-
Notifications
You must be signed in to change notification settings - Fork 0
/
Stat_Distributions.au3
535 lines (489 loc) · 22.8 KB
/
Stat_Distributions.au3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
#include-once
#include "Stat_Basics.au3"
#include "Stat_ListFunctions.au3"
; Main-function
If @ScriptName = "Stat_Distributions.au3" Then
;~ ConsoleWrite(_stat_norm_pdf(0, 0, 2) & @CRLF)
;~ ConsoleWrite(_stat_norm_cdf(1) & @CRLF)
;~ ConsoleWrite(_stat_norm_icdf(0.841344746068543) & @CRLF & @CRLF)
;~ ConsoleWrite(_stat_f_pdf(1, 7, 5) & @CRLF)
;~ ConsoleWrite(_stat_f_cdf(2.11633663366337, 7, 5) & @CRLF)
;~ ConsoleWrite(_stat_f_icdf(0.920529921102706, 7, 5) & @CRLF & @CRLF)
;~ ConsoleWrite(_stat_t_pdf(1, 10) & @CRLF)
;~ ConsoleWrite(_stat_t_cdf(0.7, 10) & @CRLF)
;~ ConsoleWrite(_stat_t_icdf(0.750056214913558, 10) & @CRLF & @CRLF)
ConsoleWrite(_stat_chi2_pdf(2, 4) & @CRLF)
ConsoleWrite(_stat_chi2_cdf(2, 4) & @CRLF)
ConsoleWrite(_stat_chi2_icdf(0.264241117657115, 4) & @CRLF & @CRLF)
;~ ConsoleWrite(_stat_beta_pdf(0.2, 0.5, 0.5) & @CRLF)
;~ ConsoleWrite(_stat_beta_cdf(0.8, 0.5, 0.5) & @CRLF)
;~ ConsoleWrite(_stat_beta_icdf(0.704832764699133, 0.5, 0.5) & @CRLF)
;~ ConsoleWrite(_stat_uniform_pdf(1, 0, 3) & @CRLF)
;~ ConsoleWrite(_stat_uniform_cdf(2, 0, 3) & @CRLF)
;~ ConsoleWrite(_stat_uniform_icdf(0.6666666666666666666, 0, 3) & @CRLF & @CRLF)
;~ Local $N = 1e5
;~ Local $aSample[$N]
;~ For $i = 0 To $N-1
;~ $aSample[$i] = _stat_norm_ran(10,2)
;~ Next
;~ $a_Parameters = _stat_Sample_Parameter($aSample, True)
;~ _ArrayDisplay($a_Parameters)
EndIf
#Region Gleich-Verteilung
; #FUNCTION# ======================================================================================
; Name ..........: _stat_uniform_pdf()
; Description ...: propability density function for the continuous uniform distribution
; Syntax ........: _stat_uniform_pdf(Const $x, Const $a, Const $b)
; Parameters ....: Const $x -
; Const $a - lower bound of the distribution
; Const $b - upper bound of the distribution
; Return values .: Success
; Failure
; Author ........: AspirinJunkie
; =================================================================================================
Func _stat_uniform_pdf(Const $x, Const $a, Const $b)
Return $x < $a Or $x > $b ? 0 : 1 / $b - $a
EndFunc ;==>_stat_uniform_pdf
; #FUNCTION# ======================================================================================
; Name ..........: _stat_uniform_cdf()
; Description ...: cumulative density function for the continuous uniform distribution
; Syntax ........: _stat_uniform_cdf(Const $x, Const $a, Const $b)
; Parameters ....: Const $x -
; Const $a - lower bound of the distribution
; Const $b - upper bound of the distribution
; Return values .: Success
; Failure
; Author ........: AspirinJunkie
; =================================================================================================
Func _stat_uniform_cdf(Const $x, Const $a, Const $b)
Return $x < $a ? 0 : ($x > $b ? 1 : ($x - $a) / ($b - $a))
EndFunc ;==>_stat_uniform_cdf
; #FUNCTION# ======================================================================================
; Name ..........: _stat_uniform_icdf()
; Description ...: quantile function (inverse cdf) for the continuous uniform distribution
; Syntax ........: _stat_uniform_icdf(Const $p, Const $a, Const $b)
; Parameters ....: Const $p -
; Const $a - lower bound of the distribution
; Const $b - upper bound of the distribution
; Return values .: Success
; Failure
; Author ........: AspirinJunkie
; =================================================================================================
Func _stat_uniform_icdf(Const $p, Const $a, Const $b)
If $p < 0 Or $p > 1 Then Return SetError(1, 0, "")
Return $p * ($b - $a) + $a
EndFunc ;==>_stat_uniform_icdf
#EndRegion Gleich-Verteilung
#Region Normal-Verteilung
; #FUNCTION# ======================================================================================
; Name ..........: _stat_norm_pdf()
; Description ...: propability density function for the gaussian normal distribution
; Syntax ........: _stat_norm_pdf($x[, $mu = 0[, $sigma = 1]])
; Parameters ....: $x -
; $mu - [optional] (default:0)
; $sigma - [optional] (default:1)
; Return values .: Success
; Failure
; Author ........: AspirinJunkie
; Remarks .......: default values for mu and sigma lead to "standard normal distribution"
; =================================================================================================
Func _stat_norm_pdf($x, $mu = 0, $sigma = 1)
If $sigma <= 0 Then Return SetError(1, 0, "")
Return (0.398942280401432678 / $sigma) * Exp(-0.5 * (($x - $mu) / $sigma) ^ 2) ; 0.398942280401432678 / $sigma = 1 / ($sigma * Sqrt(2 * $PI))
EndFunc ;==>_stat_norm_pdf
; #FUNCTION# ======================================================================================
; Name ..........: _stat_norm_cdf()
; Description ...: Cumulative density function for the gaussian normal distribution
; Syntax ........: _stat_norm_cdf($x[, $mu = 0[, $sigma = 1]])
; Parameters ....: $x -
; $mu - [optional] (default:0)
; $sigma - [optional] (default:1)
; Return values .: Success
; Failure
; Author ........: AspirinJunkie
; Remarks .......: default values for mu and sigma lead to "standard normal distribution"
; =================================================================================================
Func _stat_norm_cdf($x, $mu = 0, $sigma = 1)
Return 0.5 * _stat_erfc(-0.707106781186547524 * ($x - $mu) / $sigma)
EndFunc ;==>_stat_norm_cdf
; #FUNCTION# ======================================================================================
; Name ..........: _stat_norm_icdf()
; Description ...: quantile function (inverse cdf) for the gaussian normal distribution
; Syntax ........: _stat_norm_icdf($p[, $mu = 0[, $sigma = 1[, $bSet = False]]])
; Parameters ....: $p -
; $mu - [optional] (default:0)
; $sigma - [optional] (default:1)
; $bSet - [optional] (default:False)
; Return values .: Success
; Failure
; Author ........: AspirinJunkie
; Remarks .......: default values for mu and sigma lead to "standard normal distribution"
; =================================================================================================
Func _stat_norm_icdf($p, $mu = 0, $sigma = 1, $bSet = False)
If $p <= 0 Or $p >= 1 Then Return SetError(1, 0, "")
Return -1.41421356237309505 * $sigma * _stat_inverfc(2 * $p) + $mu
EndFunc ;==>_stat_norm_icdf
; #FUNCTION# ======================================================================================
; Name ..........: _stat_norm_ran()
; Description ...: generate a normal distributed random variable
; Syntax ........: _stat_norm_ran(Const[ $mu = 0, Const[ $sigma = 1]])
; Parameters ....: Const $mu - [optional] (default:0)
; Const $sigma - [optional] standard deviation of the normal distribution (default:1)
; Return values .: Success: a normal distributed random value
; Failure
; Author ........: AspirinJunkie
; =================================================================================================
Func _stat_norm_ran(Const $mu = 0, Const $sigma = 1)
Local Static $stored = 0
Local $v1, $v2, $rsq, $fac
If $stored = 0 Then
Do
$v1 = 2 * Random(-1, 1) - 1
$v2 = 2 * Random(-1, 1) - 1
$rsq = $v1 * $v1 + $v2 * $v2
Until $rsq < 1.0 And $rsq <> 0
$fac = Sqrt(-2*Log($rsq)/$rsq)
$stored = $v1*$fac
Return $mu + $sigma*$v2*$fac
