forked from FieteLab/inductive-bias-complexity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
task_difficulty.py
468 lines (400 loc) · 16.9 KB
/
task_difficulty.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
import numpy as np
from scipy.special import gamma, loggamma, binom
from sklearn.metrics import pairwise_distances
from torchvision import datasets
from torchvision.transforms import ToTensor
import matplotlib.pyplot as plt
import matplotlib
import glob
rng = np.random.default_rng()
font = {'family': 'normal',
'size': 22}
matplotlib.rc('font', **font)
def log_wasserstein(n, m, R, d):
return 0.5 * np.log(m / 6) + (np.log(2) + (m + 1) / 2 * np.log(np.pi) + np.log(d) - loggamma((m + 1) / 2)) / m \
+ np.log(R) - np.log(n) / m
def count_eigenvalues(m, M):
K = (np.sqrt((m - 1) * (m - 1) + 4 * M * M) - (m - 1)) / 2
return K, binom(m + K, m) + binom(m + K - 1, m)
def difficulty(error, n, m, R, prod_d, delta, D, B):
'''
Compute the difficulty of a task in bits.
params:
error: desired error rate, used as epsilon / L_L
n: size of training set
m: intrinsic dimensionality of the data
R: maximum norm of data points
prod_d: prod_i M(d_i), the total number of combinations of discrete features
delta: spatial resolution of f, the minumum distance between classes
D: dimensionality of output
B: upper bound on L-infinity norm of f's output
'''
logW = log_wasserstein(n, m, R, prod_d)
K, num_eigenvalues = count_eigenvalues(m, 2 * np.pi * R / delta)
Lf = K * np.sqrt(D) / R
dim_Theta = 2 * D * prod_d * num_eigenvalues
dim_Theta_q = dim_Theta - n * D
log_ratio = np.log2(B) + 0.5 * np.log2(D) + 0.5 * np.log2(prod_d) - np.log2(error) + np.log2(Lf) + logW / np.log(2)
return dim_Theta_q * log_ratio
def evt_delta(data, labels, num_samples=4000000, k=2000):
'''
Estimate delta using extreme value theory.
'''
n = data.shape[0]
num_classes = len(set(labels))
counter = 0
samples = []
while counter < num_samples:
i = rng.integers(n)
j = rng.integers(n)
if labels[i] != labels[j]:
dist = np.linalg.norm(data[i] - data[j])
samples.append(1 / dist)
counter += 1
samples.sort()
order_k = samples[-k - 1]
extreme_samples = np.array(samples[-k:])
print(f'Sample minimum = {1 / extreme_samples[-1]}')
diff_logs = np.log(extreme_samples) - np.log(order_k)
M1 = np.sum(diff_logs) / k
M2 = np.sum(diff_logs * diff_logs) / k
evi = M1 + 1 - 0.5 / (1 - M1 * M1 / M2)
print(f'gamma = {evi}')
pairs = n * n * (1 - 1 / num_classes)
a = k / num_samples * pairs
delta = 1 / ((a ** evi - 1) / evi * order_k * M1 + order_k)
return min(delta, 1 / extreme_samples[-1])
def sample_delta(data, labels, num_samples=30000):
'''
Estimate delta by computing it for a random subset of the data.
'''
n = data.shape[0]
indices = rng.choice(n, num_samples, replace=False)
sample_data = data.reshape((n, -1))[indices]
sample_labels = labels[indices]
distances = pairwise_distances(sample_data)
X, Y = np.meshgrid(sample_labels, sample_labels, indexing='ij')
masked = np.ma.array(distances, mask=np.logical_or(X == Y, distances < 1))
return np.min(masked)
def intrinsic_dim(data, num_samples=10000, k=5):
'''
Compute the MLE estimate of intrinsic dimensionality.
'''
sample_data = rng.choice(data, num_samples, replace=False).reshape((num_samples, -1))
distances = pairwise_distances(sample_data, data.reshape((data.shape[0], -1)))
distances.sort()
log_ratios = np.log(distances[:, k:k + 1]) - np.log(distances[:, 1:k])
return np.mean(log_ratios) ** -1
def classification_task_difficulty(data, labels, error, m=None, delta='evt', verbose=True):
'''
Compute the difficulty of a classification task in bits.
params:
data: 3D numpy array of data points along first dimension
labels: 1D numpy array of the corresponding labels
error: desired error rate
m: intrinsic dimensionality of the data, will be estimated from the data if not provided
delta: method used to estimate delta, can be 'evt', 'sample', or a number
verbose: prints values used to compute difficulty if True
'''
n = data.shape[0]
R = np.max(np.linalg.norm(data, axis=(1, 2)))
num_classes = len(set(labels))
prod_d = num_classes
D = num_classes - 1
if verbose:
print(f'{n} data points')
print(f'R = {R}')
print(f'{num_classes} classes')
if m is None:
m = np.round(intrinsic_dim(data))
if verbose:
print(f'Intrinsic dim. = {m}')
# estimating delta
if delta == 'sample':
delta = sample_delta(data, labels)
elif delta == 'evt':
delta = evt_delta(data, labels)
if verbose:
print(f'delta = {delta}')
print(f'Max frequency = {2 * np.pi * R / delta}')
return difficulty(error, n, m, R, prod_d, delta, D, 1)
def omniglot_difficulty(error, n, m0, m1, R, delta):
'''
n: number of training points (sets of 20 images)
m0: dimensionality of images within an alphabet
m1: dimensionality of images across alphabets
'''
dim_g = 2 * 20 * 19 * count_eigenvalues(m0, 2 * np.pi * R / delta)[1]
return difficulty(error, n, m1 + 19 * m0, R * np.sqrt(20), 1, delta, dim_g, np.sqrt(20 * 19))
def combined_task_diff(n1, n2, R1, R2, m1, m2, D1, D2, delta, error, verbose=True):
"""
Compute the difficulty of combinations of classification tasks in bits.
params:
data: 3D numpy array of data points along first dimension
labels: 1D numpy array of the corresponding labels
error: desired error rate
m: intrinsic dimensionality of the data, will be estimated from the data if not provided
delta: method used to estimate delta, can be 'evt', 'sample', or a number
verbose: prints values used to compute difficulty if True
"""
if verbose:
print(f'{n1} data points')
print(f'R = {R1}')
print(f'{D1} classes')
if verbose:
print(f'Intrinsic dim. = {m1}')
if verbose:
print(f'delta = {delta}')
print(f'Max frequency = {2 * np.pi * np.sqrt(R1 ** 2 + R2 ** 2) / delta}')
return difficulty(error, n1 * n2, m1 + m2, np.sqrt(R1 ** 2 + R2 ** 2), D1 * D2, delta, D1, 1)
if __name__ == '__main__':
# Task difficulty computation for Omniglot
omniglot_folder = './Omniglot/'
alphabets = [folder[len(omniglot_folder):] for folder in glob.iglob(omniglot_folder + '*')]
chars_per_alph = [0 for _ in range(len(alphabets))]
for file in glob.iglob(omniglot_folder + '**/*.png', recursive=True):
_, alph, char, _ = file.split('\\')
alph = alphabets.index(alph)
char = int(char[9:])
chars_per_alph[alph] = max(char, chars_per_alph[alph])
n = sum([binom(max(x, 20), 20) * 20 ** 20 for x in chars_per_alph])
m0 = 22
m1 = 29
R = 49.4064773081425
delta = 5.477225575051661
omni_diff = omniglot_difficulty(0.01, n, m0, m1, R, delta)
print(omni_diff)
# Task difficulty computation for image classification benchmarks
mnist = datasets.MNIST(
root='./datasets',
transform=ToTensor(),
download=True
)
mnist_data = mnist.data.numpy() / 255
mnist_labels = mnist.targets.numpy()
print('Computing MNIST difficulty')
mnist_difficulty = classification_task_difficulty(mnist_data, mnist_labels, 0.001, m=14, delta=2.3987084824335305)
print(f'MNIST difficulty = {"{:.2e}".format(mnist_difficulty)} bits')
svhn = datasets.SVHN(
root='./datasets',
transform=ToTensor(),
download=True
)
data_shape = svhn.data.shape # (73257, 3, 32, 32)
svhn_data = svhn.data.reshape((data_shape[0], data_shape[1], -1)) / 255
svhn_labels = svhn.labels
print('Computing SVHN difficulty')
svhn_difficulty = classification_task_difficulty(svhn_data, svhn_labels, 0.01, m=19, delta=1.5766998174969105)
print(f'SVHN difficulty = {"{:.2e}".format(svhn_difficulty)} bits')
cifar10 = datasets.CIFAR10(
root='./datasets',
transform=ToTensor(),
download=True
)
data_shape = cifar10.data.shape # (50000, 32, 32, 3)
cifar10_data = cifar10.data.reshape((data_shape[0], -1, data_shape[-1])) / 255
cifar10_labels = np.array(cifar10.targets)
print('Computing CIFAR10 difficulty')
cifar10_difficulty = classification_task_difficulty(cifar10_data, cifar10_labels, 0.01, m=27,
delta=2.7506414616587023)
print(f'CIFAR10 difficulty = {"{:.3e}".format(cifar10_difficulty)} bits')
print('Computing ImageNet difficulty')
n, num_classes, m, R, delta = 1280901, 1000, 48, 943.5923, 65
imagenet_difficulty = difficulty(0.1, n, m, R, num_classes, delta, num_classes - 1, 1)
print(f'ImageNet difficulty = {"{:.3e}".format(imagenet_difficulty)} bits')
diffs = []
for logn in range(2, 20):
n = 10 ** logn
print(f'{n} data points')
print(f'R = {R}')
print(f'{num_classes} classes')
print(f'Intrinsic dim. = {m}')
print(f'delta = {delta}')
print(f'Max frequency = {2 * np.pi * R / delta}')
imagenet_difficulty = difficulty(0.1, n, m, R, num_classes, delta, num_classes - 1, 1)
print(f'ImageNet difficulty = {"{:.2e}".format(imagenet_difficulty)} bits')
diffs.append(imagenet_difficulty)
print(diffs)
plt.plot([10 ** logn for logn in range(2, 20)], diffs, linewidth=3)
plt.xlabel('Number of Samples')
plt.ylabel('Task Difficulty (bits)')
plt.xscale('log')
plt.tight_layout()
plt.show()
n = 1280901
diffs = []
for m in range(48, 100):
print(m)
imagenet_difficulty = difficulty(0.1, n, m, R, num_classes, delta, num_classes - 1, 1)
print(imagenet_difficulty)
diffs.append(imagenet_difficulty)
plt.plot([m for m in range(48, 100)], diffs, linewidth=3)
plt.xlabel('Intrinsic Dimensions')
plt.ylabel('Task Difficulty (bits)')
plt.yscale('log')
plt.tight_layout()
plt.show()
# Inductive bias information content for models achieving different error rates
errors = [0.97, 0.375, 0.2502, 0.2285, 0.2258, 0.219, 0.2142, 0.1246, 0.1145, 0.0906]
for error in errors:
print(difficulty(error, n, m, R, num_classes, delta, num_classes - 1, 1))
# Example code to estimate delta for CIFAR-10
from scipy.stats import t
def confidence_interval(data):
n = data.shape[1]
means = data.mean(axis=1)
ses = data.std(axis=1, ddof=1) / n ** 0.5
tp = t.ppf(0.975, n - 1)
return means, means - tp * ses, means + tp * ses
nums = [100, 200, 500, 1000, 2000, 5000, 10000]
ests = []
for num_samples in nums:
trials = []
for i in range(30):
if i % 10 == 0 and num_samples >= 2000:
print(num_samples, i)
trials.append(sample_delta(cifar10_data, cifar10_labels, num_samples=num_samples))
ests.append(trials)
ests = np.array(ests)
means, lowers, uppers = confidence_interval(np.log(ests))
plt.plot(nums, np.exp(means), color='darkturquoise')
plt.fill_between(nums, [max(x, 2.7506414616587023) for x in np.exp(lowers)], np.exp(uppers), color='paleturquoise')
plt.plot([100, 10000], [2.7506414616587023, 2.7506414616587023], 'k--')
plt.xlabel('Number of Samples')
plt.ylabel('Sample delta')
plt.xscale('log')
plt.show()
ks = [3, 5, 10, 20]
nums = [100, 200, 500, 1000, 2000]
ests = []
for num_samples in nums:
to_add = []
for k in ks:
print(num_samples, k)
trials = []
for _ in range(10):
trials.append(intrinsic_dim(cifar10_data, num_samples=num_samples, k=k))
to_add.append(trials)
ests.append(to_add)
ests = np.array(ests)
vals = ests.mean(axis=2)
colors = ['springgreen', 'cyan', 'dodgerblue', 'navy']
for i in range(len(ks)):
k = ks[i]
plt.plot(nums, vals[:, i], color=colors[i], label=f'k={k}')
plt.legend(loc='upper center', bbox_to_anchor=(0.5, 1.1), ncol=4)
plt.xlabel('Number of Samples')
plt.ylabel('Dimensionality Estimate')
plt.xscale('log')
plt.show()
ks = [3, 4, 5, 10, 15, 20, 25]
ests = []
for k in ks:
trials = []
for i in range(30):
if i % 10 == 0:
print(k, i)
trials.append(intrinsic_dim(cifar10_data, num_samples=1000, k=k))
ests.append(trials)
ests = np.array(ests)
means, lowers, uppers = confidence_interval(ests)
plt.plot(ks, means, color='darkturquoise')
plt.fill_between(ks, lowers, uppers, color='paleturquoise')
plt.xlabel('k')
plt.ylabel('Dimensionality Estimate')
plt.show()
