给定两个以升序排列的整数数组 nums1
和 nums2
, 以及一个整数 k
。
定义一对值 (u,v)
,其中第一个元素来自 nums1
,第二个元素来自 nums2
。
请找到和最小的 k
个数对 (u1,v1)
, (u2,v2)
... (uk,vk)
。
示例 1:
输入: nums1 = [1,7,11], nums2 = [2,4,6], k = 3 输出: [1,2],[1,4],[1,6] 解释: 返回序列中的前 3 对数: [1,2],[1,4],[1,6],[7,2],[7,4],[11,2],[7,6],[11,4],[11,6]
示例 2:
输入: nums1 = [1,1,2], nums2 = [1,2,3], k = 2 输出: [1,1],[1,1] 解释: 返回序列中的前 2 对数: [1,1],[1,1],[1,2],[2,1],[1,2],[2,2],[1,3],[1,3],[2,3]
示例 3:
输入: nums1 = [1,2], nums2 = [3], k = 3 输出: [1,3],[2,3] 解释: 也可能序列中所有的数对都被返回:[1,3],[2,3]
提示:
1 <= nums1.length, nums2.length <= 104
-109 <= nums1[i], nums2[i] <= 109
nums1
,nums2
均为升序排列1 <= k <= 1000
注意:本题与主站 373 题相同:https://leetcode-cn.com/problems/find-k-pairs-with-smallest-sums/
大顶堆
class Solution:
def kSmallestPairs(self, nums1: List[int], nums2: List[int], k: int) -> List[List[int]]:
hp = []
for x in nums1[:k]:
for y in nums2[:k]:
heapq.heappush(hp, (-(x + y), [x, y]))
if len(hp) > k:
heapq.heappop(hp)
return [p for _, p in hp]
class Solution {
public List<List<Integer>> kSmallestPairs(int[] nums1, int[] nums2, int k) {
Queue<List<Integer>> pq = new PriorityQueue<>((p1, p2) -> {
return p2.get(0) + p2.get(1) - (p1.get(0) + p1.get(1));
});
for (int i = 0; i < nums1.length && i < k; i++) {
for (int j = 0; j < nums2.length && j < k; j++) {
pq.offer(List.of(nums1[i], nums2[j]));
if (pq.size() > k) {
pq.poll();
}
}
}
return new ArrayList<>(pq);
}
}
type pairHeap [][]int
func (a pairHeap) Len() int { return len(a) }
func (a pairHeap) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a pairHeap) Less(i, j int) bool { return a[i][0]+a[i][1] > a[j][0]+a[j][1] }
func (a *pairHeap) Push(x interface{}) { *a = append(*a, x.([]int)) }
func (a *pairHeap) Pop() interface{} { l := len(*a); tmp := (*a)[l-1]; *a = (*a)[:l-1]; return tmp }
func kSmallestPairs(nums1 []int, nums2 []int, k int) [][]int {
var hp pairHeap
for _, x := range nums1[:min(k, len(nums1))] {
for _, y := range nums2[:min(k, len(nums2))] {
heap.Push(&hp, []int{x, y})
if len(hp) > k {
heap.Pop(&hp)
}
}
}
return hp
}
func min(x, y int) int {
if x < y {
return x
}
return y
}
class Solution {
public:
vector<vector<int>> kSmallestPairs(vector<int>& nums1, vector<int>& nums2, int k) {
using pii = pair<int, int>;
auto cmp = [](pii p1, pii p2) { return p1.first + p1.second < p2.first + p2.second; };
priority_queue<pii, vector<pii>, decltype(cmp)> pq(cmp);
for (int i = 0; i < nums1.size() && i < k; ++i) {
for (int j = 0; j < nums2.size() && j < k; ++j) {
pq.push({nums1[i], nums2[j]});
if (pq.size() > k) pq.pop();
}
}
vector<vector<int>> ans;
while (!pq.empty()) {
pii p = pq.top();
pq.pop();
ans.push_back({p.first, p.second});
}
return ans;
}
};