-
Notifications
You must be signed in to change notification settings - Fork 101
/
telechat_12B.py
488 lines (429 loc) · 18.4 KB
/
telechat_12B.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
# coding=utf-8
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
import torch
from torch import nn
from transformers import PretrainedConfig
from vllm.attention import Attention, AttentionMetadata
from vllm.config import CacheConfig, LoRAConfig
from vllm.distributed import (get_pp_group, get_pp_indices,
get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size)
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
ColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.distributed import (divide, get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
split_tensor_along_last_dim,
tensor_model_parallel_all_gather,
tensor_model_parallel_all_reduce)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader, kv_cache_scales_loader)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors, SamplerOutput
from vllm.utils import is_hip, print_warning_once
from .interfaces import SupportsLoRA
class TeleChatMLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
quant_config: Optional[QuantizationConfig] = None,
bias: bool = False,
) -> None:
super().__init__()
self.gate_proj = ColumnParallelLinear(
input_size=hidden_size,
output_size=intermediate_size,
bias=False,
quant_config=quant_config)
self.up_proj = ColumnParallelLinear(
input_size=hidden_size,
output_size=intermediate_size,
bias=False,
quant_config=quant_config)
self.down_proj = RowParallelLinear(input_size=intermediate_size,
output_size=hidden_size,
# bias=bias,
bias=True,
quant_config=quant_config,
input_is_parallel=True)
self.act_fn = SiluAndMul()
def forward(self, x):
gate_output, _ = self.gate_proj(x)
up_output, _ = self.up_proj(x)
gate_output = self.act_fn(torch.cat([gate_output, up_output], dim=-1))
output, _ = self.down_proj(gate_output)
return output
class TeleChatAttention(nn.Module):
def __init__(
self,
config,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
rope_theta: float = 10000,
rope_scaling: Optional[Dict[str, Any]] = None,
max_position_embeddings: int = 8192,
quant_config: Optional[QuantizationConfig] = None,
bias: bool = False,
cache_config: Optional[CacheConfig] = None,
) -> None:
super().__init__()
self.config = config
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.tp_size = tp_size
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = hidden_size // self.total_num_heads
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
self.query = ColumnParallelLinear(
input_size=hidden_size,
output_size=hidden_size,
bias=False,
quant_config=quant_config,
gather_output=False)
kv_projection_size = self.head_dim * self.total_num_heads
self.key_value = MergedColumnParallelLinear(
input_size=hidden_size,
output_sizes=[kv_projection_size] * 2,
bias=False,
quant_config=quant_config,
gather_output=False,)
self.dense = RowParallelLinear(
input_size=hidden_size,
output_size=hidden_size,
bias=True,
quant_config=quant_config,
input_is_parallel=True,
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position_embeddings,
base=rope_theta,
rope_scaling=rope_scaling,
)
self.attn = Attention(self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
quant_config=quant_config)
def split_tensor_along_last_dim(self,
tensor: torch.Tensor,
num_partitions: int,
contiguous_split_chunks: bool = False,
):
# Get the size and dimension.
last_dim = tensor.dim() - 1
last_dim_size = tensor.size()[last_dim] // num_partitions
# Split.
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
return tensor_list
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
query_layer, _ = self.query(hidden_states)
mixed_kv_layer, _ = self.key_value(hidden_states)
(key_layer, value_layer) = self.split_tensor_along_last_dim(mixed_kv_layer, 2)
query_layer, key_layer = self.rotary_emb(positions, query_layer, key_layer)
attn_output = self.attn(query_layer, key_layer, value_layer, kv_cache, attn_metadata)
output, _ = self.dense(attn_output)
return output
class TeleChatDecoderLayer(nn.Module):
def __init__(
self,
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
rope_theta = getattr(config, "rope_theta", 10000)
rope_scaling = getattr(config, "rope_scaling", None)
if rope_scaling is not None and getattr(
config, "original_max_position_embeddings", None):
rope_scaling["original_max_position_embeddings"] = (
config.original_max_position_embeddings)
max_position_embeddings = getattr(config, "max_position_embeddings",
8192)
# Support abacusai/Smaug-72B-v0.1 with attention_bias
# Support internlm/internlm-7b with bias
attention_bias = getattr(config, "attention_bias", False) or getattr(
config, "bias", False)
self.self_attention = TeleChatAttention(
config,
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=getattr(config, "num_key_value_heads",
config.num_attention_heads),
rope_theta=rope_theta,
rope_scaling=rope_scaling,
max_position_embeddings=max_position_embeddings,
quant_config=quant_config,
bias=attention_bias,
cache_config=cache_config,
)
self.mlp = TeleChatMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
