Skip to content

Latest commit

 

History

History
167 lines (128 loc) · 3.86 KB

File metadata and controls

167 lines (128 loc) · 3.86 KB

题目描述

给定一个含有 n 个正整数的数组和一个正整数 target

找出该数组中满足其和 ≥ target 的长度最小的 连续子数组 [numsl, numsl+1, ..., numsr-1, numsr] ,并返回其长度如果不存在符合条件的子数组,返回 0

 

示例 1:

输入:target = 7, nums = [2,3,1,2,4,3]
输出:2
解释:子数组 [4,3] 是该条件下的长度最小的子数组。

示例 2:

输入:target = 4, nums = [1,4,4]
输出:1

示例 3:

输入:target = 11, nums = [1,1,1,1,1,1,1,1]
输出:0

 

提示:

  • 1 <= target <= 109
  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 105

 

进阶:

  • 如果你已经实现 O(n) 时间复杂度的解法, 请尝试设计一个 O(n log(n)) 时间复杂度的解法。

 

注意:本题与主站 209 题相同:https://leetcode-cn.com/problems/minimum-size-subarray-sum/

解法

Python3

class Solution:
    def minSubArrayLen(self, target: int, nums: List[int]) -> int:
        n = len(nums)
        ans = float('inf')
        sum = 0
        left, right = 0, 0
        while right < n:
            sum += nums[right]
            right += 1
            while sum >= target:
                ans = min(ans, right - left)
                sum -= nums[left]
                left += 1
        return 0 if ans == float('inf') else ans

Java

class Solution {
    public int minSubArrayLen(int target, int[] nums) {
        int n = nums.length;
        int ans = Integer.MAX_VALUE;
        int sum = 0;
        int left = 0, right = 0;
        while (right < n) {
            sum += nums[right++];
            while (sum >= target) {
                ans = Math.min(ans, right - left);
                sum -= nums[left++];
            }
        }
        return ans == Integer.MAX_VALUE ? 0 : ans;
    }
}

Go

func minSubArrayLen(target int, nums []int) int {
	n := len(nums)
	ans := math.MaxInt32
	sum := 0
	left, right := 0, 0
	for right < n {
		sum += nums[right]
		right++
		for sum >= target {
			ans = min(ans, right-left)
			sum -= nums[left]
			left++
		}
	}
	if ans == math.MaxInt32 {
		return 0
	}
	return ans
}

func min(a, b int) int {
	if a < b {
		return a
	}
	return b
}

C++

class Solution {
public:
    int minSubArrayLen(int target, vector<int>& nums) {
        int left = 0, right;
        int sum = 0;
        int minlen = INT_MAX;

        for (right = 0; right < nums.size(); right++) {
            sum += nums[right];
            while(left <= right && sum >= target) {
                minlen = min(minlen, right - left + 1);
                sum -= nums[left++];
            }
        }

        return minlen == INT_MAX? 0: minlen;
    }
};

...