# Task difficulty computation for simplified Cartpole task
def rl_difficulty(T):
# n: 100 episodes with length 100
# delta: 0.001 radians = 0.057 degrees
# error: 1 mistake every 1000 timesteps
n, delta, error = 10000, 0.001, 0.001
return (2 * (2 * np.pi / delta) ** (2 * T) * np.pi ** T / gamma(T + 1) - n) * \
(np.log2(4 * np.pi * np.pi / np.sqrt(3)) + 0.5 * np.log2(T)
- np.log2(delta) - np.log2(n) / (2 * T) - np.log2(error))
diffs = [rl_difficulty(T) for T in range(1, 6)]
print(diffs)
plt.plot(range(1, 6), diffs, marker='o', linewidth=3)
plt.xticks(range(1, 6), fontsize=22)
plt.xlabel('Number of Observations', fontsize=22)
plt.ylabel('Task Difficulty (bits)', fontsize=22)
plt.yscale('log')
plt.yticks([10.0 ** x for x in range(8, 44, 4)], fontsize=22)
plt.tight_layout()
plt.show()
# Task difficulty computation for MuJoCo tasks
def mujoco_difficulty(m, D, n=1000000, delta=0.001, error=0.001):
# params:
# m: dimensionality of observation space
# D: dimensionality of action space
# n: number of timesteps seen
# delta: spatial resolution
# error: desired distance from optimal action
return D * (2 * (2 * np.pi / delta) ** m * np.pi ** (m / 2) / gamma(m / 2 + 1) - n) * \
(np.log2(4 * np.pi * np.pi / np.sqrt(6)) + np.log2(D) + 0.5 * np.log2(m) - np.log2(delta) - np.log2(
n) / m - np.log2(error))
reacher_diff = mujoco_difficulty(6, 2)
hopper_diff = mujoco_difficulty(15, 4)
cheetah_diff = mujoco_difficulty(17, 6)
tasks = ['Reacher', 'Hopper', 'Half-Cheetah']
difficulties = [reacher_diff, hopper_diff, cheetah_diff]
print(difficulties)
plt.bar(tasks, difficulties, log=True)
plt.xticks(tasks, fontsize=16)
plt.ylabel('Task Difficulty (bits)', fontsize=16)
plt.yticks([10.0 ** x for x in range(25, 70, 5)], fontsize=16)
plt.tight_layout()
plt.show()
reacher_diffs = []
error_rates = [0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001, 0.0000001, 0.00000001]
for error_rate in error_rates:
reacher_diff = mujoco_difficulty(6, 2, error=error_rate)
reacher_diffs.append(reacher_diff)
plt.plot(error_rates, reacher_diffs, linewidth=3)
plt.xlabel('Desired Error Rate', fontsize=22)
plt.xscale('log')
plt.ylabel('Task Difficulty (bits)', fontsize=22)
plt.tight_layout()
plt.show()
# Task difficulty computation for task unions
# MNIST, SVHN, CIFAR10, ImageNet
task_data = [
(60000, 17.179045827183984, 14, 10, 2.3987084824335305, 0.001),
(73257, 53.86932485133339, 19, 10, 1.5766998174969105, 0.01),
(50000, 54.9156786783691, 27, 10, 2.7506414616587023, 0.01),
(1280901, 943.5923, 48, 1000, 65, 0.1)]
for i in range(len(task_data)):
diffs = []
for j in range(len(task_data)):
n1, R1, m1, D1, delta1, error1 = task_data[j]
n2, R2, m2, D2, delta2, error2 = task_data[i]
diff = combined_task_diff(n1, n2, R1, R2, m1, m2, D1, D2, delta1, error1, verbose=False)
diffs.append(str(diff))
print(','.join(diffs))
# Task difficulty computation with a varying number of classes on ImageNet
n, num_classes, m, R, delta = 1280901, 1000, 48, 943.5923, 65
diffs = []
for num_classes in range(10, 1000):
print(num_classes)
imagenet_difficulty = difficulty(0.1, n, m, R, num_classes, delta, num_classes - 1, 1)
diffs.append(imagenet_difficulty)
plt.plot([num_classes for num_classes in range(10, 1000)], diffs, linewidth=3)
plt.xlabel('Number of Classes')
plt.ylabel('Task Difficulty (bits)')
plt.yscale('log')
plt.tight_layout()
plt.show()
# Task difficulty computation with a varying spatial resolution on ImageNet
n, num_classes, m, R, delta = 1280901, 1000, 48, 943.5923, 65
diffs = []
for delta in range(30, 120):
imagenet_difficulty = difficulty(0.1, n, m, R, num_classes, delta, num_classes - 1, 1)
diffs.append(imagenet_difficulty)
plt.plot([delta for delta in range(30, 120)], diffs, linewidth=3)
plt.xlabel(r'$\delta$')
plt.ylabel('Task Difficulty (bits)')
plt.yscale('log')
plt.gca().get_xaxis().set_major_formatter(
matplotlib.ticker.FuncFormatter(lambda x, p: format(int(x), ',')))
plt.tight_layout()
plt.show()