forked from flightaware/dump1090
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadaptive.c
643 lines (544 loc) · 27.4 KB
/
adaptive.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
// Part of dump1090, a Mode S message decoder for RTLSDR devices.
//
// adaptive.c: adaptive gain control
//
// Copyright (c) 2021 FlightAware, LLC
//
// This file is free software: you may copy, redistribute and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation, either version 2 of the License, or (at your
// option) any later version.
//
// This file is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "dump1090.h"
#include "adaptive.h"
//
// gain limits
//
static int adaptive_gain_min;
static int adaptive_gain_max;
// gain steps relative to current gain
static float adaptive_gain_up_db;
static float adaptive_gain_down_db;
//
// block handling
//
// 1 block = approx 1 second of samples. Control updates are done at the end of each block only.
// Each block is made up of an integer number of subblocks (currently 20)
//
// 1 subblock = approx 50ms of samples. Duty cycle decisions are made at the subblock level;
// either the whole subblock is processed, or the whole subblock is skipped.
// Each subblock is made up of an integer number of windows (currently 1250)
//
// 1 window = approx 40us of samples. Burst measurements are made by counting samples within each window.
//
// All three levels are aligned, i.e. every block boundary is also a subblock boundary;
// every subblock boundary is also a window boundary.
static const unsigned adaptive_subblocks_per_block = 20; // subblocks per block
static unsigned adaptive_subblocks_remaining; // subblocks remaining in the current block
// Duty cycle is expressed as N/D
// where N = adaptive_subblbock_dutycycle_N = adaptive_subblocks_per_block * Modes.adaptive_duty_cycle
// and D = adaptive_subblocks_dutycycle_D = adaptive_subblocks_per_block
//
// i.e. within each block, there are exactly N active subblocks out of D total subblocks
//
// The active subblocks are distributed evenly across the block by increasing a counter by N on each
// subblock, modulo D, and marking the subblock as active each time the counter rolls over.
static unsigned adaptive_subblock_dutycycle_N; // subblock duty cycle numerator N
// stretch gcc doesn't like this as a separate const
#define adaptive_subblock_dutycycle_D adaptive_subblocks_per_block
static unsigned adaptive_subblock_dutycycle_counter; // subblock duty cycle counter (modulo D)
static bool adaptive_subblock_active; // is the current subblock active i.e. samples should be processed, not skipped?
static unsigned adaptive_samples_per_subblock; // samples per subblock
static unsigned adaptive_subblock_samples_remaining; // samples remaining in the current subblock
static unsigned adaptive_samples_per_window; // samples per window
void adaptive_init();
void adaptive_update(uint16_t *buf, unsigned length, struct modesMessage *decoded);
static void adaptive_update_subblock(uint16_t *buf, unsigned length, struct modesMessage *decoded);
static void adaptive_end_of_block();
static void adaptive_control_update();
//
// burst handling
//
static unsigned adaptive_burst_window_remaining; // samples remaining in the current burst window
static unsigned adaptive_burst_window_counter; // loud samples seen in current burst window
static unsigned adaptive_burst_runlength; // consecutive loud burst windows seen
static unsigned adaptive_burst_block_loud_undecoded; // loud undecoded bursts seen in this block so far
static unsigned adaptive_burst_block_loud_decoded; // loud decoded messages seen in this block so far
static double adaptive_burst_loud_undecoded_smoothed; // smoothed rate of loud misdecodes per block
static double adaptive_burst_loud_decoded_smoothed; // smoothed rate of loud successful decodes per block
static unsigned adaptive_burst_change_timer; // countdown inhibiting control after changing gain
static double adaptive_burst_loud_threshold; // current signal level threshold for a "loud decode"
static unsigned adaptive_burst_loud_blocks = 0; // consecutive blocks with loud rate
static unsigned adaptive_burst_quiet_blocks = 0; // consecutive blocks with quiet rate
static void adaptive_burst_update(uint16_t *buf, unsigned length);
static void adaptive_burst_skip(unsigned length);
static unsigned adaptive_burst_count_samples(uint16_t *buf, unsigned n);
static void adaptive_burst_scan_windows(uint16_t *buf, unsigned windows);
static void adaptive_burst_end_of_window(unsigned counter);
static void adaptive_burst_end_of_block();
//
// noise floor measurement (adaptive dynamic range)
//
static unsigned *adaptive_range_radix; // radix-sort buckets for current block
static unsigned adaptive_range_radix_counter; // sum of all radix-sort buckets (= number of samples sorted)
static double adaptive_range_smoothed; // smoothed noise floor estimate, dBFS
static enum { RANGE_SCAN_IDLE, RANGE_SCAN_UP, RANGE_SCAN_DOWN } adaptive_range_state = RANGE_SCAN_UP;
static unsigned adaptive_range_change_timer; // countdown inhibiting control after changing gain
static unsigned adaptive_range_rescan_timer; // countdown to next upwards gain reprobe
static int adaptive_range_gain_limit; // probed maximum gain step with acceptable dynamic range
static void adaptive_range_update(uint16_t *buf, unsigned length);
static void adaptive_range_end_of_block();
// Try to change the SDR gain to 'step' and tell the user about it,
// with 'why' as the reason to show. Return true if the gain actually changed.
static bool adaptive_set_gain(int step, const char *why)
{
if (step < adaptive_gain_min)
step = adaptive_gain_min;
if (step > adaptive_gain_max)
step = adaptive_gain_max;
int current_gain = sdrGetGain();
if (current_gain == step)
return false;
fprintf(stderr, "adaptive: changing gain from %.1fdB (step %d) to %.1fdB (step %d) because: %s\n",
sdrGetGainDb(current_gain), current_gain, sdrGetGainDb(step), step, why);
int new_gain = sdrSetGain(step);
bool changed = (current_gain != new_gain);
if (changed)
++Modes.stats_current.adaptive_gain_changes;
return changed;
}
// Update internal state to reflect a gain change
// (usually after adaptive_set_gain returns true, but also called during init)
static void adaptive_gain_changed()
{
int new_gain = sdrGetGain();
adaptive_gain_up_db = sdrGetGainDb(new_gain + 1) - sdrGetGainDb(new_gain);
adaptive_gain_down_db = sdrGetGainDb(new_gain) - sdrGetGainDb(new_gain - 1);
double loud_threshold_dbfs = 0 - adaptive_gain_up_db - 3.0;
adaptive_burst_loud_threshold = pow(10, loud_threshold_dbfs / 10.0);
adaptive_range_change_timer = Modes.adaptive_range_change_delay;
adaptive_burst_change_timer = Modes.adaptive_burst_change_delay;
adaptive_burst_loud_blocks = 0;
adaptive_burst_quiet_blocks = 0;
}
// External init entry point
void adaptive_init()
{
int maxgain = sdrGetMaxGain();
// If the SDR doesn't support gain control, disable ourselves
if (maxgain < 0) {
if (Modes.adaptive_burst_control || Modes.adaptive_range_control) {
fprintf(stderr, "warning: adaptive gain control requested, but SDR gain control not available, ignored.\n");
}
Modes.adaptive_burst_control = false;
Modes.adaptive_range_control = false;
}
// If we're disabled, do nothing
if (!Modes.adaptive_burst_control && !Modes.adaptive_range_control)
return;
// Set up window, subblock, and block sizes
// Look for 40us bursts
adaptive_samples_per_window = Modes.sample_rate / 25000;
// Use ~50ms subblocks; ensure it's an exact multiple of window size
adaptive_samples_per_subblock = adaptive_samples_per_window * 1250;
adaptive_subblocks_remaining = adaptive_subblocks_per_block;
adaptive_subblock_samples_remaining = adaptive_samples_per_subblock;
adaptive_subblock_active = false;
float N = roundf(adaptive_subblock_dutycycle_D * Modes.adaptive_duty_cycle);
if (N <= 0)
N = 1;
if (N > adaptive_subblock_dutycycle_D)
N = adaptive_subblock_dutycycle_D;
fprintf(stderr, "adaptive: using %.0f%% duty cycle\n", 100.0 * N / adaptive_subblock_dutycycle_D);
adaptive_subblock_dutycycle_N = (unsigned)N;
adaptive_burst_window_remaining = adaptive_samples_per_window;
adaptive_burst_window_counter = 0;
adaptive_range_radix = calloc(sizeof(unsigned), 65536);
adaptive_range_state = RANGE_SCAN_UP;
// select and enforce gain limits
for (adaptive_gain_min = 0; adaptive_gain_min < maxgain; ++adaptive_gain_min) {
if (sdrGetGainDb(adaptive_gain_min) >= Modes.adaptive_min_gain_db)
break;
}
for (adaptive_gain_max = maxgain; adaptive_gain_max > adaptive_gain_min; --adaptive_gain_max) {
if (sdrGetGainDb(adaptive_gain_max) <= Modes.adaptive_max_gain_db)
break;
}
fprintf(stderr, "adaptive: enabled adaptive gain control with gain limits %.1fdB (step %d) .. %.1fdB (step %d)\n",
sdrGetGainDb(adaptive_gain_min), adaptive_gain_min, sdrGetGainDb(adaptive_gain_max), adaptive_gain_max);
if (Modes.adaptive_range_control)
fprintf(stderr, "adaptive: enabled dynamic range control, target dynamic range %.1fdB\n", Modes.adaptive_range_target);
if (Modes.adaptive_burst_control)
fprintf(stderr, "adaptive: enabled burst control\n");
adaptive_set_gain(sdrGetGain(), "constraining gain to adaptive gain limits");
adaptive_gain_changed();
adaptive_range_gain_limit = sdrGetGain();
}
// Feed some samples into the adaptive system. Any number of samples might be passed in.
