- Add
GenericGradientBooster
for regression and classification. See: https://thierrymoudiki.github.io/blog/2024/10/06/python/r/genericboosting andexamples/genboost*
- Gaussian weights in
LSBoostRegressor
andLSBoostClassifier
randomized hidden layer
- add
ElasticNetRegressor
solver
toLSBoostRegressor
andLSBoostClassifier
- add clustering to
LSBoostRegressor
,LSBoostClassifier
, andAdaOpt
- add polynomial features to
LSBoostRegressor
,LSBoostClassifier
- add prediction intervals to
LSBoostRegressor
(split conformal prediction, split conformal prediction with Kernel Density Estimation, and split conformal prediction bootstrap) seeexamples/lsboost_regressor_pi.py
for examples - do not rescale columns with zero variance in
LSBoostRegressor
andLSBoostClassifier
- faster ridge regression for
LSBoostRegressor
andLSBoostClassifier
- dowload data from R-universe
- install
numpy
beforesetup
- stop using
np.int
- update Makefile
- update examples
- no more refs to openmp (for now)
- update and align with R version
- submit conda version
- Avoid division by 0 in scaling
- Fix
row_sample
inLSBoostRegressor
- include cython parallel processing Pt.1
- include manhattan distance
- adjust setup.py
- Initial version