{},"text":{"/nos.html":{"position":[[6894,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[17319,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[10740,8]]},"/mule-teradata-connector/reference.html":{"position":[[36893,9],[37365,9]]}},"component":{}}],["post",{"_index":854,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[61,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4911,4],[5105,5],[5572,4],[5766,5]]},"/query-service/send-queries-using-rest-api.html":{"position":[[7910,4],[8646,4]]}},"component":{}}],["post_cod",{"_index":3035,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[23548,9],[23894,10]]}},"component":{}}],["post_hook",{"_index":468,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[6030,9]]}},"component":{}}],["postal_cod",{"_index":2706,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11350,12],[14972,12],[16991,11],[17518,11],[18521,12],[18684,12],[20704,11],[22581,12],[24796,11]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[14367,11]]}},"component":{}}],["postgr",{"_index":4036,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3856,8]]}},"component":{}}],["postgres:13",{"_index":4100,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8284,11]]}},"component":{}}],["potenti",{"_index":3136,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[181,9]]}},"component":{}}],["potenza",{"_index":959,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4276,7]]}},"component":{}}],["power",{"_index":2,"title":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[25,5]]},"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_install_power_bi_desktop":{"position":[[8,5]]}},"name":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[34,5]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[205,5],[305,5],[424,5],[442,5],[637,5],[697,5],[773,5],[790,5],[892,5],[1082,5],[1128,5],[1201,5],[1219,5],[1341,5],[1512,5],[1647,5],[1752,5],[1857,5],[1928,5],[1980,6],[2284,5],[2334,5],[2512,5],[2790,5],[2937,5],[3404,5],[4147,5],[4368,5],[4474,5],[4812,5],[4903,5],[5034,5],[5236,5],[5342,5],[5424,5],[5442,5],[5699,5],[5761,5],[5837,5],[5871,5],[5916,5],[5963,5],[6005,5]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[7321,5]]}},"component":{}}],["powershel",{"_index":2606,"title":{},"name":{},"text":{"/vantage.express.gcp.html":{"position":[[783,11]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2910,10]]}},"component":{}}],["practic",{"_index":2464,"title":{},"name":{},"text":{"/sto.html":{"position":[[2275,9]]}},"component":{}}],["pre",{"_index":2672,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[6141,3]]}},"component":{}}],["prebuilt",{"_index":2823,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1380,8],[1549,8]]}},"component":{}}],["precipit",{"_index":1689,"title":{},"name":{},"text":{"/nos.html":{"position":[[1356,13],[2786,13],[4240,13]]}},"component":{}}],["precipitation_in",{"_index":2759,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[13128,17],[16750,17],[18374,16],[20463,17],[24360,17]]}},"component":{}}],["precis",{"_index":3236,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[6193,9]]}},"component":{}}],["preconfigur",{"_index":4210,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[1372,13]]}},"component":{}}],["predefin",{"_index":3847,"title":{},"name":{},"text":{"/mule-teradata-connector/index.html":{"position":[[868,10]]},"/mule-teradata-connector/release-notes.html":{"position":[[468,10]]}},"component":{}}],["predic",{"_index":3749,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4593,10]]}},"component":{}}],["predict",{"_index":1517,"title":{},"name":{},"text":{"/ml.html":{"position":[[3592,8],[6496,7],[7374,11],[7973,9],[9012,11]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1282,11]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2008,11]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[943,11]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[166,10],[3405,10],[3561,10],[5461,8],[6366,10],[6791,13],[6897,11],[7041,10]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[11116,11],[13506,11]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[3045,11],[4747,11],[4835,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[3082,11],[6752,7]]}},"component":{}}],["predicted=estim",{"_index":1609,"title":{},"name":{},"text":{"/ml.html":{"position":[[7813,19]]}},"component":{}}],["prediction_t",{"_index":3553,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[11653,17],[11832,18],[12228,17],[12631,17],[13400,19]]}},"component":{}}],["predictions.result.to_panda",{"_index":3548,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[11213,30]]}},"component":{}}],["prefer",{"_index":1053,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[8800,8]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[330,9]]},"/jupyter.html":{"position":[[962,9],[1448,6]]},"/local.jupyter.hub.html":{"position":[[3193,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[25262,10]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1862,11],[1911,11]]},"/mule-teradata-connector/reference.html":{"position":[[37930,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2388,9],[5648,9]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[759,11]]},"/regulus/install-regulus-docker-image.html":{"position":[[374,9]]}},"component":{}}],["prefix",{"_index":1603,"title":{},"name":{},"text":{"/ml.html":{"position":[[7526,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4255,6]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3106,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6409,8]]},"/mule-teradata-connector/reference.html":{"position":[[11382,6],[16852,6],[19911,6],[23033,6],[26008,6],[26349,6],[26650,6],[29591,6]]}},"component":{}}],["prefix=/opt/conda",{"_index":1456,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[4978,17]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2366,17],[4631,17]]}},"component":{}}],["prem",{"_index":510,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[305,4]]},"/nos.html":{"position":[[217,4]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[334,4]]}},"component":{}}],["premis",{"_index":77,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1154,8],[1382,8],[4072,8],[4218,8],[4391,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1824,9]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1485,9]]}},"component":{}}],["prepar",{"_index":745,"title":{"/geojson-to-vantage.html#_option_2_prepare_a_geojson_document_with_python_and_load_it_into_vantage":{"position":[[10,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_prepare_code_templates":{"position":[[0,7]]}},"name":{},"text":{"/fastload.html":{"position":[[2062,7],[2581,7],[3343,9]]},"/geojson-to-vantage.html":{"position":[[859,11],[4107,8]]},"/run-vantage-express-on-aws.html":{"position":[[5962,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2487,7]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1447,7]]},"/vantage.express.gcp.html":{"position":[[1769,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[348,8],[4517,21]]},"/mule-teradata-connector/reference.html":{"position":[[11296,8],[16766,8],[19825,8],[22947,8],[25922,8],[26232,8],[26564,8],[29505,8],[33579,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2194,7],[2402,7],[2925,11],[7020,9]]}},"component":{}}],["preparedstat",{"_index":3927,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[34779,18],[34865,17]]}},"component":{}}],["prerequisit",{"_index":255,"title":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_prerequisites":{"position":[[0,13]]},"/advanced-dbt.html#_prerequisites":{"position":[[0,13]]},"/create-parquet-files-in-object-storage.html#_prerequisites":{"position":[[0,13]]},"/dbt.html#_prerequisites":{"position":[[0,13]]},"/fastload.html#_prerequisites":{"position":[[0,13]]},"/geojson-to-vantage.html#_prerequisites":{"position":[[0,13]]},"/getting.started.utm.html#_prerequisites":{"position":[[0,13]]},"/getting.started.vbox.html#_prerequisites":{"position":[[0,13]]},"/getting.started.vmware.html#_prerequisites":{"position":[[0,13]]},"/jdbc.html#_prerequisites":{"position":[[0,13]]},"/ml.html#_prerequisites":{"position":[[0,13]]},"/mule.jdbc.example.html#_prerequisites":{"position":[[0,13]]},"/nos.html#_prerequisites":{"position":[[0,13]]},"/odbc.ubuntu.html#_prerequisites":{"position":[[0,13]]},"/perform-time-series-analysis-using-teradata-vantage.html#_prerequisites":{"position":[[0,13]]},"/run-vantage-express-on-aws.html#_prerequisites":{"position":[[0,13]]},"/run-vantage-express-on-microsoft-azure.html#_prerequisites":{"position":[[0,13]]},"/segment.html#_prerequisites":{"position":[[0,13]]},"/sto.html#_prerequisites":{"position":[[0,13]]},"/teradatasql.html#_prerequisites":{"position":[[0,13]]},"/vantage.express.gcp.html#_prerequisites":{"position":[[0,13]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_prerequisites":{"position":[[0,13]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_prerequisites":{"position":[[0,13]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html#_prerequisites":{"position":[[0,13]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_prerequisites":{"position":[[0,13]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_prerequisites":{"position":[[0,13]]},"/cloud-guides/sagemaker-with-teradata-vantage.html#_prerequisites":{"position":[[0,13]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_prerequisites":{"position":[[0,13]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_prerequisites":{"position":[[0,13]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_prerequisites":{"position":[[0,13]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Prerequisites":{"position":[[0,14]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_prerequisites":{"position":[[0,13]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_prerequisites":{"position":[[0,13]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html#_prerequisites":{"position":[[0,13]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html#_prerequisites":{"position":[[0,13]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_prerequisites":{"position":[[0,13]]},"/other-integrations/integrate-teradata-vantage-with-knime.html#_prerequisites":{"position":[[0,13]]},"/query-service/send-queries-using-rest-api.html#_prerequisites":{"position":[[0,13]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_prerequisites":{"position":[[0,13]]}},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2865,14]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[5271,14]]},"/mule-teradata-connector/index.html":{"position":[[1423,14]]},"/query-service/send-queries-using-rest-api.html":{"position":[[888,14],[2426,14]]}},"component":{}}],["prerequsit",{"_index":4122,"title":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_prerequsites":{"position":[[0,12]]}},"name":{},"text":{},"component":{}}],["prescript",{"_index":2631,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1294,12]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2020,12]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[955,12]]}},"component":{}}],["present",{"_index":293,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[832,9]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2052,8],[3099,9]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6117,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6458,7],[6780,7],[6851,7]]},"/mule-teradata-connector/reference.html":{"position":[[4819,7],[7111,7],[9329,7],[11169,7],[16636,7],[19695,7],[22817,7],[25793,7],[29378,7],[38370,8]]}},"component":{}}],["preserv",{"_index":418,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[4392,10]]}},"component":{}}],["press",{"_index":1160,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[2738,5],[2818,5],[3187,5],[3609,5],[5227,8]]},"/getting.started.vbox.html":{"position":[[1776,5],[1856,5],[2225,5],[2647,5],[4053,8]]},"/getting.started.vmware.html":{"position":[[1847,5],[1927,5],[2296,5],[2718,5],[4336,8]]},"/ml.html":{"position":[[2763,5],[2814,5],[3087,5]]},"/run-vantage-express-on-aws.html":{"position":[[6459,5],[9115,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3239,5],[5895,5]]},"/vantage.express.gcp.html":{"position":[[2266,5],[4922,5]]}},"component":{}}],["pressure_2m_mb",{"_index":2740,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[12450,15],[16072,15],[18054,14],[19785,15],[23682,15]]}},"component":{}}],["pressure_mean_sea_level_mb",{"_index":2745,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[12604,27],[16226,27],[18121,26],[19939,27],[23836,27]]}},"component":{}}],["pressure_tendency_2m_mb",{"_index":2743,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[12521,24],[16143,24],[18083,23],[19856,24],[23753,24]]}},"component":{}}],["presto",{"_index":2435,"title":{},"name":{},"text":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1086,7]]}},"component":{}}],["prevail",{"_index":3925,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[34618,8]]}},"component":{}}],["prevent",{"_index":2559,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1927,7]]},"/jupyter-demos/index.html":{"position":[[1814,10]]},"/mule-teradata-connector/reference.html":{"position":[[17835,7],[23903,7]]}},"component":{}}],["preview",{"_index":212,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[4834,7]]},"/regulus/getting-started-with-regulus.html":{"position":[[72,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[72,7],[1631,8]]},"/regulus/regulus-magic-reference.html":{"position":[[72,7]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[72,7]]}},"component":{}}],["previou",{"_index":999,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4992,8]]},"/nos.html":{"position":[[5789,8],[5908,8]]},"/run-vantage-express-on-aws.html":{"position":[[4976,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[1075,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[4843,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[5980,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6498,8]]},"/regulus/getting-started-with-regulus.html":{"position":[[1729,8]]}},"component":{}}],["previous",{"_index":419,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[4407,10]]},"/getting.started.utm.html":{"position":[[5002,10]]},"/getting.started.vbox.html":{"position":[[3828,10]]},"/getting.started.vmware.html":{"position":[[4111,10]]},"/mule-teradata-connector/reference.html":{"position":[[34529,10]]}},"component":{}}],["price",{"_index":3376,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2374,6]]},"/jupyter-demos/index.html":{"position":[[269,5]]}},"component":{}}],["primari",{"_index":432,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[4798,7]]},"/create-parquet-files-in-object-storage.html":{"position":[[2091,7],[3707,7]]},"/fastload.html":{"position":[[3278,7],[3621,7],[5621,7],[6999,7]]},"/getting.started.utm.html":{"position":[[5674,7]]},"/getting.started.vbox.html":{"position":[[4500,7]]},"/getting.started.vmware.html":{"position":[[4783,7]]},"/ml.html":{"position":[[6375,7]]},"/mule.jdbc.example.html":{"position":[[2452,7]]},"/nos.html":{"position":[[6078,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3844,7],[10250,7],[10340,7]]},"/run-vantage-express-on-aws.html":{"position":[[9558,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6338,7]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[844,7]]},"/sto.html":{"position":[[7041,7]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[179,7],[991,7],[2973,7],[5420,7],[5624,7],[5750,7]]},"/vantage.express.gcp.html":{"position":[[5365,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[10414,7],[17028,7],[18505,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[10030,7],[13811,7],[14050,7],[14480,7],[17392,7],[20078,7],[21721,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3169,7],[3384,7]]},"/mule-teradata-connector/reference.html":{"position":[[32066,7],[32143,7]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[655,7]]},"/regulus/getting-started-with-regulus.html":{"position":[[2264,7],[2911,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[6102,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[4761,7],[8544,7]]}},"component":{}}],["princip",{"_index":3368,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1797,9]]}},"component":{}}],["principl",{"_index":682,"title":{},"name":{},"text":{"/dbt.html":{"position":[[4088,11]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1660,9]]}},"component":{}}],["print",{"_index":2451,"title":{},"name":{},"text":{"/sto.html":{"position":[[929,5],[5312,6]]},"/query-service/send-queries-using-rest-api.html":{"position":[[3780,67]]}},"component":{}}],["print(\"\\t\".join(el",{"_index":2506,"title":{},"name":{},"text":{"/sto.html":{"position":[[5179,25]]}},"component":{}}],["print(\"hello",{"_index":2477,"title":{},"name":{},"text":{"/sto.html":{"position":[[2750,12]]}},"component":{}}],["print('numb",{"_index":4242,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[3746,13]]}},"component":{}}],["print(auth_str",{"_index":4223,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[2177,15]]}},"component":{}}],["print(countries_json.key",{"_index":1021,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[6398,28]]}},"component":{}}],["print(countries_json['features'][0]['geometry']['coordin",{"_index":1024,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[6515,63]]}},"component":{}}],["print(countries_json['features'][0]['properties'].key",{"_index":1023,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[6457,57]]}},"component":{}}],["print(countries_json['typ",{"_index":1022,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[6427,29]]}},"component":{}}],["print(entitydf",{"_index":4179,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6481,15]]}},"component":{}}],["print(head",{"_index":4226,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[2305,14],[2760,14]]}},"component":{}}],["print(key",{"_index":3794,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[7760,10]]}},"component":{}}],["print(pyodbc.driv",{"_index":1827,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[1276,23]]}},"component":{}}],["print(response.json",{"_index":4243,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[3848,22],[11730,22]]}},"component":{}}],["print(response.text",{"_index":4280,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[5943,20],[8401,20],[9785,20],[10419,20],[11165,20]]}},"component":{}}],["print(row",{"_index":1835,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[1500,10]]}},"component":{}}],["print(training_df.head",{"_index":3764,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[5198,25]]}},"component":{}}],["prioriti",{"_index":378,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3337,9]]},"/dbt.html":{"position":[[1511,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[12320,9],[17043,9],[18847,9],[21328,8],[22829,9]]}},"component":{}}],["privat",{"_index":1789,"title":{"/nos.html#_access_private_buckets":{"position":[[7,7]]}},"name":{},"text":{"/nos.html":{"position":[[6816,7]]},"/run-vantage-express-on-aws.html":{"position":[[4913,7],[4943,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[1012,7],[1042,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4665,7],[4827,7]]},"/mule-teradata-connector/reference.html":{"position":[[37475,7],[37676,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[5465,8],[5811,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[5862,7],[6642,7],[6773,7]]}},"component":{}}],["privatelink",{"_index":2879,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1426,12],[4695,12]]}},"component":{}}],["privileg",{"_index":544,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[1750,11]]},"/getting.started.vbox.html":{"position":[[1312,11]]},"/nos.html":{"position":[[5659,10]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1357,10]]}},"component":{}}],["pro",{"_index":3993,"title":{},"name":{},"text":{"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[344,3],[769,4],[1216,4]]}},"component":{}}],["probabl",{"_index":3239,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[6506,14],[6658,11]]}},"component":{}}],["problem",{"_index":3223,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4910,8]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[477,9],[4453,9]]}},"component":{}}],["proce",{"_index":485,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[6779,7]]}},"component":{}}],["procedur",{"_index":1082,"title":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_procedure":{"position":[[0,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_procedure":{"position":[[0,9]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_procedure":{"position":[[0,9]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_procedure":{"position":[[0,9]]},"/mule-teradata-connector/reference.html#storedProcedure":{"position":[[7,9]]},"/other-integrations/integrate-teradata-vantage-with-knime.html#_integration_procedure":{"position":[[12,9]]}},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[10124,9]]},"/ml.html":{"position":[[1719,10],[2199,9],[2250,9],[2302,9],[2362,9],[2943,10],[7176,9]]},"/sto.html":{"position":[[3138,9],[3220,9]]},"/mule-teradata-connector/index.html":{"position":[[1289,10]]},"/mule-teradata-connector/reference.html":{"position":[[2911,9],[23728,9],[23771,9],[24036,9],[27508,9],[27880,9]]},"/mule-teradata-connector/release-notes.html":{"position":[[889,10]]}},"component":{}}],["proceed",{"_index":4443,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[1985,11],[4652,11]]}},"component":{}}],["process",{"_index":29,"title":{"/advanced-dbt.html#_mocking_the_elt_process":{"position":[[16,7]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_move_data_from_different_systems_for_unified_query_processing":{"position":[[51,10]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[181,7]]},"/advanced-dbt.html":{"position":[[496,7],[4191,8]]},"/geojson-to-vantage.html":{"position":[[767,10],[5742,7]]},"/ml.html":{"position":[[2444,8]]},"/run-vantage-express-on-aws.html":{"position":[[7257,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4037,7]]},"/sto.html":{"position":[[1785,8],[4202,7]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[305,10],[388,10],[538,10],[664,9],[719,7],[1951,10],[2067,10],[2805,10],[2876,10],[3565,10],[4258,10],[4757,11],[4941,11],[5993,11]]},"/vantage.express.gcp.html":{"position":[[3064,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[80,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[3132,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[81,7],[13650,11]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[82,7],[4801,10],[5467,10]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[6226,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6654,10],[7212,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9459,7],[9687,10]]},"/mule-teradata-connector/index.html":{"position":[[1152,7]]},"/mule-teradata-connector/reference.html":{"position":[[21193,9],[31615,10],[31757,9],[32332,10],[38974,9],[39019,7]]},"/mule-teradata-connector/release-notes.html":{"position":[[752,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[304,7],[383,8],[4102,9]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[784,7]]},"/regulus/getting-started-with-regulus.html":{"position":[[1472,7]]},"/regulus/regulus-magic-reference.html":{"position":[[3037,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[6950,10],[7377,10]]}},"component":{}}],["processor",{"_index":1298,"title":{"/teradata-vantage-engine-architecture-and-concepts.html#_access_module_processor_amp":{"position":[[14,9]]}},"name":{},"text":{"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[720,10],[824,11]]},"/mule.jdbc.example.html":{"position":[[1326,9]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[492,11],[516,9],[605,9],[880,10],[4583,10],[6145,10],[6440,9]]},"/mule-teradata-connector/reference.html":{"position":[[4377,9],[6703,9],[8913,9],[10742,9],[12957,9],[14726,9],[16220,9],[19279,9],[22421,9],[25384,9],[28962,9],[33002,9]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[6401,9],[7829,9]]}},"component":{}}],["produc",{"_index":641,"title":{},"name":{},"text":{"/dbt.html":{"position":[[2409,7],[3760,8],[4292,7],[4608,8]]},"/geojson-to-vantage.html":{"position":[[655,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[136,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[6198,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7258,8],[7747,7],[8204,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2134,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4004,8],[9487,8]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6939,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[10963,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[6844,8]]}},"component":{}}],["product",{"_index":25,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[131,7]]},"/advanced-dbt.html":{"position":[[1777,10],[3839,9],[5493,7],[5798,8],[6595,9]]},"/geojson-to-vantage.html":{"position":[[10494,8]]},"/getting.started.vmware.html":{"position":[[1373,7]]},"/jupyter.html":{"position":[[4988,10]]},"/local.jupyter.hub.html":{"position":[[829,10]]},"/ml.html":{"position":[[336,10]]},"/sto.html":{"position":[[2000,10]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[1657,10]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[519,10]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1878,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[942,10]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9515,12],[9568,8]]},"/regulus/getting-started-with-regulus.html":{"position":[[58,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[58,7]]},"/regulus/regulus-magic-reference.html":{"position":[[58,7]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[58,7]]}},"component":{}}],["product_id",{"_index":450,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[5393,10],[5738,11]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13920,10],[15018,11]]}},"component":{}}],["profici",{"_index":1322,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[913,10]]}},"component":{}}],["profil",{"_index":337,"title":{"/mule-teradata-connector/reference.html#_working_with_pooling_profiles":{"position":[[21,8]]},"/mule-teradata-connector/reference.html#_working_with_pooling_profiles_2":{"position":[[21,8]]},"/mule-teradata-connector/reference.html#_working_with_pooling_profiles_3":{"position":[[21,8]]},"/mule-teradata-connector/reference.html#pooling-profile":{"position":[[8,7]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[2007,7],[2979,7],[3178,9],[3404,7]]},"/dbt.html":{"position":[[1121,7],[1578,7]]},"/getting.started.utm.html":{"position":[[5032,7]]},"/getting.started.vbox.html":{"position":[[3858,7]]},"/getting.started.vmware.html":{"position":[[4141,7]]},"/local.jupyter.hub.html":{"position":[[2203,8],[2361,9]]},"/mule-teradata-connector/reference.html":{"position":[[1346,7],[1362,7],[1774,7],[1790,7],[20423,8],[23536,8],[27484,8],[34401,7]]},"/mule-teradata-connector/release-notes.html":{"position":[[933,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3134,7],[3413,7],[3896,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[7649,7]]},"/regulus/regulus-magic-reference.html":{"position":[[568,7]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1591,7]]}},"component":{}}],["profiles.yml",{"_index":366,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3146,12],[3547,13]]},"/dbt.html":{"position":[[1721,13]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1965,12],[2027,12],[2502,12],[2700,13]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6011,12]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3556,13]]}},"component":{}}],["program",{"_index":4116,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[9850,7]]}},"component":{}}],["project",{"_index":263,"title":{"/advanced-dbt.html#_demo_project_setup":{"position":[[5,7]]},"/jdbc.html#_add_dependency_to_your_maven_project":{"position":[[29,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_the_jaffle_shop_dbt_project":{"position":[[20,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_a_new_project_or_use_an_existing_one":{"position":[[13,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_a_new_project_or_use_an_existing_one":{"position":[[13,7]]},"/mule-teradata-connector/examples-configuration.html#create-mule-project":{"position":[[14,7]]},"/mule-teradata-connector/examples-configuration.html#add-connector-to-project":{"position":[[31,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_a_test_dbt_project":{"position":[[19,7]]},"/regulus/using-regulus-workspace-cli.html#_project_create":{"position":[[0,7]]},"/regulus/using-regulus-workspace-cli.html#_project_list":{"position":[[0,7]]},"/regulus/using-regulus-workspace-cli.html#_project_delete":{"position":[[0,7]]},"/regulus/using-regulus-workspace-cli.html#_project_user_list":{"position":[[0,7]]},"/regulus/using-regulus-workspace-cli.html#_project_backup":{"position":[[0,7]]},"/regulus/using-regulus-workspace-cli.html#_project_restore":{"position":[[0,7]]},"/regulus/using-regulus-workspace-cli.html#_project_engine_deploy":{"position":[[0,7]]},"/regulus/using-regulus-workspace-cli.html#_project_engine_suspend":{"position":[[0,7]]},"/regulus/using-regulus-workspace-cli.html#_project_engine_list":{"position":[[0,7]]},"/regulus/using-regulus-workspace-cli.html#_project_auth_create":{"position":[[0,7]]},"/regulus/using-regulus-workspace-cli.html#_project_auth_list":{"position":[[0,7]]},"/regulus/using-regulus-workspace-cli.html#_project_auth_delete":{"position":[[0,7]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[57,7],[249,8],[907,7],[1654,7],[2022,7],[2510,8],[2995,7],[6483,8],[6729,8],[7069,7],[7166,8]]},"/dbt.html":{"position":[[508,7],[1789,7],[4581,7]]},"/jdbc.html":{"position":[[712,7]]},"/mule.jdbc.example.html":{"position":[[108,8],[2677,7],[2746,11],[2781,7],[2868,7],[3003,7]]},"/segment.html":{"position":[[1351,7],[1389,7],[1443,7],[1551,8],[1591,8],[1643,9],[2538,8],[3997,8],[4013,8],[4681,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[476,7],[1834,7],[2221,7],[2686,7],[2743,7],[3779,7],[8327,7],[8372,9],[8876,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[762,7],[789,7],[1657,8],[1683,7],[1717,7],[1775,8],[1811,7],[2571,7],[3133,7],[3210,7],[3250,7],[3631,9],[3693,7],[3788,8],[6776,7],[8111,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[2815,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[187,7],[1641,7],[1656,7],[1976,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[187,7],[1678,7],[1693,7],[2013,8],[5915,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2882,8],[3598,7],[5746,8]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[232,8],[272,8],[782,7],[871,8],[907,7],[969,7],[1218,7],[1370,7],[1436,8]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2105,7],[5048,8],[5199,8],[9476,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2325,7],[2443,7],[3686,8],[4039,8],[5353,7],[6892,7],[7263,7],[7506,8]]},"/regulus/getting-started-with-regulus.html":{"position":[[951,8],[1014,9],[1215,9],[1278,8],[1599,8],[3637,7],[3720,8],[3779,8]]},"/regulus/install-regulus-docker-image.html":{"position":[[800,9],[976,9],[4333,7],[4385,7],[4513,7]]},"/regulus/regulus-magic-reference.html":{"position":[[739,8],[800,7],[914,9],[943,8],[964,7],[1020,7],[1188,8],[1205,7],[1243,8],[1372,9],[1395,8],[1416,7],[1494,8],[1511,7],[1564,9],[1582,7],[1633,8],[1650,8],[1738,8],[1754,8],[1775,7],[2038,8],[2261,9],[2308,8],[2329,8],[2675,9],[2698,8],[2719,8],[2881,8],[2916,8],[2932,8],[2953,8],[3013,8],[3163,9],[3231,8],[3252,8],[4091,8],[4112,8],[4271,8],[4308,8],[4324,8],[4345,8],[4422,8],[4457,8],[4484,8],[4505,8],[4548,7],[4635,8],[4651,8],[4672,8],[4756,7],[4848,9],[4873,8],[4894,8]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1100,8],[1123,7],[1180,8],[1203,7],[1272,7],[1310,8],[1333,7],[1397,7],[2072,7],[2159,8],[2189,7],[2384,7],[2610,8],[2711,8],[2760,7],[2799,7],[2985,7],[3026,7],[3282,7],[3322,7],[3590,8],[3620,7],[3882,7],[3930,7],[3972,7],[4304,8],[4334,7],[5004,7],[5280,8],[5367,7],[5641,7],[6402,8],[6432,7],[6702,8],[6732,7]]}},"component":{}}],["project.org",{"_index":2808,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2989,15],[5486,15]]}},"component":{}}],["project=ubuntu",{"_index":2613,"title":{},"name":{},"text":{"/vantage.express.gcp.html":{"position":[[960,14],[1248,14],[1536,14]]}},"component":{}}],["project_auth_cr",{"_index":4408,"title":{"/regulus/regulus-magic-reference.html#_project_auth_create":{"position":[[0,20]]}},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[1187,20]]},"/regulus/regulus-magic-reference.html":{"position":[[2240,20]]}},"component":{}}],["project_auth_delet",{"_index":4494,"title":{"/regulus/regulus-magic-reference.html#_project_auth_delete":{"position":[[0,20]]}},"name":{},"text":{"/regulus/regulus-magic-reference.html":{"position":[[2654,20]]}},"component":{}}],["project_auth_list",{"_index":4495,"title":{"/regulus/regulus-magic-reference.html#_project_auth_list":{"position":[[0,18]]}},"name":{},"text":{"/regulus/regulus-magic-reference.html":{"position":[[2897,18]]}},"component":{}}],["project_backup",{"_index":4430,"title":{"/regulus/regulus-magic-reference.html#_project_backup":{"position":[[0,15]]}},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[3704,15]]},"/regulus/regulus-magic-reference.html":{"position":[[4619,15]]}},"component":{}}],["project_cr",{"_index":4404,"title":{"/regulus/regulus-magic-reference.html#_project_create":{"position":[[0,15]]}},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[998,15]]},"/regulus/regulus-magic-reference.html":{"position":[[898,15]]}},"component":{}}],["project_delet",{"_index":4491,"title":{"/regulus/regulus-magic-reference.html#_project_delete":{"position":[[0,15]]}},"name":{},"text":{"/regulus/regulus-magic-reference.html":{"position":[[1356,15]]}},"component":{}}],["project_engine_deploy",{"_index":4410,"title":{"/regulus/regulus-magic-reference.html#_project_engine_deploy":{"position":[[0,22]]}},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[1421,22]]},"/regulus/regulus-magic-reference.html":{"position":[[3140,22]]}},"component":{}}],["project_engine_list",{"_index":4497,"title":{"/regulus/regulus-magic-reference.html#_project_engine_list":{"position":[[0,20]]}},"name":{},"text":{"/regulus/regulus-magic-reference.html":{"position":[[4287,20]]}},"component":{}}],["project_engine_suspend",{"_index":4431,"title":{"/regulus/regulus-magic-reference.html#_project_engine_suspend":{"position":[[0,23]]}},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[3755,23]]},"/regulus/regulus-magic-reference.html":{"position":[[4060,23]]}},"component":{}}],["project_id",{"_index":2379,"title":{},"name":{},"text":{"/segment.html":{"position":[[2570,11],[4045,11]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[8731,11],[8830,11],[8930,11],[9027,11],[9130,11]]}},"component":{}}],["project_id=$(gcloud",{"_index":2360,"title":{},"name":{},"text":{"/segment.html":{"position":[[1514,19]]}},"component":{}}],["project_list",{"_index":4492,"title":{"/regulus/regulus-magic-reference.html#_project_list":{"position":[[0,13]]}},"name":{},"text":{"/regulus/regulus-magic-reference.html":{"position":[[1724,13]]}},"component":{}}],["project_nam",{"_index":3728,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3662,12]]}},"component":{}}],["project_number=$(gcloud",{"_index":2361,"title":{},"name":{},"text":{"/segment.html":{"position":[[1567,23]]}},"component":{}}],["project_number@gcp",{"_index":2397,"title":{},"name":{},"text":{"/segment.html":{"position":[[4091,19]]}},"component":{}}],["project_restor",{"_index":4500,"title":{"/regulus/regulus-magic-reference.html#_project_restore":{"position":[[0,16]]}},"name":{},"text":{"/regulus/regulus-magic-reference.html":{"position":[[4831,16]]}},"component":{}}],["project_user_list",{"_index":4498,"title":{"/regulus/regulus-magic-reference.html#_project_user_list":{"position":[[0,18]]}},"name":{},"text":{"/regulus/regulus-magic-reference.html":{"position":[[4438,18]]}},"component":{}}],["projects/$project_id/topics/seg",{"_index":2403,"title":{},"name":{},"text":{"/segment.html":{"position":[[4327,35]]}},"component":{}}],["projects//topics/seg",{"_index":2414,"title":{},"name":{},"text":{"/segment.html":{"position":[[4862,24]]}},"component":{}}],["projects/partn",{"_index":3108,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[5830,16],[5954,16],[6075,16],[6196,16],[6316,16],[6430,16],[6646,16],[6765,16],[6919,16],[7044,16],[7279,16],[7395,16],[7561,16],[7703,16],[7972,16],[8088,16]]}},"component":{}}],["project’",{"_index":319,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[1535,9],[4461,9]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[4162,9]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1111,9]]}},"component":{}}],["promot",{"_index":3570,"title":{},"name":{},"text":{"/jupyter-demos/index.html":{"position":[[277,10]]}},"component":{}}],["prompt",{"_index":231,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[5464,6]]},"/getting.started.utm.html":{"position":[[2931,6],[3087,6],[3173,6],[3288,8]]},"/getting.started.vbox.html":{"position":[[1969,6],[2125,6],[2211,6],[2326,8]]},"/getting.started.vmware.html":{"position":[[2040,6],[2196,6],[2282,6],[2397,8]]},"/jupyter.html":{"position":[[6365,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1804,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1975,6]]},"/regulus/getting-started-with-regulus.html":{"position":[[842,9],[1665,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[8590,9],[9473,9]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1736,7]]}},"component":{}}],["pronounc",{"_index":2259,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[8783,11]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5563,11]]},"/vantage.express.gcp.html":{"position":[[4590,11]]}},"component":{}}],["proper",{"_index":538,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[1555,6]]}},"component":{}}],["properli",{"_index":3313,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[4068,8]]}},"component":{}}],["properti",{"_index":921,"title":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_change_data_file_properties":{"position":[[17,10]]}},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3087,10],[6764,10],[7522,10]]},"/mule.jdbc.example.html":{"position":[[730,10]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[8163,10]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1398,8],[4115,10],[4618,10],[5010,10],[5399,10]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[137,11]]},"/mule-teradata-connector/reference.html":{"position":[[4173,8],[6501,8],[25182,8],[34001,11],[34337,10],[34423,9],[34480,10],[34550,10],[34609,8],[35302,8],[39376,8]]}},"component":{}}],["properties.adm1nam",{"_index":952,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3883,24]]}},"component":{}}],["properties.nam",{"_index":949,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3759,20]]}},"component":{}}],["properties.sov0nam",{"_index":951,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3819,24]]}},"component":{}}],["properties.sov_a3",{"_index":953,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3947,22]]}},"component":{}}],["proport",{"_index":2576,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[4031,12]]}},"component":{}}],["protect",{"_index":3937,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[36960,7],[37664,7],[37726,7]]}},"component":{}}],["protocol",{"_index":3930,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[36452,9],[36495,9]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[1190,9],[1235,8]]}},"component":{}}],["prove",{"_index":1744,"title":{},"name":{},"text":{"/nos.html":{"position":[[3226,5]]}},"component":{}}],["provid",{"_index":90,"title":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_install_the_net_data_provider_for_teradata":{"position":[[22,8]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1567,8],[1679,8],[2473,8],[2658,8]]},"/advanced-dbt.html":{"position":[[1830,7]]},"/create-parquet-files-in-object-storage.html":{"position":[[2614,8]]},"/geojson-to-vantage.html":{"position":[[1609,8]]},"/jupyter.html":{"position":[[3106,8],[4584,9],[6920,8]]},"/local.jupyter.hub.html":{"position":[[609,8]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10207,8]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1486,8]]},"/sto.html":{"position":[[1609,7],[7770,7]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1691,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[512,8],[3778,8],[4485,7],[4734,7],[4926,9],[6115,9],[7262,8],[7995,8],[8408,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[344,7],[568,8],[3215,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[349,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[5772,8],[5963,8],[24329,8],[24521,8]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[670,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[250,8],[516,7],[985,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[6165,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[5132,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1818,7],[3570,7],[3651,8],[3693,7],[3805,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[9336,8],[12346,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2901,9],[5765,9]]},"/mule-teradata-connector/reference.html":{"position":[[652,7],[1034,8],[1370,8],[1798,8],[4704,9],[7004,9],[9214,9],[11054,9],[13587,8],[16521,9],[19580,9],[21110,7],[22702,9],[25681,9],[29263,9],[30662,7],[30721,9],[30897,9],[31696,9],[40289,7],[41552,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[10511,9],[10694,8]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[978,7],[3796,8],[4148,9],[4540,8]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[831,7]]},"/query-service/send-queries-using-rest-api.html":{"position":[[297,8],[1118,8],[1434,8],[1566,7]]},"/regulus/getting-started-with-regulus.html":{"position":[[3474,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[398,8],[739,7],[5225,8],[5238,8]]},"/regulus/regulus-magic-reference.html":{"position":[[5021,8]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[231,8]]}},"component":{}}],["providerdata",{"_index":2654,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[3690,12],[5066,12],[5428,12]]}},"component":{}}],["provider’",{"_index":3859,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[1138,10]]}},"component":{}}],["provis",{"_index":124,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2400,9]]},"/advanced-dbt.html":{"position":[[630,9]]},"/create-parquet-files-in-object-storage.html":{"position":[[913,9]]},"/dbt.html":{"position":[[357,9]]},"/fastload.html":{"position":[[618,9]]},"/geojson-to-vantage.html":{"position":[[1104,9]]},"/jdbc.html":{"position":[[295,9]]},"/jupyter.html":{"position":[[475,9]]},"/local.jupyter.hub.html":{"position":[[541,9]]},"/mule.jdbc.example.html":{"position":[[392,9]]},"/nos.html":{"position":[[586,9]]},"/odbc.ubuntu.html":{"position":[[229,9]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[605,9]]},"/segment.html":{"position":[[805,9]]},"/sto.html":{"position":[[800,9]]},"/teradatasql.html":{"position":[[582,9]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2680,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1232,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[675,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2904,9]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1705,9]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[1768,9]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[630,9]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[609,9]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[562,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[497,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[534,9]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[338,9]]},"/mule-teradata-connector/index.html":{"position":[[766,9]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[233,9]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1332,9]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[375,9]]},"/query-service/send-queries-using-rest-api.html":{"position":[[475,12],[713,9]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[472,9]]}},"component":{}}],["ps",{"_index":4034,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3492,2],[6936,2]]}},"component":{}}],["pse",{"_index":973,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4451,3]]}},"component":{}}],["ptctsoutput",{"_index":2883,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[3075,12],[6736,13]]}},"component":{}}],["pti",{"_index":2095,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10269,6],[10314,3],[10379,3],[10443,3]]}},"component":{}}],["ptratio",{"_index":3391,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2796,10],[3488,8],[7260,10]]}},"component":{}}],["pub/sub",{"_index":2350,"title":{},"name":{},"text":{"/segment.html":{"position":[[309,8],[318,7],[3375,7],[3517,7],[3642,7],[3949,7],[4200,7],[4655,7],[4809,7],[5443,7],[5548,7]]}},"component":{}}],["public",{"_index":328,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[1838,6]]},"/fastload.html":{"position":[[1106,6]]},"/geojson-to-vantage.html":{"position":[[327,6]]},"/nos.html":{"position":[[934,6],[6782,6]]},"/run-vantage-express-on-aws.html":{"position":[[1390,6],[1574,6],[1587,6],[1677,6],[2390,6],[3593,6],[3708,6],[4262,6],[4387,6],[12265,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[1422,6],[1813,6],[2191,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1806,6],[3426,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1359,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1467,6]]},"/jupyter-demos/index.html":{"position":[[1627,6]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[1469,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[5455,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[960,6]]}},"component":{}}],["public.s3.amazonaws.com",{"_index":1682,"title":{},"name":{},"text":{"/nos.html":{"position":[[1075,25]]}},"component":{}}],["public.s3.amazonaws.com/csvdata",{"_index":1685,"title":{},"name":{},"text":{"/nos.html":{"position":[[1257,33],[2087,33],[3433,33],[4119,34],[7001,33],[7549,34]]}},"component":{}}],["public/csvdata/09400815/2018/07/10.csv",{"_index":1766,"title":{},"name":{},"text":{"/nos.html":{"position":[[4548,38],[4665,38],[4782,38],[4899,38]]}},"component":{}}],["public/csvdata/09429070/2018/07/02.csv",{"_index":1760,"title":{},"name":{},"text":{"/nos.html":{"position":[[4432,38],[5016,38]]}},"component":{}}],["public/csvdata/09513780/2018/06/27.csv",{"_index":1739,"title":{},"name":{},"text":{"/nos.html":{"position":[[2456,38],[2546,38],[2630,38],[2747,38],[2846,38],[2942,38]]}},"component":{}}],["publish",{"_index":76,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1120,7],[1320,9],[4130,9],[5371,7],[5398,7],[5555,10]]},"/fastload.html":{"position":[[1151,9]]},"/jupyter.html":{"position":[[2628,9]]},"/nos.html":{"position":[[949,9]]},"/segment.html":{"position":[[4556,7],[4663,9]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[6931,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4487,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[6183,8],[6328,8],[6474,8]]},"/regulus/install-regulus-docker-image.html":{"position":[[2921,7],[2943,7],[3096,9],[8297,7],[8465,9]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1005,9]]}},"component":{}}],["pubsub",{"_index":2391,"title":{},"name":{},"text":{"/segment.html":{"position":[[3435,6],[3599,6],[3865,6],[4254,6],[4441,6]]}},"component":{}}],["pubsub.googleapis.com",{"_index":2368,"title":{},"name":{},"text":{"/segment.html":{"position":[[1858,21]]}},"component":{}}],["pubsub.iam.gserviceaccount.com",{"_index":2399,"title":{},"name":{},"text":{"/segment.html":{"position":[[4114,30]]}},"component":{}}],["pubsub@seg",{"_index":2410,"title":{},"name":{},"text":{"/segment.html":{"position":[[4598,14]]}},"component":{}}],["pull",{"_index":2818,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[5851,7],[5897,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6775,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[1899,4],[1945,4],[8037,4]]}},"component":{}}],["pure",{"_index":874,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[874,6]]}},"component":{}}],["purg",{"_index":3858,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[972,6]]}},"component":{}}],["purpos",{"_index":2262,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[8820,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5600,8]]},"/sto.html":{"position":[[4162,7]]},"/vantage.express.gcp.html":{"position":[[4627,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[633,7],[1102,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[3894,7],[7584,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4756,9],[5612,7]]}},"component":{}}],["push",{"_index":1421,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[1621,4],[1668,4],[2763,4],[3850,4]]},"/segment.html":{"position":[[4374,4],[4405,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[5668,4],[5788,4],[5839,7],[5885,7]]}},"component":{}}],["put",{"_index":821,"title":{},"name":{},"text":{"/fastload.html":{"position":[[4675,3]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2262,3]]}},"component":{}}],["putti",{"_index":4011,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1177,5],[2423,6]]}},"component":{}}],["pwd}\":/home/jovyan/work",{"_index":1342,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[2023,26]]}},"component":{}}],["pyodbc",{"_index":1826,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[1269,6]]}},"component":{}}],["pyodbc.connect('driver={teradata",{"_index":1829,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[1307,32]]}},"component":{}}],["pypi",{"_index":900,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[2270,4],[7918,4]]}},"component":{}}],["python",{"_index":286,"title":{"/geojson-to-vantage.html#_option_2_prepare_a_geojson_document_with_python_and_load_it_into_vantage":{"position":[[42,6]]},"/teradatasql.html":{"position":[[25,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_python":{"position":[[8,6]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[689,6],[1036,6],[1108,6],[1210,6],[1242,6]]},"/dbt.html":{"position":[[416,6],[625,6]]},"/geojson-to-vantage.html":{"position":[[618,6],[881,6],[1165,6],[1688,6],[5542,6],[5641,6],[5725,6],[5918,6],[6299,6],[8723,6],[10419,7]]},"/jupyter.html":{"position":[[612,6],[1183,6],[1621,6],[1651,6],[2783,6],[4933,6],[6888,6],[7156,6],[7336,6]]},"/local.jupyter.hub.html":{"position":[[746,6],[5819,6],[5912,6],[6107,6]]},"/odbc.ubuntu.html":{"position":[[1070,6],[1906,6]]},"/sto.html":{"position":[[2404,6],[7909,6]]},"/teradatasql.html":{"position":[[122,6],[174,6],[658,6],[885,6],[931,6],[1014,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1720,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2749,6],[3934,6],[5248,6],[6156,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[4459,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1922,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1381,7],[1957,6],[2441,7],[2827,6],[2975,6],[3046,6],[3120,6],[8832,6]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2343,6]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1674,6],[2094,6],[2234,6],[2306,7],[2714,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[811,6],[1231,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4131,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1754,6],[1785,6],[1813,6],[1855,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2145,6]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1028,7]]}},"component":{}}],["python/r",{"_index":1316,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[647,8],[878,8]]}},"component":{}}],["python3",{"_index":625,"title":{},"name":{},"text":{"/dbt.html":{"position":[[706,7]]},"/odbc.ubuntu.html":{"position":[[436,7],[1541,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1310,7],[1994,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1312,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1823,7],[2058,7],[2130,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2235,7]]}},"component":{}}],["python3.6",{"_index":3068,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2982,9],[3053,9],[3127,9]]}},"component":{}}],["python=\"$python",{"_index":2846,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2748,16]]}},"component":{}}],["python=\"3.8",{"_index":2844,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2694,12]]}},"component":{}}],["q",{"_index":2520,"title":{},"name":{},"text":{"/sto.html":{"position":[[6277,1],[7262,1]]}},"component":{}}],["q1_trans_cnt",{"_index":1576,"title":{},"name":{},"text":{"/ml.html":{"position":[[5843,12]]}},"component":{}}],["q2_trans_cnt",{"_index":1577,"title":{},"name":{},"text":{"/ml.html":{"position":[[5956,12]]}},"component":{}}],["q3_trans_cnt",{"_index":1578,"title":{},"name":{},"text":{"/ml.html":{"position":[[6069,12]]}},"component":{}}],["q4_trans_cnt",{"_index":1579,"title":{},"name":{},"text":{"/ml.html":{"position":[[6182,12]]}},"component":{}}],["qcow2",{"_index":1158,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[2537,5]]}},"component":{}}],["qemu",{"_index":1138,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[2040,4]]}},"component":{}}],["qualifi",{"_index":3881,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[3938,9],[6266,9],[8566,9],[10395,9],[12610,9],[14379,9],[15873,9],[18932,9],[22093,9],[24947,9],[28615,9],[32655,9],[38803,9]]}},"component":{}}],["qualiti",{"_index":877,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[945,7],[5416,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2565,7],[5119,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2602,7],[7170,7]]}},"component":{}}],["quantiti",{"_index":453,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[5472,8],[5786,8]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[959,10]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13945,8]]}},"component":{}}],["queri",{"_index":219,"title":{"/advanced-dbt.html#_running_sample_queries":{"position":[[15,7]]},"/getting.started.utm.html#_run_sample_queries":{"position":[[11,7]]},"/getting.started.vbox.html#_run_sample_queries":{"position":[[11,7]]},"/getting.started.vmware.html#_run_sample_queries":{"position":[[11,7]]},"/jdbc.html#_code_to_send_a_query":{"position":[[15,5]]},"/mule.jdbc.example.html":{"position":[[0,5]]},"/nos.html":{"position":[[0,5]]},"/nos.html#_query_data_with_nos":{"position":[[0,5]]},"/run-vantage-express-on-aws.html#_run_sample_queries":{"position":[[11,7]]},"/run-vantage-express-on-microsoft-azure.html#_run_sample_queries":{"position":[[11,7]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_move_data_from_different_systems_for_unified_query_processing":{"position":[[45,5]]},"/teradatasql.html#_code_to_send_a_query":{"position":[[15,5]]},"/vantage.express.gcp.html#_run_sample_queries":{"position":[[11,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_query_the_dataset_in_azure_blob_storage":{"position":[[0,5]]},"/mule-teradata-connector/reference.html#querySingle":{"position":[[0,5]]},"/query-service/send-queries-using-rest-api.html":{"position":[[5,7]]},"/query-service/send-queries-using-rest-api.html#_query_service_api_examples":{"position":[[0,5]]},"/query-service/send-queries-using-rest-api.html#_connect_to_your_query_service_instance":{"position":[[16,5]]},"/query-service/send-queries-using-rest-api.html#_use_explicit_session_to_submit_a_query":{"position":[[33,5]]},"/query-service/send-queries-using-rest-api.html#_use_asynchronous_queries":{"position":[[17,7]]},"/query-service/send-queries-using-rest-api.html#_get_a_list_of_active_or_queued_queries":{"position":[[31,7]]}},"name":{"/query-service/send-queries-using-rest-api.html":{"position":[[5,7]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[5074,6],[5095,5]]},"/advanced-dbt.html":{"position":[[6439,7],[6498,7],[6870,8]]},"/create-parquet-files-in-object-storage.html":{"position":[[117,5],[3129,5],[3743,5],[3799,6],[3900,5]]},"/fastload.html":{"position":[[1425,6],[7556,5]]},"/geojson-to-vantage.html":{"position":[[9375,5]]},"/getting.started.utm.html":{"position":[[248,5],[4664,7],[4894,5],[4964,5],[5172,5],[5208,5],[5343,6],[5403,5],[6392,8],[6479,5]]},"/getting.started.vbox.html":{"position":[[248,5],[3720,5],[3790,5],[3998,5],[4034,5],[4169,6],[4229,5],[5988,8],[6075,5]]},"/getting.started.vmware.html":{"position":[[248,5],[3773,7],[4003,5],[4073,5],[4281,5],[4317,5],[4452,6],[4512,5],[5501,8],[5588,5]]},"/jdbc.html":{"position":[[828,6],[1046,7]]},"/jupyter.html":{"position":[[3501,5]]},"/mule.jdbc.example.html":{"position":[[140,5],[500,7],[848,6],[952,5],[1114,5],[1245,6],[1280,6]]},"/nos.html":{"position":[[127,5],[5237,8],[5357,8],[5700,5],[5812,5],[6610,5],[6949,6],[7919,6]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[903,5],[10753,5]]},"/run-vantage-express-on-aws.html":{"position":[[1205,5],[1501,5],[1788,5],[2114,5],[2908,5],[3097,5],[4028,5],[4838,5],[5187,5],[5640,5],[5761,5],[8874,7],[9101,5],[9227,6],[9287,5],[12396,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[1499,5],[1889,5],[2267,5],[5654,7],[5881,5],[6007,6],[6067,5],[8334,5]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1603,5]]},"/sto.html":{"position":[[2603,6],[4899,5],[5693,5],[6004,5]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[532,5],[678,7],[1127,5],[1313,5],[1404,6],[1438,8],[1493,5],[1858,8],[4281,7]]},"/teradatasql.html":{"position":[[800,6],[955,7]]},"/vantage.express.gcp.html":{"position":[[4681,7],[4908,5],[5034,6],[5094,5],[7510,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[192,5],[2529,7],[3071,5],[10476,5],[13545,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[642,6],[10097,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[5179,5]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6025,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[11337,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2770,6],[2949,6],[3125,6],[3446,6],[3613,6],[3780,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2807,6],[2986,6],[3162,6],[3483,6],[3650,6],[3817,6]]},"/mule-teradata-connector/index.html":{"position":[[272,7],[879,8],[912,8],[934,7],[1514,5]]},"/mule-teradata-connector/reference.html":{"position":[[272,7],[2638,5],[2891,5],[3661,5],[3816,5],[4489,5],[4527,5],[4683,6],[5991,5],[6145,5],[6815,5],[6853,5],[6994,6],[8289,5],[8444,5],[9025,5],[9063,5],[9204,6],[10118,5],[10273,5],[10854,5],[10892,5],[11033,6],[11962,7],[12099,5],[12137,5],[12333,5],[12488,5],[13921,5],[13959,5],[14102,5],[14257,5],[15596,5],[15751,5],[16332,5],[16370,5],[16511,6],[17802,7],[18655,5],[18810,5],[19391,5],[19429,5],[19570,6],[21125,5],[21306,5],[21816,5],[21971,5],[22512,5],[22550,5],[22692,6],[23553,5],[24671,5],[24825,5],[25496,5],[25534,5],[25671,6],[28338,5],[28493,5],[29074,5],[29112,5],[29253,6],[31206,5],[32378,5],[32533,5]]},"/mule-teradata-connector/release-notes.html":{"position":[[272,7],[479,8],[512,8],[534,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[9257,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[59,5],[189,5],[225,5],[364,5],[458,5],[510,5],[586,5],[605,5],[772,5],[1343,5],[2928,5],[3377,6],[3443,8],[5228,5],[5418,5],[5719,8],[7789,5],[8145,5],[8631,7],[8713,7],[8886,5],[9084,7],[9154,8],[9234,8],[9332,5],[9512,5],[9571,8],[9834,5],[10030,6],[10168,5],[10258,5],[10784,5],[10989,6],[11578,8],[11787,8],[12112,8],[12450,5],[12509,5]]},"/regulus/getting-started-with-regulus.html":{"position":[[1257,5],[3741,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[253,5],[344,5],[424,5],[1087,5],[1657,5],[5412,5],[6179,5],[6284,5],[6407,5],[6597,5]]},"/regulus/regulus-magic-reference.html":{"position":[[504,5],[1946,5],[2161,5],[2992,5],[3279,5],[3368,5],[3466,5],[3567,5],[3742,5],[3881,5],[4006,5],[4239,5],[4598,5]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1159,5],[1284,5],[1369,5],[2392,5],[3516,5],[3841,5],[4283,5],[4530,5],[4625,5],[4907,5],[5261,5],[5332,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1300,6],[9116,5]]}},"component":{}}],["query\":\"select",{"_index":4357,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[10470,15]]}},"component":{}}],["query_param",{"_index":2504,"title":{},"name":{},"text":{"/sto.html":{"position":[[5107,12],[5165,13]]}},"component":{}}],["querydur",{"_index":4385,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[11981,16],[12305,16]]}},"component":{}}],["queryduration\":227",{"_index":4245,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[3977,20]]}},"component":{}}],["queryduration\":9",{"_index":4365,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[10647,18],[11216,18]]}},"component":{}}],["querygrid",{"_index":2429,"title":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_querygrid":{"position":[[26,9]]}},"name":{},"text":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[896,10],[907,9],[1725,9]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3322,10]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5077,10]]}},"component":{}}],["queryid",{"_index":4378,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[11766,10],[12091,10]]}},"component":{}}],["queryid\":1366025",{"_index":4356,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[10451,18]]}},"component":{}}],["queryst",{"_index":4351,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[10047,11],[11912,13],[12236,13]]}},"component":{}}],["querystate\":\"result_set_readi",{"_index":4362,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[10579,32]]}},"component":{}}],["querytimeout",{"_index":3882,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[3952,14],[6280,14],[8580,14],[10409,14],[12624,14],[14393,14],[15887,14],[18946,14],[22107,14],[24961,14],[28629,14],[32669,14]]}},"component":{}}],["question",{"_index":243,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[6038,9]]},"/advanced-dbt.html":{"position":[[7317,9]]},"/create-parquet-files-in-object-storage.html":{"position":[[4379,9]]},"/dbt.html":{"position":[[4917,9]]},"/fastload.html":{"position":[[7608,9]]},"/geojson-to-vantage.html":{"position":[[10659,9]]},"/getting.started.utm.html":{"position":[[6588,9]]},"/getting.started.vbox.html":{"position":[[6184,9]]},"/getting.started.vmware.html":{"position":[[5697,9]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[1120,9]]},"/jdbc.html":{"position":[[1122,9]]},"/jupyter.html":{"position":[[7370,9]]},"/local.jupyter.hub.html":{"position":[[6141,9]]},"/ml.html":{"position":[[9142,9]]},"/mule.jdbc.example.html":{"position":[[3568,9]]},"/nos.html":{"position":[[1980,9],[8754,9]]},"/odbc.ubuntu.html":{"position":[[1979,9]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10867,9]]},"/run-vantage-express-on-aws.html":{"position":[[12526,9]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[8464,9]]},"/segment.html":{"position":[[5598,9]]},"/sto.html":{"position":[[7969,9]]},"/teradatasql.html":{"position":[[1054,9]]},"/vantage.express.gcp.html":{"position":[[7640,9]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[24846,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[6420,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[4622,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[26398,9]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[8940,9]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[6327,9]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[7328,9]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[8518,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[5271,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[7322,9]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9864,9]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[4930,9]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[1609,9]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[10891,9]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1855,9]]},"/query-service/send-queries-using-rest-api.html":{"position":[[12565,9]]},"/regulus/getting-started-with-regulus.html":{"position":[[4080,9]]},"/regulus/install-regulus-docker-image.html":{"position":[[9900,9]]},"/regulus/regulus-magic-reference.html":{"position":[[5171,9]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[7058,9]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[9168,9]]}},"component":{}}],["queu",{"_index":4332,"title":{"/query-service/send-queries-using-rest-api.html#_get_a_list_of_active_or_queued_queries":{"position":[[24,6]]}},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[7819,6]]}},"component":{}}],["queuedur",{"_index":4353,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[10071,14]]}},"component":{}}],["queueduration\":6",{"_index":4364,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[10628,18],[11197,18]]}},"component":{}}],["queueduration\":7",{"_index":4244,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[3958,18]]}},"component":{}}],["queuedurayion",{"_index":4384,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[11961,16],[12285,16]]}},"component":{}}],["queueorder",{"_index":4352,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[10059,11],[11944,13],[12268,13]]}},"component":{}}],["queueorder\":0",{"_index":4363,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[10612,15]]}},"component":{}}],["quick",{"_index":1203,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[4757,5],[4842,5]]},"/getting.started.vmware.html":{"position":[[3866,5],[3951,5]]},"/jupyter.html":{"position":[[6712,5]]},"/ml.html":{"position":[[8847,5]]},"/nos.html":{"position":[[8413,5]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10583,5]]},"/sto.html":{"position":[[7471,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4152,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4872,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[6877,5]]}},"component":{}}],["quicker",{"_index":1778,"title":{},"name":{},"text":{"/nos.html":{"position":[[5513,7]]}},"component":{}}],["quickli",{"_index":1236,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[6229,7]]},"/getting.started.vbox.html":{"position":[[5825,7]]},"/getting.started.vmware.html":{"position":[[5338,7]]},"/ml.html":{"position":[[98,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[4346,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2263,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2590,7]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[430,7]]}},"component":{}}],["quickstart",{"_index":3765,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[5354,10]]}},"component":{}}],["quiescent",{"_index":1184,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[3777,9]]},"/getting.started.vbox.html":{"position":[[2815,9]]},"/getting.started.vmware.html":{"position":[[2886,9]]},"/run-vantage-express-on-aws.html":{"position":[[8565,10]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5345,10]]},"/vantage.express.gcp.html":{"position":[[4372,10]]}},"component":{}}],["quiet",{"_index":2847,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2809,5]]}},"component":{}}],["quot",{"_index":2473,"title":{},"name":{},"text":{"/sto.html":{"position":[[2586,6]]}},"component":{}}],["r",{"_index":1314,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[622,1],[1194,1],[4944,1],[6899,1]]},"/local.jupyter.hub.html":{"position":[[757,1],[5682,1],[5851,2],[5967,1]]},"/run-vantage-express-on-aws.html":{"position":[[5261,1]]},"/sto.html":{"position":[[7903,1]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1717,2]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2806,1],[2892,2],[3945,2],[3963,1],[5194,1],[5311,1],[5386,2]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1919,2]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1378,2]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[4721,2],[5671,1],[6079,2]]}},"component":{}}],["r40",{"_index":2531,"title":{},"name":{},"text":{"/sto.html":{"position":[[6444,4],[7429,4]]}},"component":{}}],["r=cur.execut",{"_index":918,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[2842,13],[8500,13]]}},"component":{}}],["rad",{"_index":3390,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2782,6],[3325,3],[3478,4],[7246,6]]}},"component":{}}],["radiation_solar_total_wpm2",{"_index":2765,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[13319,26],[16941,26],[18456,26],[20654,26],[24551,26]]}},"component":{}}],["rais",{"_index":3505,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[8834,5]]},"/mule-teradata-connector/reference.html":{"position":[[40774,6],[41016,7],[41996,6],[42195,7]]}},"component":{}}],["ram",{"_index":1126,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[973,3],[1026,3],[1802,3]]},"/getting.started.vbox.html":{"position":[[771,3],[824,3]]},"/getting.started.vmware.html":{"position":[[768,3],[821,3]]},"/run-vantage-express-on-aws.html":{"position":[[5329,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[1146,4]]},"/vantage.express.gcp.html":{"position":[[519,4]]}},"component":{}}],["ramallah",{"_index":971,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4428,8]]}},"component":{}}],["ran",{"_index":1237,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[6355,3]]},"/getting.started.vbox.html":{"position":[[5951,3]]},"/getting.started.vmware.html":{"position":[[5464,3]]},"/sto.html":{"position":[[7546,3]]}},"component":{}}],["random",{"_index":3976,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[40297,6],[41560,6]]}},"component":{}}],["random_st",{"_index":3476,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[7359,12]]}},"component":{}}],["randomforestregressor",{"_index":3456,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[6647,21]]}},"component":{}}],["randomforestregressor(n_estim",{"_index":3475,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[7317,34]]}},"component":{}}],["rang",{"_index":1842,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[169,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4384,7]]}},"component":{}}],["ranges.html[aw",{"_index":2894,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4357,15]]}},"component":{}}],["rapidli",{"_index":2544,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[749,8]]}},"component":{}}],["rar",{"_index":2212,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[6129,3]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2909,3]]},"/vantage.express.gcp.html":{"position":[[1936,3]]}},"component":{}}],["rate",{"_index":2976,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[12366,7],[17089,7],[18893,7],[21387,6],[22875,7]]}},"component":{}}],["rate_cod",{"_index":1857,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1192,9],[3617,9],[3907,10]]}},"component":{}}],["ravi",{"_index":4125,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[8,4]]}},"component":{}}],["raw",{"_index":628,"title":{"/dbt.html#_create_raw_data_tables":{"position":[[7,3]]}},"name":{},"text":{"/dbt.html":{"position":[[1808,3],[1917,3],[2048,3],[2184,3],[2540,3],[2747,3],[2960,3],[4021,3],[4595,3]]},"/geojson-to-vantage.html":{"position":[[6739,4]]},"/segment.html":{"position":[[278,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[3117,3]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[3322,3],[4588,3],[4617,3],[5266,3],[5769,3],[5805,3],[8019,3],[8125,3]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6538,3]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[799,3],[2828,3],[4838,3],[6906,3]]}},"component":{}}],["raw_custom",{"_index":645,"title":{},"name":{},"text":{"/dbt.html":{"position":[[2624,14]]}},"component":{}}],["raw_ord",{"_index":646,"title":{},"name":{},"text":{"/dbt.html":{"position":[[2639,11]]}},"component":{}}],["raw_pay",{"_index":647,"title":{},"name":{},"text":{"/dbt.html":{"position":[[2651,13]]}},"component":{}}],["rb",{"_index":3160,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3165,5]]}},"component":{}}],["rdbm",{"_index":2574,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3913,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[5963,5],[6100,5],[6237,5],[7195,6]]}},"component":{}}],["rdbms/blob/master/googl",{"_index":3131,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[8657,24]]}},"component":{}}],["re",{"_index":3499,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[8466,3],[8662,3],[8731,3]]}},"component":{}}],["reach",{"_index":2549,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1162,7]]},"/mule-teradata-connector/reference.html":{"position":[[34891,7],[38156,7]]}},"component":{}}],["read",{"_index":611,"title":{"/create-parquet-files-in-object-storage.html#_further_reading":{"position":[[8,7]]},"/dbt.html#_further_reading":{"position":[[8,7]]},"/fastload.html#_further_reading":{"position":[[8,7]]},"/getting.started.utm.html#_further_reading":{"position":[[8,7]]},"/getting.started.vbox.html#_further_reading":{"position":[[8,7]]},"/getting.started.vmware.html#_further_reading":{"position":[[8,7]]},"/jdbc.html#_further_reading":{"position":[[8,7]]},"/jupyter.html#_further_reading":{"position":[[8,7]]},"/local.jupyter.hub.html#_further_reading":{"position":[[8,7]]},"/ml.html#_further_reading":{"position":[[8,7]]},"/mule.jdbc.example.html#_further_reading":{"position":[[8,7]]},"/nos.html#_further_reading":{"position":[[8,7]]},"/odbc.ubuntu.html#_further_reading":{"position":[[8,7]]},"/perform-time-series-analysis-using-teradata-vantage.html#_further_reading":{"position":[[8,7]]},"/run-vantage-express-on-aws.html#_further_reading":{"position":[[8,7]]},"/run-vantage-express-on-microsoft-azure.html#_further_reading":{"position":[[8,7]]},"/segment.html#_further_reading":{"position":[[8,7]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_further_reading":{"position":[[8,7]]},"/sto.html#_further_reading":{"position":[[8,7]]},"/teradata-vantage-engine-architecture-and-concepts.html#_further_reading":{"position":[[8,7]]},"/teradatasql.html#_further_reading":{"position":[[8,7]]},"/vantage.express.gcp.html#_further_reading":{"position":[[8,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_further_reading":{"position":[[8,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html#_further_reading":{"position":[[8,7]]},"/cloud-guides/sagemaker-with-teradata-vantage.html#_further_reading":{"position":[[8,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_further_reading":{"position":[[8,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_further_reading":{"position":[[8,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_further_reading":{"position":[[8,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-the-component-that-reads-data-from-Vantage":{"position":[[26,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_further_reading":{"position":[[8,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_further_reading":{"position":[[8,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html#_further_reading":{"position":[[8,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_further_reading":{"position":[[8,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_further_reading":{"position":[[8,7]]},"/other-integrations/integrate-teradata-vantage-with-knime.html#_further_reading":{"position":[[8,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_further_reading":{"position":[[8,7]]}},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[4180,7]]},"/geojson-to-vantage.html":{"position":[[1804,4]]},"/nos.html":{"position":[[5332,4],[7616,7],[8448,4],[8551,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[4723,7]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[791,4]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1867,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8607,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[558,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[6165,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[4386,5],[4675,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4644,4],[5022,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4470,4]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[635,7]]},"/mule-teradata-connector/index.html":{"position":[[1020,4],[1107,4]]},"/mule-teradata-connector/reference.html":{"position":[[4145,4],[6473,4],[8773,4],[10602,4],[12817,4],[14586,4],[16080,4],[19139,4],[22300,4],[23838,4],[25154,4],[28822,4],[32862,4]]},"/mule-teradata-connector/release-notes.html":{"position":[[620,4],[707,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2506,4],[3299,6],[4843,4]]}},"component":{}}],["read_commit",{"_index":3863,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[1972,14]]}},"component":{}}],["read_data_from_vantag",{"_index":3414,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3882,22],[5398,23]]}},"component":{}}],["read_data_from_vantage(connection_string).output",{"_index":3511,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[9097,48]]}},"component":{}}],["read_no",{"_index":2778,"title":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_read_nos_an_alternative_method_to_foreign_tables":{"position":[[0,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_read_nos_table_operator":{"position":[[0,8]]}},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[20894,8],[21145,8],[21292,8],[21866,8],[22038,8],[24583,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[12711,8],[12959,8],[17510,8],[17661,8],[19171,8],[19787,8]]}},"component":{}}],["read_uncommit",{"_index":3864,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[1987,16]]}},"component":{}}],["reader",{"_index":4198,"title":{},"name":{},"text":{"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1147,6],[1242,6]]}},"component":{}}],["readi",{"_index":394,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3750,5]]},"/create-parquet-files-in-object-storage.html":{"position":[[3734,5]]},"/dbt.html":{"position":[[1892,5]]},"/geojson-to-vantage.html":{"position":[[676,5],[4142,5]]},"/local.jupyter.hub.html":{"position":[[620,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[5948,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4493,5],[4595,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2523,6],[3512,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3584,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6657,5]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1149,5]]}},"component":{}}],["readonli",{"_index":4296,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[6498,8]]}},"component":{}}],["real",{"_index":632,"title":{},"name":{},"text":{"/dbt.html":{"position":[[2154,4]]},"/ml.html":{"position":[[7955,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1434,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2160,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1095,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9254,4]]},"/mule-teradata-connector/reference.html":{"position":[[39775,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1015,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[9804,4]]}},"component":{}}],["realli",{"_index":785,"title":{},"name":{},"text":{"/fastload.html":{"position":[[3446,6]]},"/geojson-to-vantage.html":{"position":[[5750,6]]}},"component":{}}],["reboot",{"_index":1250,"title":{},"name":{},"text":{"/getting.started.vbox.html":{"position":[[1442,6]]}},"component":{}}],["recal",{"_index":3237,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[6203,6]]}},"component":{}}],["receiv",{"_index":1655,"title":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_accept_and_receive_data_using_azure_data_share":{"position":[[11,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_configure_received_share":{"position":[[10,8]]}},"name":{},"text":{"/mule.jdbc.example.html":{"position":[[1058,8]]},"/segment.html":{"position":[[3399,7]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1540,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[584,7],[947,7],[3004,7],[6033,7],[6701,7],[8383,9],[8494,8]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1787,8]]},"/regulus/install-regulus-docker-image.html":{"position":[[6996,8],[7127,8]]}},"component":{}}],["recent",{"_index":3770,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6316,6]]},"/mule-teradata-connector/reference.html":{"position":[[34851,8]]}},"component":{}}],["recipi",{"_index":2658,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[4517,10],[5521,10],[5547,9],[5912,9]]}},"component":{}}],["recipient/consum",{"_index":2671,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[6002,18]]}},"component":{}}],["recogn",{"_index":4153,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[4510,10]]}},"component":{}}],["recommend",{"_index":269,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[202,9]]},"/geojson-to-vantage.html":{"position":[[7314,11]]},"/getting.started.utm.html":{"position":[[1787,9]]},"/local.jupyter.hub.html":{"position":[[2516,9]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[148,10],[220,11],[487,11],[569,11],[924,11],[1559,11]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[3569,11]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1530,11]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2754,9]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6817,11]]},"/regulus/install-regulus-docker-image.html":{"position":[[5532,10],[6055,10]]}},"component":{}}],["reconnect",{"_index":3838,"title":{"/mule-teradata-connector/reference.html#Reconnection":{"position":[[0,12]]},"/mule-teradata-connector/reference.html#reconnect":{"position":[[0,9]]},"/mule-teradata-connector/reference.html#reconnect-forever":{"position":[[0,9]]}},"name":{},"text":{"/mule-teradata-connector/examples-configuration.html":{"position":[[2622,12],[2660,12],[4117,12],[4155,12]]},"/mule-teradata-connector/index.html":{"position":[[1374,10]]},"/mule-teradata-connector/reference.html":{"position":[[1496,12],[1509,12],[1698,12],[2376,12],[2389,12],[2578,12],[5070,12],[5092,9],[5102,9],[7362,12],[7384,9],[7394,9],[9580,12],[9602,9],[9612,9],[11719,12],[11741,9],[11751,9],[13287,12],[13309,9],[13319,9],[15056,12],[15078,9],[15088,9],[17573,12],[17595,9],[17605,9],[20255,12],[20277,9],[20287,9],[23377,12],[23399,9],[23409,9],[27326,12],[27348,9],[27358,9],[30326,12],[30348,9],[30358,9],[33110,12],[33132,9],[33142,9],[35819,12],[35842,12],[35864,9],[35874,9],[35896,12],[36001,9],[36056,12],[36124,12],[36283,9],[36331,12]]},"/mule-teradata-connector/release-notes.html":{"position":[[992,9]]}},"component":{}}],["record",{"_index":706,"title":{},"name":{},"text":{"/fastload.html":{"position":[[479,8],[1874,8],[3974,6],[4038,6],[4114,6],[5741,6],[5755,6],[7467,7]]},"/geojson-to-vantage.html":{"position":[[7499,6]]},"/getting.started.utm.html":{"position":[[5722,7]]},"/getting.started.vbox.html":{"position":[[4548,7]]},"/getting.started.vmware.html":{"position":[[4831,7]]},"/mule.jdbc.example.html":{"position":[[2492,6]]},"/run-vantage-express-on-aws.html":{"position":[[9606,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6386,7]]},"/vantage.express.gcp.html":{"position":[[5413,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[10740,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4488,8],[5227,7],[7346,6],[7456,7],[7529,7],[10449,6],[10701,8],[25222,7],[25255,6],[25396,7]]},"/mule-teradata-connector/reference.html":{"position":[[21079,6],[21183,6],[21367,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[333,8],[1969,8],[9012,7]]}},"component":{}}],["record_evaluation_stat",{"_index":3670,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4751,28]]}},"component":{}}],["record_scoring_stat",{"_index":3673,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[5129,25]]}},"component":{}}],["record_training_stat",{"_index":3667,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4366,26]]}},"component":{}}],["recoveri",{"_index":1196,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[4180,8]]},"/getting.started.vbox.html":{"position":[[3218,8]]},"/getting.started.vmware.html":{"position":[[3289,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2867,8]]}},"component":{}}],["recreat",{"_index":4103,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8518,8]]}},"component":{}}],["red",{"_index":4013,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1402,3]]}},"component":{}}],["redeliv",{"_index":3950,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[38958,11],[39119,11],[39358,12]]}},"component":{}}],["redeliveri",{"_index":3917,"title":{"/mule-teradata-connector/reference.html#RedeliveryPolicy":{"position":[[0,10]]}},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[32275,10],[32293,10],[32347,10],[38889,10],[39490,10]]}},"component":{}}],["redeploy",{"_index":4493,"title":{},"name":{},"text":{"/regulus/regulus-magic-reference.html":{"position":[[2022,11]]}},"component":{}}],["redirect",{"_index":4480,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[6922,10],[7507,10],[7620,10]]}},"component":{}}],["redis:latest",{"_index":4089,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8036,12]]}},"component":{}}],["redistribut",{"_index":2582,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[4528,14]]}},"component":{}}],["redshift",{"_index":2876,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1246,9]]}},"component":{}}],["reduc",{"_index":2770,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[14358,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1439,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9532,7]]}},"component":{}}],["ref",{"_index":3965,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[39934,3]]}},"component":{}}],["ref_countries_map",{"_index":1057,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[9164,17],[9678,17]]}},"component":{}}],["refer",{"_index":743,"title":{"/geojson-to-vantage.html":{"position":[[15,9]]},"/mule-teradata-connector/reference.html":{"position":[[19,9]]},"/mule-teradata-connector/reference.html#config_data-source":{"position":[[12,9]]},"/regulus/regulus-magic-reference.html":{"position":[[33,9]]},"/regulus/using-regulus-workspace-cli.html#_workspaces_cli_reference":{"position":[[15,9]]}},"name":{"/mule-teradata-connector/reference.html":{"position":[[0,9]]},"/regulus/regulus-magic-reference.html":{"position":[[14,9]]}},"text":{"/fastload.html":{"position":[[1983,10],[7546,9]]},"/geojson-to-vantage.html":{"position":[[251,9],[9076,9],[10336,9]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[604,5]]},"/jdbc.html":{"position":[[634,5],[1096,9]]},"/jupyter.html":{"position":[[3128,9],[4793,10]]},"/mule.jdbc.example.html":{"position":[[963,9],[3477,9]]},"/nos.html":{"position":[[7381,9]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[573,8],[4182,6]]},"/teradatasql.html":{"position":[[1028,9]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11062,10],[13508,9],[14000,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[5747,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4427,10],[9741,8],[11042,10]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[7077,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[748,9],[934,5],[3236,9]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[721,5],[1510,5],[3075,5],[4488,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[5326,5]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[742,10],[4883,9]]},"/mule-teradata-connector/index.html":{"position":[[308,10],[338,9]]},"/mule-teradata-connector/reference.html":{"position":[[518,9],[587,9],[1178,9],[4737,9],[4785,9],[7037,9],[7085,9],[9247,9],[9295,9],[11087,9],[11135,9],[16554,9],[16602,9],[19613,9],[19661,9],[22735,9],[22783,9],[25719,9],[25767,9],[29296,9],[29344,9]]},"/query-service/send-queries-using-rest-api.html":{"position":[[7761,9],[7839,10],[12438,11]]},"/regulus/getting-started-with-regulus.html":{"position":[[730,9],[4053,10]]},"/regulus/regulus-magic-reference.html":{"position":[[4926,10]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1482,10]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2073,9],[9106,9]]}},"component":{}}],["referenc",{"_index":2690,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8806,10],[14297,11]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[8475,10]]},"/mule-teradata-connector/reference.html":{"position":[[1099,10],[11341,10],[16811,10],[19870,10],[22992,10],[25967,10],[26308,10],[26609,10],[29550,10]]}},"component":{}}],["references/inserts/create_data.sql",{"_index":349,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[2463,34]]}},"component":{}}],["references/inserts/update_data.sql",{"_index":484,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[6682,34]]}},"component":{}}],["references/queri",{"_index":479,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[6454,16]]}},"component":{}}],["refernc",{"_index":1095,"title":{"/geojson-to-vantage.html#_create_and_our_geography_refernce_table":{"position":[[25,8]]}},"name":{},"text":{},"component":{}}],["refin",{"_index":222,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[5130,6]]}},"component":{}}],["reflect",{"_index":1665,"title":{},"name":{},"text":{"/mule.jdbc.example.html":{"position":[[2008,7]]}},"component":{}}],["refresh",{"_index":1056,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[8896,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[3839,7],[3919,8],[4001,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[459,9]]}},"component":{}}],["regard",{"_index":3877,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[3621,9],[5950,9],[8248,9],[10078,9],[12293,9],[15556,9],[18475,9],[21636,9],[24490,9],[31905,9]]}},"component":{}}],["region",{"_index":2185,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[5070,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[565,6],[587,6]]},"/segment.html":{"position":[[1363,7],[2975,6],[3287,6],[3780,6],[5148,7],[5269,6]]},"/vantage.express.gcp.html":{"position":[[596,7],[638,6],[708,7],[733,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4906,8],[5702,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1943,7]]},"/regulus/getting-started-with-regulus.html":{"position":[[1240,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[5988,6],[6003,6],[6079,6],[6546,7]]},"/regulus/regulus-magic-reference.html":{"position":[[2293,7],[2489,7],[2497,6],[3196,8],[3539,7],[3547,6],[3691,7]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[4726,6],[4740,6],[6084,6],[6098,6]]}},"component":{}}],["region_nam",{"_index":935,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3454,12],[4040,12],[4234,11]]}},"component":{}}],["regist",{"_index":1130,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[1337,9]]},"/getting.started.vbox.html":{"position":[[1065,8]]},"/getting.started.vmware.html":{"position":[[1022,9]]},"/nos.html":{"position":[[3615,8]]},"/run-vantage-express-on-aws.html":{"position":[[7469,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4249,8]]},"/vantage.express.gcp.html":{"position":[[3276,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1091,8],[1122,8]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[610,9],[799,8]]},"/regulus/install-regulus-docker-image.html":{"position":[[4751,11]]}},"component":{}}],["registr",{"_index":710,"title":{},"name":{},"text":{"/fastload.html":{"position":[[776,14]]},"/run-vantage-express-on-aws.html":{"position":[[6237,13]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3017,13]]},"/vantage.express.gcp.html":{"position":[[2044,13]]},"/regulus/install-regulus-docker-image.html":{"position":[[4495,13]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[630,14]]}},"component":{}}],["registri",{"_index":1422,"title":{"/local.jupyter.hub.html#_install_teradata_jupyter_docker_image_in_your_registry":{"position":[[46,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html#_how_to_set_sql_registry":{"position":[[15,8]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_syntax_for_teradata_sql_registry":{"position":[[24,8]]}},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[1651,9],[2794,9],[3881,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[5710,8],[5731,8],[5809,9],[5829,9],[5875,9]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1189,8],[2319,9],[2565,9],[2603,8],[2704,8],[2891,9],[5755,9],[7820,9],[9768,8]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3809,9],[4060,9],[7402,8]]}},"component":{}}],["registry_ttl_sec",{"_index":3715,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2780,16]]}},"component":{}}],["registry_ttl_sec=120",{"_index":3717,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2861,20]]}},"component":{}}],["registry_typ",{"_index":3707,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1237,14]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[4070,14]]}},"component":{}}],["registry_url",{"_index":1429,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[1957,12],[2943,12]]}},"component":{}}],["registry_url/teradatajupyterlabext_vers",{"_index":1431,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[2052,42]]}},"component":{}}],["registry_url/teradatajupyterlabext_version:latest",{"_index":1433,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[2998,49]]}},"component":{}}],["registry_url/your",{"_index":1438,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[4008,17]]}},"component":{}}],["regress",{"_index":1589,"title":{"/ml.html#_create_a_linear_regression_model":{"position":[[16,10]]}},"name":{},"text":{"/ml.html":{"position":[[6427,10],[8987,10]]}},"component":{}}],["regul",{"_index":2558,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1900,10]]}},"component":{}}],["regular",{"_index":1315,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[639,7],[1554,7]]},"/nos.html":{"position":[[3204,7],[5148,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10286,7],[10559,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1010,7]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1681,7]]},"/mule-teradata-connector/reference.html":{"position":[[30581,7]]}},"component":{}}],["regulu",{"_index":4390,"title":{"/regulus/install-regulus-docker-image.html":{"position":[[22,7]]},"/regulus/install-regulus-docker-image.html#_install_a_regulus_interface":{"position":[[10,7]]},"/regulus/regulus-magic-reference.html":{"position":[[0,7]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[4,7]]}},"name":{"/regulus/getting-started-with-regulus.html":{"position":[[21,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[8,7]]},"/regulus/regulus-magic-reference.html":{"position":[[0,7]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[6,7]]}},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[129,8],[153,7],[386,8],[421,7],[697,7],[971,7],[4020,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[129,8],[153,7],[172,7],[550,7],[656,7],[1272,7],[1301,7],[1338,7],[5279,7],[7880,7],[8008,7],[9646,8],[9672,7],[9778,7]]},"/regulus/regulus-magic-reference.html":{"position":[[129,8],[153,7],[172,7],[1340,8],[5035,7]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[129,8],[208,8],[491,7],[666,7],[1838,7],[2083,8],[2458,7],[2730,8],[2996,8]]}},"component":{}}],["reinstal",{"_index":3359,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1206,9]]}},"component":{}}],["reject",{"_index":2995,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13666,9]]}},"component":{}}],["rel",{"_index":2484,"title":{},"name":{},"text":{"/sto.html":{"position":[[3712,8]]},"/mule-teradata-connector/reference.html":{"position":[[36839,8],[37311,8]]}},"component":{}}],["relat",{"_index":400,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3903,9]]},"/ml.html":{"position":[[3464,7],[3703,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8894,10],[13590,10],[14674,10],[14843,10],[17210,10],[17459,10],[22470,10]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[8570,10],[15915,10],[19599,10]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2947,9]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[4206,10]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3370,7],[5570,10]]},"/mule-teradata-connector/reference.html":{"position":[[20845,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5125,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[792,7]]}},"component":{}}],["relationship",{"_index":229,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[5325,13]]},"/dbt.html":{"position":[[2010,12],[3555,14]]},"/ml.html":{"position":[[273,12]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2782,12]]}},"component":{}}],["relearn",{"_index":1480,"title":{},"name":{},"text":{"/ml.html":{"position":[[383,10]]}},"component":{}}],["releas",{"_index":1293,"title":{"/mule-teradata-connector/release-notes.html":{"position":[[19,7]]}},"name":{"/mule-teradata-connector/release-notes.html":{"position":[[0,7]]}},"text":{"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[469,7]]},"/teradatasql.html":{"position":[[524,9]]},"/mule-teradata-connector/index.html":{"position":[[348,7],[382,7]]},"/mule-teradata-connector/reference.html":{"position":[[308,7],[342,7],[27904,8],[31229,8]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4538,7]]},"/query-service/send-queries-using-rest-api.html":{"position":[[8758,7]]},"/regulus/regulus-magic-reference.html":{"position":[[1101,8]]}},"component":{}}],["release/r",{"_index":2812,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[4006,9]]}},"component":{}}],["relev",{"_index":920,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3078,8],[7601,9]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[4921,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4407,8]]},"/jupyter-demos/index.html":{"position":[[260,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4637,8]]}},"component":{}}],["reli",{"_index":4117,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[9895,6]]}},"component":{}}],["reload",{"_index":1045,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[7649,6]]},"/run-vantage-express-on-aws.html":{"position":[[10812,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7592,6]]},"/vantage.express.gcp.html":{"position":[[6619,6]]}},"component":{}}],["remain",{"_index":3267,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[5078,7]]},"/mule-teradata-connector/reference.html":{"position":[[801,6],[20473,7],[20687,7],[27544,7],[34201,6]]}},"component":{}}],["remainafterexit=y",{"_index":2286,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[10599,19]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7379,19]]},"/vantage.express.gcp.html":{"position":[[6406,19]]}},"component":{}}],["remainingspace_in_gb\":11.545322507619858",{"_index":4263,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[4603,41]]}},"component":{}}],["remainingspace_in_gb\":1192.757254225314",{"_index":4258,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[4418,40]]}},"component":{}}],["remainingspace_in_gb\":4.650472164154053",{"_index":4273,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[4956,40]]}},"component":{}}],["remainingspace_in_gb\":4.656612873077393",{"_index":4277,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[5109,40]]}},"component":{}}],["remainingspace_in_gb\":9.294072151184082",{"_index":4268,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[4781,40]]}},"component":{}}],["rememb",{"_index":204,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[4491,9]]},"/sto.html":{"position":[[2173,9]]},"/vantage.express.gcp.html":{"position":[[7392,8]]}},"component":{}}],["remi",{"_index":1839,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[8,4]]}},"component":{}}],["remov",{"_index":455,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[5519,7]]},"/run-vantage-express-on-aws.html":{"position":[[6863,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3643,6]]},"/sto.html":{"position":[[5022,6]]},"/vantage.express.gcp.html":{"position":[[2670,6],[7404,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[7224,6],[8055,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2713,6]]},"/regulus/regulus-magic-reference.html":{"position":[[1273,7],[2609,6],[4166,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2432,6],[4091,6]]}},"component":{}}],["remove_context",{"_index":3142,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2508,14]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2456,14]]}},"component":{}}],["renam",{"_index":427,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[4685,8]]}},"component":{}}],["render",{"_index":3940,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[37149,9]]}},"component":{}}],["reorgan",{"_index":2594,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[5843,15]]}},"component":{}}],["repartit",{"_index":2595,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[5859,15]]}},"component":{}}],["repeat",{"_index":2258,"title":{"/mule-teradata-connector/reference.html#repeatable-in-memory-iterable":{"position":[[0,10]]},"/mule-teradata-connector/reference.html#repeatable-file-store-iterable":{"position":[[0,10]]},"/mule-teradata-connector/reference.html#repeatable-in-memory-stream":{"position":[[0,10]]},"/mule-teradata-connector/reference.html#repeatable-file-store-stream":{"position":[[0,10]]}},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[8647,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5427,6]]},"/vantage.express.gcp.html":{"position":[[4454,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[24231,6]]},"/mule-teradata-connector/reference.html":{"position":[[18534,10],[18564,10],[18599,10],[18636,10],[21695,10],[21725,10],[21760,10],[21797,10],[24550,10],[24580,10],[24615,10],[24652,10]]}},"component":{}}],["repeatable_read",{"_index":3865,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[2004,15]]}},"component":{}}],["repetit",{"_index":2767,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[13862,10]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[15436,10]]}},"component":{}}],["replac",{"_index":576,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2506,7],[3230,7]]},"/fastload.html":{"position":[[4518,7]]},"/geojson-to-vantage.html":{"position":[[3398,7]]},"/jupyter.html":{"position":[[5423,7],[6486,7]]},"/local.jupyter.hub.html":{"position":[[1949,7],[2935,7]]},"/mule.jdbc.example.html":{"position":[[1713,7],[1868,7]]},"/odbc.ubuntu.html":{"position":[[1138,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[7647,7]]},"/run-vantage-express-on-aws.html":{"position":[[4926,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[1025,7],[2371,7]]},"/segment.html":{"position":[[2734,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3786,8]]},"/vantage.express.gcp.html":{"position":[[626,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[9296,7],[9356,7],[10052,7],[11266,7],[21629,7],[21692,7],[21757,7],[22283,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11227,7]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2657,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8852,7]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1275,7],[9937,9],[10852,9]]},"/regulus/getting-started-with-regulus.html":{"position":[[1104,7],[1287,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2703,7]]}},"component":{}}],["repli",{"_index":4538,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[4141,7]]}},"component":{}}],["replic",{"_index":3316,"title":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_replication_frequency":{"position":[[0,11]]}},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[4329,10],[4418,10],[7660,11]]}},"component":{}}],["replica",{"_index":4459,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[3508,9],[8985,9]]}},"component":{}}],["repo",{"_index":1382,"title":{"/modelops/using-feast-feature-store-with-teradata-vantage.html#_repo_definition":{"position":[[0,4]]}},"name":{},"text":{"/jupyter.html":{"position":[[4773,4]]},"/segment.html":{"position":[[964,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1006,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1043,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1955,4],[2097,4],[2540,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2989,4]]}},"component":{}}],["repo.teradata.com','https://cloud.r",{"_index":2807,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2953,35],[5450,35]]}},"component":{}}],["report",{"_index":32,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[255,7],[1091,6],[1137,7],[1163,6],[1330,7],[4113,7],[5384,7],[5488,7],[5539,6],[5632,6],[5681,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4414,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[6058,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[6785,6]]}},"component":{}}],["repositori",{"_index":296,"title":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_feature_repository_definition":{"position":[[8,10]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[880,10]]},"/dbt.html":{"position":[[481,10]]},"/mule.jdbc.example.html":{"position":[[1519,11],[2850,10]]},"/segment.html":{"position":[[881,11]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[800,10],[1290,10]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[770,11]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1179,10],[1686,11]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4027,10],[5792,11],[6009,10]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2161,10]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2945,11]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2298,10],[7486,10]]},"/regulus/getting-started-with-regulus.html":{"position":[[3692,11]]},"/regulus/install-regulus-docker-image.html":{"position":[[4581,13]]},"/regulus/regulus-magic-reference.html":{"position":[[780,10],[1292,10],[4812,11]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[2140,10],[3562,10],[3897,11]]}},"component":{}}],["repository'",{"_index":4173,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6179,12]]}},"component":{}}],["repres",{"_index":925,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3183,12],[6999,9]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3453,10]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[10670,11],[10768,12]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[10379,11],[10477,12]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[4573,11]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6743,12],[6876,12]]},"/mule-teradata-connector/reference.html":{"position":[[3445,10],[5679,10],[8072,10]]}},"component":{}}],["republ",{"_index":978,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4516,8],[4615,8]]}},"component":{}}],["request",{"_index":197,"title":{"/query-service/send-queries-using-rest-api.html#_make_a_simple_api_request_with_basic_options":{"position":[[18,7]]},"/query-service/send-queries-using-rest-api.html#_request_a_response_in_csv_format":{"position":[[0,7]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[4294,7]]},"/mule.jdbc.example.html":{"position":[[491,8],[619,8],[1413,7],[3104,8]]},"/run-vantage-express-on-aws.html":{"position":[[6607,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3387,7]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1599,10],[4663,8],[4702,8],[4859,7],[5159,10]]},"/vantage.express.gcp.html":{"position":[[2414,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4902,8],[5563,8]]},"/jupyter-demos/index.html":{"position":[[2387,7],[2402,7]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1798,7]]},"/mule-teradata-connector/index.html":{"position":[[1218,9],[1264,9]]},"/mule-teradata-connector/release-notes.html":{"position":[[818,9],[864,9]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1870,7],[1885,8],[2520,7],[2535,8],[2879,7],[3236,7],[3384,7],[5357,7],[5631,7],[7683,8],[7795,8],[7808,7],[7831,7],[7915,7],[7962,7],[8080,7],[8123,7],[8168,7],[8651,7],[8697,7],[8837,7],[9047,7],[9283,7],[9466,7],[9491,7],[9894,7],[9986,7],[10228,7],[10801,7],[10901,7],[10996,7],[11498,7],[11544,7],[11587,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[7724,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[5936,8],[6059,9],[6196,9],[6333,9]]}},"component":{}}],["request_feature_view",{"_index":3803,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[8487,21]]}},"component":{}}],["requests.packages.urllib3.disable_warn",{"_index":4214,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[1920,44],[2556,44]]}},"component":{}}],["requests.request('get",{"_index":4355,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[10359,23],[11105,23],[11656,23]]}},"component":{}}],["requests.request('post",{"_index":4236,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[3605,24],[5863,24],[8321,24],[9705,24]]}},"component":{}}],["requir",{"_index":348,"title":{"/getting.started.utm.html#_download_required_software":{"position":[[9,8]]},"/getting.started.vbox.html#_download_required_software":{"position":[[9,8]]},"/getting.started.vmware.html#_download_required_software":{"position":[[9,8]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[2425,8]]},"/fastload.html":{"position":[[766,9]]},"/getting.started.vbox.html":{"position":[[1294,8]]},"/getting.started.vmware.html":{"position":[[1084,7]]},"/jupyter.html":{"position":[[2603,8],[3823,8]]},"/ml.html":{"position":[[366,7],[808,8]]},"/nos.html":{"position":[[5200,7]]},"/run-vantage-express-on-aws.html":{"position":[[6251,10]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3031,10]]},"/segment.html":{"position":[[472,7],[1696,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1348,8],[5218,8],[5898,9]]},"/vantage.express.gcp.html":{"position":[[2058,10]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2093,8],[7271,8],[7347,8],[9983,8],[21523,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2427,8],[3369,13],[9707,8],[9915,8],[19830,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1432,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[219,8],[4525,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[219,8],[4118,8],[5350,8],[6221,8],[6366,8],[6512,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1363,13],[1994,8]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1082,8]]},"/mule-teradata-connector/reference.html":{"position":[[453,8],[1329,8],[1757,8],[3205,8],[4185,8],[4725,8],[5537,8],[6513,8],[7025,8],[7832,8],[9235,8],[9872,8],[11075,8],[12026,8],[13676,8],[15350,8],[16542,8],[18269,8],[19601,8],[21433,8],[22723,8],[24283,8],[25194,8],[25707,8],[28098,8],[29284,8],[31290,8],[33280,8],[35363,8],[35609,8],[35962,8],[36228,8],[36435,8],[36781,8],[37253,8],[37840,8],[38213,8],[38416,8],[38500,8],[38876,8],[39573,8],[39698,8],[40066,8],[40155,8],[41115,8],[41238,9],[41418,8],[42394,8],[42700,8]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[688,8]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1978,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5921,13]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1185,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[2702,13],[5146,9],[5970,9],[6772,9],[8233,13]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[2327,9],[4117,9],[4485,9],[5793,9],[6875,9]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[620,9]]}},"component":{}}],["required_d",{"_index":2997,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13716,13]]}},"component":{}}],["requirements.txt",{"_index":3643,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4042,16]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[5282,17]]}},"component":{}}],["requisit",{"_index":2673,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[6145,10]]}},"component":{}}],["reservations[*].instances[*].publicipaddress",{"_index":2204,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[5767,46]]}},"component":{}}],["resid",{"_index":2636,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1501,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2227,8]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1162,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[366,7],[822,7],[2815,7]]}},"component":{}}],["residu",{"_index":1615,"title":{},"name":{},"text":{"/ml.html":{"position":[[8171,9]]}},"component":{}}],["resili",{"_index":3581,"title":{},"name":{},"text":{"/jupyter-demos/index.html":{"position":[[887,9]]}},"component":{}}],["resiz",{"_index":1258,"title":{},"name":{},"text":{"/getting.started.vbox.html":{"position":[[5205,9]]}},"component":{}}],["resolut",{"_index":1256,"title":{},"name":{},"text":{"/getting.started.vbox.html":{"position":[[5151,10]]}},"component":{}}],["resolv",{"_index":3936,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[36830,8],[37302,8]]}},"component":{}}],["resour",{"_index":3087,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4314,7]]}},"component":{}}],["resourc",{"_index":1103,"title":{"/query-service/send-queries-using-rest-api.html#_resources":{"position":[[0,9]]}},"name":{},"text":{"/getting.started.utm.html":{"position":[[286,10],[6468,10]]},"/getting.started.vbox.html":{"position":[[286,10],[6064,10]]},"/getting.started.vmware.html":{"position":[[286,10],[5577,10]]},"/run-vantage-express-on-aws.html":{"position":[[3510,9],[3631,9],[3783,9],[4139,9],[4305,9],[4463,9],[4591,9],[11618,10]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[707,8],[734,8],[797,8],[846,8],[8239,9],[8269,8],[8319,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3983,9]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[3286,8],[3573,8],[3870,8],[3884,8],[4197,9],[5268,8],[6395,8],[6541,8],[7151,8],[7426,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[26018,9]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4242,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[13634,10]]},"/mule-teradata-connector/index.html":{"position":[[709,8]]},"/mule-teradata-connector/reference.html":{"position":[[14061,8]]},"/regulus/install-regulus-docker-image.html":{"position":[[1131,8]]}},"component":{}}],["respect",{"_index":3254,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2180,13]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[3509,13]]},"/regulus/install-regulus-docker-image.html":{"position":[[5858,10]]}},"component":{}}],["respond",{"_index":3934,"title":{"/mule-teradata-connector/reference.html#custom-ocsp-responder":{"position":[[12,9]]}},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[36725,9],[38253,10]]}},"component":{}}],["respons",{"_index":1257,"title":{"/query-service/send-queries-using-rest-api.html#_request_a_response_in_csv_format":{"position":[[10,8]]}},"name":{},"text":{"/getting.started.vbox.html":{"position":[[5187,14]]},"/mule.jdbc.example.html":{"position":[[1421,9],[3190,9]]},"/nos.html":{"position":[[5218,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1552,8],[2352,11],[2444,11]]},"/mule-teradata-connector/reference.html":{"position":[[38328,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1802,8],[2320,8],[2775,8],[3000,9],[3311,9],[3594,8],[3871,8],[5203,8],[5305,8],[5440,8],[5463,8],[5852,8],[5964,8],[8040,9],[8310,8],[8422,8],[8958,9],[9404,9],[9694,8],[9806,8],[10124,8],[10239,8],[10348,8],[10440,8],[11094,8],[11186,8],[11645,8],[11753,8]]}},"component":{}}],["response.json().get('results')[0].get('rowcount",{"_index":4241,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[3696,49]]}},"component":{}}],["rest",{"_index":1649,"title":{"/query-service/send-queries-using-rest-api.html":{"position":[[19,4]]}},"name":{"/query-service/send-queries-using-rest-api.html":{"position":[[19,4]]}},"text":{"/mule.jdbc.example.html":{"position":[[190,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[5044,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[6450,7],[6804,7],[7095,7]]},"/query-service/send-queries-using-rest-api.html":{"position":[[78,4],[275,4]]}},"component":{}}],["rest_set_readi",{"_index":4383,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[11926,17],[12250,17]]}},"component":{}}],["restart",{"_index":794,"title":{},"name":{},"text":{"/fastload.html":{"position":[[3807,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1898,9]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8732,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[3669,8]]}},"component":{}}],["restart=no",{"_index":2281,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[10522,10]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7302,10]]},"/vantage.express.gcp.html":{"position":[[6329,10]]}},"component":{}}],["restaur",{"_index":3256,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2806,10]]}},"component":{}}],["restor",{"_index":3187,"title":{"/regulus/using-regulus-workspace-cli.html#_project_restore":{"position":[[8,7]]}},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[845,7]]},"/regulus/regulus-magic-reference.html":{"position":[[4743,7],[4945,7]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[3829,7],[3938,7],[3980,7]]}},"component":{}}],["restrict",{"_index":736,"title":{},"name":{},"text":{"/fastload.html":{"position":[[1680,12],[1941,12]]},"/jupyter.html":{"position":[[715,10]]},"/run-vantage-express-on-aws.html":{"position":[[4890,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[989,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1323,8],[4207,13]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1774,12],[2036,12],[2101,12]]}},"component":{}}],["result",{"_index":458,"title":{"/mule-teradata-connector/reference.html#StatementResult":{"position":[[10,6]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[5673,9]]},"/create-parquet-files-in-object-storage.html":{"position":[[1066,7]]},"/geojson-to-vantage.html":{"position":[[4203,7],[4913,7]]},"/getting.started.utm.html":{"position":[[6005,8]]},"/getting.started.vbox.html":{"position":[[4831,8]]},"/getting.started.vmware.html":{"position":[[5114,8]]},"/jupyter.html":{"position":[[3528,6],[4478,6],[4662,7]]},"/ml.html":{"position":[[7892,7],[8122,7]]},"/mule.jdbc.example.html":{"position":[[177,7],[550,7],[1266,6],[1355,6],[1435,6]]},"/nos.html":{"position":[[2227,8],[3520,7],[4189,7],[6132,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[4153,7],[4749,7],[6473,7],[8358,7]]},"/run-vantage-express-on-aws.html":{"position":[[9889,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6669,8]]},"/sto.html":{"position":[[5319,7],[5989,7]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[4018,7]]},"/vantage.express.gcp.html":{"position":[[5696,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[15361,8],[17449,8],[19479,7],[23202,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[4515,9]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[6976,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7378,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[7700,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[12289,7]]},"/mule-teradata-connector/reference.html":{"position":[[17686,6],[17859,7],[17925,7],[18189,7],[20898,6],[23822,7],[23865,7],[24203,7],[26693,9],[30439,6],[31163,8]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6943,6]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1698,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[3998,11],[5424,7],[10933,6],[11235,11]]},"/regulus/getting-started-with-regulus.html":{"position":[[3466,7]]}},"component":{}}],["result.datafram",{"_index":1377,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[4518,18]]}},"component":{}}],["resultset",{"_index":3884,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[4157,10],[4334,9],[6485,10],[6660,9],[8785,10],[8870,9],[10614,10],[10699,9],[12829,10],[12914,9],[14598,10],[14683,9],[16092,10],[16177,9],[19151,10],[19236,9],[22312,10],[22378,9],[23801,9],[25166,10],[25341,9],[27720,9],[28834,10],[28919,9],[32874,10],[32959,9]]},"/query-service/send-queries-using-rest-api.html":{"position":[[10684,14],[10757,9],[12020,13],[12344,13]]}},"component":{}}],["resultset\":tru",{"_index":4246,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[4012,17],[11249,17]]}},"component":{}}],["resum",{"_index":796,"title":{},"name":{},"text":{"/fastload.html":{"position":[[3843,6]]}},"component":{}}],["retail",{"_index":407,"title":{"/advanced-dbt.html#_about_the_teddy_retailers_warehouse":{"position":[[16,9]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[4064,10]]},"/jupyter-demos/index.html":{"position":[[1927,6],[2005,6],[2103,6],[2207,6],[2325,6]]}},"component":{}}],["retain",{"_index":4396,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[452,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[2020,6],[4931,6]]},"/regulus/regulus-magic-reference.html":{"position":[[1990,8],[2223,9]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[699,8]]}},"component":{}}],["retain=cc_avg_b",{"_index":1610,"title":{},"name":{},"text":{"/ml.html":{"position":[[7833,18]]}},"component":{}}],["retir",{"_index":3653,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4857,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[6850,6]]}},"component":{}}],["retrain",{"_index":3354,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[903,7]]}},"component":{}}],["retri",{"_index":379,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3359,8]]},"/dbt.html":{"position":[[1533,8]]},"/segment.html":{"position":[[4500,5],[4524,5]]},"/mule-teradata-connector/reference.html":{"position":[[5122,5],[7414,5],[9632,5],[11771,5],[13339,5],[15108,5],[17625,5],[20307,5],[23429,5],[27378,5],[30378,5],[33162,5]]}},"component":{}}],["retriev",{"_index":1234,"title":{"/teradata-vantage-engine-architecture-and-concepts.html#_teradata_retrieval_architecture":{"position":[[9,9]]}},"name":{},"text":{"/getting.started.utm.html":{"position":[[5929,8]]},"/getting.started.vbox.html":{"position":[[4755,8]]},"/getting.started.vmware.html":{"position":[[5038,8]]},"/mule.jdbc.example.html":{"position":[[1252,9]]},"/run-vantage-express-on-aws.html":{"position":[[6147,8],[9813,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2927,8],[6593,8]]},"/segment.html":{"position":[[1430,8]]},"/sto.html":{"position":[[478,8],[4256,8],[5623,8],[5684,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2477,10],[4804,9],[4870,8],[4988,8],[5063,9],[5266,10],[6371,10]]},"/vantage.express.gcp.html":{"position":[[1954,8],[5620,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[173,8],[14707,8],[23356,9]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[312,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2760,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2685,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[6007,10],[6075,10]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[10687,8],[11348,9]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[735,9]]},"/mule-teradata-connector/reference.html":{"position":[[17044,10],[17198,9],[17341,9],[26787,10],[26941,10],[27092,10],[29791,9],[29944,9],[30094,9]]},"/query-service/send-queries-using-rest-api.html":{"position":[[9861,9],[9959,9],[10874,9]]}},"component":{}}],["return",{"_index":385,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3485,8]]},"/create-parquet-files-in-object-storage.html":{"position":[[3882,8]]},"/dbt.html":{"position":[[1659,8]]},"/getting.started.utm.html":{"position":[[3826,7]]},"/getting.started.vbox.html":{"position":[[2864,7]]},"/getting.started.vmware.html":{"position":[[2935,7]]},"/mule.jdbc.example.html":{"position":[[542,7],[1445,8]]},"/nos.html":{"position":[[2220,6],[5557,8],[6616,8]]},"/run-vantage-express-on-aws.html":{"position":[[4960,8],[7222,6],[8480,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[1059,8],[4002,6],[5260,7]]},"/sto.html":{"position":[[1008,7],[1406,7],[1483,8],[3871,7],[3927,7],[5919,7],[6962,7]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[5051,7]]},"/vantage.express.gcp.html":{"position":[[3029,6],[4287,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2638,8]]},"/mule-teradata-connector/reference.html":{"position":[[21136,7],[21207,9],[23592,7],[23781,7],[30868,9]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3398,6],[4897,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3494,8],[6785,6]]},"/query-service/send-queries-using-rest-api.html":{"position":[[3361,8],[5291,6],[5587,7],[8005,7],[8746,7],[8997,8],[9994,7],[10909,7],[11552,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[5384,6]]}},"component":{}}],["return_id",{"_index":769,"title":{},"name":{},"text":{"/fastload.html":{"position":[[2960,9],[3294,9],[4760,10],[5303,9],[5637,9],[6083,10],[6819,11],[6898,10]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[4443,9],[4777,9],[4986,10],[8364,11],[8443,10]]}},"component":{}}],["return_typ",{"_index":779,"title":{},"name":{},"text":{"/fastload.html":{"position":[[3186,11],[4826,12],[5529,11],[6149,12]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[4669,11],[5052,12]]}},"component":{}}],["returned_featur",{"_index":3788,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[7595,17]]}},"component":{}}],["returntype('nosread_key",{"_index":2785,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[22230,26]]}},"component":{}}],["returntype='nosread_schema",{"_index":1734,"title":{},"name":{},"text":{"/nos.html":{"position":[[2121,27]]}},"component":{}}],["reus",{"_index":3725,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3565,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5320,5]]},"/query-service/send-queries-using-rest-api.html":{"position":[[7747,6]]}},"component":{}}],["revenu",{"_index":720,"title":{},"name":{},"text":{"/fastload.html":{"position":[[1135,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[989,7]]}},"component":{}}],["review",{"_index":2653,"title":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_5_review_and_create":{"position":[[8,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_5_review_and_create_2":{"position":[[8,6]]}},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[3537,6],[4121,6],[5826,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[7578,6],[25467,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4396,6],[4735,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4393,6],[4780,6],[5155,6],[5742,6],[6040,6]]}},"component":{}}],["revoc",{"_index":3932,"title":{"/mule-teradata-connector/reference.html#standard-revocation-check":{"position":[[9,10]]}},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[36670,10],[36696,10],[38127,10]]}},"component":{}}],["revok",{"_index":2889,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[3949,9]]}},"component":{}}],["rewrit",{"_index":3502,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[8615,7]]}},"component":{}}],["rf",{"_index":1468,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[5606,2],[5755,2]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2556,2]]}},"component":{}}],["rfc",{"_index":3474,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[7309,7]]}},"component":{}}],["rhel",{"_index":4026,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2675,5]]}},"component":{}}],["ribbon",{"_index":148,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2979,6],[5414,6]]}},"component":{}}],["richer",{"_index":1040,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[7330,6]]}},"component":{}}],["right",{"_index":154,"title":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[11,5]]}},"name":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[11,5]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3079,5]]},"/create-parquet-files-in-object-storage.html":{"position":[[1569,6]]},"/getting.started.utm.html":{"position":[[1060,6],[1120,6],[2311,5]]},"/getting.started.vbox.html":{"position":[[858,6]]},"/getting.started.vmware.html":{"position":[[855,6]]},"/run-vantage-express-on-aws.html":{"position":[[6648,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3428,5]]},"/sto.html":{"position":[[1913,5]]},"/vantage.express.gcp.html":{"position":[[2455,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[5696,5],[7799,5],[25688,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[8421,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1937,5]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[2189,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2015,5]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[3227,5]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1207,6],[1214,5],[1457,6],[1644,5]]}},"component":{}}],["risk",{"_index":3943,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[37210,5]]}},"component":{}}],["river",{"_index":1675,"title":{},"name":{},"text":{"/nos.html":{"position":[[985,5]]}},"component":{}}],["riverflow",{"_index":1758,"title":{},"name":{},"text":{"/nos.html":{"position":[[3935,9],[4028,9],[4047,10],[4079,9],[4178,10],[5735,9],[5772,9],[5847,11],[5889,11],[6053,9],[7471,9]]}},"component":{}}],["riverflow_n",{"_index":1779,"title":{},"name":{},"text":{"/nos.html":{"position":[[5945,16],[6114,17],[7844,16],[7971,16],[8236,16]]}},"component":{}}],["rm",{"_index":1337,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[1976,2]]},"/local.jupyter.hub.html":{"position":[[5602,2],[5751,2]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2552,2]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2762,5],[3464,3],[7226,5]]}},"component":{}}],["rmi",{"_index":4104,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8665,3]]}},"component":{}}],["robust",{"_index":4128,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[375,6],[7317,6]]}},"component":{}}],["roc",{"_index":3234,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[6182,3]]}},"component":{}}],["role",{"_index":70,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1040,5]]},"/segment.html":{"position":[[4650,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2987,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1813,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3465,4],[3482,5],[3546,5],[4817,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1756,4]]}},"component":{}}],["role=roles/iam.serviceaccounttokencr",{"_index":2400,"title":{},"name":{},"text":{"/segment.html":{"position":[[4149,41]]}},"component":{}}],["role=roles/run.invok",{"_index":2395,"title":{},"name":{},"text":{"/segment.html":{"position":[[3920,22]]}},"component":{}}],["role=roles/secretmanager.secretaccessor",{"_index":2382,"title":{},"name":{},"text":{"/segment.html":{"position":[[2666,39]]}},"component":{}}],["rollout",{"_index":3573,"title":{},"name":{},"text":{"/jupyter-demos/index.html":{"position":[[496,7]]}},"component":{}}],["rom",{"_index":3146,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2774,3]]}},"component":{}}],["root",{"_index":253,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[3325,4]]},"/getting.started.vbox.html":{"position":[[2363,4]]},"/getting.started.vmware.html":{"position":[[2434,4]]},"/local.jupyter.hub.html":{"position":[[4133,4],[4865,4]]},"/mule.jdbc.example.html":{"position":[[2876,5]]},"/odbc.ubuntu.html":{"position":[[288,4]]},"/run-vantage-express-on-aws.html":{"position":[[5943,4],[8380,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2468,4],[5160,4]]},"/vantage.express.gcp.html":{"position":[[1750,4],[4187,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[4032,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[5192,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[6803,4]]}},"component":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[0,4]]},"/advanced-dbt.html":{"position":[[0,4]]},"/create-parquet-files-in-object-storage.html":{"position":[[0,4]]},"/dbt.html":{"position":[[0,4]]},"/fastload.html":{"position":[[0,4]]},"/geojson-to-vantage.html":{"position":[[0,4]]},"/getting.started.utm.html":{"position":[[0,4]]},"/getting.started.vbox.html":{"position":[[0,4]]},"/getting.started.vmware.html":{"position":[[0,4]]},"/index.html":{"position":[[0,4]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[0,4]]},"/jdbc.html":{"position":[[0,4]]},"/jupyter.html":{"position":[[0,4]]},"/local.jupyter.hub.html":{"position":[[0,4]]},"/ml.html":{"position":[[0,4]]},"/mule.jdbc.example.html":{"position":[[0,4]]},"/nos.html":{"position":[[0,4]]},"/odbc.ubuntu.html":{"position":[[0,4]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[0,4]]},"/run-vantage-express-on-aws.html":{"position":[[0,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[0,4]]},"/segment.html":{"position":[[0,4]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[0,4]]},"/sto.html":{"position":[[0,4]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[0,4]]},"/teradatasql.html":{"position":[[0,4]]},"/vantage.express.gcp.html":{"position":[[0,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[0,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[0,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[0,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[0,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[0,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[0,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[0,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[0,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[0,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[0,4]]},"/jupyter-demos/index.html":{"position":[[0,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[0,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[0,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[0,4]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[0,4]]},"/mule-teradata-connector/index.html":{"position":[[0,4]]},"/mule-teradata-connector/reference.html":{"position":[[0,4]]},"/mule-teradata-connector/release-notes.html":{"position":[[0,4]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[0,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[0,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[0,4]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[0,4]]},"/query-service/send-queries-using-rest-api.html":{"position":[[0,4]]},"/regulus/getting-started-with-regulus.html":{"position":[[0,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[0,4]]},"/regulus/regulus-magic-reference.html":{"position":[[0,4]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[0,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[0,4]]}}}],["root@localhost",{"_index":2257,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[8410,14]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5190,14]]},"/vantage.express.gcp.html":{"position":[[4217,14]]}},"component":{}}],["root@localhost:/root/desktop",{"_index":1491,"title":{},"name":{},"text":{"/ml.html":{"position":[[1352,28]]}},"component":{}}],["root@vantage.server.name:/tmp",{"_index":1493,"title":{},"name":{},"text":{"/ml.html":{"position":[[1630,30]]}},"component":{}}],["rosetta",{"_index":1286,"title":{},"name":{},"text":{"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[197,7],[245,7]]}},"component":{}}],["round",{"_index":3883,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[4034,7],[6362,7],[8662,7],[10491,7],[12706,7],[14475,7],[15969,7],[19028,7],[22189,7],[25043,7],[28711,7],[32751,7]]}},"component":{}}],["rout",{"_index":2146,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[2020,5],[2075,5],[2188,5],[2229,5],[2239,5],[2409,5],[2464,5],[2516,5],[3908,5],[3966,5],[4230,5],[4269,5],[4394,5],[12088,5],[12121,5],[12194,5],[12210,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[6246,7]]}},"component":{}}],["routetable.