void adaptive_update(uint16_t *buf, unsigned length, struct modesMessage *decoded)
{
if (!Modes.adaptive_burst_control && !Modes.adaptive_range_control)
return;
// process complete subblocks
while (length >= adaptive_subblock_samples_remaining) {
if (adaptive_subblock_active)
adaptive_update_subblock(buf, adaptive_subblock_samples_remaining, decoded);
buf += adaptive_subblock_samples_remaining;
length -= adaptive_subblock_samples_remaining;
adaptive_subblock_samples_remaining = adaptive_samples_per_subblock;
adaptive_subblock_dutycycle_counter += adaptive_subblock_dutycycle_N;
if (adaptive_subblock_dutycycle_counter >= adaptive_subblock_dutycycle_D) {
adaptive_subblock_dutycycle_counter -= adaptive_subblock_dutycycle_D;
adaptive_subblock_active = true;
} else {
adaptive_subblock_active = false;
// fake a quiet window to reset any existing run
adaptive_burst_end_of_window(0);
}
if (!--adaptive_subblocks_remaining) {
// Block completed, do a control update
adaptive_subblocks_remaining = adaptive_subblocks_per_block;
adaptive_end_of_block();
}
}
// process final samples that don't complete a subblock
if (length > 0) {
if (adaptive_subblock_active)
adaptive_update_subblock(buf, length, decoded);
adaptive_subblock_samples_remaining -= length;
}
}
// Feed some samples into the adaptive system. The samples are guaranteed to not cross a subblock boundary.
// The samples should be processsed (i.e. duty cycle is in the active part)
static void adaptive_update_subblock(uint16_t *buf, unsigned length, struct modesMessage *decoded)
{
if (decoded) {
if (/* decoded->msgbits == 112 && */ decoded->signalLevel >= adaptive_burst_loud_threshold)
++adaptive_burst_block_loud_decoded;
adaptive_burst_skip(length);
} else {
adaptive_burst_update(buf, length);
adaptive_range_update(buf, length);
}
}
// Burst measurement: ignore the next 'length' samples (they are a successfully decoded message)
static void adaptive_burst_skip(unsigned length)
{
if (!Modes.adaptive_burst_control)
return;
// first window
if (length < adaptive_burst_window_remaining) {
// partial fill
adaptive_burst_window_remaining -= length;
return;
}
// skip remainder of first window, dispatch it
adaptive_burst_end_of_window(adaptive_burst_window_counter);
length -= adaptive_burst_window_remaining;
// skip remaining windows, dispatch them
unsigned windows = length / adaptive_samples_per_window;
unsigned samples = windows * adaptive_samples_per_window;
while (windows--)
adaptive_burst_end_of_window(0);
length -= samples;
// final partial window
adaptive_burst_window_counter = 0;
adaptive_burst_window_remaining = adaptive_samples_per_window - length;
}
// Burst measurement: process 'length' samples from 'buf', look for loud bursts;
// the samples might cross burst window boundaries;
// the samples will not cross a block boundary.
static void adaptive_burst_update(uint16_t *buf, unsigned length)
{
if (!Modes.adaptive_burst_control)
return;
// first window
if (length < adaptive_burst_window_remaining) {
// partial fill
adaptive_burst_window_counter += adaptive_burst_count_samples(buf, length);
adaptive_burst_window_remaining -= length;
return;
}
// complete fill of first partial window
unsigned n = adaptive_burst_window_remaining;
unsigned counter = adaptive_burst_window_counter + adaptive_burst_count_samples(buf, n);
adaptive_burst_end_of_window(counter);
buf += n;
length -= n;
// remaining windows
unsigned windows = length / adaptive_samples_per_window;
unsigned samples = windows * adaptive_samples_per_window;
adaptive_burst_scan_windows(buf, windows);
buf += samples;
length -= samples;
// final partial window
adaptive_burst_window_counter = adaptive_burst_count_samples(buf, length);
adaptive_burst_window_remaining = adaptive_samples_per_window - length;
}
// Burst measurement: process 'windows' complete burst windows starting at 'buf';
// 'buf' is aligned to the start of a burst window
static void adaptive_burst_scan_windows(uint16_t *buf, unsigned windows)
{
while (windows--) {
unsigned counter = adaptive_burst_count_samples(buf, adaptive_samples_per_window);
buf += adaptive_samples_per_window;
adaptive_burst_end_of_window(counter);
}
}
// Burst measurement: process 'n' samples from 'buf', look for loud samples;
// the samples are guaranteed not to cross window boundaries;
// return the number of loud samples seen
static inline unsigned adaptive_burst_count_samples(uint16_t *buf, unsigned n)
{
unsigned counter;
starch_count_above_u16(buf, n, 46395 /* -3dBFS */, &counter);
return counter;
}
// Burst measurement: we reached the end of a burst window with 'counter'
// loud samples seen, handle that window.
static void adaptive_burst_end_of_window(unsigned counter)
{
if (counter > adaptive_samples_per_window / 4) {
// This window is loud, extend any existing run of loud windows
++adaptive_burst_runlength;
} else {
// Quiet window. If we saw a run of loud windows >= 80us long, count
// that as a candidate for an over-amplified message that was
// not decoded.
if (adaptive_burst_runlength >= 2 && adaptive_burst_runlength <= 5)
++adaptive_burst_block_loud_undecoded;
adaptive_burst_runlength = 0;
}
}
// Noise measurement: process 'length' samples from 'buf'.
// The samples will not cross a block boundary.
static void adaptive_range_update(uint16_t *buf, unsigned length)
{
if (!Modes.adaptive_range_control)
return;
adaptive_range_radix_counter += length;
while (length--) {
// do a very simple radix sort of sample magnitudes
// so we can later find the Nth percentile value
++adaptive_range_radix[buf[0]];
++buf;
}
}
// Noise measurement: we reached the end of a block, update
// our noise estimate
static void adaptive_range_end_of_block()
{
if (!Modes.adaptive_range_control)
return;
unsigned n = 0, i = 0;
// measure Nth percentile magnitude
unsigned count_n = adaptive_range_radix_counter * Modes.adaptive_range_percentile / 100;
while (i < 65536 && n <= count_n)
n += adaptive_range_radix[i++];
uint16_t percentile_n = i - 1;
// maintain an EMA of the Nth percentile
adaptive_range_smoothed = adaptive_range_smoothed * (1 - Modes.adaptive_range_alpha) + percentile_n * Modes.adaptive_range_alpha;
// .. report to stats in dBFS
if (adaptive_range_smoothed > 0) {
Modes.stats_current.adaptive_noise_dbfs = 20 * log10(adaptive_range_smoothed / 65536.0);
} else {
Modes.stats_current.adaptive_noise_dbfs = 0;
}
// reset radix sort for the next block
memset(adaptive_range_radix, 0, 65536 * sizeof(unsigned));
adaptive_range_radix_counter = 0;
}
// Burst measurement: we reached the end of a block, update our burst rate estimate
static void adaptive_burst_end_of_block()
{
if (!Modes.adaptive_burst_control)
return;
// scale rates based on the actual duty cycle fraction
// (e.g. if we are only inspecting 2/5 of samples, then scale the rate by 5/2)
double scale = (double)adaptive_subblock_dutycycle_D / adaptive_subblock_dutycycle_N;
// maintain an EMA of the number of undecoded loud bursts seen per block
Modes.stats_current.adaptive_loud_undecoded += adaptive_burst_block_loud_undecoded;
adaptive_burst_loud_undecoded_smoothed = adaptive_burst_loud_undecoded_smoothed * (1 - Modes.adaptive_burst_alpha) + scale * adaptive_burst_block_loud_undecoded * Modes.adaptive_burst_alpha;
adaptive_burst_block_loud_undecoded = 0;
// maintain an EMA of the number of decoded, but loud, messages seen per block
Modes.stats_current.adaptive_loud_decoded += adaptive_burst_block_loud_decoded;
adaptive_burst_loud_decoded_smoothed = adaptive_burst_loud_decoded_smoothed * (1 - Modes.adaptive_burst_alpha) + scale * adaptive_burst_block_loud_decoded * Modes.adaptive_burst_alpha;
adaptive_burst_block_loud_decoded = 0;
}
void flush_stats(uint64_t now);
static void adaptive_increase_gain(const char *why)
{
if (adaptive_set_gain(sdrGetGain() + 1, why))
adaptive_gain_changed();
}
static void adaptive_decrease_gain(const char *why)
{
if (adaptive_set_gain(sdrGetGain() - 1, why))
adaptive_gain_changed();
}
// Adaptive gain: we reached a block boundary. Update measurements and act on them.
