diff --git a/src/Ahead.jl b/src/Ahead.jl index fa19d3c..a1006b5 100644 --- a/src/Ahead.jl +++ b/src/Ahead.jl @@ -59,15 +59,14 @@ R"load_ahead <- try(library(ahead), silent = TRUE)" dynrmf(y, h = 5, level = 95) -Dynamic regression model (see https://techtonique.r-universe.dev/ahead/doc/manual.html#dynrmf) +Dynamic regression model +(see https://techtonique.r-universe.dev/ahead/doc/manual.html#dynrmf) # Details - For now, the function uses only Ridge regression with automatic selection of the regularization parameter. # Examples - ```julia using Ahead val = Ahead.dynrmf([1,2,3,4,5,6,7,8,9,10], h = 5, level = 95) @@ -115,14 +114,13 @@ end ) Random Vector functional link (RVFL) nnetwork model with 2 regularization parameters +(see https://techtonique.r-universe.dev/ahead/doc/manual.html#ridge2f) # Details - The model provides methods for uncertainty quantification, notably with predictive simulations. # Examples - ```julia using Ahead using Distributions