-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodulus.py
280 lines (248 loc) · 8.8 KB
/
modulus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import pandas as pd
import numpy as np
def get_drdown(data):
'''
Parameters
----------
data : TYPE series
DESCRIPTION.
Returns dataframe
-------
df : TYPE
DESCRIPTION.
'''
import pandas as pd
wealth_index=1000*(1+data).cumprod()
previous_peak=wealth_index.cummax()
drawdown=(wealth_index-previous_peak)/previous_peak
dict={"wealth":wealth_index, "previous_high":previous_peak, "Drawdown":drawdown}
df=pd.DataFrame(dict)
return df
def get_hfi_returns():
import pandas as pd
X=pd.read_csv("E:/pfconstdata/data/edhec-hedgefundindices.csv", header=0, index_col=0, parse_dates=True,
na_values=-99.99)
X=X/100
X.index=X.index.to_period("M")
return X
def skewness(r):
demeaned_r=r-r.mean()
sigma=r.std(ddof=0)
exp=(demeaned_r**3).mean()
return exp/sigma**3
def kurtosis(r):
demeaned_r=r-r.mean()
sigma=r.std(ddof=0)
exp=(demeaned_r**4).mean()
return exp/sigma**4
def is_normal(r, level=0.01):
import scipy.stats
stats,pvalue=scipy.stats.jarque_bera(r)
return pvalue>level
def semideviation(r):
"""
Returns the semideviation aka negative semideviation of r
r must be a Series or a DataFrame, else raises a TypeError
"""
if isinstance(r, pd.Series):
is_negative = r < 0
return r[is_negative].std(ddof=0)
elif isinstance(r, pd.DataFrame):
return r.aggregate(semideviation)
else:
raise TypeError("Expected r to be a Series or DataFrame")
def var_historic(r, level=5):
"""
Returns the historic Value at Risk at a specified level
i.e. returns the number such that "level" percent of the returns
fall below that number, and the (100-level) percent are above
"""
if isinstance(r, pd.DataFrame):
return r.aggregate(var_historic, level=level)
elif isinstance(r, pd.Series):
return -np.percentile(r, level)
else:
raise TypeError("Expected r to be a Series or DataFrame")
from scipy.stats import norm
def var_gaussian(r, level=5, modified=False):
"""
Returns the Parametric Gauusian VaR of a Series or DataFrame
If "modified" is True, then the modified VaR is returned,
using the Cornish-Fisher modification
"""
# compute the Z score assuming it was Gaussian
z = norm.ppf(level/100)
if modified:
# modify the Z score based on observed skewness and kurtosis
s = skewness(r)
k = kurtosis(r)
z = (z +
(z**2 - 1)*s/6 +
(z**3 -3*z)*(k-3)/24 -
(2*z**3 - 5*z)*(s**2)/36
)
return -(r.mean() + z*r.std(ddof=0))
def cvar_historic(r, level=5):
"""
Computes the Conditional VaR of Series or DataFrame
"""
if isinstance(r, pd.Series):
is_beyond = r <= -var_historic(r, level=level)
return -r[is_beyond].mean()
elif isinstance(r, pd.DataFrame):
return r.aggregate(cvar_historic, level=level)
else:
raise TypeError("Expected r to be a Series or DataFrame")
def annualize_rets(r, periods_per_year):
"""
Annualizes a set of returns
We should infer the periods per year
but that is currently left as an exercise
to the reader :-)
"""
compounded_growth = (1+r).prod()
n_periods = r.shape[0]
return compounded_growth**(periods_per_year/n_periods)-1
def annualize_vol(r, periods_per_year):
"""
Annualizes the vol of a set of returns
We should infer the periods per year
but that is currently left as an exercise
to the reader :-)
"""
return r.std()*(periods_per_year**0.5)
def sharpe_ratio(r, riskfree_rate, periods_per_year):
"""
Computes the annualized sharpe ratio of a set of returns
"""
# convert the annual riskfree rate to per period
rf_per_period = (1+riskfree_rate)**(1/periods_per_year)-1
excess_ret = r - rf_per_period
ann_ex_ret = annualize_rets(excess_ret, periods_per_year)
ann_vol = annualize_vol(r, periods_per_year)
return ann_ex_ret/ann_vol
def portfolio_return(weights, returns):
"""
Computes the return on a portfolio from constituent returns and weights
weights are a numpy array or Nx1 matrix and returns are a numpy array or Nx1 matrix
"""
return weights.T @ returns
def portfolio_vol(weights, covmat):
"""
Computes the vol of a portfolio from a covariance matrix and constituent weights
weights are a numpy array or N x 1 maxtrix and covmat is an N x N matrix
"""
return (weights.T @ covmat @ weights)**0.5
def plot_ef2(n_points, er, cov):
"""
Plots the 2-asset efficient frontier
"""
if er.shape[0] != 2 or er.shape[0] != 2:
raise ValueError("plot_ef2 can only plot 2-asset frontiers")
weights = [np.array([w, 1-w]) for w in np.linspace(0, 1, n_points)]
rets = [portfolio_return(w, er) for w in weights]
vols = [portfolio_vol(w, cov) for w in weights]
ef = pd.DataFrame({
"Returns": rets,
"Volatility": vols
})
return ef.plot.line(x="Volatility", y="Returns", style=".-")
from scipy.optimize import minimize
def minimize_vol(target_return, er, cov):
"""
Returns the optimal weights that achieve the target return
given a set of expected returns and a covariance matrix
"""
n = er.shape[0]
init_guess = np.repeat(1/n, n)
bounds = ((0.0, 1.0),) * n # an N-tuple of 2-tuples!
# construct the constraints
weights_sum_to_1 = {'type': 'eq',
'fun': lambda weights: np.sum(weights) - 1
}
return_is_target = {'type': 'eq',
'args': (er,),
'fun': lambda weights, er: target_return - portfolio_return(weights,er)
}
weights = minimize(portfolio_vol, init_guess,
args=(cov,), method='SLSQP',
options={'disp': False},
constraints=(weights_sum_to_1,return_is_target),
bounds=bounds)
return weights.x
def optimal_weights(n_points, er, cov):
"""
Returns a list of weights that represent a grid of n_points on the efficient frontier
"""
target_rs = np.linspace(er.min(), er.max(), n_points)
weights = [minimize_vol(target_return, er, cov) for target_return in target_rs]
return weights
def msr(riskfree_rate, er, cov):
"""
Returns the weights of the portfolio that gives you the maximum sharpe ratio
given the riskfree rate and expected returns and a covariance matrix
"""
n = er.shape[0]
init_guess = np.repeat(1/n, n)
bounds = ((0.0, 1.0),) * n # an N-tuple of 2-tuples!
# construct the constraints
weights_sum_to_1 = {'type': 'eq',
'fun': lambda weights: np.sum(weights) - 1
}
def neg_sharpe(weights, riskfree_rate, er, cov):
"""
Returns the negative of the sharpe ratio
of the given portfolio
"""
r = portfolio_return(weights, er)
vol = portfolio_vol(weights, cov)
return -(r - riskfree_rate)/vol
weights = minimize(neg_sharpe, init_guess,
args=(riskfree_rate, er, cov), method='SLSQP',
options={'disp': False},
constraints=(weights_sum_to_1,),
bounds=bounds)
return weights.x
def plot_ef(n_points, er, cov, style='.-', legend=False, show_cml=False, riskfree_rate=0, show_ew=False, show_gmv=False):
"""
Plots the multi-asset efficient frontier
"""
weights = optimal_weights(n_points, er, cov)
rets = [portfolio_return(w, er) for w in weights]
vols = [portfolio_vol(w, cov) for w in weights]
ef = pd.DataFrame({
"Returns": rets,
"Volatility": vols
})
ax = ef.plot.line(x="Volatility", y="Returns", style=style, legend=legend)
if show_cml:
ax.set_xlim(left = 0)
# get MSR
w_msr = msr(riskfree_rate, er, cov)
r_msr = portfolio_return(w_msr, er)
vol_msr = portfolio_vol(w_msr, cov)
# add CML
cml_x = [0, vol_msr]
cml_y = [riskfree_rate, r_msr]
ax.plot(cml_x, cml_y, color='green', marker='o', linestyle='dashed', linewidth=2, markersize=10)
if show_ew:
n = er.shape[0]
w_ew = np.repeat(1/n, n)
r_ew = portfolio_return(w_ew, er)
vol_ew = portfolio_vol(w_ew, cov)
# add EW
ax.plot([vol_ew], [r_ew], color='goldenrod', marker='o', markersize=10)
if show_gmv:
w_gmv = gmv(cov)
r_gmv = portfolio_return(w_gmv, er)
vol_gmv = portfolio_vol(w_gmv, cov)
# add EW
ax.plot([vol_gmv], [r_gmv], color='midnightblue', marker='o', markersize=10)
return ax
def gmv(cov):
"""
Returns the weights of the Global Minimum Volatility portfolio
given a covariance matrix
"""
n = cov.shape[0]
return msr(0, np.repeat(1, n), cov)