static void adaptive_end_of_block()
{
adaptive_range_end_of_block();
adaptive_burst_end_of_block();
adaptive_control_update();
Modes.stats_current.adaptive_valid = true;
unsigned current = Modes.stats_current.adaptive_gain = sdrGetGain();
Modes.stats_current.adaptive_range_gain_limit = adaptive_range_gain_limit;
++Modes.stats_current.adaptive_gain_seconds[current < STATS_GAIN_COUNT ? current : STATS_GAIN_COUNT-1];
}
static void adaptive_control_update()
{
// votes for what to do with the gain
// "gain_not_up" overlaps somewhat with "gain_down", but they are not identical;
// burst control may want to prevent gain from increasing, but not necessarily
// decrease gain.
bool gain_up = false;
const char *gain_up_reason = NULL;
bool gain_down = false;
const char *gain_down_reason = NULL;
bool gain_not_up = false;
int current_gain = sdrGetGain();
if (adaptive_burst_change_timer)
--adaptive_burst_change_timer;
if (adaptive_range_change_timer > 0)
--adaptive_range_change_timer;
if (adaptive_range_rescan_timer > 0)
--adaptive_range_rescan_timer;
if (Modes.adaptive_burst_control && !adaptive_burst_change_timer) {
if (adaptive_burst_loud_undecoded_smoothed > Modes.adaptive_burst_loud_rate) {
adaptive_burst_quiet_blocks = 0;
++adaptive_burst_loud_blocks;
} else if (adaptive_burst_loud_decoded_smoothed < Modes.adaptive_burst_quiet_rate) {
adaptive_burst_loud_blocks = 0;
++adaptive_burst_quiet_blocks;
} else {
adaptive_burst_loud_blocks = 0;
adaptive_burst_quiet_blocks = 0;
}
if (adaptive_burst_loud_blocks >= Modes.adaptive_burst_loud_runlength) {
// we need to reduce gain (further)
gain_down = gain_not_up = true;
gain_down_reason = "high rate of loud undecoded messages";
// if we're currently doing a downward scan, reducing gain further may confuse it;
// stop that scan and restart it once we are no longer in a reduced-gain state
if (adaptive_range_state == RANGE_SCAN_DOWN) {
adaptive_range_state = RANGE_SCAN_IDLE;
adaptive_range_rescan_timer = 0;
}
} else if (adaptive_burst_quiet_blocks < Modes.adaptive_burst_quiet_runlength) {
// we're OK at the current gain, but should not increase it
gain_not_up = true;
} else if (current_gain < adaptive_range_gain_limit) {
// we're OK at the current gain, and can increase gain to the previously discovered
// dynamic range limit
gain_up = true;
gain_up_reason = "low loud message rate and gain below dynamic range limit";
}
}
if (Modes.adaptive_range_control && !adaptive_range_change_timer) {
float available_range = -20 * log10(adaptive_range_smoothed / 65536.0);
// allow the gain limit to increase if this gain setting is acceptable
// (decreasing the limit is done separately depending on the current state as we make slightly different decisions in IDLE
// to provide hysteresis)
if (available_range >= Modes.adaptive_range_target && current_gain > adaptive_range_gain_limit) {
adaptive_range_gain_limit = current_gain;
}
switch (adaptive_range_state) {
case RANGE_SCAN_UP:
if (available_range < Modes.adaptive_range_target) {
// Current gain fails to meet our target. Switch to downward scanning.