Else
$fac = $stored
$stored = 0
Return $mu + $sigma * $fac
EndIf
EndFunc
#EndRegion Normal-Verteilung
#Region F-Verteilung
; #FUNCTION# ======================================================================================
; Name ..........: _stat_f_pdf()
; Description ...: propability density function for the f-distribution
; Syntax ........: _stat_f_pdf(Const $x, Const[ $m = 2, Const[ $n = 2]])
; Parameters ....: Const $x -
; Const $m - [optional] degrees of freedom in the numerator (default:2)
; Const $n - [optional] degrees of freedom in the denominator (default:2)
; Return values .: Success
; Failure
; Author ........: AspirinJunkie
; =================================================================================================
Func _stat_f_pdf(Const $x, Const $m = 2, Const $n = 2)
If $x < 0 Then Return 0
Return $x < 0 ? 0 : _
($m ^ ($m / 2)) * ($n ^ ($n / 2)) * _
(_stat_Gamma($m / 2 + $n / 2) / _
(_stat_Gamma($m / 2) * _stat_Gamma($n / 2))) * _
($x ^ ($m / 2 - 1)) / _
(($m * $x + $n) ^ (($m + $n) / 2))
EndFunc ;==>_stat_f_pdf
; #FUNCTION# ======================================================================================
; Name ..........: _stat_f_cdf()
; Description ...: cumulative density function for the f-distribution
; Syntax ........: _stat_f_cdf($x[, $m = 2[, $n = 2]])
; Parameters ....: $x -
; $m - [optional] degrees of freedom in the numerator (default:2)
; $n - [optional] degrees of freedom in the denominator (default:2)
; Return values .: Success
; Failure
; Author ........: AspirinJunkie
; =================================================================================================
Func _stat_f_cdf($x, $m = 2, $n = 2)
If $x < 0 Then Return SetError(1, 0, "")
Return _stat_betaRI($m * $x / ($n + $m * $x), 0.5 * $m, 0.5 * $n)
EndFunc ;==>_stat_f_cdf
; #FUNCTION# ======================================================================================
; Name ..........: _stat_f_icdf()
; Description ...: quantile function (Inverse cdf) for the f-distribution
; Syntax ........: _stat_f_icdf($p[, $m = 2[, $n = 2]])
; Parameters ....: $p -
; $m - [optional] (default:2)
; $n - [optional] (default:2)
; Return values .: Success
; Failure
; Author ........: AspirinJunkie
; =================================================================================================
Func _stat_f_icdf($p, $m = 2, $n = 2)
If $p <= 0 Or $p >= 1 Then Return SetError(1, 0, "")
Local $x = _stat_betaRI_inv($p, 0.5 * $m, 0.5 * $n)
Return $n * $x / ($m * (1 - $x))
EndFunc ;==>_stat_f_icdf
#EndRegion F-Verteilung
#Region Student-T-Verteilung
; #FUNCTION# ======================================================================================
; Name ..........: _stat_t_pdf()
; Description ...: propability density function for the student-t distribution
; Syntax ........: _stat_t_pdf($t, Const[ $n = 10[, $m = 0[, $sig = 1]]])
; Parameters ....: $t -
; Const $n - [optional] (default:10)
; $m - [optional] (default:0)
; $sig - [optional] (default:1)
; Return values .: Success
; Failure
; Author ........: AspirinJunkie
; =================================================================================================
Func _stat_t_pdf($t, Const $n = 10, $m = 0, $sig = 1)
If $sig <= 0 Or $n <= 0 Then Return SetError(1, 0, "")
Local $np = 0.5 * ($n + 1)
Local $fac = _stat_GammaLn($np) - _stat_GammaLn(0.5 * $n)
Return Exp(-$np * Log(1 + ((($t - $m) / $sig) ^ 2) / $n) + $fac) / (Sqrt($PI * $n) * $sig)
EndFunc ;==>_stat_t_pdf
; #FUNCTION# ======================================================================================
; Name ..........: _stat_t_cdf()
; Description ...: Cumulative density function for the student-t distribution
