forked from midas-research/profit-naacl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
util.py
65 lines (50 loc) · 1.92 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import os
import torch
from torch.autograd import Variable
USE_CUDA = torch.cuda.is_available()
FLOAT = torch.cuda.FloatTensor if USE_CUDA else torch.FloatTensor
def prRed(prt):
print("\033[91m {}\033[00m".format(prt))
def prGreen(prt):
print("\033[92m {}\033[00m".format(prt))
def prYellow(prt):
print("\033[93m {}\033[00m".format(prt))
def prLightPurple(prt):
print("\033[94m {}\033[00m".format(prt))
def prPurple(prt):
print("\033[95m {}\033[00m".format(prt))
def prCyan(prt):
print("\033[96m {}\033[00m".format(prt))
def prLightGray(prt):
print("\033[97m {}\033[00m".format(prt))
def prBlack(prt):
print("\033[98m {}\033[00m".format(prt))
def to_numpy(var):
return var.cpu().data.numpy() if USE_CUDA else var.data.numpy()
def to_tensor(ndarray, volatile=False, requires_grad=False, dtype=FLOAT):
return Variable(
torch.from_numpy(ndarray), volatile=volatile, requires_grad=requires_grad
).type(dtype)
def soft_update(target, source, tau):
for target_param, param in zip(target.parameters(), source.parameters()):
target_param.data.copy_(target_param.data * (1.0 - tau) + param.data * tau)
def hard_update(target, source):
for target_param, param in zip(target.parameters(), source.parameters()):
target_param.data.copy_(param.data)
def get_output_folder(parent_dir, env_name):
os.makedirs(parent_dir, exist_ok=True)
experiment_id = 0
for folder_name in os.listdir(parent_dir):
if not os.path.isdir(os.path.join(parent_dir, folder_name)):
continue
try:
folder_name = int(folder_name.split("-run")[-1])
if folder_name > experiment_id:
experiment_id = folder_name
except:
pass
experiment_id += 1
parent_dir = os.path.join(parent_dir, env_name)
parent_dir = parent_dir + "-run{}".format(experiment_id)
os.makedirs(parent_dir, exist_ok=True)
return parent_dir