Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

onnxruntime.capi.onnxruntime_pybind11_state.InvalidArgument: [ONNXRuntimeError] #63

Open
soltkreig opened this issue May 26, 2022 · 1 comment

Comments

@soltkreig
Copy link

soltkreig commented May 26, 2022

Hi, I run test.py use onnx model but got the error below:

onnxruntime.capi.onnxruntime_pybind11_state.InvalidArgument: [ONNXRuntimeError] : 2 : INVALID_ARGUMENT : Got invalid dimensions for input: 0 for the following indices
 index: 1 Got: 3 Expected: 1

For export model I used next shape: 1 1 3 32 224 224.
I've checked input data size: 1 3 3 32 224 224
It's obviously dimensions 1 are not compatible but I can't understand why input size is 3?

My config:

_base_ = [
    '../../_base_/models/swin/swin_base.py', '../../_base_/default_runtime.py'
]
model=dict(backbone=dict(patch_size=(2,4,4), drop_path_rate=0.2), test_cfg=dict(max_testing_views=2))

# dataset settings
dataset_type = 'VideoDataset'
data_root = 'data/kinetics400/train'
data_root_val = 'data/kinetics400/val'
ann_file_train = 'data/kinetics400/kinetics400_train_list.txt'
ann_file_val = 'data/kinetics400/kinetics400_val_list.txt'
ann_file_test = 'data/kinetics400/kinetics400_val_list.txt'
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_bgr=False)
train_pipeline = [
    dict(type='DecordInit'),
    dict(type='SampleFrames', clip_len=64, frame_interval=1, num_clips=1),
    dict(type='DecordDecode'),
    dict(type='Resize', scale=(-1, 256)),
    dict(type='RandomResizedCrop'),
    dict(type='Resize', scale=(224, 224), keep_ratio=False),
    dict(type='Flip', flip_ratio=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='FormatShape', input_format='NCTHW'),
    dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
    dict(type='ToTensor', keys=['imgs', 'label'])
]
val_pipeline = [
    dict(type='DecordInit'),
    dict(
        type='SampleFrames',
        clip_len=64,
        frame_interval=1,
        num_clips=1,
        test_mode=True),
    dict(type='DecordDecode'),
    dict(type='Resize', scale=(-1, 256)),
    dict(type='CenterCrop', crop_size=224),
    dict(type='Flip', flip_ratio=0),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='FormatShape', input_format='NCTHW'),
    dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
    dict(type='ToTensor', keys=['imgs'])
]
test_pipeline = [
    dict(type='DecordInit'),
    dict(
        type='SampleFrames',
        clip_len=32,
        frame_interval=2,
        num_clips=1,
        test_mode=True),
    dict(type='DecordDecode'),
    dict(type='Resize', scale=(-1, 224)),
    dict(type='ThreeCrop', crop_size=224),
    dict(type='Flip', flip_ratio=0),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='FormatShape', input_format='NCTHW'),
    dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
    dict(type='ToTensor', keys=['imgs'])
]
data = dict(
    videos_per_gpu=8,
    workers_per_gpu=8,
    val_dataloader=dict(
        videos_per_gpu=1,
        workers_per_gpu=1
    ),
    test_dataloader=dict(
        videos_per_gpu=1,
        workers_per_gpu=1
    ),
    train=dict(
        type=dataset_type,
        ann_file=ann_file_train,
        data_prefix=data_root,
        pipeline=train_pipeline),
    val=dict(
        type=dataset_type,
        ann_file=ann_file_val,
        data_prefix=data_root_val,
        pipeline=val_pipeline),
    test=dict(
        type=dataset_type,
        ann_file=ann_file_test,
        data_prefix=data_root_val,
        pipeline=test_pipeline))
evaluation = dict(
    interval=5, metrics=['top_k_accuracy', 'mean_class_accuracy'])

# optimizer
optimizer = dict(type='AdamW', lr=3e-4, betas=(0.9, 0.999), weight_decay=0.05,
                 paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.),
                                                 'relative_position_bias_table': dict(decay_mult=0.),
                                                 'norm': dict(decay_mult=0.),
                                                 'backbone': dict(lr_mult=0.1)}))
# learning policy
lr_config = dict(
    policy='CosineAnnealing',
    min_lr=0,
    warmup='linear',
    warmup_by_epoch=True,
    warmup_iters=2.5
)
total_epochs = 30

# runtime settings
checkpoint_config = dict(interval=1)
work_dir = './work_dirs/k400_swin_base_22k_patch244_window877.py'
find_unused_parameters = False


# do not use mmdet version fp16
fp16 = None
optimizer_config = dict(
    type="DistOptimizerHook",
    update_interval=8,
    grad_clip=None,
    coalesce=True,
    bucket_size_mb=-1,
    use_fp16=True,
@gigasurgeon
Copy link

I was able to successfully convert it to ONNX by using this -> #89 (comment)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants