Skip to content

Latest commit

 

History

History
111 lines (84 loc) · 7.05 KB

README.md

File metadata and controls

111 lines (84 loc) · 7.05 KB

ActiView: Evaluating Active Perception Ability for Multimodal Large Language Models

Image

Timeline

📢 [2024-10-23] Benchmark and evaluation toolkit (will be updated soon, does not support single-image models) released.

📢 [2024-10-14] Homepage released.

📢 [2024-10-07] Paper and repo released.

Project Overview

This repository contains all the necessary materials, including:

  • Datasets for active perception evaluation
  • Toolkits for model evaluation
  • Results and analysis from the paper

Leaderboard

Results of Zooming and Shifting Pipelines

The evaluation of active perception abilities on our benchmark, including zooming, and shifting. "Model AVG": average scores of column "Zooming", "Shifting-R", "Shifting-E", "Shifting-M", and "Shifting-H".

Proprietary Models

Models Full Image Zooming Single View Shifting-R Shifting-E Shifting-M Shifting-H Model AVG
Gemini-1.5-pro 73.85 72.31 58.15 67.08 67.38 65.54 67.69 68.00
GPT-4o 67.38 68.62 61.23 67.08 66.77 65.23 64.31 66.40
Claude 3.5 Sonnet 72.92 71.69 54.46 65.23 66.15 60.31 61.85 65.05

Open-source Models for Multiple Images as Input

Models Full Image Zooming Single View Shifting-R Shifting-E Shifting-M Shifting-H Model AVG
Qwen2-VL 63.08 64.62 54.46 61.23 62.77 64.31 61.85 62.96
Idefics3-8B-Llama3 59.08 58.15 53.23 61.85 59.38 59.69 60.31 59.88
MiniCPM-V 2.6 64.62 61.85 54.46 54.77 61.23 58.15 55.69 58.34
mPLUG-Owl3 62.46 60.92 54.15 51.69 56.31 55.69 53.54 55.63
LLaVA-OneVision 64.92 65.23 56.92 53.54 57.23 52.31 48.62 55.39
InternVL2-8B 58.15 56.00 45.85 54.77 59.70 53.23 52.00 55.14
Mantis 59.08 60.62 52.92 52.92 55.38 52.92 52.31 54.83
Idefics2-8B 61.85 61.85 55.69 53.23 56.92 51.69 49.23 54.58
Brote-IM-XL-3B 54.77 54.46 55.69 51.38 51.08 52.62 47.69 51.45
Idefics2-8B-base 52.62 48.62 47.69 49.54 50.77 47.69 47.69 48.86
Brote-IM-XXL-11B 53.85 54.77 49.23 49.85 50.77 44.92 43.69 48.80
MMICL-XXL-11B 51.69 49.54 50.15 49.85 49.85 46.77 45.54 48.31
MMICL-XL-3B 49.85 49.85 44.31 44.92 48.92 45.85 44.31 46.77

Open-source Models for Single Image as Input

Models Full Image Zooming Single View Shifting-R Shifting-E Shifting-M Shifting-H Model AVG
MiniCPM-Llama3-V-2.5 63.87 61.25 54.47 60.92 60.31 59.38 58.46 60.06
GLM-4V-9B 67.08 56.92 53.85 56.92 60.62 56.00 52.92 56.68
InternVL-Vicuna-13B 56.92 62.77 52.31 53.85 52.92 52.92 51.08 54.71
LLaVA-1.6 7B 55.08 68.92 50.15 51.69 52.31 49.23 48.00 54.03
InternVL-Vicuna-7B 55.38 65.23 51.70 52.92 51.38 50.77 48.62 53.78
LLaVA-1.6 13B 56.92 65.23 52.31 45.85 55.08 52.62 48.92 53.54
InternVL-Vicuna-13B-448px 50.46 57.85 45.54 48.31 48.31 48.92 48.92 50.46
mPLUG-Owl2-7B 55.08 55.38 52.00 47.38 46.46 46.46 46.15 48.37
Mini-Gemini-7B-HD 55.69 34.77 51.70 48.62 48.00 47.69 50.15 45.85
SEAL 48.31 54.77 42.77 42.15 42.77 40.02 40.62 44.07
Mini-Gemini-7B 47.08 17.85 47.38 39.38 38.15 38.15 36.00 33.91

Results of Mixed Pipeline for Multi-Image Models

ACC: accuracy; #zoom: average zooming operations; #shift: average shifting operations; #view: average used views.

Models ACC #zoom #shift #view
GPT-4o 69.54 1.61 1.23 1.35
Qwen2-VL 65.54 2.51 2.17 2.12
MiniCPM-V 2.6 64.00 1.31 0.39 0.94
mPLUG-Owl3 59.69 2.59 1.49 1.43
Idefics3 62.15 1.16 0.59 0.58

Evaluation

To run the evaluation scripts, please modify the mehtods for loading models, inference, and post processing of model generated answers.

You can also use our provided scripts for some models (including Qwen2-VL, mPLUG-Owl3, Idefics3, Mantis, Brote, MMICL. API-based models will be available soon.)

Please try:

bash eval_script/run_qwen2vl_mix.sh 0,1,2,3 ../asset path_to_qwen2vl > qwen_mix.log 2>&1 &

🚧 These are temporal scripts and will be updated soon. If you find the scripts does not working properly, please raise issues in this repo.

Sample outputs are provided in results dir.

Citation

If you find our project useful, please consider citing:

@misc{wang2024activiewevaluatingactiveperception,
      title={ActiView: Evaluating Active Perception Ability for Multimodal Large Language Models}, 
      author={Ziyue Wang and Chi Chen and Fuwen Luo and Yurui Dong and Yuanchi Zhang and Yuzhuang Xu and Xiaolong Wang and Peng Li and Yang Liu},
      year={2024},
      eprint={2410.04659},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2410.04659}, 
}