fprintf(stderr, "adaptive: available dynamic range (%.1fdB) < required dynamic range (%.1fdB), switching to downward scan\n", available_range, Modes.adaptive_range_target);
gain_down = gain_not_up = true;
gain_down_reason = "probing dynamic range gain lower bound";
adaptive_range_state = RANGE_SCAN_DOWN;
if (adaptive_range_gain_limit >= current_gain) {
adaptive_range_gain_limit = current_gain - 1;
}
break;
}
if (sdrGetGain() >= adaptive_gain_max) {
// We have reached our upper gain limit
fprintf(stderr, "adaptive: reached upper gain limit, halting dynamic range scan here\n");
adaptive_range_state = RANGE_SCAN_IDLE;
adaptive_range_rescan_timer = Modes.adaptive_range_rescan_delay;
break;
}
// This gain step is OK and we have more to try, try the next gain step up.
// (But if burst detection has inhibited increasing gain, don't do anything yet, just try again next block)
if (!gain_not_up) {
fprintf(stderr, "adaptive: available dynamic range (%.1fdB) >= required dynamic range (%.1fdB), continuing upward scan\n", available_range, Modes.adaptive_range_target);
gain_up = true;
gain_up_reason = "probing dynamic range gain upper bound";
}
break;
case RANGE_SCAN_DOWN:
if (available_range >= Modes.adaptive_range_target) {
// Current gain meets our target; we are done with the scan.
fprintf(stderr, "adaptive: available dynamic range (%.1fdB) >= required dynamic range (%.1fdB), stopping downwards scan here\n", available_range, Modes.adaptive_range_target);
adaptive_range_state = RANGE_SCAN_IDLE;
adaptive_range_rescan_timer = Modes.adaptive_range_rescan_delay;
break;
}
if (adaptive_range_gain_limit >= current_gain) {
adaptive_range_gain_limit = current_gain - 1;
}
if (sdrGetGain() <= adaptive_gain_min) {
fprintf(stderr, "adaptive: reached lower gain limit, halting dynamic range scan here\n");
adaptive_range_state = RANGE_SCAN_IDLE;
adaptive_range_rescan_timer = Modes.adaptive_range_rescan_delay;
break;
}
// This gain step is too loud and we have more to try, try the next gain step down
fprintf(stderr, "adaptive: available dynamic range (%.1fdB) < required dynamic range (%.1fdB), continuing downwards scan\n", available_range, Modes.adaptive_range_target);
gain_down = gain_not_up = true;
gain_down_reason = "probing dynamic range gain lower bound";
break;
case RANGE_SCAN_IDLE:
// Look for increased noise that could be compensated for by decreasing gain.
// Do this even if we're waiting to rescan or if burst control is also active
if (available_range + adaptive_gain_down_db / 2 < Modes.adaptive_range_target && sdrGetGain() > adaptive_gain_min) {
fprintf(stderr, "adaptive: available dynamic range (%.1fdB) + half gain step down (%.1fdB) < required dynamic range (%.1fdB), starting downward scan\n",
available_range, Modes.adaptive_range_target, adaptive_gain_down_db);
if (adaptive_range_gain_limit >= current_gain) {
adaptive_range_gain_limit = current_gain - 1;
}
adaptive_range_state = RANGE_SCAN_DOWN;
gain_down = gain_not_up = true;
gain_down_reason = "dynamic range fell below target value";
break;
}
// Infrequently consider increasing gain to handle the case where we've selected a too-low gain where the noise floor is dominated by noise unrelated to the gain setting.
// But don't do this while burst control is preventing gain increases.
if (!adaptive_range_rescan_timer && !gain_not_up) {
if (available_range >= Modes.adaptive_range_target && sdrGetGain() < adaptive_gain_max) {
fprintf(stderr, "adaptive: start periodic scan for acceptable dynamic range at increased gain\n");
gain_up = true;
gain_up_reason = "periodic re-probing of dynamic range gain upper bound";
adaptive_range_state = RANGE_SCAN_UP;
break;
}
// Nothing to do for a while.
adaptive_range_rescan_timer = Modes.adaptive_range_rescan_delay;
}
break;
default:
fprintf(stderr, "adaptive: in a weird state (%d), trying to fix it\n", adaptive_range_state);
adaptive_range_state = RANGE_SCAN_IDLE;
adaptive_range_rescan_timer = Modes.adaptive_range_rescan_delay;
break;
}
}
// now actually perform any gain changes
if (gain_down)
adaptive_decrease_gain(gain_down_reason);
else if (gain_up && !gain_not_up)
adaptive_increase_gain(gain_up_reason);
}