Skip to content

Latest commit

 

History

History
59 lines (38 loc) · 1.47 KB

CHANGES.md

File metadata and controls

59 lines (38 loc) · 1.47 KB

version 0.22.3

version 0.18.2

  • Gaussian weights in LSBoostRegressor and LSBoostClassifier randomized hidden layer

version 0.17.0

  • add ElasticNetRegressor solver to LSBoostRegressor and LSBoostClassifier

version 0.16.0

  • add clustering to LSBoostRegressor, LSBoostClassifier, and AdaOpt
  • add polynomial features to LSBoostRegressor, LSBoostClassifier

version 0.12.3

  • add prediction intervals to LSBoostRegressor (split conformal prediction, split conformal prediction with Kernel Density Estimation, and split conformal prediction bootstrap) see examples/lsboost_regressor_pi.py for examples
  • do not rescale columns with zero variance in LSBoostRegressor and LSBoostClassifier
  • faster ridge regression for LSBoostRegressor and LSBoostClassifier

version 0.9.0

  • dowload data from R-universe

version 0.8.11

  • install numpy before setup
  • stop using np.int
  • update Makefile
  • update examples
  • no more refs to openmp (for now)
  • update and align with R version
  • submit conda version

version 0.8.8

  • Avoid division by 0 in scaling

version 0.8.7

  • Fix row_sample in LSBoostRegressor

version 0.3.0

  • include cython parallel processing Pt.1
  • include manhattan distance

version 0.2.0

  • adjust setup.py

version 0.1.0

  • Initial version