bias=getattr(config, "mlp_bias", False),
)
self.input_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
) -> Tuple[torch.Tensor, torch.Tensor]:
residual = hidden_states
layernorm_output = self.input_layernorm(hidden_states)
attn_outputs = self.self_attention(
positions=positions,
hidden_states=layernorm_output,
kv_cache=kv_cache,
attn_metadata=attn_metadata,
)
attn_outputs = residual + attn_outputs
residual = attn_outputs
layernorm_output = self.post_attention_layernorm(attn_outputs)
output = residual + self.mlp(layernorm_output)
return output
class TeleChatModel(nn.Module):
def __init__(
self,
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
lora_config: Optional[LoRAConfig] = None,
) -> None:
super().__init__()
self.config = config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.word_embeddings = VocabParallelEmbedding(
self.vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
)
self.h = nn.ModuleList(
[
TeleChatDecoderLayer(config=config,
cache_config=cache_config,
quant_config=quant_config)
for _ in range(self.config.num_hidden_layers)
]
)
self.ln_f = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.word_embeddings(input_ids)
def forward(
self,
input_ids: Optional[torch.Tensor],
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.get_input_embeddings(input_ids)
for i in range(self.config.num_hidden_layers):
layer = self.h[i]
hidden_states = layer(
positions,
hidden_states,
kv_caches[i],
attn_metadata,
)
hidden_states = self.ln_f(hidden_states)
return hidden_states
class TeleChat12BForCausalLM(nn.Module, SupportsLoRA):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
"gate_up_proj": [
"gate_proj",
"up_proj",
],
}
# LoRA specific attributes
supported_lora_modules = [
"qkv_proj", "o_proj", "gate_up_proj", "down_proj", "embed_tokens",
"lm_head"
]
embedding_modules = {
"embed_tokens": "input_embeddings",
"lm_head": "output_embeddings",
}
embedding_padding_modules = ["lm_head"]
bitsandbytes_stacked_params_mapping = {
# shard_name, weight_name, index
"q_proj": ("qkv_proj", 0),
"k_proj": ("qkv_proj", 1),
"v_proj": ("qkv_proj", 2),
"gate_proj": ("gate_up_proj", 0),
"up_proj": ("gate_up_proj", 1),
}
def __init__(
self,
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
lora_config: Optional[LoRAConfig] = None,
) -> None:
super().__init__()
config.intermediate_size = config.ffn_hidden_size
config.hidden_act = "silu"
config.rms_norm_eps = config.layer_norm_epsilon
config.tie_word_embeddings = False
self.config = config
self.lora_config = lora_config
self.transformer = TeleChatModel(config,
cache_config,
quant_config,
lora_config=lora_config)
self.lm_head = ParallelLMHead(
config.vocab_size,
config.hidden_size,
bias=False,
quant_config=quant_config,
)
self.logits_processor = LogitsProcessor(config.vocab_size)
self.sampler = Sampler()
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
model_output = self.transformer(input_ids, positions, kv_caches,
attn_metadata)
return model_output
def compute_logits(self, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata) -> torch.Tensor:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
return logits
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens
def make_empty_intermediate_tensors(
self, batch_size: int, dtype: torch.dtype,
device: torch.device) -> IntermediateTensors:
return IntermediateTensors({
"hidden_states":
torch.zeros((batch_size, self.config.hidden_size),
dtype=dtype,
device=device),
"residual":
torch.zeros((batch_size, self.config.hidden_size),
dtype=dtype,
device=device),
})
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
params_dict = dict(self.named_parameters())
num_key_value_heads = self.config.num_attention_heads
head_dim = self.config.hidden_size // num_key_value_heads
for name, loaded_weight in weights:
if "self_attention.key_value" in name:
k_weight = []
v_weight = []
for i in range(num_key_value_heads):
start =i * head_dim * 2
k_weight.append(loaded_weight[start:start+head_dim,:])
v_weight.append(loaded_weight[start+head_dim:start+2*head_dim:])
k_weight = torch.cat(k_weight,dim=0)
v_weight = torch.cat(v_weight,dim=0)
loaded_weight = torch.cat([k_weight, v_weight], dim=0)
try:
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
except KeyError:
print("key error")
pass
def load_kv_cache_scales(self, quantization_param_path: str) -> None:
tp_size = get_tensor_model_parallel_world_size()
tp_rank = get_tensor_model_parallel_rank()
for layer_idx, scaling_factor in kv_cache_scales_loader(
quantization_param_path, tp_rank, tp_size,
self.config.num_hidden_layers,
self.config.__class__.model_type):
if not isinstance(self.model.layers[layer_idx], nn.Identity):
layer_self_attn = self.model.layers[layer_idx].self_attn
if is_hip():
# The scaling factor convention we are assuming is
# quantized_value * scaling_factor ~= true_value
# which is consistent with the practice of setting
# scaling_factor = tensor_amax / FPtype_max
scaling_factor *= 2
if hasattr(layer_self_attn, "kv_scale"):
layer_self_attn.attn._kv_scale = scaling_factor
else:
raise RuntimeError("Self attention has no KV cache scaling "
"factor attribute!")