-
Notifications
You must be signed in to change notification settings - Fork 0
/
Mission_to_Mars_Challenge.py
216 lines (118 loc) · 4.17 KB
/
Mission_to_Mars_Challenge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#!/usr/bin/env python
# coding: utf-8
# In[1]:
# Import Splinter, BeautifulSoup, and Pandas
from splinter import Browser
from bs4 import BeautifulSoup as soup
import pandas as pd
from webdriver_manager.chrome import ChromeDriverManager
# In[2]:
# Set the executable path and initialize Splinter
executable_path = {'executable_path': ChromeDriverManager().install()}
browser = Browser('chrome', **executable_path, headless=False)
# ### Visit the NASA Mars News Site
# In[3]:
# Visit the mars nasa news site
url = 'https://redplanetscience.com/'
browser.visit(url)
# Optional delay for loading the page
browser.is_element_present_by_css('div.list_text', wait_time=1)
# In[4]:
# Convert the browser html to a soup object and then quit the browser
html = browser.html
news_soup = soup(html, 'html.parser')
slide_elem = news_soup.select_one('div.list_text')
# In[5]:
slide_elem.find('div', class_='content_title')
# In[6]:
# Use the parent element to find the first a tag and save it as `news_title`
news_title = slide_elem.find('div', class_='content_title').get_text()
news_title
# In[7]:
# Use the parent element to find the paragraph text
news_p = slide_elem.find('div', class_='article_teaser_body').get_text()
news_p
# ### JPL Space Images Featured Image
# In[8]:
# Visit URL
url = 'https://spaceimages-mars.com'
browser.visit(url)
# In[9]:
# Find and click the full image button
full_image_elem = browser.find_by_tag('button')[1]
full_image_elem.click()
# In[10]:
# Parse the resulting html with soup
html = browser.html
img_soup = soup(html, 'html.parser')
img_soup
# In[11]:
# find the relative image url
img_url_rel = img_soup.find('img', class_='fancybox-image').get('src')
img_url_rel
# In[12]:
# Use the base url to create an absolute url
img_url = f'https://spaceimages-mars.com/{img_url_rel}'
img_url
# ### Mars Facts
# In[13]:
df = pd.read_html('https://galaxyfacts-mars.com')[0]
df.head()
# In[14]:
df.columns=['Description', 'Mars', 'Earth']
df.set_index('Description', inplace=True)
df
# In[15]:
df.to_html()
# # D1: Scrape High-Resolution Mars’ Hemisphere Images and Titles
# ### Hemispheres
# In[16]:
# 1. Use browser to visit the URL
url = 'https://marshemispheres.com/'
browser.visit(url)
# In[17]:
# 2. Create a list to hold the images and titles.
hemisphere_image_urls = []
# 3. Write code to retrieve the image urls and titles for each hemisphere.
## Create an HTML object, assigned to the html variable:
html = browser.html
## Use BeautifulSoup (as soup) to parse the html object:
hemi_soup = soup(html, 'html.parser')
# Create a list with all relevant elements (4 elements for 4 hemispheres) in it:
divs = hemi_soup.find_all('div', class_='description')
for div in divs:
a = div.find_all('a', class_='itemLink product-item')
# From each specific element, get the href (to go to a specific hemisphere's own page):
for ana in a:
href = ana.get('href')
print(href)
# Create dictionary:
hemispheres = {}
# From the specific href, string together a complete URL (to be able to visit the specific hemisphere's own page):
next_pg_url = url + href
print(next_pg_url)
browser.visit(next_pg_url)
# Parse the new (a specific hemisphere's) page:
html = browser.html
# Use BeautifulSoup (as soup) to parse the html object:
sphere_soup = soup(html, 'html.parser')
# Get the title for that hemisphere:
title = sphere_soup.find('h2', class_='title').get_text()
print(title)
# Get the (complete) image URL for that hemisphere (and visit the full image thereby):
img_rel_url = sphere_soup.find('img', class_='wide-image').get('src')
print(img_rel_url)
img_url = url + img_rel_url
print(img_url)
browser.visit(img_url)
# Add the image URL and title to the dictioanry:
hemispheres['img_url'] = img_url
hemispheres['title'] = title
hemisphere_image_urls.append(hemispheres)
# In[18]:
# 4. Print the list that holds the dictionary of each image url and title.
hemisphere_image_urls
# In[19]:
# 5. Quit the browser
browser.quit()
# In[ ]: