-
Notifications
You must be signed in to change notification settings - Fork 0
/
blossom.py
724 lines (607 loc) · 23.8 KB
/
blossom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
"""
An implementation of Edmonds' blossom algorithm for finding minimum-weight
maximum matchings.
"""
import fractions
import functools
import sys
from itertools import combinations
INF = float('inf')
# Possible levels of blossoms.
LEVEL_EVEN = 0
LEVEL_ODD = 1
# Out-of-tree blossoms; they always appear in pairs connected by a matched
# edge.
LEVEL_OOT = -1
# Blossoms embedded in another blossom.
LEVEL_EMBED = -2
def cached_property(fun):
"""A memoize decorator for class properties."""
@functools.wraps(fun)
def get(self):
try:
return self._cache[fun]
except AttributeError:
self._cache = {}
except KeyError:
pass
ret = self._cache[fun] = fun(self)
return ret
return property(get)
class MaximumDualReached(Exception):
"""
Indicates that we have reached the maximum dual solution and cannot
improve it further.
"""
class EdgeTraversalError(Exception):
pass
class EdgeNotOutgoing(EdgeTraversalError):
"""
Indicates that a traversal was requested through an edge from a set of
vertices containing both its endpoints.
"""
class EdgeNotIncident(EdgeTraversalError):
"""
Indicates that a traversal was requested through an edge from a set
that doesn't contain any of its endpoints.
"""
class TreeStructureChanged(Exception):
"""
Used whenever the structure of an alternating tree is changed to abort
current traversal and initiate a new one.
"""
class StructureUpToDate(Exception):
"""
This gets raised as soon as the structure of all trees is up-to-date,
i.e. there are no more instances of any of the four cases.
"""
class Edge(object):
def __init__(self, v1, v2, value):
self.vertices = frozenset((v1, v2))
self.value = value
self.selected = 0
def __hash__(self):
return hash(id(self))
def __eq__(self, other):
return self is other
def __str__(self):
return "(%d, %d)" % tuple(sorted(v.id for v in self.vertices))
def __repr__(self):
return "<Edge: %s>" % (str(self),)
def traverse_from(self, v):
"""Returns the other endpoint of an edge.
The argument can be either a vertex, a Blossom or a set of
vertices. The argument is supposed to contain exactly one
endpoint.
"""
if isinstance(v, Blossom):
v = v.members
diff = self.vertices - v
if len(diff) == 0:
raise EdgeNotOutgoing()
if len(diff) > 1:
raise EdgeNotIncident()
return next(iter(diff))
def calculate_charge(self):
"""Calculates the total charge on this edge.
The charge is calculated as the sum of all blossoms containing
each vertex minus twice the sum of all blossoms containing both
vertices at the same time.
"""
it = iter(self.vertices)
blossom = next(it)
first_owners = set()
charge = 0
while blossom is not None:
charge += blossom.charge
first_owners.add(blossom)
blossom = blossom.owner
blossom = next(it)
common = None
while blossom is not None:
charge += blossom.charge
if common is None and blossom in first_owners:
common = blossom
blossom = blossom.owner
while common is not None:
charge -= 2 * common.charge
common = common.owner
return charge
def get_remaining_charge(self):
return self.value - self.calculate_charge()
def toggle_selection(self):
"""Toggles the membership of self in the current matching.
"""
assert self.get_remaining_charge() == 0, ("toggle_selection called "
"on non-tight edge")
self.selected = 1 - self.selected
class Blossom(object):
# For nontrivial blossoms, the charge cannot decrease below 0.
minimum_charge = 0
def __init__(self, cycle, charge=0, level=LEVEL_EVEN):
self.charge = fractions.Fraction(charge)
self.level = level
# Reference to the blossom directly containing this one.
self.owner = None
# The cycle of blossoms this one consists of. The first element is
# the base.
self.cycle = tuple(cycle)
assert len(self.cycle) % 2 == 1
# References to parent and children in a tree. For out-of-tree
# pairs the parent is a reference to the peer. For embedded
# blossoms the parent is the predecessor in the cycle.
self.parent = None
self.parent_edge = None
self.children = set()
def __hash__(self):
return hash(id(self))
def __eq__(self, other):
return self is other
def __str__(self):
return "(%s)" % (' '.join(str(b) for b in self.cycle))
def __repr__(self):
return "<%s: %s>" % (self.__class__.__name__, str(self))
@cached_property
def outgoing_edges(self):
"""
Returns a list of pairs (edge, target vertex).
"""
members = self.members
return list({(e, v)
for blossom in self.cycle
for e, v in blossom.outgoing_edges
if v not in members})
@cached_property
def members(self):
return {v for blossom in self.cycle for v in blossom.members}
def get_outermost_blossom(self):
if self.owner is not None:
return self.owner.get_outermost_blossom()
return self
def get_root(self):
assert self.level in (LEVEL_EVEN, LEVEL_ODD), ("get_root called on "
"an out-of-tree blossom")
if self.parent is None:
return self
return self.parent.get_root()
def get_base_vertex(self):
return self.cycle[0].get_base_vertex()
def get_max_delta(self):
"""
Finds the maximum allowed charge adjust for this blossom and its
children.
"""
if self.level == LEVEL_ODD:
# Blossoms on odd levels are going to be decreased.
delta = self.charge - self.minimum_charge
elif self.level == LEVEL_EVEN:
# Even levels get increased. We need to check each outgoing
# edge.
delta = INF
for e, v in self.outgoing_edges:
b = v.get_outermost_blossom()
remaining = e.get_remaining_charge()
if b.level == LEVEL_EVEN:
# Both ends of e are on even level, both get
# increased, therefore each can only get one half of
# remaining capacity.
delta = min(delta, remaining / 2)
elif b.level == LEVEL_OOT:
# The other end is an out-of-tree blossom whose charge
# remains the same.
delta = min(delta, remaining)
# Odd blossoms don't limit us in any way as the difference
# gets canceled out on the other end.
# Recurse into children.
return min([delta] + [child.get_max_delta() for child in self.children])
def adjust_charge(self, delta):
"""
Decides what is supposed to happen on charge adjusts and recurses.
"""
if self.level == LEVEL_EVEN:
self.charge += delta
elif self.level == LEVEL_ODD:
self.charge -= delta
assert self.charge >= self.minimum_charge, ("the charge of a "
"blossom dropped "
"below minimum")
for child in self.children:
child.adjust_charge(delta)
def alter_tree(self):
"""Detects and handles the four cases where trees need to be altered.
"""
if self.level == LEVEL_ODD:
if self.charge == 0:
self.expand()
elif self.level == LEVEL_EVEN:
self.handle_tight_edges()
else:
assert False, ("alter_tree called on blossom of level %d" %
self.level)
for child in self.children:
child.alter_tree()
def handle_tight_edges(self):
"""Finds any fresh tight edges.
If a tight edge leads to an out-of-tree blossom, attach the pair
(P2).
If a tight edge leads to a blossom in the same tree as this one
(the root blossom is the same), shrink (P3).
If a tight edge leads to a blossom with a different root, augment
(P4).
"""
assert self.level == LEVEL_EVEN, ("handle_tight_edges called on "
"non-even blossom.")
for e, v in self.outgoing_edges:
if e is self.parent_edge:
continue
remaining_charge = e.get_remaining_charge()
assert remaining_charge >= 0, "found an overcharged edge"
if remaining_charge > 0:
continue
other_blossom = v.get_outermost_blossom()
if other_blossom.level == LEVEL_ODD:
# This blossom can be from a different tree -- we don't
# particularly care. The charge adjusts will be
# compensated anyway.
continue
if other_blossom.level == LEVEL_OOT:
self.attach_out_of_tree_pair(other_blossom, e)
continue
if other_blossom.get_root() == self.get_root():
self.shrink_with_peer(other_blossom, e)
else:
self.augment_matching(other_blossom, e)
def attach_out_of_tree_pair(self, target, edge):
"""Handles case (P2).
"""
assert self.level == LEVEL_EVEN
assert target.level == LEVEL_OOT
assert len(target.children) == 0
self.children.add(target)
target_peer = target.parent
target.parent = self
target.parent_edge = edge
target.level = LEVEL_ODD
target_peer.level = LEVEL_EVEN
target.children.add(target_peer)
assert len(target_peer.children) == 0
raise TreeStructureChanged("Attached blossom on edge %s" % edge)
def shrink_with_peer(self, other, edge):
"""Shrinks the cycle along given edge into a new blossom. (P3)
"""
assert self.level == LEVEL_EVEN
assert other.level == LEVEL_EVEN
# Find the closest common ancestor and the chains of parents
# leading to them.
ancestors, parent_chain1, parent_chain2 = dict(), [], []
blossom = self
while blossom is not None:
ancestors[blossom] = len(parent_chain1)
parent_chain1.append(blossom)
assert blossom.parent is None or blossom in blossom.parent.children
blossom = blossom.parent
blossom = other
while blossom not in ancestors:
parent_chain2.append(blossom)
assert blossom.parent is None or blossom in blossom.parent.children
blossom = blossom.parent
parent_chain2.append(blossom)
common_ancestor = blossom
# We need to store these values here since they get rewritten in the
# following loop.
new_parent = common_ancestor.parent
new_parent_edge = common_ancestor.parent_edge
# Remove references to other components of the new blossom from each
# component's children list.
for blossom in (self, other):
while blossom is not common_ancestor:
blossom.parent.children.remove(blossom)
blossom = blossom.parent
# Repoint the parent references in parent_chain2 to point in the
# other direction. This will close the cycle.
prev_edge, prev_blossom = edge, self
for blossom in parent_chain2:
prev_edge, prev_blossom, blossom.parent, blossom.parent_edge = (
blossom.parent_edge, blossom, prev_blossom, prev_edge
)
# The cycle now consists of the reverse of parent_chain1 up to and
# including common_ancestor + parent_chain2 sans common_ancestor.
cycle = parent_chain1[ancestors[common_ancestor]::-1] + parent_chain2[:-1]
new_blossom = Blossom(cycle)
for blossom in cycle:
new_blossom.children.update(blossom.children)
blossom.owner = new_blossom
blossom.children.clear()
blossom.level = LEVEL_EMBED
for child in new_blossom.children:
child.parent = new_blossom
if new_parent is None:
registry = roots
else:
registry = new_parent.children
registry.remove(common_ancestor)
registry.add(new_blossom)
new_blossom.parent = new_parent
new_blossom.parent_edge = new_parent_edge
raise TreeStructureChanged("Shrunk cycle on edge %s" % edge)
def augment_matching(self, other_blossom, edge):
"""Augments the matching along the alternating path containing given edge. (P4)
"""
# Always look for a path of even length within a blossom. Recurse
# into sub-blossoms.
assert edge.selected == 0, ("trying to augment via an already "
"selected edge")
self.flip_root_path(edge)
other_blossom.flip_root_path(edge)
edge.toggle_selection()
raise TreeStructureChanged("Augmented on edge %s" % edge)
def flip_root_path(self, edge):
"""Flips edge selection on the alternating path from self to root.
Argument edge is the edge from a child from which the alternating
path leads through self.
The children of this blossom are detached and this blossom becomes
part of an out-of-tree pair around the given edge.
"""
assert self.level in (LEVEL_EVEN, LEVEL_ODD)
v1 = self.get_base_vertex()
if self.level == LEVEL_EVEN:
v2 = next(iter(self.members & edge.vertices))
else:
v2 = next(iter(self.members & self.parent_edge.vertices))
self.flip_alternating_path(v1, v2)
# We need to store these values because detach_from_parent
# modifies them and we need to recurse later.
prev_parent, prev_parent_edge = self.parent, self.parent_edge
if self.level == LEVEL_EVEN:
self.detach_children()
# Become a peer to the blossom on the other side of edge.
self.detach_from_parent(edge)
else:
# Adjust self to become a peer to our parent.
# Our child should be detached by now.
assert len(self.children) == 0
assert self.parent is not None
self.parent.children.remove(self)
self.level = LEVEL_OOT
if prev_parent is not None:
prev_parent_edge.toggle_selection()
prev_parent.flip_root_path(prev_parent_edge)
def flip_alternating_path(self, v1, v2):
"""Flips edge selection on the alternating path from v1 to v2.
v1 and v2 are the two vertices at the boundaries of this blossom
along the augmenting alternating path. One of the two vertices
needs to be the base of this blossom.
"""
assert v1 in self.members
assert v2 in self.members
if v1 is v2:
return
if v1 not in self.cycle[0].members:
v1, v2 = v2, v1
# v1 is in the base blossom, find the blossom containing v2
for i, b in enumerate(self.cycle):
if v2 in b.members:
break
# Trivial case: if both v1 and v2 are in the same blossom, we
# don't need to do anything at this level.
if i == 0:
self.cycle[0].flip_alternating_path(v1, v2)
return
# self.cycle has odd length, pick the direction in which the path
# from cycle[i] to cycle[0] has even length.
sub_calls, edges = [], []
if i % 2 == 0:
# Proceed from the base forwards toward self.cycle[i].
start, finish = 0, i
else:
# Proceed from self.cycle[i] forwards toward base.
start, finish = i - len(self.cycle), 0
v1, v2 = v2, v1
prev_vertex = v1
for j in range(start, finish):
edge = self.cycle[j + 1].parent_edge
sub_calls.append((self.cycle[j], prev_vertex,
edge.traverse_from(self.cycle[j + 1])))
edges.append(edge)
prev_vertex = edge.traverse_from(self.cycle[j])
sub_calls.append((self.cycle[finish], prev_vertex, v2))
assert len(sub_calls) % 2 == 1
assert len(edges) % 2 == 0
for e in edges:
e.toggle_selection()
for blossom, x1, x2 in sub_calls:
blossom.flip_alternating_path(x1, x2)
# Shift self.cycle to new base to keep the invariant that cycle[0]
# is the base. cycle[i] should become cycle[0].
self.cycle = self.cycle[i:] + self.cycle[:i]
def detach_children(self):
"""Detaches all children and turns them into out-of-tree pairs.
"""
# We need to make a copy of self.children here since it gets
# modified in each iteration.
for child in list(self.children):
child.detach_from_parent()
def detach_from_parent(self, edge=None):
"""Detaches itself from the parent and forms an out-of-tree pair.
If called on an odd blossom, edge needs to be None and the only
child will be chosen. Otherwise, an edge leading to a peer needs
to be supplied.
If an edge is specified, we assume the peer adjusts itself,
otherwise we also adjust the single child that becomes the peer.
"""
assert (self.level == LEVEL_ODD) ^ (edge is not None)
if self.parent is not None:
self.parent.children.remove(self)
else:
roots.remove(self)
if edge is not None:
peer = edge.traverse_from(self).get_outermost_blossom()
self.detach_children()
else:
peer = next(iter(self.children))
self.children.clear()
self.level = LEVEL_OOT
self.parent = peer
if edge is None:
self.parent_edge = peer.parent_edge
peer.level = LEVEL_OOT
peer.detach_children()
else:
self.parent_edge = edge
def expand(self):
"""
Expands this blossom back into its constituents. (P1)
"""
assert self.level == LEVEL_ODD
assert self.charge == 0
base = self.cycle[0]
# Since self is odd, it has exactly one child.
assert len(self.children) == 1
child = next(iter(self.children))
assert child.level == LEVEL_EVEN
child.parent = base
base.children.add(child)
# Find the component connected to parent.
boundary_vertex = next(iter(self.parent_edge.vertices & self.members))
for i, blossom in enumerate(self.cycle):
if boundary_vertex in blossom.members:
break
if i % 2 == 0:
# Repoint the even-length part of the cycle to form a part of
# the tree.
prev_parent, prev_edge = self.parent, self.parent_edge
for j in range(i, -1, -1):
b = self.cycle[j]
assert b.level == LEVEL_EMBED
assert prev_parent.level in (LEVEL_EVEN, LEVEL_ODD)
assert b.owner is self
b.level = 1 - prev_parent.level
b.owner = None
if prev_parent is not None:
prev_parent.children.add(b)
prev_parent, prev_edge, b.parent, b.parent_edge = (
b, b.parent_edge, prev_parent, prev_edge
)
pairs_start, pairs_end = -1, i - len(self.cycle)
else:
# The even part of our cycle has the correct pointers already,
# fix their levels and ownership.
blossom.parent = self.parent
blossom.parent_edge = self.parent_edge
for j in range(i - len(self.cycle), 1):
b = self.cycle[j]
assert b.level == LEVEL_EMBED
assert b.parent.level in (LEVEL_EVEN, LEVEL_ODD)
assert b.owner is self
b.level = 1 - b.parent.level
b.parent.children.add(b)
b.owner = None
pairs_start, pairs_end = i - 1, 0
# Turn the odd-length part of the cycle into out-of-tree pairs.
for j in range(pairs_start, pairs_end, -2):
b = self.cycle[j]
peer = b.parent
assert b.level == LEVEL_EMBED
assert b.parent.level == LEVEL_EMBED
assert b.owner is self
assert peer.owner is self
assert len(b.children) == 0
assert len(peer.children) == 0
peer.parent, peer.parent_edge = b, b.parent_edge
b.owner = peer.owner = None
b.level = peer.level = LEVEL_OOT
if self.parent is None:
registry = roots
else:
registry = self.parent.children
registry.remove(self)
registry.add(self.cycle[i])
raise TreeStructureChanged("Expanded a blossom")
class Vertex(Blossom):
# Single vertices are allowed to have negative charges.
minimum_charge = -INF
def __init__(self, id):
self.id = id
self.edges = []
super(Vertex, self).__init__(cycle=[self], charge=0)
def __str__(self):
return "%d" % (self.id,)
def add_edge_to(self, other, value):
e = Edge(self, other, value)
self.edges.append(e)
other.edges.append(e)
@cached_property
def outgoing_edges(self):
return [(e, e.traverse_from(self)) for e in self.edges]
@property
def members(self):
return {self}
def get_base_vertex(self):
return self
def expand(self):
# For simple vertices this is a no-op.
pass
def get_max_delta():
"""
Returns the maximal value by which we can improve the dual solution
by adjusting charges on alternating trees.
"""
if len(roots) == 0:
# All blossoms are matched.
raise MaximumDualReached()
delta = INF
for root in roots:
delta = min(delta, root.get_max_delta())
assert delta >= 0
if not delta > 0:
raise MaximumDualReached()
return delta
def read_input(input_file):
N, M = [int(x) for x in next(input_file).split()]
vertices = dict()
max_weight = 0
for line in input_file:
u, v, w = [int(x) for x in line.split()]
for _v in (u, v):
if _v not in vertices:
vertices[_v] = Vertex(_v)
u, v = vertices[u], vertices[v]
u.add_edge_to(v, fractions.Fraction(w))
return vertices
def make_graph_for_blossom(vertices, a):
vertices = {v: Vertex(v) for v in vertices}
for _u, _v in combinations(vertices, 2):
w = a[_u][_v]
u = vertices[_u]
v = vertices[_v]
u.add_edge_to(v, fractions.Fraction(w))
return vertices
def update_tree_structures():
try:
while True:
try:
for root in roots:
root.alter_tree()
raise StructureUpToDate()
except TreeStructureChanged:
pass
except StructureUpToDate:
pass
roots = None
def blossom(vertices, a):
global roots
vertices = make_graph_for_blossom(vertices, a)
roots = set(vertices.values())
try:
while True:
delta = get_max_delta()
for root in roots:
root.adjust_charge(delta)
update_tree_structures()
except MaximumDualReached:
pass
M = set()
for v in vertices.values():
M.update(e for e in v.edges if e.selected)
d = list(tuple(v.id for v in e.vertices) for e in M)
return d