; Syntax ........: _stat_t_cdf($t, Const[ $n = 10[, $m = 0[, $sig = 1]]])
; Parameters ....: $t -
; Const $n - [optional] (default:10)
; $m - [optional] (default:0)
; $sig - [optional] (default:1)
; Return values .: Success
; Failure
; Author ........: AspirinJunkie
; =================================================================================================
Func _stat_t_cdf($t, Const $n = 10, $m = 0, $sig = 1)
Local $p = 0.5 * _stat_betaRI($n / ($n + ((($t - $m) / $sig) ^ 2)), 0.5 * $n, 0.5)
Return $t >= $m ? 1 - $p : $p
EndFunc ;==>_stat_t_cdf
; #FUNCTION# ======================================================================================
; Name ..........: _stat_t_icdf()
; Description ...: quantile function (inverse cdf) for the student-t distribution
; Syntax ........: _stat_t_icdf($p, $n[, $m = 0[, $sig = 1]])
; Parameters ....: $p -
; $n -
; $m - [optional] (default:0)
; $sig - [optional] (default:1)
; Return values .: Success
; Failure
; Author ........: AspirinJunkie
; =================================================================================================
Func _stat_t_icdf($p, $n, $m = 0, $sig = 1)
Local $x = _stat_betaRI_inv(2 * __stat_min($p, 1 - $p), 0.5 * $n, 0.5)
$x = $sig * Sqrt($n * (1 - $x) / $x)
Return $p >= 0.5 ? $m + $x : $m - $x
EndFunc ;==>_stat_t_icdf
#EndRegion Student-T-Verteilung
#Region Beta-Verteilung
; #FUNCTION# ======================================================================================
; Name ..........: _stat_beta_pdf()
; Description ...: propability density function for the beta distribution
; Syntax ........: _stat_beta_pdf($x[, $alpha = 1[, $beta = 1]])
; Parameters ....: $x -
; $alpha - [optional] (default:1)
; $beta - [optional] (default:1)
; Return values .: Success
; Failure
; Author ........: AspirinJunkie
; =================================================================================================
Func _stat_beta_pdf($x, $alpha = 1, $beta = 1)
Return ($x ^ ($alpha - 1)) * ((1 - $x) ^ ($beta - 1)) / (_stat_Gamma($alpha) * _stat_Gamma($beta) / _stat_Gamma($alpha + $beta))
EndFunc ;==>_stat_beta_pdf
; #FUNCTION# ======================================================================================
; Name ..........: _stat_beta_cdf()
; Description ...: Cumulative density function for the beta distribution
; Syntax ........: _stat_beta_cdf($x[, $alpha = 1[, $beta = 1]])
; Parameters ....: $x -
; $alpha - [optional] (default:1)
; $beta - [optional] (default:1)
; Return values .: Success
; Failure
; Author ........: AspirinJunkie
; =================================================================================================
Func _stat_beta_cdf($x, $alpha = 1, $beta = 1)
If $x <= 0 Then Return 0
If $x >= 1 Then Return 1
Return _stat_betaRI($x, $alpha, $beta)
EndFunc ;==>_stat_beta_cdf
; #FUNCTION# ======================================================================================
; Name ..........: _stat_beta_icdf()
; Description ...: quantile function (Inverse cdf) for the beta distribution
; Syntax ........: _stat_beta_icdf($p[, $a = 2[, $b = 2]])
; Parameters ....: $p -
; $a - [optional] (default:2)
; $b - [optional] (default:2)
; Return values .: Success
; Failure
; Author ........: AspirinJunkie
; =================================================================================================
Func _stat_beta_icdf($p, $a = 2, $b = 2)
Return _stat_betaRI_inv($p, $a, $b)
EndFunc ;==>_stat_beta_icdf
#EndRegion Beta-Verteilung
#Region Chi-Quadrat-Verteilung
; #FUNCTION# ======================================================================================
; Name ..........: _stat_chi2_pdf()
; Description ...: propability density function for the Chi²-distribution
; Syntax ........: _stat_chi2_pdf($x[, $n = 2])
; Parameters ....: $x -
; $n - [optional] (default:2)
; Return values .: Success
; Failure
; Author ........: AspirinJunkie
; =================================================================================================
Func _stat_chi2_pdf($x, $n = 2)
If $x <= 0 Then Return 0
Local Const $n2 = 0.5 * $n
Return ($x ^ ($n2 - 1) * Exp(-0.5 * $x)) / _
2.0 ^ $n2 * _stat_Gamma($n2)
EndFunc ;==>_stat_chi2_pdf
; #FUNCTION# ======================================================================================
; Name ..........: _stat_chi2_cdf()
; Description ...: cumulative density function for the Chi²-distribution
; Syntax ........: _stat_chi2_cdf($x[, $n = 2])
; Parameters ....: $x -
; $n - [optional] (default:2)
; Return values .: Success
; Failure
; Author ........: AspirinJunkie
; =================================================================================================
Func _stat_chi2_cdf($x, $n = 2)
If $x <= 0 Then Return SetError(1, 0, "")
Return _stat_gammp(0.5 * $n, 0.5 * $x)
;~ Local $a_Params[3] = ["CallArgArray", $x, $n]
;~ Return _stat_Int_Romberg(_stat_chi2_pdf, 0.0, $x, $a_Params, 1)
EndFunc ;==>_stat_chi2_cdf
; #FUNCTION# ======================================================================================
; Name ..........: _stat_chi2_icdf()
; Description ...: quantile function (Inverse cdf) for the Chi²-distribution
; Syntax ........: _stat_chi2_icdf($p, $n)
; Parameters ....: $p -
; $n -
; Return values .: Success
; Failure
; Author ........: AspirinJunkie
; =================================================================================================
Func _stat_chi2_icdf($p, $n)
If $p < 0 Or $p >= 1 Then Return SetError(1, 0, "")
Return 2 * _stat_invgammp($p, 0.5 * $n)
;~ Local $a_Params[3] = ["CallArgArray", $t, $n]
;~ Return _stat_findFuncVal(_stat_chi2_cdf, 0, 20 * $n, $t, $a_Params, 1)
EndFunc ;==>_stat_chi2_icdf
#EndRegion Chi-Quadrat-Verteilung
#Region Kolmogorov-Smirnov-Verteilung
; #FUNCTION# ======================================================================================
; Name ..........: _stat_ks_getProb()
; Description ...: returns the propability for a quantile of the kolmogorov-smirnov distribution
; Syntax ........: _stat_ks_getProb($n, $e)
; Parameters ....: $n - sample size
; $e -
; Return values .: Success
; Failure
; Author ........: AspirinJunkie
; Remarks .......: used for evaluate the p-value for the ks-test
; source of the algorithm: cephes module for Python
; =================================================================================================
Func _stat_ks_getProb($n, $e)
Local Static $MAXLOG = Log(2 ^ 127)
Local $nn = Floor($n * (1 - $e))
Local $p = 0, $c, $evn
If $n < 1013 Then
$c = 1
For $v = 0 To $nn
$evn = $e + $v / $n
$p += $c * ($evn ^ ($v - 1)) * ((1 - $evn) ^ ($n - $v))
$c *= ($n - $v) / ($v + 1)
Next
Else
Local $lgamnp1 = _stat_GammaLn($n + 1), $omevn, $t
For $v = 0 To $nn
$evn = $e + $v / $n
$omevn = 1 - $evn
If Abs($omevn) > 0 Then
$t = $lgamnp1 - _stat_GammaLn($v + 1) - _stat_GammaLn($n - $v + 1) + ($v - 1) * Log($evn) + ($n - $v) * Log($omevn)
If $t > -$MAXLOG Then $p += Exp($t)
EndIf
Next
EndIf
Return $p * $e
EndFunc ;==>_stat_ks_getProb
; #FUNCTION# ======================================================================================
; Name ..........: _stat_ks_pks()
; Description ...: cumulative density function for the kolmogorov-smirnov distribution
; Syntax ........: _stat_ks_pks(Const $z)
; Parameters ....: Const $z -
; Return values .: Success
; Failure
; Author ........: AspirinJunkie
; Remarks .......: Source of algorithm = Numerical Receipes - The Art of Scientific Computing 3rd ed (Cambridge 2007)
; =================================================================================================
Func _stat_ks_pks(Const $z)
If $z < 0 Then Return SetError(1, 0, "")
If $z = 0 Then Return 0
If $z < 1.18 Then
Local $y = Exp(-1.23370055013616983 / ($z * $z))
Return 2.25675833419102515 * Sqrt(-Log($y)) * ($y + $y ^ 9 + $y ^ 25 + $y ^ 49) ;
Else
Local $x = Exp(-2 * ($z * $z))
Return 1 - 2 * ($x - $x ^ 4 + $x ^ 9)
EndIf
EndFunc ;==>_stat_ks_pks
; #FUNCTION# ======================================================================================
; Name ..........: _stat_ks_qks()
; Description ...: complementary cumulative density function [Q_KS(z) = 1-P_KS(z)] for the kolmogorov-smirnov distribution
; Syntax ........: _stat_ks_qks(Const $z[, $m = 10])
; Parameters ....: Const $z -
; $m - [optional] (default:10)
; Return values .: Success
; Failure
; Author ........: AspirinJunkie
; Remarks .......: Source of algorithm = Numerical Receipes - The Art of Scientific Computing 3rd ed (Cambridge 2007)
; =================================================================================================
Func _stat_ks_qks(Const $z, $m = 10)
;~ Local $sum = 0
;~ For $k = 1 To $m
;~ $sum += Exp(-((2*$k-1)^2)*($PI^2)/(8*$z^2))
;~ Next
;~ Return 1-((Sqrt(2*$PI)/$z) * $sum)
If $z < 0 Then Return SetError(1, 0, "")
If $z = 0 Then Return 1
If $z < 1.18 Then Return 1 - _stat_ks_pks($z)
Local $x = Exp(-2 * ($z * $z))
Return 2 * ($x - $x ^ 4 + $x ^ 9)
EndFunc ;==>_stat_ks_qks
; #FUNCTION# ======================================================================================
; Name ..........: _stat_ks_invpks()
; Description ...: inverse of the cdf [P_KS^-1(P)] for the kolmogorov-smirnov distribution
; Syntax ........: _stat_ks_invpks(Const $p)
; Parameters ....: Const $p -
; Return values .: Success
; Failure
; Author ........: AspirinJunkie
; Remarks .......: Source of algorithm = Numerical Receipes - The Art of Scientific Computing 3rd ed (Cambridge 2007)
; =================================================================================================
Func _stat_ks_invqks(Const $q)
;~ Local $a_Params[2] = ["CallArgArray", $q]
;~ Return _stat_findFuncVal(_stat_ks_qks, 0, 1, $q, $a_Params, 1)
If $q <= 0 Or $q > 1 Then Return SetError(1, 0, "")
If $q = 1 Then Return 0
If $q > 0.3 Then
Local $f = -0.392699081698724155 * ((1 - $q) ^ 2)
Local $y = __invxlogx($f)
Local $yp, $logy, $ff, $u
Do
$yp = $y
$logy = Log($y)
$ff = $f / ((1 + $y ^ 4 + $y ^ 12) ^ 2)
$u = ($y * $logy - $ff) / (1 + $logy)
$t = $u / __stat_max(0.5, 1 - 0.5 * $u / ($y * (1 + $logy)))
$y = $y - $t
Until Abs($t / $y) <= 1E-15
Return 1.57079632679489662 / Sqrt(-Log($y))
Else
Local $x = 0.03, $xp
Do
$xp = $x
$x = 0.5 * $q + $x ^ 4 - $x ^ 9
If $x > 0.06 Then $x += $x ^ 16 - $x ^ 25
Until Abs(($xp - $x) / $x) <= 1E-15
Return Sqrt(-0.5 * Log($x))
EndIf
EndFunc ;==>_stat_ks_invqks
; #FUNCTION# ======================================================================================
; Name ..........: _stat_ks_invqks()
; Description ...: complementary inverse of the cdf [Q_KS^-1(Q)] for the kolmogorov-smirnov distribution
; Syntax ........: _stat_ks_invqks(Const $q)
; Parameters ....: Const $q -
; Return values .: Success
; Failure
; Author ........: AspirinJunkie
; Remarks .......: Source of algorithm = Numerical Receipes - The Art of Scientific Computing 3rd ed (Cambridge 2007)
; =================================================================================================
Func _stat_ks_invpks(Const $p)
Return _stat_ks_invqks(1 - $p)
EndFunc ;==>_stat_ks_invpks
#EndRegion Kolmogorov-Smirnov-Verteilung