-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdcgan-comic.py
176 lines (144 loc) · 6.59 KB
/
dcgan-comic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import argparse
import os
import numpy as np
import math
import torchvision
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch
os.makedirs('images-result', exist_ok=True)
parser = argparse.ArgumentParser()
parser.add_argument('--n_epochs', type=int, default=200, help='number of epochs of training')
parser.add_argument('--data_path', type=str, default='data/', help='the directory of training imgs')
parser.add_argument('--batch_size', type=int, default=64, help='size of the batches')
parser.add_argument('--lr', type=float, default=0.0002, help='adam: learning rate')
parser.add_argument('--beta1', type=float, default=0.5, help='adam: decay of first order momentum of gradient')
parser.add_argument('--beta2', type=float, default=0.999, help='adam: decay of second order momentum of gradient')
parser.add_argument('--latent_dim', type=int, default=100, help='dimensionality of the latent space')
parser.add_argument('--img_size', type=int, default=96, help='size of each image dimension')
parser.add_argument('--channels', type=int, default=3, help='number of image channels')
parser.add_argument('--sample_interval', type=int, default=200, help='interval betwen image samples')
args = parser.parse_args()
print(args)
C,H,W = args.channels, args.img_size, args.img_size
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
torch.nn.init.normal(m.weight, 0.0, 0.02)
elif classname.find('BatchNorm2d') != -1:
torch.nn.init.normal(m.weight, 1.0, 0.02)
torch.nn.init.constant(m.bias, 0.0)
###################################################
class Generator(nn.Module):
# initializers
def __init__(self, d=128):
super(Generator, self).__init__()
self.deconv1 = nn.ConvTranspose2d(100, d*8, 4, 1, 0)
self.deconv1_bn = nn.BatchNorm2d(d*8)
self.deconv2 = nn.ConvTranspose2d(d*8, d*4, 4, 2, 1)
self.deconv2_bn = nn.BatchNorm2d(d*4)
self.deconv3 = nn.ConvTranspose2d(d*4, d*2, 4, 2, 1)
self.deconv3_bn = nn.BatchNorm2d(d*2)
self.deconv4 = nn.ConvTranspose2d(d*2, d, 4, 2, 1)
self.deconv4_bn = nn.BatchNorm2d(d)
self.deconv5 = nn.ConvTranspose2d(d, C, 5, 3, 1)
# forward method
def forward(self, input):
# x = F.relu(self.deconv1(input))
x = F.relu(self.deconv1_bn(self.deconv1(input)))
x = F.relu(self.deconv2_bn(self.deconv2(x)))
x = F.relu(self.deconv3_bn(self.deconv3(x)))
x = F.relu(self.deconv4_bn(self.deconv4(x)))
x = F.tanh(self.deconv5(x))
return x
class Discriminator(nn.Module):
# initializers
def __init__(self, d=128):
super(Discriminator, self).__init__()
self.conv1 = nn.Conv2d(C, d, 5, 3, 1)
self.conv2 = nn.Conv2d(d, d*2, 4, 2, 1)
self.conv2_bn = nn.BatchNorm2d(d*2)
self.conv3 = nn.Conv2d(d*2, d*4, 4, 2, 1)
self.conv3_bn = nn.BatchNorm2d(d*4)
self.conv4 = nn.Conv2d(d*4, d*8, 4, 2, 1)
self.conv4_bn = nn.BatchNorm2d(d*8)
self.conv5 = nn.Conv2d(d*8, 1, 4, 1, 0)
# weight_init
def weight_init(self, mean, std):
for m in self._modules:
normal_init(self._modules[m], mean, std)
# forward method
def forward(self, input):
x = F.leaky_relu(self.conv1(input), 0.2)
x = F.leaky_relu(self.conv2_bn(self.conv2(x)), 0.2)
x = F.leaky_relu(self.conv3_bn(self.conv3(x)), 0.2)
x = F.leaky_relu(self.conv4_bn(self.conv4(x)), 0.2)
x = F.sigmoid(self.conv5(x))
return x
# Loss function
adversarial_loss = torch.nn.BCELoss()
# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()
if torch.cuda.is_available():
generator.cuda()
discriminator.cuda()
adversarial_loss.cuda()
# Initialize weights
generator.apply(weights_init_normal)
discriminator.apply(weights_init_normal)
# Configure data loader
transforms = torchvision.transforms.Compose([
torchvision.transforms.Resize(args.img_size),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
dataset = torchvision.datasets.ImageFolder(args.data_path,transform = transforms)
dataloader = torch.utils.data.DataLoader(dataset=dataset,batch_size=args.batch_size, shuffle=True, drop_last=True)
print('the data is ok')
# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=args.lr, betas=(args.beta1, args.beta2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=args.lr, betas=(args.beta1, args.beta2))
# ----------
# Training
# ----------
for epoch in range(args.n_epochs):
for i, (imgs, _) in enumerate(dataloader):
mini_batch = imgs.shape[0]
# Adversarial ground truths
valid = Variable(torch.ones(mini_batch).cuda(), requires_grad=False)
fake = Variable(torch.zeros(mini_batch).cuda(), requires_grad=False)
# Configure input
real_imgs = Variable(imgs.cuda())
z = Variable(torch.randn((mini_batch, args.latent_dim)).view(-1, args.latent_dim, 1, 1).cuda())
# ---------------------
# Train Discriminator
# ---------------------
optimizer_D.zero_grad()
# Measure discriminator's ability to classify real from generated samples
real_loss = adversarial_loss(discriminator(real_imgs).squeeze(), valid)
fake_loss = adversarial_loss(discriminator(generator(z).detach()).squeeze(), fake)
d_loss = (real_loss + fake_loss)
d_loss.backward()
optimizer_D.step()
# -----------------
# Train Generator
# -----------------
optimizer_G.zero_grad()
# Sample noise as generator input
z = Variable(torch.randn((mini_batch, args.latent_dim)).view(-1, args.latent_dim, 1, 1).cuda())
# Generate a batch of images
gen_imgs = generator(z)
# Loss measures generator's ability to fool the discriminator
g_loss = adversarial_loss(discriminator(gen_imgs).squeeze(), valid)
g_loss.backward()
optimizer_G.step()
print ("[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" % (epoch, args.n_epochs, i, len(dataloader),
d_loss.data.cpu(), g_loss.data.cpu()))
batches_done = epoch * len(dataloader) + i
if batches_done % args.sample_interval == 0:
save_image(gen_imgs.data[:64], 'images-result/%d-%d-0.jpg' % (epoch,batches_done), nrow=8, normalize=True)