{routetableid:routetableid",{"_index":2148,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[2120,40]]}},"component":{}}],["routetables[?associations[0].main",{"_index":2176,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[4034,34]]}},"component":{}}],["row",{"_index":793,"title":{"/mule-teradata-connector/reference.html#listener":{"position":[[9,3]]}},"name":{},"text":{"/fastload.html":{"position":[[3770,5],[3942,3],[4009,3]]},"/geojson-to-vantage.html":{"position":[[6956,4],[7014,3],[7101,3]]},"/ml.html":{"position":[[3390,6],[3415,5],[3448,6]]},"/nos.html":{"position":[[1166,4]]},"/odbc.ubuntu.html":{"position":[[1474,3]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[923,4],[4168,4]]},"/sto.html":{"position":[[1278,4],[4353,5],[6053,4]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2775,4],[3340,5],[4891,5],[5657,4],[5936,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[10794,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[23242,3]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[5053,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6985,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[4685,4],[5789,3],[5844,5],[10726,4],[11409,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[7110,4],[7249,4]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1629,3],[1737,3],[1938,3],[2023,4],[2042,3],[2084,3],[2813,3]]},"/mule-teradata-connector/reference.html":{"position":[[2937,3],[3458,3],[4099,4],[4136,4],[4267,4],[4320,4],[4458,4],[5692,3],[6427,4],[6464,4],[6593,4],[6646,4],[6784,4],[8085,3],[8727,4],[8764,4],[8803,4],[8856,4],[8994,4],[10556,4],[10593,4],[10632,4],[10685,4],[10823,4],[12771,4],[12808,4],[12847,4],[12900,4],[13038,4],[14540,4],[14577,4],[14616,4],[14669,4],[14807,4],[16034,4],[16071,4],[16110,4],[16163,4],[16301,4],[17996,4],[19093,4],[19130,4],[19169,4],[19222,4],[19360,4],[21158,4],[22254,4],[22291,4],[22330,4],[22364,4],[22481,4],[23986,4],[25108,4],[25145,4],[25274,4],[25327,4],[25465,4],[28776,4],[28813,4],[28852,4],[28905,4],[29043,4],[30637,4],[30828,4],[30959,3],[31575,4],[31685,3],[31746,3],[32816,4],[32853,4],[32892,4],[32945,4],[33083,4],[40084,4]]},"/query-service/send-queries-using-rest-api.html":{"position":[[3122,3],[3350,4],[3763,6],[3890,4],[5497,4],[5531,3],[5654,4]]},"/regulus/getting-started-with-regulus.html":{"position":[[3370,3]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[7182,4],[7223,4],[7258,4],[7297,4],[7346,5]]}},"component":{}}],["row(",{"_index":2587,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[5009,6],[5073,6],[5140,6]]}},"component":{}}],["rowcount\":3",{"_index":4375,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[11442,13]]}},"component":{}}],["rowcount\":4",{"_index":4278,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[5155,13]]}},"component":{}}],["rowexpr('$.featur",{"_index":945,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3653,24]]}},"component":{}}],["rowid",{"_index":3967,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[39955,5]]}},"component":{}}],["rowlimit",{"_index":4231,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[3321,11],[3543,11]]}},"component":{}}],["rowlimitexceeded\":fals",{"_index":4376,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[11456,24]]}},"component":{}}],["rowlimitexceeded\":tru",{"_index":4279,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[5169,23]]}},"component":{}}],["row’",{"_index":2590,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[5414,5]]}},"component":{}}],["rpm",{"_index":1484,"title":{},"name":{},"text":{"/ml.html":{"position":[[939,3],[995,3],[2464,3],[2487,3]]}},"component":{}}],["rs",{"_index":3435,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[5608,2],[5796,3]]}},"component":{}}],["rscript",{"_index":2805,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2895,8],[5393,7]]}},"component":{}}],["rule",{"_index":2166,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[3215,5]]},"/vantage.express.gcp.html":{"position":[[7188,5],[7424,5],[7481,5]]}},"component":{}}],["run",{"_index":107,"title":{"/advanced-dbt.html#_running_transformations":{"position":[[0,7]]},"/advanced-dbt.html#_running_sample_queries":{"position":[[0,7]]},"/dbt.html#_run_dbt":{"position":[[0,3]]},"/fastload.html":{"position":[[0,3]]},"/fastload.html#_run_fastload":{"position":[[0,3]]},"/getting.started.utm.html":{"position":[[0,3]]},"/getting.started.utm.html#_run_utm_installer":{"position":[[0,3]]},"/getting.started.utm.html#_run_vantage_express":{"position":[[0,3]]},"/getting.started.utm.html#_run_sample_queries":{"position":[[0,3]]},"/getting.started.vbox.html":{"position":[[0,3]]},"/getting.started.vbox.html#_run_installers":{"position":[[0,3]]},"/getting.started.vbox.html#_run_vantage_express":{"position":[[0,3]]},"/getting.started.vbox.html#_run_sample_queries":{"position":[[0,3]]},"/getting.started.vmware.html":{"position":[[0,3]]},"/getting.started.vmware.html#_run_installers":{"position":[[0,3]]},"/getting.started.vmware.html#_run_vantage_express":{"position":[[0,3]]},"/getting.started.vmware.html#_run_sample_queries":{"position":[[0,3]]},"/jdbc.html#_run_the_tests":{"position":[[0,3]]},"/mule.jdbc.example.html#_run":{"position":[[0,3]]},"/run-vantage-express-on-aws.html":{"position":[[0,3]]},"/run-vantage-express-on-aws.html#_run_sample_queries":{"position":[[0,3]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[0,3]]},"/run-vantage-express-on-microsoft-azure.html#_run_sample_queries":{"position":[[0,3]]},"/sto.html":{"position":[[0,3]]},"/vantage.express.gcp.html":{"position":[[0,3]]},"/vantage.express.gcp.html#_run_sample_queries":{"position":[[0,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_run_flow":{"position":[[0,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_run_flow_2":{"position":[[0,3]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_run":{"position":[[0,3]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_run_an_airflow_dag":{"position":[[0,3]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_run_dbt":{"position":[[0,3]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_run_feast":{"position":[[0,3]]},"/regulus/getting-started-with-regulus.html":{"position":[[0,3]]},"/regulus/getting-started-with-regulus.html#_run_your_first_workload":{"position":[[0,3]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[0,3]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_run_tpt":{"position":[[0,3]]}},"name":{"/run-vantage-express-on-aws.html":{"position":[[0,3]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[0,3]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[0,3]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2035,3],[2584,3],[2786,3]]},"/advanced-dbt.html":{"position":[[751,7],[2221,7],[2620,7],[6263,3],[6353,3],[6818,7]]},"/create-parquet-files-in-object-storage.html":{"position":[[1457,3]]},"/dbt.html":{"position":[[2816,3],[3806,4],[4737,5]]},"/fastload.html":{"position":[[841,3],[886,3],[989,4],[1407,3],[1519,3],[2425,7],[6345,3],[6426,4],[7244,3]]},"/geojson-to-vantage.html":{"position":[[8756,3]]},"/getting.started.utm.html":{"position":[[120,7],[652,4],[687,3],[871,7],[1093,3],[1172,3],[1389,7],[4655,3],[5182,3],[5204,3],[5335,3],[6317,7]]},"/getting.started.vbox.html":{"position":[[120,7],[705,3],[891,3],[1199,7],[4008,3],[4030,3],[4161,3],[5074,4],[5104,3],[5682,3],[5913,7]]},"/getting.started.vmware.html":{"position":[[120,7],[702,3],[888,3],[1199,3],[1443,3],[1589,7],[3764,3],[4291,3],[4313,3],[4444,3],[5426,7]]},"/jdbc.html":{"position":[[533,7],[822,3],[835,3]]},"/jupyter.html":{"position":[[1970,3],[2963,7],[5641,3],[5695,3],[5787,3],[5938,3],[6469,3]]},"/local.jupyter.hub.html":{"position":[[629,3],[1117,3],[3078,3],[4362,3],[4931,3],[5200,3],[5671,3],[5747,3]]},"/ml.html":{"position":[[706,3],[1074,7],[2624,7],[9008,3]]},"/mule.jdbc.example.html":{"position":[[1233,3],[2932,3],[2989,3],[3030,4]]},"/nos.html":{"position":[[3724,7],[5690,4]]},"/odbc.ubuntu.html":{"position":[[1515,3]]},"/run-vantage-express-on-aws.html":{"position":[[91,3],[497,3],[5377,3],[8730,8],[9111,3],[9219,3],[10185,3]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[89,3],[620,3],[5510,8],[5891,3],[5999,3],[6965,3]]},"/segment.html":{"position":[[353,3],[380,3],[740,3],[2474,4],[2508,3],[2730,3],[2899,3],[3227,3],[3545,3],[3595,3],[3638,3],[3711,4],[3723,3],[3861,3],[4437,3],[5225,3],[5474,3]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1649,3]]},"/sto.html":{"position":[[402,3],[532,7],[1238,3],[1333,3],[1646,4],[2132,3],[4125,3],[4173,3],[7506,3],[7702,7]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1136,3]]},"/teradatasql.html":{"position":[[284,4],[794,3]]},"/vantage.express.gcp.html":{"position":[[89,3],[776,3],[4537,8],[4918,3],[5026,3],[5992,3]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8432,3],[10443,3],[10799,3],[11218,3],[13365,3],[14799,3],[17042,3],[17415,3],[18551,3],[20726,3],[21203,3],[21930,3]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1442,3],[1664,4],[4261,3],[4584,3],[4805,3],[5183,3],[5265,3],[5389,3],[5583,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[3012,3],[6766,3],[7777,3],[7841,4],[7897,4],[25036,4],[25057,3],[25666,3],[25730,4],[25786,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2053,3],[2449,3],[2903,3],[8809,3]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4132,3],[4163,3],[4226,7],[6047,3]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2590,3],[6787,4],[6796,3],[7304,4],[8338,5]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[639,3],[1328,7],[1343,7],[1368,3],[1385,3],[1406,3],[1425,5],[1454,3],[4060,7],[5652,4],[5709,3],[5921,3],[6008,3],[7495,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1001,3],[1325,3],[2246,3],[3656,3],[4970,3],[10193,7],[10410,3],[12760,3]]},"/jupyter-demos/index.html":{"position":[[28,3],[111,3],[192,3],[408,3],[504,3],[626,3],[714,3],[814,3],[1047,3],[1162,3],[1246,3],[1340,3],[1566,3],[1652,3],[1735,3],[1955,3],[2044,3],[2145,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[427,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[464,3]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2117,7],[2221,7],[2659,7],[2742,3]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[420,3],[4510,7],[4621,7]]},"/mule-teradata-connector/index.html":{"position":[[264,3],[1169,3]]},"/mule-teradata-connector/reference.html":{"position":[[264,3],[3763,7],[6093,7],[8391,7],[10220,7],[12435,7],[14204,7],[15698,7],[18757,7],[21918,7],[24773,7],[28440,7],[32161,7],[32480,7],[36146,4],[36353,4]]},"/mule-teradata-connector/release-notes.html":{"position":[[264,3],[769,3]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[176,3],[472,3],[1923,3],[3168,4],[3932,3],[4399,3],[6235,3],[8743,7],[9252,4],[9291,4],[10443,3]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[4912,3]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1626,3]]},"/query-service/send-queries-using-rest-api.html":{"position":[[119,3],[1967,3],[2603,3],[9502,3]]},"/regulus/getting-started-with-regulus.html":{"position":[[327,3],[640,3],[1744,3],[3364,3],[3818,3]]},"/regulus/install-regulus-docker-image.html":{"position":[[298,3],[779,7],[967,3],[1160,3],[1845,7],[2598,3],[2723,3],[8132,3],[8254,3],[9683,7],[9714,3]]},"/regulus/regulus-magic-reference.html":{"position":[[1252,7],[1677,3]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[514,3],[941,3],[1237,3]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[695,3],[740,3],[843,4],[1282,3],[1394,3],[2378,3],[5302,3],[5375,3],[5768,7],[8789,3]]}},"component":{}}],["run.googleapis.com",{"_index":2366,"title":{},"name":{},"text":{"/segment.html":{"position":[[1810,18]]}},"component":{}}],["run/start",{"_index":1183,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[3713,12],[4030,12],[4112,12],[4202,12],[4283,12]]},"/getting.started.vbox.html":{"position":[[2751,12],[3068,12],[3150,12],[3240,12],[3321,12]]},"/getting.started.vmware.html":{"position":[[2822,12],[3139,12],[3221,12],[3311,12],[3392,12]]},"/run-vantage-express-on-aws.html":{"position":[[8501,12]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5281,12]]},"/vantage.express.gcp.html":{"position":[[4308,12]]}},"component":{}}],["run_new_data_scor",{"_index":3558,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[12030,18],[12535,19]]}},"component":{}}],["run_vantage_pipeline_vertex",{"_index":3509,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[9030,28]]}},"component":{}}],["runc",{"_index":4028,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2870,4]]}},"component":{}}],["runtim",{"_index":3487,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[7844,7],[9845,7]]},"/mule-teradata-connector/index.html":{"position":[[492,7]]},"/mule-teradata-connector/reference.html":{"position":[[32043,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[7217,7]]}},"component":{}}],["rupal",{"_index":2620,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[8,5]]}},"component":{}}],["rémi",{"_index":850,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[8,4]]}},"component":{}}],["s",{"_index":2034,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[8210,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[15201,2]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4682,2],[4783,1]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[4771,2],[5668,1],[6131,2]]}},"component":{}}],["s.payload.\"nam",{"_index":3006,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[14819,16]]}},"component":{}}],["s.payload.accountnumb",{"_index":3007,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[14854,23]]}},"component":{}}],["s.payload.id",{"_index":3005,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[14790,12],[15256,12]]}},"component":{}}],["s3",{"_index":505,"title":{"/perform-time-series-analysis-using-teradata-vantage.html#_import_data_sets_from_aws_s3_using_vantage_nos":{"position":[[26,2]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_create_a_salesforce_to_amazon_s3_flow":{"position":[[30,2]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_join_amazon_s3_data_to_in_database_tables":{"position":[[12,2]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_import_amazon_s3_data_to_vantage":{"position":[[14,2]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_export_vantage_data_to_amazon_s3_using_nos":{"position":[[30,2]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_create_an_amazon_s3_to_salesforce_flow":{"position":[[17,2]]}},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[231,2],[272,3],[760,2],[806,2],[1127,3],[2536,2],[3260,2]]},"/fastload.html":{"position":[[1169,2],[6504,2],[6604,2]]},"/nos.html":{"position":[[184,3],[794,2]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[702,2],[933,2],[4220,2]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[750,2],[1232,2],[1688,2],[3126,2],[3179,2]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[510,3],[604,2],[786,2],[1232,2],[2346,3],[2492,2],[2622,2],[3033,2],[3098,2],[3247,2],[5336,2],[5399,2],[5429,2],[6104,2],[6632,2],[8137,2],[8362,3],[8734,2],[8875,2],[9164,2],[10129,2],[15409,2],[15562,2],[19584,2],[23727,2],[24275,2],[24632,2],[24719,3],[25990,3],[26137,2],[26174,2]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[545,2],[717,2],[1014,2],[1437,2],[1532,2],[1859,2],[1917,2],[1995,2],[2078,2],[3082,3],[3499,2],[3524,2],[4016,2],[4104,2],[6129,2],[6184,2]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1023,2],[8049,2],[8149,2]]}},"component":{}}],["s3/.s3.amazonaws.com/parquet_file_on_nos.parquet",{"_index":607,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[3577,53]]}},"component":{}}],["s3/s3.amazonaws.com/nyc",{"_index":1868,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1668,24],[1849,24],[2031,24],[2207,24],[2382,24],[2560,24],[2738,24],[2918,24],[3099,24],[3278,24]]}},"component":{}}],["s3/s3.amazonaws.com/ptctstoutput/salesforce/1ce190bc",{"_index":2921,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9423,55],[13038,55],[19250,55]]}},"component":{}}],["s3/s3.amazonaws.com/td",{"_index":1738,"title":{},"name":{},"text":{"/nos.html":{"position":[[2427,23],[2517,23],[2601,23],[2718,23],[2817,23],[2913,23],[4403,23],[4519,23],[4636,23],[4753,23],[4870,23],[4987,23]]}},"component":{}}],["s3/vantageparquet.s3.amazonaws.com",{"_index":3043,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[23944,40]]}},"component":{}}],["s3://sagemak",{"_index":2850,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[3185,14]]}},"component":{}}],["s476qj6o",{"_index":4327,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[7439,8]]}},"component":{}}],["sa",{"_index":2398,"title":{},"name":{},"text":{"/segment.html":{"position":[[4111,2]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[9283,3],[9428,3],[21830,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[15247,2]]}},"component":{}}],["sa.citi",{"_index":3014,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[15060,7]]}},"component":{}}],["sa.countri",{"_index":3018,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[15154,10]]}},"component":{}}],["sa.customer_id",{"_index":3021,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[15305,14]]}},"component":{}}],["sa.postal_cod",{"_index":3016,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[15114,14]]}},"component":{}}],["sa.stat",{"_index":3015,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[15086,8]]}},"component":{}}],["sa.street",{"_index":3013,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[15030,9]]}},"component":{}}],["saa",{"_index":54,"title":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_ingesting_data_from_saas_applications_third_party_tools":{"position":[[20,4]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[724,4]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1382,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1134,6],[1379,4]]}},"component":{}}],["safari",{"_index":2648,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[3214,6]]}},"component":{}}],["sagedemo",{"_index":3156,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3095,10]]}},"component":{}}],["sagemak",{"_index":1108,"title":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[43,9]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[8,9]]}},"name":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[43,9]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[0,9]]}},"text":{"/getting.started.utm.html":{"position":[[568,10]]},"/getting.started.vbox.html":{"position":[[568,10]]},"/getting.started.vmware.html":{"position":[[568,10]]},"/jupyter.html":{"position":[[1914,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[560,9],[840,9],[4553,9]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[100,9],[240,9],[337,9],[405,9],[575,9],[753,10],[861,9],[1044,9],[1172,9],[1380,9],[1581,9],[1888,9],[1958,9],[2102,9],[2163,9],[4377,9],[4444,9],[6033,10],[6142,9]]}},"component":{}}],["sagemaker/train",{"_index":3157,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3115,17]]}},"component":{}}],["sale",{"_index":4413,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[1892,5],[2643,5],[2867,5],[3202,5],[3278,5],[3537,6]]}},"component":{}}],["sales_center_id",{"_index":4414,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[2158,15],[2812,15]]}},"component":{}}],["sales_center_nam",{"_index":4415,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[2192,17],[3518,18]]}},"component":{}}],["salescent",{"_index":4411,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[1813,11],[2013,12],[2048,11],[2299,11],[2596,11],[3589,12]]}},"component":{}}],["salescenter.csv",{"_index":4421,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[2457,15]]}},"component":{}}],["salesdemo",{"_index":4412,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[1828,9],[2671,10],[2704,9],[2946,9],[3259,9],[3613,10]]}},"component":{}}],["salesdemo.csv",{"_index":4427,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[3098,13]]}},"component":{}}],["salesforc",{"_index":2863,"title":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[28,10]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_create_a_salesforce_to_amazon_s3_flow":{"position":[[9,10]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_create_an_amazon_s3_to_salesforce_flow":{"position":[[23,10]]}},"name":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[30,10]]}},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[113,10],[208,11],[357,10],[407,10],[489,10],[993,11],[1159,11],[3052,10],[3321,10],[3388,10],[3541,10],[3636,10],[3681,10],[3815,10],[4063,10],[4172,10],[4477,10],[4519,10],[4566,10],[4807,10],[4920,10],[5315,10],[5435,10],[5530,10],[5573,11],[5745,10],[5838,11],[6067,10],[6151,11],[6201,10],[6240,10],[6318,11],[6357,10],[6473,10],[6553,10],[6602,10],[7962,10],[8014,10],[9222,11],[10195,11],[10229,11],[10575,13],[10631,13],[10851,12],[12651,10],[14599,10],[15190,10],[17367,11],[23153,11],[23371,10],[24292,10],[24654,10],[24829,11],[24917,10],[24959,10],[25822,10],[25903,10]]}},"component":{}}],["salesforceperm",{"_index":3028,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[20106,15],[21762,14],[23179,15]]}},"component":{}}],["salesforcereadno",{"_index":3025,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[17772,17],[19496,17],[19535,18],[23438,17]]}},"component":{}}],["salesforcevantag",{"_index":3024,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[15968,17],[17422,18]]}},"component":{}}],["salesforceview",{"_index":2935,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11240,14],[12679,15]]}},"component":{}}],["same",{"_index":448,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[5360,4],[5488,4]]},"/getting.started.utm.html":{"position":[[6343,4]]},"/getting.started.vbox.html":{"position":[[5939,4]]},"/getting.started.vmware.html":{"position":[[5452,4]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[228,4],[3721,4],[5827,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[3487,4],[4071,4],[13887,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[15461,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[3050,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[3468,4],[6995,4]]},"/mule-teradata-connector/reference.html":{"position":[[30954,4],[31741,4],[32365,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[7236,4]]}},"component":{}}],["sampl",{"_index":477,"title":{"/advanced-dbt.html#_running_sample_queries":{"position":[[8,6]]},"/fastload.html#_get_sample_data":{"position":[[4,6]]},"/getting.started.utm.html#_run_sample_queries":{"position":[[4,6]]},"/getting.started.vbox.html#_run_sample_queries":{"position":[[4,6]]},"/getting.started.vmware.html#_run_sample_queries":{"position":[[4,6]]},"/ml.html#_sample_data":{"position":[[0,6]]},"/run-vantage-express-on-aws.html#_run_sample_queries":{"position":[[4,6]]},"/run-vantage-express-on-microsoft-azure.html#_run_sample_queries":{"position":[[4,6]]},"/vantage.express.gcp.html#_run_sample_queries":{"position":[[4,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_sample_data_loading":{"position":[[0,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Download-sample-data":{"position":[[9,6]]},"/regulus/getting-started-with-regulus.html":{"position":[[6,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_get_sample_data":{"position":[[4,6]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[6410,6],[6863,6],[7062,6]]},"/dbt.html":{"position":[[4574,6]]},"/getting.started.utm.html":{"position":[[5365,6]]},"/getting.started.vbox.html":{"position":[[4191,6]]},"/getting.started.vmware.html":{"position":[[4474,6]]},"/jdbc.html":{"position":[[138,6],[196,6],[946,6]]},"/jupyter.html":{"position":[[5064,6]]},"/local.jupyter.hub.html":{"position":[[906,6],[3638,6]]},"/ml.html":{"position":[[901,6],[3177,6],[3237,6],[3277,6],[8052,7],[8098,6]]},"/mule.jdbc.example.html":{"position":[[101,6],[2088,6],[2147,6]]},"/nos.html":{"position":[[1128,6],[2187,6],[3737,6]]},"/odbc.ubuntu.html":{"position":[[1063,6]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[668,6]]},"/run-vantage-express-on-aws.html":{"position":[[9249,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6029,6]]},"/segment.html":{"position":[[874,6],[5011,6],[5056,6]]},"/teradatasql.html":{"position":[[924,6]]},"/vantage.express.gcp.html":{"position":[[5056,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[10521,6],[10900,6],[13448,6],[17142,6],[20826,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2012,6],[3758,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1634,6],[4598,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[10541,6],[10589,6],[11126,6],[12750,6],[23195,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4036,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[668,6],[685,6],[861,6],[2266,6],[8104,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[812,6],[855,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[5037,6],[5176,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6052,6],[6885,6],[7256,6]]},"/regulus/getting-started-with-regulus.html":{"position":[[1752,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[9720,6]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[520,6],[1243,6]]}},"component":{}}],["sample_employee_payr",{"_index":3318,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[4763,23]]}},"component":{}}],["sata",{"_index":1262,"title":{},"name":{},"text":{"/getting.started.vbox.html":{"position":[[5572,4]]},"/run-vantage-express-on-aws.html":{"position":[[7627,5],[7651,4],[7728,5],[7875,5],[8022,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4407,5],[4431,4],[4508,5],[4655,5],[4802,5]]},"/vantage.express.gcp.html":{"position":[[3434,5],[3458,4],[3535,5],[3682,5],[3829,5]]}},"component":{}}],["satisfi",{"_index":671,"title":{},"name":{},"text":{"/dbt.html":{"position":[[3776,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[3345,9]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7274,9],[7344,9]]}},"component":{}}],["satish",{"_index":1283,"title":{},"name":{},"text":{"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[8,6]]}},"component":{}}],["save",{"_index":232,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[5478,4]]},"/fastload.html":{"position":[[1318,4],[3742,4],[6383,4]]},"/getting.started.utm.html":{"position":[[1961,5],[2697,4]]},"/nos.html":{"position":[[8257,4]]},"/run-vantage-express-on-aws.html":{"position":[[6816,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3596,4]]},"/segment.html":{"position":[[2831,5]]},"/vantage.express.gcp.html":{"position":[[2623,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[8269,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1717,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[9301,5],[10700,5],[12514,5],[12805,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1891,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1928,4],[4283,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3557,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6984,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[4375,4],[7471,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1193,4],[3576,4]]}},"component":{}}],["saved_dataset",{"_index":3813,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[8894,14]]}},"component":{}}],["saved_dataset_nam",{"_index":3814,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[8909,20]]}},"component":{}}],["saved_dataset_proto",{"_index":3815,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[8966,20]]}},"component":{}}],["savest",{"_index":2289,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[10744,9]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7524,9]]},"/vantage.express.gcp.html":{"position":[[6551,9]]}},"component":{}}],["saw",{"_index":3340,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[7429,3],[7780,3]]}},"component":{}}],["scalabl",{"_index":2424,"title":{},"name":{},"text":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[640,11]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2028,8],[2389,11],[4089,11],[5569,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9759,8],[9793,8]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[7393,8],[7427,8]]},"/regulus/getting-started-with-regulus.html":{"position":[[273,8]]},"/regulus/install-regulus-docker-image.html":{"position":[[335,8]]}},"component":{}}],["scalar",{"_index":3278,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[6018,6]]},"/mule-teradata-connector/reference.html":{"position":[[38532,6]]}},"component":{}}],["scale",{"_index":2449,"title":{},"name":{},"text":{"/sto.html":{"position":[[660,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1469,6],[1567,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1705,6],[1769,5],[2195,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1130,6],[1228,5]]}},"component":{}}],["scan",{"_index":2591,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[5490,4]]}},"component":{}}],["scenario",{"_index":512,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[342,9]]},"/dbt.html":{"position":[[3871,8]]},"/fastload.html":{"position":[[446,9]]},"/jupyter.html":{"position":[[839,9],[7109,10]]},"/nos.html":{"position":[[254,9],[902,9]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1592,10]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7465,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[300,9]]}},"component":{}}],["schedul",{"_index":2668,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[5758,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[5094,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1018,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4496,9],[5011,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[6192,9],[6337,9],[6483,9],[7062,8]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1838,9]]},"/mule-teradata-connector/reference.html":{"position":[[32182,10],[32202,10],[32237,9]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[238,10],[3892,10]]}},"component":{}}],["scheduler_1",{"_index":4072,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[7151,11]]}},"component":{}}],["schema",{"_index":340,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[2094,6],[3269,7],[3743,6]]},"/dbt.html":{"position":[[1185,6],[1447,7]]},"/nos.html":{"position":[[2024,6],[2209,6],[3123,7],[3152,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1132,7],[1187,6],[2217,6],[2311,6],[2433,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[3588,6],[3711,7],[3782,8],[3845,7],[4194,6],[4594,6],[5188,6],[5333,9]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4083,8]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1051,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3197,6],[3360,7],[3959,6],[5605,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3744,6],[3789,6]]}},"component":{}}],["schema.yml",{"_index":420,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[4438,10],[4728,10],[4893,10]]}},"component":{}}],["schema_ir",{"_index":4537,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3796,10]]}},"component":{}}],["scienc",{"_index":1403,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[7101,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[636,7]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[169,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[1174,7]]}},"component":{}}],["scientist",{"_index":3348,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[124,10]]}},"component":{}}],["scikit",{"_index":3353,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[570,6],[3805,6],[6118,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[5451,6]]}},"component":{}}],["scope",{"_index":118,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2148,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[3414,6],[3579,6],[3746,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[3451,6],[3616,6],[3783,6]]},"/mule-teradata-connector/reference.html":{"position":[[18100,5],[24113,5]]}},"component":{}}],["score",{"_index":1600,"title":{"/ml.html#_scoring":{"position":[[0,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_score_the_model":{"position":[[0,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-a-new-pipeline-to-score-new-data":{"position":[[25,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_add_dataset_to_identify_vantage_tables_for_byom_evaluation_and_scoring":{"position":[[63,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_add_dataset_to_identify_vantage_tables_for_byom_evaluation_and_scoring":{"position":[[63,7]]}},"name":{},"text":{"/ml.html":{"position":[[7334,8],[7403,7]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[473,8],[735,7],[942,8],[1225,7],[1307,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[5631,5],[5935,5],[6405,5],[6499,6],[6572,6],[6777,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[695,7],[781,5],[1045,7],[2997,5],[10629,7],[10716,5],[11398,6],[12222,5],[12281,7],[12491,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4506,7],[5028,7],[5065,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4940,5],[6202,7],[6347,7],[6493,7],[7079,7],[7116,8]]}},"component":{}}],["score(context",{"_index":3672,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4959,14]]}},"component":{}}],["score_new_data",{"_index":3549,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[11561,15]]}},"component":{}}],["score_new_data(database_url,model_name,model_table,data_table,prediction_t",{"_index":3560,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[12656,79]]}},"component":{}}],["score_new_data_pipeline_sql.json",{"_index":3561,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[12814,32]]}},"component":{}}],["scoring.pi",{"_index":3671,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4907,11]]}},"component":{}}],["scoringmethod=scoreandevalu",{"_index":1611,"title":{},"name":{},"text":{"/ml.html":{"position":[[7852,34]]}},"component":{}}],["scp",{"_index":1486,"title":{},"name":{},"text":{"/ml.html":{"position":[[1265,3],[1303,3],[1557,3],[1589,3]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2417,5]]}},"component":{}}],["scrape",{"_index":3058,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[272,7],[4379,20]]}},"component":{}}],["screen",{"_index":141,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2857,6]]},"/getting.started.utm.html":{"position":[[1649,6],[1679,6],[1720,6],[1829,6],[1891,6],[1921,6],[2810,7],[3212,6],[4552,7]]},"/getting.started.vbox.html":{"position":[[1619,7],[1848,7],[2250,6],[3590,7],[5172,6]]},"/getting.started.vmware.html":{"position":[[1919,7],[2321,6],[3661,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1884,6],[3829,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[3254,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[3291,8]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[2102,7],[2831,7],[3673,6]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[558,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6473,6]]}},"component":{}}],["screenshot",{"_index":1169,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[2954,10]]},"/getting.started.vbox.html":{"position":[[1992,10]]},"/getting.started.vmware.html":{"position":[[2063,10]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[3268,10],[4286,10]]}},"component":{}}],["script",{"_index":334,"title":{"/sto.html":{"position":[[4,7]]},"/sto.html#_uploading_scripts":{"position":[[10,7]]},"/sto.html#_passing_data_stored_in_vantage_to_script":{"position":[[34,6]]},"/sto.html#_inserting_script_output_into_a_table":{"position":[[10,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_use_startup_script":{"position":[[12,6]]},"/mule-teradata-connector/reference.html#executeScript":{"position":[[8,6]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[1900,7],[2243,6],[2434,7],[2541,7],[2634,7],[4593,8],[6609,7]]},"/fastload.html":{"position":[[2015,9],[5127,6]]},"/ml.html":{"position":[[2999,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2617,6]]},"/segment.html":{"position":[[1026,6],[1241,6]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[749,9]]},"/sto.html":{"position":[[307,6],[964,7],[1322,6],[1536,6],[1576,6],[1622,6],[1757,6],[2568,6],[2623,6],[2715,6],[2789,6],[3092,7],[3182,6],[3331,6],[3467,7],[3566,6],[3685,7],[3817,7],[4071,7],[4106,6],[4140,8],[4177,7],[4298,7],[4879,6],[5219,7],[5414,7],[5447,6],[5593,6],[5674,6],[5841,7],[6152,7],[6538,6],[6884,7],[7510,7],[7550,7],[7564,6],[7714,7],[7780,6],[7896,6],[7931,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1077,6],[1373,7],[1500,6],[1644,7],[1657,6],[1956,6],[2019,7],[3047,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[793,7],[925,8],[988,7],[1641,7],[2024,6],[2867,6],[4539,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1361,6],[1399,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[3993,7],[4164,6],[4540,6],[4924,6],[5373,8],[5758,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9334,7]]},"/mule-teradata-connector/index.html":{"position":[[1308,8]]},"/mule-teradata-connector/reference.html":{"position":[[2870,6],[13522,6],[13565,6],[13976,6]]},"/mule-teradata-connector/release-notes.html":{"position":[[908,8]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6271,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2147,9]]}},"component":{}}],["script_command('echo",{"_index":2453,"title":{},"name":{},"text":{"/sto.html":{"position":[[972,20]]}},"component":{}}],["script_command('python3",{"_index":2485,"title":{},"name":{},"text":{"/sto.html":{"position":[[3825,23],[5874,23],[6917,23]]}},"component":{}}],["scripts\\activ",{"_index":3069,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2992,17]]}},"component":{}}],["scroll",{"_index":152,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3056,6]]}},"component":{}}],["sdc1",{"_index":2340,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[2734,4]]}},"component":{}}],["sdk",{"_index":3063,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1927,3]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3705,3],[3771,3]]}},"component":{}}],["seamless",{"_index":4435,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[749,8]]}},"component":{}}],["search",{"_index":3065,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2286,6],[5172,6]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[5087,6],[5159,6],[5720,6],[5962,6]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1171,6],[1255,6]]}},"component":{}}],["search_query|teradata",{"_index":2525,"title":{},"name":{},"text":{"/sto.html":{"position":[[6352,21],[7337,21]]}},"component":{}}],["searchuifdbpath",{"_index":2483,"title":{},"name":{},"text":{"/sto.html":{"position":[[3643,15],[3771,15],[5803,15],[6784,15]]}},"component":{}}],["secgroup",{"_index":4496,"title":{},"name":{},"text":{"/regulus/regulus-magic-reference.html":{"position":[[3205,11],[3636,10]]}},"component":{}}],["second",{"_index":660,"title":{},"name":{},"text":{"/dbt.html":{"position":[[3148,6]]},"/fastload.html":{"position":[[522,8],[3564,6],[7503,7]]},"/geojson-to-vantage.html":{"position":[[822,6]]},"/nos.html":{"position":[[6640,7]]},"/segment.html":{"position":[[2807,6]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[6318,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[6504,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[537,6],[709,6],[976,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2841,8]]},"/mule-teradata-connector/reference.html":{"position":[[3894,7],[4045,8],[4054,7],[6223,7],[6373,8],[6382,7],[8522,7],[8673,8],[8682,7],[10351,7],[10502,8],[10511,7],[12566,7],[12717,8],[12726,7],[14335,7],[14486,8],[14495,7],[15829,7],[15980,8],[15989,7],[18888,7],[19039,8],[19048,7],[22049,7],[22200,8],[22209,7],[24903,7],[25054,8],[25063,7],[28571,7],[28722,8],[28731,7],[32611,7],[32762,8],[32771,7],[34088,7],[34127,7],[34176,7],[38759,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3247,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[376,8],[7808,6],[9048,7]]}},"component":{}}],["second(",{"_index":4559,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[6433,10],[7632,9],[7687,9],[7742,9],[7861,10]]}},"component":{}}],["secondari",{"_index":738,"title":{},"name":{},"text":{"/fastload.html":{"position":[[1823,9]]},"/mule-teradata-connector/reference.html":{"position":[[38016,9]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1918,9]]}},"component":{}}],["secondli",{"_index":3778,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6897,9]]}},"component":{}}],["secret",{"_index":578,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2589,7],[3313,7]]},"/nos.html":{"position":[[7348,6]]},"/segment.html":{"position":[[2052,6],[2075,7],[2155,7],[2237,7],[2325,7],[2522,8],[3081,7]]},"/regulus/getting-started-with-regulus.html":{"position":[[1231,8]]},"/regulus/install-regulus-docker-image.html":{"position":[[4446,6],[4963,6],[7095,6],[7113,6]]},"/regulus/regulus-magic-reference.html":{"position":[[2284,8],[2429,7],[2451,6]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[6136,6],[6171,6]]}},"component":{}}],["secretaccesskey",{"_index":2918,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9003,15],[9092,16],[13228,15],[19440,15],[24200,15]]}},"component":{}}],["secretmanager.googleapis.com",{"_index":2367,"title":{},"name":{},"text":{"/segment.html":{"position":[[1829,28]]}},"component":{}}],["section",{"_index":750,"title":{},"name":{},"text":{"/fastload.html":{"position":[[2253,8]]},"/getting.started.vbox.html":{"position":[[5612,8]]},"/local.jupyter.hub.html":{"position":[[1288,7]]},"/ml.html":{"position":[[858,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[22434,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[5949,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[4151,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[8371,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[836,8],[3703,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[3411,8],[5834,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2081,7]]},"/mule-teradata-connector/index.html":{"position":[[1060,7],[1160,8]]},"/mule-teradata-connector/reference.html":{"position":[[1261,7]]},"/mule-teradata-connector/release-notes.html":{"position":[[660,7],[760,8]]}},"component":{}}],["secur",{"_index":597,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[3399,8]]},"/nos.html":{"position":[[7156,7],[7492,8]]},"/run-vantage-express-on-aws.html":{"position":[[2596,8],[2626,8],[2685,8],[2736,8],[2774,8],[2843,8],[3032,8],[3140,8],[3192,8],[3239,8],[4423,8],[4548,8],[4685,8],[5551,8],[11354,8],[11766,8],[11796,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[440,8],[9590,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[4123,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1081,8],[1460,8],[8782,8],[9243,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1415,7]]},"/mule-teradata-connector/reference.html":{"position":[[39046,6],[39083,6],[39176,6],[39408,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[6482,8],[6510,8],[6577,8],[6655,8]]},"/regulus/regulus-magic-reference.html":{"position":[[3655,8],[3722,8],[3800,8]]}},"component":{}}],["securitygroups[?groupnam",{"_index":2161,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[2914,26],[3103,26]]}},"component":{}}],["see",{"_index":156,"title":{"/mule-teradata-connector/examples-configuration.html#_see_also":{"position":[[0,3]]},"/mule-teradata-connector/index.html#_see_also":{"position":[[0,3]]},"/mule-teradata-connector/reference.html#_see_also":{"position":[[0,3]]},"/mule-teradata-connector/release-notes.html#_see_also":{"position":[[0,3]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3095,3],[5303,3]]},"/dbt.html":{"position":[[2581,3]]},"/getting.started.utm.html":{"position":[[3254,3],[3673,3],[3787,3],[4478,3],[5915,3]]},"/getting.started.vbox.html":{"position":[[701,3],[2292,3],[2711,3],[2825,3],[3516,3],[4741,3]]},"/getting.started.vmware.html":{"position":[[698,3],[2363,3],[2782,3],[2896,3],[3587,3],[5024,3]]},"/jupyter.html":{"position":[[1592,3],[3342,3],[4158,3],[4715,3]]},"/local.jupyter.hub.html":{"position":[[1259,3],[2378,3],[5854,3]]},"/ml.html":{"position":[[7280,3],[8118,3]]},"/mule.jdbc.example.html":{"position":[[920,4]]},"/nos.html":{"position":[[2984,3]]},"/run-vantage-express-on-aws.html":{"position":[[6336,3],[9799,3]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3116,3],[6579,3]]},"/segment.html":{"position":[[647,3],[4749,3]]},"/sto.html":{"position":[[4241,3],[7146,3]]},"/vantage.express.gcp.html":{"position":[[716,3],[2143,3],[5606,3]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1105,3],[2574,3],[5351,3],[6905,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4300,3]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1554,3],[8506,3]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2152,3]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1866,3],[4334,3],[5599,3],[6267,3],[6447,3],[6813,3]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1997,3],[6979,3]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[4422,4],[4846,4],[10298,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4431,3],[4818,3],[5193,3],[5926,3],[5982,3]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2595,3],[2696,3],[9230,3],[9304,3]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[573,3],[715,3]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[311,3]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6462,3]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1433,3],[1509,3]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[459,3]]},"/query-service/send-queries-using-rest-api.html":{"position":[[601,3],[5224,3],[10164,3]]},"/regulus/getting-started-with-regulus.html":{"position":[[395,3],[588,3],[693,3],[4016,3]]},"/regulus/install-regulus-docker-image.html":{"position":[[1330,3],[1723,3],[2142,3],[3383,3],[4719,3],[8000,3],[8627,3],[8863,3],[9510,3],[9710,3]]},"/regulus/regulus-magic-reference.html":{"position":[[293,3],[5102,3]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[510,3],[1463,3]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3597,3]]}},"component":{}}],["seed",{"_index":640,"title":{},"name":{},"text":{"/dbt.html":{"position":[[2291,4],[2561,4],[4711,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[324,4],[4245,4],[4263,4]]}},"component":{}}],["seen",{"_index":3248,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[495,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4554,4]]}},"component":{}}],["segment",{"_index":634,"title":{"/segment.html":{"position":[[25,7]]}},"name":{"/segment.html":{"position":[[0,7]]}},"text":{"/dbt.html":{"position":[[2213,8]]},"/segment.html":{"position":[[102,7],[263,7],[1282,7],[1319,7],[2009,8],[2435,7],[2954,7],[3249,7],[3419,8],[3456,7],[3759,7],[4282,7],[4545,7],[4753,7],[4834,8],[4906,7],[5344,7],[5419,7],[5540,7]]}},"component":{}}],["segment.sql",{"_index":2356,"title":{},"name":{},"text":{"/segment.html":{"position":[[978,11]]}},"component":{}}],["segment’",{"_index":2415,"title":{},"name":{},"text":{"/segment.html":{"position":[[4964,9]]}},"component":{}}],["sel",{"_index":932,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3425,3],[3548,3],[4174,3],[4725,3],[4782,4],[4855,4],[9187,3],[9597,3]]}},"component":{}}],["select",{"_index":183,"title":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[0,6]]},"/mule-teradata-connector/reference.html#select":{"position":[[0,6]]}},"name":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[0,6]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3697,6],[4774,6],[4997,8],[5526,7]]},"/advanced-dbt.html":{"position":[[1972,6]]},"/create-parquet-files-in-object-storage.html":{"position":[[1004,8],[2746,6],[2777,6],[3806,6]]},"/dbt.html":{"position":[[2910,6]]},"/fastload.html":{"position":[[6891,6]]},"/getting.started.utm.html":{"position":[[1568,6],[1656,6],[1686,6],[2753,6],[2839,6],[4523,6],[4948,6],[5948,6]]},"/getting.started.vbox.html":{"position":[[1575,6],[1791,6],[1877,6],[3561,6],[3774,6],[4774,6]]},"/getting.started.vmware.html":{"position":[[1862,6],[1948,6],[3632,6],[4057,6],[5057,6]]},"/jupyter.html":{"position":[[4393,6],[4492,6]]},"/local.jupyter.hub.html":{"position":[[2230,6]]},"/ml.html":{"position":[[2978,6],[4026,6],[8060,6]]},"/mule.jdbc.example.html":{"position":[[855,6],[1129,6],[2758,6]]},"/nos.html":{"position":[[1212,6],[2049,6],[3361,6],[4157,6],[5118,6],[5156,6],[6005,6],[6093,6],[6603,6],[6956,6],[7926,6],[7957,6]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[944,6],[3877,6],[4472,6],[6184,6],[7680,6],[8097,6]]},"/run-vantage-express-on-aws.html":{"position":[[6670,6],[9832,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3450,6],[6612,6]]},"/sto.html":{"position":[[950,6],[1445,6],[1902,6],[3803,6],[5827,6],[6650,6],[6870,6],[7109,6]]},"/vantage.express.gcp.html":{"position":[[2477,6],[5639,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[3530,6],[4114,6],[4184,6],[4289,6],[4321,6],[4866,6],[5151,6],[7005,6],[7054,6],[7123,6],[7546,6],[7616,6],[7710,6],[7764,6],[8336,6],[8509,6],[10495,6],[10865,6],[11301,6],[13417,6],[14429,6],[14923,6],[17111,6],[17328,9],[18635,6],[20795,6],[21263,6],[21306,7],[21992,6],[22052,7],[22532,6],[24597,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[3932,6],[3998,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[5184,6],[7231,8],[10150,8],[10181,6],[10207,6],[10560,7],[10608,7],[10792,7],[10830,7],[11260,6],[12665,6],[12931,6],[12973,7],[14783,6],[15787,11],[15991,6],[17407,7],[17795,6],[19185,7],[19521,6],[19630,8],[19909,6],[21777,6],[23165,6],[23754,6],[23785,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2232,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3283,6],[4684,6],[5108,6],[5377,6],[5424,6],[5530,6],[5681,6],[5752,6]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3840,6],[4314,6],[4448,6],[4974,7],[5416,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[5344,6],[5444,6],[5692,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[2323,6],[2434,6],[3328,6],[5499,6],[6141,6],[6315,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2056,6],[11854,7],[11907,7],[13538,6],[13724,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[706,6],[2777,6],[2956,6],[3114,10],[3132,6],[3453,6],[3620,6],[3787,6],[4558,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[743,6],[2814,6],[2993,6],[3151,10],[3169,6],[3490,6],[3657,6],[3824,6],[6254,6],[6399,6],[6545,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4674,9],[4904,6]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[846,6],[1653,9],[1996,6],[2882,6],[3109,6],[3144,6],[3609,6]]},"/mule-teradata-connector/reference.html":{"position":[[2884,6],[20440,6],[21057,7],[21358,8],[30555,7],[31397,6],[38055,8]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[537,6],[592,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1395,6],[1424,6],[10325,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[4918,6]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1281,6],[1483,6],[1660,6]]},"/query-service/send-queries-using-rest-api.html":{"position":[[2897,6],[3469,7],[5745,7],[8855,6],[9163,7],[9301,6],[9580,7],[11796,7],[12121,7]]},"/regulus/getting-started-with-regulus.html":{"position":[[1845,8],[2582,6],[3245,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[5772,6],[5877,6],[6686,6],[7464,6],[7485,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[5246,6],[8436,6]]}},"component":{}}],["selector",{"_index":3215,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4606,8],[5383,8]]}},"component":{}}],["self",{"_index":3849,"title":{},"name":{},"text":{"/mule-teradata-connector/index.html":{"position":[[951,4]]},"/mule-teradata-connector/release-notes.html":{"position":[[551,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[185,4],[5726,4]]}},"component":{}}],["semant",{"_index":3724,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3357,12]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5112,12]]}},"component":{}}],["semi",{"_index":870,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[744,4]]}},"component":{}}],["send",{"_index":1310,"title":{"/jdbc.html#_code_to_send_a_query":{"position":[[8,4]]},"/teradatasql.html#_code_to_send_a_query":{"position":[[8,4]]},"/query-service/send-queries-using-rest-api.html":{"position":[[0,4]]}},"name":{"/query-service/send-queries-using-rest-api.html":{"position":[[0,4]]}},"text":{"/jdbc.html":{"position":[[1037,4]]},"/mule.jdbc.example.html":{"position":[[3085,4]]},"/segment.html":{"position":[[5004,4],[5339,4]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1579,4],[4851,5]]},"/teradatasql.html":{"position":[[946,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[5574,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1545,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[425,4]]},"/query-service/send-queries-using-rest-api.html":{"position":[[7903,4],[8639,4],[9883,4],[10790,4],[11487,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[4069,7],[4884,4],[5924,7]]}},"component":{}}],["sent",{"_index":2628,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[889,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[7187,4]]}},"component":{}}],["separ",{"_index":317,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[1486,11]]},"/dbt.html":{"position":[[880,11]]},"/fastload.html":{"position":[[4094,9]]},"/geojson-to-vantage.html":{"position":[[6922,8],[7409,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11171,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2259,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1603,11]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[4979,8]]},"/mule-teradata-connector/reference.html":{"position":[[36156,9],[36363,9],[36477,9],[36568,9]]},"/query-service/send-queries-using-rest-api.html":{"position":[[5543,9],[5613,9]]}},"component":{}}],["separated_ind",{"_index":1541,"title":{},"name":{},"text":{"/ml.html":{"position":[[4454,13]]}},"component":{}}],["septemb",{"_index":1474,"title":{},"name":{},"text":{"/ml.html":{"position":[[39,9]]},"/nos.html":{"position":[[39,9]]},"/sto.html":{"position":[[39,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[36,9]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[39,9]]}},"component":{}}],["sequenc",{"_index":1167,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[2905,8]]},"/getting.started.vbox.html":{"position":[[1943,8]]},"/getting.started.vmware.html":{"position":[[2014,8]]}},"component":{}}],["seri",{"_index":1838,"title":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[13,6]]},"/perform-time-series-analysis-using-teradata-vantage.html#_basic_time_series_operations":{"position":[[11,6]]}},"name":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[13,6]]}},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[57,6],[67,6],[317,6],[393,6],[843,6],[7343,6],[8055,7],[10175,6],[10231,6],[10410,6],[10470,6],[10641,6],[10678,6],[10724,6]]}},"component":{}}],["serializ",{"_index":3866,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[2020,12]]}},"component":{}}],["serv",{"_index":69,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1018,6]]},"/dbt.html":{"position":[[4499,5],[4786,5],[4841,7]]},"/nos.html":{"position":[[7225,5]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3553,6],[4644,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7958,5],[8387,5],[8442,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[918,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1160,8]]},"/regulus/install-regulus-docker-image.html":{"position":[[3660,5]]}},"component":{}}],["server",{"_index":74,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1098,7],[1170,7],[3854,7]]},"/dbt.html":{"position":[[4357,6],[4428,6]]},"/jupyter.html":{"position":[[2230,7]]},"/local.jupyter.hub.html":{"position":[[1082,6],[1132,7],[1216,6]]},"/mule.jdbc.example.html":{"position":[[1223,6]]},"/sto.html":{"position":[[2395,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3478,6],[4001,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[891,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2094,7],[2425,7],[7816,6],[7887,6]]},"/mule-teradata-connector/reference.html":{"position":[[38138,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1561,6],[1576,6],[3980,6],[10593,6]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1367,6]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1330,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[3157,6],[4171,6],[5599,6],[5638,6],[5690,6],[6849,6],[9346,6]]},"/regulus/regulus-magic-reference.html":{"position":[[635,6]]}},"component":{}}],["serverless",{"_index":2351,"title":{},"name":{},"text":{"/segment.html":{"position":[[439,10]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[654,11]]}},"component":{}}],["servic",{"_index":39,"title":{"/mule.jdbc.example.html":{"position":[[35,7]]},"/mule.jdbc.example.html#_example_service":{"position":[[8,7]]},"/query-service/send-queries-using-rest-api.html#_query_service_api_examples":{"position":[[6,7]]},"/query-service/send-queries-using-rest-api.html#_connect_to_your_query_service_instance":{"position":[[22,7]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[479,9],[744,8],[753,8],[782,7],[901,8],[1350,7],[1825,9],[4156,8],[4377,7]]},"/create-parquet-files-in-object-storage.html":{"position":[[697,7]]},"/fastload.html":{"position":[[1143,7]]},"/mule.jdbc.example.html":{"position":[[469,7]]},"/nos.html":{"position":[[501,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[520,7]]},"/run-vantage-express-on-aws.html":{"position":[[10478,9]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7258,9]]},"/segment.html":{"position":[[1718,9],[1735,8],[2841,7],[3231,8],[3480,7],[3565,7],[3668,7],[3727,8],[4230,7],[4415,7]]},"/vantage.express.gcp.html":{"position":[[6285,9]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[175,7],[1884,8],[3509,8],[4093,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[3541,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1051,7],[1126,7],[1211,8],[2736,7],[4410,8]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[568,8],[1545,8],[1773,7],[2148,8],[3596,7]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[224,8],[1898,8],[6251,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1090,7],[6959,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1055,7],[1114,7],[2488,7],[2536,7],[2605,7],[2681,7],[2741,7],[2791,7],[2946,7]]},"/jupyter-demos/index.html":{"position":[[1557,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1919,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1956,7]]},"/mule-teradata-connector/index.html":{"position":[[1549,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[623,9],[3141,8],[3184,7]]},"/query-service/send-queries-using-rest-api.html":{"position":[[65,7],[195,7],[370,7],[464,7],[516,7],[592,8],[611,7],[778,7],[1349,7],[5234,7],[10174,7],[12456,7],[12515,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[190,7],[390,7],[622,7],[1867,8],[3478,9],[5091,7],[5156,7],[5208,8],[5313,7],[5569,7],[5658,7],[5754,7],[7751,8],[8958,9]]},"/regulus/regulus-magic-reference.html":{"position":[[404,8],[517,8],[3519,8],[3616,8]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1561,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[997,7]]}},"component":{}}],["service_url=$(gcloud",{"_index":2388,"title":{},"name":{},"text":{"/segment.html":{"position":[[3206,20]]}},"component":{}}],["servicenow",{"_index":2875,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1191,11]]}},"component":{}}],["session",{"_index":2220,"title":{"/query-service/send-queries-using-rest-api.html#_use_explicit_session_to_submit_a_query":{"position":[[13,7]]}},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[6719,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3499,7]]},"/sto.html":{"position":[[3635,7],[5795,7],[6776,7]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1254,8],[4417,8]]},"/vantage.express.gcp.html":{"position":[[2526,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6719,7],[6854,7]]},"/query-service/send-queries-using-rest-api.html":{"position":[[7632,8],[7729,8],[7775,8],[7862,7],[7895,7],[7993,7],[8017,7],[8193,7],[8595,7],[8968,9],[8986,7],[9038,8],[9066,7],[9213,10],[11891,10],[12215,10]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[4974,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[5907,8],[6378,8],[7003,8],[7413,8]]}},"component":{}}],["session\":1366015",{"_index":4361,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[10560,18]]}},"component":{}}],["sessionid",{"_index":4337,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[8433,12]]}},"component":{}}],["set",{"_index":190,"title":{"/perform-time-series-analysis-using-teradata-vantage.html#_import_data_sets_from_aws_s3_using_vantage_nos":{"position":[[12,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_set_environment_variables":{"position":[[0,3]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_setting_the_source_connection":{"position":[[0,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_setting_the_destination_connection":{"position":[[0,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Setting-up-Vantage-and-loading-data":{"position":[[0,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html#_how_to_set_sql_registry":{"position":[[7,3]]},"/regulus/install-regulus-docker-image.html#_configure_and_set_up_workspaces":{"position":[[14,3]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3903,3],[4619,8],[4642,9],[5141,3]]},"/advanced-dbt.html":{"position":[[2362,4],[2392,3],[6658,3]]},"/create-parquet-files-in-object-storage.html":{"position":[[1723,7],[1863,3],[3484,3]]},"/fastload.html":{"position":[[3008,3],[3093,3],[3158,3],[3219,3],[4110,3],[5351,3],[5436,3],[5501,3],[5562,3],[5751,3]]},"/geojson-to-vantage.html":{"position":[[2826,3],[6949,3],[8484,3]]},"/getting.started.utm.html":{"position":[[1942,8],[5479,3]]},"/getting.started.vbox.html":{"position":[[4305,3]]},"/getting.started.vmware.html":{"position":[[4588,3]]},"/jdbc.html":{"position":[[723,3]]},"/jupyter.html":{"position":[[955,3]]},"/ml.html":{"position":[[3788,4]]},"/mule.jdbc.example.html":{"position":[[2257,3],[2898,8]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[680,4],[3589,3],[4306,4],[4371,4]]},"/run-vantage-express-on-aws.html":{"position":[[9363,3]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[671,3],[822,3],[6143,3]]},"/segment.html":{"position":[[1000,4],[1296,3],[1335,3],[1385,3],[1411,3]]},"/sto.html":{"position":[[3631,3],[5791,3],[6772,3]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2524,3]]},"/vantage.express.gcp.html":{"position":[[5170,3]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[5633,3],[5731,8],[5745,3],[9661,3]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[5958,3]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2010,3],[2853,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[3912,3],[5910,8],[9314,3],[9392,3],[10137,3],[13009,3],[13574,3],[14177,3],[14240,3],[14291,3],[14343,3],[14401,3],[14455,3],[19221,3],[20265,3],[20330,3],[20392,3],[20457,3],[20520,3],[20584,3],[20651,3],[20717,3],[20773,3],[20827,3],[20893,3],[20957,3],[21022,3],[21090,3],[21157,3],[21216,3],[21279,3],[21359,3],[21416,3],[21470,3],[21534,3],[21602,3],[21667,3],[23463,3],[24468,8]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2671,3],[2739,3]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[620,4],[1089,4],[1512,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[339,4],[1411,3],[6696,3],[7144,3]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1171,3]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[2367,3],[2397,3],[3081,7],[3152,3],[3386,4],[3859,3],[5226,9],[5682,3]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3111,3],[3202,3],[4456,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1472,7],[1938,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1509,7],[1975,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3094,3],[5282,3]]},"/mule-teradata-connector/reference.html":{"position":[[1611,3],[2083,3],[2491,3],[4279,4],[6605,4],[8815,4],[10644,4],[11280,3],[12859,4],[14628,4],[16122,4],[16750,3],[19181,4],[19809,3],[20905,3],[22931,3],[25286,4],[25906,3],[26216,3],[26548,3],[28864,4],[29489,3],[32904,4],[33681,7],[33862,7],[34250,7],[34925,3],[35070,3],[35293,3],[35732,3],[36106,3],[36313,3],[39224,4],[39392,3],[39423,3],[40646,7],[41868,7]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[647,3],[674,9],[1108,8],[1360,8]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1521,8],[1662,8],[5028,3],[6217,3]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1271,9]]},"/query-service/send-queries-using-rest-api.html":{"position":[[5329,3],[10940,4]]},"/regulus/getting-started-with-regulus.html":{"position":[[2233,3]]},"/regulus/install-regulus-docker-image.html":{"position":[[2169,3],[2631,3],[4978,3],[5126,7],[5910,8],[5950,7],[6719,8],[6752,7],[8165,3],[9632,3]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[598,3],[1827,3],[2720,3]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[4491,3],[4576,3],[4641,3],[4702,3]]}},"component":{}}],["setup",{"_index":383,"title":{"/advanced-dbt.html#_demo_project_setup":{"position":[[13,5]]},"/advanced-dbt.html#_data_warehouse_setup":{"position":[[15,5]]},"/mule.jdbc.example.html#_setup":{"position":[[0,5]]},"/run-vantage-express-on-aws.html#_optional_setup":{"position":[[9,5]]},"/run-vantage-express-on-microsoft-azure.html#_optional_setup":{"position":[[9,5]]},"/vantage.express.gcp.html#_optional_setup":{"position":[[9,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_initial_setup":{"position":[[8,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Setup-the-notebook-environment":{"position":[[0,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Setup-a-Vantage-instance":{"position":[[0,5]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[3447,6]]},"/dbt.html":{"position":[[1097,5],[1621,6]]},"/getting.started.utm.html":{"position":[[1982,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[547,5]]},"/segment.html":{"position":[[5176,5]]},"/sto.html":{"position":[[2862,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4114,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2550,6],[2721,5],[4426,5]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[200,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1383,6],[2387,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1569,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1606,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1567,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6107,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3110,5],[3456,6],[3872,5]]},"/query-service/send-queries-using-rest-api.html":{"position":[[924,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[5119,6]]},"/regulus/regulus-magic-reference.html":{"position":[[3946,6]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1916,5],[2224,5],[2829,5],[3058,5],[3357,5],[3652,5],[4014,5],[4382,5],[5044,5],[5404,5],[5690,5],[6467,5],[6772,5]]}},"component":{}}],["setup.ex",{"_index":712,"title":{},"name":{},"text":{"/fastload.html":{"position":[[845,10]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[699,10]]}},"component":{}}],["setup.sh",{"_index":714,"title":{},"name":{},"text":{"/fastload.html":{"position":[[994,10]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[848,10]]}},"component":{}}],["sever",{"_index":491,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[7190,7]]},"/fastload.html":{"position":[[1672,7]]},"/ml.html":{"position":[[7194,7]]},"/run-vantage-express-on-aws.html":{"position":[[7149,7],[7275,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3929,7],[4055,7]]},"/vantage.express.gcp.html":{"position":[[2956,7],[3082,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[376,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[381,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[476,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[152,7],[1732,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1766,7]]}},"component":{}}],["sha",{"_index":3953,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[39244,3],[39253,3]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[4152,4]]}},"component":{}}],["shah",{"_index":2621,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[14,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[14,4]]}},"component":{}}],["shap==0.36.0",{"_index":3678,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[5472,12]]}},"component":{}}],["shape",{"_index":240,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[5888,5]]}},"component":{}}],["share",{"_index":65,"title":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[19,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_about_azure_data_share":{"position":[[17,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_a_data_share_account":{"position":[[14,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_a_share":{"position":[[9,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_accept_and_receive_data_using_azure_data_share":{"position":[[41,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_configure_received_share":{"position":[[19,5]]}},"name":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[19,5]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[965,6]]},"/getting.started.utm.html":{"position":[[1877,6]]},"/segment.html":{"position":[[1998,5]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[323,6],[2299,6],[2638,6],[3731,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[91,5],[169,5],[322,5],[398,5],[449,5],[574,5],[609,5],[647,7],[668,8],[695,5],[874,5],[911,6],[2964,5],[2987,5],[3028,5],[3756,5],[3787,7],[3840,5],[3974,5],[4229,5],[4282,6],[4302,7],[4362,5],[4377,5],[4452,5],[4474,7],[4701,5],[4723,7],[5199,5],[5209,5],[5579,5],[5637,5],[5673,5],[5877,5],[5935,5],[6109,5],[6210,5],[6519,5],[6604,5],[6731,6],[6822,5],[6986,5],[7016,5],[7108,5],[7208,5],[7248,5],[7450,5],[7580,5],[7989,5],[8027,8],[8061,5],[8169,8],[8247,7]]}},"component":{}}],["sheet",{"_index":3247,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[384,6],[740,7],[3368,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[231,6],[288,6],[843,7],[2448,7],[3096,6],[5002,7],[7032,6],[7337,6]]}},"component":{}}],["shell",{"_index":3300,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1355,5],[1393,5]]}},"component":{}}],["shift+ctrl+v",{"_index":1179,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[3615,13]]},"/getting.started.vbox.html":{"position":[[2653,13]]},"/getting.started.vmware.html":{"position":[[2724,13]]}},"component":{}}],["ship",{"_index":2868,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[250,8],[13377,8],[14761,8]]}},"component":{}}],["shipped_d",{"_index":2998,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13745,12]]}},"component":{}}],["shipping_address",{"_index":2991,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13461,17],[14093,17],[14124,16],[14566,17],[14682,17],[15230,16]]}},"component":{}}],["shipping_c",{"_index":2961,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11900,14],[15071,14],[16631,14],[18435,14],[20921,13],[22417,14]]}},"component":{}}],["shipping_countri",{"_index":2967,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[12086,17],[15168,16],[16817,17],[18621,17],[21118,16],[22603,17]]}},"component":{}}],["shipping_post_cod",{"_index":2965,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[12021,19],[16752,19],[18556,19],[21050,18],[22538,19]]}},"component":{}}],["shipping_postal_cod",{"_index":3017,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[15132,21]]}},"component":{}}],["shipping_st",{"_index":2963,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11958,15],[15098,15],[16689,15],[18493,15],[20985,14],[22475,15]]}},"component":{}}],["shipping_street",{"_index":2959,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11841,16],[15043,16],[16572,16],[18376,16],[20855,15],[22358,16]]}},"component":{}}],["shop",{"_index":618,"title":{"/dbt.html#_about_the_jaffle_shop_warehouse":{"position":[[17,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_the_jaffle_shop_dbt_project":{"position":[[11,4]]}},"name":{},"text":{"/dbt.html":{"position":[[176,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3552,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[264,4],[349,4],[704,4],[4144,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[5190,4]]}},"component":{}}],["short",{"_index":3166,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3728,5]]}},"component":{}}],["shouldn’t",{"_index":3167,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3748,9]]}},"component":{}}],["show",{"_index":88,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1465,4],[2867,8]]},"/getting.started.utm.html":{"position":[[69,5]]},"/getting.started.vbox.html":{"position":[[69,5]]},"/getting.started.vmware.html":{"position":[[69,5]]},"/jupyter.html":{"position":[[71,5]]},"/odbc.ubuntu.html":{"position":[[1762,5],[1838,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[1464,4],[1854,4],[2232,4]]},"/segment.html":{"position":[[5108,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[64,5],[986,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[69,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[7069,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[8406,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[295,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[3555,5]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[2095,4],[5442,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[266,4],[10449,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6830,5]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[3279,5],[4297,5]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[1049,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3990,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[66,5]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1602,4]]}},"component":{}}],["showcas",{"_index":264,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[65,9],[281,9],[7077,9]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[65,9]]}},"component":{}}],["shown",{"_index":1168,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[2941,5]]},"/getting.started.vbox.html":{"position":[[1979,5]]},"/getting.started.vmware.html":{"position":[[2050,5]]},"/local.jupyter.hub.html":{"position":[[2828,5],[3915,5]]}},"component":{}}],["shutdown.target",{"_index":2277,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[10462,15]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7242,15]]},"/vantage.express.gcp.html":{"position":[[6269,15]]}},"component":{}}],["side",{"_index":2643,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2062,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2396,4]]},"/query-service/send-queries-using-rest-api.html":{"position":[[171,4]]}},"component":{}}],["sign",{"_index":1132,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[1559,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[5608,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1846,4],[3722,4]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[2180,4],[3714,4]]},"/mule-teradata-connector/reference.html":{"position":[[38295,7]]},"/regulus/getting-started-with-regulus.html":{"position":[[138,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[138,4],[1543,4],[5731,6]]},"/regulus/regulus-magic-reference.html":{"position":[[138,4]]}},"component":{}}],["signific",{"_index":884,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[1643,11]]}},"component":{}}],["significantli",{"_index":1116,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[745,13]]}},"component":{}}],["silent",{"_index":3888,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[4467,8],[6793,8],[9003,8],[10832,8],[13047,8],[14816,8],[16310,8],[19369,8],[22490,8],[25474,8],[29052,8],[33092,8]]}},"component":{}}],["silent=0",{"_index":3171,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3871,8]]}},"component":{}}],["similar",{"_index":1612,"title":{},"name":{},"text":{"/ml.html":{"position":[[8130,7]]},"/odbc.ubuntu.html":{"position":[[1579,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[6089,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2444,8],[5706,9],[6490,7]]}},"component":{}}],["simpl",{"_index":1008,"title":{"/query-service/send-queries-using-rest-api.html#_make_a_simple_api_request_with_basic_options":{"position":[[7,6]]}},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[5757,6]]},"/odbc.ubuntu.html":{"position":[[1899,6]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[7546,6]]},"/sto.html":{"position":[[886,7],[1315,6],[1529,6]]},"/teradatasql.html":{"position":[[651,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[182,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[850,7],[3784,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1554,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[9194,6]]},"/regulus/getting-started-with-regulus.html":{"position":[[206,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[9693,6]]}},"component":{}}],["simpli",{"_index":827,"title":{},"name":{},"text":{"/fastload.html":{"position":[[6376,6]]},"/geojson-to-vantage.html":{"position":[[2340,6],[7988,6],[8838,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[429,6],[2175,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2505,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[522,6]]}},"component":{}}],["simplic",{"_index":1423,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[1740,11]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[6920,11]]}},"component":{}}],["simplifi",{"_index":1845,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[303,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[10921,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[10896,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[4067,10]]}},"component":{}}],["simplist",{"_index":1511,"title":{},"name":{},"text":{"/ml.html":{"position":[[3330,11]]}},"component":{}}],["simultan",{"_index":2580,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[4325,15]]}},"component":{}}],["singl",{"_index":94,"title":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_the_table_and_load_the_data_in_a_single_statement":{"position":[[40,6]]},"/mule-teradata-connector/reference.html#querySingle":{"position":[[6,6]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1701,6]]},"/fastload.html":{"position":[[6410,6]]},"/geojson-to-vantage.html":{"position":[[478,6],[796,6],[1241,6],[1316,6],[2695,6]]},"/segment.html":{"position":[[5141,6]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3643,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1224,6],[10783,6],[14508,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[635,6],[9728,6],[10492,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[885,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[4824,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[96,6]]},"/mule-teradata-connector/index.html":{"position":[[1175,6]]},"/mule-teradata-connector/reference.html":{"position":[[2897,6],[3050,6],[3127,6],[5382,6],[5459,6],[7675,6],[7754,6],[13534,6],[21067,6],[21312,6],[23559,6],[31212,6]]},"/mule-teradata-connector/release-notes.html":{"position":[[775,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[1881,6]]}},"component":{}}],["single_ind",{"_index":1537,"title":{},"name":{},"text":{"/ml.html":{"position":[[4249,10]]}},"component":{}}],["singleus",{"_index":1430,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[2027,11],[2864,10],[3951,10]]}},"component":{}}],["site",{"_index":1747,"title":{},"name":{},"text":{"/nos.html":{"position":[[3319,4],[3328,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4518,4]]}},"component":{}}],["site_no",{"_index":1687,"title":{},"name":{},"text":{"/nos.html":{"position":[[1339,7],[2585,7],[3368,7],[3376,8],[3483,7],[3528,7],[4223,7],[5962,9],[6012,8],[6140,7],[8003,7],[8020,7],[8356,7]]}},"component":{}}],["situat",{"_index":1475,"title":{},"name":{},"text":{"/ml.html":{"position":[[70,10]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[289,9],[1126,10]]}},"component":{}}],["size",{"_index":2316,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[1253,4],[1397,4],[1644,4],[1788,4],[2022,4],[2166,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[14124,4],[21908,6],[21972,4]]},"/mule-teradata-connector/reference.html":{"position":[[4068,4],[6396,4],[8696,4],[10525,4],[12740,4],[14509,4],[16003,4],[19062,4],[22223,4],[25077,4],[28745,4],[32785,4],[33298,4],[33386,4],[33604,4],[34576,4],[34593,6],[40179,4],[40430,4],[40493,5],[40546,4],[40601,4],[40640,5],[40859,4],[41442,4],[41693,4],[41756,4],[41768,4],[41823,4],[41862,5],[42040,4],[42413,4],[42645,4]]},"/regulus/getting-started-with-regulus.html":{"position":[[1329,4],[1406,4],[1451,5]]},"/regulus/regulus-magic-reference.html":{"position":[[3173,6],[3261,5],[3267,4]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[4592,4],[4613,4]]}},"component":{}}],["skinthick",{"_index":3628,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2887,10]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2924,10]]}},"component":{}}],["skip",{"_index":799,"title":{},"name":{},"text":{"/fastload.html":{"position":[[3927,4]]},"/getting.started.utm.html":{"position":[[1693,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1910,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1947,4]]}},"component":{}}],["sklearn",{"_index":3459,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[6723,7]]}},"component":{}}],["sklearn.ensembl",{"_index":3455,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[6623,16]]}},"component":{}}],["sklearn.model_select",{"_index":3453,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[6570,23]]}},"component":{}}],["sklearn.preprocess",{"_index":3457,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[6674,21]]}},"component":{}}],["sklearn2pmml",{"_index":3444,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[6342,14],[6855,12],[6875,12],[7906,14],[8104,12],[8124,12],[11488,14]]}},"component":{}}],["sklearn2pmml(pipelin",{"_index":3492,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[8273,22]]}},"component":{}}],["sklearn2pmml.pipelin",{"_index":3463,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[6808,21],[8057,21]]}},"component":{}}],["sklearn_panda",{"_index":3460,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[6751,14]]}},"component":{}}],["sku",{"_index":2322,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[1432,3],[1823,3],[2201,3]]}},"component":{}}],["sla",{"_index":2978,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[12410,4],[17133,4],[18937,4],[21444,3],[22919,4]]}},"component":{}}],["slack",{"_index":2874,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1180,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[7941,5]]}},"component":{}}],["slow",{"_index":1120,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[841,4]]}},"component":{}}],["slower",{"_index":1117,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[759,6]]}},"component":{}}],["sm",{"_index":2527,"title":{},"name":{},"text":{"/sto.html":{"position":[[6412,2],[7397,2]]}},"component":{}}],["small",{"_index":2107,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[140,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1545,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1747,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1206,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[285,5]]},"/regulus/getting-started-with-regulus.html":{"position":[[1357,6],[1414,6]]},"/regulus/regulus-magic-reference.html":{"position":[[3311,5]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[4359,5]]}},"component":{}}],["smaller",{"_index":2774,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[17367,7]]}},"component":{}}],["smallint",{"_index":556,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2008,8],[3516,8]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3713,9]]},"/mule-teradata-connector/reference.html":{"position":[[39745,8]]}},"component":{}}],["smart",{"_index":3568,"title":{},"name":{},"text":{"/jupyter-demos/index.html":{"position":[[6,5],[84,5],[482,5],[687,6]]}},"component":{}}],["smith",{"_index":1658,"title":{},"name":{},"text":{"/mule.jdbc.example.html":{"position":[[1171,5]]}},"component":{}}],["snappi",{"_index":3045,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[24059,10]]}},"component":{}}],["snapshot",{"_index":2625,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[632,8],[4417,8],[4443,8],[4465,8],[5749,8],[7944,8],[8147,8],[8232,8],[8294,8]]}},"component":{}}],["snowfall_in",{"_index":2761,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[13189,12],[16811,12],[18405,11],[20524,12],[24421,12]]}},"component":{}}],["soft",{"_index":3945,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[38073,4]]}},"component":{}}],["softwar",{"_index":38,"title":{"/getting.started.utm.html#_download_required_software":{"position":[[18,8]]},"/getting.started.vbox.html#_download_required_software":{"position":[[18,8]]},"/getting.started.vmware.html#_download_required_software":{"position":[[18,8]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[470,8],[729,9]]},"/getting.started.utm.html":{"position":[[1101,9],[6418,8]]},"/getting.started.vbox.html":{"position":[[899,9],[5060,8],[6014,8]]},"/getting.started.vmware.html":{"position":[[896,9],[5527,8]]},"/jdbc.html":{"position":[[663,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2151,8],[2742,8],[3540,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1112,8]]},"/mule-teradata-connector/release-notes.html":{"position":[[1014,8]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[282,8]]}},"component":{}}],["solut",{"_index":833,"title":{},"name":{},"text":{"/fastload.html":{"position":[[7022,8]]},"/nos.html":{"position":[[5490,8]]},"/segment.html":{"position":[[63,8],[246,9],[450,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[6048,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[187,9]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[8567,8]]}},"component":{}}],["solv",{"_index":2474,"title":{},"name":{},"text":{"/sto.html":{"position":[[2613,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1667,7]]}},"component":{}}],["somehow",{"_index":684,"title":{},"name":{},"text":{"/dbt.html":{"position":[[4185,8]]}},"component":{}}],["someth",{"_index":610,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[3918,9]]},"/sto.html":{"position":[[876,9]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6960,9]]}},"component":{}}],["sometim",{"_index":1478,"title":{},"name":{},"text":{"/ml.html":{"position":[[316,9]]},"/sto.html":{"position":[[59,10]]}},"component":{}}],["soon",{"_index":4433,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[3908,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[9832,5]]}},"component":{}}],["sort",{"_index":2191,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[5251,4]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2767,7]]}},"component":{}}],["sorted(returned_features.item",{"_index":3793,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[7725,34]]}},"component":{}}],["sourc",{"_index":35,"title":{"/advanced-dbt.html#_the_sources":{"position":[[4,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[39,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_launch_airbyte_open_source":{"position":[[20,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_setting_the_source_connection":{"position":[[12,6]]},"/mule-teradata-connector/examples-configuration.html#configure-input-source":{"position":[[12,6]]},"/mule-teradata-connector/reference.html#config_data-source":{"position":[[5,6]]},"/mule-teradata-connector/reference.html#_associated_sources":{"position":[[11,7]]},"/mule-teradata-connector/reference.html#_sources":{"position":[[0,7]]}},"name":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[39,7]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[350,6],[414,6],[560,7],[1273,6],[1303,7],[3457,6],[4404,7],[4635,6],[5748,7],[5860,7]]},"/advanced-dbt.html":{"position":[[1297,6],[1679,6],[3661,6],[3775,6],[3949,6],[4105,7],[4502,7],[4532,7],[4673,7],[5437,8],[6646,6],[6762,8],[7109,6]]},"/dbt.html":{"position":[[726,6],[3910,7]]},"/fastload.html":{"position":[[2130,6]]},"/geojson-to-vantage.html":{"position":[[334,7],[1507,6]]},"/nos.html":{"position":[[3672,7],[5592,6]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1309,7],[1774,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[4764,7],[8123,7],[14785,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1450,6],[2623,6],[3020,6],[3516,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1513,7],[5994,6],[6085,7],[6131,6],[6847,6],[6967,6],[15747,6],[19685,6],[24281,6],[24552,6],[24642,7],[24689,6],[25138,6],[25277,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[3063,6],[3137,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[167,6],[982,7],[1332,6],[2988,6],[5332,6],[5683,6],[5744,6],[7484,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[103,6],[273,7],[656,6],[774,6],[1172,6],[1969,6],[2055,6],[2307,7],[2347,6],[2410,7],[3010,6],[3106,6],[3139,6],[3159,7],[4169,6],[4268,7],[4746,7],[4922,7],[5013,7],[6796,7],[7018,6],[7311,6],[7516,6],[7552,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1022,7],[3110,6],[3208,6],[3464,7],[3543,8]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[293,6],[1473,6],[1569,7],[1942,7],[2302,6],[3246,7]]},"/mule-teradata-connector/index.html":{"position":[[991,6],[1053,6]]},"/mule-teradata-connector/reference.html":{"position":[[580,6],[1115,7],[1171,6],[31888,7],[32105,6]]},"/mule-teradata-connector/release-notes.html":{"position":[[591,6],[653,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[9793,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[452,6],[1594,7],[2255,6],[4963,6],[5219,7],[5298,8],[5990,6]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[226,8]]},"/regulus/getting-started-with-regulus.html":{"position":[[320,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2262,6]]}},"component":{}}],["source('airbyte_jaffle_shop",{"_index":3270,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[5361,29]]}},"component":{}}],["source=driver_stats_sourc",{"_index":3746,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4256,27]]}},"component":{}}],["space",{"_index":1123,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[948,5]]},"/getting.started.vbox.html":{"position":[[746,5]]},"/getting.started.vmware.html":{"position":[[743,5]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2839,5],[3276,5],[3392,5],[5878,5]]},"/regulus/getting-started-with-regulus.html":{"position":[[3933,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[9857,5]]}},"component":{}}],["span",{"_index":4330,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[7669,4]]}},"component":{}}],["spark",{"_index":2433,"title":{},"name":{},"text":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1071,6]]}},"component":{}}],["spawn",{"_index":1317,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[764,5]]}},"component":{}}],["special",{"_index":2094,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10218,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2039,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2373,7]]}},"component":{}}],["specif",{"_index":279,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[412,8],[2650,8],[5534,8],[5812,8]]},"/ml.html":{"position":[[1832,8]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[5997,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[3620,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1879,8],[3450,8]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[2969,8]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[868,8]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1069,8],[5205,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[10021,8],[12535,13]]},"/regulus/regulus-magic-reference.html":{"position":[[1624,8]]}},"component":{}}],["specifi",{"_index":421,"title":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_1_specify_flow_details":{"position":[[8,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_1_specify_flow_details_2":{"position":[[8,7]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[4488,9],[4927,9]]},"/fastload.html":{"position":[[4147,9]]},"/geojson-to-vantage.html":{"position":[[2097,7],[7745,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[21097,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1626,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[7420,7],[12899,9],[19998,7],[25360,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4022,7],[4637,7],[5214,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1849,7],[5614,7]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1504,9],[2372,7],[2471,7],[2591,7],[2747,9],[2849,7],[3867,7],[3966,7],[4086,7],[4242,9]]},"/mule-teradata-connector/reference.html":{"position":[[1460,9],[1888,9],[2604,7],[2661,7],[2768,9],[3307,9],[3974,9],[4626,7],[6302,9],[6937,7],[7934,9],[8602,9],[9147,7],[10431,9],[10976,7],[12646,9],[13995,9],[14415,9],[15909,9],[16454,7],[18968,9],[19513,7],[22129,9],[22635,7],[24983,9],[25614,7],[28651,9],[29196,7],[32691,9],[34540,9],[34903,9],[40568,9],[40925,9],[41217,9],[41790,9],[42106,9]]},"/regulus/install-regulus-docker-image.html":{"position":[[6387,7],[6567,7]]},"/regulus/regulus-magic-reference.html":{"position":[[3712,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[5878,9],[6658,9]]}},"component":{}}],["speed",{"_index":1777,"title":{},"name":{},"text":{"/nos.html":{"position":[[5315,5]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1705,5],[2372,5]]}},"component":{}}],["spend",{"_index":1101,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[262,8]]},"/getting.started.vbox.html":{"position":[[262,8]]},"/getting.started.vmware.html":{"position":[[262,8]]},"/jupyter.html":{"position":[[5222,5],[7031,5]]}},"component":{}}],["splash",{"_index":140,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2848,8]]}},"component":{}}],["split",{"_index":843,"title":{},"name":{},"text":{"/fastload.html":{"position":[[7267,9]]},"/nos.html":{"position":[[8336,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4745,5],[5304,5],[5700,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[8812,9]]}},"component":{}}],["splitdata",{"_index":3224,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4924,9]]}},"component":{}}],["spool",{"_index":345,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[2329,5]]},"/dbt.html":{"position":[[1355,5]]},"/fastload.html":{"position":[[1483,5]]},"/getting.started.utm.html":{"position":[[5292,5]]},"/getting.started.vbox.html":{"position":[[4118,5]]},"/getting.started.vmware.html":{"position":[[4401,5]]},"/ml.html":{"position":[[2088,5]]},"/mule.jdbc.example.html":{"position":[[2219,5]]},"/nos.html":{"position":[[3974,5]]},"/run-vantage-express-on-aws.html":{"position":[[9176,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5956,5]]},"/sto.html":{"position":[[3040,5]]},"/vantage.express.gcp.html":{"position":[[4983,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1358,5]]}},"component":{}}],["spooled_result_set",{"_index":4347,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[9414,21],[9630,21]]}},"component":{}}],["spreadsheet",{"_index":3293,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[819,11],[2850,11],[2977,12],[3017,11],[3032,11],[4727,11],[4831,11],[4894,13]]}},"component":{}}],["sql",{"_index":176,"title":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_validate_permissions_in_sql_database_for_val_and_byom":{"position":[[24,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_validate_permissions_in_sql_database_for_val_and_byom":{"position":[[24,3]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html#_how_to_set_sql_registry":{"position":[[11,3]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_syntax_for_teradata_sql_registry":{"position":[[20,3]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3543,3]]},"/advanced-dbt.html":{"position":[[4589,3]]},"/dbt.html":{"position":[[236,3],[2917,4]]},"/fastload.html":{"position":[[1395,3],[2098,3],[7120,4]]},"/geojson-to-vantage.html":{"position":[[803,3],[1188,3],[1323,3],[2932,3],[3378,3],[5710,3],[7623,3],[8764,3],[8809,3],[8868,3],[9143,7],[9345,5],[9414,3]]},"/jdbc.html":{"position":[[1042,3]]},"/jupyter.html":{"position":[[870,3],[1117,3],[1366,3],[1693,3],[1729,3],[3745,3],[3757,5],[3779,3],[3895,3],[3934,3],[3985,3],[4028,3],[4220,4],[4287,4],[4296,5],[4387,5],[4487,4],[4580,3],[4762,3],[4912,3],[5113,3],[5152,3],[5251,3],[6627,3],[6695,3],[6932,3],[7060,3],[7206,3]]},"/local.jupyter.hub.html":{"position":[[725,3],[955,3],[3230,3],[3611,3]]},"/ml.html":{"position":[[8902,4],[9065,3]]},"/mule.jdbc.example.html":{"position":[[844,3],[1110,3],[1241,3]]},"/nos.html":{"position":[[3212,3],[7707,3]]},"/run-vantage-express-on-aws.html":{"position":[[212,3],[8870,3]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[182,3],[5650,3]]},"/segment.html":{"position":[[1072,3],[1237,3]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1226,4]]},"/sto.html":{"position":[[149,4],[1156,3],[2599,3],[7853,3]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1123,3],[1309,3],[1400,3],[1434,3],[1489,3]]},"/teradatasql.html":{"position":[[951,3]]},"/vantage.express.gcp.html":{"position":[[188,3],[4677,3]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[796,3],[1759,3],[2031,4],[4636,3],[4684,3],[8837,3],[9105,3],[9525,3],[10461,3],[10817,3],[11007,3],[11236,3],[13383,3],[14817,3],[17060,3],[17433,3],[18569,3],[20744,3],[21948,3]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[361,3],[2121,3],[3826,3]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[366,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1961,3],[2365,4],[8514,3],[10989,3]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1420,3],[4174,3],[4277,3]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[6307,3]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[887,3],[6992,3]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6021,3]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1224,3],[1306,3],[3060,3],[3098,5],[11333,3],[13532,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4848,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[6765,3]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1252,3],[7816,3]]},"/mule-teradata-connector/index.html":{"position":[[268,3],[463,3],[1214,3],[1304,3]]},"/mule-teradata-connector/reference.html":{"position":[[268,3],[2615,3],[2634,3],[2673,3],[2734,3],[4485,3],[4523,3],[6811,3],[6849,3],[9021,3],[9059,3],[10850,3],[10888,3],[11359,3],[12095,3],[12133,3],[13518,3],[13917,3],[13955,3],[16328,3],[16366,3],[16829,3],[19387,3],[19425,3],[19888,3],[21121,3],[22508,3],[22546,3],[23010,3],[25492,3],[25530,3],[25985,3],[26326,3],[26627,3],[29070,3],[29108,3],[29568,3]]},"/mule-teradata-connector/release-notes.html":{"position":[[268,3],[814,3],[904,3]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[9210,3]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[4085,3]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1427,3],[1835,3]]},"/query-service/send-queries-using-rest-api.html":{"position":[[132,3]]},"/regulus/install-regulus-docker-image.html":{"position":[[249,3]]},"/regulus/regulus-magic-reference.html":{"position":[[266,3],[2129,3],[5052,3]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1270,3],[2230,3],[5817,3],[5932,3],[8665,4]]}},"component":{}}],["sqlalchemi",{"_index":1087,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[10367,10]]},"/jupyter.html":{"position":[[3227,10],[4043,10]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[4920,10],[5485,10],[8001,10],[10798,10],[11711,10]]}},"component":{}}],["sqlalchemy.create_engine(connection_str",{"_index":3433,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[5534,43],[8146,43],[11731,43]]}},"component":{}}],["sqlalchemy.create_engine(database_url",{"_index":3538,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[10828,38]]}},"component":{}}],["sqlj.install_jar",{"_index":1500,"title":{},"name":{},"text":{"/ml.html":{"position":[[2263,16]]}},"component":{}}],["sqlj.remove_jar",{"_index":1499,"title":{},"name":{},"text":{"/ml.html":{"position":[[2212,15]]}},"component":{}}],["sqlj.replace_jar",{"_index":1501,"title":{},"name":{},"text":{"/ml.html":{"position":[[2315,16]]}},"component":{}}],["sqlxml",{"_index":3972,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[39995,6]]}},"component":{}}],["src/main/mule/queri",{"_index":1661,"title":{},"name":{},"text":{"/mule.jdbc.example.html":{"position":[[1592,22]]}},"component":{}}],["srn",{"_index":3031,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[23459,3]]}},"component":{}}],["srn.acct_numb",{"_index":3039,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[23632,16]]}},"component":{}}],["srn.billing_c",{"_index":3033,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[23503,17]]}},"component":{}}],["srn.billing_countri",{"_index":3037,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[23593,19]]}},"component":{}}],["srn.billing_post_cod",{"_index":3036,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[23560,22]]}},"component":{}}],["srn.billing_st",{"_index":3034,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[23529,18]]}},"component":{}}],["srn.billing_street",{"_index":3032,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[23476,19]]}},"component":{}}],["ssd/ubuntu",{"_index":2188,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[5163,10]]}},"component":{}}],["ssh",{"_index":1142,"title":{"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html#_optional_ssh_tunneling":{"position":[[10,3]]}},"name":{},"text":{"/getting.started.utm.html":{"position":[[2089,3]]},"/ml.html":{"position":[[1511,3]]},"/run-vantage-express-on-aws.html":{"position":[[3437,9],[4733,3],[5689,3],[5863,3],[6715,3],[8349,3],[8398,3],[10166,3]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[893,3],[981,3],[1364,3],[1385,3],[1755,3],[1776,3],[2133,3],[2154,3],[2355,3],[2424,3],[3495,3],[5129,3],[5178,3],[6946,3]]},"/vantage.express.gcp.html":{"position":[[1659,3],[1690,3],[2522,3],[4156,3],[4205,3],[5973,3]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[1344,3],[1390,3],[1481,3]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1059,3],[1550,3],[1705,3]]}},"component":{}}],["sshkey",{"_index":2313,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[952,6]]}},"component":{}}],["sso",{"_index":202,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[4359,3]]}},"component":{}}],["st_geometri",{"_index":928,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3322,14],[9038,14],[9124,11]]}},"component":{}}],["st_load_fil",{"_index":4541,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[4922,12],[7431,12]]}},"component":{}}],["st_setup_t",{"_index":4540,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[4202,15],[6531,15]]}},"component":{}}],["stack",{"_index":4105,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8682,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[687,6]]}},"component":{}}],["staff_id",{"_index":3000,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13787,8]]}},"component":{}}],["stage",{"_index":423,"title":{"/advanced-dbt.html#_staging_area":{"position":[[0,7]]},"/geojson-to-vantage.html#_create_a_vantage_connection_and_load_our_file_in_a_staging_table":{"position":[[51,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_staging_models":{"position":[[0,7]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[4606,7],[4882,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[3393,7],[3416,5],[3993,8],[4653,7],[4711,7],[4774,7],[5108,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9478,6]]}},"component":{}}],["stand",{"_index":3255,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2224,6]]}},"component":{}}],["standalon",{"_index":1404,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[7136,10]]},"/sto.html":{"position":[[4129,10]]}},"component":{}}],["standard",{"_index":2323,"title":{"/mule-teradata-connector/reference.html#standard-revocation-check":{"position":[[0,8]]}},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[1436,8],[1827,8],[2205,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2022,8],[10144,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2356,8],[9808,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1073,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1597,8]]},"/mule-teradata-connector/reference.html":{"position":[[1474,8],[1902,8],[36687,8]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[799,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[123,8]]}},"component":{}}],["standard_f4s_v2",{"_index":2321,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[1402,15],[1793,15],[2171,15]]}},"component":{}}],["standardscal",{"_index":3458,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[6703,14],[7286,17]]}},"component":{}}],["star",{"_index":393,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3738,4]]}},"component":{}}],["start",{"_index":87,"title":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_getting_started":{"position":[[8,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html#_getting_started":{"position":[[8,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_getting_started":{"position":[[8,7]]}},"name":{"/regulus/getting-started-with-regulus.html":{"position":[[8,7]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1446,7],[2763,6]]},"/advanced-dbt.html":{"position":[[221,5]]},"/create-parquet-files-in-object-storage.html":{"position":[[705,8]]},"/dbt.html":{"position":[[4342,5],[4420,5]]},"/fastload.html":{"position":[[2310,5],[3360,5],[3965,5]]},"/getting.started.utm.html":{"position":[[399,8],[1533,5],[2724,5],[3043,6],[3426,7],[3464,5],[3571,8],[4247,8],[4407,5],[4763,5],[4807,5],[4848,6]]},"/getting.started.vbox.html":{"position":[[399,8],[1333,5],[1504,5],[1703,5],[2081,6],[2464,7],[2502,5],[2609,8],[3285,8],[3445,5],[5644,5]]},"/getting.started.vmware.html":{"position":[[399,8],[1803,5],[2152,6],[2535,7],[2573,5],[2680,8],[3356,8],[3516,5],[3872,5],[3916,5],[3957,6]]},"/jupyter.html":{"position":[[998,5],[1511,5],[1748,5],[1830,8],[3798,5],[6147,8],[6718,5]]},"/local.jupyter.hub.html":{"position":[[1048,5],[1188,5]]},"/ml.html":{"position":[[1873,5],[2421,5],[2910,5],[3742,5],[8853,5]]},"/nos.html":{"position":[[509,8],[8419,5],[8724,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[528,8],[7612,5],[10589,5],[10837,7]]},"/run-vantage-express-on-aws.html":{"position":[[910,7],[6620,6],[7177,5],[8610,8],[8739,5],[10102,5],[10862,5],[11114,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3400,6],[3957,5],[5390,8],[5519,5],[6882,5],[7642,5],[7894,5]]},"/sto.html":{"position":[[865,5],[3734,6],[4314,5],[7477,5]]},"/vantage.express.gcp.html":{"position":[[2427,6],[2984,5],[4417,8],[4546,5],[5909,5],[6669,5],[6921,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1539,5],[2765,5],[4296,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1696,5],[1741,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1200,5],[4117,22],[4326,17],[5292,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2273,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[276,7],[1120,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7801,5],[7879,5]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1941,9]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[9793,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[575,5],[1069,7],[4878,5],[5078,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[612,5],[1106,7],[6883,5],[7129,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1468,8],[6214,5]]},"/mule-teradata-connector/reference.html":{"position":[[27810,8],[41261,6]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[374,5],[566,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3123,5],[3222,6],[3262,6],[3325,5],[3452,7]]},"/query-service/send-queries-using-rest-api.html":{"position":[[351,7],[390,9]]},"/regulus/install-regulus-docker-image.html":{"position":[[3062,6],[3183,8],[4112,5],[4197,8],[8431,6],[9287,5],[9372,8],[9659,7]]},"/regulus/regulus-magic-reference.html":{"position":[[325,7],[3903,7],[4129,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[6452,5],[7602,5],[7880,5],[7954,6]]}},"component":{}}],["start.sh",{"_index":1345,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[2144,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1911,8],[2832,8]]}},"component":{}}],["start/gdosync",{"_index":1188,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[3946,14]]},"/getting.started.vbox.html":{"position":[[2984,14]]},"/getting.started.vmware.html":{"position":[[3055,14]]}},"component":{}}],["start/netconfig",{"_index":1187,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[3916,16]]},"/getting.started.vbox.html":{"position":[[2954,16]]},"/getting.started.vmware.html":{"position":[[3025,16]]}},"component":{}}],["start/readi",{"_index":1190,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[4004,12]]},"/getting.started.vbox.html":{"position":[[3042,12]]},"/getting.started.vmware.html":{"position":[[3113,12]]}},"component":{}}],["start/tvsastart",{"_index":1189,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[3974,16]]},"/getting.started.vbox.html":{"position":[[3012,16]]},"/getting.started.vmware.html":{"position":[[3083,16]]}},"component":{}}],["started.git",{"_index":3610,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1400,11]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1437,11]]}},"component":{}}],["startup",{"_index":1192,"title":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_use_startup_script":{"position":[[4,7]]}},"name":{},"text":{"/getting.started.utm.html":{"position":[[4065,7],[4147,7],[4237,7]]},"/getting.started.vbox.html":{"position":[[3103,7],[3185,7],[3275,7]]},"/getting.started.vmware.html":{"position":[[3174,7],[3256,7],[3346,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1069,7],[1365,7],[1492,7],[1636,7],[1948,7],[3039,7]]}},"component":{}}],["startvm",{"_index":2252,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[8256,7],[10649,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5036,7],[7429,7]]},"/vantage.express.gcp.html":{"position":[[4063,7],[6456,7]]}},"component":{}}],["state",{"_index":1083,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[10172,5]]},"/getting.started.utm.html":{"position":[[3704,5],[3730,5],[3879,5],[3907,5],[3937,5],[3965,5],[3995,5],[4021,5],[4047,5],[4103,5],[4129,5],[4193,5],[4219,5],[4274,5]]},"/getting.started.vbox.html":{"position":[[2742,5],[2768,5],[2917,5],[2945,5],[2975,5],[3003,5],[3033,5],[3059,5],[3085,5],[3141,5],[3167,5],[3231,5],[3257,5],[3312,5]]},"/getting.started.vmware.html":{"position":[[2813,5],[2839,5],[2988,5],[3016,5],[3046,5],[3074,5],[3104,5],[3130,5],[3156,5],[3212,5],[3238,5],[3302,5],[3328,5],[3383,5]]},"/run-vantage-express-on-aws.html":{"position":[[8492,5],[8518,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5272,5],[5298,5]]},"/vantage.express.gcp.html":{"position":[[4299,5],[4325,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[14315,5],[23521,5],[23887,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[3741,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1777,5]]},"/query-service/send-queries-using-rest-api.html":{"position":[[8544,8]]},"/regulus/install-regulus-docker-image.html":{"position":[[4341,6]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[5319,5]]}},"component":{}}],["statement",{"_index":177,"title":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_the_table_and_load_the_data_in_a_single_statement":{"position":[[47,9]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_the_table_and_load_the_data_in_multiple_statements":{"position":[[47,10]]},"/mule-teradata-connector/reference.html#StatementResult":{"position":[[0,9]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3547,11]]},"/fastload.html":{"position":[[4655,9]]},"/geojson-to-vantage.html":{"position":[[807,10],[1327,10],[8768,9]]},"/nos.html":{"position":[[5125,9],[5616,11]]},"/segment.html":{"position":[[2821,9]]},"/sto.html":{"position":[[6681,10]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[14515,9],[14722,9],[17179,10]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11145,9],[15677,9]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[5026,10]]},"/mule-teradata-connector/reference.html":{"position":[[3066,10],[3771,10],[5398,10],[6101,10],[7691,10],[8399,10],[10228,10],[11305,10],[12443,10],[13550,10],[14212,10],[15706,10],[16775,10],[17676,9],[18765,10],[19834,10],[21926,10],[22956,10],[24781,10],[25931,10],[26241,9],[26573,10],[28448,10],[29514,10],[30429,9],[32488,10],[33588,9],[33636,10],[33711,9],[34737,9],[34935,9]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1431,9]]},"/query-service/send-queries-using-rest-api.html":{"position":[[136,10]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[4077,10]]}},"component":{}}],["statist",{"_index":467,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[6002,11]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[4440,10]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[6084,10]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[7121,10]]}},"component":{}}],["statu",{"_index":443,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[5193,6]]},"/run-vantage-express-on-aws.html":{"position":[[8626,6],[8691,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5406,6],[5471,7]]},"/vantage.express.gcp.html":{"position":[[4433,6],[4498,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8436,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[4226,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13625,7],[23855,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[5671,6],[6817,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[5849,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[7011,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1769,7]]}},"component":{}}],["statuscod",{"_index":4386,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[12001,13],[12325,13]]}},"component":{}}],["statuscode\":200",{"_index":4366,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[10666,17]]}},"component":{}}],["stdin",{"_index":2508,"title":{},"name":{},"text":{"/sto.html":{"position":[[5262,5]]}},"component":{}}],["step",{"_index":256,"title":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_next_steps":{"position":[[5,5]]},"/getting.started.utm.html#_next_steps":{"position":[[5,5]]},"/getting.started.vbox.html#_next_steps":{"position":[[5,5]]},"/getting.started.vmware.html#_next_steps":{"position":[[5,5]]},"/install-teradata-studio-on-mac-m1-m2.html#_steps_to_follow":{"position":[[0,5]]},"/run-vantage-express-on-aws.html#_next_steps":{"position":[[5,5]]},"/run-vantage-express-on-microsoft-azure.html#_next_steps":{"position":[[5,5]]},"/vantage.express.gcp.html#_next_steps":{"position":[[5,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html#_steps_to_integrate_with_notebook_instance":{"position":[[0,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_1_specify_flow_details":{"position":[[0,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_2_configure_flow":{"position":[[0,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_3_map_data_fields":{"position":[[0,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_4_add_filters":{"position":[[0,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_5_review_and_create":{"position":[[0,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_1_specify_flow_details_2":{"position":[[0,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_2_configure_flow_2":{"position":[[0,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_3_map_data_fields_2":{"position":[[0,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_4_add_filters_2":{"position":[[0,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_step_5_review_and_create_2":{"position":[[0,4]]},"/regulus/getting-started-with-regulus.html#_next_steps":{"position":[[5,5]]},"/regulus/install-regulus-docker-image.html#_next_steps":{"position":[[5,5]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[6811,6]]},"/create-parquet-files-in-object-storage.html":{"position":[[3164,4]]},"/dbt.html":{"position":[[3155,5]]},"/getting.started.utm.html":{"position":[[317,5]]},"/getting.started.vbox.html":{"position":[[317,5]]},"/getting.started.vmware.html":{"position":[[317,5]]},"/jdbc.html":{"position":[[442,4]]},"/jupyter.html":{"position":[[361,5],[5733,5]]},"/local.jupyter.hub.html":{"position":[[2015,4]]},"/nos.html":{"position":[[5798,5],[5917,5]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[6041,4]]},"/segment.html":{"position":[[1500,6]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[4777,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2893,6],[3247,5],[3854,5],[4264,5],[6681,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1723,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[4044,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[5299,6],[5456,4],[5767,4],[5958,4],[6798,4],[24238,4],[24324,4],[24516,4],[24875,4],[25089,4],[26047,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[6601,4],[7234,4],[7927,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2024,5],[4852,5],[5733,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[6859,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1046,5],[3580,5],[6221,4],[6511,5]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[7485,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[410,4],[463,4],[544,4],[598,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4436,5],[5923,5]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1963,6],[3076,6],[3602,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1009,5],[2613,5],[5022,5],[6227,4],[6877,6],[8766,4],[9999,6]]},"/query-service/send-queries-using-rest-api.html":{"position":[[8614,4],[9009,4],[9876,4],[9974,4],[10889,4]]},"/regulus/getting-started-with-regulus.html":{"position":[[1738,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[1235,5],[4639,5]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[240,4],[248,4],[626,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2937,4],[2961,4],[3093,5],[4056,5],[4136,4],[4197,4],[4835,4],[4917,4],[6526,4],[7426,4]]}},"component":{}}],["stg_countries_map",{"_index":1047,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[8388,17],[8528,17],[9272,17]]}},"component":{}}],["stg_custom",{"_index":3261,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[4731,13],[6286,14]]}},"component":{}}],["stg_order",{"_index":3263,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[4844,10],[6274,11]]}},"component":{}}],["stg_orders.sql",{"_index":3269,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[5304,14]]}},"component":{}}],["stg_payment",{"_index":3265,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[4939,12],[6301,12]]}},"component":{}}],["still",{"_index":1185,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[3855,5]]},"/getting.started.vbox.html":{"position":[[2893,5]]},"/getting.started.vmware.html":{"position":[[2964,5]]},"/ml.html":{"position":[[3106,5]]},"/sto.html":{"position":[[4016,5]]}},"component":{}}],["stitch",{"_index":635,"title":{},"name":{},"text":{"/dbt.html":{"position":[[2222,7]]}},"component":{}}],["sto",{"_index":2444,"title":{},"name":{"/sto.html":{"position":[[0,3]]}},"text":{"/sto.html":{"position":[[1598,6],[1874,3],[2168,4],[2987,3],[3007,3],[3112,3],[3151,3],[3400,3],[3422,3],[3661,4],[3746,9],[4372,3],[4395,3],[5784,6],[5821,3],[6182,4],[6765,6],[6802,3],[7586,6]]}},"component":{}}],["sto/helloworld.pi",{"_index":2486,"title":{},"name":{},"text":{"/sto.html":{"position":[[3849,21]]}},"component":{}}],["sto/urlparser.pi",{"_index":2515,"title":{},"name":{},"text":{"/sto.html":{"position":[[5898,20],[6941,20]]}},"component":{}}],["stop",{"_index":2265,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[10093,4],[11579,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6873,4],[8200,4]]},"/vantage.express.gcp.html":{"position":[[5900,4],[7269,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[25014,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[7193,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[13576,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[3685,7]]},"/regulus/regulus-magic-reference.html":{"position":[[3997,4]]}},"component":{}}],["stop/termin",{"_index":3055,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[26334,14]]}},"component":{}}],["storag",{"_index":494,"title":{"/create-parquet-files-in-object-storage.html":{"position":[[31,7]]},"/nos.html":{"position":[[28,7]]},"/nos.html#_export_data_from_vantage_to_object_storage":{"position":[[35,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_an_azure_blob_storage_account_and_container":{"position":[[21,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_configure_nos_access_to_azure_blob_storage":{"position":[[35,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_query_the_dataset_in_azure_blob_storage":{"position":[[32,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_load_data_from_blob_storage_into_vantage_optional":{"position":[[20,7]]}},"name":{"/create-parquet-files-in-object-storage.html":{"position":[[31,7]]}},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[63,7],[252,7],[511,7],[774,8],[1103,8],[1142,8],[1167,7],[1198,8],[2671,8],[3099,7],[4124,7],[4152,7],[4296,8]]},"/fastload.html":{"position":[[6557,7],[7296,7],[7584,7]]},"/getting.started.utm.html":{"position":[[1821,7],[6507,7]]},"/getting.started.vbox.html":{"position":[[5604,7],[6103,7]]},"/getting.started.vmware.html":{"position":[[5616,7]]},"/nos.html":{"position":[[73,7],[164,7],[5373,7],[7655,8],[7749,8],[7877,8],[8470,7],[8498,7],[8667,8]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10781,7]]},"/run-vantage-express-on-aws.html":{"position":[[12424,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[8362,7]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[275,8],[444,7],[1631,7]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2465,7],[2700,7],[3205,7],[3268,7],[5447,7]]},"/vantage.express.gcp.html":{"position":[[7538,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[111,7],[297,7],[742,8],[767,7],[1013,7],[1584,8],[2007,8],[2054,7],[2154,7],[2293,7],[2447,7],[2806,7],[2920,7],[3063,7],[3097,7],[3125,7],[3265,7],[3354,7],[4561,8],[4586,7],[4616,7],[4884,7],[4910,7],[5158,7],[5260,7],[6072,7],[6357,7],[7875,7],[8631,8],[8693,7],[8785,7],[9068,7],[9197,7],[9253,7],[9334,7],[9398,7],[9498,7],[9723,7],[9994,7],[10079,7],[13830,7],[13972,7],[14065,8],[14149,7],[14273,8],[14326,7],[21336,7],[21534,7],[21656,7],[21735,7],[21800,7],[22082,7],[24627,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1348,7],[1925,7],[1986,7],[2084,7],[3065,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1786,8],[2388,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1245,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3689,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[254,8],[354,7],[984,7],[1168,7],[1248,7],[1353,7],[1507,7],[1619,8],[1741,8],[2274,7],[2333,7],[2957,7],[3081,8],[3281,7],[3469,8],[3644,7],[4061,7],[7303,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1742,7],[9639,7],[13805,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[789,7],[910,8],[1696,8]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3771,8],[3787,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[8102,7],[8841,7],[9144,7]]}},"component":{}}],["storageattach",{"_index":2245,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[7690,13],[7837,13],[7984,13]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4470,13],[4617,13],[4764,13]]},"/vantage.express.gcp.html":{"position":[[3497,13],[3644,13],[3791,13]]}},"component":{}}],["storagectl",{"_index":2243,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[7598,10],[7717,10],[7864,10],[8011,10]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4378,10],[4497,10],[4644,10],[4791,10]]},"/vantage.express.gcp.html":{"position":[[3405,10],[3524,10],[3671,10],[3818,10]]}},"component":{}}],["store",{"_index":127,"title":{"/nos.html":{"position":[[11,6]]},"/segment.html":{"position":[[0,5]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_ingesting_data_from_external_object_store":{"position":[[36,5]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_native_object_store_nos_teradata_parallel_transporter_tpt":{"position":[[40,5]]},"/sto.html#_passing_data_stored_in_vantage_to_script":{"position":[[13,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html#_offline_store_config":{"position":[[8,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html#_offline_store_usage":{"position":[[8,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html#_online_store":{"position":[[7,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html#_online_store_config":{"position":[[7,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html#_online_store_usage":{"position":[[7,5]]},"/mule-teradata-connector/reference.html#storedProcedure":{"position":[[0,6]]},"/mule-teradata-connector/reference.html#TrustStore":{"position":[[6,5]]},"/mule-teradata-connector/reference.html#KeyStore":{"position":[[4,5]]},"/mule-teradata-connector/reference.html#repeatable-file-store-iterable":{"position":[[16,5]]},"/mule-teradata-connector/reference.html#repeatable-file-store-stream":{"position":[[16,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_offline_store_config":{"position":[[8,5]]}},"name":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[20,5]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2548,5]]},"/advanced-dbt.html":{"position":[[536,6],[3606,6]]},"/create-parquet-files-in-object-storage.html":{"position":[[128,6],[1226,6],[4207,6],[4357,5]]},"/dbt.html":{"position":[[1773,6]]},"/fastload.html":{"position":[[7567,6]]},"/geojson-to-vantage.html":{"position":[[1300,5],[5465,6]]},"/getting.started.utm.html":{"position":[[6490,6]]},"/getting.started.vbox.html":{"position":[[6086,6]]},"/getting.started.vmware.html":{"position":[[5599,6]]},"/nos.html":{"position":[[138,6],[768,6],[8056,5],[8280,5],[8578,6],[8710,5]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10485,6],[10764,6],[10823,5]]},"/run-vantage-express-on-aws.html":{"position":[[12407,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[8345,6]]},"/segment.html":{"position":[[1313,5],[2018,5],[5077,6]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1614,6]]},"/sto.html":{"position":[[6585,5]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2572,7],[3023,5]]},"/vantage.express.gcp.html":{"position":[[7521,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[248,5],[716,6],[975,5],[1651,6],[1924,5],[1983,7],[2825,5],[4543,6],[4787,6],[7757,6],[7785,5],[8094,7],[8476,5],[8582,5],[9958,5],[10637,5],[13529,5],[13658,6],[20989,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1359,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[763,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[546,5],[1853,6],[2267,5],[2326,7],[3046,5],[3111,5],[3260,5],[5739,5],[6722,6],[8289,5],[9682,5],[10346,5],[10770,6],[11008,5],[17605,5],[26216,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1312,6]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[1930,5],[4036,6],[4219,7],[4504,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[4437,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[796,6],[1492,5],[2920,5],[12153,7],[12271,5]]},"/jupyter-demos/index.html":{"position":[[2138,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4009,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[235,6],[598,5],[635,6],[681,5],[712,6],[762,5],[835,5],[899,6],[1042,7],[1066,5],[3228,6],[4373,5],[4797,5],[5450,6],[5526,6],[5553,7],[5664,6],[5969,6],[6072,6],[6473,5],[9423,5],[9715,6],[9810,5]]},"/mule-teradata-connector/index.html":{"position":[[1282,6]]},"/mule-teradata-connector/reference.html":{"position":[[2904,6],[4897,5],[5007,5],[7188,5],[7299,5],[9407,5],[9517,5],[11546,5],[11656,5],[13114,5],[13224,5],[14883,5],[14993,5],[17400,5],[17510,5],[18580,5],[20081,5],[20192,5],[21741,5],[23210,5],[23335,6],[23721,6],[23764,6],[24029,6],[24596,5],[27152,5],[27263,5],[27501,6],[27873,6],[30153,5],[30263,5],[36632,5],[36644,5],[36654,5],[36664,5],[36916,6],[36978,6],[37009,5],[37070,6],[37386,6],[37417,5],[37455,5],[37742,6],[37796,6],[38359,7],[39444,5],[39457,5],[39474,5],[39529,6]]},"/mule-teradata-connector/release-notes.html":{"position":[[882,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[897,6],[2059,5],[4983,6],[6207,5],[7188,6],[7444,5]]},"/regulus/getting-started-with-regulus.html":{"position":[[1077,5],[1882,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[2425,6],[2488,6]]},"/regulus/regulus-magic-reference.html":{"position":[[860,6],[1852,5],[1865,5],[2378,6],[2422,6],[2482,6],[2518,6],[2552,6],[2626,5],[2768,6],[2837,5]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[5613,6],[5955,6],[6119,6],[6203,6],[6358,5],[6658,5],[6922,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[4166,6],[9127,6]]}},"component":{}}],["store.get_historical_featur",{"_index":3754,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4858,30]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6564,30]]}},"component":{}}],["store.get_online_featur",{"_index":3789,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[7615,26]]}},"component":{}}],["store_and_fwd_flag",{"_index":1858,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1202,18]]}},"component":{}}],["store_id",{"_index":2999,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13764,8]]}},"component":{}}],["storeda",{"_index":608,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[3682,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[24117,8]]}},"component":{}}],["storedas('parquet",{"_index":584,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2928,19]]},"/nos.html":{"position":[[8101,19]]}},"component":{}}],["str",{"_index":3429,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[5441,4],[7958,4],[9078,3],[11596,4],[11613,4],[11631,4],[11648,4],[11671,3],[12574,4],[12591,4],[12609,4],[12626,4],[12649,3]]}},"component":{}}],["str(e.args).find('tdml_2200",{"_index":3503,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[8626,29]]}},"component":{}}],["str(f['geometri",{"_index":1051,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[8613,19]]}},"component":{}}],["straig",{"_index":867,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[713,6]]}},"component":{}}],["straight",{"_index":3288,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7701,8]]}},"component":{}}],["strategi",{"_index":439,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[5034,10],[5118,9],[5133,8],[5314,9]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[2673,9],[4168,9]]},"/mule-teradata-connector/reference.html":{"position":[[1711,9],[2591,9],[5083,8],[5128,8],[7375,8],[7420,8],[9593,8],[9638,8],[11732,8],[11777,8],[13300,8],[13345,8],[15069,8],[15114,8],[17586,8],[17631,8],[18525,8],[20268,8],[20313,8],[21686,8],[23390,8],[23435,8],[24541,8],[27339,8],[27384,8],[30339,8],[30384,8],[32193,8],[32213,8],[33123,8],[33168,8],[35832,9],[35855,8],[35909,8],[36137,8],[36344,8]]}},"component":{}}],["stream",{"_index":3315,"title":{"/mule-teradata-connector/reference.html#repeatable-in-memory-stream":{"position":[[21,6]]},"/mule-teradata-connector/reference.html#repeatable-file-store-stream":{"position":[[22,6]]}},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[4147,7],[4670,6],[4875,6],[6079,7],[6371,6],[6554,6]]},"/mule-teradata-connector/reference.html":{"position":[[4199,9],[6527,9],[17951,9],[18515,9],[18647,7],[20564,7],[20663,8],[20944,6],[21245,10],[21676,9],[21808,7],[23891,8],[24531,9],[24663,7],[25208,9],[27609,7],[27765,6],[27939,6],[31036,10],[40278,6],[40325,6],[41541,6],[41588,6],[42461,6]]}},"component":{}}],["stream_feature_view",{"_index":3805,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[8596,20]]}},"component":{}}],["stream_maximum_size_exceed",{"_index":3980,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[40736,28],[41958,28],[42157,28]]}},"component":{}}],["stream_maximum_size_exceede`d",{"_index":3981,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[40976,30]]}},"component":{}}],["street",{"_index":3004,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[14210,6],[23467,6],[23873,7]]}},"component":{}}],["string",{"_index":1359,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[2922,6],[3207,7],[3249,8],[3967,7],[4016,7],[4065,8]]},"/ml.html":{"position":[[2742,7]]},"/mule.jdbc.example.html":{"position":[[1669,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[1524,6]]},"/sto.html":{"position":[[3494,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[9308,6],[9368,6],[21704,6],[21769,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[4597,8],[5070,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[4638,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[7935,6]]},"/mule-teradata-connector/reference.html":{"position":[[467,6],[2260,6],[2317,6],[2351,6],[3228,6],[4500,6],[4864,6],[4939,6],[5560,6],[6826,6],[7155,6],[7231,6],[7855,6],[9036,6],[9374,6],[9449,6],[9895,6],[10865,6],[11513,6],[11588,6],[12049,6],[12110,6],[13081,6],[13156,6],[13699,6],[13932,6],[13988,6],[14850,6],[14925,6],[15373,6],[16343,6],[17250,6],[17367,6],[17442,6],[18292,6],[19402,6],[20048,6],[20124,6],[21456,6],[22523,6],[23170,6],[23252,6],[24306,6],[25507,6],[26994,6],[27119,6],[27195,6],[28121,6],[29085,6],[29996,6],[30120,6],[30195,6],[31313,6],[31365,6],[31428,6],[31636,6],[35434,6],[35500,6],[36462,6],[36553,6],[36795,6],[36932,6],[36990,6],[37031,6],[37267,6],[37398,6],[37435,6],[37636,6],[37698,6],[37759,6],[38226,6],[38275,6],[38430,6],[39165,6],[39275,6],[39586,6],[40022,6],[42713,6]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1727,6]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[2355,6],[2504,6],[2582,6],[4140,6],[4597,6],[4657,6],[4733,6],[4786,6],[5819,6],[5907,6],[5914,6],[6015,6],[6091,6],[6143,6],[6150,6],[6896,6]]}},"component":{}}],["struct",{"_index":3964,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[39911,6]]}},"component":{}}],["structur",{"_index":871,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[749,10],[1424,9],[6375,10]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8882,11]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[8559,10]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[766,10]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[4050,9]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2200,9]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2426,9]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3648,10]]}},"component":{}}],["studio",{"_index":1200,"title":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[49,6]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[15,6]]}},"name":{"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[17,6]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[49,6]]}},"text":{"/getting.started.utm.html":{"position":[[4376,6],[4872,6],[6368,6],[6525,7],[6537,7]]},"/getting.started.vbox.html":{"position":[[3414,6],[3698,6],[5964,6],[6121,7],[6133,7]]},"/getting.started.vmware.html":{"position":[[3485,6],[3981,6],[5477,6],[5634,7],[5646,7]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[114,6],[134,6],[435,6],[454,6],[520,6],[536,6],[588,6],[622,6],[642,6],[845,6],[864,6],[923,6],[1050,6],[1069,6]]},"/jupyter.html":{"position":[[5366,7],[5440,7]]},"/mule.jdbc.example.html":{"position":[[218,7],[2697,7],[2722,7],[2774,6],[2972,6]]},"/run-vantage-express-on-aws.html":{"position":[[12442,7],[12454,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[8380,7],[8392,7]]},"/segment.html":{"position":[[1154,7]]},"/vantage.express.gcp.html":{"position":[[7556,7],[7568,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1737,7],[9009,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1939,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1398,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[81,6],[214,6],[371,6],[446,6],[740,6],[928,6],[1466,6],[1546,7],[1790,6],[1835,6],[2206,6],[3755,6]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[62,6],[69,8],[210,7],[565,7],[592,6],[756,7],[838,7],[1381,6],[1453,6],[2053,6],[3202,6],[3356,7],[3637,6],[4374,7],[4588,6]]},"/mule-teradata-connector/index.html":{"position":[[567,6],[574,8],[631,6],[1506,7],[1572,6]]},"/mule-teradata-connector/release-notes.html":{"position":[[1061,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[5682,6]]}},"component":{}}],["studio/express",{"_index":1280,"title":{"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[13,14]]}},"name":{},"text":{},"component":{}}],["studio/teradata",{"_index":1294,"title":{},"name":{},"text":{"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[572,15]]}},"component":{}}],["studio](https://downloads.teradata.com/download/tools/teradata",{"_index":2357,"title":{},"name":{},"text":{"/segment.html":{"position":[[1091,62]]}},"component":{}}],["stun",{"_index":6,"title":{},"name":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[7,8]]}},"text":{},"component":{}}],["sub_dat",{"_index":776,"title":{},"name":{},"text":{"/fastload.html":{"position":[[3061,8],[4801,9],[5404,8],[6124,9],[6861,9],[6939,9]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[4544,8],[5027,9],[8406,9],[8484,9]]}},"component":{}}],["subject",{"_index":2680,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[6795,7]]},"/regulus/getting-started-with-regulus.html":{"position":[[87,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[87,7]]},"/regulus/regulus-magic-reference.html":{"position":[[87,7]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[87,7]]}},"component":{}}],["submit",{"_index":173,"title":{"/query-service/send-queries-using-rest-api.html#_use_explicit_session_to_submit_a_query":{"position":[[24,6]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3523,6],[4258,6]]},"/run-vantage-express-on-aws.html":{"position":[[8863,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5643,6]]},"/segment.html":{"position":[[1917,6]]},"/vantage.express.gcp.html":{"position":[[4670,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[9764,6]]},"/query-service/send-queries-using-rest-api.html":{"position":[[8624,6],[8705,7],[9077,6],[10979,9]]}},"component":{}}],["subnet",{"_index":2127,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[976,7],[1397,6],[1442,6],[1594,6],[1616,6],[1637,6],[2397,6],[2480,6],[3600,6],[3715,7],[5604,6],[12272,6],[12294,6],[12305,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[4112,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[6137,6]]},"/regulus/regulus-magic-reference.html":{"position":[[3187,8],[3438,7],[3446,6]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[4776,6],[4793,6]]}},"component":{}}],["subnet.