forked from Hben-atya/P2T2-Robust-T2-estimation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.yaml
75 lines (71 loc) · 1.42 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
components: ['Myelin', 'IS', 'ES', 'GM', 'Pathology', 'CSF']
Myelin:
t2_mean: [15,30] # ms
t2_std: [0.1, 5] # ms
IS:
t2_mean: [50,120] # ms
t2_std: [0.1, 12] # ms
ES:
t2_mean: [50,120] # ms
t2_std: [0.1, 12] # ms
GM:
t2_mean: [60,300] # ms
t2_std: [0.1, 12] # ms
Pathology:
t2_mean: [300,1000] # ms
t2_std: [0.1, 5] # ms
CSF:
t2_mean: [1000,2000] # ms
t2_std: [0.1, 5] # ms
water_pool:
WM:
components: ['Myelin', 'IS', 'ES']
derichlet_alpha: [1., 1., 1.]
GM:
components: ['Myelin', 'GM']
derichlet_alpha: [1., 1.]
CSF:
components: ['CSF']
derichlet_alpha: [1]
WM_CSF:
components: ['Myelin', 'IS', 'ES', 'CSF']
derichlet_alpha: [1., 1., 1., 1.]
WM_GM:
components: [ 'Myelin', 'IS', 'ES', 'GM' ]
derichlet_alpha: [ 1., 1., 1., 1. ]
CSF_GM:
components: ['Myelin', 'GM', 'CSF']
derichlet_alpha: [1., 1., 1.]
Pathology:
components: [ 'Pathology' ]
derichlet_alpha: [ 1 ]
seed: 42
low_SNR: 10
high_SNR: 80
T1value: 1000
T2_linear:
range: [1., 2000.]
delta: 0.1
num_elm: 2000
T2_log:
num_samples: 60
start: 10.0
end: 2000.0
num_signals: 200000
max_signal_size: 100000
num_epgs_signals: 10000
n_echoes: 20
# model params:
channel_size: 256
num_channels: 6
# train params
Trainer:
val_frac: 0.2
test_frac: 0.1
batch_size: 2000
val_batch: 2000
num_workers: 4
num_epochs: 1000
lr: 1.e-4
val_step: 1
mse_weight: 100000.0