-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset.py
83 lines (69 loc) · 3.29 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from typing import Any
import torch
import torch.nn as nn
from torch.utils.data import Dataset
class BilingualDataset(Dataset):
def __init__(self, ds, tokenizer_src, tokenizer_tgt, src_lang, tgt_lang, seq_len):
super().__init__()
self.seq_len = seq_len
self.ds = ds
self.tokenizer_src = tokenizer_src
self.tokenizer_tgt = tokenizer_tgt
self.src_lang = src_lang
self.tgt_lang = tgt_lang
self.sos_token = torch.tensor([self.tokenizer_src.token_to_id('[SOS]')], dtype=torch.int64)
self.eos_token = torch.tensor([self.tokenizer_src.token_to_id('[EOS]')], dtype=torch.int64)
self.pad_token = torch.tensor([self.tokenizer_src.token_to_id('[PAD]')], dtype=torch.int64)
def __len__(self):
return len(self.ds)
def __getitem__(self, index: Any) -> Any:
src_target_pair = self.ds[index]
src_text = src_target_pair['translation'][self.src_lang]
tgt_text = src_target_pair['translation'][self.tgt_lang]
enc_input_tokens = self.tokenizer_src.encode(src_text).ids
dec_input_tokens = self.tokenizer_tgt.encode(tgt_text).ids
enc_num_padding_tokens = self.seq_len - len(enc_input_tokens) - 2
dec_num_padding_tokens = self.seq_len - len(dec_input_tokens) - 1
if enc_num_padding_tokens < 0 or dec_num_padding_tokens < 0:
raise ValueError(f'Input text has a sequence length of \
{self.seq_len - enc_num_padding_tokens} but tokenizer supports a sequence length upto {self.seq_len}')
# Add SOS and EOS to the input text tokens
encoder_input = torch.cat(
[
self.sos_token,
torch.tensor(enc_input_tokens, dtype=torch.int64),
self.eos_token,
torch.tensor([self.pad_token] * enc_num_padding_tokens, dtype=torch.int64)
]
)
# Add SOS to the decoder input
decoder_input = torch.cat(
[
self.sos_token,
torch.tensor(dec_input_tokens, dtype=torch.int64),
torch.tensor([self.pad_token] * dec_num_padding_tokens, dtype=torch.int64)
]
)
# Add EOS to the label (what we expect as the output of the decoder)
label = torch.cat(
[
torch.tensor(dec_input_tokens, dtype=torch.int64),
self.eos_token,
torch.tensor([self.pad_token] * dec_num_padding_tokens, dtype=torch.int64)
]
)
assert encoder_input.size(0) == self.seq_len
assert decoder_input.size(0) == self.seq_len
assert label.size(0) == self.seq_len
return {
"encoder_input": encoder_input, # (seq_len)
"decoder_input": decoder_input, # (seq_len)
"encoder_mask": (encoder_input != self.pad_token).unsqueeze(0).unsqueeze(0).int(), # (1, 1, seq_len)
"decoder_mask": (decoder_input != self.pad_token).unsqueeze(0).unsqueeze(0).int() & casual_mask(decoder_input.size(0)), # (1, seq_len, seq_len)
"label": label, # (seq_len)
"src_text": src_text,
"tgt_text": tgt_text
}
def casual_mask(size):
mask = torch.triu(torch.ones(1, size, size), diagonal=1).type(torch.int)
return mask == 0