{subnetid:subnetid",{"_index":2138,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[1507,28]]}},"component":{}}],["subsample=0.8",{"_index":3176,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3927,13]]}},"component":{}}],["subscript",{"_index":2401,"title":{},"name":{},"text":{"/segment.html":{"position":[[4208,12],[4261,13],[4306,12]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[558,12],[6234,13],[7134,12],[7586,12]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[695,12]]}},"component":{}}],["subsecond",{"_index":1776,"title":{},"name":{},"text":{"/nos.html":{"position":[[5208,9]]}},"component":{}}],["subsequ",{"_index":2359,"title":{},"name":{},"text":{"/segment.html":{"position":[[1489,10],[2871,10]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[4547,10]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[462,10],[724,10],[931,10],[1214,10]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6392,10]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6866,10],[9988,10]]}},"component":{}}],["substitut",{"_index":1378,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[4613,13]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[22351,10]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2208,10]]}},"component":{}}],["success",{"_index":210,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[4689,10]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8446,11]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[7676,10],[7886,10],[25565,10],[25775,10]]},"/regulus/getting-started-with-regulus.html":{"position":[[1520,10]]},"/regulus/regulus-magic-reference.html":{"position":[[3085,10],[3922,8],[4146,8],[4174,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[5364,10]]}},"component":{}}],["successfulli",{"_index":3214,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4234,13]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1630,13]]},"/regulus/getting-started-with-regulus.html":{"position":[[3231,13],[3805,12]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[6557,12],[7454,12],[7491,12]]}},"component":{}}],["such",{"_index":110,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2064,4]]},"/advanced-dbt.html":{"position":[[817,4],[6564,4]]},"/create-parquet-files-in-object-storage.html":{"position":[[144,4],[260,4],[1112,4],[1440,4]]},"/ml.html":{"position":[[409,4],[1792,4]]},"/nos.html":{"position":[[172,4]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2281,4],[3993,4],[6089,4],[6217,4],[6312,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4957,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[7244,4]]},"/query-service/send-queries-using-rest-api.html":{"position":[[3272,4]]}},"component":{}}],["sudha",{"_index":4204,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[8,5]]}},"component":{}}],["sudo",{"_index":2208,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[5954,4],[10213,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2479,4],[6993,4]]},"/vantage.express.gcp.html":{"position":[[1761,4],[6020,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2204,4],[2923,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2041,4],[2113,4],[2142,4],[2704,4],[2897,4],[2957,4],[3068,4],[3281,4],[3310,4],[3480,4],[4586,4],[4730,4],[4774,4],[5147,4],[6358,4],[6924,4],[8628,4]]}},"component":{}}],["sudo_uid",{"_index":2832,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2238,8],[2957,8]]}},"component":{}}],["suffici",{"_index":3850,"title":{},"name":{},"text":{"/mule-teradata-connector/index.html":{"position":[[956,10]]},"/mule-teradata-connector/release-notes.html":{"position":[[556,10]]}},"component":{}}],["suggest",{"_index":2652,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[3462,7],[4046,7]]}},"component":{}}],["suit",{"_index":2436,"title":{},"name":{},"text":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1116,6]]},"/mule-teradata-connector/reference.html":{"position":[[36546,6],[36593,6]]}},"component":{}}],["suitabl",{"_index":631,"title":{},"name":{},"text":{"/dbt.html":{"position":[[2121,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[3066,8]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2883,8]]}},"component":{}}],["sum(passenger_count",{"_index":1975,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[4550,21],[6229,21],[7733,21]]}},"component":{}}],["summari",{"_index":492,"title":{"/advanced-dbt.html#_summary":{"position":[[0,7]]},"/create-parquet-files-in-object-storage.html#_summary":{"position":[[0,7]]},"/dbt.html#_summary":{"position":[[0,7]]},"/fastload.html#_summary":{"position":[[0,7]]},"/geojson-to-vantage.html#_summary":{"position":[[0,7]]},"/getting.started.utm.html#_summary":{"position":[[0,7]]},"/getting.started.vbox.html#_summary":{"position":[[0,7]]},"/getting.started.vmware.html#_summary":{"position":[[0,7]]},"/install-teradata-studio-on-mac-m1-m2.html#_summary":{"position":[[0,7]]},"/jdbc.html#_summary":{"position":[[0,7]]},"/jupyter.html#_summary":{"position":[[0,7]]},"/ml.html#_summary":{"position":[[0,7]]},"/nos.html#_summary":{"position":[[0,7]]},"/odbc.ubuntu.html#_summary":{"position":[[0,7]]},"/perform-time-series-analysis-using-teradata-vantage.html#_summary":{"position":[[0,7]]},"/segment.html#_summary":{"position":[[0,7]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_summary":{"position":[[0,7]]},"/sto.html#_summary":{"position":[[0,7]]},"/teradatasql.html#_summary":{"position":[[0,7]]},"/cloud-guides/sagemaker-with-teradata-vantage.html#_summary":{"position":[[0,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_summary":{"position":[[0,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_summary":{"position":[[0,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_summary":{"position":[[0,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_summary":{"position":[[0,7]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html#_summary":{"position":[[0,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_summary":{"position":[[0,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_summary":{"position":[[0,7]]},"/other-integrations/integrate-teradata-vantage-with-knime.html#_summary":{"position":[[0,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_summary":{"position":[[0,7]]}},"name":{},"text":{"/fastload.html":{"position":[[1193,7]]},"/getting.started.utm.html":{"position":[[1913,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1047,7]]}},"component":{}}],["super",{"_index":2470,"title":{},"name":{},"text":{"/sto.html":{"position":[[2456,5]]}},"component":{}}],["superior",{"_index":4154,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[4549,8]]}},"component":{}}],["suppli",{"_index":3571,"title":{},"name":{},"text":{"/jupyter-demos/index.html":{"position":[[395,6],[897,6],[1422,6]]}},"component":{}}],["support",{"_index":34,"title":{"/sto.html#_supported_languages":{"position":[[0,9]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[314,8],[1236,8],[1721,8],[4050,9],[4302,8],[6127,7]]},"/advanced-dbt.html":{"position":[[1177,9],[7406,7]]},"/create-parquet-files-in-object-storage.html":{"position":[[4171,8],[4468,7]]},"/dbt.html":{"position":[[248,9],[5006,7]]},"/fastload.html":{"position":[[723,9],[1781,10],[1803,7],[2203,8],[7697,7]]},"/geojson-to-vantage.html":{"position":[[356,7],[10748,7]]},"/getting.started.utm.html":{"position":[[625,10],[6677,7]]},"/getting.started.vbox.html":{"position":[[6273,7]]},"/getting.started.vmware.html":{"position":[[5786,7]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[1209,7]]},"/jdbc.html":{"position":[[1211,7]]},"/jupyter.html":{"position":[[1717,7],[7459,7]]},"/local.jupyter.hub.html":{"position":[[4227,10],[6230,7]]},"/ml.html":{"position":[[496,9],[782,7],[9231,7]]},"/mule.jdbc.example.html":{"position":[[3657,7]]},"/nos.html":{"position":[[660,8],[8542,8],[8843,7]]},"/odbc.ubuntu.html":{"position":[[2068,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10956,7]]},"/run-vantage-express-on-aws.html":{"position":[[459,7],[12615,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[8553,7]]},"/segment.html":{"position":[[5687,7]]},"/sto.html":{"position":[[289,9],[2074,9],[8058,7]]},"/teradatasql.html":{"position":[[397,10],[467,9],[1143,7]]},"/vantage.express.gcp.html":{"position":[[698,9],[7729,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[701,9],[1708,8],[4528,9],[4772,9],[8108,9],[8917,8],[24935,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[853,8],[2883,8],[4126,10],[5377,8],[6509,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[850,8],[4711,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1910,8],[5025,7],[26487,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1369,8],[9029,7]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[6416,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[7417,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[5966,8],[8607,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[4862,8],[5030,7],[6486,9]]},"/jupyter-demos/index.html":{"position":[[569,10]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[5360,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[7411,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[167,7],[1104,7],[1219,9],[9953,7]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[5019,7]]},"/mule-teradata-connector/index.html":{"position":[[1340,9]]},"/mule-teradata-connector/reference.html":{"position":[[2226,7],[31028,7],[34442,7]]},"/mule-teradata-connector/release-notes.html":{"position":[[429,8],[917,7],[979,7]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[1407,8],[1698,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[10980,7]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[191,8],[1944,7]]},"/query-service/send-queries-using-rest-api.html":{"position":[[3022,9],[11298,7],[12654,7]]},"/regulus/getting-started-with-regulus.html":{"position":[[979,8],[4169,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[5287,8],[5503,7],[7068,8],[9989,7]]},"/regulus/regulus-magic-reference.html":{"position":[[191,8],[1122,10],[5260,7]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[146,8],[874,8],[1435,9],[2466,8],[7147,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[577,9],[1876,10],[1898,7],[9257,7]]}},"component":{}}],["surcharg",{"_index":1863,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1281,9]]}},"component":{}}],["sure",{"_index":762,"title":{},"name":{},"text":{"/fastload.html":{"position":[[2644,4]]},"/geojson-to-vantage.html":{"position":[[1718,4],[5948,4]]},"/getting.started.utm.html":{"position":[[2286,4],[2556,4]]},"/sto.html":{"position":[[2524,7],[6615,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[5676,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2211,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1300,4],[2782,4],[3796,4],[4021,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1395,4],[2477,4],[4442,4]]},"/mule-teradata-connector/reference.html":{"position":[[31727,4]]},"/query-service/send-queries-using-rest-api.html":{"position":[[405,4]]},"/regulus/getting-started-with-regulus.html":{"position":[[1774,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[1372,4],[2002,4],[2290,4]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[556,4]]}},"component":{}}],["survey",{"_index":1679,"title":{},"name":{},"text":{"/nos.html":{"position":[[1034,7]]}},"component":{}}],["suse",{"_index":1164,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[2858,4]]},"/getting.started.vbox.html":{"position":[[1896,4]]},"/getting.started.vmware.html":{"position":[[1967,4]]}},"component":{}}],["suspend",{"_index":4395,"title":{"/regulus/using-regulus-workspace-cli.html#_project_engine_suspend":{"position":[[15,7]]}},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[344,7],[3729,7]]},"/regulus/regulus-magic-reference.html":{"position":[[4137,8],[4183,10]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1357,7],[1412,7],[5019,7]]}},"component":{}}],["sv",{"_index":1559,"title":{},"name":{},"text":{"/ml.html":{"position":[[5011,4],[5253,4],[5565,4]]}},"component":{}}],["sv_acct_ind",{"_index":1560,"title":{},"name":{},"text":{"/ml.html":{"position":[[5038,11]]}},"component":{}}],["sv_avg_bal",{"_index":1566,"title":{},"name":{},"text":{"/ml.html":{"position":[[5316,10]]}},"component":{}}],["sv_avg_tran_amt",{"_index":1570,"title":{},"name":{},"text":{"/ml.html":{"position":[[5623,15]]}},"component":{}}],["swamp",{"_index":3997,"title":{},"name":{},"text":{"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[999,8]]}},"component":{}}],["switch",{"_index":760,"title":{},"name":{},"text":{"/fastload.html":{"position":[[2607,9]]},"/local.jupyter.hub.html":{"position":[[4553,6]]},"/ml.html":{"position":[[3943,6]]},"/run-vantage-express-on-aws.html":{"position":[[5933,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2458,6]]},"/sto.html":{"position":[[3390,6],[4362,6]]},"/vantage.express.gcp.html":{"position":[[1740,6]]}},"component":{}}],["sy",{"_index":1355,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[2813,3],[3850,3]]},"/sto.html":{"position":[[4993,3]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1151,3]]}},"component":{}}],["symbol",{"_index":2481,"title":{},"name":{},"text":{"/sto.html":{"position":[[3522,8],[5744,8],[6725,8]]}},"component":{}}],["synaps",{"_index":2627,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[816,7],[4656,7]]}},"component":{}}],["sync",{"_index":2437,"title":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_configuring_data_sync":{"position":[[17,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_data_sync_validation":{"position":[[5,4]]}},"name":{},"text":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1159,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[5470,4],[5640,4],[5717,4],[5819,5],[7207,4],[7631,4]]}},"component":{}}],["synchron",{"_index":3326,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[5787,15]]}},"component":{}}],["synonym",{"_index":158,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3232,10]]}},"component":{}}],["syntax",{"_index":1371,"title":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_syntax_for_teradata_sql_registry":{"position":[[0,6]]}},"name":{},"text":{"/jupyter.html":{"position":[[3631,6]]}},"component":{}}],["sys.execut",{"_index":1356,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[2817,17],[3854,17]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1155,17],[1228,17]]}},"component":{}}],["sys.stdin",{"_index":2497,"title":{},"name":{},"text":{"/sto.html":{"position":[[5009,10]]}},"component":{}}],["sysadmin",{"_index":4323,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[7299,8]]}},"component":{}}],["sysbar",{"_index":4315,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[7081,6]]}},"component":{}}],["syslib",{"_index":1495,"title":{},"name":{},"text":{"/ml.html":{"position":[[1800,7]]},"/query-service/send-queries-using-rest-api.html":{"position":[[7002,6]]}},"component":{}}],["system",{"_index":103,"title":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_move_data_from_different_systems_for_unified_query_processing":{"position":[[25,7]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1916,7],[3334,6],[4466,7],[4547,7],[4758,7]]},"/advanced-dbt.html":{"position":[[1289,7],[3096,6]]},"/geojson-to-vantage.html":{"position":[[2971,7]]},"/getting.started.utm.html":{"position":[[1642,6],[3036,6],[3767,6]]},"/getting.started.vbox.html":{"position":[[627,8],[692,8],[2074,6],[2805,6]]},"/getting.started.vmware.html":{"position":[[627,8],[689,8],[2145,6],[2876,6]]},"/mule.jdbc.example.html":{"position":[[2799,7]]},"/run-vantage-express-on-aws.html":{"position":[[8555,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5335,6]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[351,8]]},"/sto.html":{"position":[[1438,6]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1629,6],[1684,6],[2199,6],[2257,7],[2735,6],[3050,6],[3235,6],[3444,8],[3660,7],[5469,6]]},"/teradatasql.html":{"position":[[232,7]]},"/vantage.express.gcp.html":{"position":[[4362,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8988,6],[10643,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2808,8],[8648,6],[10352,7],[23263,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1754,6],[1921,6],[2995,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[781,7],[4226,6],[7318,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1437,7],[2032,6]]},"/mule-teradata-connector/reference.html":{"position":[[36882,7],[37354,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3215,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[923,6]]},"/query-service/send-queries-using-rest-api.html":{"position":[[445,6],[799,6],[1399,6],[2941,6],[8455,9],[8735,6],[8799,7],[8899,6],[9345,6],[11850,9],[12174,9]]},"/regulus/install-regulus-docker-image.html":{"position":[[1010,7]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[903,8]]}},"component":{}}],["system\":\"testsystem",{"_index":4359,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[10523,22]]}},"component":{}}],["system//queri",{"_index":4345,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[8666,16],[9909,17],[11513,16]]}},"component":{}}],["system//queries//result",{"_index":4368,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[10816,25]]}},"component":{}}],["system//sess",{"_index":4333,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[7930,17]]}},"component":{}}],["systemctl",{"_index":2292,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[10795,9],[10819,9],[10852,9]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7575,9],[7599,9],[7632,9]]},"/vantage.express.gcp.html":{"position":[[6602,9],[6626,9],[6659,9]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3286,9],[3315,9]]}},"component":{}}],["systemf",{"_index":4301,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[6633,8]]}},"component":{}}],["systems/platform",{"_index":2430,"title":{},"name":{},"text":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[996,18]]}},"component":{}}],["sysudtlib",{"_index":4318,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[7156,9]]}},"component":{}}],["sysuif.install_file('helloworld",{"_index":2479,"title":{},"name":{},"text":{"/sto.html":{"position":[[3241,33]]}},"component":{}}],["sysuif.install_file('urlpars",{"_index":2510,"title":{},"name":{},"text":{"/sto.html":{"position":[[5510,32]]}},"component":{}}],["t",{"_index":4130,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[715,1]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1226,1],[2572,2],[4357,1],[4578,2]]}},"component":{}}],["t1",{"_index":1580,"title":{},"name":{},"text":{"/ml.html":{"position":[[6212,2]]}},"component":{}}],["t1.cust_id",{"_index":1525,"title":{},"name":{},"text":{"/ml.html":{"position":[[4033,10],[6249,10],[6346,11]]}},"component":{}}],["t1.state_cod",{"_index":1543,"title":{},"name":{},"text":{"/ml.html":{"position":[[4483,13],[4557,13],[4631,13],[4705,13],[4779,13],[4853,13]]}},"component":{}}],["t2",{"_index":1582,"title":{},"name":{},"text":{"/ml.html":{"position":[[6243,2]]}},"component":{}}],["t2.2xlarg",{"_index":4008,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[859,11],[1431,10]]}},"component":{}}],["t2.acct_nbr",{"_index":1585,"title":{},"name":{},"text":{"/ml.html":{"position":[[6311,11]]}},"component":{}}],["t2.acct_typ",{"_index":1556,"title":{},"name":{},"text":{"/ml.html":{"position":[[4927,12],[4996,12],[5065,12],[5134,12],[5238,12],[5342,12],[5446,12],[5550,12],[5654,12]]}},"component":{}}],["t2.cust_id",{"_index":1583,"title":{},"name":{},"text":{"/ml.html":{"position":[[6262,10]]}},"component":{}}],["t2.starting_balance+t2.ending_bal",{"_index":1564,"title":{},"name":{},"text":{"/ml.html":{"position":[[5159,37],[5263,37],[5367,37]]}},"component":{}}],["t3",{"_index":1584,"title":{},"name":{},"text":{"/ml.html":{"position":[[6305,2]]}},"component":{}}],["t3.acct_nbr",{"_index":1586,"title":{},"name":{},"text":{"/ml.html":{"position":[[6325,11]]}},"component":{}}],["t3.principal_amt+t3.interest_amt",{"_index":1568,"title":{},"name":{},"text":{"/ml.html":{"position":[[5471,32],[5575,32],[5679,32]]}},"component":{}}],["t3.tran_dat",{"_index":1574,"title":{},"name":{},"text":{"/ml.html":{"position":[[5781,13],[5894,13],[6007,13],[6120,13]]}},"component":{}}],["t3.tran_id",{"_index":1575,"title":{},"name":{},"text":{"/ml.html":{"position":[[5814,10],[5927,10],[6040,10],[6153,10]]}},"component":{}}],["tab",{"_index":688,"title":{},"name":{},"text":{"/dbt.html":{"position":[[4457,3]]},"/getting.started.utm.html":{"position":[[2034,5]]},"/run-vantage-express-on-aws.html":{"position":[[6493,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3273,4]]},"/sto.html":{"position":[[5351,3],[6104,3]]},"/vantage.express.gcp.html":{"position":[[2300,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[3956,4],[4349,4],[4842,4],[5532,4],[5740,4],[5842,4],[7632,4],[8272,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[8174,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7916,3]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[5856,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1712,3]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[2367,4],[2455,4],[2575,4],[3862,4],[3950,4],[4070,4]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[630,4],[1394,4]]}},"component":{}}],["tabl",{"_index":213,"title":{"/dbt.html#_create_raw_data_tables":{"position":[[16,6]]},"/geojson-to-vantage.html#_create_a_vantage_connection_and_load_our_file_in_a_staging_table":{"position":[[59,5]]},"/geojson-to-vantage.html#_create_and_our_geography_refernce_table":{"position":[[34,5]]},"/sto.html#_inserting_script_output_into_a_table":{"position":[[31,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_a_foreign_table_definition":{"position":[[17,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_the_table_and_load_the_data_in_a_single_statement":{"position":[[11,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_the_table_and_load_the_data_in_multiple_statements":{"position":[[11,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_read_nos_an_alternative_method_to_foreign_tables":{"position":[[44,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_create_foreign_table":{"position":[[15,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_json_keys_table_operator":{"position":[[10,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_read_nos_table_operator":{"position":[[9,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_join_amazon_s3_data_to_in_database_tables":{"position":[[35,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_add_dataset_to_identify_vantage_tables_for_byom_evaluation_and_scoring":{"position":[[32,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_add_dataset_to_identify_vantage_tables_for_byom_evaluation_and_scoring":{"position":[[32,6]]},"/mule-teradata-connector/reference.html#listener":{"position":[[3,5]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[4844,5],[4968,5],[5006,6],[5295,7]]},"/advanced-dbt.html":{"position":[[3813,6],[3961,6],[6175,6]]},"/create-parquet-files-in-object-storage.html":{"position":[[1044,5],[1815,5],[1867,5],[2132,5],[2315,5],[3207,6],[3345,5]]},"/dbt.html":{"position":[[2057,5],[2320,6],[2421,6],[2549,7],[2587,6],[2669,6],[2751,7],[2874,6],[2964,6],[2999,6],[3104,6],[3202,7],[3242,6],[3769,6],[3853,7],[4684,6]]},"/fastload.html":{"position":[[1730,7],[1770,6],[1811,6],[1893,5],[1913,6],[2665,5],[2693,6],[2718,6],[2765,5],[2789,5],[2818,5],[2867,5],[2940,5],[3328,5],[3453,6],[3493,5],[3571,5],[5190,5],[5214,5],[5243,5],[5283,5],[6622,5],[6643,5],[6768,5],[6790,5]]},"/geojson-to-vantage.html":{"position":[[559,5],[2407,5],[2636,5],[2755,5],[4135,6],[5579,5],[6691,6],[8055,5],[8277,5],[8382,5],[8699,5],[8909,6],[9086,6],[9158,5],[9386,6],[10192,7]]},"/getting.started.utm.html":{"position":[[5372,5],[5436,5],[5483,5]]},"/getting.started.vbox.html":{"position":[[4198,5],[4262,5],[4309,5]]},"/getting.started.vmware.html":{"position":[[4481,5],[4545,5],[4592,5]]},"/jupyter.html":{"position":[[4348,6]]},"/ml.html":{"position":[[3159,7],[3184,6],[3284,6],[3728,7],[3767,5],[3822,6],[3857,5],[4007,5],[6608,5],[6745,5],[7209,7],[7266,7],[7492,5],[7519,6],[7580,5],[7931,5]]},"/mule.jdbc.example.html":{"position":[[2244,5],[2261,5]]},"/nos.html":{"position":[[3216,6],[3703,6],[3801,5],[3912,6],[4073,5],[5186,6],[5610,5],[5653,5],[5759,5],[5876,5],[5939,5],[7443,6],[7465,5],[7861,5]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3544,5],[4244,5],[10238,6],[10302,6],[10367,6],[10567,7],[10731,6]]},"/run-vantage-express-on-aws.html":{"position":[[2026,5],[2081,5],[2245,5],[2415,5],[2470,5],[2522,5],[3914,5],[3972,6],[4236,6],[4275,5],[4400,6],[9256,5],[9320,5],[9367,5],[12094,5],[12127,5],[12200,5],[12216,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[653,7],[6036,5],[6100,5],[6147,5]]},"/segment.html":{"position":[[1303,6]]},"/sto.html":{"position":[[314,5],[1583,5],[4336,5],[4411,5],[4440,5],[5647,5],[6608,6],[6675,5],[6824,5],[7102,6],[7571,5],[7938,5]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3353,8],[5324,6],[5381,6],[5506,5],[5669,6],[5950,7]]},"/vantage.express.gcp.html":{"position":[[5063,5],[5127,5],[5174,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2197,5],[2323,6],[8748,5],[9456,5],[9562,5],[9851,5],[9883,5],[10382,6],[10435,7],[10544,5],[10762,5],[11088,6],[11111,6],[13577,7],[13601,6],[13638,6],[14020,6],[14544,5],[14624,5],[14685,6],[14701,5],[14761,5],[14792,6],[14854,5],[14895,5],[17104,6],[17221,5],[17470,6],[17493,5],[18599,6],[20788,6],[20874,5],[20903,5],[20924,5],[21028,6],[21154,5],[21875,5],[22375,5],[22404,5],[22481,6],[22504,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[331,5],[704,5],[731,5],[2527,5],[2652,6],[8431,5],[8609,6],[8852,5],[9126,5],[9216,5],[9568,5],[9600,5],[9998,6],[10051,7],[10174,6],[10253,5],[10471,5],[11068,5],[11205,5],[12720,5],[12830,6],[13282,5],[13428,6],[13502,5],[13865,5],[14118,5],[14517,6],[14618,5],[14652,5],[15496,5],[15655,5],[15716,5],[15754,6],[15842,5],[15895,6],[15926,5],[15962,5],[17490,5],[17519,5],[17540,5],[17644,6],[17684,5],[17766,5],[19514,6],[19610,5],[19672,5],[19692,6],[19731,5],[19744,5],[19852,5],[20022,5],[20100,5],[23229,5],[23401,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[247,6],[4476,5],[4588,6],[7157,7],[7833,7],[8395,6],[8447,5],[8534,6]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[1204,5],[2782,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[876,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2881,6],[3717,7],[4311,7],[4833,6],[4929,5],[5030,6],[5773,5],[5809,5],[6355,6],[6453,6],[6607,6],[6692,6],[7267,6],[7452,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[4155,8],[4687,5],[6087,8],[6378,7],[6542,6],[6561,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[808,5],[2911,5],[2956,5],[3115,5],[3206,5],[4699,5],[10736,5],[11388,5],[11434,6],[11826,5],[12147,5],[12199,5],[12262,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1589,6],[2733,6],[3075,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1626,6],[2770,6],[3112,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2621,6],[3296,5],[8185,5]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1623,5],[1670,5],[1932,5],[2017,5],[2036,5],[2078,5],[2807,5],[2842,6],[2873,5]]},"/mule-teradata-connector/index.html":{"position":[[300,7]]},"/mule-teradata-connector/reference.html":{"position":[[300,7],[2931,5],[30570,5],[31359,5],[31388,5]]},"/mule-teradata-connector/release-notes.html":{"position":[[300,7]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[820,6],[856,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[9241,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2710,6],[2820,7],[4735,7],[4847,7],[5051,5],[6002,6],[7157,6]]},"/query-service/send-queries-using-rest-api.html":{"position":[[7715,7]]},"/regulus/getting-started-with-regulus.html":{"position":[[1800,6],[1873,5],[1927,5],[1980,5],[2007,5],[2042,5],[2311,5],[2628,5],[2665,5],[2698,5],[2956,5],[3343,6],[3387,6],[3570,7],[3583,5],[3607,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1824,7],[1861,6],[1906,6],[1988,5],[2008,6],[2457,6],[2486,6],[3709,5],[4102,6],[4233,5],[4274,5],[4318,5],[4362,5],[4408,5],[7037,5],[7143,6],[7272,5],[7311,5],[8167,5],[8188,5],[8313,5],[8335,5]]}},"component":{}}],["table(",{"_index":2989,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13309,8]]}},"component":{}}],["table/view",{"_index":277,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[377,10]]},"/dbt.html":{"position":[[2894,10]]}},"component":{}}],["table=f\"analytic_dataset",{"_index":4158,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5407,26]]}},"component":{}}],["table=f\"{project_name}_feast_driver_hourly_stat",{"_index":3732,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3851,50]]}},"component":{}}],["table=salescent",{"_index":4418,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[2373,18]]}},"component":{}}],["table=salesdemo",{"_index":4425,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[3018,16]]}},"component":{}}],["table_nam",{"_index":3497,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[8388,10],[8533,10],[8546,11],[8706,10],[8719,11],[8798,10],[8811,11]]}},"component":{}}],["table_name=\"demo_model",{"_index":3544,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[11090,25]]}},"component":{}}],["tablenam",{"_index":3329,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6162,10],[6276,10]]}},"component":{}}],["tablename=val_ad",{"_index":1594,"title":{},"name":{},"text":{"/ml.html":{"position":[[6823,18],[7675,18]]}},"component":{}}],["table’",{"_index":2928,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[10072,7],[19957,7]]}},"component":{}}],["tag",{"_index":1424,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[1759,3],[2095,4]]},"/run-vantage-express-on-aws.html":{"position":[[3471,3],[3501,4],[3536,4],[3586,3],[3622,4],[3667,4],[3731,3],[3774,4],[3822,4],[3889,3],[4130,4],[4181,4],[4251,3],[4296,4],[4346,4],[4415,4],[4454,4],[4507,4],[4582,4],[4636,4]]},"/segment.html":{"position":[[1926,3]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[412,4],[6596,4],[6627,3],[7229,4],[7260,3],[7922,4],[7953,3]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[4147,4]]}},"component":{}}],["tags=v",{"_index":2617,"title":{},"name":{},"text":{"/vantage.express.gcp.html":{"position":[[1075,7],[1363,7],[1651,7],[7258,7]]}},"component":{}}],["tags={\"team",{"_index":3747,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4284,13]]}},"component":{}}],["taha",{"_index":3695,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[18,4]]}},"component":{}}],["take",{"_index":630,"title":{},"name":{},"text":{"/dbt.html":{"position":[[2036,5],[4589,5]]},"/ml.html":{"position":[[6449,5]]},"/mule.jdbc.example.html":{"position":[[477,5],[3043,4]]},"/nos.html":{"position":[[1148,4],[5381,5],[8221,4]]},"/run-vantage-express-on-aws.html":{"position":[[7144,4],[7270,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3924,4],[4050,4]]},"/sto.html":{"position":[[687,4],[6501,4]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[549,5]]},"/vantage.express.gcp.html":{"position":[[2951,4],[3077,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[769,4],[3087,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3758,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2822,5],[6245,4],[8119,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[9829,4],[12058,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6743,4],[6952,5]]},"/mule-teradata-connector/reference.html":{"position":[[3616,4],[5945,4],[8243,4],[10073,4],[12288,4],[13877,4],[15551,4],[18470,4],[21631,4],[24485,4],[28299,4],[31900,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6398,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[697,5],[2808,5],[6900,5]]},"/regulus/getting-started-with-regulus.html":{"position":[[1485,4]]},"/regulus/regulus-magic-reference.html":{"position":[[3050,4]]}},"component":{}}],["taken",{"_index":3826,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9549,5]]},"/mule-teradata-connector/reference.html":{"position":[[20826,5],[30742,5],[31489,5]]}},"component":{}}],["talk",{"_index":1794,"title":{},"name":{},"text":{"/nos.html":{"position":[[7603,6]]},"/segment.html":{"position":[[748,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[4934,4]]}},"component":{}}],["tan",{"_index":3828,"title":{},"name":{},"text":{"/mule-teradata-connector/examples-configuration.html":{"position":[[8,3]]},"/mule-teradata-connector/index.html":{"position":[[8,3]]},"/mule-teradata-connector/reference.html":{"position":[[8,3]]},"/mule-teradata-connector/release-notes.html":{"position":[[8,3]]}},"component":{}}],["tar",{"_index":1813,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[617,3]]}},"component":{}}],["tarbal",{"_index":1419,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[1482,7]]}},"component":{}}],["target",{"_index":380,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3370,7]]},"/dbt.html":{"position":[[1544,7],[4314,8]]},"/fastload.html":{"position":[[2658,6],[3321,6]]},"/geojson-to-vantage.html":{"position":[[10185,6]]},"/ml.html":{"position":[[7573,6]]},"/vantage.express.gcp.html":{"position":[[7251,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[7096,6],[7726,6],[7745,6],[7773,6],[8194,7],[8464,6],[8555,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[15888,6],[19950,6],[20015,6]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3494,8],[3903,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2384,7],[7773,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[7076,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2942,6],[3025,7],[3268,6],[3439,6],[3606,6],[3773,6],[4289,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2979,6],[3062,7],[3305,6],[3476,6],[3643,6],[3810,6]]},"/mule-teradata-connector/index.html":{"position":[[702,6]]},"/mule-teradata-connector/reference.html":{"position":[[4848,6],[4926,6],[5043,6],[7139,6],[7218,6],[7335,6],[9358,6],[9436,6],[9553,6],[11497,6],[11575,6],[11692,6],[13065,6],[13143,6],[13260,6],[14834,6],[14912,6],[15029,6],[17351,6],[17429,6],[17546,6],[20032,6],[20111,6],[20228,6],[23154,6],[23239,6],[23349,6],[27103,6],[27182,6],[27299,6],[30104,6],[30182,6],[30299,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[5473,6],[5490,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3297,7]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1606,6],[8728,6],[8792,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2479,6],[7030,6],[7136,6]]}},"component":{}}],["target/index.html",{"_index":4050,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[5507,17],[5535,17]]}},"component":{}}],["targetcolumn",{"_index":2036,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[8231,13]]}},"component":{}}],["targettdpid",{"_index":4516,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3099,11]]}},"component":{}}],["targetusernam",{"_index":4517,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3120,14]]}},"component":{}}],["targetuserpassword",{"_index":4518,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3148,18]]}},"component":{}}],["task",{"_index":841,"title":{},"name":{},"text":{"/fastload.html":{"position":[[7212,5]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[4558,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[4684,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1888,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[233,4],[3919,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[8757,5]]}},"component":{}}],["tax",{"_index":715,"title":{},"name":{},"text":{"/fastload.html":{"position":[[1038,3],[1090,3]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2789,6],[3483,4],[7253,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[892,3],[944,3]]}},"component":{}}],["tax_period",{"_index":775,"title":{},"name":{},"text":{"/fastload.html":{"position":[[3045,10],[4789,11],[5388,10],[6112,11],[6849,11],[6927,11]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[4528,10],[5015,11],[8394,11],[8472,11]]}},"component":{}}],["taxpayer_nam",{"_index":778,"title":{},"name":{},"text":{"/fastload.html":{"position":[[3121,13],[4811,14],[5464,13],[6134,14],[6871,14],[6949,13]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[4604,13],[5037,14],[8416,14],[8494,13]]}},"component":{}}],["tbuild",{"_index":4543,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[5315,6]]}},"component":{}}],["tcp",{"_index":2169,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[3341,6],[11456,6]]}},"component":{}}],["td",{"_index":3557,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[12009,2]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1947,2]]}},"component":{}}],["td2",{"_index":371,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3265,3]]},"/dbt.html":{"position":[[1443,3]]}},"component":{}}],["td_analyz",{"_index":1509,"title":{},"name":{},"text":{"/ml.html":{"position":[[2932,10],[3043,10],[6545,10],[7431,10]]}},"component":{}}],["td_analyze('linear",{"_index":1592,"title":{},"name":{},"text":{"/ml.html":{"position":[[6787,20]]}},"component":{}}],["td_analyze('linearscor",{"_index":1605,"title":{},"name":{},"text":{"/ml.html":{"position":[[7634,25]]}},"component":{}}],["td_map1",{"_index":554,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[1990,7],[3441,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[20221,7]]}},"component":{}}],["td_pipelin",{"_index":4150,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[4048,11]]}},"component":{}}],["td_sysfnlib.read_no",{"_index":540,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[1602,20]]}},"component":{}}],["td_sysfnlib.write_no",{"_index":541,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[1656,21]]}},"component":{}}],["td_timecode_rang",{"_index":1972,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[4486,18],[6198,19],[7687,18]]}},"component":{}}],["tdatapipelin",{"_index":4140,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2471,14]]}},"component":{}}],["tddb,tcp,,1025,,1025",{"_index":2251,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[8222,22]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5002,22]]},"/vantage.express.gcp.html":{"position":[[4029,22]]}},"component":{}}],["tdf_test",{"_index":3540,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[11003,8],[11181,9]]}},"component":{}}],["tdhost",{"_index":904,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[2477,9],[8125,9]]}},"component":{}}],["tdml",{"_index":3139,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2451,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2399,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[8033,4],[10786,4],[11699,4]]}},"component":{}}],["tdml.configure.byom_install_loc",{"_index":3498,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[8415,36],[10957,36]]}},"component":{}}],["tdml.create_context(tdsqlengin",{"_index":3490,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[8190,31],[10873,31]]}},"component":{}}],["tdml.dataframe('table_with_training_data",{"_index":3148,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2868,42]]}},"component":{}}],["tdml.dataframe('test_h",{"_index":3541,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[11014,30]]}},"component":{}}],["tdml.delete_byom(model_id",{"_index":3504,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[8668,25]]}},"component":{}}],["tdml.pmmlpredict",{"_index":3545,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[11130,17]]}},"component":{}}],["tdml.retrieve_byom(\"housing_rf",{"_index":3543,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[11057,32]]}},"component":{}}],["tdml.save_byom(model_id",{"_index":3500,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[8472,23],[8737,23]]}},"component":{}}],["tdnego",{"_index":3619,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2335,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2372,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[4291,6]]}},"component":{}}],["tdnetdp",{"_index":136,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2775,10]]}},"component":{}}],["tdodbc1710/tdodbc1710",{"_index":1817,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[685,21]]}},"component":{}}],["tdodbc1710__ubuntu_x8664.17.10.00.14",{"_index":1815,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[626,36]]}},"component":{}}],["tdplyr",{"_index":1325,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[1165,6]]},"/local.jupyter.hub.html":{"position":[[5971,6]]}},"component":{}}],["tdprd.td.teradata.com",{"_index":3614,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2118,21]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2155,21]]}},"component":{}}],["tdsessionno",{"_index":4340,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[8494,14]]}},"component":{}}],["tdssh,tcp,,4422,,22",{"_index":2250,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[8160,21]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4940,21]]},"/vantage.express.gcp.html":{"position":[[3967,21]]}},"component":{}}],["tduser",{"_index":905,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[2487,9],[8135,9]]}},"component":{}}],["tdve",{"_index":2311,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[729,4],[792,4],[8314,4]]}},"component":{}}],["tdwm",{"_index":4309,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[6866,4]]}},"component":{}}],["team",{"_index":1416,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[1146,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[7282,5]]},"/regulus/regulus-magic-reference.html":{"position":[[930,5],[1144,5],[1162,4],[1382,5],[1450,5],[1468,4]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[2577,4],[2589,4]]}},"component":{}}],["technic",{"_index":3062,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[713,9]]}},"component":{}}],["technolog",{"_index":4131,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[953,10]]}},"component":{}}],["teddi",{"_index":406,"title":{"/advanced-dbt.html#_about_the_teddy_retailers_warehouse":{"position":[[10,5]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[4058,5]]}},"component":{}}],["teddy_bank",{"_index":4146,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2632,10],[3170,11],[3368,10],[3932,11],[4254,10]]}},"component":{}}],["teddy_retail",{"_index":284,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[507,16],[988,15],[1007,15],[2058,16],[2196,15],[2291,15],[3188,16],[3277,15],[3575,15]]}},"component":{}}],["tediou",{"_index":1373,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[3670,7]]},"/nos.html":{"position":[[7139,7]]}},"component":{}}],["teek",{"_index":2261,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[8800,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5580,6]]},"/vantage.express.gcp.html":{"position":[[4607,6]]}},"component":{}}],["tehan",{"_index":2866,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[15,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[15,5]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[15,5]]}},"component":{}}],["telco",{"_index":3567,"title":{},"name":{},"text":{"/jupyter-demos/index.html":{"position":[[0,5],[78,5],[170,5],[254,5],[379,5],[476,5],[580,5]]}},"component":{}}],["tell",{"_index":798,"title":{},"name":{},"text":{"/fastload.html":{"position":[[3910,4]]},"/ml.html":{"position":[[6560,4]]},"/nos.html":{"position":[[6843,4]]},"/sto.html":{"position":[[3432,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[6226,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2596,4]]}},"component":{}}],["temperatur",{"_index":1746,"title":{},"name":{},"text":{"/nos.html":{"position":[[3303,11],[3347,13]]}},"component":{}}],["temperature_air_2m_f",{"_index":2722,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11793,21],[15415,21],[17739,20],[19128,21],[23025,21]]}},"component":{}}],["temperature_dewpoint_2m_f",{"_index":2727,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11954,26],[15576,26],[17813,25],[19289,26],[23186,26]]}},"component":{}}],["temperature_feelslike_2m_f",{"_index":2729,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[12039,27],[15661,27],[17853,26],[19374,27],[23271,27]]}},"component":{}}],["temperature_heatindex_2m_f",{"_index":2733,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[12211,27],[15833,27],[17935,26],[19546,27],[23443,27]]}},"component":{}}],["temperature_wetbulb_2m_f",{"_index":2725,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11871,25],[15493,25],[17774,24],[19206,25],[23103,25]]}},"component":{}}],["temperature_windchill_2m_f",{"_index":2731,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[12125,27],[15747,27],[17894,26],[19460,27],[23357,27]]}},"component":{}}],["templat",{"_index":3107,"title":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_prepare_code_templates":{"position":[[13,9]]}},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[5812,8],[5936,8],[6057,8],[6636,9],[7269,9],[7962,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2473,9],[2635,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[301,9],[2510,9],[2672,8],[3937,9]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1691,9]]},"/mule-teradata-connector/index.html":{"position":[[925,8]]},"/mule-teradata-connector/release-notes.html":{"position":[[525,8]]}},"component":{}}],["template_path=\"score_new_data_pipeline_sql.json",{"_index":3565,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[13174,49]]}},"component":{}}],["template_path=\"train_housing_pipeline.json",{"_index":3527,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[10012,44]]}},"component":{}}],["temporari",{"_index":3422,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[4794,9],[9661,9]]}},"component":{}}],["temporarili",{"_index":2771,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[14408,12]]}},"component":{}}],["tensorflow",{"_index":3412,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3712,10]]}},"component":{}}],["teradata",{"_index":9,"title":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_install_the_net_data_provider_for_teradata":{"position":[[35,8]]},"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_connect_to_teradata_vantage":{"position":[[11,8]]},"/advanced-dbt.html":{"position":[[28,8]]},"/advanced-dbt.html#_teradata_modifiers":{"position":[[0,8]]},"/dbt.html":{"position":[[9,8]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[4,8]]},"/jupyter.html#_teradata_libraries":{"position":[[0,8]]},"/jupyter.html#_teradata_jupyter_docker_image":{"position":[[0,8]]},"/local.jupyter.hub.html":{"position":[[7,8]]},"/local.jupyter.hub.html#_use_teradata_jupyter_docker_image":{"position":[[4,8]]},"/local.jupyter.hub.html#_install_teradata_jupyter_docker_image_in_your_registry":{"position":[[8,8]]},"/local.jupyter.hub.html#_use_teradata_jupyter_docker_image_in_jupyterhub":{"position":[[4,8]]},"/local.jupyter.hub.html#_customize_teradata_jupyter_docker_image":{"position":[[10,8]]},"/local.jupyter.hub.html#_customize_an_existing_docker_image_to_include_teradata_extensions":{"position":[[46,8]]},"/mule.jdbc.example.html":{"position":[[6,8]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[35,8]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[42,8]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_native_object_store_nos_teradata_parallel_transporter_tpt":{"position":[[17,8],[53,8]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_parallel_transporter_tpt_bteq":{"position":[[17,8]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_querygrid":{"position":[[17,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[0,8]]},"/teradata-vantage-engine-architecture-and-concepts.html#_teradata_vantage_engine_architecture_components":{"position":[[0,8]]},"/teradata-vantage-engine-architecture-and-concepts.html#_teradata_vantage_architecture_concepts":{"position":[[0,8]]},"/teradata-vantage-engine-architecture-and-concepts.html#_teradata_parallelism":{"position":[[0,8]]},"/teradata-vantage-engine-architecture-and-concepts.html#_teradata_retrieval_architecture":{"position":[[0,8]]},"/teradata-vantage-engine-architecture-and-concepts.html#_teradata_data_distribution":{"position":[[0,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[28,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_about_teradata_vantage":{"position":[[6,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[10,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[10,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[8,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_about_teradata_vantage":{"position":[[6,8]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[10,8]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_about_teradata_vantage":{"position":[[6,8]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_install_teradata_data_catalog_connector":{"position":[[8,8]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_install_data_catalog_teradata_connector":{"position":[[21,8]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_explore_teradata_vantage_metadata_with_data_catalog":{"position":[[8,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[23,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[49,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[50,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6,8]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[35,8]]},"/mule-teradata-connector/index.html":{"position":[[0,8]]},"/mule-teradata-connector/reference.html":{"position":[[0,8]]},"/mule-teradata-connector/reference.html#config_teradata":{"position":[[0,8]]},"/mule-teradata-connector/release-notes.html":{"position":[[0,8]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[12,8]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html#_add_a_teradata_connection_to_dbeaver":{"position":[[6,8]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[44,8]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[34,8]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_syntax_for_teradata_sql_registry":{"position":[[11,8]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[10,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[37,8]]}},"name":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[59,8]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[8,8]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[35,8]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[42,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[0,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[28,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[10,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[10,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[10,8]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[10,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[15,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[49,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[50,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[48,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[48,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[31,8]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[12,8]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[44,8]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[26,8]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[10,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[31,8]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[122,8],[225,8],[323,8],[1494,8],[1529,8],[1580,9],[1692,8],[1835,8],[2174,8],[2486,9],[2671,9],[3099,8],[3127,8],[3184,10],[3209,9],[4417,9]]},"/advanced-dbt.html":{"position":[[103,8],[403,8],[555,8],[1389,8],[1514,8],[1572,8],[2148,8],[2873,8],[3225,8],[5912,8],[7040,8],[7281,8]]},"/create-parquet-files-in-object-storage.html":{"position":[[571,8],[1829,8],[4305,8]]},"/dbt.html":{"position":[[120,8],[282,8],[762,8],[908,8],[1069,8],[1239,8],[1403,8],[4552,8],[4871,8]]},"/fastload.html":{"position":[[186,8],[288,8],[374,8],[543,8],[686,8],[1964,9],[7527,9]]},"/geojson-to-vantage.html":{"position":[[180,8],[447,8],[1029,8],[2522,8],[5077,8],[5701,8],[8170,8],[10625,8]]},"/getting.started.utm.html":{"position":[[99,8],[185,9],[347,8],[1285,8],[4367,8],[4530,9],[4863,8],[5089,9],[6254,8],[6284,8],[6359,8],[6515,9]]},"/getting.started.vbox.html":{"position":[[99,8],[185,9],[347,8],[1013,8],[3405,8],[3568,9],[3689,8],[3915,9],[5850,8],[5880,8],[5955,8],[6111,9]]},"/getting.started.vmware.html":{"position":[[99,8],[185,9],[347,8],[970,8],[3476,8],[3639,9],[3972,8],[4198,9],[5363,8],[5393,8],[5468,8],[5624,9]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[105,8],[125,8],[426,8],[445,8],[486,8],[511,8],[527,8],[563,8],[613,8],[633,8],[836,8],[855,8],[1041,8],[1060,8]]},"/jdbc.html":{"position":[[102,8],[220,8],[372,8],[902,8],[1013,8],[1057,8],[1075,8]]},"/jupyter.html":{"position":[[92,8],[202,8],[385,8],[1030,8],[1066,8],[1108,8],[1266,8],[1612,8],[2943,9],[3264,8],[4080,8],[4808,8],[4903,8],[4924,8],[5022,8],[5128,8],[5167,8],[5357,8],[5378,8],[5431,8],[5582,8],[5871,8],[6686,8],[6764,8],[6827,8],[6879,8],[7147,8],[7221,8],[7257,8],[7314,9]]},"/local.jupyter.hub.html":{"position":[[145,8],[205,8],[282,8],[600,8],[716,8],[737,8],[785,8],[863,8],[982,8],[1325,8],[1804,8],[2482,8],[2539,8],[2656,8],[3221,8],[3371,8],[3602,8],[3743,8],[5069,8],[5798,8],[5830,8],[5891,8],[5946,8],[5992,8],[6028,8],[6085,9]]},"/ml.html":{"position":[[527,8],[955,8]]},"/mule.jdbc.example.html":{"position":[[148,8],[317,8],[512,8],[1617,8],[1649,8],[1721,8]]},"/nos.html":{"position":[[375,8],[962,8],[8676,8]]},"/odbc.ubuntu.html":{"position":[[114,8],[154,8],[456,8],[826,8],[872,9],[1212,8],[1608,9],[1723,8],[1792,8],[1942,9]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[252,8],[360,8],[10699,8],[10789,8]]},"/run-vantage-express-on-aws.html":{"position":[[203,8],[8887,8],[11556,8],[12432,9]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[173,8],[1226,8],[1286,8],[1472,8],[1559,8],[1617,8],[1677,8],[1862,8],[1936,8],[1995,8],[2055,8],[2240,8],[2314,8],[5667,8],[8160,8],[8370,9]]},"/segment.html":{"position":[[131,8],[405,8],[696,8],[1081,9],[2775,8],[5362,8],[5522,8]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[195,8],[360,8],[457,8],[507,8],[521,8],[887,8],[1405,8],[1686,8],[1716,8],[1785,8]]},"/sto.html":{"position":[[725,8],[1386,8],[1893,8],[6390,9],[7375,9],[7833,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[102,8],[707,8],[800,8],[1058,8],[1143,9],[2214,8],[2408,8],[3435,8],[3673,8],[3861,8],[3879,8],[4161,8],[4220,8],[4369,8],[4453,8],[4604,8],[4795,8],[6071,8],[6295,8],[6479,8]]},"/teradatasql.html":{"position":[[149,8],[420,8],[490,8],[684,8],[850,8],[966,8]]},"/vantage.express.gcp.html":{"position":[[179,8],[827,8],[1115,8],[1403,8],[1694,8],[4694,8],[7340,8],[7546,9]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[206,8],[1034,8],[1728,8],[1893,8],[2366,8],[2458,8],[2605,8],[9000,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[85,8],[195,8],[316,8],[352,8],[443,8],[791,8],[1158,8],[1385,8],[1446,8],[1739,8],[1830,8],[2038,8],[2112,8],[2184,8],[2196,8],[2274,8],[2394,8],[2740,8],[2797,8],[3277,8],[3368,8],[3817,8],[4722,8],[5239,8],[5302,8],[5545,8],[6041,8],[6077,8],[6134,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[90,8],[200,8],[321,8],[357,8],[448,8],[601,8],[805,8],[1074,8],[1272,8],[1666,8],[1929,8],[2883,8],[3085,8],[3200,8],[3362,8],[3488,8],[4177,8],[4344,8],[4380,8],[4437,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[128,8],[1581,8],[1930,8],[2236,8],[2748,8],[2829,8],[8631,8],[26308,8]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[101,8],[172,8],[291,8],[1389,8],[1600,8],[1630,8],[2021,8],[2065,8],[2356,8],[2780,8],[3213,8],[3263,8],[3313,8],[3652,8],[3744,8],[3895,8],[3942,8],[3991,8],[4078,8],[4344,8],[8250,8],[8386,8],[8694,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[115,8],[351,9],[377,8],[502,8],[663,8],[781,8],[833,8],[914,8],[971,8],[1132,8],[1195,8],[1236,8],[1271,8],[1488,8],[1693,8],[2334,8],[2639,8],[5599,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[317,8],[555,8],[901,8],[1586,8],[1704,8],[2077,8],[2217,8],[2605,8],[2705,8],[2785,8],[7175,8],[7236,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[196,8],[396,8],[534,8],[895,8],[993,8],[1073,8],[1485,8],[1631,8],[1872,8],[1941,9],[2135,8],[2416,8],[3589,8],[5936,8],[8082,8],[8149,8],[8472,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[144,8],[241,8],[308,8],[337,8],[3310,8],[3335,8],[4031,8],[5290,8],[5383,8],[6012,8],[6684,8],[6823,8],[6924,8],[7399,8],[7840,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[677,8],[4942,9]]},"/jupyter-demos/index.html":{"position":[[32,8],[115,8],[196,8],[309,8],[412,8],[508,8],[630,8],[718,8],[818,8],[932,8],[1051,8],[1166,8],[1250,8],[1344,8],[1457,8],[1570,8],[1656,8],[1739,8],[1846,8],[1959,8],[2048,8],[2149,8],[2255,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[344,8],[2154,8],[2234,8],[2298,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[381,8],[2191,8],[2271,8],[2335,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[124,8],[201,8],[263,8],[1082,8],[1116,8],[1173,8],[1327,9],[1495,8],[1530,8],[1578,8],[2023,8],[2303,8],[2635,8],[3238,8],[3307,8],[5234,8],[9607,8],[9821,8]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[723,8],[937,8],[1239,8],[1275,8],[1589,8],[1609,8],[2003,8],[2328,8],[3043,8],[3116,8],[3289,8],[3374,8],[3569,8],[3823,8],[4307,8],[4392,8],[4864,8]]},"/mule-teradata-connector/index.html":{"position":[[76,8],[85,9],[160,8],[221,8],[283,8],[319,8],[363,8],[446,8],[685,8],[825,8],[1321,8],[1520,8],[1592,8]]},"/mule-teradata-connector/reference.html":{"position":[[76,8],[85,9],[160,8],[221,8],[283,8],[323,8],[608,8]]},"/mule-teradata-connector/release-notes.html":{"position":[[76,8],[85,9],[160,8],[221,8],[283,8]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[115,8],[158,8],[579,8],[603,8],[1138,8],[1562,8]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[193,8],[570,8],[1209,8],[1264,8],[5616,8],[5672,9],[6089,8],[9201,8],[9354,8],[9641,8],[10642,8],[10800,8],[10858,8]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[117,8],[346,8],[438,8],[1242,8],[1397,8],[1443,8],[1574,8],[3082,8],[3251,8],[3329,8],[3844,8],[4013,8],[4479,8],[4993,8],[5062,8],[6863,8],[6918,8],[7357,8],[7455,8]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[245,8],[275,8],[1779,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[50,8],[911,8]]},"/regulus/install-regulus-docker-image.html":{"position":[[1001,8],[5523,8],[6046,8],[8631,8],[9514,8]]},"/regulus/regulus-magic-reference.html":{"position":[[257,8],[297,8],[5043,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[120,8],[136,8],[233,8],[397,8],[540,8],[1483,8],[2059,9],[3700,8],[5417,8],[5787,8],[6570,8],[6668,8],[9067,9],[9092,9]]}},"component":{}}],["teradata/jupyterlab",{"_index":1391,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[6023,19]]}},"component":{}}],["teradata/mul",{"_index":1659,"title":{},"name":{},"text":{"/mule.jdbc.example.html":{"position":[[1492,13]]}},"component":{}}],["teradata/regulu",{"_index":4442,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[1950,16],[3001,16],[3579,16],[8373,16],[9004,16]]}},"component":{}}],["teradata2dc_datacatalog_location_id",{"_index":3075,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[3421,36]]}},"component":{}}],["teradata2dc_datacatalog_project_id",{"_index":3074,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[3378,35]]}},"component":{}}],["teradata2dc_teradata_password",{"_index":3078,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[3539,30]]}},"component":{}}],["teradata2dc_teradata_serv",{"_index":3076,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[3465,28]]}},"component":{}}],["teradata2dc_teradata_usernam",{"_index":3077,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[3501,30]]}},"component":{}}],["teradata_*.tgz",{"_index":1457,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[5157,16]]}},"component":{}}],["teradata_connection_manag",{"_index":1464,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[5443,28]]}},"component":{}}],["teradata_connection_manager_prebuilt",{"_index":2800,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2498,36],[4898,36]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[3590,36]]}},"component":{}}],["teradata_databas",{"_index":1461,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[5244,18]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[8104,17]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[4427,17]]}},"component":{}}],["teradata_database_explorer_prebuilt",{"_index":2803,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2686,35],[5101,35]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[3652,35]]}},"component":{}}],["teradata_log_mech",{"_index":3797,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[8138,17]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[4461,17]]}},"component":{}}],["teradata_password",{"_index":3796,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[8057,17]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[4380,17]]}},"component":{}}],["teradata_prefer",{"_index":1465,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[5517,21]]}},"component":{}}],["teradata_preferences_prebuilt",{"_index":2799,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2441,29],[4836,29]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[3713,29]]}},"component":{}}],["teradata_resultset",{"_index":1462,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[5308,19]]}},"component":{}}],["teradata_resultset_renderer_prebuilt",{"_index":2802,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2622,36],[5032,36]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[3768,36]]}},"component":{}}],["teradata_sqlhighlight",{"_index":1463,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[5373,24]]}},"component":{}}],["teradata_sqlhighlighter_prebuilt",{"_index":2801,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2562,32],[4967,32]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[3830,32]]}},"component":{}}],["teradata_us",{"_index":3795,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[8036,13]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[4359,13]]}},"component":{}}],["teradatajupyterlabext_version.tar.gz",{"_index":1420,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[1515,37],[1584,36]]}},"component":{}}],["teradatakernel",{"_index":1443,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[4330,16]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2293,14],[4229,16]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[3381,14]]}},"component":{}}],["teradataml",{"_index":1324,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[1150,10]]},"/local.jupyter.hub.html":{"position":[[5921,10]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2776,10],[5281,10]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2372,10],[2437,10],[2461,10],[2829,10]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2145,10],[2385,10],[2409,10]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1280,10],[8019,10],[10666,10],[10772,10],[11685,10]]}},"component":{}}],["teradataml.dataframe.datafram",{"_index":3143,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2528,30]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2476,30]]}},"component":{}}],["teradataml==17.0.0.4",{"_index":3680,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[5503,20]]}},"component":{}}],["teradatasourc",{"_index":3723,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3187,15],[3753,15]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[4942,15],[5374,15]]}},"component":{}}],["teradatasql",{"_index":889,"title":{},"name":{"/teradatasql.html":{"position":[[0,11]]}},"text":{"/geojson-to-vantage.html":{"position":[[1771,11],[2258,11],[2450,11],[6001,11],[6968,11],[7906,11],[8098,11]]},"/local.jupyter.hub.html":{"position":[[4461,13],[4475,12],[4962,13]]},"/teradatasql.html":{"position":[[110,11],[195,11],[252,11],[264,11],[707,12],[873,11],[989,12],[1002,11]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2350,13],[4360,13],[4374,12],[4615,13]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[3065,11],[3464,13]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3023,11],[5109,11],[11301,11]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[8018,17]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[4341,17]]}},"component":{}}],["teradatasql*.zip",{"_index":2798,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2247,16]]}},"component":{}}],["teradatasql.connect(non",{"_index":907,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[2545,25],[8193,25]]}},"component":{}}],["teradatasql://:@/?database=teddy_bank&logmech=tdnego",{"_index":4151,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[4095,52]]}},"component":{}}],["teradatasql://dbc:dbc@host.docker.internal/dbc",{"_index":1367,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[3427,48],[4225,46]]}},"component":{}}],["teradatasql://username:password@host/database_nam",{"_index":1364,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[3287,50],[4103,50]]}},"component":{}}],["teradatasqlalchemi",{"_index":1357,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[2850,18],[3899,18]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1261,18]]}},"component":{}}],["teradatasqllinux_3.3.0",{"_index":2853,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[3314,22]]}},"component":{}}],["teradatatoolsandutilitiesxx.xx.xx.pkg",{"_index":713,"title":{},"name":{},"text":{"/fastload.html":{"position":[[890,38]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[744,38]]}},"component":{}}],["teradata’",{"_index":1059,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[9429,10]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[241,10],[5190,10]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[568,10],[616,10],[7990,10],[9650,10]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[364,10]]}},"component":{}}],["terajdbc4.jar",{"_index":4195,"title":{},"name":{},"text":{"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[713,13]]}},"component":{}}],["terdata",{"_index":4193,"title":{},"name":{},"text":{"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[87,7]]}},"component":{}}],["term",{"_index":2684,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[7282,5],[7402,5]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[5328,4],[5356,4],[5404,4]]}},"component":{}}],["termin",{"_index":1019,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[6306,9]]},"/getting.started.utm.html":{"position":[[2916,8],[3012,9],[3476,9],[3493,8],[3600,8]]},"/getting.started.vbox.html":{"position":[[1954,8],[2050,9],[2514,9],[2531,8],[2638,8],[5660,8],[5715,9]]},"/getting.started.vmware.html":{"position":[[2025,8],[2121,9],[2585,9],[2602,8],[2709,8]]},"/ml.html":{"position":[[2398,8]]},"/run-vantage-express-on-aws.html":{"position":[[11653,9],[11740,9]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6710,8],[6845,8]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[921,8]]}},"component":{}}],["terminolog",{"_index":3703,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[432,12]]}},"component":{}}],["test",{"_index":123,"title":{"/advanced-dbt.html#_test_the_data":{"position":[[0,4]]},"/dbt.html#_test_the_data":{"position":[[0,4]]},"/jdbc.html#_run_the_tests":{"position":[[8,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_model_testing":{"position":[[6,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Test-the-deployed-model":{"position":[[0,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_install_a_test_dbt_project":{"position":[[10,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_test_the_data":{"position":[[0,4]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2366,4]]},"/advanced-dbt.html":{"position":[[596,4],[5645,4],[6369,4],[6392,4],[6831,7]]},"/create-parquet-files-in-object-storage.html":{"position":[[879,4]]},"/dbt.html":{"position":[[323,4],[3443,5],[3471,5],[3600,5],[3623,5],[3790,4],[3815,4],[4743,4],[4762,6]]},"/fastload.html":{"position":[[584,4]]},"/geojson-to-vantage.html":{"position":[[1070,4]]},"/jdbc.html":{"position":[[261,4],[843,6],[854,4]]},"/jupyter.html":{"position":[[270,7],[441,4]]},"/local.jupyter.hub.html":{"position":[[507,4]]},"/ml.html":{"position":[[257,4]]},"/mule.jdbc.example.html":{"position":[[358,4],[2613,7],[3292,7]]},"/nos.html":{"position":[[552,4]]},"/odbc.ubuntu.html":{"position":[[195,4],[1523,4]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[571,4]]},"/segment.html":{"position":[[771,4]]},"/sto.html":{"position":[[766,4],[6466,11],[7451,11]]},"/teradatasql.html":{"position":[[548,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2646,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[263,7],[1198,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[268,7],[641,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2870,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1671,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[610,4],[1079,4],[1412,4],[1734,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[149,5],[596,4],[4816,4],[5483,4],[5514,4],[6482,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[575,4],[6951,5],[6979,5],[7094,5],[7121,5],[7288,4],[7313,4],[7362,4],[8344,4],[8363,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[528,4],[3240,5],[3952,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3993,7],[4056,7],[6084,4],[6929,4],[7026,4],[7721,5],[7737,4],[10589,4]]},"/jupyter-demos/index.html":{"position":[[370,8],[993,8],[1518,8],[1907,8],[2316,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[463,4],[1849,4],[5039,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[500,4],[1886,4],[6799,4],[7090,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[304,4],[4355,4],[5953,4],[9359,7]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[2689,4],[4184,4]]},"/mule-teradata-connector/index.html":{"position":[[732,4]]},"/mule-teradata-connector/reference.html":{"position":[[1571,4],[1648,4],[2451,4],[2528,4],[34967,4],[35023,7],[35692,4],[35769,4]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[199,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4839,4],[8777,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1298,4]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[341,4],[1079,4],[1404,4],[1567,4]]},"/query-service/send-queries-using-rest-api.html":{"position":[[679,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[438,4]]}},"component":{}}],["test.apply(pd.to_numer",{"_index":3472,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[7033,25]]}},"component":{}}],["test.pi",{"_index":1824,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[1097,7],[1549,7]]}},"component":{}}],["test_hous",{"_index":3400,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3212,12],[3418,12],[11421,12],[13384,15]]}},"component":{}}],["test_local.pmml",{"_index":3493,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[8296,18],[8370,17]]}},"component":{}}],["test_model_data",{"_index":3512,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[9146,15]]}},"component":{}}],["test_siz",{"_index":3468,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[6957,9]]}},"component":{}}],["test_workflow.pi",{"_index":3709,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2203,17],[2234,16],[2413,16]]}},"component":{}}],["tester",{"_index":2416,"title":{},"name":{},"text":{"/segment.html":{"position":[[4980,6]]}},"component":{}}],["testowski",{"_index":1667,"title":{},"name":{},"text":{"/mule.jdbc.example.html":{"position":[[2621,12],[3350,11]]}},"component":{}}],["testsystem",{"_index":4339,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[8465,13]]}},"component":{}}],["text",{"_index":164,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3350,4]]},"/run-vantage-express-on-aws.html":{"position":[[1242,5],[1547,5],[1861,5],[2172,4],[2369,4],[2569,4],[2763,4],[2975,5],[3177,5],[3458,4],[4106,5],[4867,4],[5242,4],[5683,5],[11714,4]]},"/mule-teradata-connector/reference.html":{"position":[[4495,4],[4511,4],[6821,4],[6837,4],[9031,4],[9047,4],[10860,4],[10876,4],[11363,4],[12105,4],[12121,4],[13927,4],[13943,4],[16338,4],[16354,4],[16833,4],[19397,4],[19413,4],[19892,4],[22518,4],[22534,4],[23014,4],[25502,4],[25518,4],[25989,4],[26330,4],[26631,4],[29080,4],[29096,4],[29572,4]]}},"component":{}}],["that’",{"_index":800,"title":{},"name":{},"text":{"/fastload.html":{"position":[[3984,6]]},"/geojson-to-vantage.html":{"position":[[4074,6],[9351,6]]},"/sto.html":{"position":[[1296,6]]}},"component":{}}],["the_tabl",{"_index":2780,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[21489,9],[22262,9],[24780,9]]}},"component":{}}],["the`teddy_retail",{"_index":391,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3687,20]]}},"component":{}}],["therebi",{"_index":3827,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9722,7]]}},"component":{}}],["there’",{"_index":3029,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[23276,7]]}},"component":{}}],["thing",{"_index":825,"title":{},"name":{},"text":{"/fastload.html":{"position":[[5084,6]]},"/geojson-to-vantage.html":{"position":[[6226,5]]},"/ml.html":{"position":[[1887,6]]},"/nos.html":{"position":[[5321,6]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[244,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[5397,6],[7803,5]]}},"component":{}}],["think",{"_index":1383,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[5266,5]]},"/sto.html":{"position":[[627,5]]}},"component":{}}],["third",{"_index":2443,"title":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_ingesting_data_from_saas_applications_third_party_tools":{"position":[[38,6]]}},"name":{},"text":{},"component":{}}],["thirdpartylicens",{"_index":1452,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[4799,20]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[4487,21]]}},"component":{}}],["those",{"_index":335,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[1916,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[3665,5]]}},"component":{}}],["though",{"_index":2097,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10360,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[4563,6]]}},"component":{}}],["thousand",{"_index":846,"title":{},"name":{},"text":{"/fastload.html":{"position":[[7454,9]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[8999,9]]}},"component":{}}],["thread",{"_index":374,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3305,8]]},"/dbt.html":{"position":[[1479,8]]},"/mule-teradata-connector/reference.html":{"position":[[36179,6],[36386,6]]}},"component":{}}],["threat",{"_index":2881,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1469,8]]}},"component":{}}],["three",{"_index":60,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[855,5]]},"/ml.html":{"position":[[3816,5]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1814,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[13422,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[404,5],[3864,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[7311,5]]}},"component":{}}],["threshold",{"_index":3243,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[6670,9]]}},"component":{}}],["thripti",{"_index":4391,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[8,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[8,7]]},"/regulus/regulus-magic-reference.html":{"position":[[8,7]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[8,7]]}},"component":{}}],["through",{"_index":282,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[480,7],[1605,7],[3613,7]]},"/create-parquet-files-in-object-storage.html":{"position":[[658,7]]},"/getting.started.utm.html":{"position":[[1970,7]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[77,7]]},"/jupyter.html":{"position":[[349,7],[6662,7],[7186,7]]},"/nos.html":{"position":[[462,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[481,7]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[5016,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[142,7],[440,7],[4231,7],[4547,7],[4689,7],[5292,7],[8040,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[4104,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[350,7]]},"/query-service/send-queries-using-rest-api.html":{"position":[[265,7],[1443,7]]},"/regulus/getting-started-with-regulus.html":{"position":[[196,7]]}},"component":{}}],["throughout",{"_index":490,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[7151,10]]}},"component":{}}],["throughput",{"_index":2427,"title":{},"name":{},"text":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[690,10]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1971,11],[4149,11]]}},"component":{}}],["throw",{"_index":3985,"title":{"/mule-teradata-connector/reference.html#_throws":{"position":[[0,6]]},"/mule-teradata-connector/reference.html#_throws_2":{"position":[[0,6]]},"/mule-teradata-connector/reference.html#_throws_3":{"position":[[0,6]]},"/mule-teradata-connector/reference.html#_throws_4":{"position":[[0,6]]},"/mule-teradata-connector/reference.html#_throws_5":{"position":[[0,6]]},"/mule-teradata-connector/reference.html#_throws_6":{"position":[[0,6]]},"/mule-teradata-connector/reference.html#_throws_7":{"position":[[0,6]]},"/mule-teradata-connector/reference.html#_throws_8":{"position":[[0,6]]},"/mule-teradata-connector/reference.html#_throws_9":{"position":[[0,6]]},"/mule-teradata-connector/reference.html#_throws_10":{"position":[[0,6]]},"/mule-teradata-connector/reference.html#_throws_11":{"position":[[0,6]]}},"name":{},"text":{},"component":{}}],["thu",{"_index":2425,"title":{},"name":{},"text":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[669,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[6460,3],[6498,3],[7888,3],[7926,3],[7961,3],[7994,3]]}},"component":{}}],["tick",{"_index":2909,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[7288,7]]}},"component":{}}],["tier",{"_index":4437,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[1567,4]]}},"component":{}}],["till",{"_index":1172,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[3027,4],[3664,4]]},"/getting.started.vbox.html":{"position":[[2065,4],[2702,4]]},"/getting.started.vmware.html":{"position":[[2136,4],[2773,4]]},"/run-vantage-express-on-aws.html":{"position":[[8666,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5446,4]]},"/vantage.express.gcp.html":{"position":[[4473,4]]}},"component":{}}],["time",{"_index":451,"title":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[8,4]]},"/perform-time-series-analysis-using-teradata-vantage.html#_basic_time_series_operations":{"position":[[6,4]]}},"name":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[8,4]]}},"text":{"/advanced-dbt.html":{"position":[[5424,5]]},"/geojson-to-vantage.html":{"position":[[5234,4]]},"/getting.started.utm.html":{"position":[[234,4]]},"/getting.started.vbox.html":{"position":[[234,4],[1364,5]]},"/getting.started.vmware.html":{"position":[[234,4]]},"/jupyter.html":{"position":[[5237,4],[7046,4]]},"/nos.html":{"position":[[5108,5],[5227,4],[5387,5],[6593,5],[7127,4]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[52,4],[100,4],[312,4],[387,5],[838,4],[4743,5],[5907,4],[6349,4],[7338,4],[7511,4],[7881,4],[8050,4],[10170,4],[10226,4],[10258,4],[10405,4],[10465,4],[10636,4],[10673,4],[10719,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1439,4],[5668,4],[8378,4],[13991,4],[14343,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2165,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1100,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[5482,5]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1785,5],[2076,5],[5626,4],[5766,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[5499,5],[6220,4],[6299,4],[6486,4],[9544,4]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1779,4],[1872,4]]},"/mule-teradata-connector/reference.html":{"position":[[754,4],[3003,5],[3162,6],[3714,4],[3923,4],[5335,5],[5494,6],[6044,4],[7628,5],[7789,6],[8342,4],[8551,4],[10171,4],[10380,4],[12386,4],[12595,4],[14155,4],[14364,4],[15649,4],[15858,4],[18708,4],[18917,4],[21869,4],[22078,4],[24724,4],[24932,4],[28391,4],[28600,4],[32431,4],[32640,4],[33370,4],[33458,4],[33527,4],[33762,4],[34144,4],[38518,4],[38539,4],[38576,4],[38690,4],[38788,4],[38935,5],[39833,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3237,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1020,4]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[586,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[4601,4],[7792,4]]},"/regulus/regulus-magic-reference.html":{"position":[[357,4]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1510,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[6411,4],[7592,4],[7658,4],[7713,4],[7768,4],[7839,4]]}},"component":{}}],["time(hours(1",{"_index":1977,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[4652,14]]}},"component":{}}],["time_bucket_p",{"_index":2027,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[7706,15],[8179,15],[8341,16],[8366,15]]}},"component":{}}],["time_bucket_start",{"_index":1974,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[4532,17],[4772,17]]}},"component":{}}],["time_valid_lcl",{"_index":2717,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11660,15],[15282,15],[17653,14],[18994,15],[22891,15]]}},"component":{}}],["time_valid_utc",{"_index":2711,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11481,15],[15103,15],[17560,14],[18534,14],[18815,15],[22712,15]]}},"component":{}}],["timecode(pickup_datetim",{"_index":1978,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[4673,25],[6388,25],[7920,25]]}},"component":{}}],["timecode_rang",{"_index":1979,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[4757,14],[6481,14]]}},"component":{}}],["timeout",{"_index":3853,"title":{},"name":{},"text":{"/mule-teradata-connector/index.html":{"position":[[1391,8]]},"/mule-teradata-connector/reference.html":{"position":[[3667,7],[3797,7],[3822,7],[5997,7],[6115,7],[6151,7],[8295,7],[8425,7],[8450,7],[10124,7],[10254,7],[10279,7],[12339,7],[12469,7],[12494,7],[14108,7],[14238,7],[14263,7],[15602,7],[15732,7],[15757,7],[18661,7],[18791,7],[18816,7],[21822,7],[21952,7],[21977,7],[24677,7],[24795,7],[24831,7],[28344,7],[28474,7],[28499,7],[32384,7],[32514,7],[32539,7]]}},"component":{}}],["timeout_second",{"_index":376,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3316,16]]},"/dbt.html":{"position":[[1490,16]]}},"component":{}}],["timeoutsec=5min",{"_index":2282,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[10533,15]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7313,15]]},"/vantage.express.gcp.html":{"position":[[6340,15]]}},"component":{}}],["timeseri",{"_index":2001,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[5986,10]]}},"component":{}}],["timestamp",{"_index":3339,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6733,9]]},"/mule-teradata-connector/reference.html":{"position":[[39838,9]]}},"component":{}}],["timestamp(0",{"_index":1740,"title":{},"name":{},"text":{"/nos.html":{"position":[[2678,12]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11438,12],[11617,12],[15060,12],[15239,12],[17575,12],[17668,12],[18772,12],[18951,12],[22669,12],[22848,12]]}},"component":{}}],["timestamp(6",{"_index":1960,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3652,13],[3683,13]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6835,13]]}},"component":{}}],["timestamp_field=\"event_timestamp",{"_index":3733,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3902,34]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5434,34]]}},"component":{}}],["timeunit",{"_index":3896,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[6252,8]]}},"component":{}}],["tinyint",{"_index":3957,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[39737,7]]}},"component":{}}],["tip",{"_index":2862,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[4337,4]]}},"component":{}}],["tip_amount",{"_index":1865,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1299,10]]}},"component":{}}],["titl",{"_index":2681,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[6803,6]]}},"component":{}}],["title=sal",{"_index":4429,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[3544,11]]}},"component":{}}],["tl",{"_index":3986,"title":{"/mule-teradata-connector/reference.html#Tls":{"position":[[0,3]]}},"name":{},"text":{"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[1186,3],[1231,3],[1261,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[5482,3],[5499,3],[5577,3],[5666,3],[5788,4],[7053,3],[7064,3]]},"/regulus/regulus-magic-reference.html":{"position":[[669,4]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1146,3],[1233,3],[1353,3],[1425,3],[1904,3],[1931,3],[1975,3],[2212,3],[2239,3],[2283,3],[2778,3],[2817,3],[2844,3],[2888,3],[3046,3],[3073,3],[3117,3],[3345,3],[3372,3],[3416,3],[3640,3],[3667,3],[3711,3],[3951,3],[4002,3],[4029,3],[4073,3],[4370,3],[4397,3],[4441,3],[5032,3],[5059,3],[5103,3],[5392,3],[5419,3],[5463,3],[5678,3],[5705,3],[5749,3],[6455,3],[6482,3],[6526,3],[6760,3],[6787,3],[6831,3]]}},"component":{}}],["tlc/csv_backup/yellow_tripdata_2013",{"_index":1869,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1693,35],[1874,35],[2056,35],[2232,35],[2407,35],[2585,35],[2763,35],[2943,35],[3124,35],[3303,35]]}},"component":{}}],["tmode",{"_index":372,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3293,6]]},"/dbt.html":{"position":[[1467,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2481,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3379,6]]}},"component":{}}],["tmp/helloworld.pi",{"_index":2478,"title":{},"name":{},"text":{"/sto.html":{"position":[[2824,19]]}},"component":{}}],["tmp/index_2020.csv",{"_index":818,"title":{},"name":{},"text":{"/fastload.html":{"position":[[4533,20],[4604,20],[6036,20]]}},"component":{}}],["tmp/jupyterlabroot/demonotebook",{"_index":1437,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[3151,34]]}},"component":{}}],["tmp/jupyterlabroot/teradatasamplenotebook",{"_index":1451,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[4728,44]]}},"component":{}}],["tmp/jupyterlabroot/thirdpartylicens",{"_index":1453,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[4820,39]]}},"component":{}}],["tmp/urlparser.pi",{"_index":2509,"title":{},"name":{},"text":{"/sto.html":{"position":[[5465,17]]}},"component":{}}],["tmp/vantage_password.txt",{"_index":2374,"title":{},"name":{},"text":{"/segment.html":{"position":[[2292,25]]}},"component":{}}],["tmp/vantage_user.txt",{"_index":2371,"title":{},"name":{},"text":{"/segment.html":{"position":[[2126,21]]}},"component":{}}],["to_df",{"_index":3763,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[5188,9]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6775,9]]}},"component":{}}],["to_dict",{"_index":3792,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[7695,11]]}},"component":{}}],["today",{"_index":857,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[229,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[677,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1484,6]]}},"component":{}}],["togeth",{"_index":43,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[528,8]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1924,8]]}},"component":{}}],["toggl",{"_index":3307,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[2572,6]]}},"component":{}}],["token",{"_index":1398,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[6354,5]]},"/segment.html":{"position":[[3982,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[9287,5],[9432,6],[21834,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[3847,5],[3928,5],[4009,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[5111,6],[5772,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2117,6]]},"/regulus/getting-started-with-regulus.html":{"position":[[831,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[8579,5],[9462,5]]}},"component":{}}],["tolls_amount",{"_index":1866,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1310,12]]}},"component":{}}],["tom",{"_index":3052,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[25848,3]]}},"component":{}}],["took",{"_index":652,"title":{},"name":{},"text":{"/dbt.html":{"position":[[2955,4]]}},"component":{}}],["tool",{"_index":405,"title":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[32,5]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_native_object_store_nos_teradata_parallel_transporter_tpt":{"position":[[10,6]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_parallel_transporter_tpt_bteq":{"position":[[10,6]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_querygrid":{"position":[[10,6]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_ingesting_data_from_saas_applications_third_party_tools":{"position":[[51,6]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_airbyte":{"position":[[10,6]]}},"name":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[32,5]]}},"text":{"/advanced-dbt.html":{"position":[[4047,6]]},"/dbt.html":{"position":[[109,5],[2144,6],[2254,5],[3282,5]]},"/fastload.html":{"position":[[695,5],[1399,4],[1560,4],[2198,4],[7080,6]]},"/jdbc.html":{"position":[[994,4]]},"/jupyter.html":{"position":[[236,5]]},"/run-vantage-express-on-aws.html":{"position":[[8850,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5630,4]]},"/segment.html":{"position":[[1178,4]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[137,6],[171,4],[499,4],[862,4],[1258,4],[1515,5]]},"/vantage.express.gcp.html":{"position":[[4657,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1378,5],[1769,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[229,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[234,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1971,6],[2104,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1039,5],[1430,6]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[122,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[104,5],[187,5],[3089,6],[4443,4],[6647,5]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[133,5],[7368,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[249,4],[1117,5],[2412,4],[2538,4],[2698,5],[5061,4],[5667,4],[10080,5],[10770,4],[10847,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[269,5],[608,5],[639,4],[2923,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[549,5],[1274,4],[1425,4],[8625,6]]}},"component":{}}],["toolset",{"_index":1090,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[10471,7]]}},"component":{}}],["top",{"_index":957,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[4178,3]]},"/getting.started.utm.html":{"position":[[4935,3]]},"/getting.started.vbox.html":{"position":[[3761,3]]},"/getting.started.vmware.html":{"position":[[4044,3]]},"/local.jupyter.hub.html":{"position":[[2593,3],[2649,3]]},"/nos.html":{"position":[[1219,3],[4164,3],[6100,3],[6963,3]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[951,3],[3884,3],[4479,3],[6191,3]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[21270,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9718,3],[12938,3]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2248,3]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[2185,3]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2011,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[3914,3]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1796,3]]}},"component":{}}],["topic",{"_index":2390,"title":{},"name":{},"text":{"/segment.html":{"position":[[3383,5],[3442,6],[4321,5],[4572,6],[4856,5],[4953,6],[5033,6]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[648,6]]}},"component":{}}],["toport",{"_index":2171,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[3364,9],[11481,9]]}},"component":{}}],["tot_ag",{"_index":1530,"title":{},"name":{},"text":{"/ml.html":{"position":[[4101,7]]}},"component":{}}],["tot_children",{"_index":1534,"title":{},"name":{},"text":{"/ml.html":{"position":[[4177,12]]}},"component":{}}],["tot_cust_year",{"_index":1532,"title":{},"name":{},"text":{"/ml.html":{"position":[[4137,14]]}},"component":{}}],["tot_incom",{"_index":1528,"title":{},"name":{},"text":{"/ml.html":{"position":[[4074,10]]}},"component":{}}],["total",{"_index":3926,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[34766,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[6395,5],[7176,5],[7217,5],[7252,5],[7291,5],[7330,5],[7365,5],[7823,5]]}},"component":{}}],["total_amount",{"_index":1867,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1323,12]]}},"component":{}}],["tour",{"_index":1201,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[4438,5],[4463,5]]},"/getting.started.vbox.html":{"position":[[3476,5],[3501,5]]},"/getting.started.vmware.html":{"position":[[3547,5],[3572,5]]}},"component":{}}],["tpt",{"_index":700,"title":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_native_object_store_nos_teradata_parallel_transporter_tpt":{"position":[[83,5]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_parallel_transporter_tpt_bteq":{"position":[[47,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[67,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_run_tpt":{"position":[[4,3]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_tpt_vs_nos":{"position":[[0,3]]}},"name":{},"text":{"/fastload.html":{"position":[[216,6]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[390,5],[551,6],[558,3],[619,3]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2396,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[166,5],[287,4],[1398,4],[1403,3],[2069,3],[2131,3],[2601,3],[9062,4],[9077,3],[9102,3]]}},"component":{}}],["tpt10508",{"_index":4551,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[5953,9],[6090,9],[6227,9]]}},"component":{}}],["tpt18046",{"_index":4553,"title":{},"name":{},"text":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[6029,9],[6166,9],[6303,9]]}},"component":{}}],["track",{"_index":465,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[5942,8]]},"/fastload.html":{"position":[[3583,5]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[5780,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[249,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[249,5],[6023,7]]}},"component":{}}],["tradit",{"_index":1319,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[815,11],[7084,11]]}},"component":{}}],["trail",{"_index":2499,"title":{},"name":{},"text":{"/sto.html":{"position":[[5041,8]]}},"component":{}}],["train",{"_index":1473,"title":{"/ml.html":{"position":[[0,5]]},"/cloud-guides/sagemaker-with-teradata-vantage.html#_train_the_model":{"position":[[0,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html#_train_the_model":{"position":[[0,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Load-training-data-to-Vantage":{"position":[[5,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#The-first-pipeline-to-train-and-deploy-a-model-using-Kubeflow":{"position":[[22,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-the-train-model-component":{"position":[[11,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_training_dataset":{"position":[[7,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_training_dataset":{"position":[[7,8]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_generate_training_data":{"position":[[9,8]]}},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[6235,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[597,8],[1066,8],[1399,8],[1604,5],[1936,8],[1968,6],[2038,8],[2798,8],[3290,8],[3327,9],[3358,8],[3386,8],[3571,8],[3734,8],[4048,8],[4282,8],[4341,8],[4413,8],[4483,5],[4628,5],[5042,8],[5281,8],[5968,8],[6009,5],[6152,8],[6269,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[466,5],[815,9],[4774,5],[5175,5],[5324,5],[5684,5],[5919,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[373,8],[427,5],[523,9],[549,6],[2930,7],[3980,8],[4043,8],[5891,5],[5914,8],[6032,7],[6922,6],[6974,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[819,8],[1192,8],[2502,8],[3378,5],[3397,8],[3421,8],[3995,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[856,8],[1229,8],[2539,8],[3415,5],[3434,8],[3458,8],[4180,5],[4267,8],[5956,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[778,8],[4493,9],[4698,8]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1147,8],[2103,8],[5878,8],[6091,8],[7077,8]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1797,5]]}},"component":{}}],["train(context",{"_index":3661,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4199,14]]}},"component":{}}],["train.apply(pd.to_numer",{"_index":3470,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[6982,26]]}},"component":{}}],["train.columns.drop(target",{"_index":3473,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[7103,26]]}},"component":{}}],["train.csv",{"_index":3152,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2988,11]]}},"component":{}}],["train[target",{"_index":3478,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[7411,14]]}},"component":{}}],["train_data",{"_index":3147,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2855,10]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2739,10]]}},"component":{}}],["train_data.to_panda",{"_index":3150,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2921,22]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2834,22]]}},"component":{}}],["train_model",{"_index":3416,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[4001,11],[6439,12]]}},"component":{}}],["train_model(data_fil",{"_index":3513,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[9164,22]]}},"component":{}}],["train_test_split",{"_index":3454,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[6601,16]]}},"component":{}}],["train_test_split(df",{"_index":3467,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[6936,20]]}},"component":{}}],["traindf",{"_index":3149,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2911,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2824,7],[2878,7],[3239,8]]}},"component":{}}],["traindf.to_csv(head=true,index=fals",{"_index":3195,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2888,37]]}},"component":{}}],["traindf.to_csv(trainfilenam",{"_index":3153,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3000,29]]}},"component":{}}],["trainfil",{"_index":3158,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3133,9]]}},"component":{}}],["trainfilenam",{"_index":3151,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2972,13]]}},"component":{}}],["training.pi",{"_index":3660,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4146,12]]}},"component":{}}],["training_data",{"_index":4181,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6548,13],[6792,13]]}},"component":{}}],["training_df",{"_index":3753,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4844,11]]}},"component":{}}],["transact",{"_index":392,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[3708,13]]},"/getting.started.utm.html":{"position":[[4168,11]]},"/getting.started.vbox.html":{"position":[[3206,11]]},"/getting.started.vmware.html":{"position":[[3277,11]]},"/ml.html":{"position":[[3425,12],[6289,12]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[2442,12],[2483,11],[2512,13],[3937,12],[3978,11],[4007,13]]},"/mule-teradata-connector/reference.html":{"position":[[1924,11],[2052,11],[2152,12],[2237,12],[3484,13],[3631,12],[5813,13],[5960,13],[8111,13],[8258,13],[9941,13],[10088,12],[12156,13],[12303,12],[13745,13],[13886,13],[15419,13],[15566,12],[18065,11],[18126,11],[18338,13],[18485,12],[20618,11],[20976,12],[21502,13],[21646,12],[24078,11],[24140,11],[24353,13],[24500,13],[27670,11],[27797,12],[27949,12],[28167,13],[28308,12],[31794,13],[31915,12],[31933,11],[31992,11]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2742,13],[4767,13]]},"/query-service/send-queries-using-rest-api.html":{"position":[[7648,11]]}},"component":{}}],["transcend",{"_index":3615,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2163,9],[2243,9],[2307,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2200,9],[2280,9],[2344,9]]}},"component":{}}],["transfer",{"_index":2769,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[14251,11]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[448,9],[1090,8],[4449,12],[4595,9],[4626,8],[5057,9],[5148,9],[5239,9],[6826,11],[7467,9],[25117,11],[25407,9]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1423,8]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2403,8]]}},"component":{}}],["transform",{"_index":223,"title":{"/advanced-dbt.html#_running_transformations":{"position":[[8,15]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[0,12]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_dbt_transformations":{"position":[[4,15]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html#_executing_transformations":{"position":[[10,15]]}},"name":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[0,12]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[5190,9]]},"/advanced-dbt.html":{"position":[[3632,15],[3651,9],[4180,10],[7091,14]]},"/dbt.html":{"position":[[1797,10],[2935,15],[3309,15],[4146,15]]},"/geojson-to-vantage.html":{"position":[[595,9]]},"/mule.jdbc.example.html":{"position":[[1308,9]]},"/sto.html":{"position":[[1731,14]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[357,9]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4492,14]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[113,9],[3158,15],[3280,16],[3307,10],[3455,10],[3565,14],[5171,15],[5253,12],[6741,15],[8009,9],[8253,9]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[123,9],[6463,14],[7083,11]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[468,10]]},"/mule-teradata-connector/reference.html":{"position":[[31099,15]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[480,15],[624,14],[738,11],[869,12],[1615,14],[1670,14],[1845,11],[1977,11],[2011,11],[4575,10],[4684,9]]}},"component":{}}],["translat",{"_index":1288,"title":{},"name":{},"text":{"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[212,11]]},"/segment.html":{"position":[[202,10]]}},"component":{}}],["transport",{"_index":699,"title":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_native_object_store_nos_teradata_parallel_transporter_tpt":{"position":[[71,11]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_available_tools_teradata_parallel_transporter_tpt_bteq":{"position":[[35,11]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[55,11]]}},"name":{"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[49,11]]}},"text":{"/fastload.html":{"position":[[204,11]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[378,11],[539,11],[1704,11]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2384,11]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[7254,11]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[154,11],[5435,11],[5805,11],[6588,11],[6686,11]]}},"component":{}}],["treat",{"_index":3905,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[20652,7]]}},"component":{}}],["tree",{"_index":3228,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[5130,4],[5280,4],[5886,5]]}},"component":{}}],["tri",{"_index":609,"title":{"/segment.html#_try_it_out":{"position":[[0,3]]}},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[3781,3]]},"/jupyter.html":{"position":[[5416,3]]},"/ml.html":{"position":[[6487,5]]},"/nos.html":{"position":[[3249,3]]},"/run-vantage-express-on-aws.html":{"position":[[426,3]]},"/sto.html":{"position":[[4044,3]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[8461,4]]},"/mule-teradata-connector/index.html":{"position":[[1446,3]]},"/mule-teradata-connector/reference.html":{"position":[[18096,3],[24109,3],[33535,3],[33776,6],[37950,3]]}},"component":{}}],["trial",{"_index":1275,"title":{},"name":{},"text":{"/getting.started.vmware.html":{"position":[[1413,6]]},"/mule.jdbc.example.html":{"position":[[252,5]]}},"component":{}}],["trigger",{"_index":2688,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8286,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[833,9],[4099,9],[5103,9],[6755,7],[25046,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[890,9]]},"/mule-teradata-connector/reference.html":{"position":[[32252,8],[39006,10]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3954,7]]}},"component":{}}],["triggerer_1",{"_index":4085,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[7879,11]]}},"component":{}}],["trip",{"_index":1958,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3550,4],[3872,4],[4239,4],[4593,4],[6130,4],[6335,4],[7439,4],[7867,4]]}},"component":{}}],["trip_dist",{"_index":1854,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1145,13],[3723,13],[3971,13]]}},"component":{}}],["trng_byom",{"_index":3617,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2274,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2311,9]]}},"component":{}}],["trng_xsp",{"_index":3616,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2211,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2248,8]]}},"component":{}}],["troubl",{"_index":4206,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[871,7]]}},"component":{}}],["true",{"_index":194,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3960,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[8327,5]]},"/mule-teradata-connector/reference.html":{"position":[[1618,5],[2498,5],[4212,5],[6540,5],[25221,5],[35077,5],[35321,4],[35739,5],[36186,4],[36393,4],[37097,5]]},"/query-service/send-queries-using-rest-api.html":{"position":[[3226,5],[3537,5],[5810,4],[8112,4],[8268,4],[8580,4],[9436,5],[9652,4]]}},"component":{}}],["truncat",{"_index":2908,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[7197,8]]}},"component":{}}],["trust",{"_index":598,"title":{"/mule-teradata-connector/reference.html#TrustStore":{"position":[[0,5]]}},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[3416,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[9161,7],[9607,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[8927,7],[9260,7]]},"/mule-teradata-connector/reference.html":{"position":[[36626,5],[36638,5],[36910,5],[36972,5],[37064,5],[38353,5]]}},"component":{}}],["tsv",{"_index":2325,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[1513,4],[1903,4],[2281,4]]}},"component":{}}],["ttl",{"_index":3769,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6241,3],[6250,3]]}},"component":{}}],["ttl=timedelta(weeks=52",{"_index":3739,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4053,22]]}},"component":{}}],["ttu",{"_index":708,"title":{"/fastload.html#_install_ttu":{"position":[[8,3]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_install_ttu":{"position":[[8,3]]}},"name":{},"text":{"/fastload.html":{"position":[[715,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[569,5]]}},"component":{}}],["tunnel",{"_index":3998,"title":{"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html#_optional_ssh_tunneling":{"position":[[14,9]]}},"name":{},"text":{"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[1348,7]]}},"component":{}}],["tupl",{"_index":1030,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[7034,7]]}},"component":{}}],["turn",{"_index":44,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[540,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[4233,5]]},"/mule-teradata-connector/reference.html":{"position":[[34956,6]]}},"component":{}}],["turpaud",{"_index":851,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[13,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[13,7]]}},"component":{}}],["turquois",{"_index":2927,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9940,10]]}},"component":{}}],["tutiori",{"_index":3396,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2891,9]]}},"component":{}}],["tutori",{"_index":294,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[850,10],[871,8],[6972,9]]},"/create-parquet-files-in-object-storage.html":{"position":[[447,8],[739,8],[855,9],[4039,8]]},"/dbt.html":{"position":[[60,8],[181,9],[472,8],[4510,8]]},"/geojson-to-vantage.html":{"position":[[9559,9]]},"/ml.html":{"position":[[3150,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[55,8],[219,8],[269,8],[4149,8],[7969,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[56,8],[7262,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[248,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[144,9],[622,9],[3925,9]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[144,9],[659,9]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[74,8],[671,8],[1022,8],[10493,8]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2289,8],[6811,8]]}},"component":{}}],["tutorial.git",{"_index":2355,"title":{},"name":{},"text":{"/segment.html":{"position":[[947,12]]}},"component":{}}],["twice",{"_index":3913,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[30977,5],[31767,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3048,5]]}},"component":{}}],["twilio",{"_index":2348,"title":{"/segment.html":{"position":[[18,6]]}},"name":{},"text":{"/segment.html":{"position":[[95,6],[256,6]]}},"component":{}}],["two",{"_index":435,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[4970,3],[5960,3]]},"/geojson-to-vantage.html":{"position":[[405,3],[4713,3],[9519,3]]},"/getting.started.vbox.html":{"position":[[5229,3]]},"/local.jupyter.hub.html":{"position":[[120,3],[351,3]]},"/ml.html":{"position":[[8024,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[10564,3]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[862,3],[991,3],[1430,3],[1534,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[158,3],[10273,3]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[312,3]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4685,3],[4856,4],[5103,3],[5253,3],[5736,3],[5859,3],[6031,3],[6451,3]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[3267,3],[6217,3]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[358,3]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4333,3],[6661,3]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[250,3]]}},"component":{}}],["twohourserin",{"_index":3629,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2898,14]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2935,14]]}},"component":{}}],["tworkiewicz",{"_index":613,"title":{},"name":{},"text":{"/dbt.html":{"position":[[13,11]]},"/fastload.html":{"position":[[13,11]]},"/getting.started.utm.html":{"position":[[13,11]]},"/getting.started.vbox.html":{"position":[[13,11]]},"/getting.started.vmware.html":{"position":[[13,11]]},"/jdbc.html":{"position":[[13,11]]},"/jupyter.html":{"position":[[13,11]]},"/ml.html":{"position":[[13,11]]},"/mule.jdbc.example.html":{"position":[[13,11]]},"/nos.html":{"position":[[13,11]]},"/odbc.ubuntu.html":{"position":[[13,11]]},"/run-vantage-express-on-aws.html":{"position":[[13,11]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[13,11]]},"/segment.html":{"position":[[13,11]]},"/sto.html":{"position":[[13,11]]},"/vantage.express.gcp.html":{"position":[[13,11]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[13,11]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[13,11]]}},"component":{}}],["tworkowski",{"_index":1228,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[5852,13],[6157,10]]},"/getting.started.vbox.html":{"position":[[4678,13],[4983,10]]},"/getting.started.vmware.html":{"position":[[4961,13],[5266,10]]},"/run-vantage-express-on-aws.html":{"position":[[9736,13],[10041,10]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6516,13],[6821,10]]},"/vantage.express.gcp.html":{"position":[[5543,13],[5848,10]]}},"component":{}}],["tx",{"_index":1548,"title":{},"name":{},"text":{"/ml.html":{"position":[[4647,4]]}},"component":{}}],["tx_resident_ind",{"_index":1549,"title":{},"name":{},"text":{"/ml.html":{"position":[[4674,15]]}},"component":{}}],["type",{"_index":368,"title":{"/geojson-to-vantage.html#_open_the_geojson_file_and_type_it_as_a_dictionary":{"position":[[26,4]]},"/mule-teradata-connector/reference.html#_connection_types":{"position":[[11,5]]},"/mule-teradata-connector/reference.html#_types":{"position":[[0,5]]},"/mule-teradata-connector/reference.html#ColumnType":{"position":[[7,4]]},"/mule-teradata-connector/reference.html#ParameterType":{"position":[[10,4]]},"/mule-teradata-connector/reference.html#TypeClassifier":{"position":[[0,4]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[3219,5],[5821,4]]},"/dbt.html":{"position":[[1397,5],[2462,4],[2497,5]]},"/geojson-to-vantage.html":{"position":[[3317,4],[3717,6],[3780,6],[3844,6],[3908,6],[3970,6],[9033,4],[9466,5]]},"/ml.html":{"position":[[163,4],[487,5]]},"/run-vantage-express-on-aws.html":{"position":[[341,5],[5441,4],[7768,4],[7915,4],[8062,4],[8277,4],[10675,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4548,4],[4695,4],[4842,4],[5057,4],[7455,4]]},"/segment.html":{"position":[[4920,5]]},"/vantage.express.gcp.html":{"position":[[3575,4],[3722,4],[3869,4],[4084,4],[6482,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[4383,5],[7791,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[866,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9967,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3660,5],[4091,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2410,5],[3271,5],[5950,5],[5961,4],[7662,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[905,5],[3371,4],[4914,4],[6676,4],[6815,4],[6916,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2932,5],[5796,5]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1234,4]]},"/mule-teradata-connector/reference.html":{"position":[[422,4],[643,5],[1156,4],[1211,4],[1234,5],[1298,4],[1433,5],[1455,4],[1490,5],[1726,4],[1861,5],[1883,4],[1918,5],[3174,4],[3573,4],[4556,5],[4581,4],[4638,4],[5168,4],[5506,4],[5902,4],[6882,5],[6907,4],[6949,4],[7461,4],[7801,4],[8200,4],[9092,5],[9117,4],[9159,4],[9678,4],[9841,4],[10030,4],[10921,5],[10946,4],[10988,4],[11817,4],[11995,4],[12245,4],[13385,4],[13645,4],[13834,4],[15154,4],[15319,4],[15508,4],[16399,5],[16424,4],[16466,4],[17671,4],[18238,4],[18427,4],[19458,5],[19483,4],[19525,4],[20354,4],[21402,4],[21591,4],[22579,5],[22604,4],[22647,4],[23476,4],[24252,4],[24442,4],[25563,5],[25588,4],[25626,4],[27424,4],[28067,4],[28256,4],[29141,5],[29166,4],[29208,4],[30424,4],[31259,4],[31858,4],[31945,4],[31984,4],[33209,4],[33249,4],[35332,4],[35382,4],[35424,4],[35458,4],[35567,4],[35578,4],[35931,4],[36197,4],[36404,4],[36750,4],[36985,4],[37001,4],[37222,4],[37393,4],[37409,4],[37809,4],[38182,4],[38385,4],[38469,4],[38845,4],[39542,4],[39627,4],[39643,4],[39667,4],[39707,4],[40017,4],[40035,4],[40124,4],[41084,4],[41387,4],[42363,4],[42669,4],[42754,4],[42770,4]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[572,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1455,5],[1808,4],[2021,6],[6918,5],[8811,4],[9747,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1820,4],[3323,5],[4179,5]]},"/query-service/send-queries-using-rest-api.html":{"position":[[2214,6],[2359,6],[2705,6],[2794,6],[3297,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[4778,4],[5373,4],[5382,4],[7383,5]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[2310,4],[4100,4],[4468,4],[5776,4],[6858,4]]}},"component":{}}],["type\":\"char",{"_index":4248,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[4067,13]]}},"component":{}}],["type\":\"float",{"_index":4250,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[4112,14],[4157,14],[4203,14],[4254,14]]}},"component":{}}],["type=fork",{"_index":2280,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[10509,12]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7289,12]]},"/vantage.express.gcp.html":{"position":[[6316,12]]}},"component":{}}],["type=n2",{"_index":2608,"title":{},"name":{},"text":{"/vantage.express.gcp.html":{"position":[[887,7],[1175,7],[1463,7]]}},"component":{}}],["typic",{"_index":2596,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[5917,9]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[4418,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[5505,10]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[262,9]]}},"component":{}}],["tz",{"_index":4467,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[3785,3]]}},"component":{}}],["u",{"_index":2830,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2210,1],[2522,1],[2929,1]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2368,3]]}},"component":{}}],["u.",{"_index":1677,"title":{},"name":{},"text":{"/nos.html":{"position":[[1018,4]]}},"component":{}}],["ubuntu",{"_index":1803,"title":{"/odbc.ubuntu.html":{"position":[[25,6]]}},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[134,7],[305,6],[481,7],[1743,7]]},"/run-vantage-express-on-aws.html":{"position":[[5049,6],[5295,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[1112,6]]},"/vantage.express.gcp.html":{"position":[[485,6]]}},"component":{}}],["ubuntu@$aws_instance_public_ip",{"_index":2207,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[5886,30]]}},"component":{}}],["ubuntult",{"_index":2319,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[1321,9],[1712,9],[2090,9]]}},"component":{}}],["udf",{"_index":2446,"title":{},"name":{},"text":{"/sto.html":{"position":[[214,6],[302,4]]}},"component":{}}],["uefi",{"_index":1140,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[2055,4]]}},"component":{}}],["ui",{"_index":1387,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[5574,3]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[384,2]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[389,2]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4516,3],[4903,3],[5278,3],[6826,2]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2738,3],[2856,2]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3850,3],[8801,2],[8904,3],[8981,2],[10465,2]]},"/regulus/install-regulus-docker-image.html":{"position":[[842,2]]}},"component":{}}],["uif",{"_index":2475,"title":{},"name":{},"text":{"/sto.html":{"position":[[2673,5],[5767,3],[6748,3]]}},"component":{}}],["unabl",{"_index":4420,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[2436,6],[3077,6]]}},"component":{}}],["unam",{"_index":4044,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4673,7],[4685,7]]}},"component":{}}],["unauthent",{"_index":2387,"title":{},"name":{},"text":{"/segment.html":{"position":[[3183,15]]}},"component":{}}],["uncheck",{"_index":2669,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[5783,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[5930,10],[24488,10]]}},"component":{}}],["uncom",{"_index":2804,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2827,9]]}},"component":{}}],["uncov",{"_index":2634,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1425,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2151,8]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1086,8]]}},"component":{}}],["under",{"_index":667,"title":{},"name":{},"text":{"/dbt.html":{"position":[[3617,5]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3620,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[7090,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[7074,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[8366,5]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[482,5],[764,5],[951,5],[1254,5],[3321,5],[4698,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3951,5],[4167,5],[4481,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7111,5]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[3376,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[4038,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[5244,5],[5274,5]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[771,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[5113,5],[5919,5],[6728,5]]}},"component":{}}],["underli",{"_index":36,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[373,10]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[79,10]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[665,10]]}},"component":{}}],["understand",{"_index":1020,"title":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_understand_where_we_are_in_the_methodology":{"position":[[0,10]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_understand_where_we_are_in_the_methodology":{"position":[[0,10]]}},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[6360,10]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[221,10]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3633,10]]}},"component":{}}],["unencrypt",{"_index":1395,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[6212,11]]}},"component":{}}],["unicod",{"_index":602,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[3488,7]]},"/geojson-to-vantage.html":{"position":[[2830,11],[8488,11]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[9665,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9318,7],[9396,7],[13013,9],[19225,9]]}},"component":{}}],["unifi",{"_index":2442,"title":{"/select-the-right-data-ingestion-tools-for-teradata-vantage.html#_move_data_from_different_systems_for_unified_query_processing":{"position":[[37,7]]}},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1166,7],[1391,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[527,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2117,8]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[827,7],[1052,8]]}},"component":{}}],["uninstal",{"_index":4024,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2658,9]]}},"component":{}}],["uniqu",{"_index":460,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[5703,6]]},"/dbt.html":{"position":[[3702,7]]},"/fastload.html":{"position":[[3597,10]]},"/getting.started.utm.html":{"position":[[5667,6]]},"/getting.started.vbox.html":{"position":[[4493,6]]},"/getting.started.vmware.html":{"position":[[4776,6]]},"/ml.html":{"position":[[6368,6]]},"/mule.jdbc.example.html":{"position":[[2445,6]]},"/run-vantage-express-on-aws.html":{"position":[[9551,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6331,6]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[5641,6]]},"/vantage.express.gcp.html":{"position":[[5358,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[18498,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7200,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[7078,8]]}},"component":{}}],["unit",{"_index":2272,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[10375,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7155,6]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3259,5],[3576,4]]},"/vantage.express.gcp.html":{"position":[[6182,6]]},"/mule-teradata-connector/reference.html":{"position":[[3830,4],[3928,4],[6159,4],[8458,4],[8556,4],[10287,4],[10385,4],[12502,4],[12600,4],[14271,4],[14369,4],[15765,4],[15863,4],[18824,4],[18922,4],[21985,4],[22083,4],[24839,4],[24937,4],[28507,4],[28605,4],[32547,4],[32645,4],[34024,4],[38695,4],[38793,4],[41294,4],[41338,4],[42264,4],[42308,4],[42573,4],[42617,4]]},"/regulus/getting-started-with-regulus.html":{"position":[[2846,5]]}},"component":{}}],["unixodbc",{"_index":1809,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[408,8],[417,8]]}},"component":{}}],["unknown",{"_index":3973,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[40002,7]]}},"component":{}}],["unless",{"_index":3189,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1000,6]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[4714,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[3678,6]]}},"component":{}}],["unlimit",{"_index":2886,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[3488,10]]}},"component":{}}],["unrel",{"_index":45,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[550,9]]}},"component":{}}],["unset",{"_index":2831,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2232,5],[2951,5]]}},"component":{}}],["unsuccessfulli",{"_index":3951,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[38984,14]]}},"component":{}}],["until",{"_index":155,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3085,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[4202,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[3943,5]]},"/mule-teradata-connector/reference.html":{"position":[[20486,5],[20700,5],[20734,5],[27557,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[10029,5]]}},"component":{}}],["unus",{"_index":3922,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[34219,6]]}},"component":{}}],["unzip",{"_index":711,"title":{},"name":{},"text":{"/fastload.html":{"position":[[811,5],[856,5],[929,5],[966,8]]},"/getting.started.utm.html":{"position":[[1506,5]]},"/getting.started.vmware.html":{"position":[[1524,5],[1735,5]]},"/local.jupyter.hub.html":{"position":[[3656,5]]},"/run-vantage-express-on-aws.html":{"position":[[7109,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3889,5]]},"/vantage.express.gcp.html":{"position":[[2916,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2241,5],[3471,5],[5536,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[3133,5],[3305,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[3873,5]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[672,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[665,5],[710,5],[783,5],[820,8]]}},"component":{}}],["up",{"_index":543,"title":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Setting-up-Vantage-and-loading-data":{"position":[[8,2]]},"/regulus/install-regulus-docker-image.html#_configure_and_set_up_workspaces":{"position":[[18,2]]}},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[1731,2]]},"/dbt.html":{"position":[[4444,2]]},"/fastload.html":{"position":[[5091,3]]},"/getting.started.utm.html":{"position":[[3241,3],[4321,3]]},"/getting.started.vbox.html":{"position":[[2279,3],[3359,3]]},"/getting.started.vmware.html":{"position":[[2350,3],[3430,3]]},"/jdbc.html":{"position":[[727,3]]},"/jupyter.html":{"position":[[6526,2]]},"/nos.html":{"position":[[5328,3]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[4435,2],[6103,2]]},"/run-vantage-express-on-aws.html":{"position":[[8449,3],[8723,2],[10973,2],[11306,2]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5229,3],[5503,2],[7753,2],[8086,2]]},"/segment.html":{"position":[[1005,2]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1263,3],[4407,2]]},"/vantage.express.gcp.html":{"position":[[4256,3],[4530,2],[6780,2],[7113,2]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2628,2],[2675,2],[4840,2],[8547,2]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7903,2]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[2374,2],[2401,2],[3156,2],[3391,2],[3863,2]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1442,2],[4460,2],[4513,2],[13617,2]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1480,2]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1517,2]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3229,2],[5032,2],[6221,2],[6378,2],[6702,3],[7102,2],[7235,2],[7367,2],[7499,2],[7665,2],[7830,2],[7963,2],[8087,2],[8193,2],[8334,2],[10062,2],[10107,2]]},"/regulus/getting-started-with-regulus.html":{"position":[[143,2],[3629,2]]},"/regulus/install-regulus-docker-image.html":{"position":[[143,2],[1548,2],[4145,2],[4982,2],[9320,2],[9636,2]]},"/regulus/regulus-magic-reference.html":{"position":[[143,2],[4540,2]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[602,2],[1831,2],[2724,2],[3509,2],[4929,2]]}},"component":{}}],["updat",{"_index":16,"title":{"/getting.started.vbox.html#_updating_virtualbox_guest_extensions":{"position":[[0,8]]},"/mule-teradata-connector/reference.html#bulkUpdate":{"position":[[5,6]]},"/mule-teradata-connector/reference.html#update":{"position":[[0,6]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[42,8]]},"/advanced-dbt.html":{"position":[[28,8],[4130,7],[4204,7],[4378,7],[5242,8],[6629,7],[6744,8],[6943,7]]},"/create-parquet-files-in-object-storage.html":{"position":[[23,8]]},"/dbt.html":{"position":[[30,8]]},"/fastload.html":{"position":[[30,8]]},"/geojson-to-vantage.html":{"position":[[26,8]]},"/getting.started.utm.html":{"position":[[30,8]]},"/getting.started.vbox.html":{"position":[[30,8],[5415,6],[5478,6]]},"/getting.started.vmware.html":{"position":[[30,8]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[33,8]]},"/jdbc.html":{"position":[[30,8]]},"/jupyter.html":{"position":[[30,8]]},"/local.jupyter.hub.html":{"position":[[27,8]]},"/ml.html":{"position":[[30,8]]},"/mule.jdbc.example.html":{"position":[[30,8],[1997,7]]},"/nos.html":{"position":[[30,8]]},"/odbc.ubuntu.html":{"position":[[30,8],[347,6]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[26,8]]},"/run-vantage-express-on-aws.html":{"position":[[30,8],[6086,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[30,8],[2866,6]]},"/segment.html":{"position":[[30,8],[3028,6],[3074,6]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[27,8]]},"/sto.html":{"position":[[30,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[27,8]]},"/teradatasql.html":{"position":[[27,8]]},"/vantage.express.gcp.html":{"position":[[30,8],[1893,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[24,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[27,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[27,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[26,8],[315,6],[684,6],[740,8],[4948,8],[23385,6],[23407,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[26,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[26,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[24,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[27,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[27,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[39,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[39,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[75,8]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[24,8],[106,6]]},"/mule-teradata-connector/index.html":{"position":[[24,8],[1187,6]]},"/mule-teradata-connector/reference.html":{"position":[[24,8],[2836,6],[2921,6],[7598,7],[7761,6],[28034,7]]},"/mule-teradata-connector/release-notes.html":{"position":[[24,8],[787,6]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[30,8]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[40,8],[4550,6],[8458,6],[8697,6],[9621,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[28,8]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[23,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[26,8],[10949,6]]},"/regulus/getting-started-with-regulus.html":{"position":[[29,8]]},"/regulus/install-regulus-docker-image.html":{"position":[[29,8]]},"/regulus/regulus-magic-reference.html":{"position":[[29,8]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[29,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[30,8],[1468,6]]}},"component":{}}],["upgrad",{"_index":3357,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1190,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[3308,7],[8788,7]]}},"component":{}}],["upload",{"_index":734,"title":{"/sto.html#_uploading_scripts":{"position":[[0,9]]}},"name":{},"text":{"/fastload.html":{"position":[[1591,9]]},"/ml.html":{"position":[[1022,6],[1564,6]]},"/sto.html":{"position":[[2630,6],[3171,6],[3347,9],[3577,9]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[5280,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1888,6],[1967,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1216,6]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3056,6],[4134,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3055,6],[3305,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[208,6],[665,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[208,6],[702,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2043,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2456,6],[3495,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1676,9]]}},"component":{}}],["upon",{"_index":225,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[5216,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[843,4],[7813,4],[25702,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5912,4]]},"/query-service/send-queries-using-rest-api.html":{"position":[[8151,4]]}},"component":{}}],["upper",{"_index":2912,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[7793,5],[25682,5]]},"/mule-teradata-connector/reference.html":{"position":[[40464,5],[41727,5]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[445,5]]}},"component":{}}],["upsert",{"_index":3118,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[6589,6],[7222,6],[7915,6]]}},"component":{}}],["uptim",{"_index":2418,"title":{},"name":{},"text":{"/segment.html":{"position":[[5207,7]]}},"component":{}}],["uri",{"_index":1798,"title":{},"name":{},"text":{"/nos.html":{"position":[[8062,5],[8286,3]]}},"component":{}}],["url",{"_index":1344,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[2108,3],[2368,5],[6083,3],[6240,3],[6533,3]]},"/mule.jdbc.example.html":{"position":[[1890,3]]},"/segment.html":{"position":[[2849,3]]},"/sto.html":{"position":[[4428,4],[5061,3],[5240,4],[5642,4],[5859,3],[5868,5],[6902,3],[6911,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4251,3],[4322,3]]},"/mule-teradata-connector/reference.html":{"position":[[2256,3],[2272,3],[38222,3],[38237,3]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8830,4]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1255,3],[1497,3],[3392,3],[3630,4],[5668,3],[5888,4],[8201,3],[8346,4],[9103,3],[9520,3],[9730,4],[10266,3],[10383,4],[11004,3],[11129,4],[11595,3],[11680,4]]},"/regulus/getting-started-with-regulus.html":{"position":[[790,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[3228,4],[4242,4],[4808,4],[4820,3],[4841,4],[4883,4],[5043,4],[5169,3],[5197,3],[5767,4],[6801,3],[6824,3],[6887,3],[6910,3],[7303,3],[7316,3],[7348,3],[8538,4],[9421,4]]}},"component":{}}],["url_param",{"_index":2533,"title":{},"name":{},"text":{"/sto.html":{"position":[[7091,10],[7123,11]]}},"component":{}}],["url_params(param_key",{"_index":2532,"title":{},"name":{},"text":{"/sto.html":{"position":[[6830,21]]}},"component":{}}],["urllib.pars",{"_index":2494,"title":{},"name":{},"text":{"/sto.html":{"position":[[4922,12],[4956,12]]}},"component":{}}],["urlpars",{"_index":2495,"title":{},"name":{},"text":{"/sto.html":{"position":[[4942,8]]}},"component":{}}],["urlparse(url",{"_index":2503,"title":{},"name":{},"text":{"/sto.html":{"position":[[5093,13]]}},"component":{}}],["urlparser.pi",{"_index":2511,"title":{},"name":{},"text":{"/sto.html":{"position":[[5543,15]]}},"component":{}}],["urls('http://www.ebay.com/sch/i.html?