Skip to content

Latest commit

 

History

History
33 lines (28 loc) · 825 Bytes

README.md

File metadata and controls

33 lines (28 loc) · 825 Bytes

File structure

  • pytorch-cifar
    • resnet implementation with VAECNN expriments as well
  • pytorch-adversarial-training
    • adversarial training repor
  • pytorch-vae
    • vae implementation in pytorch
  • argument.py
    • include the input arguments for example learning rate etc
  • adversarial_training_main.py
    • my implementation for adversarial training
  • fast_gradient_sign_untargeted.py
    • FGSM attack method
  • VAECNN_main.py
    • my implementation for VAE CNN

Commonly used commands

For adversarial training

$ python3 adversarial_training_main.py --data_root . --batch_size=64 --learning_rate=0.05

To train the VAECNN model

$ python3 VAECNN_main.py --saved_file_name=vaeFirstLayerChangedklckpt.pth

log

14 Jul 2022

  • implement it to accept model name
  • haven't executed on HPC yet