-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathacquire.py
123 lines (101 loc) · 5.79 KB
/
acquire.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import pandas as pd
import spotipy
import numpy as np
import os
from spotipy.oauth2 import SpotifyClientCredentials
from env import cid, c_secret
###################################################### Create Spotipy Client ######################################################
# Function to create spotipy client object
def create_spotipy_client():
client_credentials_manager = SpotifyClientCredentials(client_id=cid,
client_secret=c_secret)
sp = spotipy.Spotify(client_credentials_manager=client_credentials_manager)
sp.trace=False
return sp
###################################################### Analyze First 100 Tracks From Playlist/Offset In Playlist ######################################################
# Function to acquire playlist tracks and features
def analyze_playlist(creator, playlist_id, sp_client, offset=0):
# Create empty dataframe
playlist_features_list = ["artist","album","release_date","track_name","track_id", 'label',
"danceability","energy","key","loudness","mode", "speechiness","instrumentalness",
"liveness","valence","tempo", "duration_ms","time_signature"]
playlist_df = pd.DataFrame(columns = playlist_features_list)
# Loop through every track in the playlist, extract features and append the features to the playlist df
playlist = sp_client.user_playlist_tracks(creator, playlist_id, offset=offset)['items']
for track in playlist:
# Create empty dict
playlist_features = {}
# Get metadata
if track['track']['album']['artists'] == []:
continue
else:
playlist_features['artist'] = track['track']['album']['artists'][0]['name']
playlist_features["album"] = track["track"]["album"]["name"]
playlist_features["release_date"] = track["track"]["album"]["release_date"]
playlist_features["track_name"] = track["track"]["name"]
playlist_features["track_id"] = track["track"]["id"]
playlist_features['explicit'] = track['track']['explicit']
playlist_features["popularity"] = track["track"]["popularity"]
playlist_features['disc_number'] = track['track']['disc_number']
playlist_features['track_number'] = track['track']['track_number']
playlist_features['album_id'] = track['track']['album']['id']
playlist_features['album_type'] = track['track']['album']['album_type']
# Get audio features
audio_features = sp_client.audio_features(playlist_features["track_id"])
if audio_features is None:
for feature in playlist_features_list[6:]:
playlist_features[feature] = None
elif audio_features[0] is None:
for feature in playlist_features_list[6:]:
playlist_features[feature] = None
else:
for feature in playlist_features_list[6:]:
playlist_features[feature] = audio_features[0][feature]
# Get album popularity
album_features = sp_client.album(playlist_features['album_id'])
if album_features is None:
for feature in playlist_features_list[5:6]:
playlist_features[feature] = None
else:
playlist_features['album_popularity'] = album_features['popularity']
playlist_features['label'] = album_features['label']
# Concat the dfs
track_df = pd.DataFrame(playlist_features, index = [0])
playlist_df = pd.concat([playlist_df, track_df], ignore_index = True)
return playlist_df
###################################################### Concat CSV Files ######################################################
def concat_csv_files():
'''
Loops through each csv file of acquired data to combine into one df.
No parameters needed, only needs the files saved in the working directory.
Returns the one df.
'''
# sets initial df as file of first 100 observations
df = pd.read_csv('data/playlist-offset-0.csv', index_col=0)
# loops through 100 - 6000 by one hundreds, matching the csv file names
# as it loops, it combines the csv file to the original df
for offset in range(100, 5901, 100):
# saves next csv file as a df
add_df = pd.read_csv(f'data/playlist-offset-{offset}.csv', index_col=0)
# adds the new df to the original df
df = pd.concat([df, add_df], ignore_index=True)
# returns the csv files combined in one dataframe, should be 6_000 observations
return df
###################################################### Gather Entire Capstone Playlist ######################################################
# sp is the spotipy client you created
def get_capstone_playlist(sp):
if os.path.exists('data/full-playlist.csv'):
df = pd.read_csv('data/full-playlist.csv', index_col=0)
else:
# Let this loop run as it gathers the tracks from the playlist
for offset in range(0, 6000, 100):
# Prints out how many pages in the loop is. Each page is 100 tracks + or - a few if nulls appear
print(f'Making page with offset = {offset}')
# Analyze the first 100 tracks past the offset
playlist_df = analyze_playlist('spotify:user:afrodeezeemusic', '3P6Pr6iEqvK5fl4UkgdQ7T', sp, offset)
# Write each dataframe of 100 tracks to a csv. If the function ends early in an error you will still have some data
playlist_df.to_csv('data/playlist-offset-' + str(offset) + '.csv')
# use the concat_csv_files function to concat all the dataframes together into one complete dataframe
df = concat_csv_files()
df.to_csv('data/full-playlist.csv')
return df