给定一个含有 n
个正整数的数组和一个正整数 target
。
找出该数组中满足其和 ≥ target
的长度最小的 连续子数组 [numsl, numsl+1, ..., numsr-1, numsr]
,并返回其长度。如果不存在符合条件的子数组,返回 0
。
示例 1:
输入:target = 7, nums = [2,3,1,2,4,3]
输出:2
解释:子数组 [4,3]
是该条件下的长度最小的子数组。
示例 2:
输入:target = 4, nums = [1,4,4] 输出:1
示例 3:
输入:target = 11, nums = [1,1,1,1,1,1,1,1] 输出:0
提示:
1 <= target <= 109
1 <= nums.length <= 105
1 <= nums[i] <= 105
进阶:
- 如果你已经实现
O(n)
时间复杂度的解法, 请尝试设计一个O(n log(n))
时间复杂度的解法。
注意:本题与主站 209 题相同:https://leetcode-cn.com/problems/minimum-size-subarray-sum/
class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
n = len(nums)
ans = float('inf')
sum = 0
left, right = 0, 0
while right < n:
sum += nums[right]
right += 1
while sum >= target:
ans = min(ans, right - left)
sum -= nums[left]
left += 1
return 0 if ans == float('inf') else ans
class Solution {
public int minSubArrayLen(int target, int[] nums) {
int n = nums.length;
int ans = Integer.MAX_VALUE;
int sum = 0;
int left = 0, right = 0;
while (right < n) {
sum += nums[right++];
while (sum >= target) {
ans = Math.min(ans, right - left);
sum -= nums[left++];
}
}
return ans == Integer.MAX_VALUE ? 0 : ans;
}
}
func minSubArrayLen(target int, nums []int) int {
n := len(nums)
ans := math.MaxInt32
sum := 0
left, right := 0, 0
for right < n {
sum += nums[right]
right++
for sum >= target {
ans = min(ans, right-left)
sum -= nums[left]
left++
}
}
if ans == math.MaxInt32 {
return 0
}
return ans
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
class Solution {
public:
int minSubArrayLen(int target, vector<int>& nums) {
int left = 0, right;
int sum = 0;
int minlen = INT_MAX;
for (right = 0; right < nums.size(); right++) {
sum += nums[right];
while(left <= right && sum >= target) {
minlen = min(minlen, right - left + 1);
sum -= nums[left++];
}
}
return minlen == INT_MAX? 0: minlen;
}
};