-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_sample.py
149 lines (129 loc) · 4.5 KB
/
image_sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
"""
EDM image (generation) sampling script used for generate a large batch of image
samples from a model and save them as a large numpy array. This can be used to
produce samples for FID evaluation.
TODO: Add command line argument for generating either a .npz file archive or
directory full of .JPEG images, save_as value.
"""
import os
import argparse
import numpy as np
from model.utils import distribute_util
import torch as th
import torch.distributed as dist
from model import logger
from model.utils.script_util import (
NUM_CLASSES,
model_and_diffusion_defaults,
create_model_and_diffusion,
add_dict_to_argparser,
args_to_dict,
)
from model.utils.random_util import get_generator
from model.karras_diffusion import karras_sample
def create_argparser():
defaults = dict(
training_mode="edm",
generator="determ",
clip_denoised=True,
num_samples=10000,
batch_size=16,
sampler="heun",
s_churn=0.0,
s_tmin=0.0,
s_tmax=float("inf"),
s_noise=1.0,
steps=40,
model_path="",
seed=42,
ts="",
save_as="npy"
)
defaults.update(model_and_diffusion_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
return parser
def main():
args = create_argparser().parse_args()
distribute_util.setup_dist()
logger.configure()
if "consistency" in args.training_mode:
distillation = True
else:
distillation = False
logger.log("creating model and diffusion...")
model, diffusion = create_model_and_diffusion(
**args_to_dict(args, model_and_diffusion_defaults().keys()),
distillation=distillation,
)
model.load_state_dict(
distribute_util.load_state_dict(args.model_path, map_location="cpu")
)
model.to(distribute_util.dev())
if args.use_fp16:
model.convert_to_fp16()
model.eval()
logger.log("sampling...")
if args.sampler == "multistep":
assert len(args.ts) > 0
ts = tuple(int(x) for x in args.ts.split(","))
else:
ts = None
all_images = []
all_labels = []
generator = get_generator(args.generator, args.num_samples, args.seed)
while len(all_images) * args.batch_size < args.num_samples:
model_kwargs = {}
if args.class_cond:
classes = th.randint(
low=0, high=NUM_CLASSES, size=(args.batch_size,), device=distribute_util.dev()
)
model_kwargs["y"] = classes
sample = karras_sample(
diffusion,
model,
(args.batch_size, 3, args.image_size, args.image_size),
steps=args.steps,
model_kwargs=model_kwargs,
device=distribute_util.dev(),
clip_denoised=args.clip_denoised,
sampler=args.sampler,
sigma_min=args.sigma_min,
sigma_max=args.sigma_max,
s_churn=args.s_churn,
s_tmin=args.s_tmin,
s_tmax=args.s_tmax,
s_noise=args.s_noise,
generator=generator,
ts=ts,
)
sample = ((sample + 1) * 127.5).clamp(0, 255).to(th.uint8)
sample = sample.permute(0, 2, 3, 1)
sample = sample.contiguous()
gathered_samples = [th.zeros_like(sample) for _ in range(dist.get_world_size())]
dist.all_gather(gathered_samples, sample) # gather not supported with NCCL
all_images.extend([sample.cpu().numpy() for sample in gathered_samples])
if args.class_cond:
gathered_labels = [
th.zeros_like(classes) for _ in range(dist.get_world_size())
]
dist.all_gather(gathered_labels, classes)
all_labels.extend([labels.cpu().numpy() for labels in gathered_labels])
logger.log(f"created {len(all_images) * args.batch_size} samples")
arr = np.concatenate(all_images, axis=0)
arr = arr[: args.num_samples]
if args.class_cond:
label_arr = np.concatenate(all_labels, axis=0)
label_arr = label_arr[: args.num_samples]
if dist.get_rank() == 0:
shape_str = "x".join([str(x) for x in arr.shape])
out_path = os.path.join(logger.get_dir(), f"samples_{shape_str}.npz")
logger.log(f"saving to {out_path}")
if args.class_cond:
np.savez(out_path, arr, label_arr)
else:
np.savez(out_path, arr)
dist.barrier()
logger.log("sampling complete")
if __name__ == "__main__":
main()