_trksid=p2050601.m570.l1313.tr0.trc0.h0.xteradata+merchandise&_nkw=teradata+merchandise&_sacat=0&_from=r40",{"_index":2491,"title":{},"name":{},"text":{"/sto.html":{"position":[[4531,146]]}},"component":{}}],["urls('https://www.contrivedexample.com/example?mylist=1&mylist=2&mylist=...test",{"_index":2493,"title":{},"name":{},"text":{"/sto.html":{"position":[[4767,85]]}},"component":{}}],["urls('https://www.google.com/finance?q=nyse:tdc",{"_index":2490,"title":{},"name":{},"text":{"/sto.html":{"position":[[4476,50]]}},"component":{}}],["urls('https://www.youtube.com/results?search_query=teradata%20commercial&sm=3",{"_index":2492,"title":{},"name":{},"text":{"/sto.html":{"position":[[4682,80]]}},"component":{}}],["urls(url",{"_index":2487,"title":{},"name":{},"text":{"/sto.html":{"position":[[4446,8]]}},"component":{}}],["us",{"_index":4,"title":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[34,5]]},"/advanced-dbt.html":{"position":[[13,3]]},"/geojson-to-vantage.html":{"position":[[0,3]]},"/geojson-to-vantage.html#_use_the_map_from_vantage":{"position":[[0,3]]},"/geojson-to-vantage.html#_use_your_data":{"position":[[0,3]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[0,3]]},"/jdbc.html":{"position":[[19,5]]},"/jupyter.html":{"position":[[0,3]]},"/local.jupyter.hub.html#_use_teradata_jupyter_docker_image":{"position":[[0,3]]},"/local.jupyter.hub.html#_use_teradata_jupyter_docker_image_in_jupyterhub":{"position":[[0,3]]},"/odbc.ubuntu.html":{"position":[[0,3]]},"/odbc.ubuntu.html#_use_odbc":{"position":[[0,3]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[29,5]]},"/perform-time-series-analysis-using-teradata-vantage.html#_import_data_sets_from_aws_s3_using_vantage_nos":{"position":[[29,5]]},"/teradatasql.html":{"position":[[19,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_accept_and_receive_data_using_azure_data_share":{"position":[[24,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_use_startup_script":{"position":[[0,3]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html#_use_custom_container":{"position":[[0,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[39,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_exploring_data_using_nos":{"position":[[15,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_export_vantage_data_to_amazon_s3_using_nos":{"position":[[33,5]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[0,3]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[0,3]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[66,5]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[0,3]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#The-first-pipeline-to-train-and-deploy-a-model-using-Kubeflow":{"position":[[47,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_create_a_new_project_or_use_an_existing_one":{"position":[[24,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_create_a_new_project_or_use_an_existing_one":{"position":[[24,3]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[0,5]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[0,5]]},"/mule-teradata-connector/index.html#_common_use_cases_for_the_connector":{"position":[[7,3]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[31,3]]},"/query-service/send-queries-using-rest-api.html":{"position":[[13,5]]},"/query-service/send-queries-using-rest-api.html#_use_explicit_session_to_submit_a_query":{"position":[[0,3]]},"/query-service/send-queries-using-rest-api.html#_use_asynchronous_queries":{"position":[[0,3]]},"/regulus/install-regulus-docker-image.html":{"position":[[30,5]]},"/regulus/install-regulus-docker-image.html#_install_workspaces_using_docker_engine":{"position":[[19,5]]},"/regulus/install-regulus-docker-image.html#_install_workspaces_using_docker_compose":{"position":[[19,5]]},"/regulus/install-regulus-docker-image.html#_install_jupyterlab_using_docker_engine":{"position":[[19,5]]},"/regulus/install-regulus-docker-image.html#_install_jupyterlab_using_docker_compose":{"position":[[19,5]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[0,3]]},"/regulus/using-regulus-workspace-cli.html#_use_workspaces_cli":{"position":[[0,3]]}},"name":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[43,5]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[29,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[41,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[0,3]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[66,5]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[0,3]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[0,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[31,3]]},"/query-service/send-queries-using-rest-api.html":{"position":[[13,5]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[0,5]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[365,3],[1371,3],[1548,4],[1639,3],[2276,4],[3464,5],[4104,4],[4205,5],[4805,3]]},"/advanced-dbt.html":{"position":[[271,3],[1131,5],[1767,4],[2920,4],[3922,5],[4579,5],[6234,5],[6321,5]]},"/create-parquet-files-in-object-storage.html":{"position":[[332,6],[519,5],[2809,5],[3560,5],[4132,5]]},"/dbt.html":{"position":[[89,3],[2281,3],[2506,3],[2881,5],[4116,7],[4539,3],[4645,4]]},"/fastload.html":{"position":[[180,5],[424,3],[1284,3],[1377,3],[2278,3],[2450,3],[3781,6],[6539,3],[6665,5],[7109,5],[7511,5]]},"/geojson-to-vantage.html":{"position":[[145,3],[346,3],[498,3],[1310,3],[2987,3],[3229,3],[3647,5],[5098,3],[5250,3],[5532,5],[5597,4],[5805,3],[6278,5],[8924,3],[9393,5],[9509,5],[10321,3],[10361,5],[10587,3]]},"/getting.started.utm.html":{"position":[[1276,4],[2590,5],[4602,5],[4992,5],[5099,5],[6279,4]]},"/getting.started.vbox.html":{"position":[[590,5],[1004,4],[1138,5],[3640,5],[3818,5],[3925,5],[5875,4]]},"/getting.started.vmware.html":{"position":[[590,5],[961,4],[1115,3],[3711,5],[4101,5],[4208,5],[5388,4]]},"/jdbc.html":{"position":[[119,5],[130,5],[919,5],[1004,4]]},"/jupyter.html":{"position":[[608,3],[805,6],[1022,3],[1547,4],[1639,3],[1799,5],[3070,5],[3222,4],[3733,3],[4038,4],[4283,3],[5105,3],[5199,6],[5351,5],[5619,4],[5764,3],[6206,5],[6444,4],[6541,3],[7015,6]]},"/local.jupyter.hub.html":{"position":[[201,3],[947,3],[1010,3],[1151,5],[1317,3],[1796,3],[2190,3],[2262,3],[2535,3],[2715,3],[2843,3],[3302,6],[3484,3],[3568,6],[3802,3],[3930,3]]},"/ml.html":{"position":[[429,3],[748,5],[1261,3],[1388,3],[1553,3],[3222,3],[7295,3],[7349,3],[8918,4],[9024,5],[9059,5]]},"/mule.jdbc.example.html":{"position":[[829,3],[932,5],[2807,3],[2979,5]]},"/nos.html":{"position":[[244,6],[928,3],[3105,4],[3859,3],[4089,5],[5582,4],[6717,5],[6775,4],[6883,4],[7519,5],[7703,3],[8028,5],[8297,5],[8478,5]]},"/odbc.ubuntu.html":{"position":[[89,3],[1709,3]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[754,5],[4318,3],[4667,5],[6382,5],[7914,5],[8195,5],[10657,5]]},"/run-vantage-express-on-aws.html":{"position":[[309,4],[614,5],[1114,5],[8376,3],[8855,4],[9028,5],[11154,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[272,5],[5156,3],[5635,4],[5808,5],[7934,5],[8115,5]]},"/segment.html":{"position":[[170,4],[1052,5],[2464,3],[3509,4],[4843,3],[4926,6],[4960,3]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[85,3],[185,3],[405,4],[867,4],[1475,3],[1530,3],[1639,5],[1735,3]]},"/sto.html":{"position":[[2160,4],[2916,5],[3200,5],[3605,3],[3706,3],[4100,5],[4861,3],[5341,5],[7558,5]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1297,4],[1388,4],[2268,3],[2708,5],[3213,5],[3317,4],[5294,5],[5342,3],[5515,3]]},"/teradatasql.html":{"position":[[104,5],[481,3],[701,5],[867,5],[983,5]]},"/vantage.express.gcp.html":{"position":[[278,5],[4183,3],[4662,4],[4835,5],[6961,5],[7142,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[152,5],[291,3],[894,5],[1030,3],[1619,4],[1943,4],[2016,5],[2105,3],[2417,4],[3017,5],[3400,3],[3479,3],[3686,3],[4002,3],[4063,3],[4397,3],[4957,3],[5062,3],[5245,3],[5391,3],[5771,3],[6714,5],[7291,3],[7411,4],[7473,3],[7850,3],[9744,5],[11118,3],[13850,6],[14502,3],[14739,4],[17166,3],[20886,3],[21137,3],[21357,5],[22103,5],[24648,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1065,3],[1124,3],[1488,3],[1507,3],[2859,3],[3784,3],[3865,3],[3948,3],[5355,3],[6313,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[895,5],[960,3],[1422,5],[1494,5],[1545,3],[4507,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[162,3],[418,5],[527,4],[676,4],[1821,4],[2286,4],[2350,5],[2439,3],[4077,3],[4254,4],[4561,4],[4685,5],[5359,5],[5402,5],[5476,5],[5522,5],[6061,5],[6224,3],[6549,3],[6621,3],[6874,3],[8400,4],[8838,3],[9167,5],[9406,5],[10777,3],[12742,4],[13023,5],[15424,6],[15694,4],[15761,3],[17476,5],[17502,3],[19235,5],[19639,5],[23328,3],[23737,5],[23929,5],[24262,5],[24619,5],[24841,3],[24998,3],[25165,3],[25207,3],[25314,3],[26028,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[149,5],[1280,4],[4291,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[316,3],[423,4],[493,3],[879,4],[962,3],[1333,3],[1877,3],[2823,5],[3592,3],[3622,3],[4656,5],[4886,3],[5229,3],[5537,3],[5899,4],[5999,3],[6057,4],[6296,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[135,3],[362,5],[435,4],[1302,3],[2614,5],[2699,5],[3328,3],[4845,3],[6874,3],[7165,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[84,3],[310,5],[413,5],[912,5],[943,3],[1764,3],[1858,5],[3606,5],[4288,4],[4488,4],[5187,5],[7998,3],[8241,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[82,3],[258,5],[806,3],[1110,3],[2482,5],[2529,4],[3523,4],[4814,5],[5075,4],[5320,3],[5361,4],[5555,4],[5589,3],[7348,3],[7727,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[564,5],[632,5],[730,3],[1908,3],[3019,3],[3676,5],[3742,5],[3799,5],[4617,5],[4809,4],[4915,4],[5193,3],[6046,5],[6114,3],[9521,3],[9695,5],[10549,5],[10658,3],[10951,5],[11292,4],[11979,5],[12393,4]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[309,5],[874,3],[912,3],[955,3],[1247,3],[1285,3],[1328,3],[4280,3],[4534,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[290,5],[911,3],[949,3],[992,3],[1284,3],[1322,3],[1365,3],[6230,3],[6375,3],[6521,3]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[196,4],[657,3],[845,3],[910,4],[980,4],[1167,5],[1587,5],[1645,3],[1840,3],[2088,4],[4503,5],[4613,4],[5265,3],[5537,4],[5598,4],[6015,4],[7070,4],[7254,5],[7865,4],[7956,4],[9350,4],[9643,3]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[577,5],[1580,3],[2273,4],[3528,4],[4637,5]]},"/mule-teradata-connector/index.html":{"position":[[399,3],[985,3],[1491,5],[1557,5]]},"/mule-teradata-connector/reference.html":{"position":[[356,3],[1132,3],[2145,3],[2279,3],[3009,5],[3268,3],[3808,5],[4257,5],[5341,5],[5600,3],[6126,4],[6583,5],[7634,5],[7895,3],[8436,5],[9935,3],[10265,5],[11368,5],[12089,3],[12480,5],[13739,3],[14249,5],[15413,3],[15743,5],[16838,5],[18332,3],[18632,3],[18802,5],[19897,5],[21241,3],[21496,3],[21793,3],[21963,5],[23019,5],[24346,4],[24648,3],[24806,4],[25264,5],[25994,5],[26335,5],[26636,5],[28161,3],[28485,5],[29577,5],[30769,4],[31353,3],[31461,3],[31516,4],[32525,5],[34454,3],[34501,4],[34860,4],[35232,5],[35398,4],[35463,4],[35542,4],[35921,3],[36952,4],[37015,5],[37052,4],[37194,3],[37423,5],[37550,5],[37606,4],[37656,4],[37718,4],[37780,4],[38008,3],[39042,3],[39077,3],[39204,4],[39317,3],[39404,3],[40903,4],[40963,5],[42084,4],[42144,5],[42475,3]]},"/mule-teradata-connector/release-notes.html":{"position":[[585,3]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[791,3],[1176,5],[1227,3],[1337,3]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[163,3],[272,4],[970,3],[1486,3],[1724,5],[2379,3],[5637,5],[6180,3],[6740,5],[6778,4],[9874,3],[10611,3],[10827,3]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[426,4],[573,4],[2003,3],[2086,4],[4641,3],[4726,3],[6009,5],[6840,3]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1824,5]]},"/query-service/send-queries-using-rest-api.html":{"position":[[112,3],[185,3],[325,3],[948,5],[1024,3],[1048,3],[1166,4],[1247,3],[1632,5],[1780,5],[7619,3],[7700,5],[7881,4],[8587,3],[9057,3],[9848,5]]},"/regulus/getting-started-with-regulus.html":{"position":[[236,3],[429,5],[780,5],[874,5],[2317,5],[2962,5],[3430,3],[3833,3],[3890,3]]},"/regulus/install-regulus-docker-image.html":{"position":[[414,5],[858,3],[1046,3],[1153,3],[1280,5],[1297,3],[1334,3],[2533,5],[3218,5],[4232,5],[4273,4],[4417,3],[5033,5],[5478,3],[5720,3],[6271,4],[6298,3],[7049,3],[7253,3],[7700,3],[7832,3],[7919,5],[8004,3],[8528,5],[8691,3],[9411,5],[9574,3],[9642,3],[9814,3]]},"/regulus/regulus-magic-reference.html":{"position":[[665,3],[1334,5],[1574,3],[2098,5],[3453,4],[3554,4],[3868,4]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[468,3],[616,5],[674,5],[1036,5],[2548,4],[4698,3],[5877,5],[5981,5],[6056,3],[6229,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[283,3],[1159,3],[1252,3],[1442,4],[2777,5],[2817,3],[5554,5],[6416,4],[7844,4],[8084,3],[8210,5],[8654,5],[9056,5]]}},"component":{}}],["us/cli/azure/instal",{"_index":2307,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[515,20]]}},"component":{}}],["us/fre",{"_index":2305,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[380,8]]}},"component":{}}],["us/pacif",{"_index":3325,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[5753,12]]}},"component":{}}],["usabl",{"_index":865,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[565,6],[1417,6],[5149,6],[5299,6]]}},"component":{}}],["usag",{"_index":2121,"title":{"/modelops/using-feast-feature-store-with-teradata-vantage.html#_offline_store_usage":{"position":[[14,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html#_online_store_usage":{"position":[[13,5]]}},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[568,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[226,5]]},"/vantage.express.gcp.html":{"position":[[232,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[4331,5]]},"/query-service/send-queries-using-rest-api.html":{"position":[[652,5],[5275,5],[10215,5],[12497,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[2394,5]]},"/regulus/regulus-magic-reference.html":{"position":[[413,6],[891,6],[1349,6],[1717,6],[2233,6],[2647,6],[2890,6],[3133,6],[4053,6],[4280,6],[4431,6],[4612,6],[4824,6],[5067,6],[5142,6]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1626,6],[1857,6],[2168,6],[2739,6],[3005,6],[3301,6],[3599,6],[3909,6],[4313,6],[4983,6],[5346,6],[5620,6],[6411,6],[6711,6]]}},"component":{}}],["usedspace_in_gb\":0.0",{"_index":4275,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[5027,22]]}},"component":{}}],["usedspace_in_gb\":0.0007491111755371094",{"_index":4260,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[4485,40]]}},"component":{}}],["usedspace_in_gb\":0.006140708923339844",{"_index":4270,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[4850,39]]}},"component":{}}],["usedspace_in_gb\":0.019153594970703125",{"_index":4265,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[4675,39]]}},"component":{}}],["usedspace_in_gb\":317.76382541656494",{"_index":4255,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[4307,37]]}},"component":{}}],["user",{"_index":120,"title":{"/regulus/using-regulus-workspace-cli.html#_workspaces_user_list":{"position":[[11,4]]},"/regulus/using-regulus-workspace-cli.html#_project_user_list":{"position":[[8,4]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2207,4],[2230,4]]},"/advanced-dbt.html":{"position":[[137,4],[3240,5]]},"/create-parquet-files-in-object-storage.html":{"position":[[1492,4],[1734,5]]},"/dbt.html":{"position":[[1418,5]]},"/geojson-to-vantage.html":{"position":[[2083,4],[3341,4],[7731,4]]},"/getting.started.utm.html":{"position":[[5109,5]]},"/getting.started.vbox.html":{"position":[[3935,5]]},"/getting.started.vmware.html":{"position":[[4218,5]]},"/jupyter.html":{"position":[[7343,4]]},"/local.jupyter.hub.html":{"position":[[2221,5],[2416,5],[4128,4],[4563,4],[4679,4],[4860,4],[6114,4]]},"/ml.html":{"position":[[1980,5],[2030,4],[2590,4],[9115,4]]},"/mule.jdbc.example.html":{"position":[[1965,6]]},"/nos.html":{"position":[[3751,4],[7307,4]]},"/odbc.ubuntu.html":{"position":[[1952,4]]},"/run-vantage-express-on-aws.html":{"position":[[5948,5],[9038,5],[11054,5],[11091,4],[11239,5],[11252,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2473,5],[5818,5],[7834,5],[7871,4],[8019,5],[8032,4]]},"/sto.html":{"position":[[192,4],[2652,4],[3077,4],[7871,4]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[1249,4],[1339,4],[3330,4]]},"/vantage.express.gcp.html":{"position":[[1755,5],[4845,5],[6861,5],[6898,4],[7046,5],[7059,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[136,4],[345,6],[9169,4],[9319,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[407,5],[759,5],[908,4],[954,4],[1041,4],[3723,4],[4027,4],[6163,4],[6278,4],[6372,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[412,5],[2216,4],[2935,4],[3459,4],[4466,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1072,5],[1314,5],[2448,5],[4782,4],[8935,4],[9022,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2532,4],[4211,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[3434,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2042,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[648,5],[3007,5],[5629,5],[5871,5]]},"/mule-teradata-connector/reference.html":{"position":[[2312,4],[13603,5]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[889,5],[937,5],[1068,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1734,4],[1739,5],[2224,4],[2254,5],[5337,5],[5813,4],[5886,4],[6161,4],[6196,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3344,5],[4265,5]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[591,5]]},"/query-service/send-queries-using-rest-api.html":{"position":[[2445,4],[8479,7],[11876,7],[12200,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[758,4],[879,4],[4312,5],[4606,5]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1821,5],[1889,4],[3330,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2859,4],[9081,4]]}},"component":{}}],["user\":\"dbc",{"_index":4360,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[10546,13]]}},"component":{}}],["user.target",{"_index":2291,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[10779,11]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7559,11]]},"/vantage.express.gcp.html":{"position":[[6586,11]]}},"component":{}}],["user/airflow/dag",{"_index":4113,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[9125,18]]}},"component":{}}],["user/anaconda3/bin/activ",{"_index":2856,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[3533,27]]}},"component":{}}],["user/anaconda3/condabin",{"_index":2855,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[3406,23]]}},"component":{}}],["user/password",{"_index":3999,"title":{},"name":{},"text":{"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[1454,14]]}},"component":{}}],["user/sagemaker/custom",{"_index":2835,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2323,21],[2988,21]]}},"component":{}}],["user10",{"_index":4286,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[6217,6]]}},"component":{}}],["user=$teradata2dc_teradata_usernam",{"_index":3083,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[3951,35]]}},"component":{}}],["user=root",{"_index":2278,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[10488,9]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7268,9]]},"/vantage.express.gcp.html":{"position":[[6295,9]]}},"component":{}}],["user=tdus",{"_index":909,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[2584,12],[8232,12]]}},"component":{}}],["user_metadata",{"_index":3822,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9186,14]]}},"component":{}}],["user_nam",{"_index":4294,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[6471,9]]}},"component":{}}],["userid",{"_index":1505,"title":{},"name":{},"text":{"/ml.html":{"position":[[2708,7]]}},"component":{}}],["usernam",{"_index":180,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3646,8],[3760,8]]},"/fastload.html":{"position":[[2492,8]]},"/getting.started.utm.html":{"position":[[4620,8]]},"/getting.started.vbox.html":{"position":[[3658,8]]},"/getting.started.vmware.html":{"position":[[3729,8]]},"/mule.jdbc.example.html":{"position":[[2056,8]]},"/odbc.ubuntu.html":{"position":[[1239,8]]},"/run-vantage-express-on-aws.html":{"position":[[11167,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[1341,8],[1732,8],[2110,8],[7947,8]]},"/vantage.express.gcp.html":{"position":[[6974,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[6393,8]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2730,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2655,8]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2102,9],[2161,9],[2461,9]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[462,9],[3486,9]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2190,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[7874,9]]},"/mule-teradata-connector/reference.html":{"position":[[2333,8]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[732,9]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8928,9]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[6307,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1685,8],[1734,10]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2832,8],[3137,10]]}},"component":{}}],["username/password",{"_index":1175,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[3301,17]]},"/getting.started.vbox.html":{"position":[[2339,17]]},"/getting.started.vmware.html":{"position":[[2410,17]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2342,17]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2379,17]]}},"component":{}}],["username:password",{"_index":4225,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[2285,17]]}},"component":{}}],["users/databas",{"_index":4053,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[5592,15]]}},"component":{}}],["users/teradata/apps/cloud/gcp/teradata2dc",{"_index":3093,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[4700,42],[5366,42]]}},"component":{}}],["usg",{"_index":1681,"title":{},"name":{},"text":{"/nos.html":{"position":[[1070,4],[1252,4],[2082,4],[2451,4],[2541,4],[2625,4],[2742,4],[2841,4],[2937,4],[3428,4],[4114,4],[4427,4],[4543,4],[4660,4],[4777,4],[4894,4],[5011,4],[6996,4],[7544,4]]}},"component":{}}],["usr/bin/dock",{"_index":4047,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4815,15]]}},"component":{}}],["usr/bin/dumb",{"_index":4066,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[7064,14],[7197,14],[7329,14],[7461,14],[7627,14],[7792,14],[7925,14]]}},"component":{}}],["usr/local/bin",{"_index":1444,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[4347,14]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[2308,14],[4246,14]]}},"component":{}}],["usr/local/bin/dock",{"_index":4045,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4700,21],[4744,21],[4785,21]]}},"component":{}}],["usr/local/bin/teradatakernel",{"_index":1447,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[4376,29]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[4275,29]]}},"component":{}}],["usual",{"_index":4016,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1632,8]]}},"component":{}}],["utc",{"_index":4469,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[3798,4]]}},"component":{}}],["utf",{"_index":4220,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[2116,4]]}},"component":{}}],["util",{"_index":274,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[351,7],[1562,5],[1581,6],[5092,7],[6998,11],[7261,7]]},"/fastload.html":{"position":[[105,8],[118,7],[313,7],[705,9]]},"/run-vantage-express-on-aws.html":{"position":[[758,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[405,7]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[216,7]]},"/vantage.express.gcp.html":{"position":[[353,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2402,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2887,9],[2921,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[935,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[172,7],[559,9]]}},"component":{}}],["utm",{"_index":1096,"title":{"/getting.started.utm.html":{"position":[[23,3]]},"/getting.started.utm.html#_run_utm_installer":{"position":[[4,3]]}},"name":{},"text":{"/getting.started.utm.html":{"position":[[713,3],[1369,4],[1382,3],[1539,4],[2487,3]]},"/getting.started.vbox.html":{"position":[[728,4]]},"/getting.started.vmware.html":{"position":[[725,4],[1480,4]]},"/ml.html":{"position":[[777,4]]},"/run-vantage-express-on-aws.html":{"position":[[643,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[301,4]]},"/vantage.express.gcp.html":{"position":[[304,4]]},"/jupyter-demos/index.html":{"position":[[550,4]]}},"component":{}}],["uuid",{"_index":3336,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6607,4]]}},"component":{}}],["uuid=$disk_uuid",{"_index":2343,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[2762,16]]}},"component":{}}],["uvh",{"_index":1502,"title":{},"name":{},"text":{"/ml.html":{"position":[[2492,3]]}},"component":{}}],["v",{"_index":1341,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[2021,1],[5981,1]]},"/regulus/install-regulus-docker-image.html":{"position":[[3667,1]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[5335,1]]}},"component":{}}],["v6",{"_index":3637,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[3203,2]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[3240,2]]}},"component":{}}],["v7",{"_index":3609,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[1350,2],[3210,2],[4165,2],[4730,2]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[1387,2],[3247,2]]}},"component":{}}],["val",{"_index":1482,"title":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_validate_permissions_in_sql_database_for_val_and_byom":{"position":[[41,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_validate_permissions_in_sql_database_for_val_and_byom":{"position":[[41,3]]}},"name":{},"text":{"/ml.html":{"position":[[459,5],[843,6],[883,3],[914,3],[991,3],[1701,3],[1767,3],[1823,3],[1935,3],[2055,3],[2137,3],[2173,3],[2375,3],[2874,3],[3079,3],[3269,3],[3953,3],[3976,4],[6729,3],[7615,3],[8949,6]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[2197,3]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[2234,3]]}},"component":{}}],["val_1",{"_index":3782,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[7285,7],[7350,7]]}},"component":{}}],["val_2",{"_index":3783,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[7305,7],[7370,7]]}},"component":{}}],["val_ad",{"_index":1524,"title":{},"name":{},"text":{"/ml.html":{"position":[[4013,7],[6614,7],[7498,10]]}},"component":{}}],["val_n",{"_index":3784,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[7329,7],[7394,7]]}},"component":{}}],["valid",{"_index":382,"title":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html#_data_sync_validation":{"position":[[10,10]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_validate_permissions_in_sql_database_for_val_and_byom":{"position":[[0,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_validate_permissions_in_sql_database_for_val_and_byom":{"position":[[0,8]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[3434,8]]},"/dbt.html":{"position":[[1608,8],[3730,8]]},"/ml.html":{"position":[[106,8]]},"/odbc.ubuntu.html":{"position":[[1030,8],[1870,8]]},"/run-vantage-express-on-aws.html":{"position":[[8425,8]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[5205,8]]},"/vantage.express.gcp.html":{"position":[[4232,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[5682,5],[13398,8],[17075,8],[20759,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[3937,5],[7300,12]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2168,10]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[2537,8],[7228,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[7686,9]]},"/mule-teradata-connector/reference.html":{"position":[[35171,6],[37118,11]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3443,8]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1574,5]]}},"component":{}}],["validation_refer",{"_index":3810,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[8780,21]]}},"component":{}}],["validation_reference_nam",{"_index":3811,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[8802,27]]}},"component":{}}],["validation_reference_proto",{"_index":3812,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[8866,27]]}},"component":{}}],["valu",{"_index":341,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[2101,5]]},"/dbt.html":{"position":[[1192,5],[3719,7]]},"/fastload.html":{"position":[[4856,6],[6179,6]]},"/geojson-to-vantage.html":{"position":[[7045,7]]},"/getting.started.utm.html":{"position":[[1437,7],[5830,6]]},"/getting.started.vbox.html":{"position":[[1247,7],[4656,6]]},"/getting.started.vmware.html":{"position":[[1637,7],[4939,6]]},"/local.jupyter.hub.html":{"position":[[1999,6],[2985,7]]},"/ml.html":{"position":[[2676,6]]},"/mule.jdbc.example.html":{"position":[[699,5],[819,5],[980,5],[2599,6],[2924,7]]},"/run-vantage-express-on-aws.html":{"position":[[9714,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2388,6],[6494,6]]},"/segment.html":{"position":[[1545,5],[1637,5],[3002,5],[3314,5],[3807,5]]},"/sto.html":{"position":[[5388,7],[6027,7],[6132,5]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[5401,5],[5832,7]]},"/vantage.express.gcp.html":{"position":[[5521,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[10722,5],[22295,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[7181,6],[7212,8],[10431,5],[10528,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[6025,6],[7217,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2223,6],[3507,6],[12374,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1001,6],[5520,5],[7163,6],[7716,5],[7778,6],[9445,5]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[2132,5]]},"/mule-teradata-connector/reference.html":{"position":[[447,5],[1323,5],[1751,5],[3199,5],[3383,5],[3967,6],[4242,5],[4695,5],[4840,7],[4933,5],[5531,5],[5769,5],[6295,6],[6569,5],[7132,6],[7225,5],[7826,5],[8010,5],[8595,6],[9350,7],[9443,5],[9866,5],[10424,6],[11045,5],[11190,7],[11439,6],[11582,5],[12020,5],[12639,6],[13150,5],[13670,5],[14408,6],[14919,5],[15344,5],[15902,6],[16657,7],[16902,6],[17436,5],[18263,5],[18961,6],[19716,7],[19969,6],[20118,5],[21427,5],[22122,6],[22838,7],[23091,6],[23246,5],[24277,5],[24976,6],[25250,5],[25814,6],[26066,6],[26407,6],[27189,5],[28092,5],[28644,6],[29399,7],[29649,6],[30189,5],[30735,6],[30858,5],[31284,5],[31482,6],[31605,5],[32684,6],[33274,5],[33875,5],[34263,5],[34675,6],[35357,5],[35603,5],[35956,5],[36222,5],[36429,5],[36775,5],[37247,5],[37834,5],[38207,5],[38410,5],[38494,5],[38544,5],[38870,5],[39567,5],[39692,5],[40060,5],[40149,5],[40511,5],[40656,5],[40820,5],[41026,5],[41109,5],[41412,5],[41878,5],[42205,5],[42388,5],[42694,5]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3204,5],[3966,5]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[839,6]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1321,6],[3182,5],[3201,6],[5374,5],[5623,7]]},"/regulus/getting-started-with-regulus.html":{"position":[[1179,7],[1344,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[4544,6]]},"/regulus/regulus-magic-reference.html":{"position":[[542,5],[1043,5],[3297,5],[3415,5],[3503,6],[3604,6]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[2416,7],[4562,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2995,6],[3022,6],[5082,6]]}},"component":{}}],["value(status.url",{"_index":2389,"title":{},"name":{},"text":{"/segment.html":{"position":[[3345,20]]}},"component":{}}],["value\\\":tru",{"_index":2135,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[1360,18]]}},"component":{}}],["value_to_be_fetch",{"_index":3780,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[7011,21]]}},"component":{}}],["vantag",{"_index":5,"title":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[40,7]]},"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html#_connect_to_teradata_vantage":{"position":[[20,7]]},"/advanced-dbt.html":{"position":[[37,7]]},"/dbt.html":{"position":[[18,7]]},"/geojson-to-vantage.html":{"position":[[35,7]]},"/geojson-to-vantage.html#_option_1_load_a_geojson_document_into_vantage":{"position":[[39,7]]},"/geojson-to-vantage.html#_load_the_geojson_document_in_vantage":{"position":[[29,7]]},"/geojson-to-vantage.html#_use_the_map_from_vantage":{"position":[[17,7]]},"/geojson-to-vantage.html#_option_2_prepare_a_geojson_document_with_python_and_load_it_into_vantage":{"position":[[66,7]]},"/geojson-to-vantage.html#_create_a_vantage_connection_and_load_our_file_in_a_staging_table":{"position":[[9,7]]},"/getting.started.utm.html":{"position":[[4,7]]},"/getting.started.utm.html#_run_vantage_express":{"position":[[4,7]]},"/getting.started.vbox.html":{"position":[[4,7]]},"/getting.started.vbox.html#_run_vantage_express":{"position":[[4,7]]},"/getting.started.vmware.html":{"position":[[4,7]]},"/getting.started.vmware.html#_run_vantage_express":{"position":[[4,7]]},"/jdbc.html":{"position":[[11,7]]},"/jupyter.html":{"position":[[4,7]]},"/ml.html":{"position":[[19,7]]},"/ml.html#_install_vantage_analytics_library":{"position":[[8,7]]},"/mule.jdbc.example.html":{"position":[[15,7]]},"/nos.html#_load_data_from_nos_into_vantage":{"position":[[24,7]]},"/nos.html#_export_data_from_vantage_to_object_storage":{"position":[[17,7]]},"/odbc.ubuntu.html":{"position":[[4,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[44,7]]},"/perform-time-series-analysis-using-teradata-vantage.html#_import_data_sets_from_aws_s3_using_vantage_nos":{"position":[[35,7]]},"/run-vantage-express-on-aws.html":{"position":[[4,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4,7]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[51,7]]},"/sto.html":{"position":[[15,7]]},"/sto.html#_passing_data_stored_in_vantage_to_script":{"position":[[23,7]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[9,7]]},"/teradata-vantage-engine-architecture-and-concepts.html#_teradata_vantage_engine_architecture_components":{"position":[[9,7]]},"/teradata-vantage-engine-architecture-and-concepts.html#_teradata_vantage_architecture_concepts":{"position":[[9,7]]},"/teradatasql.html":{"position":[[11,7]]},"/vantage.express.gcp.html":{"position":[[4,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[37,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_about_teradata_vantage":{"position":[[15,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_load_data_from_blob_storage_into_vantage_optional":{"position":[[33,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[17,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_about_teradata_vantage":{"position":[[15,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_import_amazon_s3_data_to_vantage":{"position":[[25,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_export_vantage_data_to_amazon_s3_using_nos":{"position":[[7,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[19,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_about_teradata_vantage":{"position":[[15,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_explore_teradata_vantage_metadata_with_data_catalog":{"position":[[17,7]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[32,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[13,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[58,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[59,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[33,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Setting-up-Vantage-and-loading-data":{"position":[[11,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Setup-a-Vantage-instance":{"position":[[8,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Load-training-data-to-Vantage":{"position":[[22,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Create-the-component-that-reads-data-from-Vantage":{"position":[[42,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html#_add_dataset_to_identify_vantage_tables_for_byom_evaluation_and_scoring":{"position":[[24,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html#_add_dataset_to_identify_vantage_tables_for_byom_evaluation_and_scoring":{"position":[[24,7]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[21,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[53,7]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[19,7]]}},"name":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[68,7]]},"/geojson-to-vantage.html":{"position":[[11,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[44,7]]},"/run-vantage-express-on-aws.html":{"position":[[4,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4,7]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[51,7]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[9,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[37,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[19,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[19,7]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[24,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[13,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[58,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[59,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[24,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[40,7]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[21,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[53,7]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[19,7]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[234,7],[332,7],[1245,7],[1424,8],[1503,8],[1844,8],[2183,7],[2302,7],[2383,8],[3219,8],[3326,7],[3666,8],[4458,7],[4750,7]]},"/advanced-dbt.html":{"position":[[112,7],[564,7],[613,8],[2157,7],[2762,7],[2882,7],[7049,8]]},"/create-parquet-files-in-object-storage.html":{"position":[[82,7],[433,8],[493,7],[580,7],[620,7],[642,7],[684,7],[896,8],[1838,7],[4088,7],[4278,7],[4314,8]]},"/dbt.html":{"position":[[129,8],[261,8],[291,7],[340,8],[962,7],[1248,7],[4561,8]]},"/fastload.html":{"position":[[279,8],[383,8],[552,7],[601,8],[1368,8],[1628,8],[2185,8],[2384,7],[2409,7],[7158,7],[7423,8],[7480,7]]},"/geojson-to-vantage.html":{"position":[[189,8],[456,8],[644,7],[781,7],[1038,7],[1087,8],[1287,7],[2064,7],[2357,7],[2531,7],[2963,7],[3295,7],[5086,7],[5369,7],[6683,7],[7712,7],[8005,7],[8179,7],[9011,7],[10634,8]]},"/getting.started.utm.html":{"position":[[356,7],[428,7],[487,7],[636,7],[809,7],[879,7],[1176,7],[1243,7],[1486,7],[2102,7],[2197,7],[3551,7],[6293,7]]},"/getting.started.vbox.html":{"position":[[356,7],[428,7],[487,7],[709,7],[931,7],[1713,7],[1761,7],[2589,7],[5889,7]]},"/getting.started.vmware.html":{"position":[[356,7],[428,7],[487,7],[706,7],[928,7],[1203,7],[1447,7],[1530,7],[1715,7],[2660,7],[5402,7]]},"/jdbc.html":{"position":[[111,7],[229,7],[278,8],[465,7],[541,7],[911,7],[1066,8]]},"/jupyter.html":{"position":[[394,7],[458,8],[575,7],[1307,7],[3046,7],[3273,8],[3507,7],[3716,8],[4089,8],[5031,8],[6773,7],[7266,8]]},"/local.jupyter.hub.html":{"position":[[524,8],[1410,7],[3315,7],[6037,8]]},"/ml.html":{"position":[[433,7],[536,7],[584,8],[631,7],[710,7],[800,7],[817,7],[1046,7],[1082,7],[1153,7],[1530,7],[2652,7],[3901,7],[8923,7],[9089,7]]},"/mule.jdbc.example.html":{"position":[[326,7],[375,8],[521,7],[1791,7],[2112,7]]},"/nos.html":{"position":[[92,7],[345,8],[384,7],[424,7],[446,7],[488,7],[569,8],[884,8],[1176,7],[2002,7],[2157,7],[5304,7],[6648,7],[6848,7],[7167,8],[7731,7],[8210,7],[8529,8],[8649,7],[8685,8]]},"/odbc.ubuntu.html":{"position":[[123,7],[163,7],[212,8],[1221,7],[1732,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[261,7],[369,7],[443,7],[465,7],[507,7],[588,8],[737,7],[760,7],[822,7],[3507,7],[4183,7],[4322,7],[7330,7],[10194,7],[10294,7],[10708,8],[10798,8]]},"/run-vantage-express-on-aws.html":{"position":[[95,7],[119,7],[238,7],[501,7],[590,7],[4824,7],[4874,7],[5004,7],[5535,7],[5870,7],[5997,7],[6185,7],[6208,7],[6302,8],[6740,7],[8356,7],[8590,7],[8704,7],[8941,7],[10136,7],[10657,7],[10728,7],[10836,7],[10868,7],[10916,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[93,7],[129,7],[248,7],[973,7],[1235,7],[1295,7],[1377,7],[1481,7],[1568,7],[1626,7],[1686,7],[1768,7],[1871,7],[1945,7],[2004,7],[2064,7],[2146,7],[2249,7],[2323,7],[2522,7],[2965,7],[2988,7],[3082,8],[3520,7],[5136,7],[5370,7],[5484,7],[5721,7],[6916,7],[7437,7],[7508,7],[7616,7],[7648,7],[7696,7],[8169,7]]},"/segment.html":{"position":[[140,7],[414,7],[705,7],[788,8],[1041,7],[2451,7],[2784,7],[5087,8],[5371,8],[5531,8]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[466,8],[1045,7],[1414,8],[1794,7]]},"/sto.html":{"position":[[334,7],[412,8],[497,7],[566,8],[679,7],[734,7],[783,8],[2139,7],[2257,7],[2883,8],[3192,7],[3437,7],[4188,7],[4226,8],[4275,7],[5724,7],[6516,8],[6705,7],[7534,8],[7842,8]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[111,7],[156,8],[809,7],[1067,7],[2013,7],[2223,7],[2417,7],[3870,8],[5334,7],[6080,8],[6304,7]]},"/teradatasql.html":{"position":[[96,7],[158,8],[429,7],[565,8],[693,7],[859,7],[975,7]]},"/vantage.express.gcp.html":{"position":[[93,7],[135,7],[254,7],[836,7],[1124,7],[1412,7],[1703,7],[1804,7],[1992,7],[2015,7],[2109,8],[2547,7],[4163,7],[4397,7],[4511,7],[4748,7],[5943,7],[6464,7],[6535,7],[6643,7],[6675,7],[6723,7],[7201,7],[7349,7],[7494,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[215,7],[1043,7],[1124,7],[1252,7],[1510,7],[1700,7],[1791,7],[1902,7],[2467,7],[2544,8],[2614,7],[2663,8],[3138,7],[8980,7],[11095,7],[13611,7],[13727,7],[14027,7],[14187,9],[14394,8],[14485,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1167,7],[1215,8],[1781,7],[3319,7],[6086,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[610,7],[658,8],[4389,8]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[137,8],[276,7],[340,7],[514,7],[620,7],[713,8],[749,7],[1590,7],[1712,7],[1902,7],[1978,7],[2245,7],[2666,7],[2757,8],[2838,7],[2887,8],[3121,7],[3276,7],[5376,7],[8497,7],[8640,7],[13321,7],[13405,7],[23255,7],[25994,7],[26195,7],[26317,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[110,7],[239,7],[300,7],[785,7],[913,7],[1171,7],[1361,7],[1452,7],[1609,8],[1639,7],[1688,8],[2074,7],[3707,7]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[124,8],[386,7],[842,7],[1245,8],[1702,7],[1751,8],[2057,7],[2648,8],[2683,7],[5987,7],[6102,7],[6288,7]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[326,7],[564,7],[613,8],[910,7],[1595,7],[2086,7],[2226,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[205,8],[405,7],[543,7],[592,8],[904,7],[1002,7],[3598,7],[8091,8],[8158,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[153,8],[250,7],[317,7],[346,7],[545,8],[3319,8],[3344,7],[4040,7],[5299,7],[7408,7]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[288,7],[487,7],[624,7],[686,8],[817,8],[1329,7],[1375,7],[2463,8],[3072,7],[3937,7],[4404,7],[4463,7],[4555,7],[4609,7],[4721,7],[8944,7],[9013,10],[13656,7],[13752,7]]},"/jupyter-demos/index.html":{"position":[[41,7],[124,7],[205,7],[318,7],[421,7],[517,7],[639,7],[727,7],[827,7],[941,7],[1060,7],[1175,7],[1259,7],[1353,7],[1466,7],[1579,7],[1665,7],[1748,7],[1855,7],[1968,7],[2057,7],[2158,7],[2264,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[236,8],[353,7],[480,8],[2055,7],[2095,7],[2707,7],[4469,7],[4986,8]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[236,8],[390,7],[517,8],[2092,7],[2132,7],[2744,7],[6165,7],[6791,7],[6990,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[272,7],[321,8],[9830,7]]},"/mule-teradata-connector/index.html":{"position":[[169,7],[230,7],[292,7],[455,7],[694,7],[749,8],[1529,7]]},"/mule-teradata-connector/reference.html":{"position":[[169,7],[230,7],[292,7]]},"/mule-teradata-connector/release-notes.html":{"position":[[169,7],[230,7],[292,7]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[124,7],[167,7],[216,8],[1147,7],[1571,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[202,7],[579,7],[1218,7],[1273,8],[1290,7],[10651,7],[10809,7],[10867,7]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[355,8],[1251,7],[1315,8],[1583,7],[2975,7],[3260,7],[3619,7],[4022,7],[4488,7],[4808,8],[6872,8],[6927,7],[7464,7]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[95,7],[254,8],[284,7],[358,8],[1359,7],[1788,8],[1816,7]]},"/query-service/send-queries-using-rest-api.html":{"position":[[91,7],[696,8],[1414,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[8640,8],[8695,7],[9523,8],[9578,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[111,8],[242,8],[406,7],[455,8],[1243,8],[1492,8],[1596,7],[1713,8],[2317,8],[2350,8],[2627,7],[2791,7],[8703,7],[8968,8],[9025,7]]}},"component":{}}],["vantage.express.gcp",{"_index":2604,"title":{},"name":{"/vantage.express.gcp.html":{"position":[[0,19]]}},"text":{},"component":{}}],["vantage/attach.endpoint.configuration.png[attach",{"_index":3183,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[5608,48]]}},"component":{}}],["vantage2sf",{"_index":3049,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[24396,11]]}},"component":{}}],["vantage_host=35.239.251.1",{"_index":2384,"title":{},"name":{},"text":{"/segment.html":{"position":[[3044,25]]}},"component":{}}],["vantage_password=vantage_password_secret:1",{"_index":2386,"title":{},"name":{},"text":{"/segment.html":{"position":[[3126,43]]}},"component":{}}],["vantage_password_secret",{"_index":2373,"title":{},"name":{},"text":{"/segment.html":{"position":[[2252,23],[2346,23]]}},"component":{}}],["vantage_user=vantage_user_secret:1",{"_index":2385,"title":{},"name":{},"text":{"/segment.html":{"position":[[3089,36]]}},"component":{}}],["vantage_user_secret",{"_index":2370,"title":{},"name":{},"text":{"/segment.html":{"position":[[2090,19],[2176,19]]}},"component":{}}],["vantagecloud",{"_index":2536,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[198,12],[1022,12],[2940,12],[3004,12],[3134,12]]},"/query-service/send-queries-using-rest-api.html":{"position":[[432,12]]}},"component":{}}],["vantagecor",{"_index":2565,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2895,11],[2920,11]]},"/query-service/send-queries-using-rest-api.html":{"position":[[493,11]]}},"component":{}}],["vantagecsv",{"_index":2885,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[3307,11],[24785,11]]}},"component":{}}],["vantageexpress",{"_index":2219,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[6632,15]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3412,15]]},"/vantage.express.gcp.html":{"position":[[2439,15]]}},"component":{}}],["vantageparquet",{"_index":2884,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[3156,16]]}},"component":{}}],["vantage’",{"_index":2105,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10663,9]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2714,9]]}},"component":{}}],["var",{"_index":2383,"title":{},"name":{},"text":{"/segment.html":{"position":[[3039,4]]}},"component":{}}],["varbinari",{"_index":3961,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[39855,9]]}},"component":{}}],["varchar",{"_index":3399,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[3143,7]]},"/mule-teradata-connector/reference.html":{"position":[[39808,7]]}},"component":{}}],["varchar(10",{"_index":1959,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[3567,11]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11337,12],[14959,12],[17530,12],[18671,12],[22568,12]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11394,12],[11563,12],[11945,12],[12241,12],[12307,12],[12353,12],[12397,12],[12445,12],[14379,11],[16125,12],[16294,12],[16676,12],[17030,12],[17076,12],[17120,12],[17275,12],[17929,12],[18098,12],[18480,12],[18834,12],[18880,12],[18924,12],[19079,12],[20370,11],[20562,11],[21000,11],[21337,11],[21394,11],[21448,11],[21645,11],[21911,12],[22080,12],[22462,12],[22816,12],[22862,12],[22906,12],[23061,12]]}},"component":{}}],["varchar(100",{"_index":777,"title":{},"name":{},"text":{"/fastload.html":{"position":[[3070,12],[3135,12],[4347,15],[5413,12],[5478,12],[5934,15]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11335,13],[12549,13],[14217,12],[16066,13],[17213,13],[17870,13],[19017,13],[20307,12],[21579,12],[21852,13],[22999,13]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3951,13],[4553,12],[4618,12]]}},"component":{}}],["varchar(10000",{"_index":2488,"title":{},"name":{},"text":{"/sto.html":{"position":[[4455,16]]}},"component":{}}],["varchar(15",{"_index":2954,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11739,12],[11779,12],[14321,11],[16470,12],[16510,12],[18274,12],[18314,12],[20751,11],[20805,11],[22256,12],[22296,12]]}},"component":{}}],["varchar(19",{"_index":807,"title":{},"name":{},"text":{"/fastload.html":{"position":[[4208,14],[4259,14],[4288,14],[4399,14],[4427,14],[5795,14],[5846,14],[5875,14],[5986,14],[6014,14]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3822,12],[3869,12],[3896,12],[3999,12],[4025,11]]}},"component":{}}],["varchar(20",{"_index":2937,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11286,12],[11450,12],[11507,12],[11687,12],[11828,12],[11887,12],[12073,12],[12497,12],[13552,11],[14155,11],[14269,11],[14433,11],[16017,12],[16181,12],[16238,12],[16418,12],[16559,12],[16618,12],[16804,12],[17161,12],[17821,12],[17985,12],[18042,12],[18222,12],[18363,12],[18422,12],[18608,12],[18965,12],[20243,11],[20435,11],[20498,11],[20695,11],[20871,11],[20935,11],[21135,11],[21512,11],[21803,12],[21967,12],[22024,12],[22204,12],[22345,12],[22404,12],[22590,12],[22947,12]]}},"component":{}}],["varchar(200",{"_index":2971,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[12180,13],[16911,13],[18715,13],[21256,12],[22697,13]]}},"component":{}}],["varchar(2048",{"_index":600,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[3460,13]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[9637,13]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9290,13]]}},"component":{}}],["varchar(22",{"_index":812,"title":{},"name":{},"text":{"/fastload.html":{"position":[[4315,14],[5902,14]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3921,12]]}},"component":{}}],["varchar(255",{"_index":4416,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[2210,12]]}},"component":{}}],["varchar(256",{"_index":3337,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6696,13]]}},"component":{}}],["varchar(30",{"_index":1218,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[5532,12],[5554,12]]},"/getting.started.vbox.html":{"position":[[4358,12],[4380,12]]},"/getting.started.vmware.html":{"position":[[4641,12],[4663,12]]},"/mule.jdbc.example.html":{"position":[[2310,12],[2332,12]]},"/run-vantage-express-on-aws.html":{"position":[[9416,12],[9438,12]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6196,12],[6218,12]]},"/vantage.express.gcp.html":{"position":[[5223,12],[5245,12]]}},"component":{}}],["varchar(32",{"_index":916,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[2785,12],[8418,12],[8441,12]]}},"component":{}}],["varchar(32000",{"_index":948,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3726,18]]}},"component":{}}],["varchar(5",{"_index":772,"title":{},"name":{},"text":{"/fastload.html":{"position":[[2987,10],[3198,10],[4238,13],[4378,13],[5330,10],[5541,10],[5825,13],[5965,13]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[11625,11],[12009,11],[16356,11],[16740,11],[18160,11],[18544,11],[20630,10],[21069,10],[22142,11],[22526,11]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3850,11],[3980,11],[4470,10],[4681,10]]}},"component":{}}],["varchar(50",{"_index":950,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3789,15],[3853,15],[3917,15],[3979,17]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[12129,12],[12614,12],[16860,12],[18664,12],[21194,11],[22646,12]]}},"component":{}}],["varchar(512",{"_index":2454,"title":{},"name":{},"text":{"/sto.html":{"position":[[1026,16],[3889,16],[5939,14],[5967,16],[6982,14],[7010,15]]}},"component":{}}],["vari",{"_index":4169,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5896,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[7356,4]]}},"component":{}}],["variabl",{"_index":192,"title":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_set_environment_variables":{"position":[[16,9]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[3923,9]]},"/jupyter.html":{"position":[[4604,8]]},"/ml.html":{"position":[[3711,9],[6670,8]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[2933,9]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2418,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[7851,8]]},"/mule-teradata-connector/reference.html":{"position":[[4855,8],[4885,8],[5050,8],[7146,8],[7176,8],[7342,8],[9365,8],[9395,8],[9560,8],[11504,8],[11534,8],[11699,8],[13072,8],[13102,8],[13267,8],[14841,8],[14871,8],[15036,8],[17358,8],[17388,8],[17553,8],[20039,8],[20069,8],[20235,8],[23161,8],[23189,8],[23356,9],[27110,8],[27140,8],[27306,8],[30111,8],[30141,8],[30306,8]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[10205,8],[10250,9],[10283,9],[10388,9],[10407,9]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[1638,9]]},"/query-service/send-queries-using-rest-api.html":{"position":[[1297,9]]},"/regulus/getting-started-with-regulus.html":{"position":[[490,10],[604,10]]},"/regulus/install-regulus-docker-image.html":{"position":[[2043,10],[2158,10],[2189,9],[2655,9],[8186,9]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[728,9]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[2572,8]]}},"component":{}}],["variable.json",{"_index":4118,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[10332,13]]}},"component":{}}],["variables.json",{"_index":4112,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[9091,14],[9905,14],[10180,14]]}},"component":{}}],["variat",{"_index":487,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[6916,10]]}},"component":{}}],["variou",{"_index":1844,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[276,7]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1452,7]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[5389,7]]},"/mule-teradata-connector/reference.html":{"position":[[2995,7],[3154,7],[5327,7],[5486,7],[7620,7],[7781,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4080,7],[9739,7]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[213,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1507,7]]}},"component":{}}],["vartext",{"_index":804,"title":{},"name":{},"text":{"/fastload.html":{"position":[[4121,7],[5762,7]]}},"component":{}}],["vault",{"_index":680,"title":{},"name":{},"text":{"/dbt.html":{"position":[[4078,5]]}},"component":{}}],["vboxautostart_config=/etc/vbox/autostart.cfg",{"_index":2269,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[10278,44]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7058,44]]},"/vantage.express.gcp.html":{"position":[[6085,44]]}},"component":{}}],["vboxautostart_db=/etc/vbox",{"_index":2268,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[10251,26]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7031,26]]},"/vantage.express.gcp.html":{"position":[[6058,26]]}},"component":{}}],["vboxmanag",{"_index":2231,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[7429,10],[7499,10],[7587,10],[7679,10],[7826,10],[7973,10],[8120,10],[8182,10],[8245,10],[8291,10]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4209,10],[4279,10],[4367,10],[4459,10],[4606,10],[4753,10],[4900,10],[4962,10],[5025,10],[5071,10]]},"/vantage.express.gcp.html":{"position":[[3236,10],[3306,10],[3394,10],[3486,10],[3633,10],[3780,10],[3927,10],[3989,10],[4052,10],[4098,10]]}},"component":{}}],["vdisk",{"_index":2547,"title":{"/teradata-vantage-engine-architecture-and-concepts.html#_virtual_disks_vdisks":{"position":[[14,8]]}},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[917,9],[927,6],[2545,8],[3073,7],[6177,8]]}},"component":{}}],["ve.7z",{"_index":2222,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[6792,5],[6848,6],[6906,5],[7171,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3572,5],[3628,6],[3686,5],[3951,5]]},"/vantage.express.gcp.html":{"position":[[2599,5],[2655,6],[2713,5],[2978,5]]}},"component":{}}],["vedula",{"_index":4205,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[14,6]]}},"component":{}}],["vega",{"_index":496,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[13,4]]}},"component":{}}],["vehicl",{"_index":3576,"title":{},"name":{},"text":{"/jupyter-demos/index.html":{"position":[[607,7]]}},"component":{}}],["vendor",{"_index":1291,"title":{},"name":{},"text":{"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[340,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[6147,6],[7456,6]]}},"component":{}}],["vendor_id",{"_index":1850,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1086,9],[3557,9],[3895,9],[6218,10],[6371,10],[6496,9],[7722,10],[7903,10],[8160,9],[8330,10],[8382,9]]}},"component":{}}],["venv",{"_index":306,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[1220,4]]},"/dbt.html":{"position":[[717,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1323,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[2246,4]]}},"component":{}}],["veri",{"_index":733,"title":{},"name":{},"text":{"/fastload.html":{"position":[[1573,4]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[302,4]]},"/sto.html":{"position":[[2416,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[17403,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[7630,4],[7696,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[177,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[845,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1658,4]]}},"component":{}}],["verif",{"_index":3946,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[38097,12]]}},"component":{}}],["verifi",{"_index":2417,"title":{},"name":{},"text":{"/segment.html":{"position":[[5040,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[3722,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[6037,6]]},"/mule-teradata-connector/reference.html":{"position":[[30936,8],[35141,6],[35200,6],[37880,6]]},"/regulus/getting-started-with-regulus.html":{"position":[[2547,6],[3186,6],[3327,6],[3397,6]]}},"component":{}}],["verify=fals",{"_index":4239,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[3671,13],[5929,13],[8387,13],[9771,13],[10405,13],[11151,13],[11716,13]]}},"component":{}}],["version",{"_index":131,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2633,7],[5225,7]]},"/advanced-dbt.html":{"position":[[1115,7],[1187,8]]},"/create-parquet-files-in-object-storage.html":{"position":[[719,7]]},"/getting.started.utm.html":{"position":[[413,7],[1232,7],[1358,7]]},"/getting.started.vbox.html":{"position":[[413,7],[920,7],[1093,7],[5355,7]]},"/getting.started.vmware.html":{"position":[[413,7],[917,7]]},"/jupyter.html":{"position":[[157,7]]},"/local.jupyter.hub.html":{"position":[[1974,7],[2960,7],[3498,7]]},"/ml.html":{"position":[[616,7]]},"/nos.html":{"position":[[523,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[542,7]]},"/segment.html":{"position":[[2163,8],[2333,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[150,7],[1879,8],[3417,8]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[155,7],[1125,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[17722,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[741,7],[771,7],[1146,7],[4153,7]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[778,7],[808,7],[1183,7],[5341,8],[5974,7],[6138,8]]},"/mule-teradata-connector/index.html":{"position":[[638,7]]},"/mule-teradata-connector/reference.html":{"position":[[31241,7],[32051,8]]},"/mule-teradata-connector/release-notes.html":{"position":[[343,7],[421,7],[1023,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4449,7],[4923,8],[4959,7],[5008,7]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[302,7],[644,7]]},"/query-service/send-queries-using-rest-api.html":{"position":[[8770,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[3463,8],[8943,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[5447,7],[5834,7],[6614,7],[6721,7]]}},"component":{}}],["vertex",{"_index":2787,"title":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[50,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[13,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html#Give-permissions-to-Vertex-AI-to-access-your-bucket":{"position":[[20,6]]}},"name":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[50,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[4,6]]}},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[495,6],[548,6],[721,6],[749,6],[833,6],[1317,6],[1477,6],[6174,6],[6244,6],[6338,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[74,6],[321,6],[3632,6],[9529,6],[9615,6],[13008,6]]}},"component":{}}],["vertex_pipelines_housing_exampl",{"_index":3345,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[0,32]]}},"component":{}}],["via",{"_index":1664,"title":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[34,3]]}},"name":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[34,3]]}},"text":{"/mule.jdbc.example.html":{"position":[[1822,3]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2287,3]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[254,3]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[706,3]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[3375,3]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1038,3],[1051,3],[2677,3]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1229,3],[3282,3]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5037,3]]}},"component":{}}],["view",{"_index":930,"title":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html#_create_a_view":{"position":[[9,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html#_create_view":{"position":[[7,4]]},"/mule-teradata-connector/examples-configuration.html#view-app-log":{"position":[[0,4]]}},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3392,5],[3406,4],[4098,4],[8872,4]]},"/mule.jdbc.example.html":{"position":[[3366,4]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[7632,4],[7655,4]]},"/run-vantage-express-on-aws.html":{"position":[[6414,4],[6587,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3194,4],[3367,5]]},"/vantage.express.gcp.html":{"position":[[2221,4],[2394,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[6886,4],[7040,5],[8485,4],[10911,5],[11260,5],[11274,4],[13411,5],[13487,5],[21041,4],[21963,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[7951,4],[10886,5],[11140,4],[11235,4],[12843,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3300,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[3401,6],[3481,5],[3728,6],[4661,6],[4782,4],[4884,4],[4981,4],[5287,4],[6177,5],[6265,5],[8186,5],[8284,5]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[13491,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3140,5],[3395,5],[3411,4],[3480,5],[6285,6]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[447,4],[503,4],[1155,5],[1990,5],[3103,5],[3339,4],[4471,4],[4802,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[9505,4]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[5150,5],[5166,4],[5235,5],[6027,5]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1689,4]]},"/query-service/send-queries-using-rest-api.html":{"position":[[10752,4]]},"/regulus/regulus-magic-reference.html":{"position":[[4222,4],[4375,4],[4997,4]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[1804,4],[2690,4],[3235,4],[5221,4]]}},"component":{}}],["viewabl",{"_index":3309,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[2865,8]]}},"component":{}}],["viewer",{"_index":3308,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[2823,6]]}},"component":{}}],["vikrishnan/boston",{"_index":3375,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2350,17]]}},"component":{}}],["violat",{"_index":789,"title":{},"name":{},"text":{"/fastload.html":{"position":[[3633,11]]}},"component":{}}],["virtual",{"_index":108,"title":{"/teradata-vantage-engine-architecture-and-concepts.html#_virtual_disks_vdisks":{"position":[[0,7]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2047,7]]},"/getting.started.utm.html":{"position":[[771,15],[1037,7],[1575,10],[3444,7],[4340,7],[4790,7]]},"/getting.started.vbox.html":{"position":[[835,7],[963,7],[2482,7],[3378,7]]},"/getting.started.vmware.html":{"position":[[832,7],[2553,7],[3449,7],[3899,7]]},"/jdbc.html":{"position":[[648,14]]},"/run-vantage-express-on-aws.html":{"position":[[274,7],[474,14]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[484,7],[508,7],[903,7],[2531,7],[3299,7],[3362,7],[3800,7],[6164,7]]},"/vantage.express.gcp.html":{"position":[[1056,14],[1344,14],[1632,14]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1377,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2077,7]]}},"component":{}}],["virtualbox",{"_index":1240,"title":{"/getting.started.vbox.html":{"position":[[23,10]]},"/getting.started.vbox.html#_updating_virtualbox_guest_extensions":{"position":[[9,10]]}},"name":{},"text":{"/getting.started.vbox.html":{"position":[[947,10],[1081,11],[1127,10],[1185,10],[1255,10],[1339,10],[1478,10],[1510,11],[1685,10],[5018,10],[5118,11],[5298,10],[5371,10],[5422,10],[5485,10],[5525,10]]},"/getting.started.vmware.html":{"position":[[1222,11],[1466,10]]},"/ml.html":{"position":[[762,11],[1172,11]]},"/run-vantage-express-on-aws.html":{"position":[[628,11],[6061,10],[6133,10],[7193,11]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[286,11],[2841,10],[2913,10],[3973,11]]},"/vantage.express.gcp.html":{"position":[[292,11],[1868,10],[1940,10],[3000,11]]},"/jupyter-demos/index.html":{"position":[[464,11],[1103,11]]}},"component":{}}],["virtualbox.servic",{"_index":2275,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[10419,18]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7199,18]]},"/vantage.express.gcp.html":{"position":[[6226,18]]}},"component":{}}],["virtualenv",{"_index":3067,"title":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html#_install_virtualenv":{"position":[[8,10]]}},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2865,10],[2951,10],[2962,10],[3022,10],[3033,10],[3096,10],[3107,10]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2160,10]]}},"component":{}}],["visibl",{"_index":3841,"title":{},"name":{},"text":{"/mule-teradata-connector/examples-configuration.html":{"position":[[4564,7],[4686,7]]}},"component":{}}],["visit",{"_index":247,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[6083,5]]},"/advanced-dbt.html":{"position":[[7362,5]]},"/create-parquet-files-in-object-storage.html":{"position":[[4424,5]]},"/dbt.html":{"position":[[4962,5]]},"/fastload.html":{"position":[[7653,5]]},"/geojson-to-vantage.html":{"position":[[10704,5]]},"/getting.started.utm.html":{"position":[[6633,5]]},"/getting.started.vbox.html":{"position":[[6229,5]]},"/getting.started.vmware.html":{"position":[[5742,5]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[1165,5]]},"/jdbc.html":{"position":[[1167,5]]},"/jupyter.html":{"position":[[7415,5]]},"/local.jupyter.hub.html":{"position":[[6186,5]]},"/ml.html":{"position":[[9187,5]]},"/mule.jdbc.example.html":{"position":[[3613,5]]},"/nos.html":{"position":[[8799,5]]},"/odbc.ubuntu.html":{"position":[[2024,5]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[10912,5]]},"/run-vantage-express-on-aws.html":{"position":[[12571,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[8509,5]]},"/segment.html":{"position":[[5643,5]]},"/sto.html":{"position":[[8014,5]]},"/teradatasql.html":{"position":[[1099,5]]},"/vantage.express.gcp.html":{"position":[[7685,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[24891,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[6465,5]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[4667,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[26443,5]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[8985,5]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[6372,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[7373,5]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[8563,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"position":[[5316,5]]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[7367,5]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9909,5]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[4975,5]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[1654,5]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[10936,5]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1900,5]]},"/query-service/send-queries-using-rest-api.html":{"position":[[12610,5]]},"/regulus/getting-started-with-regulus.html":{"position":[[4125,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[9945,5]]},"/regulus/regulus-magic-reference.html":{"position":[[5216,5]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[7103,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[9213,5]]}},"component":{}}],["visual",{"_index":7,"title":{},"name":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[16,14]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[276,14],[591,8]]},"/advanced-dbt.html":{"position":[[6902,9]]},"/jupyter.html":{"position":[[1386,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1364,13]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[2090,13]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1025,13]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4321,9],[6142,10],[6427,10]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[7827,9]]},"/regulus/getting-started-with-regulus.html":{"position":[[2528,13],[3167,13],[3452,9]]},"/regulus/install-regulus-docker-image.html":{"position":[[1022,9]]}},"component":{}}],["visul",{"_index":3536,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[10538,10]]}},"component":{}}],["vizual",{"_index":1,"title":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[7,14]]}},"name":{},"text":{},"component":{}}],["vm",{"_index":1114,"title":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html#_create_a_vm":{"position":[[9,2]]}},"name":{},"text":{"/getting.started.utm.html":{"position":[[695,2],[1939,2],[2268,2],[2734,3],[3235,2],[3389,3],[4679,3],[4735,3],[4776,3],[6314,2],[6348,3]]},"/getting.started.vbox.html":{"position":[[1758,2],[2273,2],[2427,3],[5084,3],[5101,2],[5169,2],[5333,2],[5633,2],[5910,2],[5944,3]]},"/getting.started.vmware.html":{"position":[[1813,2],[2344,2],[2498,3],[3788,3],[3844,3],[3885,3],[5423,2],[5457,3]]},"/jdbc.html":{"position":[[610,2]]},"/jupyter.html":{"position":[[3062,3]]},"/ml.html":{"position":[[2414,2],[2668,3]]},"/run-vantage-express-on-aws.html":{"position":[[4713,2],[5302,2],[5701,3],[5929,3],[7187,2],[7249,2],[8372,3],[10112,3],[10178,2],[10999,3],[11107,2],[11642,2],[11734,2]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[873,2],[1119,2],[1267,2],[1534,2],[1551,2],[1658,2],[1911,2],[1928,2],[2036,2],[2289,2],[2306,2],[2367,3],[2454,3],[3967,2],[4029,2],[5152,3],[6892,3],[6958,2],[7779,3],[7887,2],[8140,2]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3817,6]]},"/vantage.express.gcp.html":{"position":[[492,2],[578,2],[1671,3],[2994,2],[3056,2],[4179,3],[5919,3],[5985,2],[6806,3],[6914,2],[7304,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[26006,3]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[1439,2],[3926,2],[4534,2],[13672,2]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[133,3],[662,3],[3550,2],[8896,3]]}},"component":{}}],["vm_image_dir",{"_index":2248,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[7794,13],[7941,13],[8088,13]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4574,13],[4721,13],[4868,13]]},"/vantage.express.gcp.html":{"position":[[3601,13],[3748,13],[3895,13]]}},"component":{}}],["vm_image_dir=\"/opt/downloads/vantageexpress17.20_sles12",{"_index":2227,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[7299,56]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4079,56]]},"/vantage.express.gcp.html":{"position":[[3106,56]]}},"component":{}}],["vm_name",{"_index":2233,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[7456,10],[7519,10],[7609,10],[7704,10],[7851,10],[7998,10],[8140,10],[8202,10],[8264,10],[8312,10]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4236,10],[4299,10],[4389,10],[4484,10],[4631,10],[4778,10],[4920,10],[4982,10],[5044,10],[5092,10]]},"/vantage.express.gcp.html":{"position":[[3263,10],[3326,10],[3416,10],[3511,10],[3658,10],[3805,10],[3947,10],[4009,10],[4071,10],[4119,10]]}},"component":{}}],["vm_name=\"${vm_nam",{"_index":2229,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[7390,19]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4170,19]]},"/vantage.express.gcp.html":{"position":[[3197,19]]}},"component":{}}],["vmdk",{"_index":1157,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[2527,4]]}},"component":{}}],["vmware",{"_index":112,"title":{"/getting.started.vmware.html":{"position":[[23,6]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2085,6]]},"/getting.started.utm.html":{"position":[[6328,7]]},"/getting.started.vbox.html":{"position":[[5924,7]]},"/getting.started.vmware.html":{"position":[[1032,6],[1119,6],[1175,6],[1234,6],[1255,6],[1338,6],[1385,6],[1555,6],[1572,6],[1825,6],[5437,7]]},"/ml.html":{"position":[[754,7],[1392,6]]},"/run-vantage-express-on-aws.html":{"position":[[620,7]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[278,7]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[2932,7]]},"/vantage.express.gcp.html":{"position":[[284,7]]}},"component":{}}],["vmx",{"_index":1277,"title":{},"name":{},"text":{"/getting.started.vmware.html":{"position":[[1782,4]]}},"component":{}}],["vm’",{"_index":1485,"title":{},"name":{},"text":{"/ml.html":{"position":[[1234,4],[1485,4]]},"/run-vantage-express-on-aws.html":{"position":[[526,5]]},"/segment.html":{"position":[[512,5]]}},"component":{}}],["volatil",{"_index":4331,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[7706,8]]}},"component":{}}],["volum",{"_index":414,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[4298,7]]},"/fastload.html":{"position":[[258,7]]},"/jupyter.html":{"position":[[5907,6]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[733,7],[3945,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1833,6],[2114,7]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3697,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8655,7]]},"/regulus/install-regulus-docker-image.html":{"position":[[2965,6],[3937,8],[8319,6],[9089,8]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[90,7]]}},"component":{}}],["volumes/jupyter}:/home/jovyan/jupyterlabroot/userdata",{"_index":4487,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[9116,55]]}},"component":{}}],["volumes/workspaces}:/etc/td",{"_index":4470,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[3967,29]]}},"component":{}}],["vote",{"_index":1195,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[4157,6]]},"/getting.started.vbox.html":{"position":[[3195,6]]},"/getting.started.vmware.html":{"position":[[3266,6]]}},"component":{}}],["vpc",{"_index":2125,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[948,3],[1110,3],[1138,3],[1170,3],[1279,3],[1298,3],[1316,3],[1453,3],[1901,3],[1941,3],[2091,3],[2645,3],[2720,3],[3482,3],[3573,4],[3704,3],[3859,3],[4218,3],[4383,3],[4544,3],[4673,3],[11965,3],[12350,3],[12369,3],[12377,3]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[4107,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[6534,3],[6678,4]]},"/regulus/regulus-magic-reference.html":{"position":[[3679,3],[3823,4]]}},"component":{}}],["vpc.{vpcid:vpcid",{"_index":2133,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[1211,19]]}},"component":{}}],["vproc",{"_index":1193,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[4092,6]]},"/getting.started.vbox.html":{"position":[[3130,6]]},"/getting.started.vmware.html":{"position":[[3201,6]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[474,6]]}},"component":{}}],["vram",{"_index":2239,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[7558,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[4338,4]]},"/vantage.express.gcp.html":{"position":[[3365,4]]}},"component":{}}],["vs",{"_index":847,"title":{"/fastload.html#_fastload_vs_nos":{"position":[[9,3]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html#_tpt_vs_nos":{"position":[[4,3]]}},"name":{},"text":{},"component":{}}],["vsphere",{"_index":4490,"title":{},"name":{},"text":{"/regulus/regulus-magic-reference.html":{"position":[[1076,8]]}},"component":{}}],["vt",{"_index":2008,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[6709,3],[6775,3],[6841,3],[6906,3],[6972,3],[7038,3],[7103,3],[7169,3],[7234,3],[7300,3],[8643,3],[8714,3],[8786,3],[8858,3],[8930,3],[9001,3],[9069,3],[9143,3],[9220,3],[9292,3],[9373,3],[9446,3],[9528,3],[9612,3],[9697,3],[9782,3],[9864,3],[9950,3],[10036,3],[10123,3]]}},"component":{}}],["vtargetmail",{"_index":3188,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[862,13]]}},"component":{}}],["vtargetmail.csv",{"_index":3204,"title":{},"name":{},"text":{"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3220,18],[3664,15]]}},"component":{}}],["vulner",{"_index":3941,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[37171,10]]}},"component":{}}],["w",{"_index":3438,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[5678,4]]}},"component":{}}],["wahab",{"_index":3696,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[23,5]]}},"component":{}}],["wait",{"_index":1171,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[3022,4],[3659,4]]},"/getting.started.vbox.html":{"position":[[2060,4],[2697,4]]},"/getting.started.vmware.html":{"position":[[2131,4],[2768,4]]},"/run-vantage-express-on-aws.html":{"position":[[11721,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[8306,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[4197,4]]},"/mule-teradata-connector/reference.html":{"position":[[33736,4],[33806,5],[33905,4],[34019,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[10006,4]]}},"component":{}}],["walk",{"_index":4394,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[186,5]]}},"component":{}}],["want",{"_index":135,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2744,4],[4882,4],[5157,4]]},"/create-parquet-files-in-object-storage.html":{"position":[[362,4]]},"/dbt.html":{"position":[[3257,4]]},"/getting.started.utm.html":{"position":[[3651,4]]},"/getting.started.vbox.html":{"position":[[2689,4]]},"/getting.started.vmware.html":{"position":[[1159,4],[2760,4]]},"/jupyter.html":{"position":[[3019,4],[4322,4],[4425,4],[5633,4]]},"/local.jupyter.hub.html":{"position":[[1681,4],[2254,4],[3476,4]]},"/ml.html":{"position":[[90,4],[187,4],[249,4],[2882,4],[2902,4],[6571,4],[6697,4]]},"/nos.html":{"position":[[274,4],[809,4],[862,4],[5453,4],[7819,4]]},"/run-vantage-express-on-aws.html":{"position":[[403,4],[10124,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6904,4]]},"/sto.html":{"position":[[906,6],[2542,4]]},"/vantage.express.gcp.html":{"position":[[5931,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[6702,4],[7138,4],[15865,4]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[6622,4]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[3267,4]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2989,4],[12385,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9222,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8403,4]]},"/regulus/install-regulus-docker-image.html":{"position":[[6014,4]]}},"component":{}}],["wantedby=multi",{"_index":2290,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[10764,14]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[7544,14]]},"/vantage.express.gcp.html":{"position":[[6571,14]]}},"component":{}}],["warehous",{"_index":324,"title":{"/advanced-dbt.html#_data_warehouse_setup":{"position":[[5,9]]},"/advanced-dbt.html#_about_the_teddy_retailers_warehouse":{"position":[[26,9]]},"/dbt.html#_about_the_jaffle_shop_warehouse":{"position":[[22,9]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html#_about_the_banking_warehouse":{"position":[[18,9]]}},"name":{},"text":{"/advanced-dbt.html":{"position":[[1724,10],[1951,10],[2410,10]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1179,11]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[840,11]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[7001,10]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[4412,9]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[823,9]]}},"component":{}}],["warehouse/lak",{"_index":3258,"title":{},"name":{},"text":{"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[3934,15]]}},"component":{}}],["watch",{"_index":1180,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[3629,5]]},"/getting.started.vbox.html":{"position":[[2667,5]]},"/getting.started.vmware.html":{"position":[[2738,5]]},"/regulus/getting-started-with-regulus.html":{"position":[[3919,8]]},"/regulus/install-regulus-docker-image.html":{"position":[[9843,8]]}},"component":{}}],["watermark",{"_index":3911,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[30670,9],[30701,9],[30848,9],[31411,9],[31471,10],[31595,9]]}},"component":{}}],["way",{"_index":68,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[1009,3]]},"/advanced-dbt.html":{"position":[[1751,3]]},"/getting.started.utm.html":{"position":[[169,4]]},"/getting.started.vbox.html":{"position":[[169,4],[5233,3]]},"/getting.started.vmware.html":{"position":[[169,4]]},"/jupyter.html":{"position":[[556,4]]},"/local.jupyter.hub.html":{"position":[[1042,5]]},"/ml.html":{"position":[[1121,4],[3503,5]]},"/nos.html":{"position":[[5273,3],[7696,3]]},"/sto.html":{"position":[[6578,3]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[995,4],[1434,4]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[19562,3]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[4347,4]]},"/mule-teradata-connector/reference.html":{"position":[[1381,3],[1809,3]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[160,4]]}},"component":{}}],["we'll",{"_index":3352,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[345,5],[1902,5],[3733,5],[5863,5],[8844,5],[10652,5]]}},"component":{}}],["weatherdata",{"_index":2657,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[4401,11],[7061,11],[9568,12],[9894,13],[10509,11],[10888,11],[13351,11],[16973,11],[20686,11]]}},"component":{}}],["weatherdata_temp",{"_index":2772,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[14901,16],[17125,16],[17499,16],[18618,16],[20809,16],[22510,16]]}},"component":{}}],["weatherdata_view",{"_index":2704,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11279,16],[13431,16]]}},"component":{}}],["web",{"_index":1385,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[5531,3]]},"/mule.jdbc.example.html":{"position":[[3069,3]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4406,3]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[1086,3],[6955,3]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1580,3]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[619,3],[3846,3],[3976,3],[8797,3]]},"/regulus/install-regulus-docker-image.html":{"position":[[832,3]]}},"component":{}}],["webserv",{"_index":4063,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6644,9]]}},"component":{}}],["webserver_1",{"_index":4057,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[6515,11],[7581,11]]}},"component":{}}],["websit",{"_index":881,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[1484,7]]},"/getting.started.utm.html":{"position":[[1304,7]]},"/getting.started.vbox.html":{"position":[[1032,7]]},"/getting.started.vmware.html":{"position":[[989,7]]},"/jupyter.html":{"position":[[7249,7]]},"/local.jupyter.hub.html":{"position":[[6020,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[6069,7]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[4372,7]]}},"component":{}}],["wednesday",{"_index":3322,"title":{},"name":{},"text":{"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[5731,9]]}},"component":{}}],["well",{"_index":836,"title":{},"name":{},"text":{"/fastload.html":{"position":[[7137,5]]},"/geojson-to-vantage.html":{"position":[[8833,4]]},"/jupyter.html":{"position":[[692,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[3226,5],[13622,4]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[735,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[6821,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[5623,5],[6891,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[8682,5]]}},"component":{}}],["wenji",{"_index":2865,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[8,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[8,6]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[8,6]]}},"component":{}}],["weren’t",{"_index":3772,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6450,7]]}},"component":{}}],["west",{"_index":2899,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4895,4]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[4914,4]]}},"component":{}}],["west1/entrygroups/teradata",{"_index":3114,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[6242,26]]}},"component":{}}],["west1/entrygroups/teradata/entries/gcpus",{"_index":3116,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[6362,42],[6476,42]]}},"component":{}}],["west1/entrygroups/teradata/entries/gcpuser/tags/cwhnigqeqmpt",{"_index":3120,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[6811,60]]}},"component":{}}],["west1/entrygroups/teradata/entries/gcpuser_categori",{"_index":3122,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[6965,53],[7090,53]]}},"component":{}}],["west1/entrygroups/teradata/entries/gcpuser_categories/tags/ceij5g9t915o",{"_index":3124,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[7441,71]]}},"component":{}}],["west1/entrygroups/teradata/entries/gcpuser_tablesv_instantiated_latest",{"_index":3126,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[7607,70],[7749,70]]}},"component":{}}],["west1/entrygroups/teradata/entries/gcpuser_tablesv_instantiated_latest/tags/ceij5g9t915o",{"_index":3128,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[8134,88]]}},"component":{}}],["west1/tagtemplates/teradata_column_metadata",{"_index":3112,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[6121,43]]}},"component":{}}],["west1/tagtemplates/teradata_database_metadata",{"_index":3110,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[5876,45],[6692,45]]}},"component":{}}],["west1/tagtemplates/teradata_table_metadata",{"_index":3111,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[6000,42],[7325,42],[8018,42]]}},"component":{}}],["we’r",{"_index":2901,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[5516,5]]}},"component":{}}],["we’v",{"_index":1849,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[1066,5]]}},"component":{}}],["wget",{"_index":725,"title":{},"name":{},"text":{"/fastload.html":{"position":[[1302,4]]},"/geojson-to-vantage.html":{"position":[[1766,4],[1836,4],[5996,4],[6028,4]]},"/odbc.ubuntu.html":{"position":[[403,4],[489,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2379,4]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1177,4]]}},"component":{}}],["whether",{"_index":3869,"title":{},"name":{},"text":{"/mule-teradata-connector/reference.html":{"position":[[2183,7],[32092,7],[39066,7]]}},"component":{}}],["whitelist",{"_index":2892,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[4230,9]]}},"component":{}}],["whitespac",{"_index":2500,"title":{},"name":{},"text":{"/sto.html":{"position":[[5050,10]]}},"component":{}}],["wide",{"_index":1523,"title":{},"name":{},"text":{"/ml.html":{"position":[[3762,4]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[164,4]]}},"component":{}}],["will",{"_index":2466,"title":{},"name":{},"text":{"/sto.html":{"position":[[2358,7]]}},"component":{}}],["wind_direction_100m_deg",{"_index":2757,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[13055,24],[16677,24],[18336,23],[20390,24],[24287,24]]}},"component":{}}],["wind_direction_10m_deg",{"_index":2749,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[12756,23],[16378,23],[18195,22],[20091,23],[23988,23]]}},"component":{}}],["wind_direction_80m_deg",{"_index":2753,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[12904,23],[16526,23],[18265,22],[20239,23],[24136,23]]}},"component":{}}],["wind_speed_100m_mph",{"_index":2755,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[12979,20],[16601,20],[18302,19],[20314,20],[24211,20]]}},"component":{}}],["wind_speed_10m_mph",{"_index":2747,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[12682,19],[16304,19],[18162,18],[20017,19],[23914,19]]}},"component":{}}],["wind_speed_80m_mph",{"_index":2751,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[12830,19],[16452,19],[18232,18],[20165,19],[24062,19]]}},"component":{}}],["window",{"_index":51,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[661,7],[815,8],[1971,8],[3268,6],[3620,7],[4666,6]]},"/advanced-dbt.html":{"position":[[1365,7]]},"/fastload.html":{"position":[[744,8],[791,7]]},"/getting.started.utm.html":{"position":[[4491,6],[4955,6]]},"/getting.started.vbox.html":{"position":[[636,7],[3529,6],[3781,6],[5636,7]]},"/getting.started.vmware.html":{"position":[[636,8],[1488,8],[1651,8],[3600,6],[4064,6]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[1188,7]]},"/segment.html":{"position":[[1209,8]]},"/teradatasql.html":{"position":[[292,8]]},"/vantage.express.gcp.html":{"position":[[756,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[6374,7],[6541,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2883,7],[3158,7]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3399,7],[3584,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1400,7]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[1494,8]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[10423,6]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1226,7],[2344,7],[2789,7],[3839,7],[4355,6],[4603,7]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[482,6],[1031,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[1159,8]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[930,6],[969,7]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[598,8],[645,7]]}},"component":{}}],["windows",{"_index":2035,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[8216,10]]}},"component":{}}],["windows/instal",{"_index":4440,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[1762,17]]}},"component":{}}],["wish",{"_index":2120,"title":{},"name":{},"text":{"/run-vantage-express-on-aws.html":{"position":[[546,4]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[204,4]]},"/vantage.express.gcp.html":{"position":[[210,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[4663,4]]}},"component":{}}],["with_repr",{"_index":3494,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[8315,9]]}},"component":{}}],["within",{"_index":303,"title":{},"name":{},"text":{"/advanced-dbt.html":{"position":[[1166,6],[5550,6],[6153,6]]},"/geojson-to-vantage.html":{"position":[[5445,6]]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"position":[[1038,6]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3346,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[2537,6],[8817,6],[10728,6]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[8486,6],[10437,6],[15823,6]]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[5053,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2435,6],[9698,6]]},"/mule-teradata-connector/reference.html":{"position":[[18087,6]]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[459,6],[7225,6]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[3610,6]]}},"component":{}}],["without",{"_index":513,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[383,7]]},"/geojson-to-vantage.html":{"position":[[7631,7]]},"/getting.started.utm.html":{"position":[[254,7]]},"/getting.started.vbox.html":{"position":[[254,7]]},"/getting.started.vmware.html":{"position":[[254,7]]},"/ml.html":{"position":[[9069,7]]},"/nos.html":{"position":[[295,7]]},"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[5978,7],[7365,7]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[4131,7]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[8701,7],[20995,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[12791,7],[17611,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[4078,7]]},"/mule-teradata-connector/reference.html":{"position":[[13609,7]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[991,7]]},"/query-service/send-queries-using-rest-api.html":{"position":[[147,7]]},"/regulus/regulus-magic-reference.html":{"position":[[1693,7]]}},"component":{}}],["withtl",{"_index":4488,"title":{},"name":{},"text":{"/regulus/regulus-magic-reference.html":{"position":[[593,8]]}},"component":{}}],["withtls=f",{"_index":4403,"title":{},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[928,9]]},"/regulus/regulus-magic-reference.html":{"position":[[455,9]]}},"component":{}}],["wizard",{"_index":1137,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[1988,7],[4484,6]]},"/getting.started.vbox.html":{"position":[[3522,6]]},"/getting.started.vmware.html":{"position":[[3593,6]]},"/ml.html":{"position":[[2552,6],[2830,6],[3119,7]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[1691,6]]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"position":[[399,6]]}},"component":{}}],["won’t",{"_index":739,"title":{},"name":{},"text":{"/fastload.html":{"position":[[1851,5]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[789,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[1946,5]]}},"component":{}}],["work",{"_index":42,"title":{"/mule-teradata-connector/reference.html#_working_with_pooling_profiles":{"position":[[0,7]]},"/mule-teradata-connector/reference.html#_working_with_pooling_profiles_2":{"position":[[0,7]]},"/mule-teradata-connector/reference.html#_working_with_pooling_profiles_3":{"position":[[0,7]]}},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[523,4]]},"/advanced-dbt.html":{"position":[[1981,7]]},"/fastload.html":{"position":[[1018,7]]},"/getting.started.utm.html":{"position":[[339,7],[6246,7]]},"/getting.started.vbox.html":{"position":[[339,7],[5842,7]]},"/getting.started.vmware.html":{"position":[[339,7],[5355,7]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[795,4],[892,4]]},"/jupyter.html":{"position":[[686,5],[1350,4]]},"/local.jupyter.hub.html":{"position":[[3686,7]]},"/nos.html":{"position":[[3167,4]]},"/sto.html":{"position":[[4000,4]]},"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[4685,4]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[3221,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[3452,4],[5510,4]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[3536,6]]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"position":[[4100,8]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[165,4]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[1681,5],[1923,4]]},"/mule-teradata-connector/reference.html":{"position":[[20402,7],[23515,7],[27463,7]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8804,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[6110,4]]},"/regulus/regulus-magic-reference.html":{"position":[[4047,5]]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"position":[[872,7]]}},"component":{}}],["workbench",{"_index":2792,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[558,9],[731,9],[843,9]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[177,10]]}},"component":{}}],["workbook",{"_index":242,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[5950,9]]}},"component":{}}],["workdir",{"_index":1459,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[5183,7],[5611,7]]}},"component":{}}],["worker",{"_index":2568,"title":{},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[3118,6]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[3905,7],[8984,7]]}},"component":{}}],["worker_1_1",{"_index":4076,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[7416,10]]}},"component":{}}],["worker_2_1",{"_index":4087,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[8012,10]]}},"component":{}}],["worker_3_1",{"_index":4074,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[7284,10]]}},"component":{}}],["workflow",{"_index":2623,"title":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[16,9]]}},"name":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[16,9]]}},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[377,9]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[644,9]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[2233,8]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[2275,8],[9286,8]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[151,8],[529,9]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1119,8]]},"/regulus/getting-started-with-regulus.html":{"position":[[213,8]]},"/regulus/install-regulus-docker-image.html":{"position":[[9700,9]]}},"component":{}}],["workforc",{"_index":3591,"title":{},"name":{},"text":{"/jupyter-demos/index.html":{"position":[[1934,9]]}},"component":{}}],["working_dir",{"_index":2836,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2364,14]]}},"component":{}}],["working_dir/miniconda",{"_index":2841,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2527,24]]}},"component":{}}],["working_dir/miniconda.sh",{"_index":2840,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2457,27],[2490,27],[2559,27]]}},"component":{}}],["working_dir/miniconda/bin/activ",{"_index":2842,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2630,37],[3027,37]]}},"component":{}}],["working_dir/teradata",{"_index":2849,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[3151,23],[3254,23],[3281,23]]}},"component":{}}],["working_dir=/home/ec2",{"_index":2834,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2301,21],[2966,21]]}},"component":{}}],["workload",{"_index":2541,"title":{"/regulus/getting-started-with-regulus.html":{"position":[[13,8]]},"/regulus/getting-started-with-regulus.html#_run_your_first_workload":{"position":[[15,8]]}},"name":{},"text":{"/teradata-vantage-engine-architecture-and-concepts.html":{"position":[[451,8],[3927,8],[4122,8]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[1689,10],[14174,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[1891,10]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[1350,10]]},"/regulus/getting-started-with-regulus.html":{"position":[[335,8],[1759,9]]},"/regulus/install-regulus-docker-image.html":{"position":[[307,9],[1197,10],[6033,8],[9727,8]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[527,8],[1250,9]]}},"component":{}}],["worksapcesctl.ex",{"_index":4505,"title":{},"name":{},"text":{"/regulus/using-regulus-workspace-cli.html":{"position":[[983,17]]}},"component":{}}],["workspac",{"_index":233,"title":{"/regulus/install-regulus-docker-image.html#_install_workspaces":{"position":[[8,10]]},"/regulus/install-regulus-docker-image.html#_install_workspaces_using_docker_engine":{"position":[[8,10]]},"/regulus/install-regulus-docker-image.html#_install_workspaces_using_docker_compose":{"position":[[8,10]]},"/regulus/install-regulus-docker-image.html#_configure_and_set_up_workspaces":{"position":[[21,10]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[17,10]]},"/regulus/using-regulus-workspace-cli.html#_install_workspaces_cli":{"position":[[8,10]]},"/regulus/using-regulus-workspace-cli.html#_use_workspaces_cli":{"position":[[4,10]]},"/regulus/using-regulus-workspace-cli.html#_workspaces_cli_reference":{"position":[[0,10]]},"/regulus/using-regulus-workspace-cli.html#_workspaces_config":{"position":[[0,10]]},"/regulus/using-regulus-workspace-cli.html#_workspaces_user_list":{"position":[[0,10]]}},"name":{"/regulus/using-regulus-workspace-cli.html":{"position":[[14,9]]}},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[5506,9]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[747,9],[935,9],[1797,9],[1951,9]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1460,10]]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[1190,9]]},"/regulus/getting-started-with-regulus.html":{"position":[[628,11],[863,10]]},"/regulus/install-regulus-docker-image.html":{"position":[[593,11],[810,10],[1071,10],[1314,10],[1351,10],[1784,10],[1834,10],[1967,10],[2522,10],[3071,10],[3146,10],[3207,10],[3334,10],[3488,11],[3536,10],[3649,10],[4118,11],[4160,10],[4221,10],[4262,10],[4361,10],[4797,10],[4985,11],[5022,10],[6838,10],[7578,11],[7638,10],[7740,10],[7812,11],[7857,10],[7984,10],[8021,10]]},"/regulus/regulus-magic-reference.html":{"position":[[393,10],[557,10],[682,9]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[155,10],[277,10],[605,10],[764,10],[859,10],[1025,10],[1069,10],[1467,10],[1550,10],[1580,10],[1647,10],[1758,10],[1878,10]]}},"component":{}}],["workspaces:latest",{"_index":4455,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[3018,17]]}},"component":{}}],["workspaces_aws_config",{"_index":4471,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[3999,24],[9174,24]]}},"component":{}}],["workspaces_config",{"_index":4401,"title":{"/regulus/regulus-magic-reference.html#_workspaces_config":{"position":[[0,18]]}},"name":{},"text":{"/regulus/getting-started-with-regulus.html":{"position":[[893,18]]},"/regulus/regulus-magic-reference.html":{"position":[[420,18]]}},"component":{}}],["workspaces_hom",{"_index":4444,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[2199,16],[2400,16],[2639,15],[3948,18]]}},"component":{}}],["workspaces_home/tl",{"_index":4446,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[2455,20]]}},"component":{}}],["workspaces_home}:/etc/td",{"_index":4454,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[2972,26]]}},"component":{}}],["workspaces_image_nam",{"_index":4461,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[3554,24]]}},"component":{}}],["workspacesctl",{"_index":4504,"title":{},"name":{},"text":{"/regulus/using-regulus-workspace-cli.html":{"position":[[949,13],[1001,13],[1055,13],[1109,13],[1189,13],[1319,13],[1383,13],[1633,13],[1864,13],[2175,13],[2746,13],[2785,13],[3012,13],[3308,13],[3606,13],[3916,13],[3958,13],[4320,13],[4990,13],[5353,13],[5627,13],[6418,13],[6718,13]]}},"component":{}}],["workspaces}:${workspaces_image_tag",{"_index":4462,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[3596,35]]}},"component":{}}],["workstat",{"_index":1269,"title":{},"name":{},"text":{"/getting.started.vmware.html":{"position":[[1039,11],[1126,11],[1262,11]]}},"component":{}}],["world",{"_index":885,"title":{"/sto.html#_hello_world":{"position":[[6,5]]}},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[1655,5],[5831,5]]},"/sto.html":{"position":[[942,7],[999,8],[1093,6],[1106,6],[1180,7],[2447,5],[2763,8],[3962,6],[3975,6],[4031,6]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[9259,7]]}},"component":{}}],["world_cities=wget.download('https://d2ad6b4ur7yvpq.cloudfront.net/naturalearth",{"_index":891,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[1841,78]]}},"component":{}}],["wouldn’t",{"_index":1795,"title":{},"name":{},"text":{"/nos.html":{"position":[[7664,8]]}},"component":{}}],["wrap",{"_index":929,"title":{},"name":{},"text":{"/geojson-to-vantage.html":{"position":[[3364,4]]},"/sto.html":{"position":[[171,4]]}},"component":{}}],["writ",{"_index":1381,"title":{},"name":{},"text":{"/jupyter.html":{"position":[[4653,8]]}},"component":{}}],["write",{"_index":523,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[821,5],[1078,5],[4325,7]]},"/segment.html":{"position":[[114,6],[271,6],[388,6],[2429,5],[5507,6]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"position":[[1940,5]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[757,6],[805,6],[23691,5]]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[2944,5],[6114,5]]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"position":[[6970,5]]},"/mule-teradata-connector/index.html":{"position":[[1116,5]]},"/mule-teradata-connector/release-notes.html":{"position":[[716,5]]},"/regulus/install-regulus-docker-image.html":{"position":[[957,5]]}},"component":{}}],["write_no",{"_index":525,"title":{"/create-parquet-files-in-object-storage.html#_create_a_parquet_file_with_write_nos_function":{"position":[[27,9]]}},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[972,9],[1295,9],[1402,9],[2479,10],[2760,9]]},"/nos.html":{"position":[[7779,9],[7940,9]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[23743,10],[23768,9]]}},"component":{}}],["writefil",{"_index":3674,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[5391,11],[5654,11]]}},"component":{}}],["written",{"_index":1590,"title":{},"name":{},"text":{"/ml.html":{"position":[[6718,7]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[2430,7]]}},"component":{}}],["wrong",{"_index":1497,"title":{},"name":{},"text":{"/ml.html":{"position":[[1897,6]]}},"component":{}}],["wrote",{"_index":3050,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[24756,5]]}},"component":{}}],["ws_tz",{"_index":4468,"title":{},"name":{},"text":{"/regulus/install-regulus-docker-image.html":{"position":[[3789,8]]}},"component":{}}],["x",{"_index":1212,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[5316,1]]},"/getting.started.vbox.html":{"position":[[4142,1]]},"/getting.started.vmware.html":{"position":[[4425,1]]},"/run-vantage-express-on-aws.html":{"position":[[7169,1],[9200,1]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[3949,1],[5980,1]]},"/vantage.express.gcp.html":{"position":[[2976,1],[5007,1]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1167,3]]},"/mule-teradata-connector/reference.html":{"position":[[562,1],[683,1],[2310,1],[3272,1],[4544,1],[5604,1],[6870,1],[7899,1],[9080,1],[9939,1],[10909,1],[12093,1],[12154,1],[13743,1],[15417,1],[16387,1],[18336,1],[19446,1],[21500,1],[22567,1],[24351,1],[25551,1],[28165,1],[29129,1],[31357,1],[31409,1],[32273,1],[35422,1],[35487,1],[39625,1],[39659,1],[42752,1],[42786,1]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4741,2]]},"/regulus/getting-started-with-regulus.html":{"position":[[3482,1]]}},"component":{}}],["x64",{"_index":1299,"title":{},"name":{},"text":{"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[766,3],[954,3],[1023,3]]}},"component":{}}],["x86",{"_index":1112,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[660,3],[732,4]]},"/install-teradata-studio-on-mac-m1-m2.html":{"position":[[296,3],[378,3]]},"/teradatasql.html":{"position":[[374,3]]}},"component":{}}],["x86_64.sh",{"_index":2839,"title":{},"name":{},"text":{"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2444,9]]}},"component":{}}],["xa",{"_index":3836,"title":{},"name":{},"text":{"/mule-teradata-connector/examples-configuration.html":{"position":[[2509,2],[4004,2]]},"/mule-teradata-connector/reference.html":{"position":[[2149,2],[2234,2],[31977,2]]}},"component":{}}],["xf",{"_index":2333,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[2651,3],[2794,3]]}},"component":{}}],["xfspart",{"_index":2332,"title":{},"name":{},"text":{"/run-vantage-express-on-microsoft-azure.html":{"position":[[2643,7]]}},"component":{}}],["xgboost",{"_index":3163,"title":{},"name":{},"text":{"/cloud-guides/sagemaker-with-teradata-vantage.html":{"position":[[3434,7],[3596,7],[4783,7],[5211,7],[5511,7]]}},"component":{}}],["xgboost==0.90",{"_index":3676,"title":{},"name":{},"text":{"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"position":[[5437,13]]}},"component":{}}],["xml",{"_index":1306,"title":{},"name":{},"text":{"/jdbc.html":{"position":[[427,3]]},"/mule-teradata-connector/examples-configuration.html":{"position":[[1007,3]]}},"component":{}}],["xzf",{"_index":1814,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[622,3]]}},"component":{}}],["y",{"_index":1808,"title":{},"name":{},"text":{"/odbc.ubuntu.html":{"position":[[401,1]]},"/run-vantage-express-on-aws.html":{"position":[[6145,1]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[2925,1]]},"/vantage.express.gcp.html":{"position":[[1952,1]]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6545,4]]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2028,1],[2915,1]]},"/regulus/getting-started-with-regulus.html":{"position":[[3488,1]]},"/regulus/install-regulus-docker-image.html":{"position":[[3781,3]]}},"component":{}}],["y5wyuuxj",{"_index":4329,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[7559,8]]}},"component":{}}],["y_pred",{"_index":3479,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[7426,6]]}},"component":{}}],["yaml",{"_index":4040,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[4407,4]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[2532,4],[3209,4],[3803,4],[4248,4],[4685,4],[5195,4],[5555,4],[6043,4],[6320,4],[6618,4],[7029,4]]}},"component":{}}],["yaml.safe_load(open(\"feature_store.yaml\"))[\"project",{"_index":3729,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[3677,53]]}},"component":{}}],["ye",{"_index":1999,"title":{},"name":{},"text":{"/perform-time-series-analysis-using-teradata-vantage.html":{"position":[[5848,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[2722,3]]},"/regulus/install-regulus-docker-image.html":{"position":[[5217,3],[5309,3],[5351,3],[5474,3],[5565,3],[6125,3],[6193,3],[6867,3],[6957,3],[7045,3],[7077,3],[7176,3]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[2485,3],[5858,4],[5962,4],[6126,3],[6210,4],[6953,3]]}},"component":{}}],["yellow",{"_index":137,"title":{},"name":{},"text":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"position":[[2820,6]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[21604,7]]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"position":[[9647,7]]}},"component":{}}],["yml",{"_index":4148,"title":{},"name":{},"text":{"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"position":[[3641,3]]}},"component":{}}],["yourdataprovider@domain.com",{"_index":2682,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[6844,28]]}},"component":{}}],["you’d",{"_index":2687,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[7671,5],[7810,5]]}},"component":{}}],["you’ll",{"_index":2686,"title":{},"name":{},"text":{"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[7337,6]]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"position":[[8499,6]]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"position":[[990,6]]}},"component":{}}],["you’r",{"_index":3840,"title":{},"name":{},"text":{"/mule-teradata-connector/examples-configuration.html":{"position":[[4503,6],[4614,6]]},"/mule-teradata-connector/reference.html":{"position":[[4714,6],[7014,6],[9224,6],[11064,6],[16531,6],[19590,6],[22712,6],[25691,6],[29273,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[9621,6]]},"/regulus/regulus-magic-reference.html":{"position":[[4025,6]]},"/regulus/using-regulus-workspace-cli.html":{"position":[[5866,6],[5970,6],[6218,6]]}},"component":{}}],["you’v",{"_index":3771,"title":{},"name":{},"text":{"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"position":[[6343,6]]},"/regulus/getting-started-with-regulus.html":{"position":[[3798,6]]},"/regulus/install-regulus-docker-image.html":{"position":[[2624,6],[8158,6]]}},"component":{}}],["yu",{"_index":4192,"title":{},"name":{},"text":{"/other-integrations/integrate-teradata-vantage-with-knime.html":{"position":[[15,2]]}},"component":{}}],["yum",{"_index":4018,"title":{},"name":{},"text":{"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"position":[[2046,3],[2118,3],[2709,3],[2883,3],[2902,3],[2917,3],[2941,3],[2962,3],[3073,3],[5152,3]]}},"component":{}}],["yy/mm/dd",{"_index":560,"title":{},"name":{},"text":{"/create-parquet-files-in-object-storage.html":{"position":[[2047,10]]}},"component":{}}],["yyou",{"_index":3535,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[10481,4]]}},"component":{}}],["yyyi",{"_index":1221,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[5591,5],[5628,5]]},"/getting.started.vbox.html":{"position":[[4417,5],[4454,5]]},"/getting.started.vmware.html":{"position":[[4700,5],[4737,5]]},"/mule.jdbc.example.html":{"position":[[2369,5],[2406,5]]},"/run-vantage-express-on-aws.html":{"position":[[9475,5],[9512,5]]},"/run-vantage-express-on-microsoft-azure.html":{"position":[[6255,5],[6292,5]]},"/vantage.express.gcp.html":{"position":[[5282,5],[5319,5]]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"position":[[11458,5],[11637,5],[15080,5],[15259,5],[17595,5],[17688,5],[18792,5],[18971,5],[22689,5],[22868,5]]}},"component":{}}],["zero",{"_index":1413,"title":{},"name":{},"text":{"/local.jupyter.hub.html":{"position":[[457,4]]},"/mule-teradata-connector/reference.html":{"position":[[33697,4],[33884,4],[34272,4],[40665,4],[41057,4],[41887,4],[42236,4]]}},"component":{}}],["zgjjomriyw",{"_index":4227,"title":{},"name":{},"text":{"/query-service/send-queries-using-rest-api.html":{"position":[[2335,12],[2410,13]]}},"component":{}}],["zip",{"_index":1148,"title":{},"name":{},"text":{"/getting.started.utm.html":{"position":[[2271,3]]},"/local.jupyter.hub.html":{"position":[[3364,6],[3579,4]]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"position":[[1248,6]]}},"component":{}}],["zn",{"_index":3384,"title":{},"name":{},"text":{"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"position":[[2732,5],[3250,2],[3442,3],[7196,5]]}},"component":{}}],["zone",{"_index":678,"title":{},"name":{},"text":{"/dbt.html":{"position":[[4004,4]]}},"component":{}}],["zone=u",{"_index":2607,"title":{},"name":{},"text":{"/vantage.express.gcp.html":{"position":[[856,7],[1144,7],[1432,7],[1721,7],[7367,7]]}},"component":{}}]],"pipeline":["stemmer"]},"store":{"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html":{"text":"Author: Kevin Bogusch, Paul Ibberson Last updated: January 14th, 2022 This guide includes content from both Microsoft and Teradata product documentation. This article describes the process to connect your Power BI Desktop to Teradata Vantage for creating reports and dramatic visualizations of your data. Power BI supports Teradata Vantage as a data source and can use the underlying data just like any other data source in Power BI Desktop. Power BI is a collection of software services, applications, and connectors that work together to turn your unrelated sources of data into coherent, visually immersive, and interactive insights. Power BI consists of: A Windows desktop application, called Power BI Desktop An online SaaS (Software as a Service) service, called the Power BI service Power BI mobile apps for Windows, iOS, and Android devices These three elements—Power BI Desktop, the Power BI service, and the mobile apps—are designed to let people create, share, and consume business insights in the way that serves them, or their role, most effectively. A fourth element, Power BI Report Server, allows you to publish Power BI reports to an on-premises report server, after creating them in Power BI Desktop. Power BI Desktop supports Vantage as a 3rd party data source not as a ‘native’ data source. Instead, published reports on Power BI service will need to use the on-premises data gateway component to access Vantage. This getting started guide will show you how to connect to a Teradata Vantage. Power BI Desktop Teradata connector uses the .NET Data Provider for Teradata. You need to install the driver on computers that use the Power BI Desktop. The .NET Data Provider for Teradata single installation supports both 32-bit or 64-bit Power BI Desktop application. You are expected to be familiar with Azure services, Teradata Vantage, and Power BI Desktop. You will need the following accounts and system. The Power BI Desktop is a free application for Windows. (Power BI Desktop is not available for Macs. You could run it in a virtual machine, such as Parallels or VMware Fusion, or in Apple’s Boot Camp, but that is beyond the scope of this article.) A Teradata Vantage instance with a user and password. The user must have permission to data that can be used by Power BI Desktop. Vantage must be accessible from Power BI Desktop. If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. The .NET Data Provider for Teradata. You can install Power BI Desktop from the Microsoft Store or download the installer and run it directly. Download and install the latest version of the .NET Data Provider for Teradata. Note that there are multiple files available for download. You want the file that starts with “tdnetdp”. Run Power BI Desktop, which has a yellow icon. If the opening (splash) screen is showing, click on Get data. Otherwise, if you are in the main form of Power BI, ensure that you are on the Home ribbon and click on Get data. Click on More…. Click on Database on the left. Scroll the list on the right until you see Teradata database. Click on Teradata database, and then click on the Connect button. (“Teradata database” and “Teradata Vantage” are synonymous in this article.) In the window that appears, enter the name or IP address of your Vantage system into the text box. You can choose to Import data directly into Power BI data model, or connect directly to the data source using DirectQuery and click OK. (Click Advanced options to submit hand-crafted SQL statement.) For credentials, you have the option of connecting with your Windows login or Database username defined in Vantage, which is more common. Select the appropriate authentication method and enter in your username and password. Click Connect. You also have the option of authenticating with an LDAP server. This option is hidden by default. If you set the environment variable, PBI_EnableTeradataLdap, to true, then the LDAP authentication method will become available. Do note that LDAP is not supported with the on-premises data gateway, which is used for reports that are published to the Power BI service. If you need LDAP authentication and are using the on-premises data gateway, you will need to submit an incident to Microsoft and request support. Alternatively, you can configure Kerberos-based SSO from Power BI service to on-premise data sources like Teradata. Once you have connected to the Vantage system, Power BI Desktop remembers the credentials for future connections to the system. You can modify these credentials by going to File > Options and settings > Data source settings. The Navigator window appears after a successful connection. It displays the data available on the Vantage system. You can select one or more elements to use in Power BI Desktop. You preview a table by clicking on its name. If you want to load it into Power BI Desktop, ensure that you click the checkbox next to the table name. You can Load the selected table, which brings it into Power BI Desktop. You can also Edit the query, which opens a query editor so you can filter and refine the set of data you want to load. Edit may be called Transform data, depending upon the version of Power BI Desktop that you have. For information on joining tables, see Create and Manage Relationships in Power BI Desktop feature. To publish your report, click Publish on Home ribbon in Power BI Desktop. Power BI Desktop will prompt you to save your report. Choose My workspace and click Select. Once report has been published, click Got it to close. You may also click the link, which has the report name in the link. This is an example of a report created in Power BI Desktop. You can combine data from many sources with Power BI Desktop. Look at the following links for more information. What is Power BI Desktop? Data Sources in Power BI Desktop Shape and Combine Data with Power BI Desktop Connect to Excel workbooks in Power BI Desktop Enter data directly into Power BI Desktop If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Create Vizualizations in Power BI using Vantage","component":"ROOT","version":"master","name":"create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage","url":"/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Getting Started","id":"_getting_started"},{"text":"Install Power BI Desktop","id":"_install_power_bi_desktop"},{"text":"Install the .NET Data Provider for Teradata","id":"_install_the_net_data_provider_for_teradata"},{"text":"Connect to Teradata Vantage","id":"_connect_to_teradata_vantage"},{"text":"Next steps","id":"_next_steps"}]},"/advanced-dbt.html":{"text":"Author: Daniel Herrera Last updated: May 22th, 2023 This project showcases the integration of dbt with Teradata Vantage from an advanced user perspective. If you are new to data engineering with dbt we recommend that you start with our introductory project. The advanced use cases showcased in the demo are the following: Incremental materializations Utility macros Optimizing table/view creations with Teradata-specific modifiers The application of these concepts is illustrated through the ELT process of teddy_retailers, a fictional store. Access to a Teradata Vantage instance. If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. Python 3.7, 3.8, 3.9 or 3.10 installed. A database client for running database commands, an example of the configuration of one such client is presented in this tutorial.. Clone the tutorial repository and cd into the project directory: git clone https://github.com/Teradata/teddy_retailers_dbt-dev teddy_retailers cd teddy_retailers Create a new python environment to manage dbt and its dependencies. Confirm that the Python Version you are using to create the environment is within the supported versions listed above. python -m venv env Activate the python environment according to your operating system. source env/bin/activate for Mac, Linux, or env\\Scripts\\activate for Windows Install the dbt-teradata module. The core dbt module is included as a dependency so you don’t have to install it separately: pip install dbt-teradata Install the project’s dependencies dbt-utils and teradata-utils. This can be done through the following command: dbt deps The demo project assumes that the source data is already loaded into your data warehouse, this mimics the way that dbt is used in a production environment. To achieve this objective we provide public datasets available in Google Cload Platform (GCP), and scripts to load those datasets into your mock data warehouse. Create or select a working database. The dbt profile in the project points to a database called teddy_retailers. You can change the schema value to point to an existing database in your Teradata Vantage instance or you can create the teddy_retailers database running the following script in your database client: CREATE DATABASE teddy_retailers AS PERMANENT = 110e6, SPOOL = 220e6; Load Initial data set. To load the initial data set into the data warehouse, the required scripts are available in the references/inserts/create_data.sql path of the project. You can execute these scripts by copying and pasting them into your database client. For guidance on running these scripts in your specific case please consult your database client’s documentation. We will now configure dbt to connect to your Vantage database. Create the file $HOME/.dbt/profiles.yml with the following content. Adjust , , to match your Teradata Vantage instance. If you have already used dbt before in your environment you only need to add a profile for the project in your home’s directory .dbt/profiles.yml file. If the directory .dbt doesn’t exist in your system yet you will need to create it and add the profiles.yml to manage your dbt profiles. teddy_retailers: outputs: dev: type: teradata host: user: password: logmech: TD2 schema: teddy_retailers tmode: ANSI threads: 1 timeout_seconds: 300 priority: interactive retries: 1 target: dev Now, that we have the profile file in place, we can validate the setup: dbt debug If the debug command returned errors, you likely have an issue with the content of profiles.yml. As mentioned, teddy_retailers is a fictional store. Through dbt driven transformations we transform source data ingested from the`teddy_retailers` transactional database into a star schema ready for analytics. The source data consists of the following tables customers, orders, products, and order_products, according to the following Entity Relations Diagram: Using dbt, we leverage the source data tables to construct the following dimensional model, which is optimized for analytics tools. For Teddy Retailers, the orders and order_products sources are periodically updated by the organization’s ELT (Extract, Load, Transform) process. The updated data only includes the latest changes rather than the entire dataset due to its large volume. To address this challenge, it is necessary to capture these incremental updates while preserving the previously available data. The schema.yml file in the project’s models directory specifies the sources for our models. These sources align with the data we loaded from GCP using our SQL scripts. The staging area models are merely ingesting the data from each of the sources and renaming each field, if appropiate. In the schema.yml of this directory we define basic integrity checks for the primary keys. The following advanced dbt concepts are applied in the models at this stage: The schema.yml file in this directory specifies that the materializations of the two models we are building are incremental. We employ different strategies for these models: For the all_orders model, we utilize the delete+insert strategy. This strategy is implemented because there may be changes in the status of an order that are included in the data updates. For the all_order_products model, we employ the default append strategy. This approach is chosen because the same combination of order_id and product_id may appear multiple times in the sources. This indicates that a new quantity of the same product has been added or removed from a specific order. Within the all_order_products model, we have included an assertion with the help of a macro to test and guarantee that the resulting model encompasses a unique combination of order_id and product_id. This combination denotes the latest quantity of products of a specific type per order. For both the all_order and all_order_products models, we have incorporated Teradata Modifiers to enhance tracking of these two core models. To facilitate collecting statistics, we have added a post_hook that instructs the database connector accordingly. Additionally, we have created an index on the order_id column within the all_orders table. By executing dbt, we generate the dimensional model using the baseline data. dbt run This will create both our core and dimensional models using the baseline data. We can run our defined test by executing: dbt test You can find sample business intelligence queries in the references/query path of the project. These queries allow you to analyze the factual data based on dimensions such as customers, orders, and products. The scripts for loading updates into the source data set can be found in the references/inserts/update_data.sql path of the project. After updating the data sources, you can proceed with the aforementioned steps: running dbt, testing the data, and executing sample queries. This will allow you to visualize the variations and incremental updates in the data. In this tutorial, we explored the utilization of advanced dbt concepts with Teradata Vantage. The sample project showcased the transformation of source data into a dimensional data mart. Throughout the project, we implemented several advanced dbt concepts, including incremental materializations, utility macros, and Teradata modifiers. If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Advanced dbt use cases with Teradata Vantage","component":"ROOT","version":"master","name":"advanced-dbt","url":"/advanced-dbt.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Demo project setup","id":"_demo_project_setup"},{"text":"Data warehouse setup","id":"_data_warehouse_setup"},{"text":"Configure dbt","id":"_configure_dbt"},{"text":"About the Teddy Retailers warehouse","id":"_about_the_teddy_retailers_warehouse"},{"text":"The data models","id":"_the_data_models"},{"text":"The sources","id":"_the_sources"},{"text":"The dbt models","id":"_the_dbt_models"},{"text":"Staging area","id":"_staging_area"},{"text":"Core area","id":"_core_area"},{"text":"Incremental materializations","id":"_incremental_materializations"},{"text":"Macro assisted assertions","id":"_macro_assisted_assertions"},{"text":"Teradata modifiers","id":"_teradata_modifiers"},{"text":"Running transformations","id":"_running_transformations"},{"text":"Create dimensional model with baseline data","id":"_create_dimensional_model_with_baseline_data"},{"text":"Test the data","id":"_test_the_data"},{"text":"Running sample queries","id":"_running_sample_queries"},{"text":"Mocking the ELT process","id":"_mocking_the_elt_process"},{"text":"Summary","id":"_summary"}]},"/create-parquet-files-in-object-storage.html":{"text":"Author: Obed Vega Last updated: August 2nd, 2022 Native Object Storage (NOS) is a Vantage feature that allows you to query data stored in files such as CSV, JSON, and Parquet format datasets. These datasets are located on external S3-compatible object storage such as AWS S3, Google GCS, Azure Blob or on-prem implementations. It’s useful in scenarios where you want to explore data without building a data pipeline to bring it into Vantage. This tutorial demonstrates how to export data from Vantage to object storage using the Parquet file format. You need access to a Teradata Vantage instance. NOS is enabled in all Vantage editions from Vantage Express through Developer, DYI to Vantage as a Service starting from version 17.10. This tutorial is based on s3 aws object storage. You will need your own s3 bucket with write permissions to complete the tutorial. If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. WRITE_NOS allows you to extract selected or all columns from a database table or from derived results and write to external object storage, such as Amazon S3, Azure Blob storage, Azure Data Lake Storage Gen2, and Google Cloud Storage. This functionality stores data in Parquet format. You can find more documentation about WRITE_NOS functionality in the NOS documentation. You will need access to a database where you can execute WRITE_NOS function. If you don’t have such a database, run the following commands: CREATE USER db AS PERM=10e7, PASSWORD=db; -- Don't forget to give the proper access rights GRANT EXECUTE FUNCTION on TD_SYSFNLIB.READ_NOS to db; GRANT EXECUTE FUNCTION on TD_SYSFNLIB.WRITE_NOS to db; If you would like to learn more about setting up users and their privileges, checkout the NOS documentation. Let’s first create a table on your Teradata Vantage instance: CREATE SET TABLE db.parquet_table ,FALLBACK , NO BEFORE JOURNAL, NO AFTER JOURNAL, CHECKSUM = DEFAULT, DEFAULT MERGEBLOCKRATIO, MAP = TD_MAP1 ( column1 SMALLINT NOT NULL, column2 DATE FORMAT 'YY/MM/DD' NOT NULL, column3 DECIMAL(10,2)) PRIMARY INDEX ( column1 ); Populate your table with example data: INSERT INTO db.parquet_table (1,'2022/01/01',1.1); INSERT INTO db.parquet_table (2,'2022/01/02',2.2); INSERT INTO db.parquet_table (3,'2022/01/03',3.3); Your table should now look like this: column1 column2 column3 ------- -------- ------------ 1 22/01/01 1.10 2 22/01/02 2.20 3 22/01/03 3.30 Create the parquet file with WRITE_NOS. Don’t forget to replace with the name of your s3 bucket. Also,replace and with your access key and secret. Check your cloud provider docs how to create credentials to access object storage. For example, for AWS check out How do I create an AWS access key? SELECT * FROM WRITE_NOS ( ON ( SELECT * FROM db.parquet_table) USING LOCATION('/s3/.s3.amazonaws.com/parquet_file_on_NOS.parquet') AUTHORIZATION('{\"ACCESS_ID\":\"\", \"ACCESS_KEY\":\"\"}') STOREDAS('PARQUET') MAXOBJECTSIZE('16MB') COMPRESSION('SNAPPY') INCLUDE_ORDERING('TRUE') INCLUDE_HASHBY('TRUE') ) as d; Now you have created a parquet file in your object storage bucket. Now to easily query your file you need to follow step number 4. Create a NOS-backed foreign table. Don’t forget to replace with the name of your s3 bucket. Also,replace and with your access key and secret: CREATE MULTISET FOREIGN TABLE db.parquet_table_to_read_file_on_NOS , EXTERNAL SECURITY DEFINER TRUSTED CEPH_AUTH, MAP = TD_MAP1 ( Location VARCHAR(2048) CHARACTER SET UNICODE CASESPECIFIC , col1 SMALLINT , col2 DATE , col3 DECIMAL(10,2) ) USING ( LOCATION ('/s3/.s3.amazonaws.com/parquet_file_on_NOS.parquet') AUTHORIZATION('{\"ACCESS_ID\":\"\", \"ACCESS_KEY\":\"\"}') STOREDAS ('PARQUET') )NO PRIMARY INDEX; Now you are ready to Query your parquet file on NOS, let’s try the following query: SELECT col1, col2, col3 FROM db.parquet_table_to_read_file_on_NOS; The data returned from the query should look something like this: col1 col2 col3 ------ -------- ------------ 1 22/01/01 1.10 2 22/01/02 2.20 3 22/01/03 3.30 In this tutorial we have learned how to export data from Vantage to a parquet file on object storage using Native Object Storage (NOS). NOS supports reading and importing data stored in CSV, JSON and Parquet formats. NOS can also export data from Vantage to object storage. Teradata Vantage™ - Writing Data to External Object Store If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Create Parquet files in object storage","component":"ROOT","version":"master","name":"create-parquet-files-in-object-storage","url":"/create-parquet-files-in-object-storage.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Create a Parquet file with WRITE_NOS function","id":"_create_a_parquet_file_with_write_nos_function"},{"text":"Summary","id":"_summary"},{"text":"Further reading","id":"_further_reading"}]},"/dbt.html":{"text":"Author: Adam Tworkiewicz Last updated: July 12th, 2023 This tutorial demonstrates how to use dbt (Data Build Tool) with Teradata Vantage. It’s based on the original dbt Jaffle Shop tutorial. A couple of models have been adjusted to the SQL dialect supported by Vantage. Access to a Teradata Vantage instance. If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. Python 3.7, 3.8, 3.9, 3.10 or 3.11 installed. Clone the tutorial repository and cd into the project directory: git clone https://github.com/Teradata/jaffle_shop-dev.git jaffle_shop cd jaffle_shop Create a new python environment to manage dbt and its dependencies. Activate the environment: python3 -m venv env source env/bin/activate Install dbt-teradata module and its dependencies. The core dbt module is included as a dependency so you don’t have to install it separately: pip install dbt-teradata We will now configure dbt to connect to your Vantage database. Create file $HOME/.dbt/profiles.yml with the following content. Adjust , , to match your Teradata instance. Database setup The following dbt profile points to a database called jaffle_shop. You can change schema value to point to an existing database in your Teradata Vantage instance or you can create jaffle_shop database: CREATE DATABASE jaffle_shop AS PERMANENT = 110e6, SPOOL = 220e6; jaffle_shop: outputs: dev: type: teradata host: user: password: logmech: TD2 schema: jaffle_shop tmode: ANSI threads: 1 timeout_seconds: 300 priority: interactive retries: 1 target: dev Now, that we have the profile file in place, we can validate the setup: dbt debug If the debug command returned errors, you likely have an issue with the content of profiles.yml. jaffle_shop is a fictional e-commerce store. This dbt project transforms raw data from an app database into a dimensional model with customer and order data ready for analytics. The raw data from the app consists of customers, orders, and payments, with the following entity-relationship diagram: dbt takes these raw data table and builds the following dimensional model, which is more suitable for analytics tools: In real life, we will be getting raw data from platforms like Segment, Stitch, Fivetran or another ETL tool. In our case, we will use dbt’s seed functionality to create tables from csv files. The csv files are located in ./data directory. Each csv file will produce one table. dbt will inspect the files and do type inference to decide what data types to use for columns. Let’s create the raw data tables: dbt seed You should now see 3 tables in your jaffle_shop database: raw_customers, raw_orders, raw_payments. The tables should be populated with data from the csv files. Now that we have the raw tables, we can instruct dbt to create the dimensional model: dbt run So what exactly happened here? dbt created additional tables using CREATE TABLE/VIEW FROM SELECT SQL. In the first transformation, dbt took raw tables and built denormalized join tables called customer_orders, order_payments, customer_payments. You will find the definitions of these tables in ./marts/core/intermediate. In the second step, dbt created dim_customers and fct_orders tables. These are the dimensional model tables that we want to expose to our BI tool. dbt applied multiple transformations to our data. How can we ensure that the data in the dimensional model is correct? dbt allows us to define and execute tests against the data. The tests are defined in ./marts/core/schema.yml. The file describes each column in all relationships. Each column can have multiple tests configured under tests key. For example, we expect that fct_orders.order_id column will contain unique, non-null values. To validate that the data in the produced tables satisfies the test conditions run: dbt test Our model consists of just a few tables. Imagine a scenario where where we have many more sources of data and a much more complex dimensional model. We could also have an intermediate zone between the raw data and the dimensional model that follows the Data Vault 2.0 principles. Would it not be useful, if we had the inputs, transformations and outputs documented somehow? dbt allows us to generate documentation from its configuration files: dbt docs generate This will produce html files in ./target directory. You can start your own server to browse the documentation. The following command will start a server and open up a browser tab with the docs' landing page: dbt docs serve This tutorial demonstrated how to use dbt with Teradata Vantage. The sample project takes raw data and produces a dimensional data mart. We used multiple dbt commands to populate tables from csv files (dbt seed), create models (dbt run), test the data (dbt test), and generate and serve model documentation (dbt docs generate, dbt docs serve). dbt documentation dbt-teradata plugin documentation If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"dbt with Teradata Vantage","component":"ROOT","version":"master","name":"dbt","url":"/dbt.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Install dbt","id":"_install_dbt"},{"text":"Configure dbt","id":"_configure_dbt"},{"text":"About the Jaffle Shop warehouse","id":"_about_the_jaffle_shop_warehouse"},{"text":"Run dbt","id":"_run_dbt"},{"text":"Create raw data tables","id":"_create_raw_data_tables"},{"text":"Create the dimensional model","id":"_create_the_dimensional_model"},{"text":"Test the data","id":"_test_the_data"},{"text":"Generate documentation","id":"_generate_documentation"},{"text":"Summary","id":"_summary"},{"text":"Further reading","id":"_further_reading"}]},"/fastload.html":{"text":"Author: Adam Tworkiewicz Last updated: April 6th, 2022 Deprecation notice This how-to describes Fastload utility. The utility has been deprecated. For new implementations consider using Teradata Parallel Transporter (TPT). We often have a need to move large volumes of data into Vantage. Teradata offers Fastload utility that can efficiently load large amounts of data into Teradata Vantage. This how-to demonstrates how to use Fastload. In this scenario, we will load over 300k records, over 40MB of data, in a couple of seconds. Access to a Teradata Vantage instance. If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. Download Teradata Tools and Utilities (TTU) - supported platforms: Windows, MacOS, Linux (requires registration). Windows MacOS Linux Unzip the downloaded file and run setup.exe. Unzip the downloaded file and run TeradataToolsAndUtilitiesXX.XX.XX.pkg. Unzip the downloaded file, go to the unzipped directory and run: ./setup.sh a We will be working with the US tax fillings for nonprofit organizations. Nonprofit tax filings are public data. The US Internal Revenue Service publishes them in S3 bucket. Let’s grab a summary of filings for 2020: https://s3.amazonaws.com/irs-form-990/index_2020.csv. You can use your browser, wget or curl to save the file locally. Let’s create a database in Vantage. Use your favorite SQL tool to run the following query: CREATE DATABASE irs AS PERMANENT = 120e6, -- 120MB SPOOL = 120e6; -- 120MB We will now run Fastload. Fastload is a command-line tool that is very efficient in uploading large amounts of data into Vantage. Fastload, in order to be fast, has several restrictions in place. It can only populate empty tables, no inserts to already populated tables are supported. It doesn’t support tables with secondary indices. Also, it won’t insert duplicate records, even if a table is a MULTISET table. For the full list of restrictions check out Teradata® Fastload Reference. Fastload has its own scripting language. The language allows you to prepare the database with arbitrary SQL commands, declare the input source and define how the data should be inserted into Vantage. The tool supports both interactive and batch mode. In this section, we are going to use the interactive mode. Let’s start Fastload in the interactive mode: fastload First, let’s log in to a Vantage database. I’ve a Vantage Express running locally, so I’ll use localhost as the hostname and dbc for username and password: LOGON localhost/dbc,dbc; Now, that we are logged in, I’m going to prepare the database. I’m switching to irs database and making sure that the target table irs_returns and error tables (more about error tables later) do not exist: DATABASE irs; DROP TABLE irs_returns; DROP TABLE irs_returns_err1; DROP TABLE irs_returns_err2; I’ll now create an empty table that can hold the data elements from the csv file. CREATE MULTISET TABLE irs_returns ( return_id INT, filing_type VARCHAR(5) CHARACTER SET LATIN NOT CASESPECIFIC, ein INT, tax_period INT, sub_date VARCHAR(100) CHARACTER SET LATIN NOT CASESPECIFIC, taxpayer_name VARCHAR(100) CHARACTER SET LATIN NOT CASESPECIFIC, return_type VARCHAR(5) CHARACTER SET LATIN NOT CASESPECIFIC, dln BIGINT, object_id BIGINT ) PRIMARY INDEX ( return_id ); Now, that the target table has been prepared, we can start loading the data. ERRORFILES directive defines error files. The error files are really tables that Fastload creates. The first table contains information about data conversion and other issues. The second table keeps track of data uniqueness issues, e.g. primary key violations. BEGIN LOADING irs_returns ERRORFILES irs_returns_err1, irs_returns_err2; We instruct Fastload to save a checkpoint every 10k rows. It’s useful in case we have to restart our job. It will be able to resume from the last checkpoint. CHECKPOINT 10000; We also need to tell Fastload to skip the first row in the CSV file as start at record 2. That’s because the first row contains column headers. RECORD 2; Fastload also needs to know that it’s a comma-separated file: SET RECORD VARTEXT \",\"; DEFINE block specifies what columns we should expect: DEFINE in_return_id (VARCHAR(19)), in_filing_type (VARCHAR(5)), in_ein (VARCHAR(19)), in_tax_period (VARCHAR(19)), in_sub_date (VARCHAR(22)), in_taxpayer_name (VARCHAR(100)), in_return_type (VARCHAR(5)), in_dln (VARCHAR(19)), in_object_id (VARCHAR(19)), DEFINE block also has FILE attribute that points to the file with the data. Replace FILE = /tmp/index_2020.csv; with your location of index_2020.csv file: FILE = /tmp/index_2020.csv; Finally, we define the INSERT statement that will put data into the database and we close off LOADING block: INSERT INTO irs_returns ( return_id, filing_type, ein, tax_period, sub_date, taxpayer_name, return_type, dln, object_id ) VALUES ( :in_return_id, :in_filing_type, :in_ein, :in_tax_period, :in_sub_date, :in_taxpayer_name, :in_return_type, :in_dln, :in_object_id ); END LOADING; Once the job has finished, we are logging off from the database to clean things up. LOGOFF; Here is what the entire script looks like: LOGON localhost/dbc,dbc; DATABASE irs; DROP TABLE irs_returns; DROP TABLE irs_returns_err1; DROP TABLE irs_returns_err2; CREATE MULTISET TABLE irs_returns ( return_id INT, filing_type VARCHAR(5) CHARACTER SET LATIN NOT CASESPECIFIC, ein INT, tax_period INT, sub_date VARCHAR(100) CHARACTER SET LATIN NOT CASESPECIFIC, taxpayer_name VARCHAR(100) CHARACTER SET LATIN NOT CASESPECIFIC, return_type VARCHAR(5) CHARACTER SET LATIN NOT CASESPECIFIC, dln BIGINT, object_id BIGINT ) PRIMARY INDEX ( return_id ); BEGIN LOADING irs_returns ERRORFILES irs_returns_err1, irs_returns_err2; CHECKPOINT 10000; RECORD 2; SET RECORD VARTEXT \",\"; DEFINE in_return_id (VARCHAR(19)), in_filing_type (VARCHAR(5)), in_ein (VARCHAR(19)), in_tax_period (VARCHAR(19)), in_sub_date (VARCHAR(22)), in_taxpayer_name (VARCHAR(100)), in_return_type (VARCHAR(5)), in_dln (VARCHAR(19)), in_object_id (VARCHAR(19)), FILE = /tmp/index_2020.csv; INSERT INTO irs_returns ( return_id, filing_type, ein, tax_period, sub_date, taxpayer_name, return_type, dln, object_id ) VALUES ( :in_return_id, :in_filing_type, :in_ein, :in_tax_period, :in_sub_date, :in_taxpayer_name, :in_return_type, :in_dln, :in_object_id ); END LOADING; LOGOFF; To run our example in batch mode, simply save all instructions in a single file and run: fastload < file_with_instruction.fastload In our case, the file is in an S3 bucket. That means, that we can use Native Object Storage (NOS) to ingest the data: -- create an S3-backed foreign table CREATE FOREIGN TABLE irs_returns_nos USING ( LOCATION('/s3/s3.amazonaws.com/irs-form-990/index_2020.csv') ); -- load the data into a native table CREATE MULTISET TABLE irs_returns_nos_native (RETURN_ID, FILING_TYPE, EIN, TAX_PERIOD, SUB_DATE, TAXPAYER_NAME) AS ( SELECT RETURN_ID, FILING_TYPE, EIN, TAX_PERIOD, SUB_DATE, TAXPAYER_NAME FROM irs_returns_nos ) WITH DATA NO PRIMARY INDEX; The NOS solution is convenient as it doesn’t depend on additional tools. It can be implemented using only SQL. It performs well, especially for Vantage deployments with a high number of AMPs as NOS tasks are delegated to AMPs and run in parallel. Also, splitting the data in object storage into multiple files may further improve performance. This how-to demonstrated how to ingest large amounts of data into Vantage. We loaded hundreds of thousands or records into Vantage in a couple of seconds using Fastload. Teradata® Fastload Reference Query data stored in object storage If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Run large bulkloads efficiently with Fastload","component":"ROOT","version":"master","name":"fastload","url":"/fastload.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Install TTU","id":"_install_ttu"},{"text":"Get Sample data","id":"_get_sample_data"},{"text":"Create a database","id":"_create_a_database"},{"text":"Run Fastload","id":"_run_fastload"},{"text":"Batch mode","id":"_batch_mode"},{"text":"Fastload vs. NOS","id":"_fastload_vs_nos"},{"text":"Summary","id":"_summary"},{"text":"Further reading","id":"_further_reading"}]},"/geojson-to-vantage.html":{"text":"Author: Rémi Turpaud Last updated: Feb ember 14th, 2022 This post demonstrates how you can leverage any geographic dataset in GeoJson format and use it for geospatial analytics in Teradata Vantage, with just a few lines of code. Today we be gathering reference geographical data (official maps, points of interest, etc…​) form public sources and use it to support our day to day analytics. You will learn two methods to get your GeoJson data into Teradata Vantage: Load it as a single document and use native ClearScape analytics functions to parse it into a table usable for analytics. Lightly transform it in native Python as we load it into Vantage to produce an analytics ready dataset. The first method is a straig forward ELT pattern for semi-structured format processing in Vantage with a single SQL statement, the second one involves some lightweight preparation in (pure) Python and may allow more flexibility (for example to add early quality checks or optimize the load of large documents). You will need: Access to a Teradata Vantage instance. If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. A Python 3 interpreter A SQL Client Here we will load a GeoJson document as a single Character Large OBject (CLOB) into the Vantage Data Store and use a single SQL statement, backed by ClearScape Analytics native functions, to parse this document into a usable structure for geospatial analytics. The http://geojson.xyz/ website is a fantastic source for open geographical data in GeoJson format. We will load the \"Populated Places\" dataset that provides with a list of over 1000 significant world cities. Open you favourite Python 3 interpreter and make sure you have the following packages installed: wget teradatasql getpass Download and read the cities dataset: import wget world_cities=wget.download('https://d2ad6b4ur7yvpq.cloudfront.net/naturalearth-3.3.0/ne_50m_populated_places.geojson') with open(world_cities) as geo_json: jmap = jmap = geo_json.read() Modify this code as needed with your Vantage host name, user name and specify an advanced login mechanism if any (eg. LDAP, Kerberos…​) with the logmech parameter if you need to. All the connection parameters are documented on the teradatasql PyPi page there: https://pypi.org/project/teradatasql/ The code below simply creates a Vantage connection, and opens a cursor creating a table and loading it with our file. import teradatasql import getpass tdhost='' tdUser='' # Create a connection to Teradata Vantage con = teradatasql.connect(None, host=tdhost, user=tdUser, password=getpass.getpass()) # Create a table named geojson_src and load the JSON map into it as a single CLOB with con.cursor () as cur: cur.execute (\"create table geojson_src (geojson_nm VARCHAR(32), geojson_clob CLOB CHARACTER SET UNICODE);\") r=cur.execute (\"insert into geojson_src (?, ?)\", ['cities',jmap]) Now open your favourite SQL client and connect to your Vantage system. We will use ClearScape analytics JSON functions to parse our GeoJson document and extract the most relevant properties and the geometry itself (the coordinates of the city) for each feature (each feature representing a city in this example). We then use the GeomFromGeoJSON function to cast our geometry as a native Vantage geometry data type (ST_GEOMETRY). For user convenience, will wrap all this SQL code in a view: REPLACE VIEW cities_geo AS SEL city_name, country_name, region_name, code_country_isoa3, GeomFromGeoJSON(geom, 4326) city_coord FROM JSON_Table (ON ( SEL geojson_nm id ,cast(geojson_clob as JSON) jsonCol FROM geojson_src where geojson_nm='cities' ) USING rowexpr('$.features[*]') colexpr('[ {\"jsonpath\" : \"$.geometry\", \"type\" : \"VARCHAR(32000)\"}, {\"jsonpath\" : \"$.properties.NAME\", \"type\" : \"VARCHAR(50)\"}, {\"jsonpath\" : \"$.properties.SOV0NAME\", \"type\" : \"VARCHAR(50)\"}, {\"jsonpath\" : \"$.properties.ADM1NAME\", \"type\" : \"VARCHAR(50)\"}, {\"jsonpath\" : \"$.properties.SOV_A3\", \"type\" : \"VARCHAR(50)\"}]') ) AS JT(id, geom, city_name, country_name, region_name, code_country_isoa3); That’s all, you can now view the prepared geometry data as a table, ready to enrich your analytics: SEL TOP 5 * FROM cities_geo; Result: city_name country_name region_name code_country_isoa3 city_coord Potenza Italy Basilicata ITA POINT (15.798996495640267 40.642002130098206) Mariehamn Finland Finström ALD POINT (19.949004471869102 60.096996184895431) Ramallah Indeterminate PSE POINT (35.206209378189556 31.902944751424059) Poitier French Republic Poitou-Charentes FRA POINT (0.333276528534554 46.583292255736581) Clermont-Ferrand French Republic Auvergne FRA POINT (3.080008095928406 45.779982115759424) Calculate the distance between two cities: SEL b.city_coord.ST_SphericalDistance(l.city_coord) FROM (SEL city_coord FROM cities_geo WHERE city_name='Bordeaux') b CROSS JOIN (SEL city_coord FROM cities_geo WHERE city_name='Lvov') l Result: city_coord.ST_SPHERICALDISTANCE(city_coord) 1.9265006861079421e+06 The previous example demonstrated how to load a complete document as a large object into Teradata Vantage and use built in analytic functions to parse it into a usable dataset. This is convenient but limited: we need to parse this document every time we need to use it, as the original document is not directly usable for analytics, JSON documents are currently limited to 16MB in Vantage and it may be inconvenient to fix data quality or formatting issues within the document stored as a CLOB. In this example, we will parse our JSON document using the Python json package and load it as a table that can be used directly and efficiently for analysis. Python json and list manipulation functions, along with the Teradata SQL driver for Python make this process really simple and efficient. For this example, we will use the boundaries of the world countries available on https://datahub.io. Let’s get into it. Open you favourite Python 3 interpreter and make sure you have the following packages installed: wget teradatasql getpass import wget countries_geojson=wget.download('https://datahub.io/core/geo-countries/r/countries.geojson') import json with open(countries_geojson) as geo_json: countries_json = json.load(geo_json) The good thing about loading this JSON in memory, if you are using an interactive Python terminal, is that you can now explore the document to understand its structure. For example print(countries_json.keys()) print(countries_json['type']) print(countries_json['features'][0]['properties'].keys()) print(countries_json['features'][0]['geometry']['coordinates']) What we have here is a collection of GeoFeatures (as earlier). We will now lightly model this data in a Vantage table, for that: We will load each feature as a raw. We will extract the properties that look interesting for immediate analysis (in our example, the country name and ISO code). We will extract the geometry itself and load it as a separate column. To load a set of rows with a teradatasql cursor, we need to represent each row as an array (or tuples) of values, and the complete dataset as an array of all the row-arrays. This is fairly easy to do as a list comprehension For example: [(f['properties']['ADMIN'], f['properties']['ISO_A3'], f['geometry']) for f in countries_json['features'][:1]] NB: Not featured here, but recommended for richer datasets, consider loading the entire and original feature payload as a separate column (this is a JSON document). This will allow you to go back to the original record and extract new properties that you may have missed during your first analysis but have become relevant, directly in SQL and without having to reload the file entirely. Modify this code as needed with your Vantage host name, user name and specify an advanced login mechanism if any (eg. LDAP, Kerberos…​) with the logmech parameter if you need to. All the connection parameters are documented on the teradatasql PyPi page there: https://pypi.org/project/teradatasql/ The code below simply creates a Vantage connection, and opens a cursor creating a table and loading it with our list. import teradatasql import getpass tdhost='' tdUser='' # Create a connection to Teradata Vantage con = teradatasql.connect(None, host=tdhost, user=tdUser, password=tdPassword) # Create a table and load our country names, codes, and geometries. with con.cursor () as cur: cur.execute (\"create table stg_countries_map (country_nm VARCHAR(32), ISO_A3_cd VARCHAR(32), boundaries_geo CLOB CHARACTER SET UNICODE);\") r=cur.execute (\"insert into stg_countries_map (?, ?, ?)\", [(f['properties']['ADMIN'], f['properties']['ISO_A3'], str(f['geometry'])) for f in countries_json['features']]) The code below performs the table creation from the Python interpreter, you can also run the sql statement defined below in your prefered SQL client you might as well simply define this logic as a SQL view to avoid having to refresh this table. We will use ClearScape analytics the GeomFromGeoJSON function to cast our geometry as a native Vantage geometry data type (ST_GEOMETRY). # Now create our final reference table, casting the geometry CLOB as a ST_GEOMETRY object sql=''' CREATE TABLE ref_countries_map AS ( SEL ISO_A3_cd ,country_nm ,GeomFromGeoJSON(boundaries_geo, 4326) boundaries_geo FROM stg_countries_map ) WITH DATA ''' WITH con.cursor () AS cur: cur.execute (sql) That’s all, you may now query your tables using your favourite SQL client and Teradata’s excellent Geospatial data types and analytic functions. For example, using the two datasets we have loaded during this tutorial, check in what countries are SEL cty.city_name, cty.city_coord, ctry.country_nm FROM cities_geo cty LEFT JOIN ref_countries_map ctry ON ctry.boundaries_geo.ST_Contains(cty.city_coord)=1 WHERE cty.city_name LIKE 'a%' city_name city_coord country_nm Acapulco POINT (-99.915979046410712 16.849990864016206) Mexico Aosta POINT (7.315002595706176 45.737001067072299) Italy Ancona POINT (13.499940550397127 43.600373554552903) Italy Albany POINT (117.891604776075155 -35.016946595501224) Australia Note that none of the above code does not implement any control procedure or checks to, for example, manage the state of the target tables, manage locking, control error codes, etc…​ This is meant to be a demonstrations of the available features to acquire and use geospatial reference data. Consider using SQLAlchemy ORM if you are defining your pipeline in Python, dbt, or your favorite ELT and orchestration toolset to create your products you can operationalize. You now can know how to get any open geographic dataset and use it to augment your analytics with Teradata Vantage! If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Use geographic reference data with Vantage","component":"ROOT","version":"master","name":"geojson-to-vantage","url":"/geojson-to-vantage.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Option 1: Load a GeoJson document into Vantage","id":"_option_1_load_a_geojson_document_into_vantage"},{"text":"Get and load the GeoJson document","id":"_get_and_load_the_geojson_document"},{"text":"Load the GeoJson document in Vantage","id":"_load_the_geojson_document_in_vantage"},{"text":"Use the map from Vantage","id":"_use_the_map_from_vantage"},{"text":"Option 2: Prepare a GeoJson document with Python and load it into Vantage","id":"_option_2_prepare_a_geojson_document_with_python_and_load_it_into_vantage"},{"text":"Get and load the GeoJson document","id":"_get_and_load_the_geojson_document_2"},{"text":"Open the GeoJson file and type it as a dictionary","id":"_open_the_geojson_file_and_type_it_as_a_dictionary"},{"text":"[Optional] Check the content of the file","id":"_optional_check_the_content_of_the_file"},{"text":"Create a Vantage connection and load our file in a staging table","id":"_create_a_vantage_connection_and_load_our_file_in_a_staging_table"},{"text":"Create and our geography refernce table","id":"_create_and_our_geography_refernce_table"},{"text":"Use your data","id":"_use_your_data"},{"text":"Summary","id":"_summary"}]},"/getting.started.utm.html":{"text":"Author: Adam Tworkiewicz Last updated: January 9th, 2023 This how-to shows how to gain access to a Teradata database by running it on your local machine. There are many ways to install Teradata. This document optimizes for the lowest time to first query without spending money on cloud resources. Once you finish the steps you will have a working Teradata Vantage Express database on your computer. Starting with version 17.20, Vantage Express includes the following analytics packages: Vantage Analytics Library, Bring Your Own Model (BYOM), API Integration with AWS SageMaker. A Mac computer. Both Intel and M1/2 chips are supported. Vantage Express runs on x86 architecture. When you run the VM on M1/2 chips, UTM has to emulate x86. This is significantly slower then virtualization. If you determine that Vantage Express on M1/M2 is too slow for your needs, consider running Vantage Express in the cloud: AWS, Azure, Google Cloud. 30GB of disk space and enough CPU and RAM to be able to dedicate at least one core and 4GB RAM to the virtual machine. Admin rights to be able to install and run the software. No admin rights on your local machine? Have a look at how to run Vantage Express in AWS, Azure, Google Cloud. The latest version of Vantage Express. If you have not used the Teradata downloads website before, you will need to register. The latest version of UTM. Install UTM by running the installer and accepting the default values. Go to the directory where you downloaded Vantage Express and unzip the downloaded file. Start UTM, click on the + sign and select Virtualize (for Intel Macs) or Emulate (for M1 Macs). On Operating System screen select Other. On Other screen select Skip ISO Boot. On Hardware screen allocate at least 4GB of memory and at least 1 CPU core. We recommend 10GB RAM and 2 CPUs. On Storage screen accept the defaults by clicking Next. On Shared Direct screen click Next. On Summary screen check Open VM Settings and click Save. Go through the setup wizard. You only need to adjust the following tabs: QEMU - disable UEFI Boot option Network - expose ssh (22) and Vantage (1025) ports on the host computer: Map drives: Delete the default IDE Drive. Map the 3 Vantage Express drives by importing the disk files from the downloaded VM zip file. Make sure you map them in the right order, -disk1, -disk2, -disk3 . The first disk is bootable and contains the database itself. Disks 2 and 3 are so called pdisks and contain data. As you import the files UTM will automatically convert them fro vmdk into qcow2 format. Make sure that each disk is configured using the IDE interface: Once you are done mapping all 3 drives, your configuration should look like this: Save the configuration and start the VM. Press ENTER to select the highlighted LINUX boot partition. On the next screen, press ENTER again to select the default SUSE Linux kernel. After completing the bootup sequence a terminal login prompt as shown in the screenshot below will appear. Don’t enter anything in the terminal. Wait till the system starts the GUI. After a while the following prompt will appear - assuming that you did not enter anything after the command login prompt above. Press okay button in the screen below. Once the VM is up, you will see its desktop environment. When prompted for username/password enter root for both. The database is configured to autostart with the VM. To confirm that the database has started go to the virtual desktop and start Gnome Terminal. In the terminal execute pdestate command that will inform you if Vantage has already started: To paste into Gnome Terminal press SHIFT+CTRL+V. watch pdestate -a You want to wait till you see the following message: PDE state is RUN/STARTED. DBS state is 5: Logons are enabled - The system is quiescent See examples of messages that pdestate returns when the database is still initializing. PDE state is DOWN/HARDSTOP. PDE state is START/NETCONFIG. PDE state is START/GDOSYNC. PDE state is START/TVSASTART. PDE state is START/READY. PDE state is RUN/STARTED. DBS state is 1/1: DBS Startup - Initializing DBS Vprocs PDE state is RUN/STARTED. DBS state is 1/5: DBS Startup - Voting for Transaction Recovery PDE state is RUN/STARTED. DBS state is 1/4: DBS Startup - Starting PE Partitions PDE state is RUN/STARTED. Now that the database is up, go back to the virtual desktop and launch Teradata Studio Express. When you first start it you will be offered a tour. Once you close the tour, you will see a wizard window to add a new connection. Select Teradata: On the next screen, connect to the database on your localhost using dbc for the username and password: We will now run some queries in the VM. To avoid copy/paste issues between the host and the VM, we will open this quick start in the VM. Go to the virtual desktop, start Firefox and point it to this quick start. Once in Teradata Studio Express, go to Query Development perspective (go to the top menu and select Window → Query Development). Connect using the previously created connection profile by double-clicking on Database Connections → New Teradata. Using dbc user, we will create a new database called HR. Copy/paste this query and run it by hitting the run query button () or pressing F5 key: CREATE DATABASE HR AS PERMANENT = 60e6, -- 60MB SPOOL = 120e6; -- 120MB x Were you able to run the query? Let’s create a sample table and insert some data and query it. We will first create a table to hold employee information: CREATE SET TABLE HR.Employees ( GlobalID INTEGER, FirstName VARCHAR(30), LastName VARCHAR(30), DateOfBirth DATE FORMAT 'YYYY-MM-DD', JoinedDate DATE FORMAT 'YYYY-MM-DD', DepartmentCode BYTEINT ) UNIQUE PRIMARY INDEX ( GlobalID ); Now, let’s insert a record: INSERT INTO HR.Employees ( GlobalID, FirstName, LastName, DateOfBirth, JoinedDate, DepartmentCode ) VALUES ( 101, 'Adam', 'Tworkowski', '1980-01-05', '2004-08-01', 01 ); Finally, let’s see if we can retrieve the data: SELECT * FROM HR.Employees; You should get the following results: GlobalID FirstName LastName DateOfBirth JoinedDate DepartmentCode -------- --------- ---------- ----------- ---------- -------------- 101 Adam Tworkowski 1980-01-05 2004-08-01 1 In this guide we have covered how to quickly create a working Teradata environment. We used Teradata Vantage Express in a VM running on VMware. In the same VM, we ran Teradata Studio Express to issue queries. We installed all software locally and didn’t have to pay for cloud resources. Query data stored in object storage Teradata® Studio™ and Studio™ Express Installation Guide If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Run Vantage Express on UTM","component":"ROOT","version":"master","name":"getting.started.utm","url":"/getting.started.utm.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Installation","id":"_installation"},{"text":"Download required software","id":"_download_required_software"},{"text":"Run UTM installer","id":"_run_utm_installer"},{"text":"Run Vantage Express","id":"_run_vantage_express"},{"text":"Run sample queries","id":"_run_sample_queries"},{"text":"Summary","id":"_summary"},{"text":"Next steps","id":"_next_steps"},{"text":"Further reading","id":"_further_reading"}]},"/getting.started.vbox.html":{"text":"Author: Adam Tworkiewicz Last updated: January 9th, 2023 This how-to shows how to gain access to a Teradata database by running it on your local machine. There are many ways to install Teradata. This document optimizes for the lowest time to first query without spending money on cloud resources. Once you finish the steps you will have a working Teradata Vantage Express database on your computer. Starting with version 17.20, Vantage Express includes the following analytics packages: Vantage Analytics Library, Bring Your Own Model (BYOM), API Integration with AWS SageMaker. A computer using one of the following operating systems: Windows 10, Linux or Intel-based MacOS. For M1/M2 MacOS systems, see Run Vantage Express on UTM. 30GB of disk space and enough CPU and RAM to be able to dedicate at least one core and 6GB RAM to the virtual machine. Admin rights to be able to install and run the software. The latest version of Vantage Express VirtualBox Open Virtual Appliance (OVA). If you have not used the Teradata Downloads website before, you will need to register first. VirtualBox, version 6.1. You can also install VirtualBox using brew and other package managers. Install VirtualBox by running the installer and accepting the default values. VirtualBox includes functionality that requires elevated privileges. When you start VirtualBox for the first time, you will be asked to confirm this elevated access. You may also need to reboot your machine to activate the VirtualBox kernel plugin. Start VirtualBox. Go to File → Import Appliance…​ menu. In File field, select the downloaded OVA file. On the next screen, accept the defaults and click on Import. Back in the main VirtualBox panel, start the Vantage Express appliance double clicking on VM Vantage 17.20. Press ENTER to select the highlighted LINUX boot partition. On the next screen, press ENTER again to select the default SUSE Linux kernel. After completing the bootup sequence a terminal login prompt as shown in the screenshot below will appear. Don’t enter anything in the terminal. Wait till the system starts the GUI. After a while the following prompt will appear - assuming that you did not enter anything after the command login prompt above. Press okay button in the screen below. Once the VM is up, you will see its desktop environment. When prompted for username/password enter root for both. The database is configured to autostart with the VM. To confirm that the database has started go to the virtual desktop and start Gnome Terminal. In the terminal execute pdestate command that will inform you if Vantage has already started: To paste into Gnome Terminal press SHIFT+CTRL+V. watch pdestate -a You want to wait till you see the following message: PDE state is RUN/STARTED. DBS state is 5: Logons are enabled - The system is quiescent See examples of messages that pdestate returns when the database is still initializing. PDE state is DOWN/HARDSTOP. PDE state is START/NETCONFIG. PDE state is START/GDOSYNC. PDE state is START/TVSASTART. PDE state is START/READY. PDE state is RUN/STARTED. DBS state is 1/1: DBS Startup - Initializing DBS Vprocs PDE state is RUN/STARTED. DBS state is 1/5: DBS Startup - Voting for Transaction Recovery PDE state is RUN/STARTED. DBS state is 1/4: DBS Startup - Starting PE Partitions PDE state is RUN/STARTED. Now that the database is up, go back to the virtual desktop and launch Teradata Studio Express. When you first start it you will be offered a tour. Once you close the tour, you will see a wizard window to add a new connection. Select Teradata: On the next screen, connect to the database on your localhost using dbc for the username and password: Once in Teradata Studio Express, go to Query Development perspective (go to the top menu and select Window → Query Development). Connect using the previously created connection profile by double-clicking on Database Connections → New Teradata. Using dbc user, we will create a new database called HR. Copy/paste this query and run it by hitting the run query button () or pressing F5 key: CREATE DATABASE HR AS PERMANENT = 60e6, -- 60MB SPOOL = 120e6; -- 120MB x Were you able to run the query? Let’s create a sample table and insert some data and query it. We will first create a table to hold employee information: CREATE SET TABLE HR.Employees ( GlobalID INTEGER, FirstName VARCHAR(30), LastName VARCHAR(30), DateOfBirth DATE FORMAT 'YYYY-MM-DD', JoinedDate DATE FORMAT 'YYYY-MM-DD', DepartmentCode BYTEINT ) UNIQUE PRIMARY INDEX ( GlobalID ); Now, let’s insert a record: INSERT INTO HR.Employees ( GlobalID, FirstName, LastName, DateOfBirth, JoinedDate, DepartmentCode ) VALUES ( 101, 'Adam', 'Tworkowski', '1980-01-05', '2004-08-01', 01 ); Finally, let’s see if we can retrieve the data: SELECT * FROM HR.Employees; You should get the following results: GlobalID FirstName LastName DateOfBirth JoinedDate DepartmentCode -------- --------- ---------- ----------- ---------- -------------- 101 Adam Tworkowski 1980-01-05 2004-08-01 1 VirtualBox Guest Extensions is a piece of software that runs in a VM. It makes the VM run faster on VirtualBox. It also improves the resolution of the VM screen and its responsiveness to resizing. It implements two-way clipboard, and drag and drop between the host and the guest. VirtualBox Guest Extensions in the VM needs to match the version of your VirtualBox install. You will likely have to update VirtualBox Guest Extensions for optimal performance. To update VirtualBox Guest Extensions: Insert the VirtualBox Guest Extensions DVD by clicking on SATA Port 3: [Optical Drive] in Storage section: Back in the VM window, start the Gnome Terminal application. Run the following command in the terminal: mount /dev/cdrom /media/dvd; /media/dvd/VBoxLinuxAdditions.run In this guide we have covered how to quickly create a working Teradata environment. We used Teradata Vantage Express in a VM running on VMware. In the same VM, we ran Teradata Studio Express to issue queries. We installed all software locally and didn’t have to pay for cloud resources. Query data stored in object storage Teradata® Studio™ and Studio™ Express Installation Guide If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Run Vantage Express on VirtualBox","component":"ROOT","version":"master","name":"getting.started.vbox","url":"/getting.started.vbox.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Installation","id":"_installation"},{"text":"Download required software","id":"_download_required_software"},{"text":"Run installers","id":"_run_installers"},{"text":"Run Vantage Express","id":"_run_vantage_express"},{"text":"Run sample queries","id":"_run_sample_queries"},{"text":"Updating VirtualBox Guest Extensions","id":"_updating_virtualbox_guest_extensions"},{"text":"Summary","id":"_summary"},{"text":"Next steps","id":"_next_steps"},{"text":"Further reading","id":"_further_reading"}]},"/getting.started.vmware.html":{"text":"Author: Adam Tworkiewicz Last updated: January 9th, 2023 This how-to shows how to gain access to a Teradata database by running it on your local machine. There are many ways to install Teradata. This document optimizes for the lowest time to first query without spending money on cloud resources. Once you finish the steps you will have a working Teradata Vantage Express database on your computer. Starting with version 17.20, Vantage Express includes the following analytics packages: Vantage Analytics Library, Bring Your Own Model (BYOM), API Integration with AWS SageMaker. A computer using one of the following operating systems: Windows, Linux or Intel-based MacOS. For M1/M2 MacOS systems, see Run Vantage Express on UTM. 30GB of disk space and enough CPU and RAM to be able to dedicate at least one core and 6GB RAM to the virtual machine. Admin rights to be able to install and run the software. The latest version of Vantage Express. If you have not used the Teradata downloads website before, you will need to register. VMware Workstation Player. Commercial organizations require commercial licenses to use VMware Workstation Player. If you don’t want to acquire VMware licenses you can run Vantage Express on VirtualBox. VMware doesn’t offer VMware Workstation Player for MacOS. If you are on a Mac, you will need to install VMware Fusion instead. It’s a paid product but VMware offers a free 30-day trial. Alternatively, you can run Vantage Express on VirtualBox or UTM. On Windows, you will also need 7zip to unzip Vantage Express. Install VMware Player or VMware Fusion by running the installer and accepting the default values. If on Windows, install 7zip. Go to the directory where you downloaded Vantage Express and unzip the downloaded file. Double-click on the .vmx file. This will start the VM image in VMware Player/Fusion. Press ENTER to select the highlighted LINUX boot partition. On the next screen, press ENTER again to select the default SUSE Linux kernel. After completing the bootup sequence a terminal login prompt as shown in the screenshot below will appear. Don’t enter anything in the terminal. Wait till the system starts the GUI. After a while the following prompt will appear - assuming that you did not enter anything after the command login prompt above. Press okay button in the screen below. Once the VM is up, you will see its desktop environment. When prompted for username/password enter root for both. The database is configured to autostart with the VM. To confirm that the database has started go to the virtual desktop and start Gnome Terminal. In the terminal execute pdestate command that will inform you if Vantage has already started: To paste into Gnome Terminal press SHIFT+CTRL+V. watch pdestate -a You want to wait till you see the following message: PDE state is RUN/STARTED. DBS state is 5: Logons are enabled - The system is quiescent See examples of messages that pdestate returns when the database is still initializing. PDE state is DOWN/HARDSTOP. PDE state is START/NETCONFIG. PDE state is START/GDOSYNC. PDE state is START/TVSASTART. PDE state is START/READY. PDE state is RUN/STARTED. DBS state is 1/1: DBS Startup - Initializing DBS Vprocs PDE state is RUN/STARTED. DBS state is 1/5: DBS Startup - Voting for Transaction Recovery PDE state is RUN/STARTED. DBS state is 1/4: DBS Startup - Starting PE Partitions PDE state is RUN/STARTED. Now that the database is up, go back to the virtual desktop and launch Teradata Studio Express. When you first start it you will be offered a tour. Once you close the tour, you will see a wizard window to add a new connection. Select Teradata: On the next screen, connect to the database on your localhost using dbc for the username and password: We will now run some queries in the VM. To avoid copy/paste issues between the host and the VM, we will open this quick start in the VM. Go to the virtual desktop, start Firefox and point it to this quick start. Once in Teradata Studio Express, go to Query Development perspective (go to the top menu and select Window → Query Development). Connect using the previously created connection profile by double-clicking on Database Connections → New Teradata. Using dbc user, we will create a new database called HR. Copy/paste this query and run it by hitting the run query button () or pressing F5 key: CREATE DATABASE HR AS PERMANENT = 60e6, -- 60MB SPOOL = 120e6; -- 120MB x Were you able to run the query? Let’s create a sample table and insert some data and query it. We will first create a table to hold employee information: CREATE SET TABLE HR.Employees ( GlobalID INTEGER, FirstName VARCHAR(30), LastName VARCHAR(30), DateOfBirth DATE FORMAT 'YYYY-MM-DD', JoinedDate DATE FORMAT 'YYYY-MM-DD', DepartmentCode BYTEINT ) UNIQUE PRIMARY INDEX ( GlobalID ); Now, let’s insert a record: INSERT INTO HR.Employees ( GlobalID, FirstName, LastName, DateOfBirth, JoinedDate, DepartmentCode ) VALUES ( 101, 'Adam', 'Tworkowski', '1980-01-05', '2004-08-01', 01 ); Finally, let’s see if we can retrieve the data: SELECT * FROM HR.Employees; You should get the following results: GlobalID FirstName LastName DateOfBirth JoinedDate DepartmentCode -------- --------- ---------- ----------- ---------- -------------- 101 Adam Tworkowski 1980-01-05 2004-08-01 1 In this guide we have covered how to quickly create a working Teradata environment. We used Teradata Vantage Express in a VM running on VMware. In the same VM, we ran Teradata Studio Express to issue queries. We installed all software locally and didn’t have to pay for cloud resources. Query data stored in object storage Teradata® Studio™ and Studio™ Express Installation Guide If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Run Vantage Express on VMware","component":"ROOT","version":"master","name":"getting.started.vmware","url":"/getting.started.vmware.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Installation","id":"_installation"},{"text":"Download required software","id":"_download_required_software"},{"text":"Run installers","id":"_run_installers"},{"text":"Run Vantage Express","id":"_run_vantage_express"},{"text":"Run sample queries","id":"_run_sample_queries"},{"text":"Summary","id":"_summary"},{"text":"Next steps","id":"_next_steps"},{"text":"Further reading","id":"_further_reading"}]},"/index.html":{"text":"","title":"","component":"ROOT","version":"master","name":"index","url":"/index.html","titles":[]},"/install-teradata-studio-on-mac-m1-m2.html":{"text":"Author: Satish Chinthanippu Last updated: August 14th, 2023 This how-to goes through the installation of Teradata Studio and Teradata Studio Express on Apple Mac M1/M2 machines. Install and enable Rosetta binary translator. Follow the Apple Mac Rosetta Installation Guide. Download and Install a x86 64-bit based JDK 11 from your preferred vendor. For example, you can download x86 64-bit JDK 11 from Azul Download the latest Teradata Studio or Teradata Studio Express release from the Teradata Downloads page: Teradata Studio Teradata Studio Express Install the Teradata Studio/Teradata Studio Express. Refer to Teradata Studio and Teradata Studio Express Installation Guide for details. Apple has introduced ARM-based processors in Apple MAC M1/M2 machines. Intel x64-based applications won’t work by default on ARM-based processors. Teradata Studio or Teradata Studio Express also doesn’t work by default as the current Studio macOS build is an intel x64-based application. This how-to demonstrates how to install Intel x64-based JDK and Teradata Studio or Teradata Studio Express on Apple Mac M1/M2. If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Use Teradata Studio/Express on Apple Mac M1/M2","component":"ROOT","version":"master","name":"install-teradata-studio-on-mac-m1-m2","url":"/install-teradata-studio-on-mac-m1-m2.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Steps to follow","id":"_steps_to_follow"},{"text":"Summary","id":"_summary"}]},"/jdbc.html":{"text":"Author: Adam Tworkiewicz Last updated: November 14th, 2022 This how-to demonstrates how to connect to Teradata Vantage using JDBC using a sample Java application: https://github.com/Teradata/jdbc-sample-app. Access to a Teradata Vantage instance. If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. JDK Maven Add the Teradata JDBC driver as a dependency to your Maven POM XML file: This step assumes that your Vantage database is available on localhost on port 1025. If you are running Vantage Express on your laptop, you need to expose the port from the VM to the host machine. Refer to your virtualization software documentation how to forward ports. The project is set up. All that is left, is to load the driver, pass connection and authentication parameters and run a query: Run the tests: mvn test This how-to demonstrated how to connect to Teradata Vantage using JDBC. It described a sample Java application with Maven as the build tool that uses the Teradata JDBC driver to send SQL queries to Teradata Vantage. Teradata JDBC Driver Reference If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Connect to Vantage using JDBC","component":"ROOT","version":"master","name":"jdbc","url":"/jdbc.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Add dependency to your maven project","id":"_add_dependency_to_your_maven_project"},{"text":"Code to send a query","id":"_code_to_send_a_query"},{"text":"Run the tests","id":"_run_the_tests"},{"text":"Summary","id":"_summary"},{"text":"Further reading","id":"_further_reading"}]},"/jupyter.html":{"text":"Author: Adam Tworkiewicz Last updated: November 10th, 2022 This how-to shows you how to add Teradata Extensions to a Jupyter Notebooks environment. A hosted version of Jupyter Notebooks integrated with Teradata Extensions and analytics tools is available for functional testing for free at https://clearscape.teradata.com. In this how-to we will go through the steps for connecting to Teradata Vantage from a Jupyter notebook. If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. There are a couple of ways to connect to Vantage from a Jupyter Notebook: Use python or R libraries in a regular Python/R kernel notebook - this option works well when you are in a restricted environment that doesn’t allow you to spawn your own Docker images. Also, it’s useful in traditional datascience scenarios when you have to mix SQL and Python/R in a notebook. If you are proficient with Jupyter and have your own set of preferred libraries and extensions, start with this option. Use the Teradata Jupyter Docker image - the Teradata Jupyter Docker image bundles the Teradata SQL kernel (more on this later), teradataml and tdplyr libraries, python and R drivers. It also contains Jupyter extensions that allow you to manage Teradata connections, explore objects in Vantage database. It’s convenient when you work a lot with SQL or would find a visual Navigator helpful. If you are new to Jupyter or if you prefer to get a currated assembly of libraries and extensions, start with this option. This option uses a regular Jupyter Lab notebook. We will see how to load the Teradata Python driver and use it from Python code. We will also examine ipython-sql extension that adds support for SQL-only cells. We start with a plain Jupyter Lab notebook. Here, I’m using docker but any method of starting a notebook, including Jupyter Hub, Google Cloud AI Platform Notebooks, AWS SageMaker Notebooks, Azure ML Notebooks will do. docker run --rm -p 8888:8888 -e JUPYTER_ENABLE_LAB=yes \\ -v \"${PWD}\":/home/jovyan/work jupyter/datascience-notebook Docker logs will display the url that you need to go to: Entered start.sh with args: jupyter lab Executing the command: jupyter lab .... To access the server, open this file in a browser: file:///home/jovyan/.local/share/jupyter/runtime/jpserver-7-open.html Or copy and paste one of these URLs: http://d5c2323ae5db:8888/lab?token=5fb43e674367c6895e8c2404188aa550b5c7bdf96f5b4a3a or http://127.0.0.1:8888/lab?token=5fb43e674367c6895e8c2404188aa550b5c7bdf96f5b4a3a We will open a new notebook and create a cell to install the required libraries: I’ve published a notebook with all the cells described below on GitHub: https://github.com/Teradata/quickstarts/blob/main/modules/ROOT/attachments/vantage-with-python-libraries.ipynb import sys !{sys.executable} -m pip install teradatasqlalchemy Now, we will import Pandas and define the connection string to connect to Teradata. Since I’m running my notebook in Docker on my local machine and I want to connect to a local Vantage Express VM, I’m using host.docker.internal DNS name provided by Docker to reference the IP of my machine. import pandas as pd # Define the db connection string. Pandas uses SQLAlchemy connection strings. # For Teradata Vantage, it's teradatasql://username:password@host/database_name . # See https://pypi.org/project/teradatasqlalchemy/ for details. db_connection_string = \"teradatasql://dbc:dbc@host.docker.internal/dbc\" I can now call Pandas to query Vantage and move the result to a Pandas dataframe: pd.read_sql(\"SELECT * FROM dbc.dbcinfo\", con = db_connection_string) The syntax above is concise but it can get tedious if all you need is to explore data in Vantage. We will use ipython-sql and its %%sql magic to create SQL-only cells. We start with importing the required libraries. import sys !{sys.executable} -m pip install ipython-sql teradatasqlalchemy We load ipython-sql and define the db connection string: %load_ext sql # Define the db connection string. The sql magic uses SQLAlchemy connection strings. # For Teradata Vantage, it's teradatasql://username:password@host/database_name . # See https://pypi.org/project/teradatasqlalchemy/ for details. %sql teradatasql://dbc:dbc@host.docker.internal/dbc We can now use %sql and %%sql magic. Let’s say we want to explore data in a table. We can create a cell that says: %%sql SELECT * FROM dbc.dbcinfo If we want to move the data to a Pandas frame, we can say: result = %sql SELECT * FROM dbc.dbcinfo result.DataFrame() There are many other features that ipython-sql provides, including variable substitution, plotting with matplotlib, writting results to a local csv file or back to the database. See the demo notebook for examples and ipython-sql github repo for a complete reference. The Teradata Jupyter Docker image builds on jupyter/datascience-notebook Docker image. It adds the Teradata SQL kernel, Teradata Python and R libraries, Jupyter extensions to make you productive while interacting with Teradata Vantage. The image also contains sample notebooks that demonstrate how to use the SQL kernel and Teradata libraries. The SQL kernel and Teradata Jupyter extensions are useful for people that spend a lot of time with the SQL interface. Think about it as a notebook experience that, in many cases, is more convenient than using Teradata Studio. The Teradata Jupyter Docker image doesn’t try to replace Teradata Studio. It doesn’t have all the features. It’s designed for people who need a lightweight, web-based interface and enjoy the notebook UI. The Teradata Jupyter Docker image can be used when you want to run Jupyter locally or you have a place where you can run custom Jupyter docker images. The steps below demonstrate how to use the image locally. Run the image: By passing -e \"accept_license=Y you accept the license agreement for Teradata Jupyter Extensions. docker volume create notebooks docker run -e \"accept_license=Y\" -p :8888:8888 \\ -v notebooks:/home/jovyan/JupyterLabRoot \\ teradata/jupyterlab-extensions Docker logs will display the url that you need to go to. For example, this is what I’ve got: Starting JupyterLab ... Docker Build ID = 3.2.0-ec02012022 Using unencrypted HTTP Enter this URL in your browser: http://localhost:8888?token=96a3ab874a03779c400966bf492fe270c2221cdcc74b61ed * Or enter this token when prompted by Jupyter: 96a3ab874a03779c400966bf492fe270c2221cdcc74b61ed * If you used a different port to run your Docker, replace 8888 with your port number Open up the URL and use the file explorer to open the following notebook: jupyterextensions → notebooks → sql → GettingStartedDemo.ipynb. Go through the demo of the Teradata SQL Kernel: This quick start covered different options to connect to Teradata Vantage from a Jupyter Notebook. We learned about the Teradata Jupyter Docker image that bundles multiple Teradata Python and R libraries. It also provides an SQL kernel, database object explorer and connection management. These features are useful when you spend a lot of time with the SQL interface. For more traditional data science scenarios, we explored the standalone Teradata Python driver and integration through the ipython sql extension. Teradata Jupyter Extensions Website Teradata Vantage™ Modules for Jupyter Installation Guide Teradata® Package for Python User Guide If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Use Vantage from a Jupyter notebook","component":"ROOT","version":"master","name":"jupyter","url":"/jupyter.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Options","id":"_options"},{"text":"Teradata libraries","id":"_teradata_libraries"},{"text":"Teradata Jupyter Docker image","id":"_teradata_jupyter_docker_image"},{"text":"Summary","id":"_summary"},{"text":"Further reading","id":"_further_reading"}]},"/local.jupyter.hub.html":{"text":"Author: Hailing Jiang Last updated: November 17th, 2021 For customers who have their own JupyterHub clusters, there are two options to integrate Teradata Jupyter extensions into the existing clusters: Use Teradata Jupyter Docker image. Customize an existing Docker image to include Teradata extensions. This page contains detailed instructions on the two options. Instructions are based on the assumption that the customer JupyterHub deployment is based on Zero to JupyterHub with Kubernetes. If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. Teradata provides a ready-to-run Docker image that builds on the jupyter/datascience-notebook image. It bundles the Teradata SQL kernel, Teradata Python and R libraries and drivers and Teradata extensions for Jupyter to make you productive while interacting with Teradata database. The image also contains sample notebooks that demonstrate how to use the SQL kernel, extensions and Teradata libraries. You can use this image in the following ways: Start a personal Jupyter Notebook server in a local Docker container Run JupyterLab servers for a team using JupyterHub For instructions to start a personal JupyterLab server in a local Docker container, please see installation guide. This section will focus on how to use the Teradata Jupyter Docker image in a customer’s existing JupyterHub environment. Go to Vantage Modules for Jupyter page and download the Docker image. It is a tarball with name in this format teradatajupyterlabext_VERSION.tar.gz. Load the image: docker load -i teradatajupyterlabext_VERSION.tar.gz Push the image to your Docker registry: docker push You may want to consider changing the name of the loaded image for simplicity: docker tag OLD_IMAGE_NAME NEW_IMAGE_NAME To use the Teradata Jupyter Docker image directly in your JupyterHub cluster, modify the override file as described in herein the JupyterHub documentation. Replace REGISTRY_URL and VERSION with appropriate values from the step above: singleuser: image: name: REGISTRY_URL/teradatajupyterlabext_VERSION tag: latest Apply the changes to the cluster as described in JupyterHub documentation. You can use multiple profiles to allow users to select which image they want to use when they log in to JupyterHub. For detailed instructions and examples on configuring multiple profiles, please see JupyterHub documentation. If your users need some packages or notebooks that are not bundled in the Teradata Jupyter Docker image, we recommend that you use Teradata image as a base image and build a new one on top of it. Here is an example Dockerfile that builds on top of Teradata image and adds additional packages and notebooks. Use the Dockerfile to build a new Docker image, push the image to a designated registry, modify override file as shown above to use the new image as singleuser image, apply the changes to the cluster as described above. Replace REGISTRY_URL and VERSION with appropriate values: FROM REGISTRY_URL/teradatajupyterlabext_VERSION:latest # install additional packages RUN pip install --no-cache-dir astropy # copy notebooks COPY notebooks/. /tmp/JupyterLabRoot/DemoNotebooks/ If you prefer, you can include the Teradata SQL kernel and extensions into into an existing image you are currently using. Go to Vantage Modules for Jupyter page to download the zipped Teradata Jupyter extensions package bundle. Assuming your existing docker image is Linux based, you will want to use the Linux version of the download. Otherwise, download for the platform you are using. The .zip file contains the Teradata SQL Kernel, extensions and sample notebooks. Unzip the bundle file to your working directory. Below is an example Dockerfile to add Teradata Jupyter extensions to your existing Docker image. Use the Dockerfile to build a new Docker image, push the image to a designated registry, modify override file as shown above to use the new image as singleuser image, apply the changes to the cluster: FROM REGISTRY_URL/your-existing-image:tag ENV NB_USER=jovyan \\ HOME=/home/jovyan \\ EXT_DIR=/opt/teradata/jupyterext/packages USER root ############################################################## # Install kernel and copy supporting files ############################################################## # Copy the kernel COPY ./teradatakernel /usr/local/bin RUN chmod 755 /usr/local/bin/teradatakernel # Copy directory with kernel.json file into image COPY ./teradatasql teradatasql/ ############################################################## # Switch to user jovyan to copy the notebooks and license files. ############################################################## USER $NB_USER # Copy notebooks COPY ./notebooks/ /tmp/JupyterLabRoot/TeradataSampleNotebooks/ # Copy license files COPY ./ThirdPartyLicenses /tmp/JupyterLabRoot/ThirdPartyLicenses/ USER root # Install the kernel file to /opt/conda jupyter lab instance RUN jupyter kernelspec install ./teradatasql --prefix=/opt/conda ############################################################## # Install Teradata extensions ############################################################## COPY ./teradata_*.tgz $EXT_DIR WORKDIR $EXT_DIR RUN jupyter labextension install --no-build teradata_database* && \\ jupyter labextension install --no-build teradata_resultset* && \\ jupyter labextension install --no-build teradata_sqlhighlighter* && \\ jupyter labextension install --no-build teradata_connection_manager* && \\ jupyter labextension install --no-build teradata_preferences* && \\ jupyter lab build --dev-build=False --minimize=False && \\ rm -rf * WORKDIR $HOME # Give back ownership of /opt/conda to jovyan RUN chown -R jovyan:users /opt/conda # Jupyter will create .local directory RUN rm -rf $HOME/.local You can optionally install Teradata package for Python and Teradata package for R. See the following pages for details: Teradata Package for Python - teradataml download page Teradata Package for R - tdplyr download page Teradata Jupyter Extensions Website Teradata Vantage™ Modules for Jupyter Installation Guide Teradata® Package for Python User Guide If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Deploy Teradata Jupyter extensions to JupyterHub","component":"ROOT","version":"master","name":"local.jupyter.hub","url":"/local.jupyter.hub.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Use Teradata Jupyter Docker image","id":"_use_teradata_jupyter_docker_image"},{"text":"Install Teradata Jupyter Docker image in your registry","id":"_install_teradata_jupyter_docker_image_in_your_registry"},{"text":"Use Teradata Jupyter Docker image in JupyterHub","id":"_use_teradata_jupyter_docker_image_in_jupyterhub"},{"text":"Customize Teradata Jupyter Docker image","id":"_customize_teradata_jupyter_docker_image"},{"text":"Customize an existing Docker image to include Teradata extensions","id":"_customize_an_existing_docker_image_to_include_teradata_extensions"},{"text":"Further reading","id":"_further_reading"}]},"/ml.html":{"text":"Author: Adam Tworkiewicz Last updated: September 12th, 2021 There are situations when you want to quickly validate a machine learning model idea. You have a model type in mind. You don’t want to operationalize with an ML pipeline just yet. You just want to test out if the relationship you had in mind exists. Also, sometimes even your production deployment doesn’t require constant relearning with MLops. In such cases, you can use Vantage Analytics Library (VAL) and multiple ML model types it supports. You need access to a Teradata Vantage instance. If you need a new instance of Vantage, you can install a free version called Vantage Express in the cloud on Google Cloud, Azure, and AWS. You can also run Vantage Express on your local machine using VMware, VirtualBox, or UTM. Support for ML in Vantage requires Vantage Analytics Library (VAL). In this section, we will install VAL and load some sample data. VAL is distributed as an rpm file. Go to Teradata Downloads and download the VAL rpm to your local machine. Upload the file to your Vantage install. If you are running Vantage Express locally, you have many ways to do it: If you installed Vantage Express on VirtualBox, you should be able to drag & drop the file to the VM’s desktop. You can also use scp by connecting to port 4422, e.g.: scp -P 4422 ~/Downloads/VAL-2.0.0.3-1.x86_64.rpm root@localhost:/root/Desktop If you use VMware and you have enabled drag & drop, you should be able to drag and drop the file to the VM’s desktop. If you have SSH access to your Vantage nodes, you can use scp to upload the binary, e.g.: scp ~/Downloads/VAL-2.0.0.3-1.x86_64.rpm root@vantage.server.name:/tmp/ We will now create a new database where VAL functions and procedures will be installed. You could install VAL in a global location such as SYSLIB, but installing VAL in a specific database will make it easier to start over if things go wrong. Let’s create a database called val and grant appropriate permissions to our user. Please edit to match your database name and user id: CREATE DATABASE val AS PERMANENT = 60e6, -- 60MB SPOOL = 120e6; -- 120MB GRANT CREATE FUNCTION ON val to dbc; GRANT ALTER FUNCTION ON val to dbc; GRANT EXECUTE PROCEDURE on SQLJ.REMOVE_JAR to dbc; GRANT EXECUTE PROCEDURE on SQLJ.INSTALL_JAR to dbc; GRANT EXECUTE PROCEDURE on SQLJ.REPLACE_JAR to dbc; GRANT CREATE EXTERNAL PROCEDURE ON val to dbc; Open Gnome Terminal in the VM and start the installation process. Adjust the rpm path as necessary: rpm -Uvh --nodeps ~/Desktop/VAL-2.0.0.3-1.x86_64.rpm The install wizard will ask you for the hostname, user id, and password. If you are running the install on your Vantage Express VM, the values are: Hostname: localhost Userid: dbc Password: dbc Account string: leave empty, press ENTER BTEQ or FASTLOAD command: leave empty, press ENTER The wizard will ask you to choose which part of VAL you want to install. We want to start with installing td_analyze procedure, i.e. option 1. Once you select option 1, the script will ask for the database name where td_analyze will be installed. Enter val and press ENTER. While still in the wizard, install option 5, i.e. Tutorial Tables. These are sample tables with data that we are going to use to build a sample model. Now, that we have VAL and sample tables loaded, let’s explore the data. It’s a simplistic, fictitious dataset of banking customers (1K-ish rows), Accounts (10K-ish rows) and Transactions (100K-ish rows). They are related to each other in the following ways: In later parts of this how-to we are going to explore if we can build a model that predicts average monthly balance that a banking customer has on their credit card based on all non-credit card related variables in the tables. Let’s start by creating a wide table (Analytic Data Set, or ADS) that joins the three tables above. You must have CREATE TABLE permissions on the Database where the Vantage Analytic Library is installed. -- Switch to val database. DATABASE val; -- Create the ADS. CREATE TABLE VAL_ADS AS ( SELECT T1.cust_id AS cust_id ,MIN(T1.income) AS tot_income ,MIN(T1.age) AS tot_age ,MIN(T1.years_with_bank) AS tot_cust_years ,MIN(T1.nbr_children) AS tot_children ,CASE WHEN MIN(T1.marital_status) = 1 THEN 1 ELSE 0 END AS single_ind ,CASE WHEN MIN(T1.gender) = 'F' THEN 1 ELSE 0 END AS female_ind ,CASE WHEN MIN(T1.marital_status) = 2 THEN 1 ELSE 0 END AS married_ind ,CASE WHEN MIN(T1.marital_status) = 3 THEN 1 ELSE 0 END AS separated_ind ,MAX(CASE WHEN T1.state_code = 'CA' THEN 1 ELSE 0 END) AS ca_resident_ind ,MAX(CASE WHEN T1.state_code = 'NY' THEN 1 ELSE 0 END) AS ny_resident_ind ,MAX(CASE WHEN T1.state_code = 'TX' THEN 1 ELSE 0 END) AS tx_resident_ind ,MAX(CASE WHEN T1.state_code = 'IL' THEN 1 ELSE 0 END) AS il_resident_ind ,MAX(CASE WHEN T1.state_code = 'AZ' THEN 1 ELSE 0 END) AS az_resident_ind ,MAX(CASE WHEN T1.state_code = 'OH' THEN 1 ELSE 0 END) AS oh_resident_ind ,MAX(CASE WHEN T2.acct_type = 'CK' THEN 1 ELSE 0 END) AS ck_acct_ind ,MAX(CASE WHEN T2.acct_type = 'SV' THEN 1 ELSE 0 END) AS sv_acct_ind ,MAX(CASE WHEN T2.acct_type = 'CC' THEN 1 ELSE 0 END) AS cc_acct_ind ,AVG(CASE WHEN T2.acct_type = 'CK' THEN T2.starting_balance+T2.ending_balance ELSE 0 END) AS ck_avg_bal ,AVG(CASE WHEN T2.acct_type = 'SV' THEN T2.starting_balance+T2.ending_balance ELSE 0 END) AS sv_avg_bal ,AVG(CASE WHEN T2.acct_type = 'CC' THEN T2.starting_balance+T2.ending_balance ELSE 0 END) AS cc_avg_bal ,AVG(CASE WHEN T2.acct_type = 'CK' THEN T3.principal_amt+T3.interest_amt ELSE 0 END) AS ck_avg_tran_amt ,AVG(CASE WHEN T2.acct_type = 'SV' THEN T3.principal_amt+T3.interest_amt ELSE 0 END) AS sv_avg_tran_amt ,AVG(CASE WHEN T2.acct_type = 'CC' THEN T3.principal_amt+T3.interest_amt ELSE 0 END) AS cc_avg_tran_amt ,COUNT(CASE WHEN ((EXTRACT(MONTH FROM T3.tran_date) + 2) / 3) = 1 THEN T3.tran_id ELSE NULL END) AS q1_trans_cnt ,COUNT(CASE WHEN ((EXTRACT(MONTH FROM T3.tran_date) + 2) / 3) = 2 THEN T3.tran_id ELSE NULL END) AS q2_trans_cnt ,COUNT(CASE WHEN ((EXTRACT(MONTH FROM T3.tran_date) + 2) / 3) = 3 THEN T3.tran_id ELSE NULL END) AS q3_trans_cnt ,COUNT(CASE WHEN ((EXTRACT(MONTH FROM T3.tran_date) + 2) / 3) = 4 THEN T3.tran_id ELSE NULL END) AS q4_trans_cnt FROM Customer AS T1 LEFT OUTER JOIN Accounts AS T2 ON T1.cust_id = T2.cust_id LEFT OUTER JOIN Transactions AS T3 ON T2.acct_nbr = T3.acct_nbr GROUP BY T1.cust_id) WITH DATA UNIQUE PRIMARY INDEX (cust_id); We will now build a linear regression model that takes parameters from the dataset and tries to predict the monthly credit card balance. We call td_analyze and tell it we want a linear model. The input is in table VAL_ADS and consists of multiple columns. The dependent variable is cc_avg_bal. We want the model to be written to val database in table called LINEAR_REGRESSION_DEMO: call td_analyze('linear', 'database=val; tablename=VAL_ADS; columns=tot_age,tot_income,tot_cust_years,tot_children,single_ind,female_ind,married_ind,separated_ind,ck_acct_ind,sv_acct_ind,sv_avg_bal,ck_avg_bal,ca_resident_ind,ny_resident_ind,tx_resident_ind,il_resident_ind,az_resident_ind,oh_resident_ind; dependent=cc_avg_bal; outputdatabase=val; outputtablename=linear_regression_demo'); The procedure creates several output tables. For now, we don’t have to analyze what is in the tables. Let’s see how we can use the newly created model to perform scoring. Let’s use the model to perform predictions and evaluate the scores. To do this, we call td_analyze with linearscore parameter. We point to the input table (VAL_ADS), the model tables (prefix linear_regression_demo) and define the target table (linear_regression_score) in val database: call td_analyze('linearscore', 'database=val; tablename=VAL_ADS; modeldatabase=val; modeltablename=linear_regression_demo; outputdatabase=val; outputtablename=linear_regression_score; predicted=estimate; retain=cc_avg_bal; scoringmethod=scoreandevaluate;'); As a result, we get linear_regression_score table that contains the real balance, the predicted balance and the difference between these two. Let’s have a look at a sample: SELECT * FROM linear_regression_score SAMPLE 10; You will see results similar to: cust_id|cc_avg_bal |estimate |Residual | -------+------------------+------------------+-------------------+ 1362498| 0.0| 284.7057772484358| -284.7057772484358| 1362828| 1184.35|463.74177458594215| 720.6082254140578| 1362839| 2933.135802469136| 982.9240031182255| 1950.2117993509103| 1362986| 500.9148148148148| 881.4116539412856| -380.4968391264708| 1362511|235.85941489361701|294.35369563202846|-58.494280738411426| 1363134| 0.0|430.27950420065997|-430.27950420065997| 1363481| 0.0| 411.2359958542745| -411.2359958542745| 1362644| 209.3304347826087|279.75770904482033| -70.42727426221163| 1363141| 0.0| 550.1681921045503| -550.1681921045503| 1363290| 0.0|120.35348558871233|-120.35348558871233| In this quick start we have learned how to create ML models in SQL. The method used Vantage Analytics Library (VAL). We were able to build a linear regression model and run predictions using the model. We have done that using SQL without any coding. Vantage Analytics Library User Guide If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Train ML models in Vantage","component":"ROOT","version":"master","name":"ml","url":"/ml.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Install Vantage Analytics Library","id":"_install_vantage_analytics_library"},{"text":"Sample data","id":"_sample_data"},{"text":"Create a linear regression model","id":"_create_a_linear_regression_model"},{"text":"Scoring","id":"_scoring"},{"text":"Summary","id":"_summary"},{"text":"Further reading","id":"_further_reading"}]},"/mule.jdbc.example.html":{"text":"Author: Adam Tworkiewicz Last updated: August 30, 2023 This example is a clone of the Mulesoft MySQL sample project. It demonstrates how to query a Teradata database and expose results over REST API. Mulesoft Anypoint Studio. You can download a 30-day trial from https://www.mulesoft.com/platform/studio. Access to a Teradata Vantage instance. If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. This example Mule service takes an HTTP request, queries the Teradata Vantage database and returns results in JSON format. The Mule HTTP connector listens for HTTP GET requests with the form: http://:8081/?lastname=;. The HTTP connector passes the value of as one of the message properties to a database connector. The database connector is configured to extract this value and use it in this SQL query: SELECT * FROM hr.employees WHERE LastName = :lastName As you can see, we are using parameterized query with reference to the value of the parameter passed to the HTTP connector. So if the HTTP connector receives http://localhost:8081/?lastname=Smith, the SQL query will be: SELECT * FROM employees WHERE last_name = Smith The database connector instructs the database server to run the SQL query, retrieves the result of the query, and passes it to the Transform message processor which converts the result to JSON. Since the HTTP connector is configured as request-response, the result is returned to the originating HTTP client. Clone Teradata/mule-jdbc-example repository: git clone https://github.com/Teradata/mule-jdbc-example Edit src/main/mule/querying-a-teradata-database.xml, find the Teradata connection string jdbc:teradata:///user=,password= and replace Teradata connection parameters to match your environment. Should your Vantage instance be accessible via ClearScape Analytics Experience, you must replace with the host URL of your ClearScape Analytics Experience environment. Additionally, the 'user' and 'password' should be updated to reflect your ClearScape Analytics Environment’s username and password. Create a sample database in your Vantage instance. Populate it with sample data. -- create database CREATE DATABASE HR AS PERMANENT = 60e6, SPOOL = 120e6; -- create table CREATE SET TABLE HR.Employees ( GlobalID INTEGER, FirstName VARCHAR(30), LastName VARCHAR(30), DateOfBirth DATE FORMAT 'YYYY-MM-DD', JoinedDate DATE FORMAT 'YYYY-MM-DD', DepartmentCode BYTEINT ) UNIQUE PRIMARY INDEX ( GlobalID ); -- insert a record INSERT INTO HR.Employees ( GlobalID, FirstName, LastName, DateOfBirth, JoinedDate, DepartmentCode ) VALUES ( 101, 'Test', 'Testowsky', '1980-01-05', '2004-08-01', 01 ); Open the project in Anypoint Studio. Once in Anypoint Studio, click on Import projects..: Select Anypoint Studio project from File System: Use the directory where you cloned the git repository as the Project Root. Leave all other settings at their default values. Run the example application in Anypoint Studio using the Run menu. The project will now build and run. It will take a minute. Go to your web browser and send the following request: http://localhost:8081/?lastname=Testowsky. You should get the following JSON response: [ { \"JoinedDate\": \"2004-08-01T00:00:00\", \"DateOfBirth\": \"1980-01-05T00:00:00\", \"FirstName\": \"Test\", \"GlobalID\": 101, \"DepartmentCode\": 1, \"LastName\": \"Testowsky\" } ] View this document for more information on how to configure a database connector on your machine. Access plain Reference material for the Database Connector. Learn more about DataSense. If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Query Teradata Vantage from a Mule service","component":"ROOT","version":"master","name":"mule.jdbc.example","url":"/mule.jdbc.example.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Example service","id":"_example_service"},{"text":"Setup","id":"_setup"},{"text":"Run","id":"_run"},{"text":"Further reading","id":"_further_reading"}]},"/nos.html":{"text":"Author: Adam Tworkiewicz Last updated: September 7th, 2021 Native Object Storage (NOS) is a Vantage feature that allows you to query data stored in files in object storage such as AWS S3, Google GCS, Azure Blob or on-prem implementations. It’s useful in scenarios where you want to explore data without building a data pipeline to bring it into Vantage. You need access to a Teradata Vantage instance. NOS is enabled in all Vantage editions from Vantage Express through Developer, DYI to Vantage as a Service starting from version 17.10. If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. Currently, NOS supports CSV, JSON (as array or new-line delimited), and Parquet data formats. Let’s say you have a dataset stored as CSV files in an S3 bucket. You want to explore the dataset before you decide if you want to bring it into Vantage. For this scenario, we are going to use a public dataset published by Teradata that contains river flow data collected by the U.S. Geological Survey. The bucket is at https://td-usgs-public.s3.amazonaws.com/. Let’s first have a look at sample CSV data. We take the first 10 rows that Vantage will fetch from the bucket: SELECT TOP 10 * FROM ( LOCATION='/s3/td-usgs-public.s3.amazonaws.com/CSVDATA/' ) AS d; Here is what I’ve got: GageHeight2 Flow site_no datetime Precipitation GageHeight ----------- ----- -------- ---------------- ------------- ----------- 10.9 15300 09380000 2018-06-28 00:30 671 9.80 10.8 14500 09380000 2018-06-28 01:00 673 9.64 10.7 14100 09380000 2018-06-28 01:15 672 9.56 11.0 16200 09380000 2018-06-27 00:00 669 9.97 10.9 15700 09380000 2018-06-27 00:30 668 9.88 10.8 15400 09380000 2018-06-27 00:45 672 9.82 10.8 15100 09380000 2018-06-27 01:00 672 9.77 10.8 14700 09380000 2018-06-27 01:15 672 9.68 10.9 16000 09380000 2018-06-27 00:15 668 9.93 10.8 14900 09380000 2018-06-28 00:45 672 9.72 We have got plenty of numbers, but what do they mean? To answer this question, we will ask Vantage to detect the schema of the CSV files: SELECT * FROM ( LOCATION='/s3/td-usgs-public.s3.amazonaws.com/CSVDATA/' RETURNTYPE='NOSREAD_SCHEMA' ) AS d; Vantage will now fetch a data sample to analyze the schema and return results: Name Datatype FileType Location --------------- ----------------------------------- --------- ------------------------------------------------------------------- GageHeight2 decimal(3,2) csv /S3/s3.amazonaws.com/td-usgs-public/CSVDATA/09513780/2018/06/27.csv Flow decimal(3,2) csv /S3/s3.amazonaws.com/td-usgs-public/CSVDATA/09513780/2018/06/27.csv site_no int csv /S3/s3.amazonaws.com/td-usgs-public/CSVDATA/09513780/2018/06/27.csv datetime TIMESTAMP(0) FORMAT'Y4-MM-DDBHH:MI' csv /S3/s3.amazonaws.com/td-usgs-public/CSVDATA/09513780/2018/06/27.csv Precipitation decimal(3,2) csv /S3/s3.amazonaws.com/td-usgs-public/CSVDATA/09513780/2018/06/27.csv GageHeight decimal(3,2) csv /S3/s3.amazonaws.com/td-usgs-public/CSVDATA/09513780/2018/06/27.csv We see that the CSV files have 6 columns. For each column, we get the name, the datatype and the file coordinates that were used to infer the schema. Now that we know the schema, we can work with the dataset as if it was a regular SQL table. To prove the point, let’s try to do some data aggregation. Let’s get an average temperature per site for sites that collect temperatures. SELECT site_no Site_no, AVG(Flow) Avg_Flow FROM ( LOCATION='/s3/td-usgs-public.s3.amazonaws.com/CSVDATA/' ) AS d GROUP BY site_no HAVING Avg_Flow IS NOT NULL; Result: Site_no Avg_Flow -------- --------- 09380000 11 09423560 73 09424900 93 09429070 81 To register your ad hoc exploratory activity as a permanent source, create it as a foreign table: -- If you are running this sample as dbc user you will not have permissions -- to create a table in dbc database. Instead, create a new database and use -- the newly create database to create a foreign table. CREATE DATABASE Riverflow AS PERMANENT = 60e6, -- 60MB SPOOL = 120e6; -- 120MB -- change current database to Riverflow DATABASE Riverflow; CREATE FOREIGN TABLE riverflow USING ( LOCATION('/s3/td-usgs-public.s3.amazonaws.com/CSVDATA/') ); SELECT top 10 * FROM riverflow; Result: Location GageHeight2 Flow site_no datetime Precipitation GageHeight ------------------------------------------------------------------- ----------- ---- ------- ------------------- ------------- ---------- /S3/s3.amazonaws.com/td-usgs-public/CSVDATA/09429070/2018/07/02.csv null null 9429070 2018-07-02 14:40:00 1.21 null /S3/s3.amazonaws.com/td-usgs-public/CSVDATA/09400815/2018/07/10.csv null 0.00 9400815 2018-07-10 00:30:00 0.00 -0.01 /S3/s3.amazonaws.com/td-usgs-public/CSVDATA/09400815/2018/07/10.csv null 0.00 9400815 2018-07-10 00:45:00 0.00 -0.01 /S3/s3.amazonaws.com/td-usgs-public/CSVDATA/09400815/2018/07/10.csv null 0.00 9400815 2018-07-10 01:00:00 0.00 -0.01 /S3/s3.amazonaws.com/td-usgs-public/CSVDATA/09400815/2018/07/10.csv null 0.00 9400815 2018-07-10 00:15:00 0.00 -0.01 /S3/s3.amazonaws.com/td-usgs-public/CSVDATA/09429070/2018/07/02.csv null null 9429070 2018-07-02 14:38:00 1.06 null This time, the SELECT statement looks like a regular select against an in-database table. If you require subsecond response time when querying the data, there is an easy way to bring the CSV data into Vantage to speed things up. Read on to find out how. Querying object storage takes time. What if you decided that the data looks interesting and you want to do some more analysis with a solution that will you quicker answers? The good news is that data returned with NOS can be used as a source for CREATE TABLE statements. Assuming you have CREATE TABLE privilege, you will be able to run: This query assumes you created database Riverflow and a foreign table called riverflow in the previous step. -- This query assumes you created database `Riverflow` -- and a foreign table called `riverflow` in the previous step. CREATE MULTISET TABLE riverflow_native (site_no, Flow, GageHeight, datetime) AS ( SELECT site_no, Flow, GageHeight, datetime FROM riverflow ) WITH DATA NO PRIMARY INDEX; SELECT TOP 10 * FROM riverflow_native; Result: site_no Flow GageHeight datetime ------- ----- ---------- ------------------- 9400815 .00 -.01 2018-07-10 00:30:00 9400815 .00 -.01 2018-07-10 01:00:00 9400815 .00 -.01 2018-07-10 01:15:00 9400815 .00 -.01 2018-07-10 01:30:00 9400815 .00 -.01 2018-07-10 02:00:00 9400815 .00 -.01 2018-07-10 02:15:00 9400815 .00 -.01 2018-07-10 01:45:00 9400815 .00 -.01 2018-07-10 00:45:00 9400815 .00 -.01 2018-07-10 00:15:00 9400815 .00 -.01 2018-07-10 00:00:00 This time, the SELECT query returned in less than a second. Vantage didn’t have to fetch the data from NOS. Instead, it answered using data that was already on its nodes. So far, we have used a public bucket. What if you have a private bucket? How do you tell Vantage what credentials it should use? It is possible to inline your credentials directly into your query: SELECT TOP 10 * FROM ( LOCATION='/s3/td-usgs-public.s3.amazonaws.com/CSVDATA/' AUTHORIZATION='{\"ACCESS_ID\":\"\",\"ACCESS_KEY\":\"\"}' ) AS d; Entering these credentials all the time can be tedious and less secure. In Vantage, you can create an authorization object that will serve as a container for your credentials: CREATE AUTHORIZATION aws_authorization USER 'YOUR-ACCESS-KEY-ID' PASSWORD 'YOUR-SECRET-ACCESS-KEY'; You can then reference your authorization object when you create a foreign table: CREATE FOREIGN TABLE riverflow , EXTERNAL SECURITY aws_authorization USING ( LOCATION('/s3/td-usgs-public.s3.amazonaws.com/CSVDATA/') ); So far, we have talked about reading and importing data from object storage. Wouldn’t it be nice if we had a way to use SQL to export data from Vantage to object storage? This is exactly what WRITE_NOS function is for. Let’s say we want to export data from riverflow_native table to object storage. You can do so with the following query: SELECT * FROM WRITE_NOS ( ON ( SELECT * FROM riverflow_native ) PARTITION BY site_no ORDER BY site_no USING LOCATION('YOUR-OBJECT-STORE-URI') AUTHORIZATION(aws_authorization) STOREDAS('PARQUET') COMPRESSION('SNAPPY') NAMING('RANGE') INCLUDE_ORDERING('TRUE') ) AS d; Here, we instruct Vantage to take data from riverflow_native and save it in YOUR-OBJECT-STORE-URI bucket using parquet format. The data will be split into files by site_no attribute. The files will be compressed. In this quick start we have learned how to read data from object storage using Native Object Storage (NOS) functionality in Vantage. NOS supports reading and importing data stored in CSV, JSON and Parquet formats. NOS can also export data from Vantage to object storage. Teradata Vantage™ - Native Object Store Getting Started Guide If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Query data stored in object storage","component":"ROOT","version":"master","name":"nos","url":"/nos.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Explore data with NOS","id":"_explore_data_with_nos"},{"text":"Query data with NOS","id":"_query_data_with_nos"},{"text":"Load data from NOS into Vantage","id":"_load_data_from_nos_into_vantage"},{"text":"Access private buckets","id":"_access_private_buckets"},{"text":"Export data from Vantage to object storage","id":"_export_data_from_vantage_to_object_storage"},{"text":"Summary","id":"_summary"},{"text":"Further reading","id":"_further_reading"}]},"/odbc.ubuntu.html":{"text":"Author: Adam Tworkiewicz Last updated: January 5th, 2022 This how-to demonstrates how to use the ODBC driver with Teradata Vantage on Ubuntu. Access to a Teradata Vantage instance. If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. Root access to a Ubuntu machine. Install dependencies: apt update && DEBIAN_FRONTEND=noninteractive apt install -y wget unixodbc unixodbc-dev iodbc python3-pip Install Teradata ODBC driver for Ubuntu: wget https://downloads.teradata.com/download/cdn/connectivity/odbc/17.10.x.x/tdodbc1710__ubuntu_x8664.17.10.00.14-1.tar.gz \\ && tar -xzf tdodbc1710__ubuntu_x8664.17.10.00.14-1.tar.gz \\ && dpkg -i tdodbc1710/tdodbc1710-17.10.00.14-1.x86_64.deb Configure ODBC, by creating file /etc/odbcinst.ini with the following content: [ODBC Drivers] Teradata Database ODBC Driver 17.10=Installed [Teradata Database ODBC Driver 17.10] Description=Teradata Database ODBC Driver 17.10 Driver=/opt/teradata/client/17.10/odbc_64/lib/tdataodbc_sb64.so We will validate the installation with a sample Python application. Create test.py file with the following content. Replace DBCName=192.168.86.33;UID=dbc;PWD=dbc with the IP address of your Teradata Vantage instance, username and password: import pyodbc print(pyodbc.drivers()) cnxn = pyodbc.connect('DRIVER={Teradata Database ODBC Driver 17.10};DBCName=192.168.86.33;UID=dbc;PWD=dbc;') cursor = cnxn.cursor() cursor.execute(\"SELECT CURRENT_DATE\") for row in cursor.fetchall(): print(row) EOF Run the test application: python3 test.py You should get output similar to: ['ODBC Drivers', 'Teradata Database ODBC Driver 17.10'] (datetime.date(2022, 1, 5), ) This how-to demonstrated how to use ODBC with Teradata Vantage on Ubuntu. The how-to shows how to install the ODBC Teradata driver and the dependencies. It then shows how to configure ODBC and validate connectivity with a simple Python application. ODBC Driver for Teradata® User Guide If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Use Vantage with ODBC on Ubuntu","component":"ROOT","version":"master","name":"odbc.ubuntu","url":"/odbc.ubuntu.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Installation","id":"_installation"},{"text":"Use ODBC","id":"_use_odbc"},{"text":"Summary","id":"_summary"},{"text":"Further reading","id":"_further_reading"}]},"/perform-time-series-analysis-using-teradata-vantage.html":{"text":"Author: Remi Turpaud Last updated: April 15th, 2022 Time series is series of data points indexed in time order. It is data continuously produced and collected by a wide range of applications and devices including but not limited to Internet of Things. Teradata Vantage offers various functionalities to simplify time series data analysis. You need access to a Teradata Vantage instance. Times series functionalities and NOS are enabled in all Vantage editions from Vantage Express through Developer, DYI to Vantage as a Service starting from version 17.10. If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. Our sample data sets are available on S3 bucket and can be accessed from Vantage directly using Vantage NOS. Data is in CSV format and let’s ingest them into Vantage for our time series analysis. Let’s have a look at the data first. Below query will fetch 10 rows from S3 bucket. SELECT TOP 10 * FROM ( LOCATION='/s3/nos-demo-apj.s3.amazonaws.com/taxi/2014/11/data_2014-11-25.csv' ) AS d; Here is what we’ve got: Location vendor_id pickup_datetime dropoff_datetime passenger_count trip_distance pickup_longitude pickup_latitude rate_code store_and_fwd_flag dropoff_longitude dropoff_latitude payment_type fare_amount surcharge mta_tax tip_amount tolls_amount total_amount ------------------------------------------------------------------ --------- ----------------- ----------------- ---------------- -------------- ----------------- ---------------- ---------- ------------------- ------------------ ----------------- ------------- ------------ ---------- -------- ---------- ------------ ------------ /S3/s3.amazonaws.com/nyc-tlc/csv_backup/yellow_tripdata_2013-11.csv CMT 25/11/2013 15:18 25/11/2013 15:33 1 1 -73.992423 40.749517 1 N -73.98816 40.746557 CRD 10 0 0.5 2.22 0 12.72 /S3/s3.amazonaws.com/nyc-tlc/csv_backup/yellow_tripdata_2013-11.csv CMT 25/11/2013 5:34 25/11/2013 5:48 1 3.6 -73.971555 40.794548 1 N -73.975399 40.755404 CRD 14.5 0.5 0.5 1 0 16.5 /S3/s3.amazonaws.com/nyc-tlc/csv_backup/yellow_tripdata_2013-11.csv CMT 25/11/2013 8:31 25/11/2013 8:55 1 5.9 -73.94764 40.830465 1 N -73.972323 40.76332 CRD 21 0 0.5 3 0 24.5 /S3/s3.amazonaws.com/nyc-tlc/csv_backup/yellow_tripdata_2013-11.csv CMT 25/11/2013 7:00 25/11/2013 7:04 1 1.2 -73.983357 40.767193 1 N -73.978394 40.75558 CRD 5.5 0 0.5 1 0 7 /S3/s3.amazonaws.com/nyc-tlc/csv_backup/yellow_tripdata_2013-11.csv CMT 25/11/2013 15:24 25/11/2013 15:30 1 0.5 -73.982313 40.764827 1 N -73.982129 40.758889 CRD 5.5 0 0.5 3 0 9 /S3/s3.amazonaws.com/nyc-tlc/csv_backup/yellow_tripdata_2013-11.csv CMT 25/11/2013 15:53 25/11/2013 16:00 1 0.6 -73.978104 40.752966 1 N -73.985756 40.762685 CRD 6 1 0.5 1 0 8.5 /S3/s3.amazonaws.com/nyc-tlc/csv_backup/yellow_tripdata_2013-11.csv CMT 25/11/2013 6:49 25/11/2013 7:04 1 3.8 -73.976005 40.744481 1 N -74.016063 40.717298 CRD 14 0 0.5 2.9 0 17.4 /S3/s3.amazonaws.com/nyc-tlc/csv_backup/yellow_tripdata_2013-11.csv CMT 25/11/2013 21:20 25/11/2013 21:26 1 1.1 -73.946371 40.775369 1 N -73.95309 40.785103 CRD 6.5 0.5 0.5 1.5 0 9 /S3/s3.amazonaws.com/nyc-tlc/csv_backup/yellow_tripdata_2013-11.csv CMT 25/11/2013 10:02 25/11/2013 10:17 1 2.2 -73.952625 40.780962 1 N -73.98163 40.777978 CRD 12 0 0.5 2 0 14.5 /S3/s3.amazonaws.com/nyc-tlc/csv_backup/yellow_tripdata_2013-11.csv CMT 25/11/2013 9:43 25/11/2013 10:02 1 3.3 -73.982013 40.762507 1 N -74.006854 40.719582 CRD 15 0 0.5 2 0 17.5 Let’s extract the complete data and bring it into Vantage for further analysis. CREATE TABLE trip ( vendor_id varchar(10) character set latin NOT casespecific, rate_code integer, pickup_datetime timestamp(6), dropoff_datetime timestamp(6), passenger_count smallint, trip_distance float, pickup_longitude float, pickup_latitude float, dropoff_longitude float, dropoff_latitude float ) NO PRIMARY INDEX ; INSERT INTO trip SELECT TOP 200000 vendor_id , rate_code, pickup_datetime, dropoff_datetime , passenger_count, trip_distance , pickup_longitude, pickup_latitude , dropoff_longitude , dropoff_latitude FROM ( LOCATION='/s3/nos-demo-apj.s3.amazonaws.com/taxi/2014/11/data_2014-11-25.csv' ) AS d; Result: 200000 rows affected. Vantage will now fetch the data from S3 and insert into trip table we just created. Now that we are familiar with the data set, we can use Vantage capabilities to quickly analyse the data set. First, let’s identify how many passengers are being picked up by hour in the month of November. SELECT TOP 10 $TD_TIMECODE_RANGE ,begin($TD_TIMECODE_RANGE) time_bucket_start ,sum(passenger_count) passenger_count FROM trip WHERE extract(month from pickup_datetime)=11 GROUP BY TIME(HOURS(1)) USING TIMECODE(pickup_datetime) ORDER BY 1; For further reading on GROUP BY TIME. Result: TIMECODE_RANGE time_bucket_start passenger_count --------------------------------------------------------- --------------------------------- ---------------- (2013-11-04 11:00:00.000000, 2013-11-04 12:00:00.000000) 2013-11-04 11:00:00.000000-05:00 4 (2013-11-04 12:00:00.000000, 2013-11-04 13:00:00.000000) 2013-11-04 12:00:00.000000-05:00 2 (2013-11-04 14:00:00.000000, 2013-11-04 15:00:00.000000) 2013-11-04 14:00:00.000000-05:00 5 (2013-11-04 15:00:00.000000, 2013-11-04 16:00:00.000000) 2013-11-04 15:00:00.000000-05:00 2 (2013-11-04 16:00:00.000000, 2013-11-04 17:00:00.000000) 2013-11-04 16:00:00.000000-05:00 9 (2013-11-04 17:00:00.000000, 2013-11-04 18:00:00.000000) 2013-11-04 17:00:00.000000-05:00 11 (2013-11-04 18:00:00.000000, 2013-11-04 19:00:00.000000) 2013-11-04 18:00:00.000000-05:00 41 (2013-11-04 19:00:00.000000, 2013-11-04 20:00:00.000000) 2013-11-04 19:00:00.000000-05:00 2791 (2013-11-04 20:00:00.000000, 2013-11-04 21:00:00.000000) 2013-11-04 20:00:00.000000-05:00 15185 (2013-11-04 21:00:00.000000, 2013-11-04 22:00:00.000000) 2013-11-04 21:00:00.000000-05:00 27500 Yes, this can also be achieved by extracting the hour from time and then aggregating - it’s additional code/work, but can be done without timeseries specific functionality. But, now let’s go a step further to identify how many passengers are being picked up and what is the average trip duration by vendor every 15 minutes in November. SELECT TOP 10 $TD_TIMECODE_RANGE, vendor_id, SUM(passenger_count), AVG((dropoff_datetime - pickup_datetime ) MINUTE (4)) AS avg_trip_time_in_mins FROM trip GROUP BY TIME (MINUTES(15) AND vendor_id) USING TIMECODE(pickup_datetime) WHERE EXTRACT(MONTH FROM pickup_datetime)=11 ORDER BY 1,2; Result: TIMECODE_RANGE vendor_id passenger_count avg_trip_time_in_mins -------------------------------------------------------- ---------- ---------------- ---------------------- (2013-11-04 11:00:00.000000, 2013-11-04 11:15:00.000000) VTS 1 16 (2013-11-04 11:15:00.000000, 2013-11-04 11:30:00.000000) VTS 1 10 (2013-11-04 11:45:00.000000, 2013-11-04 12:00:00.000000) VTS 2 6 (2013-11-04 12:00:00.000000, 2013-11-04 12:15:00.000000) VTS 1 11 (2013-11-04 12:15:00.000000, 2013-11-04 12:30:00.000000) VTS 1 57 (2013-11-04 14:15:00.000000, 2013-11-04 14:30:00.000000) VTS 1 3 (2013-11-04 14:30:00.000000, 2013-11-04 14:45:00.000000) VTS 2 19 (2013-11-04 14:45:00.000000, 2013-11-04 15:00:00.000000) VTS 2 9 (2013-11-04 15:15:00.000000, 2013-11-04 15:30:00.000000) VTS 1 11 (2013-11-04 15:30:00.000000, 2013-11-04 15:45:00.000000) VTS 1 31 This is the power of Vantage time series functionality. Without needing complicated, cumbersome logic we are able to find average trip duration by vendor every 15 minutes just by modifying the group by time clause. Let’s now look at how simple it is to build moving averages based on this. First, let’s start by creating a view as below. REPLACE VIEW NYC_taxi_trip_ts as SELECT $TD_TIMECODE_RANGE time_bucket_per ,vendor_id ,sum(passenger_count) passenger_cnt ,avg(CAST((dropoff_datetime - pickup_datetime MINUTE(4) ) AS INTEGER)) avg_trip_time_in_mins FROM trip GROUP BY TIME (MINUTES(15) and vendor_id) USING TIMECODE(pickup_datetime) WHERE extract(month from pickup_datetime)=11 Let’s calculate a 2 hours moving average on our 15-minutes time series. 2 hour is 8 * 15 minutes periods. SELECT * FROM MovingAverage ( ON NYC_taxi_trip_ts PARTITION BY vendor_id ORDER BY time_bucket_per USING MAvgType ('S') WindowSize (8) TargetColumns ('passenger_cnt') ) AS dt WHERE begin(time_bucket_per)(date) = '2014-11-25' ORDER BY vendor_id, time_bucket_per; Result: time_bucket_per vendor_id passenger_cnt avg_trip_time_in_mins passenger_cnt_smavg --------------------------------------------------------- -------------- ---------------------- -------------------- -------------------- (2013-11-04 14:45:00.000000, 2013-11-04 15:00:00.000000) VTS 2 9 1.375 (2013-11-04 15:15:00.000000, 2013-11-04 15:30:00.000000) VTS 1 11 1.375 (2013-11-04 15:30:00.000000, 2013-11-04 15:45:00.000000) VTS 1 31 1.375 (2013-11-04 16:15:00.000000, 2013-11-04 16:30:00.000000) VTS 2 16 1.375 (2013-11-04 16:30:00.000000, 2013-11-04 16:45:00.000000) VTS 1 3 1.375 (2013-11-04 16:45:00.000000, 2013-11-04 17:00:00.000000) VTS 6 38 2 (2013-11-04 17:15:00.000000, 2013-11-04 17:30:00.000000) VTS 2 29.5 2.125 (2013-11-04 17:45:00.000000, 2013-11-04 18:00:00.000000) VTS 9 20.33333333 3 (2013-11-04 18:00:00.000000, 2013-11-04 18:15:00.000000) VTS 6 23.4 3.5 (2013-11-04 18:15:00.000000, 2013-11-04 18:30:00.000000) VTS 4 15.66666667 3.875 (2013-11-04 18:30:00.000000, 2013-11-04 18:45:00.000000) VTS 8 24.5 4.75 (2013-11-04 18:45:00.000000, 2013-11-04 19:00:00.000000) VTS 23 38.33333333 7.375 (2013-11-04 19:00:00.000000, 2013-11-04 19:15:00.000000) VTS 195 26.61538462 31.625 (2013-11-04 19:15:00.000000, 2013-11-04 19:30:00.000000) VTS 774 13.70083102 127.625 (2013-11-04 19:30:00.000000, 2013-11-04 19:45:00.000000) VTS 586 12.38095238 200.625 (2013-11-04 19:45:00.000000, 2013-11-04 20:00:00.000000) VTS 1236 15.54742097 354 (2013-11-04 20:00:00.000000, 2013-11-04 20:15:00.000000) VTS 3339 11.78947368 770.625 (2013-11-04 20:15:00.000000, 2013-11-04 20:30:00.000000) VTS 3474 10.5603396 1204.375 (2013-11-04 20:30:00.000000, 2013-11-04 20:45:00.000000) VTS 3260 12.26484323 1610.875 (2013-11-04 20:45:00.000000, 2013-11-04 21:00:00.000000) VTS 5112 12.05590062 2247 In addition to above time series operations, Vantage also provides a special time series tables with Primary Time Index (PTI). These are regular Vantage tables with PTI defined rather than a Primary Index (PI). Though tables with PTI are not mandatory for time series functionality/operations, PTI optimizes how the time series data is stored physically and hence improves performance considerably compared to regular tables. In this quick start we have learnt how easy it is to analyse time series datasets using Vantage’s time series capabilities. Teradata Vantage™ - Time Series Tables and Operations Query data stored in object storage Teradata Vantage™ - Native Object Store Getting Started Guide If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Perform time series analysis using Teradata Vantage","component":"ROOT","version":"master","name":"perform-time-series-analysis-using-teradata-vantage","url":"/perform-time-series-analysis-using-teradata-vantage.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Import data sets from AWS S3 using Vantage NOS","id":"_import_data_sets_from_aws_s3_using_vantage_nos"},{"text":"Basic time series operations","id":"_basic_time_series_operations"},{"text":"Summary","id":"_summary"},{"text":"Further reading","id":"_further_reading"}]},"/run-vantage-express-on-aws.html":{"text":"Author: Adam Tworkiewicz Last updated: December 12th, 2022 This how-to demonstrates how to run Vantage Express on AWS. Vantage Express is a small footprint configuration that contains a fully functional Teradata SQL Engine. Cloud charges Vantage Express is distributed as a virtual machine image. This how-to uses the EC2 c5n.metal instance type. It’s a bare metal instance that costs over $3/h. If you want a cheaper option, try Google Cloud and Azure which support nested virtualization and can run Vantage Express on cheap VM’s. If you do not wish to pay for cloud usage at all, install Vantage Express locally using VMware, VirtualBox, or UTM. An AWS account. If you need to create a new account follow the official AWS instructions. awscli command line utility installed and configured on your machine. You can find installation instructions here: https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html. You will need a VPC with an Internet-facing subnet. If you don’t have one available, here is how you can create it: # Copied from https://cloudaffaire.com/how-to-create-a-custom-vpc-using-aws-cli/ # Create VPC AWS_VPC_ID=$(aws ec2 create-vpc \\ --cidr-block 10.0.0.0/16 \\ --query 'Vpc.{VpcId:VpcId}' \\ --output text) # Enable DNS hostname for your VPC aws ec2 modify-vpc-attribute \\ --vpc-id $AWS_VPC_ID \\ --enable-dns-hostnames \"{\\\"Value\\\":true}\" # Create a public subnet AWS_SUBNET_PUBLIC_ID=$(aws ec2 create-subnet \\ --vpc-id $AWS_VPC_ID --cidr-block 10.0.1.0/24 \\ --query 'Subnet.{SubnetId:SubnetId}' \\ --output text) # Enable Auto-assign Public IP on Public Subnet aws ec2 modify-subnet-attribute \\ --subnet-id $AWS_SUBNET_PUBLIC_ID \\ --map-public-ip-on-launch # Create an Internet Gateway AWS_INTERNET_GATEWAY_ID=$(aws ec2 create-internet-gateway \\ --query 'InternetGateway.{InternetGatewayId:InternetGatewayId}' \\ --output text) # Attach Internet gateway to your VPC aws ec2 attach-internet-gateway \\ --vpc-id $AWS_VPC_ID \\ --internet-gateway-id $AWS_INTERNET_GATEWAY_ID # Create a route table AWS_CUSTOM_ROUTE_TABLE_ID=$(aws ec2 create-route-table \\ --vpc-id $AWS_VPC_ID \\ --query 'RouteTable.{RouteTableId:RouteTableId}' \\ --output text ) # Create route to Internet Gateway aws ec2 create-route \\ --route-table-id $AWS_CUSTOM_ROUTE_TABLE_ID \\ --destination-cidr-block 0.0.0.0/0 \\ --gateway-id $AWS_INTERNET_GATEWAY_ID \\ --output text # Associate the public subnet with route table AWS_ROUTE_TABLE_ASSOID=$(aws ec2 associate-route-table \\ --subnet-id $AWS_SUBNET_PUBLIC_ID \\ --route-table-id $AWS_CUSTOM_ROUTE_TABLE_ID \\ --output text | head -1) # Create a security group aws ec2 create-security-group \\ --vpc-id $AWS_VPC_ID \\ --group-name myvpc-security-group \\ --description 'My VPC non default security group' \\ --output text # Get security group ID's AWS_DEFAULT_SECURITY_GROUP_ID=$(aws ec2 describe-security-groups \\ --filters \"Name=vpc-id,Values=$AWS_VPC_ID\" \\ --query 'SecurityGroups[?GroupName == `default`].GroupId' \\ --output text) && AWS_CUSTOM_SECURITY_GROUP_ID=$(aws ec2 describe-security-groups \\ --filters \"Name=vpc-id,Values=$AWS_VPC_ID\" \\ --query 'SecurityGroups[?GroupName == `myvpc-security-group`].GroupId' \\ --output text) # Create security group ingress rules aws ec2 authorize-security-group-ingress \\ --group-id $AWS_CUSTOM_SECURITY_GROUP_ID \\ --ip-permissions '[{\"IpProtocol\": \"tcp\", \"FromPort\": 22, \"ToPort\": 22, \"IpRanges\": [{\"CidrIp\": \"0.0.0.0/0\", \"Description\": \"Allow SSH\"}]}]' \\ --output text # Add a tag to the VPC aws ec2 create-tags \\ --resources $AWS_VPC_ID \\ --tags \"Key=Name,Value=vantage-express-vpc\" # Add a tag to public subnet aws ec2 create-tags \\ --resources $AWS_SUBNET_PUBLIC_ID \\ --tags \"Key=Name,Value=vantage-express-vpc-public-subnet\" # Add a tag to the Internet-Gateway aws ec2 create-tags \\ --resources $AWS_INTERNET_GATEWAY_ID \\ --tags \"Key=Name,Value=vantage-express-vpc-internet-gateway\" # Add a tag to the default route table AWS_DEFAULT_ROUTE_TABLE_ID=$(aws ec2 describe-route-tables \\ --filters \"Name=vpc-id,Values=$AWS_VPC_ID\" \\ --query 'RouteTables[?Associations[0].Main != `false`].RouteTableId' \\ --output text) && aws ec2 create-tags \\ --resources $AWS_DEFAULT_ROUTE_TABLE_ID \\ --tags \"Key=Name,Value=vantage-express-vpc-default-route-table\" # Add a tag to the public route table aws ec2 create-tags \\ --resources $AWS_CUSTOM_ROUTE_TABLE_ID \\ --tags \"Key=Name,Value=vantage-express-vpc-public-route-table\" # Add a tags to security groups aws ec2 create-tags \\ --resources $AWS_CUSTOM_SECURITY_GROUP_ID \\ --tags \"Key=Name,Value=vantage-express-vpc-security-group\" && aws ec2 create-tags \\ --resources $AWS_DEFAULT_SECURITY_GROUP_ID \\ --tags \"Key=Name,Value=vantage-express-vpc-default-security-group\" To create a VM you will need an ssh key pair. If you don’t have it already, create one: aws ec2 create-key-pair --key-name vantage-key --query 'KeyMaterial' --output text > vantage-key.pem Restrict access to the private key. Replace with the private key path returned by the previous command: chmod 600 vantage-key.pem Get the AMI id of the latest Ubuntu image in your region: AWS_AMI_ID=$(aws ec2 describe-images \\ --filters 'Name=name,Values=ubuntu/images/hvm-ssd/ubuntu-*amd64*' \\ --query 'Images[*].[Name,ImageId,CreationDate]' --output text \\ | sort -k3 -r | head -n1 | cut -f 2) Create a Ubuntu VM with 4 CPU’s and 8GB of RAM, and a 70GB disk. AWS_INSTANCE_ID=$(aws ec2 run-instances \\ --image-id $AWS_AMI_ID \\ --count 1 \\ --instance-type c5n.metal \\ --block-device-mapping DeviceName=/dev/sda1,Ebs={VolumeSize=70} \\ --key-name vantage-key \\ --security-group-ids $AWS_CUSTOM_SECURITY_GROUP_ID \\ --subnet-id $AWS_SUBNET_PUBLIC_ID \\ --query 'Instances[0].InstanceId' \\ --output text) ssh to your VM: AWS_INSTANCE_PUBLIC_IP=$(aws ec2 describe-instances \\ --query \"Reservations[*].Instances[*].PublicIpAddress\" \\ --output=text --instance-ids $AWS_INSTANCE_ID) ssh -i vantage-key.pem ubuntu@$AWS_INSTANCE_PUBLIC_IP Once in the VM, switch to root user: sudo -i Prepare the download directory for Vantage Express: mkdir /opt/downloads cd /opt/downloads Install VirtualBox and 7zip: apt update && apt-get install p7zip-full p7zip-rar virtualbox -y Retrieve the curl command to download Vantage Express. Go to Vantage Expess download page (registration required). Click on the latest download link, e.g. \"Vantage Express 17.20\". You will see a license agreement popup. Don’t accept the license yet. Open the network view in your browser. For example, in Chrome press F12 and navigate to Network tab: Accept the license by clicking on I Agree button and cancel the download. In the network view, find the last request that starts with VantageExpress. Right click on it and select Copy → Copy as cURL: Head back to the ssh session and download Vantage Express by pasting the curl command. Add -o ve.7z to the command to save the download to file named ve.7z. You can remove all the HTTP headers, e.g.: curl -o ve.7z 'http://d289lrf5tw1zls.cloudfront.net/database/teradata-express/VantageExpress17.20_Sles12_202108300444.7z?Expires=1638719978&Signature=GKBkNvery_long_signature__&Key-Pair-Id=********************' Unzip the downloaded file. It will take several minutes: 7z x ve.7z Start the VM in VirtualBox. The command will return immediately but the VM init process will take several minutes: export VM_IMAGE_DIR=\"/opt/downloads/VantageExpress17.20_Sles12\" DEFAULT_VM_NAME=\"vantage-express\" VM_NAME=\"${VM_NAME:-$DEFAULT_VM_NAME}\" vboxmanage createvm --name \"$VM_NAME\" --register --ostype openSUSE_64 vboxmanage modifyvm \"$VM_NAME\" --ioapic on --memory 6000 --vram 128 --nic1 nat --cpus 4 vboxmanage storagectl \"$VM_NAME\" --name \"SATA Controller\" --add sata --controller IntelAhci vboxmanage storageattach \"$VM_NAME\" --storagectl \"SATA Controller\" --port 0 --device 0 --type hdd --medium \"$(find $VM_IMAGE_DIR -name '*disk1*')\" vboxmanage storageattach \"$VM_NAME\" --storagectl \"SATA Controller\" --port 1 --device 0 --type hdd --medium \"$(find $VM_IMAGE_DIR -name '*disk2*')\" vboxmanage storageattach \"$VM_NAME\" --storagectl \"SATA Controller\" --port 2 --device 0 --type hdd --medium \"$(find $VM_IMAGE_DIR -name '*disk3*')\" vboxmanage modifyvm \"$VM_NAME\" --natpf1 \"tdssh,tcp,,4422,,22\" vboxmanage modifyvm \"$VM_NAME\" --natpf1 \"tddb,tcp,,1025,,1025\" vboxmanage startvm \"$VM_NAME\" --type headless vboxmanage controlvm \"$VM_NAME\" keyboardputscancode 1c 1c ssh to Vantage Express VM. Use root as password: ssh -p 4422 root@localhost Validate that the DB is up: pdestate -a If the command returns PDE state is RUN/STARTED. DBS state is 5: Logons are enabled - The system is quiescent, it means that Vantage Express has started. If the status is different, repeat pdestate -a till you get the correct status. Once Vantage Express is up and running, start bteq client command line client. BTEQ (pronounced “bee-teek”) is a general-purpose, command-based client tool used to submit SQL queries to a Teradata Database. bteq Once in bteq, connect to your Vantage Express instance. When asked for the password, enter dbc: .logon localhost/dbc Using dbc user, we will create a new database called HR. Copy/paste this query and run press Enter: CREATE DATABASE HR AS PERMANENT = 60e6, -- 60MB SPOOL = 120e6; -- 120MB x Were you able to run the query? Let’s create a sample table and insert some data and query it. We will first create a table to hold employee information: CREATE SET TABLE HR.Employees ( GlobalID INTEGER, FirstName VARCHAR(30), LastName VARCHAR(30), DateOfBirth DATE FORMAT 'YYYY-MM-DD', JoinedDate DATE FORMAT 'YYYY-MM-DD', DepartmentCode BYTEINT ) UNIQUE PRIMARY INDEX ( GlobalID ); Now, let’s insert a record: INSERT INTO HR.Employees ( GlobalID, FirstName, LastName, DateOfBirth, JoinedDate, DepartmentCode ) VALUES ( 101, 'Adam', 'Tworkowski', '1980-01-05', '2004-08-01', 01 ); Finally, let’s see if we can retrieve the data: SELECT * FROM HR.Employees; You should get the following results: GlobalID FirstName LastName DateOfBirth JoinedDate DepartmentCode -------- --------- ---------- ----------- ---------- -------------- 101 Adam Tworkowski 1980-01-05 2004-08-01 1 If you intend to stop and start the VM, you may want to add Vantage Express to autostart. ssh to your VM and run the following commands: sudo -i cat > /etc/default/virtualbox VBOXAUTOSTART_DB=/etc/vbox VBOXAUTOSTART_CONFIG=/etc/vbox/autostart.cfg EOF cat /etc/systemd/system/vantage-express.service [Unit] Description=vm1 After=network.target virtualbox.service Before=runlevel2.target shutdown.target [Service] User=root Group=root Type=forking Restart=no TimeoutSec=5min IgnoreSIGPIPE=no KillMode=process GuessMainPID=no RemainAfterExit=yes ExecStart=/usr/bin/VBoxManage startvm vantage-express --type headless ExecStop=/usr/bin/VBoxManage controlvm vantage-express savestate [Install] WantedBy=multi-user.target EOF systemctl daemon-reload systemctl enable vantage-express systemctl start vantage-express If you would like to connect to Vantage Express from the Internet, you will need to open up firewall holes to your VM. You should also change the default password to dbc user: To change the password for dbc user go to your VM and start bteq: bteq Login to your database using dbc as username and password: .logon localhost/dbc Change the password for dbc user: MODIFY USER dbc AS PASSWORD = new_password; You can now open up port 1025 to the internet: aws ec2 authorize-security-group-ingress \\ --group-id $AWS_CUSTOM_SECURITY_GROUP_ID \\ --ip-permissions '[{\"IpProtocol\": \"tcp\", \"FromPort\": 1025, \"ToPort\": 1025, \"IpRanges\": [{\"CidrIp\": \"0.0.0.0/0\", \"Description\": \"Allow Teradata port\"}]}]' To stop incurring charges, delete all the resources: # Delete the VM aws ec2 terminate-instances --instance-ids $AWS_INSTANCE_ID --output text # Wait for the VM to terminate # Delete custom security group aws ec2 delete-security-group \\ --group-id $AWS_CUSTOM_SECURITY_GROUP_ID # Delete internet gateway aws ec2 detach-internet-gateway \\ --internet-gateway-id $AWS_INTERNET_GATEWAY_ID \\ --vpc-id $AWS_VPC_ID && aws ec2 delete-internet-gateway \\ --internet-gateway-id $AWS_INTERNET_GATEWAY_ID # Delete the custom route table aws ec2 disassociate-route-table \\ --association-id $AWS_ROUTE_TABLE_ASSOID && aws ec2 delete-route-table \\ --route-table-id $AWS_CUSTOM_ROUTE_TABLE_ID # Delete the public subnet aws ec2 delete-subnet \\ --subnet-id $AWS_SUBNET_PUBLIC_ID # Delete the vpc aws ec2 delete-vpc \\ --vpc-id $AWS_VPC_ID Query data stored in object storage Teradata® Studio™ and Studio™ Express Installation Guide Introduction to BTEQ If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Run Vantage Express on AWS","component":"ROOT","version":"master","name":"run-vantage-express-on-aws","url":"/run-vantage-express-on-aws.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Installation","id":"_installation"},{"text":"Run sample queries","id":"_run_sample_queries"},{"text":"Optional setup","id":"_optional_setup"},{"text":"Cleanup","id":"_cleanup"},{"text":"Next steps","id":"_next_steps"},{"text":"Further reading","id":"_further_reading"}]},"/run-vantage-express-on-microsoft-azure.html":{"text":"Author: Adam Tworkiewicz Last updated: August 23rd, 2022 This how-to demonstrates how to run Vantage Express in Microsoft Azure. Vantage Express contains a fully functional Teradata SQL Engine. If do not wish to pay for cloud usage you can install Vantage Express locally using VMware, VirtualBox, or UTM. An Azure account. You can create one here: https://azure.microsoft.com/en-us/free/ az command line utility installed on your machine. You can find installation instructions here: https://docs.microsoft.com/en-us/cli/azure/install-azure-cli. Setup the default region to the closest region to you (to list locations run az account list-locations -o table): az config set defaults.location= Create a new resource group called tdve-resource-group and add it to defaults: az group create -n tdve-resource-group az config set defaults.group=tdve-resource-group To create a VM you will need an ssh key pair. If you don’t have it already, create one: az sshkey create --name vantage-ssh-key Restrict access to the private key. Replace with the private key path returned by the previous command: chmod 600 Create a Ubuntu VM with 4 CPU’s and 8GB of RAM, a 30GB os disk and a 60GB data disk. Windows MacOS Linux az disk create -n teradata-vantage-express --size-gb 60 az vm create ` --name teradata-vantage-express ` --image UbuntuLTS ` --admin-username azureuser ` --ssh-key-name vantage-ssh-key ` --size Standard_F4s_v2 ` --public-ip-sku Standard $diskId = (az disk show -n teradata-vantage-express --query 'id' -o tsv) | Out-String az vm disk attach --vm-name teradata-vantage-express --name $diskId az disk create -n teradata-vantage-express --size-gb 60 az vm create \\ --name teradata-vantage-express \\ --image UbuntuLTS \\ --admin-username azureuser \\ --ssh-key-name vantage-ssh-key \\ --size Standard_F4s_v2 \\ --public-ip-sku Standard DISK_ID=$(az disk show -n teradata-vantage-express --query 'id' -o tsv) az vm disk attach --vm-name teradata-vantage-express --name $DISK_ID az disk create -n teradata-vantage-express --size-gb 60 az vm create \\ --name teradata-vantage-express \\ --image UbuntuLTS \\ --admin-username azureuser \\ --ssh-key-name vantage-ssh-key \\ --size Standard_F4s_v2 \\ --public-ip-sku Standard DISK_ID=$(az disk show -n teradata-vantage-express --query 'id' -o tsv) az vm disk attach --vm-name teradata-vantage-express --name $DISK_ID ssh to your VM. Replace and with values that match your environment: ssh -i azureuser@ Once in the VM, switch to root user: sudo -i Prepare the download directory for Vantage Express: mkdir /opt/downloads cd /opt/downloads Mount the data disk: parted /dev/sdc --script mklabel gpt mkpart xfspart xfs 0% 100% mkfs.xfs /dev/sdc1 partprobe /dev/sdc1 export DISK_UUID=$(blkid | grep sdc1 | cut -d\"\\\"\" -f2) echo \"UUID=$DISK_UUID /opt/downloads xfs defaults,nofail 1 2\" >> /etc/fstab Install VirtualBox and 7zip: apt update && apt-get install p7zip-full p7zip-rar virtualbox -y Retrieve the curl command to download Vantage Express. Go to Vantage Expess download page (registration required). Click on the latest download link, e.g. \"Vantage Express 17.20\". You will see a license agreement popup. Don’t accept the license yet. Open the network view in your browser. For example, in Chrome press F12 and navigate to Network tab: Accept the license by clicking on I Agree button and cancel the download. In the network view, find the last request that starts with VantageExpress. Right click on it and select Copy → Copy as cURL: Head back to the ssh session and download Vantage Express by pasting the curl command. Add -o ve.7z to the command to save the download to file named ve.7z. You can remove all the HTTP headers, e.g.: curl -o ve.7z 'http://d289lrf5tw1zls.cloudfront.net/database/teradata-express/VantageExpress17.20_Sles12_202108300444.7z?Expires=1638719978&Signature=GKBkNvery_long_signature__&Key-Pair-Id=********************' Unzip the downloaded file. It will take several minutes: 7z x ve.7z Start the VM in VirtualBox. The command will return immediately but the VM init process will take several minutes: export VM_IMAGE_DIR=\"/opt/downloads/VantageExpress17.20_Sles12\" DEFAULT_VM_NAME=\"vantage-express\" VM_NAME=\"${VM_NAME:-$DEFAULT_VM_NAME}\" vboxmanage createvm --name \"$VM_NAME\" --register --ostype openSUSE_64 vboxmanage modifyvm \"$VM_NAME\" --ioapic on --memory 6000 --vram 128 --nic1 nat --cpus 4 vboxmanage storagectl \"$VM_NAME\" --name \"SATA Controller\" --add sata --controller IntelAhci vboxmanage storageattach \"$VM_NAME\" --storagectl \"SATA Controller\" --port 0 --device 0 --type hdd --medium \"$(find $VM_IMAGE_DIR -name '*disk1*')\" vboxmanage storageattach \"$VM_NAME\" --storagectl \"SATA Controller\" --port 1 --device 0 --type hdd --medium \"$(find $VM_IMAGE_DIR -name '*disk2*')\" vboxmanage storageattach \"$VM_NAME\" --storagectl \"SATA Controller\" --port 2 --device 0 --type hdd --medium \"$(find $VM_IMAGE_DIR -name '*disk3*')\" vboxmanage modifyvm \"$VM_NAME\" --natpf1 \"tdssh,tcp,,4422,,22\" vboxmanage modifyvm \"$VM_NAME\" --natpf1 \"tddb,tcp,,1025,,1025\" vboxmanage startvm \"$VM_NAME\" --type headless vboxmanage controlvm \"$VM_NAME\" keyboardputscancode 1c 1c ssh to Vantage Express VM. Use root as password: ssh -p 4422 root@localhost Validate that the DB is up: pdestate -a If the command returns PDE state is RUN/STARTED. DBS state is 5: Logons are enabled - The system is quiescent, it means that Vantage Express has started. If the status is different, repeat pdestate -a till you get the correct status. Once Vantage Express is up and running, start bteq client command line client. BTEQ (pronounced “bee-teek”) is a general-purpose, command-based client tool used to submit SQL queries to a Teradata Database. bteq Once in bteq, connect to your Vantage Express instance. When asked for the password, enter dbc: .logon localhost/dbc Using dbc user, we will create a new database called HR. Copy/paste this query and run press Enter: CREATE DATABASE HR AS PERMANENT = 60e6, -- 60MB SPOOL = 120e6; -- 120MB x Were you able to run the query? Let’s create a sample table and insert some data and query it. We will first create a table to hold employee information: CREATE SET TABLE HR.Employees ( GlobalID INTEGER, FirstName VARCHAR(30), LastName VARCHAR(30), DateOfBirth DATE FORMAT 'YYYY-MM-DD', JoinedDate DATE FORMAT 'YYYY-MM-DD', DepartmentCode BYTEINT ) UNIQUE PRIMARY INDEX ( GlobalID ); Now, let’s insert a record: INSERT INTO HR.Employees ( GlobalID, FirstName, LastName, DateOfBirth, JoinedDate, DepartmentCode ) VALUES ( 101, 'Adam', 'Tworkowski', '1980-01-05', '2004-08-01', 01 ); Finally, let’s see if we can retrieve the data: SELECT * FROM HR.Employees; You should get the following results: GlobalID FirstName LastName DateOfBirth JoinedDate DepartmentCode -------- --------- ---------- ----------- ---------- -------------- 101 Adam Tworkowski 1980-01-05 2004-08-01 1 If you intend to stop and start the VM, you may want to add Vantage Express to autostart. ssh to your VM and run the following commands: sudo -i cat > /etc/default/virtualbox VBOXAUTOSTART_DB=/etc/vbox VBOXAUTOSTART_CONFIG=/etc/vbox/autostart.cfg EOF cat /etc/systemd/system/vantage-express.service [Unit] Description=vm1 After=network.target virtualbox.service Before=runlevel2.target shutdown.target [Service] User=root Group=root Type=forking Restart=no TimeoutSec=5min IgnoreSIGPIPE=no KillMode=process GuessMainPID=no RemainAfterExit=yes ExecStart=/usr/bin/VBoxManage startvm vantage-express --type headless ExecStop=/usr/bin/VBoxManage controlvm vantage-express savestate [Install] WantedBy=multi-user.target EOF systemctl daemon-reload systemctl enable vantage-express systemctl start vantage-express If you would like to connect to Vantage Express from the Internet, you will need to open up firewall holes to your VM. You should also change the default password to dbc user: To change the password for dbc user go to your VM and start bteq: bteq Login to your database using dbc as username and password: .logon localhost/dbc Change the password for dbc user: MODIFY USER dbc AS PASSWORD = new_password; You can now open up port 1025 to the internet using gcloud command: az vm open-port --name teradata-vantage-express --port 1025 To stop incurring charges, delete all the resources associated with the resource group: az group delete --no-wait -n tdve-resource-group Query data stored in object storage Teradata® Studio™ and Studio™ Express Installation Guide Introduction to BTEQ If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Run Vantage Express on Azure","component":"ROOT","version":"master","name":"run-vantage-express-on-microsoft-azure","url":"/run-vantage-express-on-microsoft-azure.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Installation","id":"_installation"},{"text":"Run sample queries","id":"_run_sample_queries"},{"text":"Optional setup","id":"_optional_setup"},{"text":"Cleanup","id":"_cleanup"},{"text":"Next steps","id":"_next_steps"},{"text":"Further reading","id":"_further_reading"}]},"/segment.html":{"text":"Author: Adam Tworkiewicz Last updated: January 18th, 2022 This solution listens to events from Twilio Segment and writes data to a Teradata Vantage instance. The example uses Google Cloud but it can be translated into any cloud platform. In this solution, Twilio Segment writes raw event data to Google Cloud Pub/Sub. Pub/Sub forwards events to a Cloud Run application. The Cloud Run app writes data to a Teradata Vantage database. It’s a serverless solution that doesn’t require allocation or management of any VM’s. A Google Cloud account. If you don’t have an account, you can create one at https://console.cloud.google.com/. gcloud installed. See https://cloud.google.com/sdk/docs/install. A Teradata Vantage instance that Google Cloud Run can talk to. If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. Clone the sample repository: git clone git@github.com:Teradata/segment-integration-tutorial.git The repo contains segment.sql file that sets up the database. the script on your Vantage db using your favorite SQL IDE, [Teradata Studio](https://downloads.teradata.com/download/tools/teradata-studio) or command line tool called bteq (download for Windows, Linux, macOS). The SQL script will create a new database called Segment and a set of tables to store Segment events. Set the default project and region: gcloud config set project gcloud config set compute/region Retrieve the project id and the number. We will need it in subsequent steps: export PROJECT_ID=$(gcloud config get-value project) export PROJECT_NUMBER=$(gcloud projects list \\ --filter=\"$(gcloud config get-value project)\" \\ --format=\"value(PROJECT_NUMBER)\") Enable required Google Cloud services: gcloud services enable cloudbuild.googleapis.com containerregistry.googleapis.com run.googleapis.com secretmanager.googleapis.com pubsub.googleapis.com Build the application: gcloud builds submit --tag gcr.io/$PROJECT_ID/segment-listener Define an API key that you will share with Segment. Store the API key in Google Cloud Secret Manager: gcloud secrets create VANTAGE_USER_SECRET echo -n 'dbc' > /tmp/vantage_user.txt gcloud secrets versions add VANTAGE_USER_SECRET --data-file=/tmp/vantage_user.txt gcloud secrets create VANTAGE_PASSWORD_SECRET echo -n 'dbc' > /tmp/vantage_password.txt gcloud secrets versions add VANTAGE_PASSWORD_SECRET --data-file=/tmp/vantage_password.txt The application that write Segment data to Vantage will use Cloud Run. We first need to allow Cloud Run to access secrets: gcloud projects add-iam-policy-binding $PROJECT_ID \\ --member=serviceAccount:$PROJECT_NUMBER-compute@developer.gserviceaccount.com \\ --role=roles/secretmanager.secretAccessor Deploy the app to Cloud Run (replace with the hostname or IP of your Teradata Vantage database). The second export statement saves the service url as we need it for subsequent commands: gcloud run deploy --image gcr.io/$PROJECT_ID/segment-listener segment-listener \\ --region $(gcloud config get-value compute/region) \\ --update-env-vars VANTAGE_HOST=35.239.251.1 \\ --update-secrets 'VANTAGE_USER=VANTAGE_USER_SECRET:1, VANTAGE_PASSWORD=VANTAGE_PASSWORD_SECRET:1' \\ --no-allow-unauthenticated export SERVICE_URL=$(gcloud run services describe segment-listener --platform managed --region $(gcloud config get-value compute/region) --format 'value(status.url)') Create a Pub/Sub topic that will receive events from Segment: gcloud pubsub topics create segment-events Create a service account that will be used by Pub/Sub to invoke the Cloud Run app: gcloud iam service-accounts create cloud-run-pubsub-invoker \\ --display-name \"Cloud Run Pub/Sub Invoker\" Give the service account permission to invoke Cloud Run: gcloud run services add-iam-policy-binding segment-listener \\ --region $(gcloud config get-value compute/region) \\ --member=serviceAccount:cloud-run-pubsub-invoker@$PROJECT_ID.iam.gserviceaccount.com \\ --role=roles/run.invoker Allow Pub/Sub to create authentication tokens in your project: gcloud projects add-iam-policy-binding $PROJECT_ID \\ --member=serviceAccount:service-$PROJECT_NUMBER@gcp-sa-pubsub.iam.gserviceaccount.com \\ --role=roles/iam.serviceAccountTokenCreator Create a Pub/Sub subscription with the service account: gcloud pubsub subscriptions create segment-events-cloudrun-subscription --topic projects/$PROJECT_ID/topics/segment-events \\ --push-endpoint=$SERVICE_URL \\ --push-auth-service-account=cloud-run-pubsub-invoker@$PROJECT_ID.iam.gserviceaccount.com \\ --max-retry-delay 600 \\ --min-retry-delay 30 Allow Segment to publish to your topic. To do that, assign pubsub@segment-integrations.iam.gserviceaccount.com role Pub/Sub Publisher in your project at https://console.cloud.google.com/cloudpubsub/topic/list. See Segment manual for details. Configure your Google Cloud Pub/Sub a destination in Segment. Use the full topic projects//topics/segment-events and map all Segment event types (using * character) to the topic. Use Segment’s Event Tester functionality to send a sample payload to the topic. Verify that the sample data has been stored in Vantage. The example shows how to deploy the app in a single region. In many cases, this setup doesn’t guarantee enough uptime. The Cloud Run app should be deployed in more than one region behind a Global Load Balancer. This how-to demonstrates how to send Segment events to Teradata Vantage. The configuration forwards events from Segment to Google Cloud Pub/Sub and then on to a Cloud Run application. The application writes data to Teradata Vantage. Segment Pub/Sub destination documentation If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Store events from Twilio Segment","component":"ROOT","version":"master","name":"segment","url":"/segment.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Architecture","id":"_architecture"},{"text":"Deployment","id":"_deployment"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Build and deploy","id":"_build_and_deploy"},{"text":"Try it out","id":"_try_it_out"},{"text":"Limitations","id":"_limitations"},{"text":"Summary","id":"_summary"},{"text":"Further reading","id":"_further_reading"}]},"/select-the-right-data-ingestion-tools-for-teradata-vantage.html":{"text":"Author: Krutik Pathak Last updated: August 9th, 2023 This article outlines different use cases involving data ingestion, lists available tools, and recommends the optimal tool for each use case. Teradata NOS: NOS is the recommended option to ingest data from files in object storage. This situation is very common in the cloud and on-prem data fabric systems. Teradata Parallel Transporter (TPT) could be used to load data from external object storage into Teradata Vantage, however the recommended tool is Teradata NOS. Teradata Parallel Transporter (TPT): TPT is the recommended option to load data from local files. TPT is optimized for scalability and parallelism, thus it has the best throughput from all available options. BTEQ: BTEQ has full scripting capabilities and the ability to read files. It is a good option if it is already the primary ingestion tool used by a customer. Teradata QueryGrid: QueryGrid is the recommended option to move limited quantities of data between different systems/platforms. This includes movement within Vantage instances, Apache Spark, Oracle, Presto, etc. It is especially suited to situations when what needs to be synced is described by complex conditions that can be expressed in SQL. Airbyte: Airbyte is an ELT tool that has more than 350 connectors and is Open Source. It’s a favored option for conducting lightweight ingestions from SaaS applications into Teradata Vantage. In this article, we explored various data ingestion use cases, provided a list of available tools for each use case, and identified the recommended option for different scenarios. Query data stored in object storage using NOS Run large bulkloads efficiently with Teradata Parallel Transporter Teradata QueryGrid Use Airbyte to load data from external sources to Teradata Vantage Did this page help?","title":"Select the right data ingestion tools for Teradata Vantage","component":"ROOT","version":"master","name":"select-the-right-data-ingestion-tools-for-teradata-vantage","url":"/select-the-right-data-ingestion-tools-for-teradata-vantage.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Ingesting data from external object store","id":"_ingesting_data_from_external_object_store"},{"text":"Available Tools: Teradata Native Object Store (NOS), Teradata Parallel Transporter (TPT)","id":"_available_tools_teradata_native_object_store_nos_teradata_parallel_transporter_tpt"},{"text":"Ingesting data from local files","id":"_ingesting_data_from_local_files"},{"text":"Available Tools: Teradata Parallel Transporter (TPT), BTEQ","id":"_available_tools_teradata_parallel_transporter_tpt_bteq"},{"text":"Move data from different systems for unified query processing","id":"_move_data_from_different_systems_for_unified_query_processing"},{"text":"Available Tools: Teradata QueryGrid","id":"_available_tools_teradata_querygrid"},{"text":"Ingesting data from SaaS applications (Third Party Tools)","id":"_ingesting_data_from_saas_applications_third_party_tools"},{"text":"Available Tools: Airbyte","id":"_available_tools_airbyte"},{"text":"Summary","id":"_summary"},{"text":"Further Reading","id":"_further_reading"}]},"/sto.html":{"text":"Author: Adam Tworkiewicz Last updated: September 7th, 2021 Sometimes, you need to apply complex logic to your data that can’t be easily expressed in SQL. One option is to wrap your logic in a User Defined Function (UDF). What if you already have this logic coded in a language that is not supported by UDF? Script Table Operator is a Vantage feature that allows you to bring your logic to the data and run it on Vantage. The advantage of this approach is that you don’t have to retrieve data from Vantage to operate on it. Also, by running your data applications on Vantage, you leverage its parallel nature. You don’t have to think how your applications will scale. You can let Vantage take care of it. You need access to a Teradata Vantage instance. If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. Let’s start with something simple. What if you wanted the database to print \"Hello World\"? SELECT * FROM SCRIPT( SCRIPT_COMMAND('echo Hello World!') RETURNS ('Message varchar(512)')); Here is what I’ve got: Message ------------ Hello World! Hello World! Let’s analyze what just happened here. The SQL includes echo Hello World!. This is a Bash command. OK, so now we know how to run Bash commands. But why did we get 2 rows and not one? That’s because our simple script was run once on each AMP and I happen to have 2 AMPs: -- Teradata magic that returns the number of AMPs in a system SELECT hashamp()+1 AS number_of_amps; Returns: number_of_amps -------------- 2 This simple script demonstrates the idea behind the Script Table Operator (STO). You provide your script and the database runs it in parallel, once for each AMP. This is an attractive model in case you have transformation logic in a script and a lot of data to process. Normally, you would need to build concurrency into your application. By letting STO do it, you let Teradata select the right concurrency level for your data. OK, so we did echo in Bash but Bash is hardly a productive environment to express complex logic. What other languages are supported then? The good news is that any binary that can run on Vantage nodes can be used in STO. Remember, that the binary and all its dependencies need to be installed on all your Vantage nodes. In practice, it means that your options will be limited to what your administrator is willing and able to maintain on your servers. Python is a very popular choice. Ok, Hello World is super exciting, but what if we have existing logic in a large file. Surely, you don’t want to paste your entire script and escape quotes in an SQL query. We solve the script upload issue with the User Installed Files (UIF) feature. Say you have helloworld.py script with the following content: print(\"Hello World!\") Let’s assume the script is on your local machine at /tmp/helloworld.py. First, we need to setup permissions in Vantage. We are going to do this using a new database to keep it clean. -- Create a new database called sto CREATE DATABASE STO AS PERMANENT = 60e6, -- 60MB SPOOL = 120e6; -- 120MB -- Allow dbc user to create scripts in database STO GRANT CREATE EXTERNAL PROCEDURE ON STO to dbc; You can upload the script to Vantage using the following procedure call: call SYSUIF.install_file('helloworld', 'helloworld.py', 'cz!/tmp/helloworld.py'); Now that the script has been uploaded, you can call it like this: -- We switch to STO database DATABASE STO -- We tell Vantage where to look for the script. This can be -- any string and it will create a symbolic link to the directory -- where our script got uploaded. By convention, we use the -- database name. SET SESSION SEARCHUIFDBPATH = sto; -- We now call the script. Note, how we use a relative path that -- starts with `./sto/`, which is where SEARCHUIFDBPATH -- is pointing. SELECT * FROM SCRIPT( SCRIPT_COMMAND('python3 ./sto/helloworld.py') RETURNS ('Message varchar(512)')); The last call should return: Message ------------ Hello World! Hello World! That was a lot of work and we are still at Hello World. Let’s try to pass some data into SCRIPT. So far, we have been using SCRIPT operator to run standalone scripts. But the main purpose to run scripts on Vantage is to process data that is in Vantage. Let’s see how we can retrieve data from Vantage and pass it to SCRIPT. We will start with creating a table with a few rows. -- Switch to STO database. DATABASE STO -- Create a table with a few urls CREATE TABLE urls(url varchar(10000)); INS urls('https://www.google.com/finance?q=NYSE:TDC'); INS urls('http://www.ebay.com/sch/i.html?_trksid=p2050601.m570.l1313.TR0.TRC0.H0.Xteradata+merchandise&_nkw=teradata+merchandise&_sacat=0&_from=R40'); INS urls('https://www.youtube.com/results?search_query=teradata%20commercial&sm=3'); INS urls('https://www.contrivedexample.com/example?mylist=1&mylist=2&mylist=...testing'); We will use the following script to parse out query parameters: from urllib.parse import urlparse from urllib.parse import parse_qsl import sys for line in sys.stdin: # remove leading and trailing whitespace url = line.strip() parsed_url = urlparse(url) query_params = parse_qsl(parsed_url.query) for element in query_params: print(\"\\t\".join(element)) Note, how the scripts assumes that urls will be fed into stdin one by one, line by line. Also, note how it prints results line by line, using the tab character as a delimiter between values. Let’s install the script. Here, we assume that the script file is at /tmp/urlparser.py on our local machine: CALL SYSUIF.install_file('urlparser', 'urlparser.py', 'cz!/tmp/urlparser.py'); With the script installed, we will now retrieve data from urls table and feed it into the script to retrieve query parameters: -- We inform Vantage to create a symbolic link from the UIF directory to ./sto/ SET SESSION SEARCHUIFDBPATH = sto ; SELECT * FROM SCRIPT( ON(SELECT url FROM urls) SCRIPT_COMMAND('python3 ./sto/urlparser.py') RETURNS ('param_key varchar(512)', 'param_value varchar(512)')); As a result, we get query params and their values. There are as many rows as key/value pairs. Also, since we inserted a tab between the key and the value output in the script, we get 2 columns from STO. param_key |param_value ------------+----------------------------------------------------- q |NYSE:TDC _trksid |p2050601.m570.l1313.TR0.TRC0.H0.Xteradata merchandise search_query|teradata commercial _nkw |teradata merchandise sm |3 _sacat |0 mylist |1 _from |R40 mylist |2 mylist |...testing We have learned how to take data from Vantage, pass it to a script and get output. Is there an easy way to store this output in a table? Sure, there is. We can combine the select above with CREATE TABLE statement: -- We inform Vantage to create a symbolic link from the UIF directory to ./sto/ SET SESSION SEARCHUIFDBPATH = sto ; CREATE MULTISET TABLE url_params(param_key, param_value) AS ( SELECT * FROM SCRIPT( ON(SELECT url FROM urls) SCRIPT_COMMAND('python3 ./sto/urlparser.py') RETURNS ('param_key varchar(512)', 'param_value varchar(512)')) ) WITH DATA NO PRIMARY INDEX; Now, let’s inspect the contents of url_params table: SELECT * FROM url_params; You should see the following output: param_key |param_value ------------+----------------------------------------------------- q |NYSE:TDC _trksid |p2050601.m570.l1313.TR0.TRC0.H0.Xteradata merchandise search_query|teradata commercial _nkw |teradata merchandise sm |3 _sacat |0 mylist |1 _from |R40 mylist |2 mylist |...testing In this quick start we have learned how to run scripts against data in Vantage. We ran scripts using Script Table Operator (STO). The operator allows us to bring logic to the data. It offloads concurrency considerations to the database by running our scripts in parallel, one per AMP. All you need to do is provide a script and the database will execute it in parallel. Teradata Vantage™ - SQL Operators and User-Defined Functions - SCRIPT R and Python Analytics with SCRIPT Table Operator If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Run scripts on Vantage","component":"ROOT","version":"master","name":"sto","url":"/sto.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Hello World","id":"_hello_world"},{"text":"Supported languages","id":"_supported_languages"},{"text":"Uploading scripts","id":"_uploading_scripts"},{"text":"Passing data stored in Vantage to SCRIPT","id":"_passing_data_stored_in_vantage_to_script"},{"text":"Inserting SCRIPT output into a table","id":"_inserting_script_output_into_a_table"},{"text":"Summary","id":"_summary"},{"text":"Further reading","id":"_further_reading"}]},"/teradata-vantage-engine-architecture-and-concepts.html":{"text":"Author: Krutik Pathak Last updated: August 7th, 2023 This article explains the underlying concepts of Teradata Vantage engine architecture. All editions of Vantage, including the Primary Cluster in VantageCloud Lake utilize the same engine. Teradata’s architecture is designed around a Massively Parallel Processing (MPP), shared-nothing architecture, which enables high-performance data processing and analytics. The MPP architecture distributes the workload into multiple vprocs or virtual processors. The virtual processor where query processing takes place is commonly referred to as an Access Module Processor (AMP). Each AMP is isolated from other AMPs, and processes the queries in parallel allowing Teradata to process large volumes of data rapidly. The major architectural components of the Teradata Vantage engine include the Parsing Engines (PEs), BYNET, Access Module Processors (AMPs), and Virtual Disks (Vdisks). Vdisks are assigned to AMPs in enterprise platforms, and to the Primary Cluster in the case of VantageCloud Lake environments. The Teradata Vantage engine consists of the components below: When a SQL query is run in Teradata, it first reaches the Parsing Engine. The functions of the Parsing Engine are: Manage individual user sessions (up to 120). Check if the objects used in the SQL query exist. Check if the user has required privileges against the objects used in the SQL query. Parse and optimize the SQL queries. Prepare the execution plan to execute the SQL query and passes it to the corresponding AMPs. Receive the response from the AMPs and send it back to the requesting client. BYNET is a system that enables component communication. The BYNET system provides high-speed bi-directional broadcast, multicast, and point-to-point communication and merge functions. It performs three key functions: coordinating multi-AMP queries, reading data from multiple AMPs, regulating message flow to prevent congestion, and processing platform throughput. These functions of BYNET make Vantage highly scalable and enable Massively Parallel Processing (MPP) capabilities. Parallel Database Extension (PDE) is an intermediary software layer positioned between the operating system and the Teradata Vantage database. PDE enables MPP systems to use features such as BYNET and shared disks. It facilitates the parallelism that is responsible for the speed and linear scalability of the Teradata Vantage database. AMPs are responsible for data storage and retrieval. Each AMP is associated with its own set of Virtual Disks (Vdisks) where the data is stored, and no other AMP can access that content in line with the shared-nothing architecture. The functions of AMP are: Access storage using Vantage’s Block File System Software Lock management Sorting rows Aggregating columns Join processing Output conversion Disk space management Accounting Recovery processing AMPs in VantageCore IntelliFlex, VantageCore VMware, VantageCloud Enterprise, and the Primary Cluster in the case of VantageCloud Lake, store data in a Block File System (BFS) format on Vdisks. AMPs in Compute Clusters and Compute Worker Nodes on VantageCloud Lake do not have BFS, they can only access data in object storage using the Object File System (OFS). These are units of storage space owned by an AMP. Virtual Disks are used to hold user data (rows within tables). Virtual Disks map to physical space on a disk. A node, in the context of Teradata systems, represents an individual server that functions as a hardware platform for the database software. It serves as a processing unit where database operations are executed under the control of a single operating system. When Teradata is deployed in a cloud, it follows the same MPP, shared-nothing architecture but the physical nodes are replaced with virtual machines (VMs). The concepts below are applicable to Teradata Vantage. Teradata is a linearly expandable RDBMS. As the workload and data volume increase, adding more hardware resources such as servers or nodes results in a proportional increase in performance and capacity. Linear Scalability allows for increased workload without decreased throughput. Teradata parallelism refers to the inherent ability of the Teradata Database to perform parallel processing of data and queries across multiple nodes or components simultaneously. Each Parsing Engine (PE) in Teradata has the capability to handle up to 120 sessions concurrently. The BYNET in Teradata enables parallel handling of all message activity, including data redistribution for subsequent tasks. All Access Module Processors (AMPs) in Teradata can collaborate in parallel to serve any incoming request. Each AMP can work on multiple requests concurrently, allowing for efficient parallel processing. The key steps involved in Teradata Retrieval Architecture are: The Parsing Engine sends a request to retrieve one or more rows. The BYNET activates the relevant AMP(s) for processing. The AMP(s) concurrently locate and retrieve the desired row(s) through parallel access. The BYNET returns the retrieved row(s) to the Parsing Engine. The Parsing Engine then delivers the row(s) back to the requesting client application. Teradata’s MPP architecture requires an efficient means of distributing and retrieving data and does so using hash partitioning. Most tables in Vantage use hashing to distribute data for the tables based on the value of the row’s Primary Index (PI) to disk storage in Block File System (BFS) and may scan the entire table or use indexes to access the data. This approach ensures scalable performance and efficient data access. If the Primary Index is unique then the rows in the tables are automatically distributed evenly by hash partitioning. The designated Primary Index column(s) are hashed to generate consistent hash codes for the same values. No reorganization, repartitioning, or space management is required. Each AMP typically contains rows from all tables, ensuring efficient data access and processing. In this article, we covered the major architectural components of Teradata Vantage, such as the Parsing Engines (PEs), BYNET, Access Module Processors (AMPs), Virtual Disk (Vdisk), other architectural components such as Parallel Database Extension (PDE), Node and the essential concepts of Teradata Vantage such as Linear Growth and Expandability, Parallelism, Data Retrieval, and Data Distribution. Parsing Engine BYNET Access Module Processor Parallel Database Extensions Teradata Data Distribution and Data Access Methods Did this page help?","title":"Teradata Vantage Engine Architecture and Concepts","component":"ROOT","version":"master","name":"teradata-vantage-engine-architecture-and-concepts","url":"/teradata-vantage-engine-architecture-and-concepts.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Teradata Vantage Engine Architecture Components","id":"_teradata_vantage_engine_architecture_components"},{"text":"Parsing Engines (PE)","id":"_parsing_engines_pe"},{"text":"BYNET","id":"_bynet"},{"text":"Parallel Database Extension (PDE)","id":"_parallel_database_extension_pde"},{"text":"Access Module Processor (AMP)","id":"_access_module_processor_amp"},{"text":"Virtual Disks (Vdisks)","id":"_virtual_disks_vdisks"},{"text":"Node","id":"_node"},{"text":"Teradata Vantage Architecture Concepts","id":"_teradata_vantage_architecture_concepts"},{"text":"Linear Growth and Expandability","id":"_linear_growth_and_expandability"},{"text":"Teradata Parallelism","id":"_teradata_parallelism"},{"text":"Teradata Retrieval Architecture","id":"_teradata_retrieval_architecture"},{"text":"Teradata Data Distribution","id":"_teradata_data_distribution"},{"text":"Conclusion","id":"_conclusion"},{"text":"Further Reading","id":"_further_reading"}]},"/teradatasql.html":{"text":"Author: Krutik Pathak Last updated: August 2nd, 2023 This how-to demonstrates how to connect to Vantage using teradatasql Python database driver for Teradata Vantage. 64-bit Python 3.4 or later. teradatasql driver installed in your system: pip install teradatasql teradatasql package runs on Windows, macOS (10.14 Mojave or later) and Linux. For Linux, currently only Linux x86-64 architecture is supported. Access to a Teradata Vantage instance. Currently driver is supported for use with Teradata Database 16.10 and later releases. If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. This is a simple Python code to connect to Teradata Vantage using teradatasql. All that is left, is to pass connection and authentication parameters and run a query: This how-to demonstrated how to connect to Teradata Vantage using teradatasql Python database driver. It described a sample Python code to send SQL queries to Teradata Vantage using teradatasql. teradatasql Python driver reference If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Connect to Vantage using Python","component":"ROOT","version":"master","name":"teradatasql","url":"/teradatasql.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Code to send a query","id":"_code_to_send_a_query"},{"text":"Summary","id":"_summary"},{"text":"Further reading","id":"_further_reading"}]},"/vantage.express.gcp.html":{"text":"Author: Adam Tworkiewicz Last updated: August 23rd, 2022 This how-to demonstrates how to run Vantage Express in Google Cloud Platform. Vantage Express contains a fully functional Teradata SQL Engine. If do not wish to pay for cloud usage you can install Vantage Express locally using VMware, VirtualBox, UTM. A Google Cloud account. gcloud command line utility installed on your machine. You can find installation instructions here: https://cloud.google.com/sdk/docs/install. Create a Ubuntu VM with 4 CPU’s and 8GB of RAM, a 70GB balanced disk. The following command creates a VM in us-central1 region. For best performance, replace the region with one that is the closest to you. For the list of supported regions see Google Cloud regions documentation. Windows MacOS Linux Run in Powershell: gcloud compute instances create teradata-vantage-express ` --zone=us-central1-a ` --machine-type=n2-custom-4-8192 ` --create-disk=boot=yes,device-name=ve-disk,image-project=ubuntu-os-cloud,image-family=ubuntu-2004-lts,size=70,type=pd-balanced ` --enable-nested-virtualization ` --tags=ve gcloud compute instances create teradata-vantage-express \\ --zone=us-central1-a \\ --machine-type=n2-custom-4-8192 \\ --create-disk=boot=yes,device-name=ve-disk,image-project=ubuntu-os-cloud,image-family=ubuntu-2004-lts,size=70,type=pd-balanced \\ --enable-nested-virtualization \\ --tags=ve gcloud compute instances create teradata-vantage-express \\ --zone=us-central1-a \\ --machine-type=n2-custom-4-8192 \\ --create-disk=boot=yes,device-name=ve-disk,image-project=ubuntu-os-cloud,image-family=ubuntu-2004-lts,size=70,type=pd-balanced \\ --enable-nested-virtualization \\ --tags=ve ssh to your VM: gcloud compute ssh teradata-vantage-express --zone=us-central1-a Switch to root user: sudo -i Prepare the download directory for Vantage Express: mkdir /opt/downloads cd /opt/downloads Install VirtualBox and 7zip: apt update && apt-get install p7zip-full p7zip-rar virtualbox -y Retrieve the curl command to download Vantage Express. Go to Vantage Expess download page (registration required). Click on the latest download link, e.g. \"Vantage Express 17.20\". You will see a license agreement popup. Don’t accept the license yet. Open the network view in your browser. For example, in Chrome press F12 and navigate to Network tab: Accept the license by clicking on I Agree button and cancel the download. In the network view, find the last request that starts with VantageExpress. Right click on it and select Copy → Copy as cURL: Head back to the ssh session and download Vantage Express by pasting the curl command. Add -o ve.7z to the command to save the download to file named ve.7z. You can remove all the HTTP headers, e.g.: curl -o ve.7z 'http://d289lrf5tw1zls.cloudfront.net/database/teradata-express/VantageExpress17.20_Sles12_202108300444.7z?Expires=1638719978&Signature=GKBkNvery_long_signature__&Key-Pair-Id=********************' Unzip the downloaded file. It will take several minutes: 7z x ve.7z Start the VM in VirtualBox. The command will return immediately but the VM init process will take several minutes: export VM_IMAGE_DIR=\"/opt/downloads/VantageExpress17.20_Sles12\" DEFAULT_VM_NAME=\"vantage-express\" VM_NAME=\"${VM_NAME:-$DEFAULT_VM_NAME}\" vboxmanage createvm --name \"$VM_NAME\" --register --ostype openSUSE_64 vboxmanage modifyvm \"$VM_NAME\" --ioapic on --memory 6000 --vram 128 --nic1 nat --cpus 4 vboxmanage storagectl \"$VM_NAME\" --name \"SATA Controller\" --add sata --controller IntelAhci vboxmanage storageattach \"$VM_NAME\" --storagectl \"SATA Controller\" --port 0 --device 0 --type hdd --medium \"$(find $VM_IMAGE_DIR -name '*disk1*')\" vboxmanage storageattach \"$VM_NAME\" --storagectl \"SATA Controller\" --port 1 --device 0 --type hdd --medium \"$(find $VM_IMAGE_DIR -name '*disk2*')\" vboxmanage storageattach \"$VM_NAME\" --storagectl \"SATA Controller\" --port 2 --device 0 --type hdd --medium \"$(find $VM_IMAGE_DIR -name '*disk3*')\" vboxmanage modifyvm \"$VM_NAME\" --natpf1 \"tdssh,tcp,,4422,,22\" vboxmanage modifyvm \"$VM_NAME\" --natpf1 \"tddb,tcp,,1025,,1025\" vboxmanage startvm \"$VM_NAME\" --type headless vboxmanage controlvm \"$VM_NAME\" keyboardputscancode 1c 1c ssh to Vantage Express VM. Use root as password: ssh -p 4422 root@localhost Validate that the DB is up: pdestate -a If the command returns PDE state is RUN/STARTED. DBS state is 5: Logons are enabled - The system is quiescent, it means that Vantage Express has started. If the status is different, repeat pdestate -a till you get the correct status. Once Vantage Express is up and running, start bteq client command line client. BTEQ (pronounced “bee-teek”) is a general-purpose, command-based client tool used to submit SQL queries to a Teradata Database. bteq Once in bteq, connect to your Vantage Express instance. When asked for the password, enter dbc: .logon localhost/dbc Using dbc user, we will create a new database called HR. Copy/paste this query and run press Enter: CREATE DATABASE HR AS PERMANENT = 60e6, -- 60MB SPOOL = 120e6; -- 120MB x Were you able to run the query? Let’s create a sample table and insert some data and query it. We will first create a table to hold employee information: CREATE SET TABLE HR.Employees ( GlobalID INTEGER, FirstName VARCHAR(30), LastName VARCHAR(30), DateOfBirth DATE FORMAT 'YYYY-MM-DD', JoinedDate DATE FORMAT 'YYYY-MM-DD', DepartmentCode BYTEINT ) UNIQUE PRIMARY INDEX ( GlobalID ); Now, let’s insert a record: INSERT INTO HR.Employees ( GlobalID, FirstName, LastName, DateOfBirth, JoinedDate, DepartmentCode ) VALUES ( 101, 'Adam', 'Tworkowski', '1980-01-05', '2004-08-01', 01 ); Finally, let’s see if we can retrieve the data: SELECT * FROM HR.Employees; You should get the following results: GlobalID FirstName LastName DateOfBirth JoinedDate DepartmentCode -------- --------- ---------- ----------- ---------- -------------- 101 Adam Tworkowski 1980-01-05 2004-08-01 1 If you intend to stop and start the VM, you may want to add Vantage Express to autostart. ssh to your VM and run the following commands: sudo -i cat > /etc/default/virtualbox VBOXAUTOSTART_DB=/etc/vbox VBOXAUTOSTART_CONFIG=/etc/vbox/autostart.cfg EOF cat /etc/systemd/system/vantage-express.service [Unit] Description=vm1 After=network.target virtualbox.service Before=runlevel2.target shutdown.target [Service] User=root Group=root Type=forking Restart=no TimeoutSec=5min IgnoreSIGPIPE=no KillMode=process GuessMainPID=no RemainAfterExit=yes ExecStart=/usr/bin/VBoxManage startvm vantage-express --type headless ExecStop=/usr/bin/VBoxManage controlvm vantage-express savestate [Install] WantedBy=multi-user.target EOF systemctl daemon-reload systemctl enable vantage-express systemctl start vantage-express If you would like to connect to Vantage Express from the Internet, you will need to open up firewall holes to your VM. You should also change the default password to dbc user: To change the password for dbc user go to your VM and start bteq: bteq Login to your database using dbc as username and password: .logon localhost/dbc Change the password for dbc user: MODIFY USER dbc AS PASSWORD = new_password; You can now open up port 1025 to the internet using gcloud command: gcloud compute firewall-rules create vantage-express --allow=tcp:1025 --direction=IN --target-tags=ve To stop incurring charges, delete the VM: gcloud compute instances delete teradata-vantage-express --zone=us-central1-a Also, remember to remove any firewall rules that you have added, e.g.: gcloud compute firewall-rules delete vantage-express Query data stored in object storage Teradata® Studio™ and Studio™ Express Installation Guide Introduction to BTEQ If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Run Vantage Express on Google Cloud","component":"ROOT","version":"master","name":"vantage.express.gcp","url":"/vantage.express.gcp.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Installation","id":"_installation"},{"text":"Run sample queries","id":"_run_sample_queries"},{"text":"Optional setup","id":"_optional_setup"},{"text":"Cleanup","id":"_cleanup"},{"text":"Next steps","id":"_next_steps"},{"text":"Further reading","id":"_further_reading"}]},"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html":{"text":"Author: Rupal Shah Last updated: February 14th, 2022 This article describes the process to share an Azure Blob Storage dataset from one user to another using Azure Data Share service and then query it with Teradata Vantage leveraging Native Object Store (NOS) capability. We will create and use a storage account and data share account for both users. This is a diagram of the workflow. Azure Data Share enables organizations to simply and securely share data with multiple customers and partners. Both the data provider and data consumer must have an Azure subscription to share and receive data. Azure Data Share currently offers snapshot-based sharing and in-place sharing. Today, Azure Data Share supported data stores include Azure Blob Storage, Azure Data Lake Storage Gen1 and Gen2, Azure SQL Database, Azure Synapse Analytics and Azure Data Explorer. Once a dataset share has been sent using Azure Data Share, the data consumer is able to receive that data in a data store of their choice like Azure Blob Storage and then use Teradata Vantage to explore and analyze the data. For more information see documentation. Vantage is the modern cloud platform that unifies data warehouses, data lakes, and analytics into a single connected ecosystem. Vantage combines descriptive, predictive, prescriptive analytics, autonomous decision-making, ML functions, and visualization tools into a unified, integrated platform that uncovers real-time business intelligence at scale, no matter where the data resides. Vantage enables companies to start small and elastically scale compute or storage, paying only for what they use, harnessing low-cost object stores and integrating their analytic workloads. Vantage supports R, Python, Teradata Studio, and any other SQL-based tools. You can deploy Vantage across public clouds, on-premises, on optimized or commodity infrastructure, or as-a-service. Teradata Vantage Native Object Store (NOS) can be used to explore data in external object stores, like Azure Blob Storage, using standard SQL. No special object storage-side compute infrastructure is required to use NOS. You can explore data located in an Blob Storage container by simply creating a NOS table definition that points to your container. With NOS, you can quickly import data from Blob Storage or even join it other tables in the database. Alternatively, the Teradata Parallel Transporter (TPT) utility can be used to import data from Blob Storage to Teradata Vantage in bulk fashion. Once loaded, data can be efficiently queried within Vantage. For more information see documentation. Access to a Teradata Vantage instance. If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. An Azure account. You can start with a free account. An Azure Blob Storage account to store the dataset Once you have met the prerequisites, follow these steps: Create a Azure Blob Storage account and container Create a Data Share Account Create a share Accept and receive data using Data Share Configure NOS access to Blob Storage Query the dataset in Blob Storage Load data from Blob Storage into Vantage (optional) Open the Azure portal in a browser (Chrome, Firefox, and Safari work well) and follow the steps in create a storage account in a resource group called myProviderStorage_rg in this article. Enter a storage name and connectivity method. We will use myproviderstorage and public endpoint in this article. We suggest that you use the same location for all services you create. Select Review + create, then Create. Go to resource and click Containers to create container. Click the + Container button. Enter a container name. We will use providerdata in this article. Click Create. We will create a Data Share account for the provider sharing the dataset. Follow the Create an Azure Data Share Account steps to create resource in a resource group called myDataShareProvider_rg in this article. In Basics tab, enter a data share account name. We will use mydatashareprovider in this article. We suggest that you use the same location for all services you create. Select Review + create, then Create. When the deployment is complete, select Go to resource. Navigate to your Data Share Overview page and follow the steps in Create a share. Select Start sharing your data. Select + Create. In Details tab, enter a share name and share type. We will use WeatherData and Snapshot in this article. Snapshot share Choose snapshot sharing to provide copy of the data to the recipient. Supported data store: Azure Blob Storage, Azure Data Lake Storage Gen1, Azure Data Lake Storage Gen2, Azure SQL Database, Azure Synapse Analytics (formerly SQL DW) In-place share Choose in-place sharing to provide access to data at its source. Supported data store: Azure Data Explorer Click Continue. In Datasets tab, click Add datasets Select Azure Blob Storage Click Next. Enter Storage account providing the dataset. We will use myproviderstorage in this article. Click Next. Double-click container to choose the dataset. We will use providerdata and onpoint_history_postal-code_hour.csv file in this article. Figure 6 Select Storage container and dataset Azure Data Share can share at the folder and file level. Use Azure Blob Storage resource to upload a file. Click Next. Enter a Dataset name that the consumer will see for the folder and dataset. We will use the default names but delete the providerdata folder this article. Click Add datasets. Click Add datasets. Click Continue. In Recipients tab, click Add recipient email address to send share notification. Enter email address for consumer. Set Share expiration for amount of time share is valid for consumer to accept. Click Continue. In Settings tab, set Snapshot schedule. We use default unchecked this article. Click Continue. In Review + Create tab, click Create. Your Azure Data Share has now been created and the recipient of your Data Share is now ready to accept your invitation. In this article, the recipient/consumer is going to receive the data into their Azure Blob storage account. Similar to the Data Share Provider, ensure that all pre-requisites are complete for the Consumer before accepting a data share invitation. Azure Subscription: If you don’t have one, create a https://azure.microsoft.com/free/[free account] before you begin. Azure Blob Storage account and container: create resource group called myConsumerStorage_rg and create account name myconsumerstorage and container consumerdata. Azure Data Share account: create resource group called myDataShareConsumer_rg and create a data share account name called mydatashareconsumer to accept the data. Follow the steps in Accept and receive data using Azure Data Share. In your email, an invitation from Microsoft Azure with a subject titled \"Azure Data Share invitation from yourdataprovider@domain.com. Click on the View invitation to see your invitation in Azure. This action opens your browser to the list of Data Share invitations. Select the share you would like to view. We will select WeatherData in this article. Under Target Data Share Account, select the Subscription and Resource Group that you would like to deployed your Data Share into or you can create a new Data Share here. f provider required a Terms of Use acceptance, a dialog box would appear and you’ll be required to check the box to indicate you agree to the terms of use. Enter the Resource group and Data share account. We will use myDataShareConsumer_rg and mydatashareconsumer account this article. Select Accept and configure and a share subscription will be created. Select Datasets tab. Check the box next to the dataset you’d like to assign a destination to. Select + Map to target to choose a target data store. Select a target data store type and path that you’d like the data to land in. We will use consumers Azure Blob Storage account myconsumerstorage and container consumerdata for our snapshot example in this article. Azure Data Share provides open and flexible data sharing, including the ability to share from and to different data stores. Check supported data sources that can accept snapshot and in place sharing. Click on Map to target. Once mapping is complete, for snapshot-based sharing click on Details tab and click Trigger snapshot for Full or Incremental. We will select full copy since this is your first time receiving data from your provider. When the last run status is successful, go to target data store to view the received data. Select Datasets, and click on the link in the Target Path. Native Object Store (NOS) can directly read data in Azure Blob Storage, which allows you to explore and analyze data in Blob Storage without explicitly loading the data. A foreign table definition allows data in Blob Storage to be easily referenced within the Advanced SQL Engine and makes the data available in a structured, relational format. NOS supports data in CSV, JSON, and Parquet formats. Login to your Vantage system with Teradata Studio. Create an AUTHORIZATION object to access your Blob Storage container with the following SQL command. CREATE AUTHORIZATION DefAuth_AZ AS DEFINER TRUSTED USER 'myconsumerstorage' /* Storage Account Name */ PASSWORD '*****************' /* Storage Account Access Key or SAS Token */ Replace the string for USER with your Storage Account Name. Replace the string for PASSWORD with your Storage Account Access Key or SAS Token. Create a foreign table definition for the CSV file on Blob Storage with the following SQL command. CREATE MULTISET FOREIGN TABLE WeatherData, EXTERNAL SECURITY DEFINER TRUSTED DefAuth_AZ ( Location VARCHAR(2048) CHARACTER SET UNICODE CASESPECIFIC, Payload DATASET INLINE LENGTH 64000 STORAGE FORMAT CSV ) USING ( LOCATION ('/AZ/myconsumerstorage.blob.core.windows.net/consumerdata/') ) At a minimum, the foreign table definition must include a table name (WeatherData) and a location clause, which points to the object store data. The LOCATION requires a storage account name and container name. You will need to replace this with your own storage account and container name. If the object doesn’t have a standard extension (e.g. “.json”, “.csv”, “.parquet”), then the Location…Payload columns definition phrase is also needed, and the LOCATION phase need to include the file name. For example: LOCATION (AZ/.blob.core.windows.net//). Foreign tables are always defined as No Primary Index (NoPI) tables. Run the following SQL command to query the dataset. SELECT * FROM WeatherData SAMPLE 10; The foreign table only contains two columns: Location and Payload. Location is the address in the object store system. The data itself is represented in the payload column, with the payload value within each record in the foreign table representing a single CSV row. Run the following SQL command to focus on the data in the object. SELECT payload..* FROM WeatherData SAMPLE 10; Views can simplify the names associated with the payload attributes, can make it easier to code SQL against the object data, and can hide the Location references in the foreign table. Vantage foreign tables use the .. (double dot or double period) operator to separate the object name from the column name. Run the following SQL command to create a view. REPLACE VIEW WeatherData_view AS ( SELECT CAST(payload..postal_code AS VARCHAR(10)) Postal_code, CAST(payload..country AS CHAR(2)) Country, CAST(payload..time_valid_utc AS TIMESTAMP(0) FORMAT 'YYYY-MM-DDBHH:MI:SS') Time_Valid_UTC, CAST(payload..doy_utc AS INTEGER) DOY_UTC, CAST(payload..hour_utc AS INTEGER) Hour_UTC, CAST(payload..time_valid_lcl AS TIMESTAMP(0) FORMAT 'YYYY-MM-DDBHH:MI:SS') Time_Valid_LCL, CAST(payload..dst_offset_minutes AS INTEGER) DST_Offset_Minutes, CAST(payload..temperature_air_2m_f AS DECIMAL(4,1)) Temperature_Air_2M_F, CAST(payload..temperature_wetbulb_2m_f AS DECIMAL(3,1)) Temperature_Wetbulb_2M_F, CAST(payload..temperature_dewpoint_2m_f AS DECIMAL(3,1)) Temperature_Dewpoint_2M_F, CAST(payload..temperature_feelslike_2m_f AS DECIMAL(4,1)) Temperature_Feelslike_2M_F, CAST(payload..temperature_windchill_2m_f AS DECIMAL(4,1)) Temperature_Windchill_2M_F, CAST(payload..temperature_heatindex_2m_f AS DECIMAL(4,1)) Temperature_Heatindex_2M_F, CAST(payload..humidity_relative_2m_pct AS DECIMAL(3,1)) Humidity_Relative_2M_Pct, CAST(payload..humidity_specific_2m_gpkg AS DECIMAL(3,1)) Humdity_Specific_2M_GPKG, CAST(payload..pressure_2m_mb AS DECIMAL(5,1)) Pressure_2M_Mb, CAST(payload..pressure_tendency_2m_mb AS DECIMAL(2,1)) Pressure_Tendency_2M_Mb, CAST(payload..pressure_mean_sea_level_mb AS DECIMAL(5,1)) Pressure_Mean_Sea_Level_Mb, CAST(payload..wind_speed_10m_mph AS DECIMAL(3,1)) Wind_Speed_10M_MPH, CAST(payload..wind_direction_10m_deg AS DECIMAL(4,1)) Wind_Direction_10M_Deg, CAST(payload..wind_speed_80m_mph AS DECIMAL(3,1)) Wind_Speed_80M_MPH, CAST(payload..wind_direction_80m_deg AS DECIMAL(4,1)) Wind_Direction_80M_Deg, CAST(payload..wind_speed_100m_mph AS DECIMAL(3,1)) Wind_Speed_100M_MPH, CAST(payload..wind_direction_100m_deg AS DECIMAL(4,1)) Wind_Direction_100M_Deg, CAST(payload..precipitation_in AS DECIMAL(3,2)) Precipitation_in, CAST(payload..snowfall_in AS DECIMAL(3,2)) Snowfall_in, CAST(payload..cloud_cover_pct AS INTEGER) Cloud_Cover_Pct, CAST(payload..radiation_solar_total_wpm2 AS DECIMAL(5,1)) Radiation_Solar_Total_WPM2 FROM WeatherData ) Run the following SQL command to validate the view. SELECT * FROM WeatherData_view SAMPLE 10; Now that you have created a view, you can easily reference the object store data in a query and combine it with other tables, both relational tables in Vantage as well as foreign tables in an object store. This allows you to leverage the full analytic capabilities of Vantage on 100% of the data, no matter where the data is located. Having a persistent copy of the Blob Storage data can be useful when repetitive access of the same data is expected. NOS does not automatically make a persistent copy of the Blob Storage data. Each time you reference a foreign table, Vantage will fetch the data from Blob Storage. (Some data may be cached, but this depends on the size of the data in Blob Storage and other active workloads in Vantage.) In addition, you may be charged network fees for data transferred from Blob Storage. If you will be referencing the data in Blob Storage multiple times, you may reduce your cost by loading it into Vantage, even temporarily. You can select among the approaches below to load the data into Vantage. You can use a single statement to both create the table and load the data. You can choose the desired attributes from the foreign table payload and what they will be called in the relational table. A CREATE TABLE AS … WITH DATA statement can be used with the foreign table definition as the source table. Run the following SQL command to create the relational table and load the data. CREATE MULTISET TABLE WeatherData_temp AS ( SELECT CAST(payload..postal_code AS VARCHAR(10)) Postal_code, CAST(payload..country AS CHAR(2)) Country, CAST(payload..time_valid_utc AS TIMESTAMP(0) FORMAT 'YYYY-MM-DDBHH:MI:SS') Time_Valid_UTC, CAST(payload..doy_utc AS INTEGER) DOY_UTC, CAST(payload..hour_utc AS INTEGER) Hour_UTC, CAST(payload..time_valid_lcl AS TIMESTAMP(0) FORMAT 'YYYY-MM-DDBHH:MI:SS') Time_Valid_LCL, CAST(payload..dst_offset_minutes AS INTEGER) DST_Offset_Minutes, CAST(payload..temperature_air_2m_f AS DECIMAL(4,1)) Temperature_Air_2M_F, CAST(payload..temperature_wetbulb_2m_f AS DECIMAL(3,1)) Temperature_Wetbulb_2M_F, CAST(payload..temperature_dewpoint_2m_f AS DECIMAL(3,1)) Temperature_Dewpoint_2M_F, CAST(payload..temperature_feelslike_2m_f AS DECIMAL(4,1)) Temperature_Feelslike_2M_F, CAST(payload..temperature_windchill_2m_f AS DECIMAL(4,1)) Temperature_Windchill_2M_F, CAST(payload..temperature_heatindex_2m_f AS DECIMAL(4,1)) Temperature_Heatindex_2M_F, CAST(payload..humidity_relative_2m_pct AS DECIMAL(3,1)) Humidity_Relative_2M_Pct, CAST(payload..humidity_specific_2m_gpkg AS DECIMAL(3,1)) Humdity_Specific_2M_GPKG, CAST(payload..pressure_2m_mb AS DECIMAL(5,1)) Pressure_2M_Mb, CAST(payload..pressure_tendency_2m_mb AS DECIMAL(2,1)) Pressure_Tendency_2M_Mb, CAST(payload..pressure_mean_sea_level_mb AS DECIMAL(5,1)) Pressure_Mean_Sea_Level_Mb, CAST(payload..wind_speed_10m_mph AS DECIMAL(3,1)) Wind_Speed_10M_MPH, CAST(payload..wind_direction_10m_deg AS DECIMAL(4,1)) Wind_Direction_10M_Deg, CAST(payload..wind_speed_80m_mph AS DECIMAL(3,1)) Wind_Speed_80M_MPH, CAST(payload..wind_direction_80m_deg AS DECIMAL(4,1)) Wind_Direction_80M_Deg, CAST(payload..wind_speed_100m_mph AS DECIMAL(3,1)) Wind_Speed_100M_MPH, CAST(payload..wind_direction_100m_deg AS DECIMAL(4,1)) Wind_Direction_100M_Deg, CAST(payload..precipitation_in AS DECIMAL(3,2)) Precipitation_in, CAST(payload..snowfall_in AS DECIMAL(3,2)) Snowfall_in, CAST(payload..cloud_cover_pct AS INTEGER) Cloud_Cover_Pct, CAST(payload..radiation_solar_total_wpm2 AS DECIMAL(5,1)) Radiation_Solar_Total_WPM2 FROM WeatherData WHERE Postal_Code = '36101' ) WITH DATA NO PRIMARY INDEX Run the following SQL command to validate the contents of the table. SELECT * FROM WeatherData_temp SAMPLE 10; You can also use multiple statements to first create the relational table and then load the data. An advantage of this choice is that you can perform multiple loads, possibly selecting different data or loading in smaller increments if the object is very large. Run the following SQL command to create the relational table. CREATE MULTISET TABLE WeatherData_temp ( Postal_code VARCHAR(10), Country CHAR(2), Time_Valid_UTC TIMESTAMP(0) FORMAT 'YYYY-MM-DDBHH:MI:SS', DOY_UTC INTEGER, Hour_UTC INTEGER, Time_Valid_LCL TIMESTAMP(0) FORMAT 'YYYY-MM-DDBHH:MI:SS', DST_Offset_Minutes INTEGER, Temperature_Air_2M_F DECIMAL(4,1), Temperature_Wetbulb_2M_F DECIMAL(3,1), Temperature_Dewpoint_2M_F DECIMAL(3,1), Temperature_Feelslike_2M_F DECIMAL(4,1), Temperature_Windchill_2M_F DECIMAL(4,1), Temperature_Heatindex_2M_F DECIMAL(4,1), Humidity_Relative_2M_Pct DECIMAL(3,1), Humdity_Specific_2M_GPKG DECIMAL(3,1), Pressure_2M_Mb DECIMAL(5,1), Pressure_Tendency_2M_Mb DECIMAL(2,1), Pressure_Mean_Sea_Level_Mb DECIMAL(5,1), Wind_Speed_10M_MPH DECIMAL(3,1), Wind_Direction_10M_Deg DECIMAL(4,1), Wind_Speed_80M_MPH DECIMAL(3,1), Wind_Direction_80M_Deg DECIMAL(4,1), Wind_Speed_100M_MPH DECIMAL(3,1), Wind_Direction_100M_Deg DECIMAL(4,1), Precipitation_in DECIMAL(3,2), Snowfall_in DECIMAL(3,2), Cloud_Cover_Pct INTEGER, Radiation_Solar_Total_WPM2 DECIMAL(5,1) ) UNIQUE PRIMARY INDEX ( Postal_Code, Time_Valid_UTC ) Run the following SQL to load the data into the table. INSERT INTO WeatherData_temp SELECT CAST(payload..postal_code AS VARCHAR(10)) Postal_code, CAST(payload..country AS CHAR(2)) Country, CAST(payload..time_valid_utc AS TIMESTAMP(0) FORMAT 'YYYY-MM-DDBHH:MI:SS') Time_Valid_UTC, CAST(payload..doy_utc AS INTEGER) DOY_UTC, CAST(payload..hour_utc AS INTEGER) Hour_UTC, CAST(payload..time_valid_lcl AS TIMESTAMP(0) FORMAT 'YYYY-MM-DDBHH:MI:SS') Time_Valid_LCL, CAST(payload..dst_offset_minutes AS INTEGER) DST_Offset_Minutes, CAST(payload..temperature_air_2m_f AS DECIMAL (4,1)) Temperature_Air_2M_F, CAST(payload..temperature_wetbulb_2m_f AS DECIMAL(3,1)) Temperature_Wetbulb_2M_F, CAST(payload..temperature_dewpoint_2m_f AS DECIMAL(3,1)) Temperature_Dewpoint_2M_F, CAST(payload..temperature_feelslike_2m_f AS DECIMAL(4,1)) Temperature_Feelslike_2M_F, CAST(payload..temperature_windchill_2m_f AS DECIMAL(4,1)) Temperature_Windchill_2M_F, CAST(payload..temperature_heatindex_2m_f AS DECIMAL(4,1)) Temperature_Heatindex_2M_F, CAST(payload..humidity_relative_2m_pct AS DECIMAL(3,1)) Humidity_Relative_2M_Pct, CAST(payload..humidity_specific_2m_gpkg AS DECIMAL(3,1)) Humdity_Specific_2M_GPKG, CAST(payload..pressure_2m_mb AS DECIMAL(5,1)) Pressure_2M_Mb, CAST(payload..pressure_tendency_2m_mb AS DECIMAL(2,1)) Pressure_Tendency_2M_Mb, CAST(payload..pressure_mean_sea_level_mb AS DECIMAL(5,1)) Pressure_Mean_Sea_Level_Mb, CAST(payload..wind_speed_10m_mph AS DECIMAL(3,1)) Wind_Speed_10M_MPH, CAST(payload..wind_direction_10m_deg AS DECIMAL(4,1)) Wind_Direction_10M_Deg, CAST(payload..wind_speed_80m_mph AS DECIMAL(3,1)) Wind_Speed_80M_MPH, CAST(payload..wind_direction_80m_deg AS DECIMAL(4,1)) Wind_Direction_80M_Deg, CAST(payload..wind_speed_100m_mph AS DECIMAL(3,1)) Wind_Speed_100M_MPH, CAST(payload..wind_direction_100m_deg AS DECIMAL(4,1)) Wind_Direction_100M_Deg, CAST(payload..precipitation_in AS DECIMAL(3,2)) Precipitation_in, CAST(payload..snowfall_in AS DECIMAL(3,2)) Snowfall_in, CAST(payload..cloud_cover_pct AS INTEGER) Cloud_Cover_Pct, CAST(payload..radiation_solar_total_wpm2 AS DECIMAL(5,1)) Radiation_Solar_Total_WPM2 FROM WeatherData WHERE Postal_Code = '30301' Run the following SQL command to validate the contents of the table. SELECT * FROM WeatherData_temp SAMPLE 10; An alternative to defining a foreign table is to use the READ_NOS table operator. This table operator allows you to access data directly from an object store without first creating a foreign table, or to view a list of the keys associated with all the objects specified by a Location clause. You can use the READ_NOS table operator to explore the data in an object. Run the following command to explore the data in an object. SELECT TOP 5 payload..* FROM READ_NOS ( ON (SELECT CAST( NULL AS DATASET STORAGE FORMAT CSV)) USING LOCATION ('/AZ/myconsumerstorage.blob.core.windows.net/consumerdata') ACCESS_ID('myconsumerstorage') ACCESS_KEY('*****') ) AS THE_TABLE ORDER BY 1 The LOCATION requires a storage account name and container name. This is highlighted above in yellow. You will need to replace this with your own storage account and container name. Replace the string for ACCESS_ID with your Storage Account Name. Replace the string for ACCES_KEY with your Storage Account Access Key or SAS Token You can also leverage the READ_NOS table operator to get the length (size) of the object. Run the following SQL command to view the size of the object. SELECT location(CHAR(120)), ObjectLength FROM READ_NOS ( ON (SELECT CAST( NULL AS DATASET STORAGE FORMAT CSV)) USING LOCATION ('/AZ/myconsumerstorage.blob.core.windows.net/consumerdata') ACCESS_ID('myconsumerstorage') ACCESS_KEY('*****') RETURNTYPE('NOSREAD_KEYS') ) AS THE_TABLE ORDER BY 1 Replace the values for LOCATION, ACCESS_ID, and ACCESS_KEY. You can substitute the NOS_READ table operator for a foreign table definition in the above section for loading the data into a relational table. CREATE MULTISET TABLE WeatherData_temp AS ( SELECT CAST(payload..postal_code AS VARCHAR(10)) Postal_code, CAST(payload..country AS CHAR(2)) Country, CAST(payload..time_valid_utc AS TIMESTAMP(0) FORMAT 'YYYY-MM-DDBHH:MI:SS') Time_Valid_UTC, CAST(payload..doy_utc AS INTEGER) DOY_UTC, CAST(payload..hour_utc AS INTEGER) Hour_UTC, CAST(payload..time_valid_lcl AS TIMESTAMP(0) FORMAT 'YYYY-MM-DDBHH:MI:SS') Time_Valid_LCL, CAST(payload..dst_offset_minutes AS INTEGER) DST_Offset_Minutes, CAST(payload..temperature_air_2m_f AS DECIMAL (4,1)) Temperature_Air_2M_F, CAST(payload..temperature_wetbulb_2m_f AS DECIMAL(3,1)) Temperature_Wetbulb_2M_F, CAST(payload..temperature_dewpoint_2m_f AS DECIMAL(3,1)) Temperature_Dewpoint_2M_F, CAST(payload..temperature_feelslike_2m_f AS DECIMAL(4,1)) Temperature_Feelslike_2M_F, CAST(payload..temperature_windchill_2m_f AS DECIMAL(4,1)) Temperature_Windchill_2M_F, CAST(payload..temperature_heatindex_2m_f AS DECIMAL(4,1)) Temperature_Heatindex_2M_F, CAST(payload..humidity_relative_2m_pct AS DECIMAL(3,1)) Humidity_Relative_2M_Pct, CAST(payload..humidity_specific_2m_gpkg AS DECIMAL(3,1)) Humdity_Specific_2M_GPKG, CAST(payload..pressure_2m_mb AS DECIMAL(5,1)) Pressure_2M_Mb, CAST(payload..pressure_tendency_2m_mb AS DECIMAL(2,1)) Pressure_Tendency_2M_Mb, CAST(payload..pressure_mean_sea_level_mb AS DECIMAL(5,1)) Pressure_Mean_Sea_Level_Mb, CAST(payload..wind_speed_10m_mph AS DECIMAL(3,1)) Wind_Speed_10M_MPH, CAST(payload..wind_direction_10m_deg AS DECIMAL(4,1)) Wind_Direction_10M_Deg, CAST(payload..wind_speed_80m_mph AS DECIMAL(3,1)) Wind_Speed_80M_MPH, CAST(payload..wind_direction_80m_deg AS DECIMAL(4,1)) Wind_Direction_80M_Deg, CAST(payload..wind_speed_100m_mph AS DECIMAL(3,1)) Wind_Speed_100M_MPH, CAST(payload..wind_direction_100m_deg AS DECIMAL(4,1)) Wind_Direction_100M_Deg, CAST(payload..precipitation_in AS DECIMAL(3,2)) Precipitation_in, CAST(payload..snowfall_in AS DECIMAL(3,2)) Snowfall_in, CAST(payload..cloud_cover_pct AS INTEGER) Cloud_Cover_Pct, CAST(payload..radiation_solar_total_wpm2 AS DECIMAL(5,1)) Radiation_Solar_Total_WPM2 FROM READ_NOS ( ON (SELECT CAST( NULL AS DATASET STORAGE FORMAT CSV)) USING LOCATION ('/AZ/myconsumerstorage.blob.core.windows.net/consumerdata') ACCESS_ID('myconsumerstorage') ACCESS_KEY('*****') ) AS THE_TABLE WHERE Postal_Code = '36101' ) WITH DATA If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Connect Azure Data Share to Teradata Vantage","component":"ROOT","version":"master","name":"connect-azure-data-share-to-teradata-vantage","url":"/cloud-guides/connect-azure-data-share-to-teradata-vantage.html","titles":[{"text":"Overview","id":"_overview"},{"text":"About Azure Data Share","id":"_about_azure_data_share"},{"text":"About Teradata Vantage","id":"_about_teradata_vantage"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Procedure","id":"_procedure"},{"text":"Create an Azure Blob Storage Account and Container","id":"_create_an_azure_blob_storage_account_and_container"},{"text":"Create a Data Share Account","id":"_create_a_data_share_account"},{"text":"Create a Share","id":"_create_a_share"},{"text":"Accept and Receive Data Using Azure Data Share","id":"_accept_and_receive_data_using_azure_data_share"},{"text":"Open invitation","id":"_open_invitation"},{"text":"Accept invitation","id":"_accept_invitation"},{"text":"Configure received share","id":"_configure_received_share"},{"text":"Configure NOS Access to Azure Blob Storage","id":"_configure_nos_access_to_azure_blob_storage"},{"text":"Create a foreign table definition","id":"_create_a_foreign_table_definition"},{"text":"Query the Dataset in Azure Blob Storage","id":"_query_the_dataset_in_azure_blob_storage"},{"text":"Create a View","id":"_create_a_view"},{"text":"Load Data from Blob Storage into Vantage (optional)","id":"_load_data_from_blob_storage_into_vantage_optional"},{"text":"Create the table and load the data in a single statement","id":"_create_the_table_and_load_the_data_in_a_single_statement"},{"text":"Create the table and load the data in multiple statements","id":"_create_the_table_and_load_the_data_in_multiple_statements"},{"text":"READ_NOS - An alternative method to foreign tables","id":"_read_nos_an_alternative_method_to_foreign_tables"}]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html":{"text":"Author: Hailing Jiang Last updated: June 28th, 2022 This how-to shows you how to add Teradata Extensions to a Jupyter Notebooks environment. A hosted version of Jupyter Notebooks integrated with Teradata Extensions and analytics tools is available for functional testing for free at https://clearscape.teradata.com. Teradata Jupyter extensions provide Teradata SQL kernel and several UI extensions to allow users to easily access and navigate Teradata database from Jupyter envioronment. Google Vertex AI is Google Cloud’s new unified ML platform. Vertex AI Workbench provides a Jupyter-base development environment for the entire data science workflow. This article describes how to integate our Jupyter extensions with Vertex AI Workbench so that Vertex AI users can take advantage of our Teradata extensions in their ML pipeline. Vertex AI workbench supports two types of notebooks: managed notebooks and user-managed notebooks. Here we will focus on user-managed notebooks. We will show two ways to integrate our Jupyter extensions with user-managed notebooks: use startup script to install our kernel and extensions or use custom container. Access to a Teradata Vantage instance If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. Google Cloud account with Vertex AI enabled Google cloud storage to store startup scripts and Teradata Jupyter extension package There are two ways to run Teradata Jupyter Extensions in Vertex AI: Use startup script Use custom container These two integration methods are described below. When we create a new notebook instance, we can specify a startup script. This script runs only once after the instance is created. Here are the steps: Download Teradata Jupyter extensions package Go to Vantage Modules for Jupyter page to download the Teradata Jupyter extensions package bundle Linux version. Upload the package to a Google Cloud storage bucket Write a startup script and upload it to cloud storage bucket Below is a sample script. It fetches Teradata Jupyter extension package from cloud storage bucket and installs Teradata SQL kernel and extensions. #! /bin/bash cd /home/jupyter mkdir teradata cd teradata gsutil cp gs://teradata-jupyter/* . unzip teradatasql*.zip # Install Teradata kernel cp teradatakernel /usr/local/bin jupyter kernelspec install ./teradatasql --prefix=/opt/conda # Install Teradata extensions pip install --find-links . teradata_preferences_prebuilt pip install --find-links . teradata_connection_manager_prebuilt pip install --find-links . teradata_sqlhighlighter_prebuilt pip install --find-links . teradata_resultset_renderer_prebuilt pip install --find-links . teradata_database_explorer_prebuilt # PIP install the Teradata Python library pip install teradataml # Install Teradata R library (optional, uncomment this line only if you use an environment that supports R) #Rscript -e \"install.packages('tdplyr',repos=c('https://r-repo.teradata.com','https://cloud.r-project.org'))\" Create a new notebook and add the startup script from cloud storage bucket It may take a few minutes for the notebook creation process to complete. When it is done, click on Open notebook. Another option is to provide a custom container when creating a notebook. Download Teradata Jupyter extensions package Go to Vantage Modules for Jupyter page to download the Teradata Jupyter extensions package bundle Linux version. Copy this package to your work directory and unzip it Build custom Docker image The custom container must expose a service on port 8080. It is recommended to create a container derived from a Google Deep Learning Containers image, because those images are already configured to be compatible with user-managed notebooks. Below is a sample Dockerfile you can use to build a Docker image with Teradata SQL kernel and extensions installed: # Use one of the deep learning images as base image # if you need both Python and R, use one of the R images FROM gcr.io/deeplearning-platform-release/r-cpu:latest USER root ############################################################## # Install kernel and copy supporting files ############################################################## # Copy the kernel COPY ./teradatakernel /usr/local/bin RUN chmod 755 /usr/local/bin/teradatakernel # Copy directory with kernel.json file into image COPY ./teradatasql teradatasql/ # Copy notebooks and licenses COPY ./notebooks/ /home/jupyter COPY ./license.txt /home/jupyter COPY ./ThirdPartyLicenses/ /home/jupyter # Install the kernel file to /opt/conda jupyter lab instance RUN jupyter kernelspec install ./teradatasql --prefix=/opt/conda ############################################################## # Install Teradata extensions ############################################################## RUN pip install --find-links . teradata_preferences_prebuilt && \\ pip install --find-links . teradata_connection_manager_prebuilt && \\ pip install --find-links . teradata_sqlhighlighter_prebuilt && \\ pip install --find-links . teradata_resultset_renderer_prebuilt && \\ pip install --find-links . teradata_database_explorer_prebuilt # Give back ownership of /opt/conda to jovyan RUN chown -R jupyter:users /opt/conda # PIP install the Teradata Python libraries RUN pip install teradataml # Install Teradata R library (optional, include it only if you use a base image that supports R) RUN Rscript -e \"install.packages('tdplyr',repos=c('https://r-repo.teradata.com','https://cloud.r-project.org'))\" In your work directory (where you unzipped Teradata Jupyter extensions package), run docker build to build the image: docker build -f Dockerfile imagename:imagetag . Push the docker image to Google container registry or artifact registry Please refer to the following documentations to push docker image to registry: Container Registry: Pushing and pulling images Artifact Registry: Pushing and pulling images Create a new notebook In Environment section, set custom container field to the location of your newly created custom container: Teradata Jupyter Extensions Website Teradata Vantage™ Modules for Jupyter Installation Guide Teradata® Package for Python User Guide Vertex AI documentation: Create a custom container image for training Vertex AI documentation: Create a user-managed notebooks instance by using a custom container Vertex AI documentation: Create a user-managed notebooks instance If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Integrate Teradata Jupyter extensions with Google Vertex AI","component":"ROOT","version":"master","name":"integrate-teradata-jupyter-extensions-with-google-vertex-ai","url":"/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Integration","id":"_integration"},{"text":"Use startup script","id":"_use_startup_script"},{"text":"Use custom container","id":"_use_custom_container"},{"text":"Further reading","id":"_further_reading"}]},"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html":{"text":"Author: Hailing Jiang Last updated: September 27th, 2022 This how-to shows you how to add Teradata Extensions to a Jupyter Notebooks environment. A hosted version of Jupyter Notebooks integrated with Teradata Extensions and analytics tools is available for functional testing for free at https://clearscape.teradata.com. Teradata Jupyter extensions provide Teradata SQL kernel and several UI extensions to allow users to easily access and navigate Teradata database from Jupyter envioronment. This article describes how to integate our Jupyter extensions with SageMaker notebook instance. Access to a Teradata Vantage instance If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. AWS account AWS S3 bucket to store lifecycle configuration scripts and Teradata Jupyter extension package SageMaker supports customization of notebook instances using lifecycle configuration scripts. Below we will demo how to use lifecycle configuration scripts to install our Jupyter kernel and extensions in a notebook instance. Download Teradata Jupyter extensions package Download Linux version from https://downloads.teradata.com/download/tools/vantage-modules-for-jupyter and upload it to an S3 bucket. This zipped package contains Teradata Jupyter kernel and extensions. Each extension has 2 files, the one with \"_prebuilt\" in the name is prebuilt extension which can be installed using PIP, the other one is source extension that needs to be installed using \"jupyter labextension\". It is recommended to use prebuilt extensions. Create a lifecycle configuration for notebook instance Here are sample scripts that fetches the Teradata package from S3 bucket and installs Jupyter kernel and extensions. Note that on-create.sh creates a custom conda env that persists on notebook instance’s EBS volume so that the installation will not get lost after notebook restarts. on-start.sh installs Teradata kernel and extensions to the custom conda env. on-create.sh #!/bin/bash set -e # This script installs a custom, persistent installation of conda on the Notebook Instance's EBS volume, and ensures # that these custom environments are available as kernels in Jupyter. sudo -u ec2-user -i <<'EOF' unset SUDO_UID # Install a separate conda installation via Miniconda WORKING_DIR=/home/ec2-user/SageMaker/custom-miniconda mkdir -p \"$WORKING_DIR\" wget https://repo.anaconda.com/miniconda/Miniconda3-4.6.14-Linux-x86_64.sh -O \"$WORKING_DIR/miniconda.sh\" bash \"$WORKING_DIR/miniconda.sh\" -b -u -p \"$WORKING_DIR/miniconda\" rm -rf \"$WORKING_DIR/miniconda.sh\" # Create a custom conda environment source \"$WORKING_DIR/miniconda/bin/activate\" KERNEL_NAME=\"teradatasql\" PYTHON=\"3.8\" conda create --yes --name \"$KERNEL_NAME\" python=\"$PYTHON\" conda activate \"$KERNEL_NAME\" pip install --quiet ipykernel EOF on-start.sh #!/bin/bash set -e # This script installs Teradata Jupyter kernel and extensions. sudo -u ec2-user -i <<'EOF' unset SUDO_UID WORKING_DIR=/home/ec2-user/SageMaker/custom-miniconda source \"$WORKING_DIR/miniconda/bin/activate\" teradatasql # fetch Teradata Jupyter extensions package from S3 and unzip it mkdir -p \"$WORKING_DIR/teradata\" aws s3 cp s3://sagemaker-teradata-bucket/teradatasqllinux_3.3.0-ec06172022.zip \"$WORKING_DIR/teradata\" cd \"$WORKING_DIR/teradata\" unzip -o teradatasqllinux_3.3.0-ec06172022.zip # install Teradata kernel cp teradatakernel /home/ec2-user/anaconda3/condabin jupyter kernelspec install --user ./teradatasql # install Teradata Jupyter extensions source /home/ec2-user/anaconda3/bin/activate JupyterSystemEnv pip install teradata_connection_manager_prebuilt-3.3.0.tar.gz pip install teradata_database_explorer_prebuilt-3.3.0.tar.gz pip install teradata_preferences_prebuilt-3.3.0.tar.gz pip install teradata_resultset_renderer_prebuilt-3.3.0.tar.gz pip install teradata_sqlhighlighter_prebuilt-3.3.0.tar.gz conda deactivate EOF Create a notebook instance. Please select 'Amazon Linux 2, Jupyter Lab3' for Platform identifier and select the lifecycle configuration created in step 2 for Lifecycle configuration. You might also need to add vpc, subnet and security group in 'Network' section to gain access to Teradata databases. Wait until notebook instance Status turns 'InService', click 'Open JupyterLab' to open the notebook. Access the demo notebooks to get usage tips + Teradata Jupyter Extensions Website Teradata Vantage™ Modules for Jupyter Installation Guide Teradata® Package for Python User Guide Customize a Notebook Instance Using a Lifecycle Configuration Script amazon sagemaker notebook instance lifecycle config samples If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Integrate Teradata Jupyter extensions with SageMaker notebook instance","component":"ROOT","version":"master","name":"integrate-teradata-jupyter-extensions-with-sagemaker","url":"/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Integration","id":"_integration"},{"text":"Steps to integrate with notebook instance","id":"_steps_to_integrate_with_notebook_instance"},{"text":"Further reading","id":"_further_reading"}]},"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html":{"text":"Author: Wenjie Tehan Last updated: February 14th, 2022 This how-to describes the process to migrate data between Salesforce and Teradata Vantage. It contains two use cases: Retrieve customer information from Salesforce, and combine it with order and shipping information from Vantage to derive analytical insights. Update newleads table on Vantage with the Salesforce data, then add the new lead(s) back to Salesforce using AppFlow. Amazon AppFlow transfers the customer account data from Salesforce to Amazon S3. Vantage then uses Native Object Store (NOS) read functionality to join the data in Amazon S3 with data in Vantage with a single query. The account information is used to update the newleads table on Vantage. Once the table is updated, Vantage writes it back to the Amazon S3 bucket with NOS Write. A Lambda function is triggered upon arrival of the new lead data file to convert the data file from Parquet format to CSV format, and AppFlow then inserts the new lead(s) back into Salesforce. Amazon AppFlow is a fully managed integration service that enables users to securely transfer data between Software-as-a-Service (SaaS) applications like Salesforce, Marketo, Slack, and ServiceNow, and AWS services like Amazon S3 and Amazon Redshift. AppFlow automatically encrypts data in motion, and allows users to restrict data from flowing over the public internet for SaaS applications that are integrated with AWS PrivateLink, reducing exposure to security threats. As of today, Amazon AppFlow has 16 sources to choose from, and can send the data to four destinations. Teradata Vantage is the connected multi-cloud data platform for enterprise analytics, solving data challenges from start to scale. Vantage enables companies to start small and elastically scale compute or storage, paying only for what they use, harnessing low-cost object stores and integrating their analytic workloads. Vantage supports R, Python, Teradata Studio, and any other SQL-based tools. Vantage combines descriptive, predictive, prescriptive analytics, autonomous decision-making, ML functions, and visualization tools into a unified, integrated platform that uncovers real-time business intelligence at scale, no matter where the data resides. Teradata Vantage Native Object Store (NOS) can be used to explore data in external object stores, like Amazon S3, using standard SQL. No special object storage-side compute infrastructure is required to use NOS. Users can explore data located in an Amazon S3 bucket by simply creating a NOS table definition that points to your bucket. With NOS, you can quickly import data from Amazon S3 or even join it with other tables in the Vantage database. You are expected to be familiar with Amazon AppFlow service and Teradata Vantage. You will need the following accounts, and systems: Access to a Teradata Vantage instance. If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. An AWS account with the role that can create and run flows. An Amazon S3 bucket to store Salesforce data (i.e., ptctsoutput) An Amazon S3 bucket to store raw Vantage data (Parquet file) (i.e., vantageparquet). This bucket needs to have policy to allow Amazon AppFlow access An Amazon S3 bucket to store converted Vantage data (CSV file) (i.e., vantagecsv) A Salesforce account that satisfies the following requirements: Your Salesforce account must be enabled for API access. API access is enabled by default for Enterprise, Unlimited, Developer, and Performance editions. Your Salesforce account must allow you to install connected apps. If this is disabled, contact your Salesforce administrator. After you create a Salesforce connection in Amazon AppFlow, verify that the connected app named \"Amazon AppFlow Embedded Login App\" is installed in your Salesforce account. The refresh token policy for the \"Amazon AppFlow Embedded Login App\" must be set to \"Refresh token is valid until revoked\". Otherwise, your flows will fail when your refresh token expires. You must enable Change Data Capture in Salesforce to use event-driven flow triggers. From Setup, enter \"Change Data Capture\" in Quick Find. If your Salesforce app enforces IP address restrictions, you must whitelist the addresses used by Amazon AppFlow. For more information, see https://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html[AWS IP address ranges] in the Amazon Web Services General Reference. If you are transferring over 1 million Salesforce records, you cannot choose any Salesforce compound field. Amazon AppFlow uses Salesforce Bulk APIs for the transfer, which does not allow transfer of compound fields. To create private connections using AWS PrivateLink, you must enable both \"Manager Metadata\" and \"Manage External Connections\" user permissions in your Salesforce account. Private connections are currently available in the us-east-1 and us-west-2 AWS Regions. Some Salesforce objects can’t be updated, such as history objects. For these objects, Amazon AppFlow does not support incremental export (the \"Transfer new data only\" option) for schedule-triggered flows. Instead, you can choose the \"Transfer all data\" option and then select the appropriate filter to limit the records you transfer. Once you have met the prerequisites, follow these steps: Create a Salesforce to Amazon S3 Flow Exploring Data using NOS Export Vantage Data to Amazon S3 using NOS Create an Amazon S3 to Salesforce Flow This step creates a flow using Amazon AppFlow. For this example, we’re using a Salesforce developer account to connect to Salesforce. Go to AppFlow console, sign in with your AWS login credentials and click Create flow. Make sure you are in the right region, and the bucket is created to store Salesforce data. This step provides basic information for your flow. Fill in Flow name (i.e. salesforce) and Flow description (optional), leave Customize encryption settings (advanced) unchecked. Click Next. This step provides information about the source and destination for your flow. For this example, we will be using Salesforce as the source, and Amazon S3 as the destination. For Source name, choose Salesforce, then Create new connection for Choose Salesforce connection. Use default for Salesforce environment and Data encryption. Give your connection a name (i.e. salesforce) and click Continue. At the salesforce login window, enter your Username and Password. Click Log In Click Allow to allow AppFlow to access your salesforce data and information. Back at the AppFlow Configure flow window, use Salesforce objects, and choose Account to be the Salesforce object. Use Amazon S3 as Destination name. Pick the bucket you created earlier where you want the data to be stored (i.e., ptctsoutput). Flow trigger is Run on demand. Click Next. This step determines how data is transferred from the source to the destination. Use Manually map fields as Mapping method For simplicity, choose Map all fields directly for Source to destination filed mapping. Once you click on \"Map all fields directly\", all the fields will show under Mapped fields. Click on the checkbox for the field(s) you want to Add formula (concatenates), Modify values (mask or truncate field values), or Remove selected mappings. For this example, no checkbox will be ticked. For Validations, add in a condition to ignore the record that contains no \"Billing Address\" (optional). Click Next. You can specify a filter to determine which records to transfer. For this example, add a condition to filter out the records that are deleted (optional). Click Next. Review all the information you just entered. Modify if necessary. Click Create flow. A message of successful flow creation will be displayed with the flow information once the flow is created, Click Run flow on the upper right corner. Upon completion of the flow run, message will be displayed to indicate a successful run. Message example: Click the link to the bucket to view data. Salesforce data will be in JSON format. By default, Salesforce data is encrypted. We need to remove the encryption for NOS to access it. Click on the data file in your Amazon S3 bucket, then click the Properties tab. Click on the AWS-KMS from Encryption and change it from AWS-KMS encryption to None. Click Save. Native Object Store has built in functionalities to explore and analyze data in Amazon S3. This section lists a few commonly used functions of NOS. Foreign table allows the external data to be easily referenced within the Vantage Advanced SQL Engine and makes the data available in a structured relational format. To create a foreign table, first login to Teradata Vantage system with your credentials. Create AUTHORIZATION object with access keys for Amazon S3 bucket access. Authorization object enhances security by establishing control over who is allowed to use a foreign table to access Amazon S3 data. CREATE AUTHORIZATION DefAuth_S3 AS DEFINER TRUSTED USER 'A*****************' /* AccessKeyId */ PASSWORD '********'; /* SecretAccessKey */ \"USER\" is the AccessKeyId for your AWS account, and \"PASSWORD\" is the SecretAccessKey. Create a foreign table against the JSON file on Amazon S3 using following command. CREATE MULTISET FOREIGN TABLE salesforce, EXTERNAL SECURITY DEFINER TRUSTED DefAuth_S3 ( Location VARCHAR(2048) CHARACTER SET UNICODE CASESPECIFIC, Payload JSON(8388096) INLINE LENGTH 32000 CHARACTER SET UNICODE ) USING ( LOCATION ('/S3/s3.amazonaws.com/ptctstoutput/salesforce/1ce190bc-25a9-4493-99ad-7497b497a0d0/903790813-2020-08-21T21:02:25') ); At a minimum, the foreign table definition must include a table name and location clause (highlighted in yellow) which points to the object store data. The Location requires a top-level single name, referred to as a \"bucket\" in Amazon. If the file name doesn’t have standard extension (.json, .csv, .parquet) at the end, the Location and Payload columns definition is also required (highlighted in turquoise) to indicate the type of the data file. Foreign tables are always defined as No Primary Index (NoPI) tables. Once foreign table’s created, you can query the content of the Amazon S3 data set by doing \"Select\" on the foreign table. SELECT * FROM salesforce; SELECT payload.* FROM salesforce; The foreign table only contains two columns: Location and Payload. Location is the address in the object store system. The data itself is represented in the payload column, with the payload value within each record in the foreign table representing a single JSON object and all its name-value pairs. Sample output from \"SELECT * FROM salesforce;\". Sample output form \"SELECT payload.* FROM salesforce;\". JSON data may contain different attributes in different records. To determine the full list of possible attributes in a data store, use JSON_KEYS: |SELECT DISTINCT * FROM JSON_KEYS (ON (SELECT payload FROM salesforce)) AS j; Partial Output: Views can simplify the names associated with the payload attributes, make it easier to code executable SQL against object store data, and hide the Location references in the foreign table to make it look like normal columns. Following is a sample create view statement with the attributes discovered from the JSON_KEYS table operator above. REPLACE VIEW salesforceView AS ( SELECT CAST(payload.Id AS VARCHAR(20)) Customer_ID, CAST(payload.\"Name\" AS VARCHAR(100)) Customer_Name, CAST(payload.AccountNumber AS VARCHAR(10)) Acct_Number, CAST(payload.BillingStreet AS VARCHAR(20)) Billing_Street, CAST(payload.BillingCity AS VARCHAR(20)) Billing_City, CAST(payload.BillingState AS VARCHAR(10)) Billing_State, CAST(payload.BillingPostalCode AS VARCHAR(5)) Billing_Post_Code, CAST(payload.BillingCountry AS VARCHAR(20)) Billing_Country, CAST(payload.Phone AS VARCHAR(15)) Phone, CAST(payload.Fax AS VARCHAR(15)) Fax, CAST(payload.ShippingStreet AS VARCHAR(20)) Shipping_Street, CAST(payload.ShippingCity AS VARCHAR(20)) Shipping_City, CAST(payload.ShippingState AS VARCHAR(10)) Shipping_State, CAST(payload.ShippingPostalCode AS VARCHAR(5)) Shipping_Post_Code, CAST(payload.ShippingCountry AS VARCHAR(20)) Shipping_Country, CAST(payload.Industry AS VARCHAR(50)) Industry, CAST(payload.Description AS VARCHAR(200)) Description, CAST(payload.NumberOfEmployees AS VARCHAR(10)) Num_Of_Employee, CAST(payload.CustomerPriority__c AS VARCHAR(10)) Priority, CAST(payload.Rating AS VARCHAR(10)) Rating, CAST(payload.SLA__c AS VARCHAR(10)) SLA, CAST(payload.AnnualRevenue AS VARCHAR(10)) Annual_Revenue, CAST(payload.\"Type\" AS VARCHAR(20)) Customer_Type, CAST(payload.Website AS VARCHAR(100)) Customer_Website, CAST(payload.LastActivityDate AS VARCHAR(50)) Last_Activity_Date FROM salesforce ); SELECT * FROM salesforceView; Partial output: READ_NOS table operator can be used to sample and explore a percent of the data without having first defined a foreign table, or to view a list of the keys associated with all the objects specified by a Location clause. SELECT top 5 payload.* FROM READ_NOS ( ON (SELECT CAST(NULL AS JSON CHARACTER SET Unicode)) USING LOCATION ('/S3/s3.amazonaws.com/ptctstoutput/salesforce/1ce190bc-25a9-4493-99ad-7497b497a0d0/903790813-2020-08-21T21:02:25') ACCESS_ID ('A**********') /* AccessKeyId */ ACCESS_KEY ('***********') /* SecretAccessKey */ ) AS D GROUP BY 1; Output: Foreign table can be joined with a table(s) in Vantage for further analysis. For example, ordering and shipping information are in Vantage in these three tables – Orders, Order_Items and Shipping_Address. DDL for Orders: CREATE TABLE Orders ( Order_ID INT NOT NULL, Customer_ID VARCHAR(20) CHARACTER SET LATIN CASESPECIFIC, Order_Status INT, -- Order status: 1 = Pending; 2 = Processing; 3 = Rejected; 4 = Completed Order_Date DATE NOT NULL, Required_Date DATE NOT NULL, Shipped_Date DATE, Store_ID INT NOT NULL, Staff_ID INT NOT NULL ) Primary Index (Order_ID); DDL for Order_Items: CREATE TABLE Order_Items( Order_ID INT NOT NULL, Item_ID INT, Product_ID INT NOT NULL, Quantity INT NOT NULL, List_Price DECIMAL (10, 2) NOT NULL, Discount DECIMAL (4, 2) NOT NULL DEFAULT 0 ) Primary Index (Order_ID, Item_ID); DDL for Shipping_Address: CREATE TABLE Shipping_Address ( Customer_ID VARCHAR(20) CHARACTER SET LATIN CASESPECIFIC NOT NULL, Street VARCHAR(100) CHARACTER SET LATIN CASESPECIFIC, City VARCHAR(20) CHARACTER SET LATIN CASESPECIFIC, State VARCHAR(15) CHARACTER SET LATIN CASESPECIFIC, Postal_Code VARCHAR(10) CHARACTER SET LATIN CASESPECIFIC, Country VARCHAR(20) CHARACTER SET LATIN CASESPECIFIC ) Primary Index (Customer_ID); And the tables have following data: Orders: Order_Items: Shipping_Address: By joining the salesforce foreign table to the established database table Orders, Order_Items and Shipping_Address, we can retrieve customer’s order information with customer’s shipping information. SELECT s.payload.Id as Customer_ID, s.payload.\"Name\" as Customer_Name, s.payload.AccountNumber as Acct_Number, o.Order_ID as Order_ID, o.Order_Status as Order_Status, o.Order_Date as Order_Date, oi.Item_ID as Item_ID, oi.Product_ID as Product_ID, sa.Street as Shipping_Street, sa.City as Shipping_City, sa.State as Shipping_State, sa.Postal_Code as Shipping_Postal_Code, sa.Country as Shipping_Country FROM salesforce s, Orders o, Order_Items oi, Shipping_Address sa WHERE s.payload.Id = o.Customer_ID AND o.Customer_ID = sa.Customer_ID AND o.Order_ID = oi.Order_ID ORDER BY 1; Results: Having a persistent copy of the Amazon S3 data can be useful when repetitive access of the same data is expected. NOS foreign table does not automatically make a persistent copy of the Amazon S3 data. A few approaches to capture the data in the database are described below: A \"CREATE TABLE AS … WITH DATA\" statement can be used with the foreign table definition acting as the source table. Use this approach you can selectively choose which attributes within the foreign table payload that you want to include in the target table, and what the relational table columns will be named. CREATE TABLE salesforceVantage AS ( SELECT CAST(payload.Id AS VARCHAR(20)) Customer_ID, CAST(payload.\"Name\" AS VARCHAR(100)) Customer_Name, CAST(payload.AccountNumber AS VARCHAR(10)) Acct_Number, CAST(payload.BillingStreet AS VARCHAR(20)) Billing_Street, CAST(payload.BillingCity AS VARCHAR(20)) Billing_City, CAST(payload.BillingState AS VARCHAR(10)) Billing_State, CAST(payload.BillingPostalCode AS VARCHAR(5)) Billing_Post_Code, CAST(payload.BillingCountry AS VARCHAR(20)) Billing_Country, CAST(payload.Phone AS VARCHAR(15)) Phone, CAST(payload.Fax AS VARCHAR(15)) Fax, CAST(payload.ShippingStreet AS VARCHAR(20)) Shipping_Street, CAST(payload.ShippingCity AS VARCHAR(20)) Shipping_City, CAST(payload.ShippingState AS VARCHAR(10)) Shipping_State, CAST(payload.ShippingPostalCode AS VARCHAR(5)) Shipping_Post_Code, CAST(payload.ShippingCountry AS VARCHAR(20)) Shipping_Country, CAST(payload.Industry AS VARCHAR(50)) Industry, CAST(payload.Description AS VARCHAR(200)) Description, CAST(payload.NumberOfEmployees AS INT) Num_Of_Employee, CAST(payload.CustomerPriority__c AS VARCHAR(10)) Priority, CAST(payload.Rating AS VARCHAR(10)) Rating, CAST(payload.SLA__c AS VARCHAR(10)) SLA, CAST(payload.\"Type\" AS VARCHAR(20)) Customer_Type, CAST(payload.Website AS VARCHAR(100)) Customer_Website, CAST(payload.AnnualRevenue AS VARCHAR(10)) Annual_Revenue, CAST(payload.LastActivityDate AS DATE) Last_Activity_Date FROM salesforce) WITH DATA NO PRIMARY INDEX; SELECT* * FROM salesforceVantage; partial results: An alternative to using foreign table is to use the READ_NOS table operator. This table operator allows you to access data directly from an object store without first building a foreign table. Combining READ_NOS with a CREATE TABLE AS clause to build a persistent version of the data in the database. CREATE TABLE salesforceReadNOS AS ( SELECT CAST(payload.Id AS VARCHAR(20)) Customer_ID, CAST(payload.\"Name\" AS VARCHAR(100)) Customer_Name, CAST(payload.AccountNumber AS VARCHAR(10)) Acct_Number, CAST(payload.BillingStreet AS VARCHAR(20)) Billing_Street, CAST(payload.BillingCity AS VARCHAR(20)) Billing_City, CAST(payload.BillingState AS VARCHAR(10)) Billing_State, CAST(payload.BillingPostalCode AS VARCHAR(5)) Billing_Post_Code, CAST(payload.BillingCountry AS VARCHAR(20)) Billing_Country, CAST(payload.Phone AS VARCHAR(15)) Phone, CAST(payload.Fax AS VARCHAR(15)) Fax, CAST(payload.ShippingStreet AS VARCHAR(20)) Shipping_Street, CAST(payload.ShippingCity AS VARCHAR(20)) Shipping_City, CAST(payload.ShippingState AS VARCHAR(10)) Shipping_State, CAST(payload.ShippingPostalCode AS VARCHAR(5)) Shipping_Post_Code, CAST(payload.ShippingCountry AS VARCHAR(20)) Shipping_Country, CAST(payload.Industry AS VARCHAR(50)) Industry, CAST(payload.Description AS VARCHAR(200)) Description, CAST(payload.NumberOfEmployees AS INT) Num_Of_Employee, CAST(payload.CustomerPriority__c AS VARCHAR(10)) Priority, CAST(payload.Rating AS VARCHAR(10)) Rating, CAST(payload.SLA__c AS VARCHAR(10)) SLA, CAST(payload.\"Type\" AS VARCHAR(20)) Customer_Type, CAST(payload.Website AS VARCHAR(100)) Customer_Website, CAST(payload.AnnualRevenue AS VARCHAR(10)) Annual_Revenue, CAST(payload.LastActivityDate AS DATE) Last_Activity_Date FROM READ_NOS ( ON (SELECT CAST(NULL AS JSON CHARACTER SET Unicode)) USING LOCATION ('/S3/s3.amazonaws.com/ptctstoutput/salesforce/1ce190bc-25a9-4493-99ad-7497b497a0d0/903790813-2020-08-21T21:02:25') ACCESS_ID ('A**********') /* AccessKeyId */ ACCESS_KEY ('***********') /* SecretAccessKey */ ) AS D ) WITH DATA; Results from the salesforceReadNOS table: SELECT * FROM salesforceReadNOS; Another way of placing Amazon S3 data into a relational table is by \"INSERT SELECT\". Using this approach, the foreign table is the source table, while a newly created permanent table is the table to be inserted into. Contrary to the READ_NOS example above, this approach does require the permanent table be created beforehand. One advantage of the INSERT SELECT method is that you can change the target table’s attributes. For example, you can specify that the target table be MULTISET or not, or you can choose a different primary index. CREATE TABLE salesforcePerm, FALLBACK , NO BEFORE JOURNAL, NO AFTER JOURNAL, CHECKSUM = DEFAULT, DEFAULT MERGEBLOCKRATIO, MAP = TD_MAP1 ( Customer_Id VARCHAR(20) CHARACTER SET LATIN NOT CASESPECIFIC, Customer_Name VARCHAR(100) CHARACTER SET LATIN NOT CASESPECIFIC, Acct_Number VARCHAR(10) CHARACTER SET LATIN NOT CASESPECIFIC, Billing_Street VARCHAR(20) CHARACTER SET LATIN NOT CASESPECIFIC, Billing_City VARCHAR(20) CHARACTER SET LATIN NOT CASESPECIFIC, Billing_State VARCHAR(10) CHARACTER SET LATIN NOT CASESPECIFIC, Billing_Post_Code VARCHAR(5) CHARACTER SET LATIN NOT CASESPECIFIC, Billing_Country VARCHAR(20) CHARACTER SET LATIN NOT CASESPECIFIC, Phone VARCHAR(15) CHARACTER SET LATIN NOT CASESPECIFIC, Fax VARCHAR(15) CHARACTER SET LATIN NOT CASESPECIFIC, Shipping_Street VARCHAR(20) CHARACTER SET LATIN NOT CASESPECIFIC, Shipping_City VARCHAR(20) CHARACTER SET LATIN NOT CASESPECIFIC, Shipping_State VARCHAR(10) CHARACTER SET LATIN NOT CASESPECIFIC, Shipping_Post_Code VARCHAR(5) CHARACTER SET LATIN NOT CASESPECIFIC, Shipping_Country VARCHAR(20) CHARACTER SET LATIN NOT CASESPECIFIC, Industry VARCHAR(50) CHARACTER SET LATIN NOT CASESPECIFIC, Description VARCHAR(200) CHARACTER SET LATIN NOT CASESPECIFIC, Num_Of_Employee INT, Priority VARCHAR(10) CHARACTER SET LATIN NOT CASESPECIFIC, Rating VARCHAR(10) CHARACTER SET LATIN NOT CASESPECIFIC, SLA VARCHAR(10) CHARACTER SET LATIN NOT CASESPECIFIC, Customer_Type VARCHAR(20) CHARACTER SET LATIN NOT CASESPECIFIC, Customer_Website VARCHAR(100) CHARACTER SET LATIN NOT CASESPECIFIC, Annual_Revenue VARCHAR(10) CHARACTER SET LATIN NOT CASESPECIFIC, Last_Activity_Date DATE ) PRIMARY INDEX (Customer_ID); INSERT INTO salesforcePerm SELECT CAST(payload.Id AS VARCHAR(20)) Customer_ID, CAST(payload.\"Name\" AS VARCHAR(100)) Customer_Name, CAST(payload.AccountNumber AS VARCHAR(10)) Acct_Number, CAST(payload.BillingStreet AS VARCHAR(20)) Billing_Street, CAST(payload.BillingCity AS VARCHAR(20)) Billing_City, CAST(payload.BillingState AS VARCHAR(10)) Billing_State, CAST(payload.BillingPostalCode AS VARCHAR(5)) Billing_Post_Code, CAST(payload.BillingCountry AS VARCHAR(20)) Billing_Country, CAST(payload.Phone AS VARCHAR(15)) Phone, CAST(payload.Fax AS VARCHAR(15)) Fax, CAST(payload.ShippingStreet AS VARCHAR(20)) Shipping_Street, CAST(payload.ShippingCity AS VARCHAR(20)) Shipping_City, CAST(payload.ShippingState AS VARCHAR(10)) Shipping_State, CAST(payload.ShippingPostalCode AS VARCHAR(5)) Shipping_Post_Code, CAST(payload.ShippingCountry AS VARCHAR(20)) Shipping_Country, CAST(payload.Industry AS VARCHAR(50)) Industry, CAST(payload.Description AS VARCHAR(200)) Description, CAST(payload.NumberOfEmployees AS INT) Num_Of_Employee, CAST(payload.CustomerPriority__c AS VARCHAR(10)) Priority, CAST(payload.Rating AS VARCHAR(10)) Rating, CAST(payload.SLA__c AS VARCHAR(10)) SLA, CAST(payload.\"Type\" AS VARCHAR(20)) Customer_Type, CAST(payload.Website AS VARCHAR(100)) Customer_Website, CAST(payload.AnnualRevenue AS VARCHAR(10)) Annual_Revenue, CAST(payload.LastActivityDate AS DATE) Last_Activity_Date FROM salesforce; SELECT * FROM salesforcePerm; Sample results: I have a newleads table with 1 row in it on Vantage system. Note there’s no address information for this lead. Let’s use the account information retrieved from Salesforce to update newleads table UPDATE nl FROM newleads AS nl, salesforceReadNOS AS srn SET Street = srn.Billing_Street, City = srn.Billing_City, State = srn.Billing_State, Post_Code = srn.Billing_Post_Code, Country = srn.Billing_Country WHERE Account_ID = srn.Acct_Number; Now the new lead has address information. Write the new lead information into S3 bucket using WRITE_NOS. SELECT * FROM WRITE_NOS ( ON ( SELECT Account_ID, Last_Name, First_Name, Company, Cust_Title, Email, Status, Owner_ID, Street, City, State, Post_Code, Country FROM newleads ) USING LOCATION ('/s3/vantageparquet.s3.amazonaws.com/') AUTHORIZATION ('{\"Access_ID\":\"A*****\",\"Access_Key\":\"*****\"}') COMPRESSION ('SNAPPY') NAMING ('DISCRETE') INCLUDE_ORDERING ('FALSE') STOREDAS ('CSV') ) AS d; Where Access_ID is the AccessKeyID, and Access_Key is the SecretAccessKey to the bucket. Repeat Step 1 to create a flow using Amazon S3 as source and Salesforce as destination. This step provides basic information for your flow. Fill in Flow name (i.e., vantage2sf) and Flow description (optional), leave Customize encryption settings (advanced) unchecked. Click Next. This step provides information about the source and destination for your flow. For this example, we will be using Amazon S3 as the source, and Salesforce as the destination. For Source details, choose Amazon S3, then choose the bucket where you wrote your CSV file to (i.e. vantagecsv) For Destination details, choose Salesforce, use the connection you created in Step 1 from the drop-down list for Choose Salesforce connection, and Lead as Choose Salesforce object. For Error handling, use the default Stop the current flow run. Flow trigger is Run on demand. Click Next. This step determines how data is transferred from the source to the destination. Use Manually map fields as Mapping method Use Insert new records (default) as Destination record preference For Source to destination filed mapping, use the following mapping Click Next. You can specify a filter to determine which records to transfer. For this example, no filter is added. Click Next. Review all the information you just entered. Modify if necessary. Click Create flow. A message of successful flow creation will be displayed with the flow information once the flow is created, Click Run flow on the upper right corner. Upon completion of the flow run, message will be displayed to indicate a successful run. Message example: Browse to the Salesforce page, new lead Tom Johnson has been added. Once you are done with the Salesforce data, to avoid incurring charges to your AWS account (i.e., AppFlow, Amazon S3, Vantage and VM) for the resources used, follow these steps: AppFlow: Delete the \"Connections\" you created for the flow Delete the flows Amazon S3 bucket and file: Go to the Amazon S3 buckets where the Vantage data file is stored, and delete the file(s) If there are no need to keep the buckets, delete the buckets Teradata Vantage Instance Stop/Terminate the instance if no longer needed If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Connect Teradata Vantage to Salesforce using Amazon Appflow","component":"ROOT","version":"master","name":"integrate-teradata-vantage-to-salesforce-using-amazon-appflow","url":"/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html","titles":[{"text":"Overview","id":"_overview"},{"text":"About Amazon AppFlow","id":"_about_amazon_appflow"},{"text":"About Teradata Vantage","id":"_about_teradata_vantage"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Procedure","id":"_procedure"},{"text":"Create a Salesforce to Amazon S3 Flow","id":"_create_a_salesforce_to_amazon_s3_flow"},{"text":"Step 1: Specify flow details","id":"_step_1_specify_flow_details"},{"text":"Step 2: Configure flow","id":"_step_2_configure_flow"},{"text":"Step 3: Map data fields","id":"_step_3_map_data_fields"},{"text":"Step 4: Add filters","id":"_step_4_add_filters"},{"text":"Step 5. Review and create","id":"_step_5_review_and_create"},{"text":"Run flow","id":"_run_flow"},{"text":"Change data file properties","id":"_change_data_file_properties"},{"text":"Exploring Data Using NOS","id":"_exploring_data_using_nos"},{"text":"Create Foreign Table","id":"_create_foreign_table"},{"text":"JSON_KEYS Table Operator","id":"_json_keys_table_operator"},{"text":"Create View","id":"_create_view"},{"text":"READ_NOS Table Operator","id":"_read_nos_table_operator"},{"text":"Join Amazon S3 Data to In-Database Tables","id":"_join_amazon_s3_data_to_in_database_tables"},{"text":"Import Amazon S3 Data to Vantage","id":"_import_amazon_s3_data_to_vantage"},{"text":"Export Vantage Data to Amazon S3 Using NOS","id":"_export_vantage_data_to_amazon_s3_using_nos"},{"text":"Create an Amazon S3 to Salesforce Flow","id":"_create_an_amazon_s3_to_salesforce_flow"},{"text":"Step 1. Specify flow details","id":"_step_1_specify_flow_details_2"},{"text":"Step 2. Configure flow","id":"_step_2_configure_flow_2"},{"text":"Step 3. Map data fields","id":"_step_3_map_data_fields_2"},{"text":"Step 4. Add filters","id":"_step_4_add_filters_2"},{"text":"Step 5. Review and create","id":"_step_5_review_and_create_2"},{"text":"Run flow","id":"_run_flow_2"},{"text":"Cleanup (Optional)","id":"_cleanup_optional"}]},"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html":{"text":"Author: Wenjie Tehan Last updated: February 14th, 2022 This article describes the process to connect Teradata Vantage with Google Cloud Data Catalog using the Data Catalog Teradata Connector on GitHub, and then explore the metadata of the Vantage tables via Data Catalog. Scrape: Connect to Teradata Vantage and retrieve all the available metadata Prepare: Transform metadata in Data Catalog entities and create Tags Ingest: Send the Data Catalog entities to the Google Cloud project Google Cloud Data Catalog is a fully managed data discovery and metadata management service. Data Catalog can catalog the native metadata on data assets. Data Catalog is serverless, and provides a central catalog to capture both technical metadata as well as business metadata in a structured format. Vantage is the modern cloud platform that unifies data warehouses, data lakes, and analytics into a single connected ecosystem. Vantage combines descriptive, predictive, prescriptive analytics, autonomous decision-making, ML functions, and visualization tools into a unified, integrated platform that uncovers real-time business intelligence at scale, no matter where the data resides. Vantage enables companies to start small and elastically scale compute or storage, paying only for what they use, harnessing low-cost object stores and integrating their analytic workloads. Vantage supports R, Python, Teradata Studio, and any other SQL-based tools. You can deploy Vantage across public clouds, on-premises, on optimized or commodity infrastructure, or as-a-service. See the documentation for more information on Teradata Vantage. Access to a Teradata Vantage instance. If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. A Google Service Account with Data Catalog Admin role A Cloud Console Project created for your account (i.e. partner-integration-lab) Billing enabled Google Cloud SDK installed and initialized Python installed Pip installed Enable Data Catalog APIs Install Teradata Data Catalog Connector Run Explore Teradata Vantage metadata with Data Catalog Logon to Google console, choose APIs & Services from the Navigation menu, then click on Library. Make sure your project is selected on the top menu bar. Put Data Catalog in the search box and click on Google Cloud Data Catalog API, click ENABLE A Teradata Data Catalog connector is available on GitHub. This connector is written in Python. Run following command to authorize gcloud to access the Cloud Platform with Google user credentials. gcloud auth login Choose your Google account when the Google login page opens up and click Allow on the next page. Next, set up default project if you haven’t already done so gcloud config set project We recommend you install the Teradata Data Catalog Connector in an isolated Python environment. To do so, install virtualenv first: Windows MacOS Linux Run in Powershell as Administrator: pip install virtualenv virtualenv --python python3.6 \\Scripts\\activate pip install virtualenv virtualenv --python python3.6 source /bin/activate pip install virtualenv virtualenv --python python3.6 source /bin/activate Windows MacOS Linux pip.exe install google-datacatalog-teradata-connector pip install google-datacatalog-teradata-connector pip install google-datacatalog-teradata-connector export GOOGLE_APPLICATION_CREDENTIALS= export TERADATA2DC_DATACATALOG_PROJECT_ID= export TERADATA2DC_DATACATALOG_LOCATION_ID= export TERADATA2DC_TERADATA_SERVER= export TERADATA2DC_TERADATA_USERNAME= export TERADATA2DC_TERADATA_PASSWORD= Where is the key for your service account (json file). Execute google-datacatalog-teradata-connector command to establish entry point to Vantage database. google-datacatalog-teradata-connector \\ --datacatalog-project-id=$TERADATA2DC_DATACATALOG_PROJECT_ID \\ --datacatalog-location-id=$TERADATA2DC_DATACATALOG_LOCATION_ID \\ --teradata-host=$TERADATA2DC_TERADATA_SERVER \\ --teradata-user=$TERADATA2DC_TERADATA_USERNAME \\ --teradata-pass=$TERADATA2DC_TERADATA_PASSWORD Sample output from the google-datacatalog-teradata-connector command: INFO:root: ==============Starting CLI=============== INFO:root:This SQL connector does not implement the user defined datacatalog-entry-resource-url-prefix INFO:root:This SQL connector uses the default entry resoure URL ============Start teradata-to-datacatalog=========== ==============Scrape metadata=============== INFO:root:Scrapping metadata from connection_args 1 table containers ready to be ingested... ==============Prepare metadata=============== --> database: Gcpuser 37 tables ready to be ingested... ==============Ingest metadata=============== DEBUG:google.auth._default:Checking /Users/Teradata/Apps/Cloud/GCP/teradata2dc-credentials.json for explicit credentials as part of auth process... INFO:root:Starting to clean up the catalog... DEBUG:google.auth.transport.requests:Making request: POST https://oauth2.googleapis.com/token DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): oauth2.googleapis.com:443 DEBUG:urllib3.connectionpool:https://oauth2.googleapis.com:443 \"POST /token HTTP/1.1\" 200 None INFO:root:0 entries that match the search query exist in Data Catalog! INFO:root:Looking for entries to be deleted... INFO:root:0 entries will be deleted. Starting to ingest custom metadata... DEBUG:google.auth._default:Checking /Users/Teradata/Apps/Cloud/GCP/teradata2dc-credentials.json for explicit credentials as part of auth process... INFO:root:Starting the ingestion flow... DEBUG:google.auth.transport.requests:Making request: POST https://oauth2.googleapis.com/token DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): oauth2.googleapis.com:443 DEBUG:urllib3.connectionpool:https://oauth2.googleapis.com:443 \"POST /token HTTP/1.1\" 200 None INFO:root:Tag Template created: projects/partner-integration-lab/locations/us-west1/tagTemplates/teradata_database_metadata INFO:root:Tag Template created: projects/partner-integration-lab/locations/us-west1/tagTemplates/teradata_table_metadata INFO:root:Tag Template created: projects/partner-integration-lab/locations/us-west1/tagTemplates/teradata_column_metadata INFO:root:Entry Group created: projects/partner-integration-lab/locations/us-west1/entryGroups/teradata INFO:root:1/38 INFO:root:Entry does not exist: projects/partner-integration-lab/locations/us-west1/entryGroups/teradata/entries/gcpuser INFO:root:Entry created: projects/partner-integration-lab/locations/us-west1/entryGroups/teradata/entries/gcpuser INFO:root: ^ [database] 34.105.107.155/gcpuser INFO:root:Starting the upsert tags step INFO:root:Processing Tag from Template: projects/partner-integration-lab/locations/us-west1/tagTemplates/teradata_database_metadata ... INFO:root:Tag created: projects/partner-integration-lab/locations/us-west1/entryGroups/teradata/entries/gcpuser/tags/CWHNiGQeQmPT INFO:root:2/38 INFO:root:Entry does not exist: projects/partner-integration-lab/locations/us-west1/entryGroups/teradata/entries/gcpuser_Categories INFO:root:Entry created: projects/partner-integration-lab/locations/us-west1/entryGroups/teradata/entries/gcpuser_Categories INFO:root: ^ [table] 34.105.107.155/gcpuser/Categories INFO:root:Starting the upsert tags step INFO:root:Processing Tag from Template: projects/partner-integration-lab/locations/us-west1/tagTemplates/teradata_table_metadata ... INFO:root:Tag created: projects/partner-integration-lab/locations/us-west1/entryGroups/teradata/entries/gcpuser_Categories/tags/Ceij5G9t915o INFO:root:38/38 INFO:root:Entry does not exist: projects/partner-integration-lab/locations/us-west1/entryGroups/teradata/entries/gcpuser_tablesv_instantiated_latest INFO:root:Entry created: projects/partner-integration-lab/locations/us-west1/entryGroups/teradata/entries/gcpuser_tablesv_instantiated_latest INFO:root: ^ [table] 34.105.107.155/gcpuser/tablesv_instantiated_latest INFO:root:Starting the upsert tags step INFO:root:Processing Tag from Template: projects/partner-integration-lab/locations/us-west1/tagTemplates/teradata_table_metadata ... INFO:root:Tag created: projects/partner-integration-lab/locations/us-west1/entryGroups/teradata/entries/gcpuser_tablesv_instantiated_latest/tags/Ceij5G9t915o INFO:root: ============End teradata-to-datacatalog============ Go to Data Catalog console, click on the project (i.e. partner-integration-lab) under Projects. The Teradata tables are showing on the right panel. Click on the table to your interest (i.e. CITY_LEVEL_TRANS), and you’ll see the metadata about this table: Clean up metadata from Data Catalog. To do that, copy https://github.com/GoogleCloudPlatform/datacatalog-connectors-rdbms/blob/master/google-datacatalog-teradata-connector/tools/cleanup_datacatalog.py to local directory. Change directory to where the file is and then run following command: python cleanup_datacatalog.py --datacatalog-project-ids=$TERADATA2DC_DATACATALOG_PROJECT_ID If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Integrate Teradata Vantage with Google Cloud Data Catalog","component":"ROOT","version":"master","name":"integrate-teradata-vantage-with-google-cloud-data-catalog","url":"/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html","titles":[{"text":"Overview","id":"_overview"},{"text":"About Google Cloud Data Catalog","id":"_about_google_cloud_data_catalog"},{"text":"About Teradata Vantage","id":"_about_teradata_vantage"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Procedure","id":"_procedure"},{"text":"Enable Data Catalog API","id":"_enable_data_catalog_api"},{"text":"Install Teradata Data Catalog Connector","id":"_install_teradata_data_catalog_connector"},{"text":"Install virtualenv","id":"_install_virtualenv"},{"text":"Install Data Catalog Teradata Connector","id":"_install_data_catalog_teradata_connector"},{"text":"Set environment variables","id":"_set_environment_variables"},{"text":"Run","id":"_run"},{"text":"Explore Teradata Vantage metadata with Data Catalog","id":"_explore_teradata_vantage_metadata_with_data_catalog"},{"text":"Cleanup (optional)","id":"_cleanup_optional"}]},"/cloud-guides/sagemaker-with-teradata-vantage.html":{"text":"Author: Wenjie Tehan Last updated: February 8th, 2022 This how-to will help you to integrate Amazon SageMaker with Teradata Vantage. The approach this guide explains is one of many potential approaches to integrate with the service. Amazon SageMaker provides a fully managed Machine Learning Platform. There are two use cases for Amazon SageMaker and Teradata: Data resides on Teradata Vantage and Amazon SageMaker will be used for both the Model definition and subsequent scoring. Under this use case Teradata will provide data into the Amazon S3 environment so that Amazon SageMaker can consume training and test data sets for the purpose of model development. Teradata would further make data available via Amazon S3 for subsequent scoring by Amazon SageMaker. Under this model Teradata is a data repository only. Data resides on Teradata Vantage and Amazon SageMaker will be used for the Model definition, and Teradata for the subsequent scoring. Under this use case Teradata will provide data into the Amazon S3 environment so that Amazon SageMaker can consume training and test data sets for the purpose of model development. Teradata will need to import the Amazon SageMaker model into a Teradata table for subsequent scoring by Teradata Vantage. Under this model Teradata is a data repository and a scoring engine. The first use case is discussed in this document. Amazon SageMaker consumes training and test data from an Amazon S3 bucket. This article describes how you can load Teradata analytics data sets into an Amazon S3 bucket. The data can then available to Amazon SageMaker to build and train machine learning models and deploy them into a production environment. Access to a Teradata Vantage instance. If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. IAM permission to access Amazon S3 bucket, and to use Amazon SageMaker service. An Amazon S3 bucket to store training data. Amazon SageMaker trains data from an Amazon S3 bucket. Following are the steps to load training data from Vantage to an Amazon S3 bucket: Go to Amazon SageMaker console and create a notebook instance. See Amazon SageMaker Developer Guide for instructions on how to create a notebook instance: Open your notebook instance: Start a new file by clicking on New → conda_python3: Install Teradata Python library: !pip install teradataml In a new cell and import additional libraries: import teradataml as tdml from teradataml import create_context, get_context, remove_context from teradataml.dataframe.dataframe import DataFrame import pandas as pd import boto3, os In a new cell, connect to Teradata Vantage. Replace , , to match your Vantage environment: create_context(host = '', username = '', password = '') Retrieve data rom the table where the training dataset resides using TeradataML DataFrame API: train_data = tdml.DataFrame('table_with_training_data') trainDF = train_data.to_pandas() Write data to a local file: trainFileName = 'train.csv' trainDF.to_csv(trainFileName, header=None, index=False) Upload the file to Amazon S3: bucket = 'sagedemo' prefix = 'sagemaker/train' trainFile = open(trainFileName, 'rb') boto3.Session().resource('s3').Bucket(bucket).Object(os.path.join(prefix, localFile)).upload_fileobj(trainFile) Select Training jobs on the left menu under Training, then click on Create training job: At the Create training job window, fill in the Job name (e.g. xgboost-bank) and Create a new role for the IAM role. Choose Any S3 bucket for the Amazon S3 buckets and Create role: Back in the Create training job window, use XGBoost as the algorithm: Use the default ml.m4.xlarge instance type, and 30GB of additional storage volume per instance. This is a short training job, shouldn’t take more than 10 minutes. Fill in following hyperparameters and leave everything else as default: num_round=100 silent=0 eta=0.2 gamma=4 max_depth=5 min_child_weight=6 subsample=0.8 objective='binary:logistic' For Input data configuration, enter the Amazon S3 bucket where you stored your training data. Input mode is File. Content type is csv. S3 location is where the file uploaded to: For Output data configuration, enter path where the output data will be stored: Leave everything else as default, and click on “Create training job”. Detail instructions on how to configure the training job can be found in Amazon SageMaker Developer Guide. Once the training job’s created, Amazon SageMaker launches the ML instances to train the model, and stores the resulting model artifacts and other output in the Output data configuration (path//output by default). After you train your model, deploy it using a persistent endpoint Select Models under Inference from the left panel, then Create model. Fill in the model name (e.g. xgboost-bank), and choose the IAM role you created from the previous step. For Container definition 1, use 433757028032.dkr.ecr.us-west-2.amazonaws.com/xgboost:latest as Location of inference code image. Location of model artifacts is the output path of your training job Leave everything else as default, then Create model. Select the model you just created, then click on Create endpoint configuration: Fill in the name (e.g. xgboost-bank) and use default for everything else. The model name and training job should be automatically populated for you. Click on Create endpoint configuration. Select Inference → Models from the left panel, select the model again, and click on Create endpoint this time: Fill in the name (e.g. xgboost-bank), and select Use an existing endpoint configuration: image::sagemaker-with-teradata-vantage/attach.endpoint.configuration.png[Attach endpoint configuration] Select the endpoint configuration created from last step, and click on Select endpoint configuration: Leave everything else as default and click on Create endpoint. Now the model is deployed to the endpoint and can be used by client applications. This how-to demonstrated how to extract training data from Vantage and use it to train a model in Amazon SageMaker. The solution used a Jupyter notebook to extract data from Vantage and write it to an S3 bucket. A SageMaker training job read data from the S3 bucket and produced a model. The model was deployed to AWS as a service endpoint. Train ML models in Vantage using only SQL If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Use AWS SageMaker with Teradata Vantage","component":"ROOT","version":"master","name":"sagemaker-with-teradata-vantage","url":"/cloud-guides/sagemaker-with-teradata-vantage.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Load data","id":"_load_data"},{"text":"Train the model","id":"_train_the_model"},{"text":"Deploy the model","id":"_deploy_the_model"},{"text":"Create a model","id":"_create_a_model"},{"text":"Create an endpoint configuration","id":"_create_an_endpoint_configuration"},{"text":"Create endpoint","id":"_create_endpoint"},{"text":"Summary","id":"_summary"},{"text":"Further reading","id":"_further_reading"}]},"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html":{"text":"Author: Rupal Shah Last updated: February 14th, 2022 Azure Machine Learning (ML) Studio is a collaborative, drag-and-drop tool you can use to build, test, and deploy predictive analytics solutions on your data. ML Studio can consume data from Azure Blob Storage. This getting started guide will show how you can copy Teradata Vantage data sets to a Blob Storage using ML Studio 'built-in' Jupter Notebook feature. The data can then be used by ML Studio to build and train machine learning models and deploy them into a production environment. Access to a Teradata Vantage instance. If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. Azure subscription or create free account Azure ML Studio workspace (Optional) Download AdventureWorks DW 2016 database (i.e. 'Training the Model' section) Restore and copy 'vTargetMail' table from SQL Server to Teradata Vantage During ML Studio workspace creation, you may need to create 'new' storage account unless you have one in current availability locations and choose DEVTEST Standard for Web service plan for this getting started guide. Logon to Azure portal, open your storage account and create a container if one does not exist already. Copy your storage account name and key to notepad which we will use for Python3 Notebook to access your Azure Blob Storage account. Finally, open Configuration property and set 'Secure transfer required' to Disabled to allow ML Studio Import Data module to access blob storage account. To get the data to ML Studio, we first need to load data from Teradata Vantage to a Azure Blob Storage. We will create a ML Jupyter Notebook, install Python packages to connect to Teradata and save data to Azure Blob Storage, Logon to Azure portal, go to to your ML Studio workspace and Launch Machine Learning Studio and Sign In. You should see the following screen and click on Notebooks, ensure you are in the right region/ workspace and click on Notebook New Choose Python3 and name your notebook instance In your jupyter notebook instance, install Teradata Vantage Python package for Advanced Analytics: pip install teradataml There is no validation between Microsoft Azure ML Studio and Teradata Vantage Python package. Install Microsoft Azure Storage Blob Client Library for Python: !pip install azure-storage-blob Import the following libraries: import teradataml as tdml from teradataml import create_context, get_context, remove_context from teradataml.dataframe.dataframe import DataFrame import pandas as pd from azure.storage.blob import (BlockBlobService) Connect to Teradata using command: create_context(host = '', username = '', password = '') Retrieve Data using Teradata Python DataFrame module: train_data = DataFrame.from_table(\"\") Convert Teradata DataFrame to Panda DataFrame: trainDF = train_data.to_pandas() Convert data to CSV: trainDF = trainDF.to_csv(head=True,index=False) Assign variables for Azue Blob Storage account name, key and container name: accountName=\"\" accountKey=\"\" containerName=\"mldata\" Upload file to Azure Blob Storage: blobService = BlockBlobService(account_name=accountName, account_key=accountKey) blobService.create_blob_from_text(containerNAme, 'vTargetMail.csv', trainDF) Logon to Azure portal, open blob storage account to view uploaded file: We will use the existing Analyze data with Azure Machine Learning article to build a predictive machine learning model based on data from Azure Blob Storage. We will build a targeted marketing campaign for Adventure Works, the bike shop, by predicting if a customer is likely to buy a bike or not. The data is on Azure Blob Storage file called vTargetMail.csv which we copied in the section above. 1.. Sign into Azure Machine Learning studio and click on Experiments. 2.. Click +NEW on the bottom left of the screen and select Blank Experiment. 3.. Enter a name for your experiment: Targeted Marketing. 4.. Drag Import data module under Data Input and output from the modules pane into the canvas. 5.. Specify the details of your Azure Blob Storage (account name, key and container name) in the Properties pane. Run the experiment by clicking Run under the experiment canvas. After the experiment finishes running successfully, click the output port at the bottom of the Import Data module and select Visualize to see the imported data. To clean the data, drop some columns that are not relevant for the model. To do this: Drag Select Columns in Dataset module under Data Transformation < Manipulation into the canvas. Connect this module to the Import Data module. Click Launch column selector in Properties pane to specify which columns you wish to drop. Exclude two columns: CustomerAlternateKey and GeographyKey. We will split the data 80-20: 80% to train a machine learning model and 20% to test the model. We will make use of the \"Two-Class\" algorithms for this binary classification problem. Drag SplitData module into the canvas and connect with 'Select Columns in DataSet'. In the properties pane, enter 0.8 for Fraction of rows in the first output dataset. Search and drag Two-Class Boosted Decision Tree module into the canvas. Search and drag Train Model module into the canvas and specify inputs by connecting it to the Two-Class Boosted Decision Tree (ML algorithm) and Split Data (data to train the algorithm on) modules. Then, click Launch column selector in the Properties pane. Select the BikeBuyer column as the column to predict. Now, we will test how the model performs on test data. We will compare the algorithm of our choice with a different algorithm to see which performs better. Drag Score Model module into the canvas and connect it to Train Model and Split Data modules. Search and drag Two-Class Bayes Point Machine into the experiment canvas. We will compare how this algorithm performs in comparison to the Two-Class Boosted Decision Tree. Copy and Paste the modules Train Model and Score Model in the canvas. Search and drag Evaluate Model module into the canvas to compare the two algorithms. Run the experiment. Click the output port at the bottom of the Evaluate Model module and click Visualize. The metrics provided are the ROC curve, precision-recall diagram and lift curve. Looking at these metrics, we can see that the first model performed better than the second one. To look at the what the first model predicted, click on output port of the Score Model and click Visualize. You will see two more columns added to your test dataset. 1. Scored Probabilities: the likelihood that a customer is a bike buyer. 2. Scored Labels: the classification done by the model - bike buyer (1) or not (0). This probability threshold for labeling is set to 50% and can be adjusted. Comparing the column BikeBuyer (actual) with the Scored Labels (prediction), you can see how well the model has performed. As next steps, you can use this model to make predictions for new customers and publish this model as a web service or write results back to SQL Data Warehouse. To learn more about building predictive machine learning models, refer to Introduction to Machine Learning on Azure. For large data set copies, consider using the Teradata Access Module for Azure that interfaces between the Teradata Parallel Transporter load/unload operators and Azure Blob Storage. If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Use Teradata Vantage with Azure Machine Learning Studio","component":"ROOT","version":"master","name":"use-teradata-vantage-with-azure-machine-learning-studio","url":"/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Procedure","id":"_procedure"},{"text":"Initial setup","id":"_initial_setup"},{"text":"Load data","id":"_load_data"},{"text":"Train the model","id":"_train_the_model"},{"text":"Import data","id":"_import_data"},{"text":"Clean the data","id":"_clean_the_data"},{"text":"Build the model","id":"_build_the_model"},{"text":"Score the model","id":"_score_the_model"},{"text":"Further reading","id":"_further_reading"}]},"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html":{"text":"Author: Krutik Pathak Last updated: July 27, 2023 This tutorial demonstrates how to use dbt (Data Build Tool) to transform external data load through Airbyte (an Open-Source Extract Load tool) in Teradata Vantage. This tutorial is based on the original dbt Jaffle Shop tutorial with a small change, instead of using the dbt seed command, the Jaffle Shop dataset is loaded from Google Sheets into Teradata Vantage using Airbyte. Data loaded through airbyte is contained in JSON columns as can be seen in the picture below: Access to a Teradata Vantage Instance. If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. Sample data: The sample data Jaffle Shop Dataset can be found in Google Sheets. Reference dbt project repository: Jaffle Project with Airbyte. Python 3.7, 3.8, 3.9, 3.10 or 3.11 installed. The sample data should be loaded into Teradata Vantage using Airbyte. Please refer to Use Airbyte to load data from external sources to Teradata Vantage for more details on completing this step. When you configure a Teradata destination in Airbyte, it will ask for a Default Schema. For this demonstration we have set the Default Schema as airbyte_jaffle_shop. Create a new python environment to manage dbt and its dependencies. Activate the environment: python3 -m venv env source env/bin/activate You can activate the virtual environment in Windows executing the corresponding batch file ./myenv/Scripts/activate. Install dbt-teradata module and its dependencies. The core dbt module is included as a dependency so you don’t have to install it separately: pip install dbt-teradata Initialize a dbt project. dbt init The dbt project wizard will ask you for a project name and database management system to use in the project. In this demo we define the project name as dbt_airbyte_demo. Since we are using the dbt-teradata connector, the only database management system available is Teradata. Configure the profiles.yml file located in the $HOME/.dbt directory. If the profiles.yml file is not present, you can create a new one. Adjust server, username, password to match your Teradata instance’s HOST, Username, Password respectively. In this configuration, schema stands for the database that contains the sample data, in our case that is the default schema that we defined in Airbyte airbyte_jaffle_shop. dbt_airbyte_demo: target: dev outputs: dev: type: teradata server: schema: airbyte_jaffle_shop username: password: tmode: ANSI Once the profiles.yml file is ready, we can validate the setup. Go to the dbt project folder and run the command: dbt debug If the debug command returned errors, you likely have an issue with the content of profiles.yml. If the setup is correct, you will get message All checks passed! jaffle_shop is a fictional restaurant that takes orders online. The data of this business consists of tables for customers, orders and `payments`that follow the entity relations diagram below: The data in the source system is normalized. A dimensional model based on the same data, more suitable for analytics tools, is presented below: The complete dbt project encompassing the transformations detailed below is located at Jaffle Project with Airbyte. The reference dbt project performs two types of transformations. First, it transforms the raw data (in JSON format), loaded from Google Sheets via Airbyte, into staging views. At this stage the data is normalized. Next, it transforms the normalized views into a dimensional model ready for analytics. The following diagram shows the transformation steps in Teradata Vantage using dbt: As in all dbt projects, the folder models contains the data models that the project materializes as tables, or views, according to the corresponding configurations at the project, or individual model level. The models can be organized into different folders according to their purpose in the organization of the data warehouse/lake. Common folder layouts include a folder for staging, a folder for core, and a folder for marts. This structure can be simplified without affecting the workings of dbt. In the original dbt Jaffle Shop tutorial the project’s data is loaded from csv files located in the ./data folder through dbt’s seed command. The seed command is commonly used to load data from tables, however, this command is not designed to perform data loading. In this demo we are assuming a more typical setup in which a tool designed for data loading, Airbyte, was used to load data into the datawarehouse/lake. Data loaded through Airbyte though is represented as raw JSON strings. From these raw data we are creating normalized staging views. We perform this task through the following staging models. The stg_customers model creates the normalized staging view for customers from the _airbyte_raw_customers table. The stg_orders model creates the normalized view for orders from the _airbyte_raw_orders table The stg_payments model creates the normalized view for payments from the _airbyte_raw_payments table. As the method of extracting JSON strings remains consistent across all staging models, we will provide a detailed explanation for the transformations using just one of these models as an example. Below an example of transforming raw JSON data into a view through the stg_orders.sql model : WITH source AS ( SELECT * FROM {{ source('airbyte_jaffle_shop', '_airbyte_raw_orders')}} ), flattened_json_data AS ( SELECT _airbyte_data.JSONExtractValue('$.id') AS order_id, _airbyte_data.JSONExtractValue('$.user_id') AS customer_id, _airbyte_data.JSONExtractValue('$.order_date') AS order_date, _airbyte_data.JSONExtractValue('$.status') AS status FROM source ) SELECT * FROM flattened_json_data In this model the source is defined as the raw table _airbyte_raw_orders. This raw table columns contains both metadata, and the actual ingested data. The data column is called _airbyte_data. This column is of Teradata JSON type. This type supports the method JSONExtractValue for retrieving scalar values from the JSON object. In this model we are retrieving each of the attributes of interest and adding meaningful aliases in order to materialize a view. Building a Dimensional Model is a two step process: First, we take the normalized views in stg_orders, stg_customers, stg_payments and build denormalized intermediate join tables customer_orders, order_payments, customer_payments. You will find the definitions of these tables in ./models/marts/core/intermediate. In the second step, we create the dim_customers and fct_orders models. These constitute the dimensional model tables that we want to expose to our BI tool. You will find the definitions of these tables in ./models/marts/core. For executing the transformations defined in the dbt project we run: dbt run You will get the status of each model as given below: To ensure that the data in the dimensional model is correct, dbt allows us to define and execute tests against the data. The tests are defined in ./models/marts/core/schema.yml and ./models/staging/schema.yml. Each column can have multiple tests configured under the tests key. For example, we expect that fct_orders.order_id column will contain unique, non-null values. To validate that the data in the produced tables satisfies the test conditions run: dbt test If the data in the models satisfies all the test cases, the result of this command will be as below: Our model consists of just a few tables. In a scenario with more sources of data, and a more complex dimensional model, documenting the data lineage and what is the purpose of each of the intermediate models is very important. Generating this type of documentation with dbt is very straight forward. dbt docs generate This will produce html files in the ./target directory. You can start your own server to browse the documentation. The following command will start a server and open up a browser tab with the docs' landing page: dbt docs serve This tutorial demonstrated how to use dbt to transform raw JSON data loaded through Airbyte into dimensional model in Teradata Vantage. The sample project takes raw JSON data loaded in Teradata Vantage, creates normalized views and finally produces a dimensional data mart. We used dbt to transform JSON into Normalized views and multiple dbt commands to create models (dbt run), test the data (dbt test), and generate and serve model documentation (dbt docs generate, dbt docs serve). dbt documentation dbt-teradata plugin documentation If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Transforming External Data Loaded via Airbyte in Teradata Vantage Using dbt","component":"ROOT","version":"master","name":"transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt","url":"/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Sample Data Loading","id":"_sample_data_loading"},{"text":"Install dbt","id":"_install_dbt"},{"text":"Configure dbt","id":"_configure_dbt"},{"text":"The Jaffle Shop dbt Project","id":"_the_jaffle_shop_dbt_project"},{"text":"dbt Transformations","id":"_dbt_transformations"},{"text":"Staging Models","id":"_staging_models"},{"text":"Dimensional Models (Marts)","id":"_dimensional_models_marts"},{"text":"Executing Transformations","id":"_executing_transformations"},{"text":"Model Testing","id":"_model_testing"},{"text":"Generate Documentation","id":"_generate_documentation"},{"text":"Lineage Graph","id":"_lineage_graph"},{"text":"Summary","id":"_summary"},{"text":"Further reading","id":"_further_reading"}]},"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html":{"text":"Author: Krutik Pathak Last updated: June 9th, 2023 This tutorial showcases how to use Airbyte (an open-source Extract Load Transform tool) with Teradata Vantage. We work with a very simple end-to-end setup to load data from Google Sheets to Teradata Vantage using Airbyte. Source: Google Sheets Destination: Teradata Vantage Access to a Teradata Vantage Instance. This will be defined as the destination of the Airbyte connection. You will need a database Host, Username, and Password for Airbyte’s configuration. If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. Docker Compose to run Airbyte Open Source locally. Docker Compose comes with Docker Desktop. Please refer to docker docs for more details. Data from the source system. In this case, we use a sample spreadsheet from google sheets. The sample data is a breakdown of payrate by employee type. Google Cloud Platform API enabled for your personal or organizational account. You’ll need to authenticate your Google account via OAuth or via Service Account Key Authenticator. In this example, we use Service Account Key Authenticator. Clone the Airbyte Open Source repository and go to the airbyte directory. git clone --depth 1 https://github.com/airbytehq/airbyte.git cd airbyte Make Sure to have Docker Desktop running before running the shell script run-ab-platform. Run the shell script run-ab-platform as ./run-ab-platform.sh You can run the above commands with git bash in Windows. Please refer to the Airbyte Local Deployment for more details. Log in to the web app http://localhost:8000/ by entering the default credentials found in the .env file included in the repository. BASIC_AUTH_USERNAME=airbyte BASIC_AUTH_PASSWORD=password When logging in for the first time, Airbyte will prompt you to provide your email address and specify your preferences for product improvements. Enter your preferences and click on \"Get started.\" Once Airbyte Open Source is launched you will see a connections dashboard. If you launched Airbyte Open Source for the first time, it would not show any connections. You can either click \"Create your first connection\" or click on the top right corner to initiate the new connection workflow on Airbyte’s Connections dashboard. Airbyte will ask you for the Source, you can select from an existing source (if you have set it up already) or you can set up a new source, in this case we select Google Sheets. For authentication we are using Service Account Key Authentication which uses a service account key in JSON format. Toggle from the default OAuth to Service Account Key Authentication. To authenticate your Google account via Service Account Key Authentication, enter your Google Cloud service account key in JSON format. Make sure the Service Account has the Project Viewer permission. If your spreadsheet is viewable by anyone with its link, no further action is needed. If not, give your Service account access to your spreadsheet. Add the link to the source spreadsheet as Spreadsheet Link. For more details, please refer Setting Google Sheets as Source Connector in Airbyte Open Source Click Set up source, if the configuration is correct, you will get the message All connection tests passed! Assuming you want to create a fresh new connection with Teradata Vantage, Select Teradata Vantage as the destination type under the \"Set up the destination\" section. Add the Host, User, and Password. These are the same as the Host, Username, and Password respectively, used by your Clearscape Analytics Environment. Provide a default schema name appropriate to your specific context. Here we have provided gsheet_airbyte_td. If you do not provide a Default Schema, you will get an error stating \"Connector failed while creating schema\". Make sure you provide appropriate name in the Default Schema. Click Set up destination, if the configuration is correct, you will get the message All connection tests passed! You might get a configuration check failed error. Make sure your Teradata Vantage instance is running properly before making a connection through Airbyte. A namespace is a group of streams (tables) in a source or destination. A schema in a relational database system is an example of a namespace. In a source, the namespace is the location from where the data is replicated to the destination. In a destination, the namespace is the location where the replicated data is stored in the destination. For more details please refer to Airbyte Namespace. In our example the destination is a database, so the namespace is the default schema gsheet_airbyte_td we defined when we configured the destination. The stream name is a table that is mirroring the name of the spreadsheet in the source, which is sample_employee_payrate in this case. Since we are using the single spreadsheet connector, it only supports one stream (the active spreadsheet). Other type of sources and destinations might have a different layout. In this example, Google sheets, as source, does not support a namespace. In our example, we have used as the Namespace of the destination, this is the default namespace assigned by Airbyte based on the Default Schema we declared in the destination settings. The database gsheet_airbyte_td will be created in our Teradata Vantage Instance. We use the term \"schema\", as it is the term used by Airbyte. In a Teradata context the term \"database\" is the equivalent. It shows how often data should sync to destination. You can select every hour, 2 hours, 3 hours etc. In our case we used every 24 hours. You can also use a Cron expression to specify the time when the sync should run. In the example below, we set the Cron expression to run the sync on every Wednesday at 12:43 PM (US/Pacific) time. Airbyte tracks synchronization attempts in the \"Sync History\" section of the Status tab. Next, you can go to the ClearScape Analytics Experience and run a Jupyter notebook, notebooks in ClearScape Analytics Experience are configured to run Teradata SQL queries, to verify if the database gsheet_airbyte_td, streams (tables) and complete data is present. %connect local SELECT DatabaseName, TableName, CreateTimeStamp, LastAlterTimeStamp FROM DBC.TablesV WHERE DatabaseName = 'gsheet_airbyte_td' ORDER BY TableName; DATABASE gsheet_airbyte_td; SELECT * FROM _airbyte_raw_sample_employee_payrate; The stream (table) name in destination is prefixed with _airbyte_raw_ because Normalization and Transformation are not supported for this connection, and we only have the raw table. Each stream (table) contains 3 columns: _airbyte_ab_id: a uuid assigned by Airbyte to each event that is processed. The column type in Teradata is VARCHAR(256). _airbyte_emitted_at: a timestamp representing when the event was pulled from the data source. The column type in Teradata is TIMESTAMP(6). _airbyte_data: a json blob representing the event data. The column type in Teradata is JSON. Here in the _airbyte_data column, we see 9 rows, the same as we have in the source Google sheet, and the data is in JSON format which can be transformed further as needed. You can close the connection in Airbyte by disabling the connection. This will stop the data sync process. You can also delete the connection. This tutorial demonstrated how to extract data from a source system like Google sheets and use the Airbyte ELT tool to load the data into the Teradata Vantage Instance. We saw the end-to-end data flow and complete configuration steps for running Airbyte Open Source locally, and configuring the source and destination connections. We also discussed about the available data sync configurations based on replication frequency. We validated the results in the destination using Cloudscape Analytics Experience and finally we saw the methods to pause and delete the Airbyte connection. Teradata Destination | Airbyte Documentation Core Concepts | Airbyte Documentation Airbyte Community Slack Airbyte Community Did this page help?","title":"Use Airbyte to load data from external sources to Teradata Vantage","component":"ROOT","version":"master","name":"use-airbyte-to-load-data-from-external-sources-to-teradata-vantage","url":"/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Launch Airbyte Open Source","id":"_launch_airbyte_open_source"},{"text":"Airbyte Configuration","id":"_airbyte_configuration"},{"text":"Setting the Source Connection","id":"_setting_the_source_connection"},{"text":"Setting the Destination Connection","id":"_setting_the_destination_connection"},{"text":"Configuring Data Sync","id":"_configuring_data_sync"},{"text":"Replication Frequency","id":"_replication_frequency"},{"text":"Data Sync Validation","id":"_data_sync_validation"},{"text":"Close and delete the connection","id":"_close_and_delete_the_connection"},{"text":"Summary","id":"_summary"},{"text":"Further reading","id":"_further_reading"}]},"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html":{"text":"vertex_pipelines_housing_example-BYOM Get this notebook in .ipynb format. Vertex AI is Google's single environment for data scientists to develop and deploy ML models, from experimentation, to deployment, to managing and monitoring models. In this tutorial, we will show how to integrate Vantage Analytics capabilites in Vertex AI ML Pipelines. We'll create two pipelines: Training - the first will be a three step pipeline to train and deploy a model; the first step transforms data in Vantage and then exports a file for training, the second step trains a model using scikit-learn, and the final step deploys the model to Vantage using Bring Your Own Model (BYOM) feature of Teradata Vantage. Scoring - the second pipeline will use the model created by the the first pipeline to score new data stored in a table on Vantage. Both pipelines are very simple, but the first pipeline could be triggered to retrain a model with new data when the production model has drifted. The second pipeline could be run on a regular schedule when new data for scoring was available. Google Cloud account - register here Kaggle account - register here In [ ]: import sys !{sys.executable} -m pip install --upgrade --force-reinstall ipython-sql !{sys.executable} -m pip install teradatasqlalchemy teradataml kaggle ipython-sql kfp Follow the Run Vantage Express on Google Cloud how-to to get Vantage setup. Make sure to follow the instructions to open the VM up to the Internet. You will need a GCS bucket to store artifacts managed by KubeFlow. Define the bucket name: In [ ]: BUCKET_NAME = \"\" If the bucket doesn't exist, go ahead and create it: In [ ]: !gsutil ls -b gs://$BUCKET_NAME || gsutil mb gs://$BUCKET_NAME Go to IAM tab in GCS console and assign Storage Admin role to your default Compute Engine. The principal of the default Compute Engine account looks like this: -compute@developer.gserviceaccount.com. We'll use the Boston Housing dataset which can be obtained from Kaggle. Login to your Kaggle account. In the top right corner click on your user icon and select Account. Find API section and click on Create New API Token. This will produce kaggle.json file. Open kaggle.json and copy the username and key. Substitute the values in the cell and run it: In [ ]: %env KAGGLE_USERNAME= %env KAGGLE_KEY= In [ ]: !kaggle datasets download -f housing.csv vikrishnan/boston-house-prices Let's setup DATABASE_URL environment variable that will point to your instance of Vantage. Make sure that you default to mldb database where BYOM package is installed, e.g.: In [ ]: DATABASE_URL='teradatasql://dbc:dbc@34.121.78.209/mldb' %env DATABASE_URL=$DATABASE_URL In [ ]: import pandas import os df=pandas.read_fwf('housing.csv', names=['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']) df.to_sql('housing', con=DATABASE_URL, index=False) For this tutiorial we need a table to store the trained model and another table with some new data that we want to score with our model. Use teradatasql to execute the following SQL on your Vantage instance. In [ ]: %%sql CREATE SET TABLE demo_models (model_id VARCHAR (30), model BLOB) PRIMARY INDEX (model_id); CREATE SET TABLE test_housing (ID INTEGER, CRIM FLOAT, ZN FLOAT,INDUS FLOAT,CHAS INTEGER,NOX FLOAT,RM FLOAT, AGE FLOAT,DIS FLOAT, RAD INTEGER,TAX INTEGER,PTRATIO FLOAT,B FLOAT,LSTAT FLOAT) PRIMARY INDEX (CRIM); INSERT INTO test_housing (ID, CRIM, ZN, INDUS, CHAS, NOX, RM, AGE, DIS, RAD, TAX, PTRATIO, B, LSTAT) VALUES (1,.02,0.0,7.07,0,.46,6.4,78.9,4.9,2,242,17.8,396.9,9.14); Now we are ready to create the components in the pipeline. Vertex AI Pipelines can run pipelines built using the Kubeflow Pipelines SDK or TensorFlow Extended. We'll be using the Kubeflow Pipelines SDK for this simple example using scikit-learn. In this example we will create the following three components: read_data_from_vantage input: ipaddr of the VM hosting Vantage output: csv file with the data for training and testing train_model input: csv file with data for training and testing output: file containing the model output: Metric artifact with model performance deploy_model input: file containing the model First, import the Kubeflow Pipeline component and dsl packages. In [ ]: import kfp.v2.dsl as dsl from kfp.v2.dsl import ( component, Input, Output, Dataset, Model, Metrics, ) The first component reads data from a Vantage warehouse (see above and make sure you have set up Vantage Express in Google Cloud including opening up a firewall to the VM so you can access Vantage from the Internet.) The component connects to Vantage using the connection string passed as an input parameter, reads the rows from the table mldb.housing in Vantage and then outputs the data to an Output[Dataset]. The Output is a temporary file used to pass data between components (see more about passing data between components here). The component uses sqlalchemy to talk to Teradata. Each component is run in a separate container on Kubernetes so all import statements need to be done within the component. We have created a base image with teradatasql already installed. When you pass base_image='python' the component will use that image to create a container. packages_to_install parameter defines what other packages the component needs. In [ ]: @component(base_image='python', packages_to_install=['teradatasqlalchemy']) def read_data_from_vantage( connection_string: str, output_file: Output[Dataset] ): import sqlalchemy file_name = output_file.path engine = sqlalchemy.create_engine(connection_string) with engine.connect() as con: rs = con.execute('SELECT * FROM housing') with open(output_file.path, 'w') as output_file: output_file.write('CRIM,ZN,INDUS,CHAS,NOX,RM,AGE,DIS,RAD,TAX,PTRATIO,B,LSTAT,MEDV\\n') for row in rs: output_file.write(','.join([str(i) for i in row]) + '\\n') Next we'll create a component to train a model with the training data. The input into this component is the file from the previous component. The output is the file with the trained model using joblib.dump and a file with the test data. The component will use scikit-learn and pandas so we need to pass packages_to_install=['pandas==1.3.5','scikit-learn'] - this will tell Kubeflow to install the packages when the container is created. In [ ]: @component(base_image='teradata/python-sklearn2pmml', packages_to_install=['pandas==1.3.5','scikit-learn','sklearn-pandas==1.5.0']) def train_model( input_file : Input[Dataset], output_model: Output[Model], output_metrics: Output[Metrics] ): import pandas as pd from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.preprocessing import StandardScaler from sklearn import metrics from sklearn_pandas import DataFrameMapper import joblib from sklearn2pmml.pipeline import PMMLPipeline from sklearn2pmml import sklearn2pmml df = pd.read_csv(input_file.path) train, test = train_test_split(df, test_size = .33) train = train.apply(pd.to_numeric, errors='ignore') test = test.apply(pd.to_numeric, errors='ignore') target = 'MEDV' features = train.columns.drop(target) pipeline = PMMLPipeline([ (\"mapping\", DataFrameMapper([ (['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT'], StandardScaler()) ])), (\"rfc\", RandomForestRegressor(n_estimators = 100, random_state = 0)) ]) pipeline.fit(train[features], train[target]) y_pred = pipeline.predict(test[features]) metric_accuracy = metrics.mean_squared_error(y_pred,test[target]) output_metrics.log_metric('accuracy', metric_accuracy) output_model.metadata['accuracy'] = metric_accuracy joblib.dump(pipeline, output_model.path) The last component loads the model and tests it on the test data. The Output[Metrics] creates an artifact with the models performance and can be visualize in the Runtime Graph. In [ ]: @component(base_image='teradata/python-sklearn2pmml') def deploy_model( connection_string: str, input_model : Input[Model], ): import sqlalchemy import teradataml as tdml import joblib from sklearn2pmml.pipeline import PMMLPipeline from sklearn2pmml import sklearn2pmml engine = sqlalchemy.create_engine(connection_string) tdml.create_context(tdsqlengine = engine) pipeline = joblib.load(input_model.path) sklearn2pmml(pipeline, \"test_local.pmml\", with_repr = True) model_id = 'housing_rf' model_file = 'test_local.pmml' table_name = 'demo_models' tdml.configure.byom_install_location = \"mldb\" try: res = tdml.save_byom(model_id = model_id, model_file = model_file, table_name = table_name) except Exception as e: # if our model exists, delete and rewrite if str(e.args).find('TDML_2200') >= 1: res = tdml.delete_byom(model_id = model_id, table_name = table_name) res = tdml.save_byom(model_id = model_id, model_file = model_file, table_name = table_name) pass else: raise Now we'll create a function to execute each component in the pipeline. In [ ]: @dsl.pipeline( name='run-vantage-pipeline', description='An example pipeline that connects to Vantage.', ) def run_vantage_pipeline_vertex( connection_string: str ): data_file = read_data_from_vantage(connection_string).output test_model_data = train_model(data_file) deploy_model(connection_string,test_model_data.outputs['output_model']) Compile the pipeline. The pipline will be saved in a json file with the name provided as the package_path. In [ ]: from kfp.v2 import compiler compiler.Compiler().compile(pipeline_func=run_vantage_pipeline_vertex, package_path='train_housing_pipeline.json') Now use the Vertex AI client to execute the pipeline. Import the google.cloud.aiplatform package. Vertex AI needs a Cloud Storage bucket to for temporary files. Create a new job using the json file above and pass the ipaddr as the parameter. Then submit the job. When the job starts a link will appear that will take you to the Runtime Graph. In [ ]: import google.cloud.aiplatform as aip pipeline_root_path = 'gs://' + BUCKET_NAME job = aip.PipelineJob( display_name=\"housing_training_deploy\", template_path=\"train_housing_pipeline.json\", pipeline_root=pipeline_root_path, parameter_values={ 'connection_string': DATABASE_URL } ) job.submit() When the pipeline has completed running (each component in the graph should have a green check mark). You can click on each component to see details of the execution and the logs created. If you click on the output_metrics artifact, in the Pipeline run analysis window the Node Info will show the accuracy of the model. Yyou can learn more about other metrics you can pass and visulation using the Metrics artifict here.) Let's test the model we have just deployed by scoring some new data. We'll use the teradataml driver to retrieve the saved model and score the rows in a table with new data. In [ ]: import teradataml as tdml import sqlalchemy import os engine = sqlalchemy.create_engine(DATABASE_URL) eng = tdml.create_context(tdsqlengine = engine) #indicate the database that BYOM is using tdml.configure.byom_install_location = \"mldb\" tdf_test = tdml.DataFrame('test_housing') modeldata = tdml.retrieve_byom(\"housing_rf\", table_name=\"demo_models\") predictions = tdml.PMMLPredict( modeldata = modeldata, newdata = tdf_test, accumulate = ['ID'] ) predictions.result.to_pandas() This pipeline will have only one component that uses the teradatasql driver to execute a SQL query that retrieves the model from the demo_model table and scores the rows in the test_housing table. In [ ]: @component(base_image='teradata/python-sklearn2pmml', packages_to_install=['pandas==1.3.5','scikit-learn']) def score_new_data( connection_string: str, model_name: str, model_table: str, data_table: str, prediction_table: str ): import teradataml as tdml import sqlalchemy engine = sqlalchemy.create_engine(connection_string) with engine.connect() as con: con.execute(f'CREATE TABLE {prediction_table} AS (SELECT * FROM mldb.PMMLPredict ( ON {data_table} ON (SELECT * FROM {model_table} where model_id=\\'{model_name}\\') DIMENSION USING Accumulate (\\'ID\\')) AS td ) WITH DATA') The run_new_data_score pipeline takes the following parameters: model_name: ID of the model model_table: the name of the table storing the model data_table: the name of the table with new data to score prediction_table: the name of the table to store the scoring results When the pipeline is executed the dashboard will provide fields to enter the values you want to use. In [ ]: @dsl.pipeline( name='new-data-pipeline', description='An example of a component that scores new data with a saved model.', ) def run_new_data_score( connection_string: str, model_name: str, model_table: str, data_table: str, prediction_table: str ): score_new_data(DATABASE_URL,model_name,model_table,data_table,prediction_table) To compile the pipeline run the following code. The pipeline will be saved in score_new_data_pipeline_sql.json file. In [ ]: compiler.Compiler().compile(pipeline_func=run_new_data_score, package_path='score_new_data_pipeline_sql.json') We will now execute the pipeline in Vertex AI Pipelines. In [ ]: import google.cloud.aiplatform as aip pipeline_root_path = 'gs://' + BUCKET_NAME job = aip.PipelineJob( display_name=\"new_data_housing\", template_path=\"score_new_data_pipeline_sql.json\", pipeline_root=pipeline_root_path, parameter_values={ 'connection_string': DATABASE_URL, 'model_name': 'housing_rf', 'model_table': 'demo_models', 'data_table': 'test_housing', 'prediction_table': 'housing_predictions' } ) job.submit() Once the job completes, you can view the batch predictions with: In [ ]: %%sql SELECT * FROM housing_predictions; To stop incurring charges you need to clean up the following resources: Delete the Vantage Express VM - go to the list of Compute Engine instances and selecting the instance with Vantage Express and then click on Delete. Delete the storage bucket you configured Did this page help?","title":"Google Cloud Vertex AI Pipelines Vantage BYOM Housing Example","component":"ROOT","version":"master","name":"gcp-vertex-ai-pipelines-vantage-byom-housing-example","url":"/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html","titles":[{"text":"Prerequisites¶","id":"Prerequisites"},{"text":"Setting up Vantage and loading data¶","id":"Setting-up-Vantage-and-loading-data"},{"text":"Setup the notebook environment¶","id":"Setup-the-notebook-environment"},{"text":"Setup a Vantage instance¶","id":"Setup-a-Vantage-instance"},{"text":"Create GCS bucket¶","id":"Create-GCS-bucket"},{"text":"Give permissions to Vertex AI to access your bucket¶","id":"Give-permissions-to-Vertex-AI-to-access-your-bucket"},{"text":"Download sample data¶","id":"Download-sample-data"},{"text":"Load training data to Vantage¶","id":"Load-training-data-to-Vantage"},{"text":"The first pipeline to train and deploy a model using Kubeflow¶","id":"The-first-pipeline-to-train-and-deploy-a-model-using-Kubeflow"},{"text":"Create the component that reads data from Vantage¶","id":"Create-the-component-that-reads-data-from-Vantage"},{"text":"Create the train model component¶","id":"Create-the-train-model-component"},{"text":"Create component to deploy model¶","id":"Create-component-to-deploy-model"},{"text":"Create function for executing the pipeline¶","id":"Create-function-for-executing-the-pipeline"},{"text":"Inspect model metrics¶","id":"Inspect-model-metrics"},{"text":"Test the deployed model¶","id":"Test-the-deployed-model"},{"text":"Create a new pipeline to score new data¶","id":"Create-a-new-pipeline-to-score-new-data"},{"text":"Cleanup¶","id":"Cleanup"}]},"/jupyter-demos/index.html":{"text":"Telco Smart decommissioning Run Teradata Vantage Express in the cloud on AWS. Telco Smart network optimization Run Teradata Vantage Express in the cloud on Google Cloud. Telco Personalization Run Teradata Vantage Express in the cloud on Microsoft Azure. Telco Relevant price & promotions Learn how to install Teradata Vantage Express on your machine for development and testing. Telco Connected supply chain Run Teradata Vantage Express on your local machine with VirtualBox. Telco Smart network rollout Run Teradata Vantage Express on your Mac with UTM. Apple chipset supported. Telco Automotive Connected vehicle innovation Run Teradata Vantage Express in the cloud on AWS. Automotive Smart, connected factories Run Teradata Vantage Express in the cloud on Google Cloud. Automotive Granular financial management Run Teradata Vantage Express in the cloud on Microsoft Azure. Automotive Resilient supply chains Learn how to install Teradata Vantage Express on your machine for development and testing. Automotive Personalized customer experiences Run Teradata Vantage Express on your local machine with VirtualBox. Automotive Healthcare Care delivery innovation Run Teradata Vantage Express in the cloud on AWS. Healthcare Performance management Run Teradata Vantage Express in the cloud on Google Cloud. Healthcare Emerging payment models Run Teradata Vantage Express in the cloud on Microsoft Azure. Healthcare Adaptive supply chains Learn how to install Teradata Vantage Express on your machine for development and testing. Healthcare Government Citizen services Run Teradata Vantage Express in the cloud on AWS. Government Public health management Run Teradata Vantage Express in the cloud on Google Cloud. Government Policymaking Run Teradata Vantage Express in the cloud on Microsoft Azure. Government Fraud prevention Learn how to install Teradata Vantage Express on your machine for development and testing. Government Retail Workforce management Run Teradata Vantage Express in the cloud on AWS. Retail Marketing & customer experience Run Teradata Vantage Express in the cloud on Google Cloud. Retail Digital & bricks-and-mortar stores Run Teradata Vantage Express in the cloud on Microsoft Azure. Retail Category management Learn how to install Teradata Vantage Express on your machine for development and testing. Retail Didn’t find a demo you were looking for? Contribute or request a demo request contribute Did this page help?","title":"Jupyter Notebook Demos","component":"ROOT","version":"master","name":"index","url":"/jupyter-demos/index.html","titles":[]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html":{"text":"Author: Pablo Escobar de la Oliva Last updated: May 29th, 2023 This is a how-to for people who are new to ClearScape Analytics ModelOps. In the tutorial, you will be able to create a new project in ModelOps, upload the required data to Vantage, and track the full lifecycle of an imported Diabetes demo model using BYOM mechanisms. Access to a Teradata Vantage instance with ClearScape Analytics (includes ModelOps) Ability to run Jupyter notebooks If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. Files needed Let’s start by downloading the needed files for this tutorial. Download these 4 attachments and upload them in your Notebook filesystem. Select the files depending on your version of ModelOps: ModelOps version 6 (October 2022): Download the ModelOps training Notebook Download BYOM Notebook file for demo use case Download data files for demo use case Download BYOM code files for demo use case Alternatively you can git clone following repos git clone https://github.com/willfleury/modelops-getting-started git clone https://github.com/Teradata/modelops-demo-models/ ModelOps version 7 (April 2023): Download the ModelOps training Notebook Download BYOM Notebook file for demo use case Download data files for demo use case Download BYOM code files for demo use case git clone -b v7 https://github.com/willfleury/modelops-getting-started.git git clone https://github.com/Teradata/modelops-demo-models/ Setting up the Database and Jupyter environment Follow the ModelOps_Training Jupyter Notebook to setup the database, tables and libraries needed for the demo. Add a new Project create project Details Name: Demo: your-name Description: ModelOps Demo Group: your-name Path: https://github.com/Teradata/modelops-demo-models Credentials: No Credentials Branch: master Here you can test the git connection. If is green then save and continue. Skip the service connection settings for now. When creating a new project, ModelOps will ask you for a new connection. Personal connection Name: Vantage personal your-name Description: Vantage demo env Host: tdprd.td.teradata.com (internal for teradata transcend only) Database: your-db VAL Database: TRNG_XSP (internal for teradata transcend only) BYOM Database: TRNG_BYOM (internal for teradata transcend only) Login Mech: TDNEGO Username/Password You can check the permissions with the new healthcheck panel in the connections panel Let’s create a new dataset template, then 1 dataset for training and 2 datasets for evaluation so we can monitor model quality metrics with 2 different datasets Add datasets create dataset template Catalog Name: PIMA Description: PIMA Diabetes Feature Catalog: Vantage Database: your-db Table: aoa_feature_metadata Features Query: SELECT * FROM {your-db}.pima_patient_features Entity Key: PatientId Features: NumTimesPrg, PlGlcConc, BloodP, SkinThick, TwoHourSerIns, BMI, DiPedFunc, Age Entity & Target Query: SELECT * FROM {your-db}.pima_patient_diagnoses Entity Key: PatientId Target: HasDiabetes Predictions Database: your-db Table: pima_patient_predictions Entity selection: Query: SELECT * FROM pima_patient_features WHERE patientid MOD 5 = 0 Only for v6 (in v7 you will define this in the BYOM no code screen): BYOM Target Column: CAST(CAST(json_report AS JSON).JSONExtractValue('$.predicted_HasDiabetes') AS INT) Basic Name: Train Description: Training dataset Scope: Training Entity & Target Query: SELECT * FROM {your-db}.pima_patient_diagnoses WHERE patientid MOD 5 = 1 Basic Name: Evaluate Description: Evaluation dataset Scope: Evaluation Entity & Target Query: SELECT * FROM {your-db}.pima_patient_diagnoses WHERE patientid MOD 5 = 2 Basic Name: Evaluate Description: Evaluation dataset Scope: Evaluation Entity & Target Query: SELECT * FROM {your-db}.pima_patient_diagnoses WHERE patientid MOD 5 = 3 Download and unzip the files needed, links are at the top of the tutorial. For PMML file you can also download a PMML generated in the training of a GIT model. BYOM.ipynb model.pmml requirements.txt evaluation.py data_stats.json init.py Define BYOM Model with Evaluation and Monitoring Import Version for v7 - BYOM no code is available - You can enable automated evaluation and data drift monitoring. In Monitoring page use BYOM Target Column: CAST(CAST(json_report AS JSON).JSONExtractValue('$.predicted_HasDiabetes') AS INT) Evaluate Review evaluation report, including dataset statistics Approve Deploy in Vantage - Engine, Publish, Schedule. Scoring dataset is required Use your connection and select a database. e.g \"aoa_byom_models\" Deployments/executions Evaluate again with dataset2 - to monitor model metrics behavior Monitor Model Drift - Data and Metrics for v7 - Review your predictions directly from Deployments → Job page Open BYOM notebook to execute the PMML predict from SQL code Retire In this quick start we have learned how to follow a full lifecycle of BYOM models into ModelOps and how to deploy it into Vantage. Then how we can schedule a batch scoring or test restful or on-demand scorings and start monitoring on Data Drift and Model Quality metrics. link:https://docs.teradata.com/search/documents?query=ModelOps&sort=last_update&virtual-field=title_only&content-lang= If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"ModelOps - Import and Deploy your first BYOM Model","component":"ROOT","version":"master","name":"deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom","url":"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Understand where we are in the Methodology","id":"_understand_where_we_are_in_the_methodology"},{"text":"Create a new Project or use an existing one","id":"_create_a_new_project_or_use_an_existing_one"},{"text":"Create a Personal Connection","id":"_create_a_personal_connection"},{"text":"Validate permissions in SQL database for VAL and BYOM","id":"_validate_permissions_in_sql_database_for_val_and_byom"},{"text":"Add dataset to identify Vantage tables for BYOM evaluation and scoring","id":"_add_dataset_to_identify_vantage_tables_for_byom_evaluation_and_scoring"},{"text":"Create training dataset","id":"_create_training_dataset"},{"text":"Create evaluation dataset 1","id":"_create_evaluation_dataset_1"},{"text":"Create evaluation dataset 2","id":"_create_evaluation_dataset_2"},{"text":"Model Lifecycle for a new BYOM","id":"_model_lifecycle_for_a_new_byom"},{"text":"Summary","id":"_summary"},{"text":"Further reading","id":"_further_reading"}]},"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html":{"text":"Author: Pablo Escobar de la Oliva Last updated: May 29th, 2022 This is a how-to for people who are new to ClearScape Analytics ModelOps. In the tutorial, you will be able to create a new project in ModelOps, upload the required data to Vantage, and track the full lifecycle of a demo model using code templates and following the methodology for GIT models in ModelOps. Access to a Teradata Vantage instance with ClearScape Analytics (includes ModelOps) Ability to run Jupyter notebooks If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. Files needed Let’s start by downloading the needed files for this tutorial. Download these 4 attachments and upload them in your Notebook filesystem. Select the files depending on your version of ModelOps: ModelOps version 6 (October 2022): Download the ModelOps training Notebook Download BYOM Notebook file for demo use case Download data files for demo use case Download BYOM code files for demo use case Alternatively you can git clone following repos git clone https://github.com/willfleury/modelops-getting-started git clone https://github.com/Teradata/modelops-demo-models/ ModelOps version 7 (April 2023): Download the ModelOps training Notebook Download BYOM Notebook file for demo use case Download data files for demo use case Download BYOM code files for demo use case git clone -b v7 https://github.com/willfleury/modelops-getting-started.git git clone https://github.com/Teradata/modelops-demo-models/ Setting up the database and Jupyter environment Follow the ModelOps_Training Jupyter Notebook to setup the database, tables and libraries needed for the demo. Add a new Project create project Details Name: Demo: your-name Description: ModelOps Demo Group: your-name Path: https://github.com/Teradata/modelops-demo-models Credentials: No Credentials Branch: master Here you can test the git connection. If is green then save and continue. Skip the service connection settings for now. When creating a new project, ModelOps will ask you for a new connection. Personal connection Name: Vantage personal your-name Description: Vantage demo env Host: tdprd.td.teradata.com (internal for teradata transcend only) Database: your-db VAL Database: TRNG_XSP (internal for teradata transcend only) BYOM Database: TRNG_BYOM (internal for teradata transcend only) Login Mech: TDNEGO Username/Password You can check the permissions with the new healthcheck panel in the connections panel Let’s create a new dataset template, then 1 dataset for training and 2 datasets for evaluation so we can monitor model quality metrics with 2 different datasets Add datasets create dataset template Catalog Name: PIMA Description: PIMA Diabetes Feature Catalog: Vantage Database: your-db Table: aoa_feature_metadata Features Query: SELECT * FROM {your-db}.pima_patient_features Entity Key: PatientId Features: NumTimesPrg, PlGlcConc, BloodP, SkinThick, TwoHourSerIns, BMI, DiPedFunc, Age Entity & Target Query: SELECT * FROM {your-db}.pima_patient_diagnoses Entity Key: PatientId Target: HasDiabetes Predictions Database: your-db Table: pima_patient_predictions Entity selection: Query: SELECT * FROM pima_patient_features WHERE patientid MOD 5 = 0 Only for v6 (in v7 you will define this in the BYOM no code screen): BYOM Target Column: CAST(CAST(json_report AS JSON).JSONExtractValue('$.predicted_HasDiabetes') AS INT) Basic Name: Train Description: Training dataset Scope: Training Entity & Target Query: SELECT * FROM {your-db}.pima_patient_diagnoses WHERE patientid MOD 5 = 1 Basic Name: Evaluate Description: Evaluation dataset Scope: Evaluation Entity & Target Query: SELECT * FROM {your-db}.pima_patient_diagnoses WHERE patientid MOD 5 = 2 Basic Name: Evaluate Description: Evaluation dataset Scope: Evaluation Entity & Target Query: SELECT * FROM {your-db}.pima_patient_diagnoses WHERE patientid MOD 5 = 3 For Git Models we need to fill the code templates available when adding a new model. These code scripts will be stored in the git repository under: model_definitions/your-model/model_modules/ init.py : this an empty file required for python modules training.py: this script contains train function def train(context: ModelContext, **kwargs): aoa_create_context() # your training code # save your model joblib.dump(model, f\"{context.artifact_output_path}/model.joblib\") record_training_stats(...) Review the Operationalize notebook to see how you can execute this from CLI or from notebook as an alternative to ModelOps UI. evaluation.py: this script contains evaluate function def evaluate(context: ModelContext, **kwargs): aoa_create_context() # read your model model = joblib.load(f\"{context.artifact_input_path}/model.joblib\") # your evaluation logic record_evaluation_stats(...) Review the Operationalize notebook to see how you can execute this from CLI or from notebook as an alternative to ModelOps UI. scoring.py: this script contains score function def score(context: ModelContext, **kwargs): aoa_create_context() # read your model model = joblib.load(f\"{context.artifact_input_path}/model.joblib\") # your evaluation logic record_scoring_stats(...) Review the Operationalize notebook to see how you can execute this from CLI or from notebook as an alternative to ModelOps UI. requirements.txt: this file contains the library names and versions required for your code scripts. Example: %%writefile ../model_modules/requirements.txt xgboost==0.90 scikit-learn==0.24.2 shap==0.36.0 matplotlib==3.3.1 teradataml==17.0.0.4 nyoka==4.3.0 aoa==6.0.0 config.json: this file located in the parent folder (your-model folder) contains default hyper-parameters %%writefile ../config.json { \"hyperParameters\": { \"eta\": 0.2, \"max_depth\": 6 } } Go and review the code scripts for the demo model in the repository: https://github.com/Teradata/modelops-demo-models/ Go into model_definitions→python-diabetes→model_modules Open Project to see models available from GIT Train a new model version see how CommitID from code repository is tracked Evaluate Review evaluation report, including dataset statistics and model metrics Compare with other model versions Approve Deploy in Vantage - Engine, Publish, Schedule. Scoring dataset is required Use your connection and select a database. e.g \"aoa_byom_models\" Deploy in Docker Batch - Engine, Publish, Schedule. Scoring dataset is required Use your connection and select a database. e.g \"aoa_byom_models\" Deploy in Restful Batch - Engine, Publish, Schedule. Scoring dataset is required Use your connection and select a database. e.g \"aoa_byom_models\" Deployments/executions Evaluate again with dataset2 - to monitor model metrics behavior Monitor Model Drift - data and metrics Open BYOM notebook to execute the PMML predict from SQL code when deployed in Vantage Test Restful from ModelOps UI or from curl command Retire deployments In this quick start we have learned how to follow a full lifecycle of GIT models into ModelOps and how to deploy it into Vantage or into Docker containers for Edge deployments. Then how we can schedule a batch scoring or test restful or on-demand scorings and start monitoring on Data Drift and Model Quality metrics. link:https://docs.teradata.com/search/documents?query=ModelOps&sort=last_update&virtual-field=title_only&content-lang= If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"ModelOps - Import and Deploy your first GIT Model","component":"ROOT","version":"master","name":"deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git","url":"/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Understand where we are in the Methodology","id":"_understand_where_we_are_in_the_methodology"},{"text":"Create a new Project or use an existing one","id":"_create_a_new_project_or_use_an_existing_one"},{"text":"Create a Personal Connection","id":"_create_a_personal_connection"},{"text":"Validate permissions in SQL database for VAL and BYOM","id":"_validate_permissions_in_sql_database_for_val_and_byom"},{"text":"Add dataset to identify Vantage tables for BYOM evaluation and scoring","id":"_add_dataset_to_identify_vantage_tables_for_byom_evaluation_and_scoring"},{"text":"Create training dataset","id":"_create_training_dataset"},{"text":"Create evaluation dataset 1","id":"_create_evaluation_dataset_1"},{"text":"Create evaluation dataset 2","id":"_create_evaluation_dataset_2"},{"text":"Prepare code templates","id":"_prepare_code_templates"},{"text":"Model Lifecycle for a new GIT","id":"_model_lifecycle_for_a_new_git"},{"text":"Summary","id":"_summary"},{"text":"Further reading","id":"_further_reading"}]},"/modelops/using-feast-feature-store-with-teradata-vantage.html":{"text":"Author: Mohammmad Taha Wahab , Mohammad Harris Mansur and Will Fleury Last updated: January 5th, 2023 Feast’s connector for Teradata is a complete implementation with support for all features and uses teradata as an online and offline store. You need access to a Teradata Vantage instance. If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. This how-to assumes you know Feast terminology. If you need a refresher check out the official FEAST documentation This document demonstrates how developers can integrate Teradata’s offline and online store with Feast. Teradata’s offline stores allow users to use any underlying data store as their offline feature store. Features can be retrieved from the offline store for model training and can be materialized into the online feature store for use during model inference. On the other hand, online stores are used to serve features at low latency. The materialize command can be used to load feature values from the data sources (or offline stores) into the online store The feast-teradata library adds support for Teradata as OfflineStore OnlineStore Additionally, using Teradata as the registry (catalog) is already supported via the registry_type: sql and included in our examples. This means that everything is located in Teradata. However, depending on the requirements, installation, etc, this can be mixed and matched with other systems as appropriate. To get started, install the feast-teradata library pip install feast-teradata Let’s create a simple feast setup with Teradata using the standard drivers' dataset. Note that you cannot use feast init as this command only works for templates that are part of the core feast library. We intend on getting this library merged into feast core eventually but for now, you will need to use the following cli command for this specific task. All other feast cli commands work as expected. feast-td init-repo This will then prompt you for the required information for the Teradata system and upload the example dataset. Let’s assume you used the repo name demo when running the above command. You can find the repository files along with a file called test_workflow.py. Running this test_workflow.py will execute a complete workflow for the feast with Teradata as the Registry, OfflineStore, and OnlineStore. demo/ feature_repo/ driver_repo.py feature_store.yml test_workflow.py From within the demo/feature_repo directory, execute the following feast command to apply (import/update) the repo definition into the registry. You will be able to see the registry metadata tables in the teradata database after running this command. feast apply To see the registry information in the feast UI, run the following command. Note the --registry_ttl_sec is important as by default it polls every 5 seconds. feast ui --registry_ttl_sec=120 project: registry: provider: local offline_store: type: feast_teradata.offline.teradata.TeradataOfflineStore host: database: user: password: log_mech: Below is an example of definition.py which elaborates how to set the entity, source connector, and feature view. Now to explain the different components: TeradataSource: Data Source for features stored in Teradata (Enterprise or Lake) or accessible via a Foreign Table from Teradata (NOS, QueryGrid) Entity: A collection of semantically related features Feature View: A feature view is a group of feature data from a specific data source. Feature views allow you to consistently define features and their data sources, enabling the reuse of feature groups across a project driver = Entity(name=\"driver\", join_keys=[\"driver_id\"]) project_name = yaml.safe_load(open(\"feature_store.yaml\"))[\"project\"] driver_stats_source = TeradataSource( database=yaml.safe_load(open(\"feature_store.yaml\"))[\"offline_store\"][\"database\"], table=f\"{project_name}_feast_driver_hourly_stats\", timestamp_field=\"event_timestamp\", created_timestamp_column=\"created\", ) driver_stats_fv = FeatureView( name=\"driver_hourly_stats\", entities=[driver], ttl=timedelta(weeks=52 * 10), schema=[ Field(name=\"driver_id\", dtype=Int64), Field(name=\"conv_rate\", dtype=Float32), Field(name=\"acc_rate\", dtype=Float32), Field(name=\"avg_daily_trips\", dtype=Int64), ], source=driver_stats_source, tags={\"team\": \"driver_performance\"}, ) There are two different ways to test your offline store as explained below. But first, there are a few mandatory steps to follow: Now, let’s batch-read some features for training, using only entities (population) for which we have seen an event in the last 60 days. The predicates (filter) used can be on anything relevant for the entity (population) selection for the given training dataset. The event_timestamp is only for example purposes. from feast import FeatureStore store = FeatureStore(repo_path=\"feature_repo\") training_df = store.get_historical_features( entity_df=f\"\"\" SELECT driver_id, event_timestamp FROM demo_feast_driver_hourly_stats WHERE event_timestamp BETWEEN (CURRENT_TIMESTAMP - INTERVAL '60' DAY) AND CURRENT_TIMESTAMP \"\"\", features=[ \"driver_hourly_stats:conv_rate\", \"driver_hourly_stats:acc_rate\", \"driver_hourly_stats:avg_daily_trips\" ], ).to_df() print(training_df.head()) The feast-teradata library allows you to use the complete set of feast APIs and functionality. Please refer to the official feast quickstart for more details on the various things you can do. Feast materializes data to online stores for low-latency lookup at model inference time. Typically, key-value stores are used for online stores, however, relational databases can be used for this purpose as well. Users can develop their own online stores by creating a class that implements the contract in the OnlineStore class. project: registry: provider: local offline_store: type: feast_teradata.offline.teradata.TeradataOfflineStore host: database: user: password: log_mech: There are a few mandatory steps to follow before we can test the online store: The command materialize_incremental is used to incrementally materialize features in the online store. If there are no new features to be added, this command will essentially not be doing anything. With feast materialize_incremental, the start time is either now — ttl (the ttl that we defined in our feature views) or the time of the most recent materialization. If you’ve materialized features at least once, then subsequent materializations will only fetch features that weren’t present in the store at the time of the previous materializations. CURRENT_TIME=$(date +'%Y-%m-%dT%H:%M:%S') feast materialize-incremental $CURRENT_TIME Next, while fetching the online features, we have two parameters features and entity_rows. The features parameter is a list and can take any number of features that are present in the df_feature_view. The example above shows all 4 features present but these can be less than 4 as well. Secondly, the entity_rows parameter is also a list and takes a dictionary of the form {feature_identifier_column: value_to_be_fetched}. In our case, the column driver_id is used to uniquely identify the different rows of the entity driver. We are currently fetching values of the features where driver_id is equal to 5. We can also fetch multiple such rows using the format: [{driver_id: val_1}, {driver_id: val_2}, .., {driver_id: val_n}] [{driver_id: val_1}, {driver_id: val_2}, .., {driver_id: val_n}] entity_rows = [ { \"driver_id\": 1001, }, { \"driver_id\": 1002, }, ] features_to_fetch = [ \"driver_hourly_stats:acc_rate\", \"driver_hourly_stats:conv_rate\", \"driver_hourly_stats:avg_daily_trips\" ] returned_features = store.get_online_features( features=features_to_fetch, entity_rows=entity_rows, ).to_dict() for key, value in sorted(returned_features.items()): print(key, \" : \", value) Another important thing is the SQL Registry. We first make a path variable that uses the username, password, database name, etc. to make a connection string which it then uses to establish a connection to Teradata’s Database. path = 'teradatasql://'+ teradata_user +':' + teradata_password + '@'+host + '/?database=' + teradata_database + '&LOGMECH=' + teradata_log_mech It will create the following table in your database: Entities (entity_name,project_id,last_updated_timestamp,entity_proto) Data_sources (data_source_name,project_id,last_updated_timestamp,data_source_proto) Feature_views (feature_view_name,project_id,last_updated_timestamp,materialized_intervals,feature_view_proto,user_metadata) Request_feature_views (feature_view_name,project_id,last_updated_timestamp,feature_view_proto,user_metadata) Stream_feature_views (feature_view_name,project_id,last_updated_timestamp,feature_view_proto,user_metadata) managed_infra (infra_name, project_id, last_updated_timestamp, infra_proto) validation_references (validation_reference_name, project_id, last_updated_timestamp, validation_reference_proto) saved_datasets (saved_dataset_name, project_id, last_updated_timestamp, saved_dataset_proto) feature_services (feature_service_name, project_id, last_updated_timestamp, feature_service_proto) on_demand_feature_views (feature_view_name, project_id, last_updated_timestamp, feature_view_proto, user_metadata) Additionally, if you want to see a complete (but not real-world), end-to-end example workflow example, see the demo/test_workflow.py script. This is used for testing the complete feast functionality. An Enterprise Feature Store accelerates the value-gaining process in crucial stages of data analysis. It enhances productivity and reduces the time taken to introduce products in the market. By integrating Teradata with Feast, it enables the use of Teradata’s highly efficient parallel processing within a Feature Store, thereby enhancing performance. Feast Scalable Registry Enabling highly scalable feature store with Teradata Vantage and FEAST If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Using Teradata with FEAST","component":"ROOT","version":"master","name":"using-feast-feature-store-with-teradata-vantage","url":"/modelops/using-feast-feature-store-with-teradata-vantage.html","titles":[{"text":"Introduction","id":"_introduction"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Overview","id":"_overview"},{"text":"Getting Started","id":"_getting_started"},{"text":"Offline Store Config","id":"_offline_store_config"},{"text":"Repo Definition","id":"_repo_definition"},{"text":"Offline Store Usage","id":"_offline_store_usage"},{"text":"Online Store","id":"_online_store"},{"text":"Online Store Config","id":"_online_store_config"},{"text":"Online Store Usage","id":"_online_store_usage"},{"text":"How to set SQL Registry","id":"_how_to_set_sql_registry"},{"text":"Further reading","id":"_further_reading"}]},"/mule-teradata-connector/examples-configuration.html":{"text":"Author: Tan Nguyen Last updated: February 13th, 2023 Anypoint Studio (Studio) editors help you design and update your Mule applications, properties, and configuration files. To add and configure a connector in Studio: Create a Mule Project. Add the connector to your Mule project. Configure a source for the connector’s flow. Add a connector operation to the flow. Configure a global element for the connector. When you run the connector, you can view the app log to check for problems, as described in View the App Log. If you are new to configuring connectors in Studio, see Using Anypoint Studio to Configure a Connector. If, after reading this topic, you need additional information about the connector fields, see the Teradata Connector Reference. In Studio, create a new Mule project in which to add and configure the connector: In Studio, select File > New > Mule Project. Enter a name for your Mule project and click Finish. Add Teradata Connector to your Mule project to automatically populate the XML code with the connector’s namespace and schema location and to add the required dependencies to the project’s pom.xml file: In the Mule Palette view, click (X) Search in Exchange. In the Add Dependencies to Project window, type teradata in the search field. Click Teradata Connector in Available modules. Click Add. Click Finish. Adding a connector to a Mule project in Studio does not make that connector available to other projects in your Studio workspace. A source initiates a flow when a specified condition is met. You can configure one of these input sources to use with Teradata Connector: Teradata > On Table Row Initiates a flow by selecting from a table at a regular interval and generates one message per obtained row HTTP > Listener Initiates a flow each time it receives a request on the configured host and port Scheduler Initiates a flow when a time-based condition is met For example, to configure an On Table Row source, follow these steps: In the Mule Palette view, select Teradata > On Table Row. Drag On Table Row to the Studio canvas. In the On Table Row configuration screen, optionally change the value of the Display Name field. Click the plus sign (+) next to the Connector configuration field to configure a global element that can be used by all instances of the source in the app. In the Teradata Config window, on the General tab, specify the database connection information for the connector. On the Transactions tab, optionally specify the transaction isolation, or XA transactions, when connecting to the database. On the Advanced tab, optionally specify connection pooling and reconnection information, including a reconnection strategy. Click Test Connection to confirm that Mule can connect with the specified database. Click OK to close the window. In the On Table Row configuration screen, in Table, specify the name of the table to select from. When you add a connector operation to your flow, you immediately define a specific operation for that connector to perform. To add an operation for Teradata Connector, follow these steps: In the Mule Palette view, select Teradata Connector and then select the desired operation. Drag the operation onto the Studio canvas and to the right of the input source. The following screenshot shows the Teradata Connector operations in the Mule Palette view of Anypoint Studio: Figure 1. Teradata Connector Operations When you configure a connector, it’s best to configure a global element that all instances of that connector in the app can use. To configure the global element for Teradata Connector, follow these steps: Select the operation in the Studio canvas. In the configuration screen for the operation, click the plus sign (+) next to the Connector configuration field to access the global element configuration fields. In the Teradata Config window, on the General tab, specify the database connection information for the connector. On the Transactions tab, optionally specify the transaction isolation, or XA transactions, when connecting to the database. On the Advanced tab, optionally specify connection pooling and reconnection information, including a reconnection strategy. Click Test Connection to confirm that Mule can connect with the specified database. Click OK. The following screenshot shows the Teradata Connector Global Element Configuration window in Anypoint Studio: Figure 2. Teradata Connector Global Element Configuration To check for problems, you can view the app log as follows: If you’re running the app from Anypoint Platform, the output is visible in the Anypoint Studio console window. If you’re running the app using Mule from the command line, the app log is visible in your OS console. Unless the log file path is customized in the app’s log file (log4j2.xml), you can also view the app log in the default location MULE_HOME/logs/.log. Teradata Connector Reference MuleSoft Help Center If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Using Anypoint Studio to Configure Teradata Connector - Mule 4","component":"ROOT","version":"master","name":"examples-configuration","url":"/mule-teradata-connector/examples-configuration.html","titles":[{"text":"Create a Mule Project","id":"create-mule-project"},{"text":"Add the Connector to Your Mule Project","id":"add-connector-to-project"},{"text":"Configure a Source","id":"configure-input-source"},{"text":"Add a Connector Operation to the Flow","id":"add-connector-operation"},{"text":"Configure a Global Element for the Connector","id":"_configure_a_global_element_for_the_connector"},{"text":"View the App Log","id":"view-app-log"},{"text":"See Also","id":"_see_also"}]},"/mule-teradata-connector/index.html":{"text":"Author: Tan Nguyen Last updated: February 10th, 2023 Anypoint Connector for Teradata (Teradata Connector) establishes communication between your Mule app and a Teradata Vantage database, enabling you to connect with your Teradata Vantage instance to load data and run SQL queries in Teradata Vantage tables. Reference: Teradata Connector Reference Release Notes: Teradata Connector Release Notes To use this connector, you must be familiar with: Teradata Vantage SQL Anypoint Connectors Mule runtime engine (Mule) Elements and global elements in a Mule flow Anypoint Studio (Studio) Before creating an app, you must have: Anypoint Studio version 7.5 or later Credentials to access the Teradata Vantage target resource If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. Teradata Connector enables you to: Perform predefined queries, dynamically constructed queries, and template queries that are self-sufficient and customizable. Use a source listener operation to read from a database in the data source section of a flow. Execute other operations to read and write to a database anywhere in the process section. Run a single bulk update to perform multiple SQL requests. Make Data Definition Language (DDL) requests. Execute stored procedures and SQL scripts. The Teradata Connector supports: Connection pooling Auto reconnects after timeouts After you complete the prerequisites, you can try the examples and configure the connector using Anypoint Studio. Query Teradata Vantage from a Mule service Using Anypoint Studio to Configure Teradata Connector MuleSoft Help Center Did this page help?","title":"Teradata Connector - Mule 4","component":"ROOT","version":"master","name":"index","url":"/mule-teradata-connector/index.html","titles":[{"text":"Before You Begin","id":"_before_you_begin"},{"text":"Common Use Cases for the Connector","id":"_common_use_cases_for_the_connector"},{"text":"Examples","id":"_examples"},{"text":"See Also","id":"_see_also"}]},"/mule-teradata-connector/reference.html":{"text":"Author: Tan Nguyen Last updated: February 10th, 2023 Anypoint Connector for Teradata (Teradata Connector) establishes communication between your Mule app and a Teradata Vantage database, enabling you to connect with your Teradata Vantage instance to load data and run SQL queries in Teradata Vantage tables. Release Notes: Teradata Connector Release Notes Use these parameters to configure the default configuration. Name Type Description Default Value Required Name String The name for this configuration. Connectors reference the configuration with this name. x Connection Data Source Reference Connection Teradata Connection The connection types to provide to this configuration. x Expiration Policy Expiration Policy Configures the minimum amount of time that a dynamic configuration instance can remain idle before Mule considers it eligible for expiration. This does not mean that the platform expires the instance at the exact moment that it becomes eligible. Mule purges the instances as appropriate. Configure the connection provider implementation that creates database connections from a referenced data source. When you use a provider’s custom type in a Data Source Reference Connection, define the type inside the Column Types form of the Advanced section in the Database config. Name Type Description Default Value Required Pooling Profile Pooling Profile Provides a way to configure database connection pooling Column Types Array of Column Type Specifies non-standard column types Reconnection Reconnection When the application is deployed, a connectivity test is performed on all connectors. If set to true, deployment fails if the test doesn’t pass after exhausting the associated reconnection strategy. Name Type Description Default Value Required Pooling Profile Pooling Profile Provides a way to configure database connection pooling Column Types Array of Column Type Specifies non-standard column types Transaction Isolation Enumeration, one of: NONE READ_COMMITTED READ_UNCOMMITTED REPEATABLE_READ SERIALIZABLE NOT_CONFIGURED The transaction isolation level to set on the driver when connecting the database NOT_CONFIGURED Use XA Transactions Boolean Indicates whether or not the created datasource must support XA transactions false URL String JDBC URL to use to connect to the database x User String Database username Password String Database password Reconnection Reconnection When the application is deployed, a connectivity test is performed on all connectors. If set to true, deployment fails if the test doesn’t pass after exhausting the associated reconnection strategy. To specify an SQL function in an SQL query in an operation, specify the SQL function in the {fn function()} format. For example, the SQL function CURRENT_TIMESTAMP is specified as {fn CURRENT_TIMESTAMP()}. Bulk Delete Bulk Insert Bulk Update Delete Execute DDL Execute Script Insert Select Query Single Stored Procedure Update On Table Row This operation allows delete operations to execute at various times using different parameter bindings and a single database statement. This improves performance compared to executing a single delete operation at various times. Name Type Description Default Value Required Configuration String The name of the configuration to use x Input Parameters Array of Object Specifies a list of maps, which contain the parameter names as keys and the value the parameter is bound to, and in which every list item represents a row to insert. #[payload] Transactional Action Enumeration, one of: ALWAYS_JOIN JOIN_IF_POSSIBLE NOT_SUPPORTED The type of joining action that operations can take regarding transactions JOIN_IF_POSSIBLE Query Timeout Number Indicates the minimum amount of time before the JDBC driver attempts to cancel a running statement. By default, no timeout is used. 0 Query Timeout Unit Enumeration, one of: NANOSECONDS MICROSECONDS MILLISECONDS SECONDS MINUTES HOURS DAYS A time unit that qualifies the #queryTimeout. Values specified in nanoseconds, microseconds, or milliseconds are rounded to seconds. SECONDS Fetch Size Number Indicates how many rows to fetch from the database when rows are read from a ResultSet. This property is required when streaming is true, in which case a default value of 10 is used. Max Rows Number Sets the limit for the maximum number of rows that any ResultSet object generated by this message processor can contain for the given number. If the limit is exceeded, the excess rows are silently dropped. SQL Query Text String The text of the SQL query to execute x Parameter Types Array of Parameter Type This parameter allows you to optionally specify the type of one or more of the parameters in the query. If a value is provided, you’re not required to reference all of the parameters; but you cannot reference a parameter that is not present in the input values. Target Variable String The name of a variable to store the operation’s output Target Value String An expression to evaluate against the operation’s output and store the expression outcome in the target variable #[payload] Reconnection Strategy Reconnect Reconnect Forever A retry strategy in case of connectivity errors Type Array of Number Default Configuration DB:CONNECTIVITY DB:QUERY_EXECUTION DB:RETRY_EXHAUSTED DB:BAD_SQL_SYNTAX This operation allows inserts to execute at various times using different parameter bindings and a single database statement. This improves performance compared to executing a single insert operation at various times. Name Type Description Default Value Required Configuration String The name of the configuration to use x Input Parameters Array of Object A list of maps in which every list item represents a row to be inserted, and the map contains the parameter names as keys and the value the parameter is bound to. #[payload] Transactional Action Enumeration, one of: ALWAYS_JOIN JOIN_IF_POSSIBLE NOT_SUPPORTED The type of joining action that operations can take regarding transactions. JOIN_IF_POSSIBLE Query Timeout Number Indicates the minimum amount of time before the JDBC driver attempts to cancel a running statement. No timeout is used by default. 0 Query Timeout Unit Enumeration, one of: NANOSECONDS MICROSECONDS MILLISECONDS SECONDS MINUTES HOURS DAYS A TimeUnit that qualifies the #queryTimeout. Values specified in nanoseconds, microseconds, or milliseconds are rounded to seconds. SECONDS Fetch Size Number Indicates how many rows to fetch from the database when rows are read from a resultSet. This property is required when streaming is true; in that case a default value (10) is used. Max Rows Number Sets the limit for the maximum number of rows that any ResultSet object generated by this message processor can contain for the given number. If the limit is exceeded, the excess rows are silently dropped. SQL Query Text String The text of the SQL query to execute x Parameter Types Array of Parameter Type Allows you to optionally specify the type of one or more of the parameters in the query. If provided, you’re not required to reference all of the parameters, but you cannot reference a parameter not present in the input values Target Variable String The name of a variable to store the operation’s output. Target Value String An expression to evaluate against the operation’s output and store the expression outcome in the target variable #[payload] Reconnection Strategy Reconnect Reconnect Forever A retry strategy in case of connectivity errors. Type Array of Number Default Configuration DB:CONNECTIVITY DB:QUERY_EXECUTION DB:RETRY_EXHAUSTED DB:BAD_SQL_SYNTAX This operation allows updates to execute at various times using different parameter bindings and a single database statement. This improves performance compared to executing one single update operation at various times. Name Type Description Default Value Required Configuration String The name of the configuration to use x Input Parameters Array of Object Specifies a list of maps, which contain the parameter names as keys and the value the parameter is bound to, and in which every list item represents a row to insert. #[payload] Transactional Action Enumeration, one of: ALWAYS_JOIN JOIN_IF_POSSIBLE NOT_SUPPORTED The type of joining action that operations can take regarding transactions. JOIN_IF_POSSIBLE Query Timeout Number Indicates the minimum amount of time before the JDBC driver attempts to cancel a running statement. By default, no timeout is used. 0 Query Timeout Unit Enumeration, one of: NANOSECONDS MICROSECONDS MILLISECONDS SECONDS MINUTES HOURS DAYS A time unit that qualifies the #queryTimeout. Values specified in nanoseconds, microseconds, or milliseconds are rounded to seconds. SECONDS Fetch Size Number Indicates how many rows to fetch from the database when rows are read from a ResultSet. 10 Max Rows Number Sets the limit for the maximum number of rows that any ResultSet object generated by this message processor can contain for the given number. If the limit is exceeded, the excess rows are silently dropped. SQL Query Text String The text of the SQL query to execute x Parameter Types Array of Parameter Type Allows you to optionally specify the type of one or more of the parameters in the query. If provided, you’re not required to reference all of the parameters; but you cannot reference a parameter that is not present in the input values. Target Variable String The name of a variable to store the operation’s output Target Value String An expression to evaluate against the operation’s output and store the expression outcome in the target variable #[payload] Reconnection Strategy Reconnect Reconnect Forever A retry strategy in case of connectivity errors Type Array of Number Default Configuration DB:CONNECTIVITY DB:QUERY_EXECUTION DB:RETRY_EXHAUSTED DB:BAD_SQL_SYNTAX This operation deletes data in a database. Name Type Description Default Value Required Configuration String The name of the configuration to use x Transactional Action Enumeration, one of: ALWAYS_JOIN JOIN_IF_POSSIBLE NOT_SUPPORTED The type of joining action that operations can take regarding transactions JOIN_IF_POSSIBLE Query Timeout Number Indicates the minimum amount of time before the JDBC driver attempts to cancel a running statement. By default, no timeout is used. 0 Query Timeout Unit Enumeration, one of: NANOSECONDS MICROSECONDS MILLISECONDS SECONDS MINUTES HOURS DAYS A time unit that qualifies the #queryTimeout. Values specified in nanoseconds, microseconds, or milliseconds are rounded to seconds. SECONDS Fetch Size Number Indicates how many rows to fetch from the database when rows are read from a ResultSet. 10 Max Rows Number Sets the limit for the maximum number of rows that any ResultSet object generated by this message processor can contain for the given number. If the limit is exceeded, the excess rows are silently dropped. SQL Query Text String The text of the SQL query to execute x Parameter Types Array of Parameter Type Allows you to optionally specify the type of one or more of the parameters in the query. If a value is provided, you’re not required to reference all of the parameters; but you cannot reference a parameter that is not present in the input values. Input Parameters Object A map in which keys are the name of an input parameter to set on the JDBC prepared statement. Each parameter should be referenced in the SQL text using a colon prefix (for example, where id = :myParamName). The map’s values contain the actual assignation for each parameter. Target Variable String The name of a variable to store the operation’s output Target Value String An expression to evaluate against the operation’s output and store the expression outcome in the target variable #[payload] Reconnection Strategy Reconnect Reconnect Forever A retry strategy in case of connectivity errors Type Number Default Configuration DB:CONNECTIVITY DB:QUERY_EXECUTION DB:RETRY_EXHAUSTED DB:BAD_SQL_SYNTAX This operation allows execution of DDL queries against a database. Name Type Description Default Value Required Configuration String The name of the configuration to use x SQL Query Text String The text of the SQL query to execute x Transactional Action Enumeration, one of: ALWAYS_JOIN JOIN_IF_POSSIBLE NOT_SUPPORTED The type of joining action that operations can take regarding transactions JOIN_IF_POSSIBLE Query Timeout Number Indicates the minimum amount of time before the JDBC driver attempts to cancel a running statement. By default, no timeout is used. 0 Query Timeout Unit Enumeration, one of: NANOSECONDS MICROSECONDS MILLISECONDS SECONDS MINUTES HOURS DAYS A time unit that qualifies the #queryTimeout. Values specified in nanoseconds, microseconds, or milliseconds are rounded to seconds. SECONDS Fetch Size Number Indicates how many rows to fetch from the database when rows are read from a ResultSet. 10 Max Rows Number Sets the limit for the maximum number of rows that any ResultSet object generated by this message processor can contain for the given number. If the limit is exceeded, the excess rows are silently dropped. Target Variable String The name of a variable to store the operation’s output Target Value String An expression to evaluate against the operation’s output and store the expression outcome in the target variable #[payload] Reconnection Strategy Reconnect Reconnect Forever A retry strategy in case of connectivity errors Type Number Default Configuration DB:CONNECTIVITY DB:QUERY_EXECUTION DB:RETRY_EXHAUSTED DB:BAD_SQL_SYNTAX This operation executes an SQL script in a single database statement. The script is executed as provided by the user, without any parameter binding. Name Type Description Default Value Required Configuration String The name of the configuration to use x Transactional Action Enumeration, one of: ALWAYS_JOIN JOIN_IF_POSSIBLE NOT_SUPPORTED The type of joining action that operations can take for transactions. JOIN_IF_POSSIBLE SQL Query Text String The text of the SQL query to execute Script Path String Specifies the location of a file to load. The file can point to a resource on the classpath, or on a disk. Query Timeout Number Indicates the minimum amount of time before the JDBC driver attempts to cancel a running statement. By default, no timeout is used. 0 Query Timeout Unit Enumeration, one of: NANOSECONDS MICROSECONDS MILLISECONDS SECONDS MINUTES HOURS DAYS A time unit that qualifies the #queryTimeout. Values specified in nanoseconds, microseconds, or milliseconds are rounded to seconds. SECONDS Fetch Size Number Indicates how many rows to fetch from the database when rows are read from a ResultSet. 10 Max Rows Number Sets the limit for the maximum number of rows that any ResultSet object generated by this message processor can contain for the given number. If the limit is exceeded, the excess rows are silently dropped. Target Variable String The name of a variable to store the operation’s output Target Value String An expression to evaluate against the operation’s output and store the expression outcome in the target variable #[payload] Reconnection Strategy Reconnect Reconnect Forever A retry strategy in case of connectivity errors Type Array of Number Default Configuration DB:CONNECTIVITY DB:QUERY_EXECUTION DB:RETRY_EXHAUSTED DB:BAD_SQL_SYNTAX This operation inserts data into a database. Name Type Description Default Value Required Configuration String The name of the configuration to use x Transactional Action Enumeration, one of: ALWAYS_JOIN JOIN_IF_POSSIBLE NOT_SUPPORTED The type of joining action that operations can take regarding transactions JOIN_IF_POSSIBLE Query Timeout Number Indicates the minimum amount of time before the JDBC driver attempts to cancel a running statement. By default, no timeout is used. 0 Query Timeout Unit Enumeration, one of: NANOSECONDS MICROSECONDS MILLISECONDS SECONDS MINUTES HOURS DAYS A time unit that qualifies the #queryTimeout. Values specified in nanoseconds, microseconds, or milliseconds are rounded to seconds. SECONDS Fetch Size Number Indicates how many rows to fetch from the database when rows are read from a ResultSet. 10 Max Rows Number Sets the limit for the maximum number of rows that any ResultSet object generated by this message processor can contain for the given number. If the limit is exceeded, the excess rows are silently dropped. SQL Query Text String The text of the SQL query to execute x Parameter Types Array of Parameter Type Allows you to optionally specify the type of one or more of the parameters in the query. If provided, you’re not required to reference all of the parameters; but you cannot reference a parameter that is not present in the input values. Input Parameters Object A map in which keys are the name of an input parameter to be set on the JDBC prepared statement. Each parameter should be referenced in the SQL text using a colon prefix (E.g: where id = :myParamName)). The map’s values contain the actual assignation for each parameter. Auto Generate Keys Boolean Indicates when to make auto-generated keys available for retrieval. false Auto Generated Keys Column Indexes Array of Number List of column indexes that indicates which auto-generated keys to make available for retrieval Auto Generated Keys Column Names Array of String List of column names that indicates which auto-generated keys to make available for retrieval Target Variable String The name of a variable to store the operation’s output Target Value String An expression to evaluate against the operation’s output and store the expression outcome in the target variable #[payload] Reconnection Strategy Reconnect Reconnect Forever A retry strategy in case of connectivity errors Type Statement Result Default Configuration DB:CONNECTIVITY DB:QUERY_EXECUTION DB:RETRY_EXHAUSTED DB:BAD_SQL_SYNTAX This operation queries data from a database. To prevent loading all the results at once, which can lead to performance and memory issues, results are automatically streamed. This means that pages of fetchSize rows are loaded when needed. If this operation is performed inside a transaction (that is, within a Try scope component) and that transaction is closed before consuming the data, accessing the results that haven’t been loaded will fail. Name Type Description Default Value Required Configuration String The name of the configuration to use x Transactional Action Enumeration, one of: ALWAYS_JOIN JOIN_IF_POSSIBLE NOT_SUPPORTED The type of joining action that operations can take regarding transactions JOIN_IF_POSSIBLE Streaming Strategy Repeatable In Memory Iterable Repeatable File Store Iterable non-repeatable-iterable Configure to use repeatable streams Query Timeout Number Indicates the minimum amount of time before the JDBC driver attempts to cancel a running statement. By default, no timeout is used. 0 Query Timeout Unit Enumeration, one of: NANOSECONDS MICROSECONDS MILLISECONDS SECONDS MINUTES HOURS DAYS A time unit that qualifies the #queryTimeout. Values specified in nanoseconds, microseconds, or milliseconds are rounded to seconds. SECONDS Fetch Size Number Indicates how many rows to fetch from the database when rows are read from a ResultSet. 10 Max Rows Number Sets the limit for the maximum number of rows that any ResultSet object generated by this message processor can contain for the given number. If the limit is exceeded, the excess rows are silently dropped. SQL Query Text String The text of the SQL query to execute x Parameter Types Array of Parameter Type Allows you to optionally specify the type of one or more of the parameters in the query. If provided, you’re not required to reference all of the parameters; but you cannot reference a parameter that is not present in the input values. Input Parameters Object A map in which keys are the name of an input parameter to be set on the JDBC prepared statement. Each parameter should be referenced in the SQL text using a colon prefix (for example: where id = :myParamName)). The map’s values will contain the actual assignation for each parameter. Target Variable String The name of a variable to store the operation’s output. Target Value String An expression to evaluate against the operation’s output and store the expression outcome in the target variable #[payload] Reconnection Strategy Reconnect Reconnect Forever A retry strategy in case of connectivity errors. Type Array of Object Default Configuration When working with pooling profiles and the Select operation, the connection remains open until one of the following occurs: The flow execution ends The content of the streams are consumed completely The connection is the transaction key. Because LOBs are treated as streams, the connection remains open until the flow execution ends, or until the content is consumed before the flow completes, in which case the best approach is taken to close the related connection. This behavior occurs because the result set the operation generates can have a stream or be part of an ongoing transaction. DB:BAD_SQL_SYNTAX DB:CONNECTIVITY DB:QUERY_EXECUTION This operation selects a single data record from a database. If you provide an SQL query that returns more than one row, then only the first record is processed and returned. This operation does not use streaming, which means that immediately after performing the Query Single operation, the complete content of the selected record is loaded into memory. Name Type Description Default Value Required Configuration String The name of the configuration to use x Transactional Action Enumeration, one of: ALWAYS_JOIN JOIN_IF_POSSIBLE NOT_SUPPORTED The type of join action that operations can take regarding transactions JOIN_IF_POSSIBLE Streaming Strategy Repeatable In Memory Iterable Repeatable File Store Iterable non-repeatable-iterable Configure to use repeatable streams Query Timeout Number Indicates the minimum amount of time before the JDBC driver attempts to cancel a running statement. By default, no timeout is used. 0 Query Timeout Unit Enumeration, one of: NANOSECONDS MICROSECONDS MILLISECONDS SECONDS MINUTES HOURS DAYS A time unit that qualifies the #queryTimeout. Values specified in nanoseconds, microseconds, or milliseconds are rounded to seconds. SECONDS Fetch Size Number Indicates how many rows to fetch from the database when rows are read from a ResultSet. 10 Max Rows Number The maximum number of rows that any ResultSet object generated by this message processor can contain. If the limit is exceeded, the excess rows are silently dropped. SQL Query Text String The text of the SQL query to execute x Parameter Types Array of Parameter Type Enables you to optionally specify the type of one or more of the parameters in the query. If provided, you’re not required to reference all of the parameters; but you cannot reference a parameter that is not present in the input values. Input Parameters Object A map in which keys are the name of an input parameter to be set on the JDBC prepared statement. Each parameter should be referenced in the SQL text using a colon prefix (for example: where id = :myParamName)). The map’s values will contain the actual assignation for each parameter. Target Variable String Name of the variable in which to store the operation’s output Target Value String Expression that evaluates the operation’s output. The expression outcome is stored in the target variable. #[payload] Reconnection Strategy Reconnect Reconnect Forever A retry strategy in case of connectivity errors. Type Object Default Configuration When working with pooling profiles and the Query Single operation, the connection returns to the pool immediately after the operation is performed. DB:BAD_SQL_SYNTAX DB:CONNECTIVITY DB:QUERY_EXECUTION Invokes a stored procedure on the database. When the stored procedure returns one or more ResultSet instances, results are not read all at once. Instead, results are automatically streamed to prevent performance and memory issues. This behavior means that pages of fetchSize rows are loaded lazily when needed. If the Stored procedure operation is performed inside a transaction (for example, in a Try scope component), and that transaction is closed before consuming the data, accessing the results that haven’t been loaded will fail. Name Type Description Default Value Required Configuration String The name of the configuration to use. x Transactional Action Enumeration, one of: ALWAYS_JOIN JOIN_IF_POSSIBLE NOT_SUPPORTED The type of joining action that operations can take regarding transactions. JOIN_IF_POSSIBLE Streaming Strategy Repeatable In Memory Iterable Repeatable File Store Iterable non-repeatable-iterable Configure to use repeatable streams Query Timeout Number Indicates the minimum amount of time before the JDBC driver attempts to cancel a running statement. No timeout is used by default. 0 Query Timeout Unit Enumeration, one of: NANOSECONDS MICROSECONDS MILLISECONDS SECONDS MINUTES HOURS DAYS A time unit that qualifies the #queryTimeout. Values specified in nanoseconds, microseconds, or milliseconds are rounded to seconds. SECONDS Fetch Size Number Indicates how many rows to fetch from the database when rows are read from a resultSet. This property is required when streaming is true; in that case a default value (10) is used. Max Rows Number Sets the limit for the maximum number of rows that any ResultSet object generated by this message processor can contain for the given number. If the limit is exceeded, the excess rows are silently dropped. SQL Query Text String The text of the SQL query to execute x Parameter Types Array of Parameter Type Allows to optionally specify the type of one or more of the parameters in the query. If provided, you’re not even required to reference all of the parameters, but you cannot reference a parameter not present in the input values Input Parameters Object A map in which keys are the name of an input parameter to be set on the JDBC prepared statement. Each parameter should be referenced in the SQL text using a colon prefix (for example: where id = :myParamName)). The map’s values will contain the actual assignation for each parameter. Input - Output Parameters Object A map in which keys are the name of a parameter to be set on the JDBC prepared statement which is both input and output. Each parameter should be referenced in the SQL text using a colon prefix (for example: where id = :myParamName)). The map’s values will contain the actual assignation for each parameter. Output Parameters Array of Output Parameter A list of output parameters to be set on the JDBC prepared statement. Each parameter should be referenced in the SQL text using a colon prefix (for example: call multiply(:value, :result)) Auto Generate Keys Boolean Indicates when to make auto-generated keys available for retrieval. false Auto Generated Keys Column Indexes Array of Number List of column indexes that indicates which auto-generated keys to make available for retrieval. Auto Generated Keys Column Names Array of String List of column names that indicates which auto-generated keys should be made available for retrieval. Target Variable String The name of a variable to store the operation’s output. Target Value String An expression to evaluate against the operation’s output and store the expression outcome in the target variable #[payload] Reconnection Strategy Reconnect Reconnect Forever A retry strategy in case of connectivity errors Type Object Default Configuration When working with pooling profiles and the Stored procedure operation, the connection remains open until the flow execution ends or the content of the streams are consumed completely, or if the connection is the transaction key. This behavior occurs because the resultset the operation generates can have a stream or be part of an ongoing transaction. Starting with Database Connector 1.8.3, the connections on the Stored procedure operation are released if they are not part of a stream or transaction. DB:BAD_SQL_SYNTAX DB:CONNECTIVITY DB:QUERY_EXECUTION DB:RETRY_EXHAUSTED Updates data in a database. Name Type Description Default Value Required Configuration String The name of the configuration to use x Transactional Action Enumeration, one of: ALWAYS_JOIN JOIN_IF_POSSIBLE NOT_SUPPORTED The type of joining action that operations can take for transactions JOIN_IF_POSSIBLE Query Timeout Number Indicates the minimum amount of time before the JDBC driver attempts to cancel a running statement. By default, no timeout is used. 0 Query Timeout Unit Enumeration, one of: NANOSECONDS MICROSECONDS MILLISECONDS SECONDS MINUTES HOURS DAYS A time unit that qualifies the #queryTimeout. Values specified in nanoseconds, microseconds, or milliseconds are rounded to seconds. SECONDS Fetch Size Number Indicates how many rows to fetch from the database when rows are read from a ResultSet. 10 Max Rows Number Sets the limit for the maximum number of rows that any ResultSet object generated by this message processor can contain for the given number. If the limit is exceeded, the excess rows are silently dropped. SQL Query Text String The text of the SQL query to execute x Parameter Types Array of Parameter Type Allows you to optionally specify the type of one or more of the parameters in the query. If provided, you’re not required to reference all of the parameters; but you cannot reference a parameter that is not present in the input values. Input Parameters Object A map in which keys are the name of an input parameter to set on the JDBC prepared statement. Each parameter should be referenced in the SQL text using a colon prefix (for example: where id = :myParamName)). The map’s values contain the actual assignation for each parameter. Auto Generate Keys Boolean Indicates when to make auto-generated keys available for retrieval false Auto Generated Keys Column Indexes Array of Number List of column indexes that indicates which auto-generated keys to make available for retrieval Auto Generated Keys Column Names Array of String List of column names that indicates which auto-generated keys should be made available for retrieval Target Variable String The name of a variable to store the operation’s output Target Value String An expression to evaluate against the operation’s output and store the expression outcome in the target variable #[payload] Reconnection Strategy Reconnect Reconnect Forever A retry strategy in case of connectivity errors Type Statement Result Default Configuration DB:BAD_SQL_SYNTAX DB:CONNECTIVITY DB:QUERY_EXECUTION DB:RETRY_EXHAUSTED This operation selects from a table at a regular interval and generates one message per obtained row. Optionally, you can provide watermark and ID columns. If a watermark column is provided, the values taken from that column are used to filter the contents of the next poll, so that only rows with a greater watermark value are returned. If an ID column is provided, this component automatically verifies that the same row is not picked twice by concurrent polls. This operation does not support streaming, meaning that there is no need to perform additional transformations to the payload in order to access the operation results. This behavior is identical to the Query Single operation released in version 1.9. Name Type Description Default Value Required Configuration String The name of the configuration to use x Table String The name of the table to select from x Watermark Column String The name of the column to use for a watermark. Values taken from this column are used to filter the contents of the next poll, so that only rows with a greater watermark value are processed. Id Column String The name of the column to consider as the row ID. If provided, this component makes sure that the same row is not processed twice by concurrent polls. Transactional Action Enumeration, one of: ALWAYS_BEGIN NONE The type of beginning action that sources can take regarding transactions NONE Transaction Type Enumeration, one of: LOCAL XA The type of transaction to create. Availability depends on the runtime version. LOCAL Primary Node Only Boolean Whether this source should be executed only on the primary node when running in a cluster Scheduling Strategy scheduling-strategy Configures the scheduler that triggers the polling x Redelivery Policy Redelivery Policy Defines a policy for processing the redelivery of the same message Query Timeout Number Indicates the minimum amount of time before the JDBC driver attempts to cancel a running statement. By default, no timeout is used. 0 Query Timeout Unit Enumeration, one of: NANOSECONDS MICROSECONDS MILLISECONDS SECONDS MINUTES HOURS DAYS A time unit that qualifies the #queryTimeout. Values specified in nanoseconds, microseconds, or milliseconds are rounded to seconds. SECONDS Fetch Size Number Indicates how many rows to fetch from the database when rows are read from a ResultSet. 10 Max Rows Number Sets the limit for the maximum number of rows that any ResultSet object generated by this message processor can contain for the given number. If the limit is exceeded, the excess rows are silently dropped. Reconnection Strategy Reconnect Reconnect Forever A retry strategy in case of connectivity errors. Type Object Default Configuration Field Type Description Default Value Required Max Pool Size Number Maximum number of connections a pool maintains at any given time 5 Min Pool Size Number Minimum number of connections a pool maintains at any given time 0 Acquire Increment Number Determines how many connections at a time to try to acquire when the pool is exhausted 1 Prepared Statement Cache Size Number Determines how many statements are cached per pooled connection. Setting this to zero disables statement caching. 5 Max Wait Number The amount of time a client trying to obtain a connection waits for it to be acquired when the pool is exhausted. Setting this value to zero (default) means wait indefinitely. This is equivalent to checkoutTimeout and cannot be overridden in additional-properties. 0 Max Wait Unit Enumeration, one of: NANOSECONDS MICROSECONDS MILLISECONDS SECONDS MINUTES HOURS DAYS A #maxWait. SECONDS Max Idle Time Number Determines how many seconds a connection can remain pooled but unused before being discarded. Setting this value to zero (default) means idle connections never expire. 0 Additional Properties Object A map in which keys are the name of a pooling profile configuration property. Does not support the use of expressions. These properties cannot be used to override any of the previously specified properties (like Max Pool Size or Min Pool Size), the main property prevails if an attempt is made to override it. The map’s values contain the actual assignation for each parameter. Max Statement Number Defines the total number PreparedStatements a DataSource will cache. The pool destroys the least-recently-used PreparedStatement when it reaches the specified limit. When set to 0, statement caching is turned off Test connection on checkout Boolean Disables connection testing on checkout to improve performance. If set to true, an operation is performed at every connection checkout to verify that the connection is valid. A better choice is to verify connections periodically using c3p0.idleConnectionTestPeriod. To improve performance, set this property to false. true Field Type Description Default Value Required Id Number Type identifier used by the JDBC driver x Type Name String Name of the data type used by the JDBC driver x Class Name String Indicates which Java class must be used to map the database type Field Type Description Default Value Required Fails Deployment Boolean When the application is deployed, a connectivity test is performed on all connectors. If set to true, deployment fails if the test doesn’t pass after exhausting the associated reconnection strategy. Reconnection Strategy Reconnect Reconnect Forever The reconnection strategy to use Field Type Description Default Value Required Frequency Number How often to reconnect (in milliseconds) Count Number The number of reconnection attempts to make blocking Boolean If set to false, the reconnection strategy runs in a separate, non-blocking thread true Field Type Description Default Value Required Frequency Number How often in milliseconds to reconnect blocking Boolean If set to false, the reconnection strategy runs in a separate, non-blocking thread true Field Type Description Default Value Required Enabled Protocols String A comma-separated list of protocols enabled for this context. Enabled Cipher Suites String A comma-separated list of cipher suites enabled for this context. Trust Store Trust Store Key Store Key Store Revocation Check Standard Revocation Check Custom Ocsp Responder Crl File Field Type Description Default Value Required Path String The location (which will be resolved relative to the current classpath and file system, if possible) of the trust store. Password String The password used to protect the trust store. Type String The type of store used. Algorithm String The algorithm used by the trust store. Insecure Boolean If true, no certificate validations will be performed, rendering connections vulnerable to attacks. Use at your own risk. Field Type Description Default Value Required Path String The location (which will be resolved relative to the current classpath and file system, if possible) of the key store. Type String The type of store used. Alias String When the key store contains many private keys, this attribute indicates the alias of the key that should be used. If not defined, the first key in the file will be used by default. Key Password String The password used to protect the private key. Password String The password used to protect the key store. Algorithm String The algorithm used by the key store. Field Type Description Default Value Required Only End Entities Boolean Only verify the last element of the certificate chain. Prefer Crls Boolean Try CRL instead of OCSP first. No Fallback Boolean Do not use the secondary checking method (the one not selected before). Soft Fail Boolean Avoid verification failure when the revocation server can not be reached or is busy. Field Type Description Default Value Required Url String The URL of the OCSP responder. Cert Alias String Alias of the signing certificate for the OCSP response (must be in the trust store), if present. Field Type Description Default Value Required Path String The path to the CRL file. Field Type Description Default Value Required Max Idle Time Number A scalar time value for the maximum amount of time a dynamic configuration instance should be allowed to be idle before it’s considered eligible for expiration Time Unit Enumeration, one of: NANOSECONDS MICROSECONDS MILLISECONDS SECONDS MINUTES HOURS DAYS A time unit that qualifies the maxIdleTime attribute Field Type Description Default Value Required Max Redelivery Count Number The maximum number of times a message can be redelivered and processed unsuccessfully before triggering a process-failed-message Use Secure Hash Boolean Whether to use a secure hash algorithm to identify a redelivered message. Message Digest Algorithm String The secure hashing algorithm to use. If this is not set, the default is SHA-256. SHA-256 Id Expression String Defines one or more expressions to use to determine when a message has been redelivered. This property can be set only if Use secure hash is set to false. Object Store Object Store The object store where the redelivery counter for each message is stored Field Type Description Default Value Required Key String The name of the input parameter x Type Classifier Type Classifier x Field Type Description Default Value Required Type Enumeration, one of: BIT TINYINT SMALLINT INTEGER BIGINT FLOAT REAL DOUBLE NUMERIC DECIMAL CHAR VARCHAR LONGVARCHAR DATE TIME TIMESTAMP BINARY VARBINARY LONGVARBINARY NULL OTHER JAVA_OBJECT DISTINCT STRUCT ARRAY BLOB CLOB REF DATALINK BOOLEAN ROWID NCHAR NVARCHAR LONGNVARCHAR NCLOB SQLXML UNKNOWN Custom Type String Field Type Description Default Value Required Affected Rows Number Generated Keys Object Field Type Description Default Value Required Initial Buffer Size Number The number of instances that are initially allowed to be kept in memory to consume the stream and provide random access to it. If the stream contains more data than can fit into this buffer, then the buffer expands according to the Buffer size increment attribute, with an upper limit of Max in memory size. The default value is 100 instances. 100 Buffer Size Increment Number Specifies by how much the buffer size expands if it exceeds its initial size. Setting a value of zero or lower means that the buffer should not expand, in which case a STREAM_MAXIMUM_SIZE_EXCEEDED error is raised when the buffer gets full. The default value is 100 instances. 100 Max Buffer Size Number The maximum amount of memory to use. If more than the specified maximum amount of memory is used, then a `STREAM_MAXIMUM_SIZE_EXCEEDE`D error is raised. A value lower than, or equal to, zero means no limit. Field Type Description Default Value Required In Memory Objects Number The maximum number of instances to keep in memory. If more than the specified maximum is required, then content starts to buffer on disk. Buffer Unit Enumeration, one of: BYTE KB MB GB The unit in which maxInMemorySize is expressed Field Type Description Default Value Required Initial Buffer Size Number The number of instances that are initially allowed to be kept in memory to consume the stream and provide random access to it. If the stream contains more data than can fit into this buffer, then the buffer expands according to the Buffer size increment attribute, with an upper limit of Max in memory size Buffer Size Increment Number Specifies by how much the buffer size expands if it exceeds its initial size. Setting a value of zero or lower means that the buffer should not expand, in which case a STREAM_MAXIMUM_SIZE_EXCEEDED error is raised when the buffer gets full Max Buffer Size Number The maximum amount of memory to use. If more than the specified maximum amount of memory is used, then a STREAM_MAXIMUM_SIZE_EXCEEDED error is raised. A value lower than, or equal to, zero means no limit. Buffer Unit Enumeration, one of: BYTE KB MB GB The unit in which all these attributes are expressed Field Type Description Default Value Required In Memory Size Number Defines the maximum memory that the stream should use to keep data in memory. If more than that is consumed content on the disk is buffered. Buffer Unit Enumeration, one of: BYTE KB MB GB The unit in which Max in memory size is expressed Field Type Description Default Value Required Key String The name of the input parameter x Type Classifier Type Classifier x MuleSoft Help Center Did this page help?","title":"Teradata Connector Reference - Mule 4","component":"ROOT","version":"master","name":"reference","url":"/mule-teradata-connector/reference.html","titles":[{"text":"Configurations","id":"_configurations"},{"text":"Default Configuration","id":"config"},{"text":"Parameters","id":"_parameters"},{"text":"Connection Types","id":"_connection_types"},{"text":"Data Source Reference Connection","id":"config_data-source"},{"text":"Parameters","id":"_parameters_2"},{"text":"Teradata Connection","id":"config_teradata"},{"text":"Parameters","id":"_parameters_3"},{"text":"Operations","id":"_operations"},{"text":"Associated Sources","id":"_associated_sources"},{"text":"Bulk Delete","id":"bulkDelete"},{"text":"Parameters","id":"_parameters_4"},{"text":"Output","id":"_output"},{"text":"For Configurations","id":"_for_configurations"},{"text":"Throws","id":"_throws"},{"text":"Bulk Insert","id":"bulkInsert"},{"text":"Parameters","id":"_parameters_5"},{"text":"Output","id":"_output_2"},{"text":"For Configurations","id":"_for_configurations_2"},{"text":"Throws","id":"_throws_2"},{"text":"Bulk Update","id":"bulkUpdate"},{"text":"Parameters","id":"_parameters_6"},{"text":"Output","id":"_output_3"},{"text":"For Configurations","id":"_for_configurations_3"},{"text":"Throws","id":"_throws_3"},{"text":"Delete","id":"delete"},{"text":"Parameters","id":"_parameters_7"},{"text":"Output","id":"_output_4"},{"text":"For Configurations","id":"_for_configurations_4"},{"text":"Throws","id":"_throws_4"},{"text":"Execute DDL","id":"executeDdl"},{"text":"Parameters","id":"_parameters_8"},{"text":"Output","id":"_output_5"},{"text":"For Configurations","id":"_for_configurations_5"},{"text":"Throws","id":"_throws_5"},{"text":"Execute Script","id":"executeScript"},{"text":"Parameters","id":"_parameters_9"},{"text":"Output","id":"_output_6"},{"text":"For Configurations","id":"_for_configurations_6"},{"text":"Throws","id":"_throws_6"},{"text":"Insert","id":"insert"},{"text":"Parameters","id":"_parameters_10"},{"text":"Output","id":"_output_7"},{"text":"For Configurations","id":"_for_configurations_7"},{"text":"Throws","id":"_throws_7"},{"text":"Select","id":"select"},{"text":"Parameters","id":"_parameters_11"},{"text":"Output","id":"_output_8"},{"text":"For Configurations","id":"_for_configurations_8"},{"text":"Working with Pooling Profiles","id":"_working_with_pooling_profiles"},{"text":"Throws","id":"_throws_8"},{"text":"Query Single","id":"querySingle"},{"text":"Parameters","id":"_parameters_12"},{"text":"Output","id":"_output_9"},{"text":"For Configurations","id":"_for_configurations_9"},{"text":"Working with Pooling Profiles","id":"_working_with_pooling_profiles_2"},{"text":"Throws","id":"_throws_9"},{"text":"Stored Procedure","id":"storedProcedure"},{"text":"Parameters","id":"_parameters_13"},{"text":"Output","id":"_output_10"},{"text":"For Configurations","id":"_for_configurations_10"},{"text":"Working with Pooling Profiles","id":"_working_with_pooling_profiles_3"},{"text":"Throws","id":"_throws_10"},{"text":"Update","id":"update"},{"text":"Parameters","id":"_parameters_14"},{"text":"Output","id":"_output_11"},{"text":"For Configurations","id":"_for_configurations_11"},{"text":"Throws","id":"_throws_11"},{"text":"Sources","id":"_sources"},{"text":"On Table Row","id":"listener"},{"text":"Parameters","id":"_parameters_15"},{"text":"Output","id":"_output_12"},{"text":"For Configurations","id":"_for_configurations_12"},{"text":"Types","id":"_types"},{"text":"Pooling Profile","id":"pooling-profile"},{"text":"Column Type","id":"ColumnType"},{"text":"Reconnection","id":"Reconnection"},{"text":"Reconnect","id":"reconnect"},{"text":"Reconnect Forever","id":"reconnect-forever"},{"text":"Tls","id":"Tls"},{"text":"Trust Store","id":"TrustStore"},{"text":"Key Store","id":"KeyStore"},{"text":"Standard Revocation Check","id":"standard-revocation-check"},{"text":"Custom Ocsp Responder","id":"custom-ocsp-responder"},{"text":"Crl File","id":"crl-file"},{"text":"Expiration Policy","id":"ExpirationPolicy"},{"text":"Redelivery Policy","id":"RedeliveryPolicy"},{"text":"Parameter Type","id":"ParameterType"},{"text":"Type Classifier","id":"TypeClassifier"},{"text":"Statement Result","id":"StatementResult"},{"text":"Repeatable In Memory Iterable","id":"repeatable-in-memory-iterable"},{"text":"Repeatable File Store Iterable","id":"repeatable-file-store-iterable"},{"text":"Repeatable In Memory Stream","id":"repeatable-in-memory-stream"},{"text":"Repeatable File Store Stream","id":"repeatable-file-store-stream"},{"text":"Output Parameter","id":"OutputParameter"},{"text":"See Also","id":"_see_also"}]},"/mule-teradata-connector/release-notes.html":{"text":"Author: Tan Nguyen Last updated: February 13th, 2023 Anypoint Connector for Teradata (Teradata Connector) establishes communication between your Mule app and a Teradata Vantage database, enabling you to connect with your Teradata Vantage instance to load data and run SQL queries in Teradata Vantage tables. Date: February 8, 2023 The initial version is based and extended on MuleSoft’s Database Connector - Mule 4. This version supports the list of features: Perform predefined queries, dynamically constructed queries, and template queries that are self-sufficient and customizable. Use a source listener operation to read from a database in the data source section of a flow. Execute other operations to read and write to a database anywhere in the process section. Run a single bulk update to perform multiple SQL requests. Make Data Definition Language (DDL) requests. Execute stored procedures and SQL scripts. Support pooling profile configuration for database connection Support auto reconnect to database Software Version Mule 4.3.0 and later Anypoint Studio 7.3 and later OpenJDK 8 and 11 MuleSoft Help Center Did this page help?","title":"Teradata Connector Release Notes - Mule 4","component":"ROOT","version":"master","name":"release-notes","url":"/mule-teradata-connector/release-notes.html","titles":[{"text":"1.0.0","id":"_1_0_0"},{"text":"Features","id":"_features"},{"text":"Compatibility","id":"_compatibility"},{"text":"See Also","id":"_see_also"}]},"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html":{"text":"Author: Adam Tworkiewicz Last updated: September 12th, 2022 This how-to demonstrates how to create a connection to Teradata Vantage with DBeaver. Access to a Teradata Vantage instance. If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. DBeaver installed. See DBeaver Community or DBeaver PRO for installation options. Start the new connection wizard by clicking on the plug icon () in the upper left corner of the application window or go to Database → New Database Connection. On Select your database screen, start typing teradata and select the Teradata icon. On the main tab, you need to set all primary connection settings. The required ones include Host, Port, Database, Username, and Password. With DBeaver PRO, you can not only use the standard ordering of tables but also hierarchically link tables to a specific database or user. Expanding and collapsing the databases or users will help you navigate from one area to another without swamping the Database Navigator window. Check the Show databases and users hierarchically box to enable this setting. In many environments Teradata Vantage can only be accessed using the TLS protocol. When in DBeaver PRO, check Use TLS protocol option to enable TLS. Click on Finish. If your database cannot be accessed directly, you can use an SSH tunnel. All settings are available on the SSH tab. DBeaver supports the following authentication methods: user/password, public key, SSH agent authentication. This how-to demonstrated how to create a connection to Teradata Vantage with DBeaver. If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Configure a Teradata Vantage connection in DBeaver","component":"ROOT","version":"master","name":"configure-a-teradata-vantage-connection-in-dbeaver","url":"/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Add a Teradata connection to DBeaver","id":"_add_a_teradata_connection_to_dbeaver"},{"text":"Optional: SSH tunneling","id":"_optional_ssh_tunneling"},{"text":"Summary","id":"_summary"}]},"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html":{"text":"Author: Igor Machin, Ambrose Inman Last updated: November 18th, 2022 This tutorial demonstrates how to install Airflow on an AWS EC2 VM, configure the workflow to use dbt, and run it against a Teradata Vantage database. Airflow is a task scheduling tool that is typically used to build data pipelines to process and load data. In this example, we go through the Airflow installation process, which creates a Docker-based Airflow environment. Once Airflow is installed, we run several Airflow DAG (Direct Acyclic Graph, or simply workflow) examples that load data into a Teradata Vantage database. Access to AWS (Amazon Web Services) with permissions to create a VM. This tutorial can be adjusted to other compute platforms or even on a bare metal machine as long as it has a computing and storage capacity comparable to the machine mentioned in this document (t2.2xlarge EC2 on AWS with approximately 100GB of storage) and is connected to the internet. If you decide to use a different compute platform, some steps in the tutorial will have to be altered. An SSH client. If you are on a Mac or a Linux machine, these tools are already included. If you are on Windows, consider PuTTY or MobaXterm. Access to a Teradata Vantage database. If you don’t have access to Teradata Vantage, explore Vantage Express - a free edition for developers. Go to the AWS EC2 console and click on Launch instance. Select Red Hat for OS image. Select t2.2xlarge for instance type. Create a new key pair or use an existing one. Apply network settings that will allow you ssh to the server and the server will have outbound connectivity to the Internet. Usually, applying the default settings will do. Assign 100GB of storage. ssh to the machine using ec2-user user. Check if python is installed (should be Python 3.7 or higher). Type python or python3 on the command line. If python is not installed (you are getting command not found message) run the commands below to install it. The commands may require you to confirm the installation by typing y and enter. sudo yum install python3 # create a virtual environment for the project sudo yum install python3-pip sudo pip3 install virtualenv Create the Airflow directory structure (from the ec2-user home directory /home/ec2-user) mkdir airflow cd airflow mkdir -p ./dags ./logs ./plugins ./data ./config ./data echo -e \"AIRFLOW_UID=$(id -u)\" > .env Use your preferred file transfer tool (scp, PuTTY, MobaXterm, or similar) to upload airflow.cfg file to airflow/config directory. Docker is a containerization tool that allows us to install Airflow in a containerized environment. The steps must be executed in airflow directory. Uninstall podman (RHEL containerization tool) sudo yum remove docker \\ docker-client \\ docker-client-latest \\ docker-common \\ docker-latest \\ docker-latest-logrotate \\ docker-logrotate \\ docker-engine \\ podman \\ runc Install yum utilities sudo yum install -y yum-utils Add docker to yum repository. sudo yum-config-manager \\ --add-repo \\ https://download.docker.com/linux/centos/docker-ce.repo Install docker. sudo yum install docker-ce docker-ce-cli containerd.io Start docker as a service. The first command runs the docker service automatically when the system starts up next time. The second command starts Docker now. sudo systemctl enable docker sudo systemctl start docker Check if Docker is installed correctly. This command should return an empty list of containers (since we have not started any container yet): sudo docker ps Upload docker-compose.yaml and Dockerfile files to the VM and save them in airflow directory. What docker-compose.yaml and Dockerfile do docker-compose.yaml and Dockerfile files are necessary to build the environment during the installation. The docker-compose.yaml file downloads and installs the Airflow docker container. The container includes the web ui, a Postgres database for metadata, the scheduler, 3 workers (so 3 tasks can be run in parallel), the trigger and the nginx web server to show the docs produced by dbt. In addition host directories are mounted on containers and various other install processes are performed. Dockerfile will additionally install needed packages in each container. If you would like to learn more what docker-compose.yaml and Dockerfile files do, examine these files. There are comments which clarify what is installed and why. Install docker-compose (necessary to run the yaml file). The instructions are based on version 1.29.2. Check out https://github.com/docker/compose/releases site for the latest release and update the command below as needed. sudo curl -L https://github.com/docker/compose/releases/download/1.29.2/docker-compose-$(uname -s)-$(uname -m) -o /usr/local/bin/docker-compose sudo chmod +x /usr/local/bin/docker-compose sudo ln -s /usr/local/bin/docker-compose /usr/bin/docker-compose Test your docker-compose installation. The command should return the docker-compose version, for example docker-compose version 1.29.2, build 5becea4c: docker-compose --version These steps set up a sample dbt project. dbt tool itself will be installed on the containers later by docker-compose. Install git: sudo yum install git Get the sample jaffle shop dbt project: The dbt directories will be created under the home directory (not under airflow). The home directory in our example is /home/ec2-user. # move to home dir cd mkdir dbt cd dbt git clone https://github.com/Teradata/jaffle_shop-dev.git jaffle_shop cd jaffle_shop mkdir target chmod 777 target echo '' > target/index.html chmod o+w target/index.html Create the airflowtest and jaffle_shop users/databases on your Teradata database by using your preferred database tool (Teradata Studio Express, bteq or similar). Log into the database as dbc, then execute the commands (change the passwords if needed): CREATE USER \"airflowtest\" FROM \"dbc\" AS PERM=5000000000 PASSWORD=\"abcd\"; CREATE USER \"jaffle_shop\" FROM \"dbc\" AS PERM=5000000000 PASSWORD=\"abcd\"; Create the dbt configuration directory: cd mkdir .dbt Copy profiles.yml into the .dbt directory. Edit the file so it corresponds to your Teradata database setup. At a minium, you will need to change the host, user and password. Use jaffle_shop user credentials you set up in step 3. Run the docker environment creation script in the airflow directory where Dockerfile and docker-compose.yaml: cd ~/airflow sudo docker-compose up --build This can take 5-10 minutes, when the installation is complete you should see on the screen a message similar to this: airflow-webserver_1 | 127.0.0.1 - - [13/Sep/2022:00:20:48 +0000] \"GET /health HTTP/1.1\" 200 187 \"-\" \"curl/7.74.0\" This means the Airflow webserver is ready to accept calls. Now Airflow should be up. The terminal session that we were using during the installation will be used to display log messages, so it is recommended to open another terminal session for subsequent steps. To check the Airflow installation type: sudo docker ps The result should be something like: CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES 60d50d9f43f5 apache/airflow:2.2.4 \"/usr/bin/dumb-init …\" 18 minutes ago Up 18 minutes (healthy) 8080/tcp airflow_airflow-scheduler_1 e2b46ec98274 apache/airflow:2.2.4 \"/usr/bin/dumb-init …\" 18 minutes ago Up 18 minutes (healthy) 8080/tcp airflow_airflow-worker_3_1 7b44004c7277 apache/airflow:2.2.4 \"/usr/bin/dumb-init …\" 18 minutes ago Up 18 minutes (healthy) 8080/tcp airflow_airflow-worker_1_1 4017b8ce9235 apache/airflow:2.2.4 \"/usr/bin/dumb-init …\" 18 minutes ago Up 18 minutes (healthy) 0.0.0.0:8080->8080/tcp, :::8080->8080/tcp airflow_airflow-webserver_1 3cc407e2d565 apache/airflow:2.2.4 \"/usr/bin/dumb-init …\" 18 minutes ago Up 18 minutes (healthy) 0.0.0.0:5555->5555/tcp, :::5555->5555/tcp, 8080/tcp airflow_flower_1 340a83b202e3 apache/airflow:2.2.4 \"/usr/bin/dumb-init …\" 18 minutes ago Up 18 minutes (healthy) 8080/tcp airflow_airflow-triggerer_1 82198f0d8b84 apache/airflow:2.2.4 \"/usr/bin/dumb-init …\" 18 minutes ago Up 18 minutes (healthy) 8080/tcp airflow_airflow-worker_2_1 382c3077c1e5 redis:latest \"docker-entrypoint.s…\" 18 minutes ago Up 18 minutes (healthy) 6379/tcp airflow_redis_1 8a3be8d8a7f4 nginx \"/docker-entrypoint.…\" 18 minutes ago Up 18 minutes (healthy) 0.0.0.0:4000->80/tcp, :::4000->80/tcp airflow_nginx_1 9ca888e9e8df postgres:13 \"docker-entrypoint.s…\" 18 minutes ago Up 18 minutes (healthy) 5432/tcp airflow_postgres_1 OPTIONAL: If you want to delete the docker installation (for example to update the docker-compose.yaml and the Dockerfile files and recreate a different environment), the command is (from the airflow directory where these files are located): sudo docker-compose down --volumes --rmi all Once the stack is down, update the configuration files and restart by running the command in step 1. To test if the Airflow web UI works, type the following urls on your browser. Replace with the external IP address of the VM: DAG UI: http://:8080/home - username: airflow / password: airflow Flower Airflow UI (worker control): http://:5555/ Copy airflow_dbt_integration.py, db_test_example_dag.py, discover_dag.txt, variables.json files to /home/ec2-user/airflow/dags. Examine the files: airflow_dbt_integration.py - a simple Teradata sql example that creates a few tables and runs queries. db_test_example_dag.py - runs a dbt example (i.e. integration of dbt and airflow with a Teradata database). In this example a fictitious jaffle_shop data model is created, loaded and the documentation for this project is produced (you can view it by pointing your browser to http://:4000/) Adjust db_test_example_dag.py db_test_example_dag.py needs to be updated so that the Teradata database IP address points to your database. discover_dag.py - an example on how to load various types of data files (CSV, Parquet, JSON). The source code file contains comments that explain what the program does and how to use it. This example relies on variables.json file. The file needs to be imported into Airflow. It will happen in subsequent steps. Wait for a few minutes until these dag files are picked up by the airflow tool. Once they are picked up they will appear on the list of dags on the Airflow home page. Import variables.json file as a variable file into Airflow: Click on Admin → Variables menu item to go to the Variables page Click on Choose File, then select variable.json in your file explorer and click on Import Variables Edit the variables to match your environment Run the dags from the UI and check the logs. This tutorial aimed at providing a hands on exercise on how to install an Airflow environment on a Linux server and how to use Airflow to interact with a Teradata Vantage database. An additional example is provided on how to integrate Airflow and the data modelling and maintenance tool dbt to create and load a Teradata Vantage database. Use dbt (data build tool) with Teradata Vantage If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Execute Airflow workflows that use dbt with Teradata Vantage","component":"ROOT","version":"master","name":"execute-airflow-workflows-that-use-dbt-with-teradata-vantage","url":"/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Prerequsites","id":"_prerequsites"},{"text":"Install and execute Airflow","id":"_install_and_execute_airflow"},{"text":"Create a VM","id":"_create_a_vm"},{"text":"Install Python","id":"_install_python"},{"text":"Create an Airflow environment","id":"_create_an_airflow_environment"},{"text":"Install Docker","id":"_install_docker"},{"text":"Install docker-compose and docker environment configuration files","id":"_install_docker_compose_and_docker_environment_configuration_files"},{"text":"Install a test dbt project","id":"_install_a_test_dbt_project"},{"text":"Create the Airflow environment in Docker","id":"_create_the_airflow_environment_in_docker"},{"text":"Run an Airflow DAG","id":"_run_an_airflow_dag"},{"text":"Summary","id":"_summary"},{"text":"Further reading","id":"_further_reading"}]},"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html":{"text":"Author: Ravi Chillanki Last updated: August 4th, 2023 This how-to shows an approach to creating a data pipeline with Teradata database. While there are several ways a data pipeline can be designed, this document helps to understand how components of two of the popular tools in the software industry, namely dbt and FEAST, can be integrated with Teradata Vantage. Teradata’s robust 'Analytics Database Analytic functions' are used on the Teradata data source within dbt, for data transformation. The output of which is loaded into FEAST to materialize features that can be used in ML models. dbt (Data Build Tool) is a data transformation tool that is the cornerstone of the Modern Data Stack. It takes care of the T in ELT (Extract Load Transform). The assumption is that some other process brings raw data into your data warehouse or lake. This data then needs to be transformed. Feast (Feature Store) is a flexible data system that utilizes existing technology to manage and provide machine learning features to real-time models. It allows for customization to meet specific needs. It also allows us to make features consistently available for training and serving, avoid data leakage and decouple ML from data infrastructure. Access to a Teradata Vantage database instance. NOTE: If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. Feast-Teradata library installed locally. See Feast-Teradata Installation instructions dbt library installed locally. See dbt Installation instructions To create a data pipeline with Teradata Vantage as source, perform data transformation on some variables in dbt. The principle transformation of data that we do in dbt is onehotencoding of several columns like gender, marital status, state code etc. On top of that the account type column data will be transformed by performing aggregation operations on the couple of columns. All together generates our desired Analytic_dataset with transformed data. Then we use the transformed dataset output as input in FEAST to store features that can be used to generate training dataset for models. Create a new python environment to manage dbt, feast and their dependencies. Activate the environment: python3 -m venv env source env/bin/activate Clone the tutorial repository and cd into the project directory: git clone https://github.td.teradata.com/rc255085/Tdatapipeline.git The directory structure of the project cloned looks like : Tdatapipeline/ feature_repo/ feature_views.py feature_store.yml dbt_transformation/ ... macros models ... generate_training_data.py CreateDB.sql dbt_project.yml teddy_bank is a fictitious dataset of banking customers, consists of mainly 3 tables customers, accounts, and transactions, with the following entity-relationship diagram: dbt takes these tables' raw data and builds the following model, which is more suitable for ML modelling and analytics tools: We will now configure dbt to connect to your Vantage database. Create file $HOME/.dbt/profiles.yml with the following content. Adjust , , to match your Teradata instance. Database setup The following dbt profile points to a database called teddy_bank. You can change schema value to point to an existing database in your Teradata Vantage instance dbt_transformation: target: dev outputs: dev: type: teradata host: user: password: schema: teddy_bank tmode: ANSI Now, that we have the profile file in place, we can validate the setup: dbt debug If the debug command returned errors, you likely have an issue with the content of profiles.yml. Feast configuration addresses connection to your Vantage database. The yml file create while initializing the feast project, $HOME/.feast/feature_repo/feature_store.yml can hold the details of offline storage, online storage, provider and registry. Adjust , , to match your Teradata instance. Database setup The following dbt profile points to a database called teddy_bank. You can change schema value to point to an existing database in your Teradata Vantage instance project: td_pipeline registry: registry_type: sql path: teradatasql://:@/?database=teddy_bank&LOGMECH=TDNEGO provider: local offline_store: type: feast_teradata.offline.teradata.TeradataOfflineStore host: database: teddy_bank user: password: log_mech: TDNEGO entity_key_serialization_version: 2 path = 'teradatasql://'+ teradata_user +':' + teradata_password + '@'+host + '/?database=' + teradata_database + '&LOGMECH=' + teradata_log_mech Teradata Vantage has long been recognized as a database that provides superior ELT(Extract Load Transform) capabilities. dbt enhances this capabilities by making use of its efficient Analytic functions to transform data. So, in this case, we will use data tables, customers, accounts and transactions, that are made available on Vantage. Now that we have the raw data tables, we can instruct dbt to create the dimensional model: dbt run --select Analytic_Dataset TeradataSource: Data Source for features stored in Teradata (Enterprise or Lake) or accessible via a Foreign Table from Teradata (NOS, QueryGrid) Entity: A collection of semantically related features Feature View: A feature view is a group of feature data from a specific data source. Feature views allow you to consistently define features and their data sources, enabling the reuse of feature groups across a project DBT_source = TeradataSource( database=dbload, table=f\"Analytic_Dataset\", timestamp_field=\"event_timestamp\") customer = Entity(name = \"customer\", join_keys = ['cust_id']) ads_fv = FeatureView(name=\"ads_fv\",entities=[customer],source=DBT_source, schema=[ Field(name=\"age\", dtype=Float32), Field(name=\"income\", dtype=Float32), Field(name=\"q1_trans_cnt\", dtype=Int64), Field(name=\"q2_trans_cnt\", dtype=Int64), Field(name=\"q3_trans_cnt\", dtype=Int64), Field(name=\"q4_trans_cnt\", dtype=Int64), ],) The approach to generate training data can vary. Depending upon the requirements, 'entitydf' can be considered, that would join with the source data tables using the feature views mapping. Here is a sample function that generates certain training dataset. def get_Training_Data(): # Initialize a FeatureStore with our current repository's configurations store = FeatureStore(repo_path=\"feature_repo\") con = create_context(host = os.environ[\"latest_vm\"], username = os.environ[\"dbc_pwd\"], password = os.environ[\"dbc_pwd\"], database = \"EFS\") entitydf = DataFrame('Analytic_Dataset').to_pandas() entitydf.reset_index(inplace=True) print(entitydf) entitydf = entitydf[['cust_id','event_timestamp']] training_data = store.get_historical_features( entity_df=entitydf, features=[ \"ads_fv:age\" ,\"ads_fv:income\" ,\"ads_fv:q1_trans_cnt\" ,\"ads_fv:q2_trans_cnt\" ,\"ads_fv:q3_trans_cnt\" ,\"ads_fv:q4_trans_cnt\" ], full_feature_names=True ).to_df() return training_data This tutorial demonstrated how to use dbt and FEAST with Teradata Vantage. The sample project takes raw data in Teradata Vantage and produces a features with dbt, which is again saved as a model in the database itself. Metadata of features that form the base to generate training dataset for a model was then created with FEAST; all its corresponding tables that create the feature store, are also generated at runtime within the same database. This sample project gives us an idea how to integrate these three robust platforms. dbt documentation dbt-teradata plugin documentation Feast Scalable Registry Enabling highly scalable feature store with Teradata Vantage and FEAST Git Repository for this project. Did this page help?","title":"A Data pipeline with dbt+FEAST on Teradata","component":"ROOT","version":"master","name":"getting.started.dbt-feast-teradata-pipeline","url":"/other-integrations/getting.started.dbt-feast-teradata-pipeline.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Introduction","id":"_introduction"},{"text":"dbt","id":"_dbt"},{"text":"Feast","id":"_feast"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Objective","id":"_objective"},{"text":"Getting started","id":"_getting_started"},{"text":"About the Banking warehouse","id":"_about_the_banking_warehouse"},{"text":"Configure dbt","id":"_configure_dbt"},{"text":"Configure FEAST","id":"_configure_feast"},{"text":"Offline Store Config","id":"_offline_store_config"},{"text":"syntax for Teradata SQL Registry","id":"_syntax_for_teradata_sql_registry"},{"text":"Run dbt","id":"_run_dbt"},{"text":"Create the dimensional model","id":"_create_the_dimensional_model"},{"text":"Test the data","id":"_test_the_data"},{"text":"Run FEAST","id":"_run_feast"},{"text":"Feature Repository definition","id":"_feature_repository_definition"},{"text":"Generate training data","id":"_generate_training_data"},{"text":"Summary","id":"_summary"},{"text":"Further Reading","id":"_further_reading"}]},"/other-integrations/integrate-teradata-vantage-with-knime.html":{"text":"Author: Jeremy Yu Last updated: May 18th, 2022 This how-to describes how to connect to Terdata Vantage from KNIME Analytics Platform. KNIME Analytics Platform is a data science workbench. It supports analytics on various data sources, including Teradata Vantage. Access to a Teradata Vantage instance, version 17.10 or higher. If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. KNIME installed locally. See KNIME installation instructions for details. Go to https://downloads.teradata.com/download/connectivity/jdbc-driver (first time users will need to register) and download the latest version of the JDBC driver. Unzip the downloaded file. You will find terajdbc4.jar file. In KNIME, click on File → Preference. Under Databases, click Add: Register a new database driver. Provide values for ID, Name and Description like below. Click on Add file and point to the .jar file you downloaded earlier. Click on the Find driver classes and the Driver class: should populate with the jdbc.TeraDriver: Click Apply and Close: To test the connection, create a new KNIME workflow and add a Database Reader (legacy) node by dragging it to the workspace to the right: Right-click on the Database Reader (legacy) to configure settings. Select com.teradata.jdbc.Teradriver from the drop-down: Enter the name of the Vantage server and login mechanism, e.g.: To test connection, enter SQL statement in box in lower right. For example, enter SELECT * FROM DBC.DBCInfoV and click Apply to close the dialog: Execute the node to test the connection: The node will show a green light when run successfully. Right-click and select Data from Database to view the results: This how-to demonstrats how to connect from KNIME Analytics Platform to Teradata Vantage. Train ML models in Vantage using only SQL If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Integrate Teradata Vantage with KNIME Analytics Platform","component":"ROOT","version":"master","name":"integrate-teradata-vantage-with-knime","url":"/other-integrations/integrate-teradata-vantage-with-knime.html","titles":[{"text":"Overview","id":"_overview"},{"text":"About KNIME Analytics Platform","id":"_about_knime_analytics_platform"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Integration Procedure","id":"_integration_procedure"},{"text":"Summary","id":"_summary"},{"text":"Further reading","id":"_further_reading"}]},"/query-service/send-queries-using-rest-api.html":{"text":"Author: Sudha Vedula Last updated: May 29th, 2023 Teradata Query Service is a REST API for Vantage that you can use to run standard SQL statements without managing client-side drivers. Use Query Service if you are looking to query and access the Analytics Database through a REST API. This how-to provides examples of common use cases to help you get started with Query Service API. Before starting, make sure you have: Access to a VantageCloud system where Query Service is provisioned, or a VantageCore with Query Service enabled connectivity. If you are an admin and need to install Query Service, see Query Service Installation, Configuration, and Usage Guide. If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. Query Service hostname and system name Authorization credentials to connect to the database Having trouble with the prerequisites? Contact Teradata for setup information. When using the examples, please keep in mind that: The examples in this document use Python, and you can use these to create examples in your language of choice. The examples provided here are complete and ready for you to use, although most require a little customization. The examples in this document use the URL https://:1443/. Replace the following variables with your own value: : Server where Query Service is installed : Preconfigured alias of the system If your Vantage instance is provided through ClearScape Analytics Experience,, is the host URL of your ClearScape Analytics Experience environment, is 'local'. Provide valid credentials to access the target Analytics Database using HTTP Basic or JWT authentication. The database username and password are combined into a string (\"username : password\") which is then encoded using Base64. The API response contains the authorization method and encoded credentials. Request import requests import json import base64 requests.packages.urllib3.disable_warnings() # run it from local. db_user, db_password = 'dbc','dbc' auth_encoded = db_user + ':' + db_password auth_encoded = base64.b64encode(bytes(auth_encoded, 'utf-8')) auth_str = 'Basic ' + auth_encoded.decode('utf-8') print(auth_str) headers = { 'Content-Type': 'application/json', 'Authorization': auth_str # base 64 encoded username:password } print(headers) Response Basic ZGJjOmRiYw== { 'Content-Type': 'application/json', 'Authorization': 'Basic ZGJjOmRiYw==' } Prerequisites: The user must already exist in the database. The database must be JWT enabled. Request import requests import json requests.packages.urllib3.disable_warnings() # run it from local. auth_encoded_jwt = \"\" auth_str = \"Bearer \" + auth_encoded_jwt headers = { 'Content-Type': 'application/json', 'Authorization': auth_str } print(headers) Response {'Content-Type': 'application/json', 'Authorization': 'Bearer '} In the following example, the request includes: SELECT * FROM DBC.DBCInfo: The query to the system with the alias . 'format': 'OBJECT': The format for response. The formats supported are: JSON object, JSON array, and CSV. The JSON object format creates one JSON object per row where the column name is the field name, and the column value is the field value. 'includeColumns': true: The request to include column metadata, such as column names and types, in the response. 'rowLimit': 4: The number of rows to be returned from a query. Request url = 'https://:1443/systems//queries' payload = { 'query': example_query, # 'SELECT * FROM DBC.DBCInfo;', 'format': 'OBJECT', 'includeColumns': True, 'rowLimit': 4 } payload_json = json.dumps(payload) response = requests.request('POST', url, headers=headers, data=payload_json, verify=False) num_rows = response.json().get('results')[0].get('rowCount') print('NUMBER of ROWS', num_rows) print('==========================================================') print(response.json()) Response NUMBER of ROWS 4 ========================================================== { \"queueDuration\":7, \"queryDuration\":227, \"results\":[ { \"resultSet\":True, \"columns\":[ { \"name\":\"DatabaseName\", \"type\":\"CHAR\" }, { \"name\":\"USEDSPACE_IN_GB\", \"type\":\"FLOAT\" }, { \"name\":\"MAXSPACE_IN_GB\", \"type\":\"FLOAT\" }, { \"name\":\"Percentage_Used\", \"type\":\"FLOAT\" }, { \"name\":\"REMAININGSPACE_IN_GB\", \"type\":\"FLOAT\" } ], \"data\":[ { \"DatabaseName\":\"DBC\", \"USEDSPACE_IN_GB\":317.76382541656494, \"MAXSPACE_IN_GB\":1510.521079641879, \"Percentage_Used\":21.03670247964377, \"REMAININGSPACE_IN_GB\":1192.757254225314 }, { \"DatabaseName\":\"EM\", \"USEDSPACE_IN_GB\":0.0007491111755371094, \"MAXSPACE_IN_GB\":11.546071618795395, \"Percentage_Used\":0.006488017745513208, \"REMAININGSPACE_IN_GB\":11.545322507619858 }, { \"DatabaseName\":\"user10\", \"USEDSPACE_IN_GB\":0.019153594970703125, \"MAXSPACE_IN_GB\":9.313225746154785, \"Percentage_Used\":0.20566016, \"REMAININGSPACE_IN_GB\":9.294072151184082 }, { \"DatabaseName\":\"EMEM\", \"USEDSPACE_IN_GB\":0.006140708923339844, \"MAXSPACE_IN_GB\":4.656612873077393, \"Percentage_Used\":0.13187072, \"REMAININGSPACE_IN_GB\":4.650472164154053 }, { \"DatabaseName\":\"EMWork\", \"USEDSPACE_IN_GB\":0.0, \"MAXSPACE_IN_GB\":4.656612873077393, \"Percentage_Used\":0.0, \"REMAININGSPACE_IN_GB\":4.656612873077393 } ], \"rowCount\":4, \"rowLimitExceeded\":True } ] } For response parameters, see Query Service Installation, Configuration, and Usage Guide. To return an API response in CSV format, set the format field in the request with the value CSV. The CSV format contains only the query results and not response metadata. The response contains a line for each row, where each line contains the row columns separated by a comma. The following example returns the data as comma-separated values. Request # CSV with all rows included url = 'https://:1443/systems//queries' payload = { 'query': example_query, # 'SELECT * FROM DBC.DBCInfo;', 'format': 'CSV', 'includeColumns': True } payload_json = json.dumps(payload) response = requests.request('POST', url, headers=headers, data=payload_json, verify=False) print(response.text) Response DatabaseName,USEDSPACE_IN_GB,MAXSPACE_IN_GB,Percentage_Used,REMAININGSPACE_IN_GB DBC ,317.7634754180908,1510.521079641879,21.036679308932754,1192.7576042237881 EM ,7.491111755371094E-4,11.546071618795395,0.006488017745513208,11.545322507619858 user10 ,0.019153594970703125,9.313225746154785,0.20566016,9.294072151184082 EMEM ,0.006140708923339844,4.656612873077393,0.13187072,4.650472164154053 EMWork ,0.0,4.656612873077393,0.0,4.656612873077393 EMJI ,0.0,2.3283064365386963,0.0,2.3283064365386963 USER_NAME ,0.0,2.0,0.0,2.0 readonly ,0.0,0.9313225746154785,0.0,0.9313225746154785 aug12_db ,7.200241088867188E-5,0.9313225746154785,0.0077312,0.9312505722045898 SystemFe ,1.8024444580078125E-4,0.7450580596923828,0.024192,0.744877815246582 dbcmngr ,3.814697265625E-6,0.09313225746154785,0.004096,0.09312844276428223 EMViews ,0.027594566345214844,0.09313225746154785,29.62944,0.06553769111633301 tdwm ,6.732940673828125E-4,0.09313225746154785,0.722944,0.09245896339416504 Crashdumps ,0.0,0.06984921544790268,0.0,0.06984921544790268 SYSLIB ,0.006252288818359375,0.03725290298461914,16.78336,0.031000614166259766 SYSBAR ,4.76837158203125E-6,0.03725290298461914,0.0128,0.03724813461303711 SYSUDTLIB ,3.5381317138671875E-4,0.029802322387695312,1.1872,0.029448509216308594 External_AP ,0.0,0.01862645149230957,0.0,0.01862645149230957 SysAdmin ,0.002307891845703125,0.01862645149230957,12.3904,0.016318559646606445 KZXaDtQp ,0.0,0.009313225746154785,0.0,0.009313225746154785 s476QJ6O ,0.0,0.009313225746154785,0.0,0.009313225746154785 hTzz03i7 ,0.0,0.009313225746154785,0.0,0.009313225746154785 Y5WYUUXj ,0.0,0.009313225746154785,0.0,0.009313225746154785 Use explicit sessions when a transaction needs to span multiple requests or when using volatile tables. These sessions are only reused if you reference the sessions in a query request. The request is queued if a request references an explicit session already in use. Create a session Send a POST request to the /system//sessions endpoint. The request creates a new database session and returns the session details as the response. In the following example, the request includes 'auto_commit': True - the request to commit the query upon completion. Request # first create a session url = 'https://:1443/systems//sessions' payload = { 'auto_commit': True } payload_json = json.dumps(payload) response = requests.request('POST', url, headers=headers, data=payload_json, verify=False) print(response.text) Response { 'sessionId': 1366010, 'system': 'testsystem', 'user': 'dbc', 'tdSessionNo': 1626922, 'createMode': 'EXPLICIT', 'state': 'LOGGINGON', 'autoCommit': true } Use the session created in Step 1 to submit queries Send a POST request to the /system//queries endpoint. The request submits queries to the target system and returns the release and version number of the target system. In the following example, the request includes: SELECT * FROM DBC.DBCInfo: The query to the system with the alias . 'format': 'OBJECT': The format for response. 'Session' : : The session ID returned in Step 1 to create an explicit session. Request # use this session to submit queries afterwards url = 'https://:1443/systems//queries' payload = { 'query': 'SELECT * FROM DBC.DBCInfo;', 'format': 'OBJECT', 'session': 1366010 # /queries endpoint. In the following example, the request includes: SELECT * FROM DBC.DBCInfo: The query to the system with the alias . 'format': 'OBJECT': The format for response. 'spooled_result_set': True: The indication that the request is asynchronous. Request ## Run async query . url = 'https://:1443/systems//queries' payload = { 'query': 'SELECT * FROM DBC.DBCInfo;', 'format': 'OBJECT', 'spooled_result_set': True } payload_json = json.dumps(payload) response = requests.request('POST', url, headers=headers, data=payload_json, verify=False) print(response.text) Response {\"id\":1366025} Get query details using the ID retrieved from Step 1 Send a GET request to the /system//queries/ endpoint, replacing with the ID retrieved from Step 1. The request returns the details of the specific query, including queryState, queueOrder, queueDuration, and so on. For a complete list of the response fields and their descriptions, see Query Service Installation, Configuration, and Usage Guide. Request ## response for async query . url = 'https://:1443/systems//queries/1366025' payload_json = json.dumps(payload) response = requests.request('GET', url, headers=headers, verify=False) print(response.text) Response { \"queryId\":1366025, \"query\":\"SELECT * FROM DBC.DBCInfo;\", \"batch\":false, \"system\":\"testsystem\", \"user\":\"dbc\", \"session\":1366015, \"queryState\":\"RESULT_SET_READY\", \"queueOrder\":0, \"queueDuration\":6, \"queryDuration\":9, \"statusCode\":200, \"resultSets\":{ }, \"counts\":{ }, \"exceptions\":{ }, \"outParams\":{ } } View resultset for asynchronous query Send a GET request to the /system//queries//results endpoint, replacing with the ID retrieved from Step 1. The request returns an array of the result sets and update counts produced by the submitted query. Request url = 'https://:1443/systems//queries/1366025/results' payload_json = json.dumps(payload) response = requests.request('GET', url, headers=headers, verify=False) print(response.text) Response { \"queueDuration\":6, \"queryDuration\":9, \"results\":[ { \"resultSet\":true, \"data\":[ { \"InfoKey\":\"LANGUAGE SUPPORT MODE\", \"InfoData\":\"Standard\" }, { \"InfoKey\":\"RELEASE\", \"InfoData\":\"15.10.07.02\" }, { \"InfoKey\":\"VERSION\", \"InfoData\":\"15.10.07.02\" } ], \"rowCount\":3, \"rowLimitExceeded\":false } ] } Send a GET request to the /system//queries endpoint. The request returns the IDs of active queries. Request url = 'https://:1443/systems//queries' payload={} response = requests.request('GET', url, headers=headers, data=payload, verify=False) print(response.json()) Response [ { \"queryId\": 12516087, \"query\": \"SELECt * from dbcmgr.AlertRequest;\", \"batch\": false, \"system\": \"BasicTestSys\", \"user\": \"dbc\", \"session\": 12516011, \"queryState\": \"REST_SET_READY\", \"queueOrder\": 0, \"queueDurayion\": 3, \"queryDuration\": 3, \"statusCode\": 200, \"resultSets\": {}, \"counts\": {}, \"exceptions\": {}, \"outparams\": {} }, { \"queryId\": 12516088, \"query\": \"SELECt * from dbc.DBQLAmpDataTbl;\", \"batch\": false, \"system\": \"BasicTestSys\", \"user\": \"dbc\", \"session\": 12516011, \"queryState\": \"REST_SET_READY\", \"queueOrder\": 0, \"queueDurayion\": 3, \"queryDuration\": 3, \"statusCode\": 200, \"resultSets\": {}, \"counts\": {}, \"exceptions\": {}, \"outparams\": {} } ] Features, examples, and references: Query Service Installation, Configuration, and Usage Guide Query Service API OpenAPI Specification If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Send queries using REST API","component":"ROOT","version":"master","name":"send-queries-using-rest-api","url":"/query-service/send-queries-using-rest-api.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Query Service API examples","id":"_query_service_api_examples"},{"text":"Connect to your Query Service instance","id":"_connect_to_your_query_service_instance"},{"text":"HTTP Basic authentication","id":"_http_basic_authentication"},{"text":"JWT authentication","id":"_jwt_authentication"},{"text":"Make a simple API request with basic options","id":"_make_a_simple_api_request_with_basic_options"},{"text":"Request a response in CSV format","id":"_request_a_response_in_csv_format"},{"text":"Use explicit session to submit a query","id":"_use_explicit_session_to_submit_a_query"},{"text":"Use asynchronous queries","id":"_use_asynchronous_queries"},{"text":"Get a list of active or queued queries","id":"_get_a_list_of_active_or_queued_queries"},{"text":"Resources","id":"_resources"}]},"/regulus/getting-started-with-regulus.html":{"text":"Author: Thripti Aravind Last updated: May 16th, 2023 This product is in preview and is subject to change. To get early access to Regulus, sign up on the Regulus Home page. This document walks you through a simple workflow where you can use JupyterLab to: Deploy on-demand, scalable compute Connect to your external data source Run the workload Suspend the compute Install and configure Regulus. See Install and Configure Regulus Using Docker. Copy and retain the following: AWS environment variables, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, and AWS_SESSION_TOKEN from your AWS Console. See Environment Variables. API Key from Workspaces. Run %help or %help for details on any magic command. See Regulus JupyterLab Magic Command Reference for more details. Connect to JupyterLab using the URL: http://localhost:8888 and enter the token when prompted. Connect to Workspaces using the API Key. %workspaces_config host=, apikey=, withtls=F Create a new project. Currently, Regulus supports only AWS. %project_create project=, env=aws [Optional] Create an authorization object to store the CSP credentials. Replace AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, and AWS_REGION with your values. %project_auth_create name=, project=, key=, secret=, region= Deploy a query engine for the project. Replace the to a name of your choice. The size parameter value can be small, medium, large, or extralarge. The default size is small. %project_engine_deploy name=, size= The deployment process will take a few minutes to complete. On successful deployment, a password is generated. Establish a connection to your project. %connect When a connection is established, the interface prompts you for a password. Enter the password generated in the previous step. Run the sample workload. Make sure that you do not have tables named SalesCenter or SalesDemo in the selected database. Create a table to store the sales center data. First, drop the table if it already exists. The command fails if the table does not exist. DROP TABLE SalesCenter; CREATE MULTISET TABLE SalesCenter ,NO FALLBACK , NO BEFORE JOURNAL, NO AFTER JOURNAL, CHECKSUM = DEFAULT, DEFAULT MERGEBLOCKRATIO ( Sales_Center_id INTEGER NOT NULL, Sales_Center_Name VARCHAR(255) CHARACTER SET LATIN NOT CASESPECIFIC) NO PRIMARY INDEX ; Load data into the SalesCenter table using the %dataload magic command. %dataload DATABASE=, TABLE=SalesCenter, FILEPATH=notebooks/sql/data/salescenter.csv Unable to locate the salescenter.csv file? Download the file from GitHub Demo: Charting and Visualization Data Verify that the data was inserted. SELECT * FROM SalesCenter ORDER BY 1 Create a table with the sales demo data. DROP TABLE SalesDemo; CREATE MULTISET TABLE SalesDemo ,NO FALLBACK , NO BEFORE JOURNAL, NO AFTER JOURNAL, CHECKSUM = DEFAULT, DEFAULT MERGEBLOCKRATIO ( Sales_Center_ID INTEGER NOT NULL, UNITS DECIMAL(15,4), SALES DECIMAL(15,2), COST DECIMAL(15,2)) NO PRIMARY INDEX ; Load data into the SalesDemo table using the %dataload magic command. %dataload DATABASE=, TABLE=SalesDemo, FILEPATH=notebooks/sql/data/salesdemo.csv Unable to locate the salesdemo.csv file? Download the file from GitHub Demo: Charting and Visualization Data Verify that the sales demo data was inserted successfully. SELECT * FROM SalesDemo ORDER BY sales Open the Navigator for your connection and verify that the tables were created. Run a row count on the tables to verify that the data was loaded. Use charting magic to visualize the result. Provide X and Y axes for your chart. %chart sales_center_name, sales, title=Sales Data Drop the tables. DROP TABLE SalesCenter; DROP TABLE SalesDemo; Back up your project metadata and object definitions in your GitHub repository. %project_backup project= Suspend the query engine. %project_engine_suspend project= Congrats! You’ve successfully run your first use case in JupyterLab. Interested in exploring advanced use cases? Coming soon! Keep watching this space for the GitHub link. Learn about the magic commands available in JupyterLab. See Regulus JupyterLab Magic Command Reference. If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Run a Sample Workload in JupyterLab","component":"ROOT","version":"master","name":"getting-started-with-regulus","url":"/regulus/getting-started-with-regulus.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Before you begin","id":"_before_you_begin"},{"text":"Run your first workload","id":"_run_your_first_workload"},{"text":"Next steps","id":"_next_steps"}]},"/regulus/install-regulus-docker-image.html":{"text":"Author: Thripti Aravind Last updated: May 16th, 2023 This product is in preview and is subject to change. To get early access to Regulus, sign up on the Regulus Home page. Regulus is a self-service platform that enables you to deploy and connect an SQL query engine to your data lake. You can then run your workloads on the on-demand, scalable query engine deployed on your preferred Cloud Service Provider (CSP). Using the query engine, you can leverage the capabilities of a highly parallel database while eliminating the need for data management. Regulus contains the following components: Workspaces: An orchestration service that controls and manages Regulus automation and deployments. It also controls the integration elements that provide a seamless user experience when running data-related projects. Workspaces includes a web-based UI that you can use to authorize the user and define your choice of CSP integrations. Interface: An environment to write and run data projects, connect to the Teradata system, and visualize data. You can use either JupyterLab or Workspaces CLI. Query Engine: A fully managed computational resource that you can use to run your data science and analytical workloads. This document outlines the steps for installing and configuring Regulus using Docker. To use Regulus with Workspaces CLI, see Use Regulus With Workspaces CLI. Make sure you have the following: GitHub account: If you don’t already have a GitHub account, create one at https://github.com/. AWS account: If you don’t have an AWS account, sign up for an AWS Free Tier account at https://aws.amazon.com/free/. For the developer preview, you can host the query engine only on AWS. Docker: To download and install Docker, See https://docs.docker.com/docker-for-windows/install/. The Workspaces Docker images are monolithic images of Workspaces running the necessary services in a single container. Pull the docker image from Docker Hub. docker pull teradata/regulus-workspaces Before proceeding, make sure to: Copy and retain the environment variables, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, and AWS_SESSION_TOKEN, from your AWS Console. See Environment Variables. Set the environment variable, WORKSPACES_HOME, to the directory where the configuration and data files are located. Make sure that the directory exists and appropriate permission is granted. Local Location Container Location Usage $WORKSPACES_HOME /etc/td Stores data and configuration $WORKSPACES_HOME/tls /etc/td/tls Stores cert files You can install Workspaces using one of the following methods: Docker Engine Docker Compose Run the Docker image once you’ve set the WORKSPACES_HOME variable. Modify the directories based on your requirements. docker run -detach \\ --env accept_license=\"Y\" \\ --env AWS_ACCESS_KEY_ID=\"${AWS_ACCESS_KEY_ID}\" \\ --env AWS_SECRET_ACCESS_KEY=\"${AWS_SECRET_ACCESS_KEY}\" \\ --env AWS_SESSION_TOKEN=\"${AWS_SESSION_TOKEN}\" \\ --publish 3000:3000 \\ --publish 3282:3282 \\ --volume ${WORKSPACES_HOME}:/etc/td \\ teradata/regulus-workspaces:latest The command downloads and starts a Workspaces container and publishes the ports needed to access it. Once the Workspaces server is initialized and started, you can access Workspaces using the URL: http://:3000/. With Docker Compose, you can easily configure, install, and upgrade your Docker-based Workspaces installation. Install Docker Compose. See https://docs.docker.com/compose/install/. Create a docker-compose.yml file. version: \"3.9\" services: workspaces: deploy: replicas: 1 container_name: workspaces image: ${WORKSPACES_IMAGE_NAME:-teradata/regulus-workspaces}:${WORKSPACES_IMAGE_TAG:-latest} command: workspaces serve -v restart: unless-stopped ports: - \"443:443/tcp\" - \"3000:3000/tcp\" - \"3282:3282/tcp\" environment: accept_license: \"Y\" TZ: ${WS_TZ:-UTC} AWS_ACCESS_KEY_ID: \"${AWS_ACCESS_KEY_ID}\" AWS_SECRET_ACCESS_KEY: \"${AWS_SECRET_ACCESS_KEY}\" AWS_SESSION_TOKEN: \"${AWS_SESSION_TOKEN}\" volumes: - ${WORKSPACES_HOME:-./volumes/workspaces}:/etc/td - ${WORKSPACES_AWS_CONFIG:-~/.aws}:/root/.aws Go to the directory where the docker-compose.yml file is located and start Workspaces. Docker compose up -d Once the Workspaces server is initialized and started, you can access Workspaces using the URL: http://:3000/. Workspaces uses the GitHub OAuth App to authorize users and manage the project state. To authorize Workspaces to save your project instance configuration, use the Client ID and Client secret key generated during the GitHub OAuth App registration. The project instance configuration values are maintained in your GitHub repositories. First-time users must perform the following steps before proceeding: Log on to your GitHub account and create an OAuth App. See GitHub Documentation. While registering the OAuth App, type the following Workspaces URLs in the URL fields: Homepage URL: http://:3000/ Authorization callback URL: http://:3000/auth/github/callback Copy and retain the Client ID and Client secret key. To set up Workspaces, do the following: Access Workspaces using the URL: http://:3000/. Apply the following general service configuration under Setup. Setting Description Required? Service Base URL [Non-Editable] The root URL of the service. Yes Git Provider The provider for Git integration. Currently, Regulus supports only GitHub. Yes Service Log Lev The level of logging. Yes Engine IP Network Type The type of network assigned to a query engine instance, which can be either public or private. Yes Use TLS Indicates if TLS support is enabled. Teradata recommends enabling this option. Yes Service TLS Certification The server certificate to authenticate the server identity. No Service TLS Certificate Key The server certificate key. No To use a self-signed certificate for Service Base URL, select GENERATE TLS. A certificate and private key are generated and displayed in the respective fields. Select Next. Apply the following settings under Cloud Integrations: AWS. Setting Description Required? Default Region The AWS region you want to deploy the workload in. Teradata recommends choosing the region closest to your primary work location. Yes Default Subnet The default location to launch the query engine. Yes Default CIDRs The list of Classless Inter-Domain Routing (CIDR) addresses used for the query engine. Use CIDR to allocate IP addresses flexibly and efficiently in your network. If you don’t specify a CIDR, the query engine is automatically associated with the default CIDR. No Default Security Groups The list of security groups for the VPC in each region. If you don’t specify a security group, the query engine is automatically associated with the default security group for the VPC. No Select Next. Apply the following settings under Configure GitHub. Setting Description Required? GitHub Application URL [Non-Editable] The URL where the Workspaces server is hosted. Yes GitHub Callback URL [Non-Editable] The URL you are redirected to after you authorize. Yes GitHub Client ID The Client ID you received from GitHub on creating your OAuth App. Yes Use TLS Enable TLS support. Yes GitHub Client Secret The Client secret ID you received from GitHub on creating your OAuth App. Yes GitHub Organization The name of the GitHub organization account that you use to collaborate with your team. No GitHub Base URL The base URL of your GitHub account. The URL may vary based on your account type. For example, https://github.company.com/ for GitHub Enterprise account. No Select Save and then select Login. You are redirected to GitHub. Log on with your GitHub credentials to authorize Workspaces. After authentication, you are redirected to the Workspaces Profile page, and an API Key is generated. You can use the API Key to make requests to the Workspaces service. A new API Key is generated each time you connect to Workspaces. You can use either JupyterLab or Workspaces CLI as your Regulus interface. JupyterLab: Install using one of the following methods: Docker Engine Docker Compose Workspaces CLI: See Use Regulus With Workspaces CLI. Pull the Docker image from the DockerHub at https://hub.docker.com/r/teradata/regulus-jupyter. Run the Docker image once you’ve set the JUPYTER_HOME variable. Modify the directories based on your requirements. docker run -detach \\ --env “accept_license=Y” \\ --publish 8888:8888 \\ --volume ${JUPYTER_HOME}: /home/jovyan/JupyterLabRoot \\ teradata/regulus-jupyter:latest The command downloads and starts a JupyterLab container and publishes the ports needed to access it. Connect to JupyterLab using the URL: http://localhost:8888 and enter the token when prompted. For detailed instructions, see Teradata Vantage™ Modules for Jupyter Installation Guide or Use Vantage from a Jupyter Notebook. With Docker Compose, you can easily configure, install, and upgrade your Docker-based JupyterLab installation. Install Docker Compose. See https://docs.docker.com/compose/install/. Create a docker-compose.yml file. version: \"3.9\" services: jupyter: deploy: replicas: 1 image: teradata/regulus-jupyter:latest environment: - \"accept_license=Y\" ports: - 8888:8888 volumes: - ${JUPYTER_HOME:-./volumes/jupyter}:/home/jovyan/JupyterLabRoot/userdata - ${WORKSPACES_AWS_CONFIG:-~/.aws}:/root/.aws Go to the directory where the docker-compose.yml file is located and start JupyterLab. Docker compose up -d Once the JupyterLab server is initialized and started, you can connect to JupyterLab using the URL: http://localhost:8888 and enter the token when prompted. For detailed instructions, see Teradata Vantage™ Modules for Jupyter Installation Guide or Use Vantage from a Jupyter Notebook. Congrats! You’re all set up to use Regulus. Get started with Regulus by running a simple workflow. See Run a Sample Workload in JupyterLab. Interested in learning how Regulus can help you with real-life use cases? Coming soon! Keep watching this space for the GitHub link. If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Install and Configure Regulus Using Docker","component":"ROOT","version":"master","name":"install-regulus-docker-image","url":"/regulus/install-regulus-docker-image.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Before you begin","id":"_before_you_begin"},{"text":"Install Workspaces","id":"_install_workspaces"},{"text":"Install Workspaces using Docker Engine","id":"_install_workspaces_using_docker_engine"},{"text":"Install Workspaces using Docker Compose","id":"_install_workspaces_using_docker_compose"},{"text":"Configure and set up Workspaces","id":"_configure_and_set_up_workspaces"},{"text":"Install a Regulus interface","id":"_install_a_regulus_interface"},{"text":"Install JupyterLab using Docker Engine","id":"_install_jupyterlab_using_docker_engine"},{"text":"Install JupyterLab using Docker Compose","id":"_install_jupyterlab_using_docker_compose"},{"text":"Next steps","id":"_next_steps"}]},"/regulus/regulus-magic-reference.html":{"text":"Author: Thripti Aravind Last updated: May 16th, 2023 This product is in preview and is subject to change. To get early access to Regulus, sign up on the Regulus Home page. Regulus JupyterLab supports the following magic commands in addition to the existing Teradata SQL Kernel magic commands. See Teradata JupyterLab Getting Started Guide. Description: One-time configuration to bind with the Workspaces service. Usage: %workspaces_config host=, apikey=, withtls=F Where: host: Name or IP address of the query engine service. apikey: API Key value from the Workspaces Profile page. [Optional] withTLS: If False (F), the default client-server communication does not use TLS. Output: Workspace configured for host= Description: Create a new project. This command also creates a new repository with the project name in your GitHub account. The configurations are stored in the engine.yml file. Usage: %project_create project=, env=, team= Where: project: Name of the project to be created. env: Cloud environment where the project is hosted. The value can be aws, azure, gcp, or vsphere. For the current release, only AWS is supported. [Optional] team: Name of the team collaborating on the project. Output: Project created Description: Delete a project. Running this command removes the GitHub repository containing the objects created using Regulus. Usage: %project_delete project=, team= Where: project: Name of the project to be deleted. [Optional] team: Name of the team collaborating on the project. Output: Project deleted Description: List the details of the projects. Use the project parameter to get the details of a specific project. All the projects are listed if you run the command without any parameters. Usage: %project_list project= Where: project: Name of the project to be listed. Output: Description: Create an authorization object to store object store credentials. You must create the authorization object before deploying the query engine. The authorization details are retained and are included while redeploying the project. Optionally, you can create authorizations manually using the CREATE AUTHORIZATION SQL command after deploying the query engine. In this case, the authorization details are not retained. Usage: %project_auth_create project=, name=, key=, secret=, region= Where: project: Name of the project. name: Authorization name for the object store. key: Authorization key of the object store. secret: Authorization secret access ID of the object store. region: Region of the object store; local for the local object store. Output: Authorization 'name' created Description: Remove an object store authorization. Usage: %project_auth_delete project=, name= Where: project: Name of the project. name: Authorization name for the object store. Output: Authorization 'name' deleted Description: List object store authorizations that are created for a project. Usage: %project_auth_list project= Where: project: Name of the project. Output: Description: Deploy a query engine for the project. The deployment process will take a few minutes to complete. On successful deployment, a password is generated. Usage: %project_engine_deploy project=, size=, node=, subnet=, region=, secgroups=, cidrs= Where: project: Name of the project. size: Size of the query engine. The value can be: small medium large extralarge [Optional] node: Number of query engine nodes to be deployed. The default value is 1. [Optional] subnet: Subnet used for the query engine if there are no default values from the service. [Optional] region: Region used for the query engine if there are no default values from service. [Optional] secgroups: List of security groups for the VPC in each region. If you don’t specify a security group, the query engine is automatically associated with the default security group for the VPC. [Optional] cidr: List of CIDR addresses used for the query engine. Output: Started deploying. Success: Compute Engine setup, look at the connection manager Description: Stop the query engine after you’re done with your work. Usage: %project_engine_suspend Where: project: Name of the project. Output: Started suspend. Success: connection removed Success: Suspending Compute Engine Description: View the list of query engines deployed for your project. Usage: %project_engine_list project= Where: project: Name of the project. Output: Description: View the list of collaborators assigned to the project. Usage: %project_user_list project= Where: [Optional] project: Name of the project. Output: Description: Back up your project metadata and object definition inside the query engine. Usage: %project_backup project= Where: project: Name of the project. Output: Backup of the object definitions created Description: Restore your project metadata and object definition from your GitHub repository. Usage: %project_restore project=, gitref= Where: project: Name of the project. [Optional] gitref: Git reference. Output: Restore of the object definitions done Description: View the list of magics provided with Regulus-Teradata SQL CE Kernel. Usage: %help Additionally, you can see detailed help messages per command. Usage: %help If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Regulus JupyterLab Magic Command Reference","component":"ROOT","version":"master","name":"regulus-magic-reference","url":"/regulus/regulus-magic-reference.html","titles":[{"text":"Overview","id":"_overview"},{"text":"%workspaces_config","id":"_workspaces_config"},{"text":"%project_create","id":"_project_create"},{"text":"%project_delete","id":"_project_delete"},{"text":"%project_list","id":"_project_list"},{"text":"%project_auth_create","id":"_project_auth_create"},{"text":"%project_auth_delete","id":"_project_auth_delete"},{"text":"%project_auth_list","id":"_project_auth_list"},{"text":"%project_engine_deploy","id":"_project_engine_deploy"},{"text":"%project_engine_suspend","id":"_project_engine_suspend"},{"text":"%project_engine_list","id":"_project_engine_list"},{"text":"%project_user_list","id":"_project_user_list"},{"text":"%project_backup","id":"_project_backup"},{"text":"%project_restore","id":"_project_restore"},{"text":"%help","id":"_help"}]},"/regulus/using-regulus-workspace-cli.html":{"text":"Author: Thripti Aravind Last updated: May 16th, 2023 This product is in preview and is subject to change. To get early access to Regulus, contact Support. Workspaces CLI is a command line interface (CLI) for Regulus. This document provides step-by-step instructions to install Workspaces CLI. In this document, you can find all the necessary information and guidance on the CLI commands, allowing you to navigate the command line quickly and efficiently. You can also use JupyterLab as your Regulus interface. See Run a Sample Workload in JupyterLab. Make sure you have: Installed, configured, and set up Workspaces using the steps outlined in Install and Configure Regulus Using Docker. Copied and retained the AWS environment variables and API Key. Download the Workspaces CLI executable file from https://downloads.teradata.com/download/tools/regulus-ctl. Workspaces CLI supports all major operating systems. Open the terminal window and run the workspacesctl file. Windows MacOS worksapcesctl.exe workspacesctl Configure Workspaces using the API Key. workspacesctl workspaces config Create a new project. workspacesctl project create -e --no-tls Deploy a query engine for the project. workspacesctl project engine deploy -t --no-tls Run a sample workload. Manage your project and query engine. Backup your project. workspacesctl project backup --no-tls Suspend the query engine. workspacesctl project engine suspend --no-tls For a supported list of commands, see Workspaces CLI Reference. Description: One-time configuration to bind CLI with the Workspaces service. Go to the Workspaces Profile page and copy the API Key. Usage: workspacesctl workspaces config Flags: -h, --help: List the details of the command. Output: Follow the prompts to choose the Workspaces endpoint and API Key. Description: View the list of users set up for Regulus on GitHub. Usage: workspacesctl workspaces user list --no-tls If your setup includes TLS configuration, you need not add the -no-tls parameter. Flags: -h, --help: List the details of the command. Output: Description: Create a project in Regulus. The command also creates a corresponding GitHub repository for the project. Usage: workspacesctl project create -e --no-tls If your setup includes TLS configuration, you need not add the -no-tls parameter. Flags: Flag Type Description Required? -e, --environment String Environment where the project query engine is hosted. Values: aws, azure, or gcloud. Currently, Regulus supports only aws. Yes -f, --manifest String Path to manifest the yaml file to be used for the input. No -t, --team String Team assigned to the project. No -h, --help List the details of the command. No Output: Description: View the list of all projects set up in Regulus. Usage: workspacesctl project list --no-tls or workspacesctl project list --no-tls If your setup includes TLS configuration, you need not add the -no-tls parameter. Flags: -h, --help: List the details of the command. Output: Description: Delete a project in Regulus. Usage: workspacesctl project delete --no-tls If your setup includes TLS configuration, you need not add the -no-tls parameter. Flags: -h, --help: List the details of the command. Output: The output is in YAML format. Description: View the list of collaborators assigned to the project in GitHub. Usage: workspacesctl project user list --no-tls If your setup includes TLS configuration, you need not add the -no-tls parameter. Flags: -h, --help: List the details of the command. Output: Description: Back up the query engine object definitions to the GitHub repository assigned for the project. Usage: workspacesctl project backup --no-tls If your setup includes TLS configuration, you need not add the -no-tls parameter. Flags: -h, --help: List the details of the command. Output: The output is in YAML format. Description: Restore all query engine object definitions from the project GitHub repository. Usage: workspacesctl project restore --no-tls or workspacesctl project restore --gitref --no-tls If your setup includes TLS configuration, you need not add the -no-tls parameter. Flags: Flag Type Description Required? -g, --gitref String Tag, SHA, or branch name. No -h, --help List the details of the command. No Output: The output is in YAML format. Description: Deploy a query engine for the project. Usage: workspacesctl project engine deploy -t small --no-tls If your setup includes TLS configuration, you need not add the -no-tls parameter. Flags: Flag Type Description Required? -c, --instance-count Int Number of query engine nodes. The default value is 1. No -t, --instance-size String Instance size of the query engine. No -f, --manifest String Path to manifest the yaml file to use for the input. No -r, --region String Region for the deployment. No -s, --subnet-id String Subnet ID for the deployment. No -h, --help List the details of the command. No Description: Destroy the deployed query engine and back up the object definitions created during the session. Usage: workspacesctl project engine suspend --no-tls If your setup includes TLS configuration, you need not add the -no-tls parameter. Flags: -h, --help: List the details of the command. Output: The output is in YAML format. Description: View the detailed information about the query engine for a project. The command displays the last state of the query engine. Usage: workspacesctl project engine list --no-tls If your setup includes TLS configuration, you need not add the -no-tls parameter. Flags: -h, --help: List the details of the command. Output: The output is in YAML format. Description: Create authorization for object store. Usage: workspacesctl project auth create -n -a -s -r --no-tls If your setup includes TLS configuration, you need not add the -no-tls parameter. Flags: Flag Type Description Required? -a, --accesskey String Authorization access key or ID. Yes, if you’re not using the -f flag. -n, --name string String Authorization name for the object store. Yes, if you’re not using the -f flag. -f, --manifest String Path to manifest the yaml file to use for the input. No -r, --region String Region of the object store. Yes -s, --secret string String Authorization secret access key of the object store. Yes, if you’re not using the -f flag. -h, --help List the details of the command. No Output: The output is in YAML format. Description: List object store authorizations that are created for a project. Usage: workspacesctl project auth list --no-tls If your setup includes TLS configuration, you need not add the -no-tls parameter. Flags: -h, --help: List the details of the command. Output: The output is in YAML format. Description: Delete object store authorizations that are created for a project. Usage: workspacesctl project auth delete -n --no-tls If your setup includes TLS configuration, you need not add the -no-tls parameter. Flags: Flag Type Description Required? -n, --name String Name of the object store authorization to delete. Yes -h, --help List the details of the command. No Output: The output is in YAML format. If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Use Regulus With Workspaces CLI","component":"ROOT","version":"master","name":"using-regulus-workspace-cli","url":"/regulus/using-regulus-workspace-cli.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Before you begin","id":"_before_you_begin"},{"text":"Install Workspaces CLI","id":"_install_workspaces_cli"},{"text":"Use Workspaces CLI","id":"_use_workspaces_cli"},{"text":"Workspaces CLI reference","id":"_workspaces_cli_reference"},{"text":"workspaces config","id":"_workspaces_config"},{"text":"workspaces user list","id":"_workspaces_user_list"},{"text":"project create","id":"_project_create"},{"text":"project list","id":"_project_list"},{"text":"project delete","id":"_project_delete"},{"text":"project user list","id":"_project_user_list"},{"text":"project backup","id":"_project_backup"},{"text":"project restore","id":"_project_restore"},{"text":"project engine deploy","id":"_project_engine_deploy"},{"text":"project engine suspend","id":"_project_engine_suspend"},{"text":"project engine list","id":"_project_engine_list"},{"text":"project auth create","id":"_project_auth_create"},{"text":"project auth list","id":"_project_auth_list"},{"text":"project auth delete","id":"_project_auth_delete"}]},"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html":{"text":"Author: Adam Tworkiewicz Last updated: April 6th, 2022 We often have a need to move large volumes of data into Vantage. Teradata offers Teradata Parallel Transporter (TPT) utility that can efficiently load large amounts of data into Teradata Vantage. This how-to demonstrates how to use TPT. In this scenario, we will load over 300k records, over 40MB of data, in a couple of seconds. Access to a Teradata Vantage instance. If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. Download Teradata Tools and Utilities (TTU) - supported platforms: Windows, MacOS, Linux (requires registration). Windows MacOS Linux Unzip the downloaded file and run setup.exe. Unzip the downloaded file and run TeradataToolsAndUtilitiesXX.XX.XX.pkg. Unzip the downloaded file, go to the unzipped directory and run: ./setup.sh a We will be working with the US tax fillings for nonprofit organizations. Nonprofit tax filings are public data. The US Internal Revenue Service publishes them in S3 bucket. Let’s grab a summary of filings for 2020: https://downloads.teradata.com/sites/default/files/2022-11/index_2020.csv. You can use your browser, wget or curl to save the file locally. Let’s create a database in Vantage. Use your favorite SQL tool to run the following query: CREATE DATABASE irs AS PERMANENT = 120e6, -- 120MB SPOOL = 120e6; -- 120MB We will now run TPT. TPT is a command-line tool that can be used to load, extract and update data in Teradata Vantage. These various functions are implemented in so called operators. For example, loading data into Vantage is handled by the Load operator. The Load operator is very efficient in uploading large amounts of data into Vantage. The Load operator, in order to be fast, has several restrictions in place. It can only populate empty tables. Inserts to already populated tables are not supported. It doesn’t support tables with secondary indices. Also, it won’t insert duplicate records, even if a table is a MULTISET table. For the full list of restrictions check out Teradata® TPT Reference - Load Operator - Restrictions and Limitations. TPT has its own scripting language. The language allows you to prepare the database with arbitrary SQL commands, declare the input source and define how the data should be inserted into Vantage. To load the csv data to Vantage, we will define and run a job. The job will prepare the database. It will remove old log and error tables and create the target table. It will then read the file and insert the data into the database. Create a job variable file that will tell TPT how to connect to our Vantage database. Create file jobvars.txt and insert the following content. Replace host with the host name of your database. For example, if you are using a local Vantage Express instance, use 127.0.0.1. username with the database user name, and password with the database password. Note that the preparation step (DDL) and the load step have their own configuration values and that the config values need to be entered twice to configure both the DDL and the load step. TargetTdpId = 'host' TargetUserName = 'username' TargetUserPassword = 'password' FileReaderDirectoryPath = '' FileReaderFileName = 'index_2020.csv' FileReaderFormat = 'Delimited' FileReaderOpenMode = 'Read' FileReaderTextDelimiter = ',' FileReaderSkipRows = 1 DDLErrorList = '3807' LoadLogTable = 'irs.irs_returns_lg' LoadErrorTable1 = 'irs.irs_returns_et' LoadErrorTable2 = 'irs.irs_returns_uv' LoadTargetTable = 'irs.irs_returns' Create a file with the following content and save it as load.txt. See comments within the job file to understand its structure. DEFINE JOB file_load DESCRIPTION 'Load a Teradata table from a file' ( /* Define the schema of the data in the csv file */ DEFINE SCHEMA SCHEMA_IRS ( in_return_id VARCHAR(19), in_filing_type VARCHAR(5), in_ein VARCHAR(19), in_tax_period VARCHAR(19), in_sub_date VARCHAR(22), in_taxpayer_name VARCHAR(100), in_return_type VARCHAR(5), in_dln VARCHAR(19), in_object_id VARCHAR(19) ); /* In the first step, we are sending statements to remove old tables and create a new one. This step replies on configuration stored in `od_IRS` operator */ STEP st_Setup_Tables ( APPLY ('DROP TABLE ' || @LoadLogTable || ';'), ('DROP TABLE ' || @LoadErrorTable1 || ';'), ('DROP TABLE ' || @LoadErrorTable2 || ';'), ('DROP TABLE ' || @LoadTargetTable || ';'), ('CREATE TABLE ' || @LoadTargetTable || ' ( return_id INT, filing_type VARCHAR(5) CHARACTER SET LATIN NOT CASESPECIFIC, ein INT, tax_period INT, sub_date VARCHAR(100) CHARACTER SET LATIN NOT CASESPECIFIC, taxpayer_name VARCHAR(100) CHARACTER SET LATIN NOT CASESPECIFIC, return_type VARCHAR(5) CHARACTER SET LATIN NOT CASESPECIFIC, dln BIGINT, object_id BIGINT ) PRIMARY INDEX ( return_id );') TO OPERATOR ($DDL); ); /* Finally, in this step we read the data from the file operator and send it to the load operator. */ STEP st_Load_File ( APPLY ('INSERT INTO ' || @LoadTargetTable || ' ( return_id, filing_type, ein, tax_period, sub_date, taxpayer_name, return_type, dln, object_id ) VALUES ( :in_return_id, :in_filing_type, :in_ein, :in_tax_period, :in_sub_date, :in_taxpayer_name, :in_return_type, :in_dln, :in_object_id );') TO OPERATOR ($LOAD) SELECT * FROM OPERATOR($FILE_READER(SCHEMA_IRS)); ); ); Run the job: tbuild -f load.txt -v jobvars.txt -j file_load A successful run will return logs that look like this: Teradata Parallel Transporter Version 17.10.00.10 64-Bit The global configuration file '/opt/teradata/client/17.10/tbuild/twbcfg.ini' is used. Log Directory: /opt/teradata/client/17.10/tbuild/logs Checkpoint Directory: /opt/teradata/client/17.10/tbuild/checkpoint Job log: /opt/teradata/client/17.10/tbuild/logs/file_load-4.out Job id is file_load-4, running on osboxes Teradata Parallel Transporter SQL DDL Operator Version 17.10.00.10 od_IRS: private log not specified od_IRS: connecting sessions od_IRS: sending SQL requests od_IRS: TPT10508: RDBMS error 3807: Object 'irs_returns_lg' does not exist. od_IRS: TPT18046: Error is ignored as requested in ErrorList od_IRS: TPT10508: RDBMS error 3807: Object 'irs_returns_et' does not exist. od_IRS: TPT18046: Error is ignored as requested in ErrorList od_IRS: TPT10508: RDBMS error 3807: Object 'irs_returns_uv' does not exist. od_IRS: TPT18046: Error is ignored as requested in ErrorList od_IRS: disconnecting sessions od_IRS: Total processor time used = '0.013471 Second(s)' od_IRS: Start : Thu Apr 7 20:56:32 2022 od_IRS: End : Thu Apr 7 20:56:32 2022 Job step st_Setup_Tables completed successfully Teradata Parallel Transporter Load Operator Version 17.10.00.10 ol_IRS: private log not specified Teradata Parallel Transporter DataConnector Operator Version 17.10.00.10 op_IRS[1]: Instance 1 directing private log report to 'dtacop-root-368731-1'. op_IRS[1]: DataConnector Producer operator Instances: 1 op_IRS[1]: ECI operator ID: 'op_IRS-368731' op_IRS[1]: Operator instance 1 processing file 'index_2020.csv'. ol_IRS: connecting sessions ol_IRS: preparing target table ol_IRS: entering Acquisition Phase ol_IRS: entering Application Phase ol_IRS: Statistics for Target Table: 'irs.irs_returns' ol_IRS: Total Rows Sent To RDBMS: 333722 ol_IRS: Total Rows Applied: 333722 ol_IRS: Total Rows in Error Table 1: 0 ol_IRS: Total Rows in Error Table 2: 0 ol_IRS: Total Duplicate Rows: 0 op_IRS[1]: Total files processed: 1. ol_IRS: disconnecting sessions Job step st_Load_File completed successfully Job file_load completed successfully ol_IRS: Performance metrics: ol_IRS: MB/sec in Acquisition phase: 9.225 ol_IRS: Elapsed time from start to Acquisition phase: 2 second(s) ol_IRS: Elapsed time in Acquisition phase: 5 second(s) ol_IRS: Elapsed time in Application phase: 3 second(s) ol_IRS: Elapsed time from Application phase to end: < 1 second ol_IRS: Total processor time used = '0.254337 Second(s)' ol_IRS: Start : Thu Apr 7 20:56:32 2022 ol_IRS: End : Thu Apr 7 20:56:42 2022 Job start: Thu Apr 7 20:56:32 2022 Job end: Thu Apr 7 20:56:42 2022 In our case, the file is in an S3 bucket. That means, that we can use Native Object Storage (NOS) to ingest the data: -- create an S3-backed foreign table CREATE FOREIGN TABLE irs_returns_nos USING ( LOCATION('/s3/s3.amazonaws.com/irs-form-990/index_2020.csv') ); -- load the data into a native table CREATE MULTISET TABLE irs_returns_nos_native (RETURN_ID, FILING_TYPE, EIN, TAX_PERIOD, SUB_DATE, TAXPAYER_NAME) AS ( SELECT RETURN_ID, FILING_TYPE, EIN, TAX_PERIOD, SUB_DATE, TAXPAYER_NAME FROM irs_returns_nos ) WITH DATA NO PRIMARY INDEX; The NOS solution is convenient as it doesn’t depend on additional tools. It can be implemented using only SQL. It performs well, especially for Vantage deployments with a high number of AMPs as NOS tasks are delegated to AMPs and run in parallel. Also, splitting the data in object storage into multiple files may further improve performance. This how-to demonstrated how to ingest large amounts of data into Vantage. We loaded hundreds of thousands or records into Vantage in a couple of seconds using TPT. Teradata® TPT User Guide Teradata® TPT Reference Query data stored in object storage If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. Did this page help?","title":"Run large bulkloads efficiently with Teradata Parallel Transporter (TPT)","component":"ROOT","version":"master","name":"run-bulkloads-efficiently-with-teradata-parallel-transporter","url":"/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html","titles":[{"text":"Overview","id":"_overview"},{"text":"Prerequisites","id":"_prerequisites"},{"text":"Install TTU","id":"_install_ttu"},{"text":"Get Sample data","id":"_get_sample_data"},{"text":"Create a database","id":"_create_a_database"},{"text":"Run TPT","id":"_run_tpt"},{"text":"TPT vs. NOS","id":"_tpt_vs_nos"},{"text":"Summary","id":"_summary"},{"text":"Further reading","id":"_further_reading"}]}}}) \ No newline at end of file diff --git a/pr-preview/pr-110/segment.html b/pr-preview/pr-110/segment.html deleted file mode 100644 index 9b93a2201..000000000 --- a/pr-preview/pr-110/segment.html +++ /dev/null @@ -1,2767 +0,0 @@ - - - - - - Store events from Twilio Segment :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Store events from Twilio Segment

