Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

key, val = kv.split('=', maxsplit=1) ValueError: not enough values to unpack (expected 2, got 1) #74

Open
LZYmixiu opened this issue Mar 27, 2022 · 0 comments

Comments

@LZYmixiu
Copy link

LZYmixiu commented Mar 27, 2022

I defined a new config that attempt to train on my custom dataset (VOC format).
The command I used is : python tools/train.py configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_mfdataset.py --options model.pretrained = checkpoints/swin_tiny_patch4_window7_224.pth --gpus=1 --gpu-ids=1

The config I defined is:

base_ = [
    '../_base_/models/upernet_swin.py', '../_base_/datasets/pascal_voc12.py',
    '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
]
data_root ='/storage/zdxy01/dataset/dataset'
model = dict(
    backbone=dict(
        embed_dim=96,
        depths=[2, 2, 6, 2],
        num_heads=[3, 6, 12, 24],
        window_size=7,
        ape=False,
        drop_path_rate=0.3,
        patch_norm=True,
        use_checkpoint=False
    ),
    decode_head=dict(
        in_channels=[96, 192, 384, 768],
        num_classes=150
    ),
    auxiliary_head=dict(
        in_channels=384,
        num_classes=150
    ))

# AdamW optimizer, no weight decay for position embedding & layer norm in backbone
optimizer = dict(_delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01,
                 paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.),
                                                 'relative_position_bias_table': dict(decay_mult=0.),
                                                 'norm': dict(decay_mult=0.)}))

lr_config = dict(_delete_=True, policy='poly',
                 warmup='linear',
                 warmup_iters=1500,
                 warmup_ratio=1e-6,
                 power=1.0, min_lr=0.0, by_epoch=False)

# By default, models are trained on 8 GPUs with 2 images per GPU
data=dict(samples_per_gpu=2,
    train=dict(

            data_root=data_root,
            img_dir='images',
            ann_dir='labels',
            split='train.txt'),
    val=dict(
        
        data_root=data_root,
        img_dir='images',
        ann_dir='labels',
        split='val.txt',
        ),
    test=dict(
        
        data_root=data_root,
        img_dir='images',
        ann_dir='labels',
        split='val.txt',
        ))

Is there have any problem?
Or there is have another way to train a VOC format dataset with swin-upernet?
Thank you for your concern!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant