forked from VeljkoMaksimovic/TetrisGestureRecognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
resnext101.py
448 lines (374 loc) · 13.6 KB
/
resnext101.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import math
import torch.nn.functional as F
import dataloader
import image_util as kmg
import copy
import torchvision.models as models
import time
from collections import defaultdict
import pandas as pd
import numpy as np
import image_util as kmg
import dataloader
# Python's native libraries
import os
from collections import defaultdict
import torch.optim as optim
import torchvision
from torchvision import datasets, models, transforms
import cv2 as cv # OpenCV
# numeric and plotting libraries
import matplotlib.pyplot as plt
import jester
from PIL import Image
from spatial_transforms import *
from sklearn.metrics import accuracy_score, precision_score, recall_score, classification_report, confusion_matrix
from utils import *
import keyboard
def conv3x3x3(in_planes, out_planes, stride=1):
# 3x3x3 convolution with padding
return nn.Conv3d(
in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=1,
bias=False)
def downsample_basic_block(x, planes, stride):
out = F.avg_pool3d(x, kernel_size=1, stride=stride)
zero_pads = torch.Tensor(
out.size(0), planes - out.size(1), out.size(2), out.size(3),
out.size(4)).zero_()
if isinstance(out.data, torch.cuda.FloatTensor):
zero_pads = zero_pads.cuda()
out = Variable(torch.cat([out.data, zero_pads], dim=1))
return out
class ResNeXtBottleneck(nn.Module):
expansion = 2
def __init__(self, inplanes, planes, cardinality, stride=1,
downsample=None):
super(ResNeXtBottleneck, self).__init__()
mid_planes = cardinality * int(planes / 32)
self.conv1 = nn.Conv3d(inplanes, mid_planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm3d(mid_planes)
self.conv2 = nn.Conv3d(
mid_planes,
mid_planes,
kernel_size=3,
stride=stride,
padding=1,
groups=cardinality,
bias=False)
self.bn2 = nn.BatchNorm3d(mid_planes)
self.conv3 = nn.Conv3d(
mid_planes, planes * self.expansion, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm3d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNeXt(nn.Module):
def __init__(self,
block,
layers,
sample_size,
sample_duration,
shortcut_type='B',
cardinality=32,
num_classes=400):
self.inplanes = 64
super(ResNeXt, self).__init__()
self.conv1 = nn.Conv3d(
3,
64,
kernel_size=7,
stride=(1, 2, 2),
padding=(3, 3, 3),
bias=False)
#self.conv1 = nn.Conv3d(
# 3,
# 64,
# kernel_size=(3,7,7),
# stride=(1, 2, 2),
# padding=(1, 3, 3),
# bias=False)
self.bn1 = nn.BatchNorm3d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=2, padding=1)
self.layer1 = self._make_layer(block, 128, layers[0], shortcut_type,
cardinality)
self.layer2 = self._make_layer(
block, 256, layers[1], shortcut_type, cardinality, stride=2)
self.layer3 = self._make_layer(
block, 512, layers[2], shortcut_type, cardinality, stride=2)
self.layer4 = self._make_layer(
block, 1024, layers[3], shortcut_type, cardinality, stride=2)
last_duration = int(math.ceil(sample_duration / 16))
#last_duration = 1
last_size = int(math.ceil(sample_size / 32))
self.avgpool = nn.AvgPool3d(
(last_duration, last_size, last_size), stride=1)
self.fc = nn.Linear(cardinality * 32 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv3d):
m.weight = nn.init.kaiming_normal(m.weight, mode='fan_out')
elif isinstance(m, nn.BatchNorm3d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self,
block,
planes,
blocks,
shortcut_type,
cardinality,
stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
if shortcut_type == 'A':
downsample = partial(
downsample_basic_block,
planes=planes * block.expansion,
stride=stride)
else:
downsample = nn.Sequential(
nn.Conv3d(
self.inplanes,
planes * block.expansion,
kernel_size=1,
stride=stride,
bias=False), nn.BatchNorm3d(planes * block.expansion))
layers = []
layers.append(
block(self.inplanes, planes, cardinality, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, cardinality))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def get_fine_tuning_parameters(model, ft_portion):
if ft_portion == "complete":
return model.parameters()
elif ft_portion == "last_layer":
ft_module_names = []
ft_module_names.append('classifier')
parameters = []
for k, v in model.named_parameters():
for ft_module in ft_module_names:
if ft_module in k:
parameters.append({'params': v})
break
else:
parameters.append({'params': v, 'lr': 0.0})
return parameters
else:
raise ValueError("Unsupported ft_portion: 'complete' or 'last_layer' expected")
def resnext50(**kwargs):
"""Constructs a ResNet-50 model.
"""
model = ResNeXt(ResNeXtBottleneck, [3, 4, 6, 3], **kwargs)
return model
def resnext101(**kwargs):
"""Constructs a ResNet-101 model.
"""
model = ResNeXt(ResNeXtBottleneck, [3, 4, 23, 3], **kwargs)
return model
def resnext152(**kwargs):
"""Constructs a ResNet-101 model.
"""
model = ResNeXt(ResNeXtBottleneck, [3, 8, 36, 3], **kwargs)
return model
# def load_pretrained_model(model, pretrain_path, model_name, n_finetune_classes):
# if pretrain_path:
# #print('loading pretrained model {}'.format(pretrain_path))
# pretrain = torch.load(pretrain_path, map_location='cpu')
# model.load_state_dict(pretrain['state_dict'])
# tmp_model = model
# if model_name == 'densenet':
# tmp_model.classifier = nn.Linear(tmp_model.classifier.in_features,
# n_finetune_classes)
# else:
# tmp_model.fc = nn.Linear(tmp_model.fc.in_features,
# n_finetune_classes)
# return model
def load():
path = r"jester_resnext_101_RGB_16_best.pth"
# assert opt.arch == checkpoint['arch']
model = ResNeXt(ResNeXtBottleneck, [3, 4, 23, 3],
num_classes=27,
shortcut_type='B',
cardinality=32,
sample_size=112,
sample_duration=16)
pretrained_dict = torch.load(path)
model_dict = model.state_dict()
dicti = pretrained_dict['state_dict']
# create new OrderedDict that does not contain `module.`
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in dicti.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
# load params
# 2. overwrite entries in the existing state dict
model_dict.update(new_state_dict)
model.load_state_dict(model_dict)
return model
def test(model):
# 1 Doing_other_things
# 2 Drumming_Fingers
# 3 No_gesture
# 4 Pulling_Hand_In
# 5 Pulling_Two_Fingers_In
# 6 Pushing_Hand_Away
# 7 Pushing_Two_Fingers_Away
# 8 Rolling_Hand_Backward
# 9 Rolling_Hand_Forward
# 10 Shaking_Hand
# 11 Sliding_Two_Fingers_Down
# 12 Sliding_Two_Fingers_Left
# 13 Sliding_Two_Fingers_Right
# 14 Sliding_Two_Fingers_Up
# 15 Stop_Sign
# 16 Swiping_Down
# 17 Swiping_Left
# 18 Swiping_Right
# 19 Swiping_Up
# 20 Thumb_Down
# 21 Thumb_Up
# 22 Turning_Hand_Clockwise
# 23 Turning_Hand_Counterclockwise
# 24 Zooming_In_With_Full_Hand
# 25 Zooming_In_With_Two_Fingers
# 26 Zooming_Out_With_Full_Hand
# 27 Zooming_Out_With_Two_Fingers
path_vid =r"D:/20bn-jester-v2"
BASE_PATH = "D:"
test_data = Jester(
path_vid,
"jester1.json",
'test',
1,
spatial_transform= Compose([
#Scale(opt.sample_size),
Scale(112),
CenterCrop(112),
ToTensor(1), Normalize([0, 0, 0], [1, 1, 1]) ]),
temporal_transform= TemporalCenterCrop(16,1),
target_transform=ClassLabel(),
sample_duration=16)
test_loader = torch.utils.data.DataLoader(
test_data,
batch_size=10,
shuffle=False,
num_workers=0,
pin_memory=True)
recorder = []
model.eval()
batch_time = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
precisions = AverageMeter() #
recalls = AverageMeter()
y_true = []
y_pred = []
end_time = time.time()
for i, (inputs, targets) in enumerate(test_loader):
torch.save(inputs, 'input_tensor.pt')
torch.save(targets, 'target_tensor.pt')
if i == 10:
break
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
targets = targets.to(device)
#inputs = Variable(torch.squeeze(inputs), volatile=True)
with torch.no_grad():
inputs = Variable(inputs)
targets = Variable(targets)
start = time.time()
outputs = model(inputs)
outputs.to(outputs)
#outputs = F.softmax(outputs)
outputs = outputs[:,[0,2,15,16,17,18,19]] # only consider gestures we need
print('Time = ' + str(time.time()-start))
recorder.append(outputs.data.cpu().numpy().copy())
print(targets)
print(outputs.argmax(1))
y_true.extend(targets.cpu().numpy().tolist())
y_pred.extend(outputs.argmax(1).cpu().numpy().tolist())
print(y_true)
print(y_pred)
# prec1, prec5 = calculate_accuracy(outputs, targets, topk=(1,5))
# precision = calculate_precision(outputs, targets) #
# recall = calculate_recall(outputs,targets)
# top1.update(prec1, inputs.size(0))
# top5.update(prec5, inputs.size(0))
# precisions.update(precision, inputs.size(0))
# recalls.update(recall,inputs.size(0))
batch_time.update(time.time() - end_time)
end_time = time.time()
print('[{0}/{1}]\t'
'Time {batch_time.val:.5f} ({batch_time.avg:.5f})\t'
'prec@1 {top1.avg:.5f} prec@5 {top5.avg:.5f}\t'
'precision {precision.val:.5f} ({precision.avg:.5f})\t'
'recall {recall.val:.5f} ({recall.avg:.5f})'.format(
i + 1,
len(test_loader),
batch_time=batch_time,
top1 =top1,
top5=top5,
precision = precisions,
recall = recalls))
def calculate_accuracy(outputs, targets, topk=(1,)):
maxk = max(topk)
batch_size = targets.size(0)
_, pred = outputs.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(targets.view(1, -1).expand_as(pred))
ret = []
for k in topk:
correct_k = correct[:k].float().sum().item()
ret.append(correct_k / batch_size)
return ret
def calculate_precision(outputs, targets):
_, pred = outputs.topk(1, 1, True)
pred = pred.t()
return precision_score(targets.view(-1), pred.view(-1), average = 'macro')
def calculate_recall(outputs, targets):
_, pred = outputs.topk(1, 1, True)
pred = pred.t()
return recall_score(targets.view(-1), pred.view(-1), average = 'macro')
print('1')
keyboard.press("left")
time.sleep(0.05)
keyboard.release("left")
model = load()
test(model)