-

Author: Adam Tworkiewicz
-Last updated: January 18th, 2022

-
-

Overview

-
-
-

This solution listens to events from Twilio Segment and writes data to a Teradata Vantage instance. The example uses Google Cloud but it can be translated into any cloud platform.

-
-
-
-
-

Architecture

-
-
-

In this solution, Twilio Segment writes raw event data to Google Cloud Pub/Sub. Pub/Sub forwards events to a Cloud Run application. The Cloud Run app writes data to a Teradata Vantage database. It’s a serverless solution that doesn’t require allocation or management of any VM’s.

-
-
-
-Segment Google Cloud Flow Diagram -
-
-
-
-
-

Deployment

-
-
-

Prerequisites

-
-
    -
  1. -

    A Google Cloud account. If you don’t have an account, you can create one at https://console.cloud.google.com/.

    -
  2. -
  3. -

    gcloud installed. See https://cloud.google.com/sdk/docs/install.

    -
  4. -
  5. -

    A Teradata Vantage instance that Google Cloud Run can talk to.

    -
    - - - - - -
    - - -If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. -
    -
    -
  6. -
-
-
-
-

Build and deploy

-
-
    -
  1. -

    Clone the sample repository:

    -
    -
    -
    git clone git@github.com:Teradata/segment-integration-tutorial.git
    -
    -
    -
  2. -
  3. -

    The repo contains segment.sql file that sets up the database. the script on your Vantage db using your favorite SQL IDE, [Teradata Studio](https://downloads.teradata.com/download/tools/teradata-studio) or command line tool called bteq (download for Windows, Linux, macOS). -The SQL script will create a new database called Segment and a set of tables to store Segment events.

    -
  4. -
  5. -

    Set the default project and region:

    -
    -
    -
    gcloud config set project <PROJECT_ID>
    -gcloud config set compute/region <REGION>
    -
    -
    -
  6. -
  7. -

    Retrieve the project id and the number. We will need it in subsequent steps:

    -
    -
    -
    export PROJECT_ID=$(gcloud config get-value project)
    -
    -export PROJECT_NUMBER=$(gcloud projects list \
    -  --filter="$(gcloud config get-value project)" \
    -  --format="value(PROJECT_NUMBER)")
    -
    -
    -
  8. -
  9. -

    Enable required Google Cloud services:

    -
    -
    -
    gcloud services enable cloudbuild.googleapis.com containerregistry.googleapis.com run.googleapis.com secretmanager.googleapis.com pubsub.googleapis.com
    -
    -
    -
  10. -
  11. -

    Build the application:

    -
    -
    -
    gcloud builds submit --tag gcr.io/$PROJECT_ID/segment-listener
    -
    -
    -
  12. -
  13. -

    Define an API key that you will share with Segment. Store the API key in Google Cloud Secret Manager:

    -
    -
    -
    gcloud secrets create VANTAGE_USER_SECRET
    -echo -n 'dbc' > /tmp/vantage_user.txt
    -gcloud secrets versions add VANTAGE_USER_SECRET --data-file=/tmp/vantage_user.txt
    -
    -gcloud secrets create VANTAGE_PASSWORD_SECRET
    -echo -n 'dbc' > /tmp/vantage_password.txt
    -gcloud secrets versions add VANTAGE_PASSWORD_SECRET --data-file=/tmp/vantage_password.txt
    -
    -
    -
  14. -
  15. -

    The application that write Segment data to Vantage will use Cloud Run. We first need to allow Cloud Run to access secrets:

    -
    -
    -
    gcloud projects add-iam-policy-binding $PROJECT_ID \
    -     --member=serviceAccount:$PROJECT_NUMBER-compute@developer.gserviceaccount.com \
    -     --role=roles/secretmanager.secretAccessor
    -
    -
    -
  16. -
  17. -

    Deploy the app to Cloud Run (replace <VANTAGE_HOST> with the hostname or IP of your Teradata Vantage database). The second export statement saves the service url as we need it for subsequent commands:

    -
    -
    -
    gcloud run deploy --image gcr.io/$PROJECT_ID/segment-listener segment-listener \
    -  --region $(gcloud config get-value compute/region) \
    -  --update-env-vars VANTAGE_HOST=35.239.251.1 \
    -  --update-secrets 'VANTAGE_USER=VANTAGE_USER_SECRET:1, VANTAGE_PASSWORD=VANTAGE_PASSWORD_SECRET:1' \
    -  --no-allow-unauthenticated
    -
    -export SERVICE_URL=$(gcloud run services describe segment-listener --platform managed --region $(gcloud config get-value compute/region) --format 'value(status.url)')
    -
    -
    -
  18. -
  19. -

    Create a Pub/Sub topic that will receive events from Segment:

    -
    -
    -
    gcloud pubsub topics create segment-events
    -
    -
    -
  20. -
  21. -

    Create a service account that will be used by Pub/Sub to invoke the Cloud Run app:

    -
    -
    -
    gcloud iam service-accounts create cloud-run-pubsub-invoker \
    -     --display-name "Cloud Run Pub/Sub Invoker"
    -
    -
    -
  22. -
  23. -

    Give the service account permission to invoke Cloud Run:

    -
    -
    -
    gcloud run services add-iam-policy-binding segment-listener \
    -  --region $(gcloud config get-value compute/region) \
    -  --member=serviceAccount:cloud-run-pubsub-invoker@$PROJECT_ID.iam.gserviceaccount.com \
    -  --role=roles/run.invoker
    -
    -
    -
  24. -
  25. -

    Allow Pub/Sub to create authentication tokens in your project:

    -
    -
    -
    gcloud projects add-iam-policy-binding $PROJECT_ID \
    -  --member=serviceAccount:service-$PROJECT_NUMBER@gcp-sa-pubsub.iam.gserviceaccount.com \
    -  --role=roles/iam.serviceAccountTokenCreator
    -
    -
    -
  26. -
  27. -

    Create a Pub/Sub subscription with the service account:

    -
    -
    -
    gcloud pubsub subscriptions create segment-events-cloudrun-subscription --topic projects/$PROJECT_ID/topics/segment-events \
    -   --push-endpoint=$SERVICE_URL \
    -   --push-auth-service-account=cloud-run-pubsub-invoker@$PROJECT_ID.iam.gserviceaccount.com \
    -   --max-retry-delay 600 \
    -   --min-retry-delay 30
    -
    -
    -
  28. -
  29. -

    Allow Segment to publish to your topic. To do that, assign pubsub@segment-integrations.iam.gserviceaccount.com role Pub/Sub Publisher in your project at https://console.cloud.google.com/cloudpubsub/topic/list. See Segment manual for details.

    -
  30. -
  31. -

    Configure your Google Cloud Pub/Sub a destination in Segment. Use the full topic projects/<PROJECT_ID>/topics/segment-events and map all Segment event types (using * character) to the topic.

    -
  32. -
-
-
-
-
-
-

Try it out

-
-
-
    -
  1. -

    Use Segment’s Event Tester functionality to send a sample payload to the topic. Verify that the sample data has been stored in Vantage.

    -
  2. -
-
-
-
-
-

Limitations

-
-
-
    -
  • -

    The example shows how to deploy the app in a single region. In many cases, this setup doesn’t guarantee enough uptime. The Cloud Run app should be deployed in more than one region behind a Global Load Balancer.

    -
  • -
-
-
-
-
-

Summary

-
-
-

This how-to demonstrates how to send Segment events to Teradata Vantage. The configuration forwards events from Segment to Google Cloud Pub/Sub and then on to a Cloud Run application. The application writes data to Teradata Vantage.

-
-
-
-
-

Further reading

-
- -
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/select-the-right-data-ingestion-tools-for-teradata-vantage.html b/pr-preview/pr-110/select-the-right-data-ingestion-tools-for-teradata-vantage.html deleted file mode 100644 index 09d6dd854..000000000 --- a/pr-preview/pr-110/select-the-right-data-ingestion-tools-for-teradata-vantage.html +++ /dev/null @@ -1,2601 +0,0 @@ - - - - - - Select the right data ingestion tools for Teradata Vantage :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Select the right data ingestion tools for Teradata Vantage

-

Author: Krutik Pathak
-Last updated: August 9th, 2023

-
-

Overview

-
-
-

This article outlines different use cases involving data ingestion, lists available tools, and recommends the optimal tool for each use case.

-
-
-

Ingesting data from external object store

-
-

Available Tools: Teradata Native Object Store (NOS), Teradata Parallel Transporter (TPT)

-
-
    -
  • -

    Teradata NOS: NOS is the recommended option to ingest data from files in object storage. This situation is very common in the cloud and on-prem data fabric systems.

    -
    - - - - - -
    - - -
    -

    Teradata Parallel Transporter (TPT) could be used to load data from external object storage into Teradata Vantage, however the recommended tool is Teradata NOS.

    -
    -
    -
    -
  • -
-
-
-
-
-

Ingesting data from local files

-
-

Available Tools: Teradata Parallel Transporter (TPT), BTEQ

-
-
    -
  • -

    Teradata Parallel Transporter (TPT): TPT is the recommended option to load data from local files. TPT is optimized for scalability and parallelism, thus it has the best throughput from all available options.

    -
  • -
  • -

    BTEQ: BTEQ has full scripting capabilities and the ability to read files. It is a good option if it is already the primary ingestion tool used by a customer.

    -
  • -
-
-
-
-
-

Move data from different systems for unified query processing

-
-

Available Tools: Teradata QueryGrid

-
-

Teradata QueryGrid: QueryGrid is the recommended option to move limited quantities of data between different systems/platforms. This includes movement within Vantage instances, Apache Spark, Oracle, Presto, etc. It is especially suited to situations when what needs to be synced is described by complex conditions that can be expressed in SQL.

-
-
-
-
-

Ingesting data from SaaS applications (Third Party Tools)

-
-

Available Tools: Airbyte

-
-

Airbyte: Airbyte is an ELT tool that has more than 350 connectors and is Open Source. It’s a favored option for conducting lightweight ingestions from SaaS applications into Teradata Vantage.

-
-
-
-
-
-
-

Summary

-
-
-

In this article, we explored various data ingestion use cases, provided a list of available tools for each use case, and identified the recommended option for different scenarios.

-
-
-
- -
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/sitemap.xml b/pr-preview/pr-110/sitemap.xml deleted file mode 100644 index 9a97d7a81..000000000 --- a/pr-preview/pr-110/sitemap.xml +++ /dev/null @@ -1,223 +0,0 @@ - - - -https://quickstarts.teradata.com/advanced-dbt.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/business-intelligence/create-stunning-visualizations-in-power-bi-using-data-from-teradata-vantage.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/cloud-guides/connect-azure-data-share-to-teradata-vantage.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/cloud-guides/integrate-teradata-jupyter-extensions-with-google-vertex-ai.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/cloud-guides/integrate-teradata-jupyter-extensions-with-sagemaker.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/cloud-guides/integrate-teradata-vantage-to-salesforce-using-amazon-appflow.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/cloud-guides/integrate-teradata-vantage-with-google-cloud-data-catalog.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/cloud-guides/sagemaker-with-teradata-vantage.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/cloud-guides/use-teradata-vantage-with-azure-machine-learning-studio.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/create-parquet-files-in-object-storage.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/dbt.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/elt/transforming-external-data-loaded-via-airbyte-in-teradata-vantage-using-dbt.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/elt/use-airbyte-to-load-data-from-external-sources-to-teradata-vantage.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/fastload.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/geojson-to-vantage.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/getting.started.utm.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/getting.started.vbox.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/getting.started.vmware.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/index.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/install-teradata-studio-on-mac-m1-m2.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/jdbc.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/jupyter-demos/gcp-vertex-ai-pipelines-vantage-byom-housing-example.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/jupyter-demos/index.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/jupyter.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/local.jupyter.hub.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/ml.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-byom.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/modelops/deploy-and-monitor-machine-learning-models-with-teradata-modelops-and-git.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/modelops/using-feast-feature-store-with-teradata-vantage.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/mule-teradata-connector/examples-configuration.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/mule-teradata-connector/index.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/mule-teradata-connector/reference.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/mule-teradata-connector/release-notes.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/mule.jdbc.example.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/nos.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/odbc.ubuntu.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/other-integrations/configure-a-teradata-vantage-connection-in-dbeaver.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/other-integrations/execute-airflow-workflows-that-use-dbt-with-teradata-vantage.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/other-integrations/getting.started.dbt-feast-teradata-pipeline.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/other-integrations/integrate-teradata-vantage-with-knime.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/perform-time-series-analysis-using-teradata-vantage.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/query-service/send-queries-using-rest-api.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/regulus/getting-started-with-regulus.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/regulus/install-regulus-docker-image.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/regulus/regulus-magic-reference.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/regulus/using-regulus-workspace-cli.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/run-vantage-express-on-aws.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/run-vantage-express-on-microsoft-azure.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/segment.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/select-the-right-data-ingestion-tools-for-teradata-vantage.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/sto.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/teradata-vantage-engine-architecture-and-concepts.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/teradatasql.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html -2023-09-06T06:43:15.210Z - - -https://quickstarts.teradata.com/vantage.express.gcp.html -2023-09-06T06:43:15.210Z - - diff --git a/pr-preview/pr-110/sto.html b/pr-preview/pr-110/sto.html deleted file mode 100644 index cffaba412..000000000 --- a/pr-preview/pr-110/sto.html +++ /dev/null @@ -1,2848 +0,0 @@ - - - - - - Run scripts on Vantage :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Run scripts on Vantage

-

Author: Adam Tworkiewicz
-Last updated: September 7th, 2021

-
-

Overview

-
-
-

Sometimes, you need to apply complex logic to your data that can’t be easily expressed in SQL. One option is to wrap your logic in a User Defined Function (UDF). What if you already have this logic coded in a language that is not supported by UDF? Script Table Operator is a Vantage feature that allows you to bring your logic to the data and run it on Vantage. The advantage of this approach is that you don’t have to retrieve data from Vantage to operate on it. Also, by running your data applications on Vantage, you leverage its parallel nature. You don’t have to think how your applications will scale. You can let Vantage take care of it.

-
-
-
-
-

Prerequisites

-
-
-

You need access to a Teradata Vantage instance.

-
-
- - - - - -
- - -If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. -
-
-
-
-
-

Hello World

-
-
-

Let’s start with something simple. What if you wanted the database to print "Hello World"?

-
-
-
-
SELECT *
-FROM
-  SCRIPT(
-    SCRIPT_COMMAND('echo Hello World!')
-    RETURNS ('Message varchar(512)'));
-
-
-
-

Here is what I’ve got:

-
-
-
-
Message
-------------
-Hello World!
-Hello World!
-
-
-
-

Let’s analyze what just happened here. The SQL includes echo Hello World!. This is a Bash command. OK, so now we know how to run Bash commands. But why did we get 2 rows and not one? That’s because our simple script was run once on each AMP and I happen to have 2 AMPs:

-
-
-
-
-- Teradata magic that returns the number of AMPs in a system
-SELECT hashamp()+1 AS number_of_amps;
-
-
-
-

Returns:

-
-
-
-
number_of_amps
---------------
-             2
-
-
-
-

This simple script demonstrates the idea behind the Script Table Operator (STO). You provide your script and the database runs it in parallel, once for each AMP. This is an attractive model in case you have transformation logic in a script and a lot of data to process. Normally, you would need to build concurrency into your application. By letting STO do it, you let Teradata select the right concurrency level for your data.

-
-
-
-
-

Supported languages

-
-
-

OK, so we did echo in Bash but Bash is hardly a productive environment to express complex logic. What other languages are supported then? The good news is that any binary that can run on Vantage nodes can be used in STO. Remember, that the binary and all its dependencies need to be installed on all your Vantage nodes. In practice, it means that your options will be limited to what your administrator is willing and able to maintain on your servers. Python is a very popular choice.

-
-
-
-
-

Uploading scripts

-
-
-

Ok, Hello World is super exciting, but what if we have existing logic in a large file. Surely, you don’t want to paste your entire script and escape quotes in an SQL query. We solve the script upload issue with the User Installed Files (UIF) feature.

-
-
-

Say you have helloworld.py script with the following content:

-
-
-
-
print("Hello World!")
-
-
-
-

Let’s assume the script is on your local machine at /tmp/helloworld.py.

-
-
-

First, we need to setup permissions in Vantage. We are going to do this using a new database to keep it clean.

-
-
-
-
-- Create a new database called sto
-CREATE DATABASE STO
-AS PERMANENT = 60e6, -- 60MB
-    SPOOL = 120e6; -- 120MB
-
--- Allow dbc user to create scripts in database STO
-GRANT CREATE EXTERNAL PROCEDURE ON STO to dbc;
-
-
-
-

You can upload the script to Vantage using the following procedure call:

-
-
-
-
call SYSUIF.install_file('helloworld',
-                         'helloworld.py', 'cz!/tmp/helloworld.py');
-
-
-
-

Now that the script has been uploaded, you can call it like this:

-
-
-
-
-- We switch to STO database
-DATABASE STO
-
--- We tell Vantage where to look for the script. This can be
--- any string and it will create a symbolic link to the directory
--- where our script got uploaded. By convention, we use the
--- database name.
-SET SESSION SEARCHUIFDBPATH = sto;
-
--- We now call the script. Note, how we use a relative path that
--- starts with `./sto/`, which is where SEARCHUIFDBPATH
--- is pointing.
-SELECT *
-FROM SCRIPT(
-  SCRIPT_COMMAND('python3 ./sto/helloworld.py')
-  RETURNS ('Message varchar(512)'));
-
-
-
-

The last call should return:

-
-
-
-
Message
-------------
-Hello World!
-Hello World!
-
-
-
-

That was a lot of work and we are still at Hello World. Let’s try to pass some data into SCRIPT.

-
-
-
-
-

Passing data stored in Vantage to SCRIPT

-
-
-

So far, we have been using SCRIPT operator to run standalone scripts. But the main purpose to run scripts on Vantage is to process data that is in Vantage. Let’s see how we can retrieve data from Vantage and pass it to SCRIPT.

-
-
-

We will start with creating a table with a few rows.

-
-
-
-
-- Switch to STO database.
-DATABASE STO
-
--- Create a table with a few urls
-CREATE TABLE urls(url varchar(10000));
-INS urls('https://www.google.com/finance?q=NYSE:TDC');
-INS urls('http://www.ebay.com/sch/i.html?_trksid=p2050601.m570.l1313.TR0.TRC0.H0.Xteradata+merchandise&_nkw=teradata+merchandise&_sacat=0&_from=R40');
-INS urls('https://www.youtube.com/results?search_query=teradata%20commercial&sm=3');
-INS urls('https://www.contrivedexample.com/example?mylist=1&mylist=2&mylist=...testing');
-
-
-
-

We will use the following script to parse out query parameters:

-
-
-
-
from urllib.parse import urlparse
-from urllib.parse import parse_qsl
-import sys
-
-for line in sys.stdin:
-    # remove leading and trailing whitespace
-    url = line.strip()
-    parsed_url = urlparse(url)
-    query_params = parse_qsl(parsed_url.query)
-
-    for element in query_params:
-        print("\t".join(element))
-
-
-
-

Note, how the scripts assumes that urls will be fed into stdin one by one, line by line. Also, note how it prints results line by line, using the tab character as a delimiter between values.

-
-
-

Let’s install the script. Here, we assume that the script file is at /tmp/urlparser.py on our local machine:

-
-
-
-
CALL SYSUIF.install_file('urlparser',
-	'urlparser.py', 'cz!/tmp/urlparser.py');
-
-
-
-

With the script installed, we will now retrieve data from urls table and feed it into the script to retrieve query parameters:

-
-
-
-
-- We inform Vantage to create a symbolic link from the UIF directory to ./sto/
-SET SESSION SEARCHUIFDBPATH = sto ;
-
-SELECT *
-  FROM SCRIPT(
-    ON(SELECT url FROM urls)
-    SCRIPT_COMMAND('python3 ./sto/urlparser.py')
-    RETURNS ('param_key varchar(512)', 'param_value varchar(512)'));
-
-
-
-

As a result, we get query params and their values. There are as many rows as key/value pairs. Also, since we inserted a tab between the key and the value output in the script, we get 2 columns from STO.

-
-
-
-
param_key   |param_value
-------------+-----------------------------------------------------
-q           |NYSE:TDC
-_trksid     |p2050601.m570.l1313.TR0.TRC0.H0.Xteradata merchandise
-search_query|teradata commercial
-_nkw        |teradata merchandise
-sm          |3
-_sacat      |0
-mylist      |1
-_from       |R40
-mylist      |2
-mylist      |...testing
-
-
-
-
-
-

Inserting SCRIPT output into a table

-
-
-

We have learned how to take data from Vantage, pass it to a script and get output. Is there an easy way to store this output in a table? Sure, there is. We can combine the select above with CREATE TABLE statement:

-
-
-
-
-- We inform Vantage to create a symbolic link from the UIF directory to ./sto/
-SET SESSION SEARCHUIFDBPATH = sto ;
-
-CREATE MULTISET TABLE
-    url_params(param_key, param_value)
-AS (
-    SELECT *
-    FROM SCRIPT(
-      ON(SELECT url FROM urls)
-      SCRIPT_COMMAND('python3 ./sto/urlparser.py')
-      RETURNS ('param_key varchar(512)', 'param_value varchar(512)'))
-) WITH DATA
-NO PRIMARY INDEX;
-
-
-
-

Now, let’s inspect the contents of url_params table:

-
-
-
-
SELECT * FROM url_params;
-
-
-
-

You should see the following output:

-
-
-
-
param_key   |param_value
-------------+-----------------------------------------------------
-q           |NYSE:TDC
-_trksid     |p2050601.m570.l1313.TR0.TRC0.H0.Xteradata merchandise
-search_query|teradata commercial
-_nkw        |teradata merchandise
-sm          |3
-_sacat      |0
-mylist      |1
-_from       |R40
-mylist      |2
-mylist      |...testing
-
-
-
-
-
-

Summary

-
-
-

In this quick start we have learned how to run scripts against data in Vantage. We ran scripts using Script Table Operator (STO). The operator allows us to bring logic to the data. It offloads concurrency considerations to the database by running our scripts in parallel, one per AMP. All you need to do is provide a script and the database will execute it in parallel.

-
-
-
-
-

Further reading

-
- -
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/teradata-vantage-engine-architecture-and-concepts.html b/pr-preview/pr-110/teradata-vantage-engine-architecture-and-concepts.html deleted file mode 100644 index f8af0f49c..000000000 --- a/pr-preview/pr-110/teradata-vantage-engine-architecture-and-concepts.html +++ /dev/null @@ -1,2763 +0,0 @@ - - - - - - Teradata Vantage Engine Architecture and Concepts :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Teradata Vantage Engine Architecture and Concepts

-

Author: Krutik Pathak
-Last updated: August 7th, 2023

-
-

Overview

-
-
-

This article explains the underlying concepts of Teradata Vantage engine architecture. All editions of Vantage, including the Primary Cluster in VantageCloud Lake utilize the same engine.

-
-
-

Teradata’s architecture is designed around a Massively Parallel Processing (MPP), shared-nothing architecture, which enables high-performance data processing and analytics. The MPP architecture distributes the workload into multiple vprocs or virtual processors. The virtual processor where query processing takes place is commonly referred to as an Access Module Processor (AMP). Each AMP is isolated from other AMPs, and processes the queries in parallel allowing Teradata to process large volumes of data rapidly.

-
-
-

The major architectural components of the Teradata Vantage engine include the Parsing Engines (PEs), BYNET, Access Module Processors (AMPs), and Virtual Disks (Vdisks). Vdisks are assigned to AMPs in enterprise platforms, and to the Primary Cluster in the case of VantageCloud Lake environments.

-
-
-
-Teradata Vantage Major Architectural Components -
-
-
-
-
-

Teradata Vantage Engine Architecture Components

-
-
-

The Teradata Vantage engine consists of the components below:

-
-
-

Parsing Engines (PE)

-
-

When a SQL query is run in Teradata, it first reaches the Parsing Engine. The functions of the Parsing Engine are:

-
-
-
    -
  • -

    Manage individual user sessions (up to 120).

    -
  • -
  • -

    Check if the objects used in the SQL query exist.

    -
  • -
  • -

    Check if the user has required privileges against the objects used in the SQL query.

    -
  • -
  • -

    Parse and optimize the SQL queries.

    -
  • -
  • -

    Prepare the execution plan to execute the SQL query and passes it to the corresponding AMPs.

    -
  • -
  • -

    Receive the response from the AMPs and send it back to the requesting client.

    -
  • -
-
-
-
-

BYNET

-
-

BYNET is a system that enables component communication. The BYNET system provides high-speed bi-directional broadcast, multicast, and point-to-point communication and merge functions. It performs three key functions: coordinating multi-AMP queries, reading data from multiple AMPs, regulating message flow to prevent congestion, and processing platform throughput. These functions of BYNET make Vantage highly scalable and enable Massively Parallel Processing (MPP) capabilities.

-
-
-
-

Parallel Database Extension (PDE)

-
-

Parallel Database Extension (PDE) is an intermediary software layer positioned between the operating system and the Teradata Vantage database. PDE enables MPP systems to use features such as BYNET and shared disks. It facilitates the parallelism that is responsible for the speed and linear scalability of the Teradata Vantage database.

-
-
-
-

Access Module Processor (AMP)

-
-

AMPs are responsible for data storage and retrieval. Each AMP is associated with its own set of Virtual Disks (Vdisks) where the data is stored, and no other AMP can access that content in line with the shared-nothing architecture. The functions of AMP are:

-
-
-
    -
  • -

    Access storage using Vantage’s Block File System Software

    -
  • -
  • -

    Lock management

    -
  • -
  • -

    Sorting rows

    -
  • -
  • -

    Aggregating columns

    -
  • -
  • -

    Join processing

    -
  • -
  • -

    Output conversion

    -
  • -
  • -

    Disk space management

    -
  • -
  • -

    Accounting

    -
  • -
  • -

    Recovery processing

    -
  • -
-
-
- - - - - -
- - -
-

AMPs in VantageCore IntelliFlex, VantageCore VMware, VantageCloud Enterprise, and the Primary Cluster in the case of VantageCloud Lake, store data in a Block File System (BFS) format on Vdisks. AMPs in Compute Clusters and Compute Worker Nodes on VantageCloud Lake do not have BFS, they can only access data in object storage using the Object File System (OFS).

-
-
-
-
-
-

Virtual Disks (Vdisks)

-
-

These are units of storage space owned by an AMP. Virtual Disks are used to hold user data (rows within tables). Virtual Disks map to physical space on a disk.

-
-
-
-

Node

-
-

A node, in the context of Teradata systems, represents an individual server that functions as a hardware platform for the database software. It serves as a processing unit where database operations are executed under the control of a single operating system. When Teradata is deployed in a cloud, it follows the same MPP, shared-nothing architecture but the physical nodes are replaced with virtual machines (VMs).

-
-
-
-
-
-

Teradata Vantage Architecture Concepts

-
-
-

The concepts below are applicable to Teradata Vantage.

-
-
-

Linear Growth and Expandability

-
-

Teradata is a linearly expandable RDBMS. As the workload and data volume increase, adding more hardware resources such as servers or nodes results in a proportional increase in performance and capacity. Linear Scalability allows for increased workload without decreased throughput.

-
-
-
-

Teradata Parallelism

-
-

Teradata parallelism refers to the inherent ability of the Teradata Database to perform parallel processing of data and queries across multiple nodes or components simultaneously.

-
-
-
    -
  • -

    Each Parsing Engine (PE) in Teradata has the capability to handle up to 120 sessions concurrently.

    -
  • -
  • -

    The BYNET in Teradata enables parallel handling of all message activity, including data redistribution for subsequent tasks.

    -
  • -
  • -

    All Access Module Processors (AMPs) in Teradata can collaborate in parallel to serve any incoming request.

    -
  • -
  • -

    Each AMP can work on multiple requests concurrently, allowing for efficient parallel processing.

    -
  • -
-
-
-
-Teradata Parallelism -
-
-
-
-

Teradata Retrieval Architecture

-
-

The key steps involved in Teradata Retrieval Architecture are:

-
-
-
    -
  1. -

    The Parsing Engine sends a request to retrieve one or more rows.

    -
  2. -
  3. -

    The BYNET activates the relevant AMP(s) for processing.

    -
  4. -
  5. -

    The AMP(s) concurrently locate and retrieve the desired row(s) through parallel access.

    -
  6. -
  7. -

    The BYNET returns the retrieved row(s) to the Parsing Engine.

    -
  8. -
  9. -

    The Parsing Engine then delivers the row(s) back to the requesting client application.

    -
  10. -
-
-
-
-Teradata Retrieval Architecture -
-
-
-
-

Teradata Data Distribution

-
-

Teradata’s MPP architecture requires an efficient means of distributing and retrieving data and does so using hash partitioning. Most tables in Vantage use hashing to distribute data for the tables based on the value of the row’s Primary Index (PI) to disk storage in Block File System (BFS) and may scan the entire table or use indexes to access the data. This approach ensures scalable performance and efficient data access.

-
-
-
    -
  • -

    If the Primary Index is unique then the rows in the tables are automatically distributed evenly by hash partitioning.

    -
  • -
  • -

    The designated Primary Index column(s) are hashed to generate consistent hash codes for the same values.

    -
  • -
  • -

    No reorganization, repartitioning, or space management is required.

    -
  • -
  • -

    Each AMP typically contains rows from all tables, ensuring efficient data access and processing.

    -
  • -
-
-
-
-Teradata Data Distribution -
-
-
-
-
-
-

Conclusion

-
-
-

In this article, we covered the major architectural components of Teradata Vantage, such as the Parsing Engines (PEs), BYNET, Access Module Processors (AMPs), Virtual Disk (Vdisk), other architectural components such as Parallel Database Extension (PDE), Node and the essential concepts of Teradata Vantage such as Linear Growth and Expandability, Parallelism, Data Retrieval, and Data Distribution.

-
-
-
- -
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/teradatasql.html b/pr-preview/pr-110/teradatasql.html deleted file mode 100644 index 7c520e147..000000000 --- a/pr-preview/pr-110/teradatasql.html +++ /dev/null @@ -1,2605 +0,0 @@ - - - - - - Connect to Vantage using Python :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Connect to Vantage using Python

-

Author: Krutik Pathak
-Last updated: August 2nd, 2023

-
-

Overview

-
-
-

This how-to demonstrates how to connect to Vantage using teradatasql Python database driver for Teradata Vantage.

-
-
-
-
-

Prerequisites

-
-
-
    -
  • -

    64-bit Python 3.4 or later.

    -
  • -
  • -

    teradatasql driver installed in your system:

    -
    -
    -
    pip install teradatasql
    -
    -
    -
    - - - - - -
    - - -
    -

    teradatasql package runs on Windows, macOS (10.14 Mojave or later) and Linux. For Linux, currently only Linux x86-64 architecture is supported.

    -
    -
    -
    -
  • -
  • -

    Access to a Teradata Vantage instance. Currently driver is supported for use with Teradata Database 16.10 and later releases.

    -
    - - - - - -
    - - -If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. -
    -
    -
  • -
-
-
-
-
-

Code to send a query

-
-
-

This is a simple Python code to connect to Teradata Vantage using teradatasql. All that is left, is to pass connection and authentication parameters and run a query:

-
- -
-
-
-

Summary

-
-
-

This how-to demonstrated how to connect to Teradata Vantage using teradatasql Python database driver. It described a sample Python code to send SQL queries to Teradata Vantage using teradatasql.

-
-
-
-
-

Further reading

-
- -
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html b/pr-preview/pr-110/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html deleted file mode 100644 index 7625ac85a..000000000 --- a/pr-preview/pr-110/tools-and-utilities/run-bulkloads-efficiently-with-teradata-parallel-transporter.html +++ /dev/null @@ -1,2867 +0,0 @@ - - - - - - Run large bulkloads efficiently with Teradata Parallel Transporter (TPT) :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Run large bulkloads efficiently with Teradata Parallel Transporter (TPT)

-

Author: Adam Tworkiewicz
-Last updated: April 6th, 2022

-
-

Overview

-
-
-

We often have a need to move large volumes of data into Vantage. Teradata offers Teradata Parallel Transporter (TPT) utility that can efficiently load large amounts of data into Teradata Vantage. This how-to demonstrates how to use TPT. In this scenario, we will load over 300k records, over 40MB of data, in a couple of seconds.

-
-
-
-
-

Prerequisites

-
-
-
    -
  • -

    Access to a Teradata Vantage instance.

    -
    - - - - - -
    - - -If you need a test instance of Vantage, you can provision one for free at https://clearscape.teradata.com. -
    -
    -
  • -
  • -

    Download Teradata Tools and Utilities (TTU) - supported platforms: Windows, MacOS, Linux (requires registration).

    -
  • -
-
-
-
-
-

Install TTU

-
-
-
-
    -
  • -

    Windows

    -
  • -
  • -

    MacOS

    -
  • -
  • -

    Linux

    -
  • -
-
-
-
-
-

Unzip the downloaded file and run setup.exe.

-
-
-
-
-

Unzip the downloaded file and run TeradataToolsAndUtilitiesXX.XX.XX.pkg.

-
-
-
-
-

Unzip the downloaded file, go to the unzipped directory and run:

-
-
-
-
./setup.sh a
-
-
-
-
-
-
-
-
-

Get Sample data

-
-
-

We will be working with the US tax fillings for nonprofit organizations. Nonprofit tax filings are public data. The US Internal Revenue Service publishes them in S3 bucket. Let’s grab a summary of filings for 2020: https://downloads.teradata.com/sites/default/files/2022-11/index_2020.csv. You can use your browser, wget or curl to save the file locally.

-
-
-
-
-

Create a database

-
-
-

Let’s create a database in Vantage. Use your favorite SQL tool to run the following query:

-
-
-
-
CREATE DATABASE irs
-AS PERMANENT = 120e6, -- 120MB
-    SPOOL = 120e6; -- 120MB
-
-
-
-
-
-

Run TPT

-
-
-

We will now run TPT. TPT is a command-line tool that can be used to load, extract and update data in Teradata Vantage. These various functions are implemented in so called operators. For example, loading data into Vantage is handled by the Load operator. The Load operator is very efficient in uploading large amounts of data into Vantage. The Load operator, in order to be fast, has several restrictions in place. It can only populate empty tables. Inserts to already populated tables are not supported. It doesn’t support tables with secondary indices. Also, it won’t insert duplicate records, even if a table is a MULTISET table. For the full list of restrictions check out Teradata® TPT Reference - Load Operator - Restrictions and Limitations.

-
-
-

TPT has its own scripting language. The language allows you to prepare the database with arbitrary SQL commands, declare the input source and define how the data should be inserted into Vantage.

-
-
-

To load the csv data to Vantage, we will define and run a job. The job will prepare the database. It will remove old log and error tables and create the target table. It will then read the file and insert the data into the database.

-
-
-
    -
  1. -

    Create a job variable file that will tell TPT how to connect to our Vantage database. Create file jobvars.txt and insert the following content. Replace host with the host name of your database. For example, if you are using a local Vantage Express instance, use 127.0.0.1. username with the database user name, and password with the database password. Note that the preparation step (DDL) and the load step have their own configuration values and that the config values need to be entered twice to configure both the DDL and the load step.

    -
    -
    -
    TargetTdpId           = 'host'
    -TargetUserName        = 'username'
    -TargetUserPassword    = 'password'
    -
    -FileReaderDirectoryPath = ''
    -FileReaderFileName      = 'index_2020.csv'
    -FileReaderFormat        = 'Delimited'
    -FileReaderOpenMode      = 'Read'
    -FileReaderTextDelimiter = ','
    -FileReaderSkipRows      = 1
    -
    -DDLErrorList = '3807'
    -
    -LoadLogTable    = 'irs.irs_returns_lg'
    -LoadErrorTable1 = 'irs.irs_returns_et'
    -LoadErrorTable2 = 'irs.irs_returns_uv'
    -LoadTargetTable = 'irs.irs_returns'
    -
    -
    -
  2. -
  3. -

    Create a file with the following content and save it as load.txt. See comments within the job file to understand its structure.

    -
    -
    -
    DEFINE JOB file_load
    -DESCRIPTION 'Load a Teradata table from a file'
    -(
    -  /*
    -    Define the schema of the data in the csv file
    -  */
    -  DEFINE SCHEMA SCHEMA_IRS
    -    (
    -      in_return_id     VARCHAR(19),
    -      in_filing_type   VARCHAR(5),
    -      in_ein           VARCHAR(19),
    -      in_tax_period    VARCHAR(19),
    -      in_sub_date      VARCHAR(22),
    -      in_taxpayer_name VARCHAR(100),
    -      in_return_type   VARCHAR(5),
    -      in_dln           VARCHAR(19),
    -      in_object_id     VARCHAR(19)
    -    );
    -
    -  /*
    -     In the first step, we are sending statements to remove old tables
    -     and create a new one.
    -     This step replies on configuration stored in `od_IRS` operator
    -  */
    -  STEP st_Setup_Tables
    -  (
    -    APPLY
    -      ('DROP TABLE ' || @LoadLogTable || ';'),
    -      ('DROP TABLE ' || @LoadErrorTable1 || ';'),
    -      ('DROP TABLE ' || @LoadErrorTable2 || ';'),
    -      ('DROP TABLE ' || @LoadTargetTable || ';'),
    -      ('CREATE TABLE ' || @LoadTargetTable || ' (
    -          return_id INT,
    -          filing_type VARCHAR(5) CHARACTER SET LATIN NOT CASESPECIFIC,
    -          ein INT,
    -          tax_period INT,
    -          sub_date VARCHAR(100) CHARACTER SET LATIN NOT CASESPECIFIC,
    -          taxpayer_name VARCHAR(100) CHARACTER SET LATIN NOT CASESPECIFIC,
    -          return_type VARCHAR(5) CHARACTER SET LATIN NOT CASESPECIFIC,
    -          dln BIGINT,
    -          object_id BIGINT
    -        )
    -        PRIMARY INDEX ( return_id );')
    -    TO OPERATOR ($DDL);
    -  );
    -
    -  /*
    -    Finally, in this step we read the data from the file operator
    -    and send it to the load operator.
    -  */
    -  STEP st_Load_File
    -  (
    -    APPLY
    -      ('INSERT INTO ' || @LoadTargetTable || ' (
    -          return_id,
    -          filing_type,
    -          ein,
    -          tax_period,
    -          sub_date,
    -          taxpayer_name,
    -          return_type,
    -          dln,
    -          object_id
    -      ) VALUES (
    -          :in_return_id,
    -          :in_filing_type,
    -          :in_ein,
    -          :in_tax_period,
    -          :in_sub_date,
    -          :in_taxpayer_name,
    -          :in_return_type,
    -          :in_dln,
    -          :in_object_id
    -      );')
    -    TO OPERATOR ($LOAD)
    -    SELECT * FROM OPERATOR($FILE_READER(SCHEMA_IRS));
    -  );
    -);
    -
    -
    -
  4. -
  5. -

    Run the job:

    -
    -
    -
    tbuild -f load.txt -v jobvars.txt -j file_load
    -
    -
    -
    -

    A successful run will return logs that look like this:

    -
    -
    -
    -
    Teradata Parallel Transporter Version 17.10.00.10 64-Bit
    -The global configuration file '/opt/teradata/client/17.10/tbuild/twbcfg.ini' is used.
    -   Log Directory: /opt/teradata/client/17.10/tbuild/logs
    -   Checkpoint Directory: /opt/teradata/client/17.10/tbuild/checkpoint
    -
    -Job log: /opt/teradata/client/17.10/tbuild/logs/file_load-4.out
    -Job id is file_load-4, running on osboxes
    -Teradata Parallel Transporter SQL DDL Operator Version 17.10.00.10
    -od_IRS: private log not specified
    -od_IRS: connecting sessions
    -od_IRS: sending SQL requests
    -od_IRS: TPT10508: RDBMS error 3807: Object 'irs_returns_lg' does not exist.
    -od_IRS: TPT18046: Error is ignored as requested in ErrorList
    -od_IRS: TPT10508: RDBMS error 3807: Object 'irs_returns_et' does not exist.
    -od_IRS: TPT18046: Error is ignored as requested in ErrorList
    -od_IRS: TPT10508: RDBMS error 3807: Object 'irs_returns_uv' does not exist.
    -od_IRS: TPT18046: Error is ignored as requested in ErrorList
    -od_IRS: disconnecting sessions
    -od_IRS: Total processor time used = '0.013471 Second(s)'
    -od_IRS: Start : Thu Apr  7 20:56:32 2022
    -od_IRS: End   : Thu Apr  7 20:56:32 2022
    -Job step st_Setup_Tables completed successfully
    -Teradata Parallel Transporter Load Operator Version 17.10.00.10
    -ol_IRS: private log not specified
    -Teradata Parallel Transporter DataConnector Operator Version 17.10.00.10
    -op_IRS[1]: Instance 1 directing private log report to 'dtacop-root-368731-1'.
    -op_IRS[1]: DataConnector Producer operator Instances: 1
    -op_IRS[1]: ECI operator ID: 'op_IRS-368731'
    -op_IRS[1]: Operator instance 1 processing file 'index_2020.csv'.
    -ol_IRS: connecting sessions
    -ol_IRS: preparing target table
    -ol_IRS: entering Acquisition Phase
    -ol_IRS: entering Application Phase
    -ol_IRS: Statistics for Target Table:  'irs.irs_returns'
    -ol_IRS: Total Rows Sent To RDBMS:      333722
    -ol_IRS: Total Rows Applied:            333722
    -ol_IRS: Total Rows in Error Table 1:   0
    -ol_IRS: Total Rows in Error Table 2:   0
    -ol_IRS: Total Duplicate Rows:          0
    -op_IRS[1]: Total files processed: 1.
    -ol_IRS: disconnecting sessions
    -Job step st_Load_File completed successfully
    -Job file_load completed successfully
    -ol_IRS: Performance metrics:
    -ol_IRS:     MB/sec in Acquisition phase: 9.225
    -ol_IRS:     Elapsed time from start to Acquisition phase:   2 second(s)
    -ol_IRS:     Elapsed time in Acquisition phase:   5 second(s)
    -ol_IRS:     Elapsed time in Application phase:   3 second(s)
    -ol_IRS:     Elapsed time from Application phase to end: < 1 second
    -ol_IRS: Total processor time used = '0.254337 Second(s)'
    -ol_IRS: Start : Thu Apr  7 20:56:32 2022
    -ol_IRS: End   : Thu Apr  7 20:56:42 2022
    -Job start: Thu Apr  7 20:56:32 2022
    -Job end:   Thu Apr  7 20:56:42 2022
    -
    -
    -
  6. -
-
-
-
-
-

TPT vs. NOS

-
-
-

In our case, the file is in an S3 bucket. That means, that we can use Native Object Storage (NOS) to ingest the data:

-
-
-
-
-- create an S3-backed foreign table
-CREATE FOREIGN TABLE irs_returns_nos
-    USING ( LOCATION('/s3/s3.amazonaws.com/irs-form-990/index_2020.csv') );
-
--- load the data into a native table
-CREATE MULTISET TABLE irs_returns_nos_native
-    (RETURN_ID, FILING_TYPE, EIN, TAX_PERIOD, SUB_DATE, TAXPAYER_NAME)
-AS (
-    SELECT RETURN_ID, FILING_TYPE, EIN, TAX_PERIOD, SUB_DATE, TAXPAYER_NAME FROM irs_returns_nos
-) WITH DATA
-NO PRIMARY INDEX;
-
-
-
-

The NOS solution is convenient as it doesn’t depend on additional tools. It can be implemented using only SQL. It performs well, especially for Vantage deployments with a high number of AMPs as NOS tasks are delegated to AMPs and run in parallel. Also, splitting the data in object storage into multiple files may further improve performance.

-
-
-
-
-

Summary

-
-
-

This how-to demonstrated how to ingest large amounts of data into Vantage. We loaded hundreds of thousands or records into Vantage in a couple of seconds using TPT.

-
-
-
-
-

Further reading

-
- -
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/pr-preview/pr-110/vantage.express.gcp.html b/pr-preview/pr-110/vantage.express.gcp.html deleted file mode 100644 index 0d258ad70..000000000 --- a/pr-preview/pr-110/vantage.express.gcp.html +++ /dev/null @@ -1,2990 +0,0 @@ - - - - - - Run Vantage Express on Google Cloud :: Teradata Getting Started - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -
- -
- -
-

Run Vantage Express on Google Cloud

-

Author: Adam Tworkiewicz
-Last updated: August 23rd, 2022

-
-

Overview

-
-
-

This how-to demonstrates how to run Vantage Express in Google Cloud Platform. Vantage Express contains a fully functional Teradata SQL Engine.

-
-
- - - - - -
- - -If do not wish to pay for cloud usage you can install Vantage Express locally using VMware, VirtualBox, UTM. -
-
-
-
-
-

Prerequisites

-
-
-
    -
  1. -

    A Google Cloud account.

    -
  2. -
  3. -

    gcloud command line utility installed on your machine. You can find installation instructions here: https://cloud.google.com/sdk/docs/install.

    -
  4. -
-
-
-
-
-

Installation

-
-
-
    -
  1. -

    Create a Ubuntu VM with 4 CPU’s and 8GB of RAM, a 70GB balanced disk. The following command creates a VM in us-central1 region. For best performance, replace the region with one that is the closest to you. For the list of supported regions see Google Cloud regions documentation.

    -
    -
    -
      -
    • -

      Windows

      -
    • -
    • -

      MacOS

      -
    • -
    • -

      Linux

      -
    • -
    -
    -
    -
    -
    -

    Run in Powershell:

    -
    -
    -
    -
    gcloud compute instances create teradata-vantage-express `
    -  --zone=us-central1-a `
    -  --machine-type=n2-custom-4-8192 `
    -  --create-disk=boot=yes,device-name=ve-disk,image-project=ubuntu-os-cloud,image-family=ubuntu-2004-lts,size=70,type=pd-balanced `
    -  --enable-nested-virtualization `
    -  --tags=ve
    -
    -
    -
    -
    -
    -
    -
    gcloud compute instances create teradata-vantage-express \
    -  --zone=us-central1-a \
    -  --machine-type=n2-custom-4-8192 \
    -  --create-disk=boot=yes,device-name=ve-disk,image-project=ubuntu-os-cloud,image-family=ubuntu-2004-lts,size=70,type=pd-balanced \
    -  --enable-nested-virtualization \
    -  --tags=ve
    -
    -
    -
    -
    -
    -
    -
    gcloud compute instances create teradata-vantage-express \
    -  --zone=us-central1-a \
    -  --machine-type=n2-custom-4-8192 \
    -  --create-disk=boot=yes,device-name=ve-disk,image-project=ubuntu-os-cloud,image-family=ubuntu-2004-lts,size=70,type=pd-balanced \
    -  --enable-nested-virtualization \
    -  --tags=ve
    -
    -
    -
    -
    -
    -
  2. -
  3. -

    ssh to your VM:

    -
    -
    -
    gcloud compute ssh teradata-vantage-express --zone=us-central1-a
    -
    -
    -
  4. -
  5. -

    Switch to root user:

    -
    -
    -
    sudo -i
    -
    -
    -
  6. -
  7. -

    Prepare the download directory for Vantage Express:

    -
    -
    -
    mkdir /opt/downloads
    -cd /opt/downloads
    -
    -
    -
  8. -
  9. -

    Install VirtualBox and 7zip:

    -
    -
    -
    apt update && apt-get install p7zip-full p7zip-rar virtualbox -y
    -
    -
    -
  10. -
  11. -

    Retrieve the curl command to download Vantage Express.

    -
    -
      -
    1. -

      Go to Vantage Expess download page (registration required).

      -
    2. -
    3. -

      Click on the latest download link, e.g. "Vantage Express 17.20". You will see a license agreement popup. Don’t accept the license yet.

      -
    4. -
    5. -

      Open the network view in your browser. For example, in Chrome press F12 and navigate to Network tab:

      -
      -
      -Browser Network Tab -
      -
      -
    6. -
    7. -

      Accept the license by clicking on I Agree button and cancel the download.

      -
    8. -
    9. -

      In the network view, find the last request that starts with VantageExpress. Right click on it and select Copy → Copy as cURL:

      -
      -
      -Browser Copy culr -
      -
      -
    10. -
    -
    -
  12. -
  13. -

    Head back to the ssh session and download Vantage Express by pasting the curl command. Add -o ve.7z to the command to save the download to file named ve.7z. You can remove all the HTTP headers, e.g.:

    -
    -
    -
    curl -o ve.7z 'http://d289lrf5tw1zls.cloudfront.net/database/teradata-express/VantageExpress17.20_Sles12_202108300444.7z?Expires=1638719978&Signature=GKBkNvery_long_signature__&Key-Pair-Id=********************'
    -
    -
    -
  14. -
  15. -

    Unzip the downloaded file. It will take several minutes:

    -
    -
    -
    7z x ve.7z
    -
    -
    -
  16. -
  17. -

    Start the VM in VirtualBox. The command will return immediately but the VM init process will take several minutes:

    -
    -
    -
    export VM_IMAGE_DIR="/opt/downloads/VantageExpress17.20_Sles12"
    -DEFAULT_VM_NAME="vantage-express"
    -VM_NAME="${VM_NAME:-$DEFAULT_VM_NAME}"
    -vboxmanage createvm --name "$VM_NAME" --register --ostype openSUSE_64
    -vboxmanage modifyvm "$VM_NAME" --ioapic on --memory 6000 --vram 128 --nic1 nat --cpus 4
    -vboxmanage storagectl "$VM_NAME" --name "SATA Controller" --add sata --controller IntelAhci
    -vboxmanage storageattach "$VM_NAME" --storagectl "SATA Controller" --port 0 --device 0 --type hdd --medium  "$(find $VM_IMAGE_DIR -name '*disk1*')"
    -vboxmanage storageattach "$VM_NAME" --storagectl "SATA Controller" --port 1 --device 0 --type hdd --medium  "$(find $VM_IMAGE_DIR -name '*disk2*')"
    -vboxmanage storageattach "$VM_NAME" --storagectl "SATA Controller" --port 2 --device 0 --type hdd --medium  "$(find $VM_IMAGE_DIR -name '*disk3*')"
    -vboxmanage modifyvm "$VM_NAME" --natpf1 "tdssh,tcp,,4422,,22"
    -vboxmanage modifyvm "$VM_NAME" --natpf1 "tddb,tcp,,1025,,1025"
    -vboxmanage startvm "$VM_NAME" --type headless
    -vboxmanage controlvm "$VM_NAME" keyboardputscancode 1c 1c
    -
    -
    -
  18. -
  19. -

    ssh to Vantage Express VM. Use root as password:

    -
    -
    -
    ssh -p 4422 root@localhost
    -
    -
    -
  20. -
  21. -

    Validate that the DB is up:

    -
    -
    -
    pdestate -a
    -
    -
    -
    -

    If the command returns PDE state is RUN/STARTED. DBS state is 5: Logons are enabled - The system is quiescent, it means that Vantage Express has started. -If the status is different, repeat pdestate -a till you get the correct status.

    -
    -
  22. -
  23. -

    Once Vantage Express is up and running, start bteq client command line client. BTEQ (pronounced “bee-teek”) is a general-purpose, command-based client tool used to submit SQL queries to a Teradata Database.

    -
    -
    -
    bteq
    -
    -
    -
  24. -
  25. -

    Once in bteq, connect to your Vantage Express instance. When asked for the password, enter dbc:

    -
    -
    -
    .logon localhost/dbc
    -
    -
    -
  26. -
-
-
-
-
-

Run sample queries

-
-
-
    -
  1. -

    Using dbc user, we will create a new database called HR. Copy/paste this query and run press Enter:

    -
    -
    -
    CREATE DATABASE HR
    -AS PERMANENT = 60e6, -- 60MB
    -    SPOOL = 120e6; -- 120MB
    -
    -
    -
    - -
    -
    Were you able to run the query? - - -
    -
    -
    - -
  2. -
  3. -

    Let’s create a sample table and insert some data and query it. We will first create a table to hold employee information:

    -
    -
    -
    CREATE SET TABLE HR.Employees (
    -   GlobalID INTEGER,
    -   FirstName VARCHAR(30),
    -   LastName VARCHAR(30),
    -   DateOfBirth DATE FORMAT 'YYYY-MM-DD',
    -   JoinedDate DATE FORMAT 'YYYY-MM-DD',
    -   DepartmentCode BYTEINT
    -)
    -UNIQUE PRIMARY INDEX ( GlobalID );
    -
    -
    -
  4. -
  5. -

    Now, let’s insert a record:

    -
    -
    -
    INSERT INTO HR.Employees (
    -   GlobalID,
    -   FirstName,
    -   LastName,
    -   DateOfBirth,
    -   JoinedDate,
    -   DepartmentCode
    -)
    -VALUES (
    -   101,
    -   'Adam',
    -   'Tworkowski',
    -   '1980-01-05',
    -   '2004-08-01',
    -   01
    -);
    -
    -
    -
  6. -
  7. -

    Finally, let’s see if we can retrieve the data:

    -
    -
    -
    SELECT * FROM HR.Employees;
    -
    -
    -
    -

    You should get the following results:

    -
    -
    -
    -
    GlobalID  FirstName  LastName   DateOfBirth  JoinedDate  DepartmentCode
    ---------  ---------  ---------- -----------  ----------  --------------
    -     101  Adam       Tworkowski  1980-01-05  2004-08-01               1
    -
    -
    -
  8. -
-
-
-
-
-

Optional setup

-
-
-
    -
  • -

    If you intend to stop and start the VM, you may want to add Vantage Express to autostart. ssh to your VM and run the following commands:

    -
    -
    -
    sudo -i
    -
    -cat <<EOF >> /etc/default/virtualbox
    -VBOXAUTOSTART_DB=/etc/vbox
    -VBOXAUTOSTART_CONFIG=/etc/vbox/autostart.cfg
    -EOF
    -
    -cat <<EOF > /etc/systemd/system/vantage-express.service
    -[Unit]
    -Description=vm1
    -After=network.target virtualbox.service
    -Before=runlevel2.target shutdown.target
    -[Service]
    -User=root
    -Group=root
    -Type=forking
    -Restart=no
    -TimeoutSec=5min
    -IgnoreSIGPIPE=no
    -KillMode=process
    -GuessMainPID=no
    -RemainAfterExit=yes
    -ExecStart=/usr/bin/VBoxManage startvm vantage-express --type headless
    -ExecStop=/usr/bin/VBoxManage controlvm vantage-express savestate
    -[Install]
    -WantedBy=multi-user.target
    -EOF
    -
    -systemctl daemon-reload
    -systemctl enable vantage-express
    -systemctl start vantage-express
    -
    -
    -
  • -
  • -

    If you would like to connect to Vantage Express from the Internet, you will need to open up firewall holes to your VM. You should also change the default password to dbc user:

    -
    -
      -
    1. -

      To change the password for dbc user go to your VM and start bteq:

      -
      -
      -
      bteq
      -
      -
      -
    2. -
    3. -

      Login to your database using dbc as username and password:

      -
      -
      -
      .logon localhost/dbc
      -
      -
      -
    4. -
    5. -

      Change the password for dbc user:

      -
      -
      -
      MODIFY USER dbc AS PASSWORD = new_password;
      -
      -
      -
    6. -
    7. -

      You can now open up port 1025 to the internet using gcloud command:

      -
      -
      -
      gcloud compute firewall-rules create vantage-express --allow=tcp:1025 --direction=IN --target-tags=ve
      -
      -
      -
    8. -
    -
    -
  • -
-
-
-
-
-

Cleanup

-
-
-

To stop incurring charges, delete the VM:

-
-
-
-
gcloud compute instances delete teradata-vantage-express --zone=us-central1-a
-
-
-
-

Also, remember to remove any firewall rules that you have added, e.g.:

-
-
-
-
gcloud compute firewall-rules delete vantage-express
-
-
-
-
-
-

Next steps

- -
-
-

Further reading

-
- -
- - - - - -
- - -If you have any questions or need further assistance, please visit our community forum where you can get support and interact with other community members. -
-
-
-
-
- Did this page help? - - -
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - -