-
Notifications
You must be signed in to change notification settings - Fork 6
/
train_kg_copy_incar.py
302 lines (257 loc) · 10.4 KB
/
train_kg_copy_incar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
from models.kg_copy_model import KGSentient
from args import get_args
import numpy as np
import torch
from batcher_kb_2 import DialogBatcher
from tqdm import tqdm
import pandas as pd
from utils_new import save_model, load_model
from metrics import EmbeddingMetrics
from bleu import get_moses_multi_bleu
# Get arguments
args = get_args()
# Set random seed
np.random.seed(args.randseed)
torch.manual_seed(args.randseed)
if args.gpu:
torch.cuda.manual_seed(args.randseed)
#args.data_dir = 'preproc_files/'
# Team data
team_kg = np.load(args.data_dir+'team_kg.npy',allow_pickle=True).item()
# Get data
chat_data = DialogBatcher(gpu=args.gpu, max_kb_len=35, max_sent_len=20)
# Get model
model = KGSentient(hidden_size=args.hidden_size, max_r=args.resp_len, gpu=args.gpu, n_words=chat_data.n_words,
emb_dim=args.words_dim, kb_max_size=chat_data.max_kb_len, b_size=args.batch_size, lr=args.lr,
dropout=args.rnn_dropout, emb_drop=args.emb_drop, teacher_forcing_ratio=args.teacher_forcing,
pretrained_emb=chat_data.vectors, sos_tok=chat_data.stoi['<sos>'], eos_tok=chat_data.stoi['<eos>'],
itos=chat_data.geti2w, first_kg_token=631)
metrics = EmbeddingMetrics(embeddig_dict=chat_data.vocab_glove)
model_name = 'Sentient_model2'
test_results = 'test_predicted_kg_attn2.csv'
test_out = pd.DataFrame()
w2i = np.load("vocab/w2i_incar.npy",allow_pickle=True).item()
i2w = {v:k for k,v in w2i.items()}
ent_file = open("data/kvr_entities_incar.txt","r",encoding="utf-8")
global_entity_list=set()
for entity in ent_file:
global_entity_list.add(entity.strip())
global_entity_list = list(global_entity_list)
def toSentence(lst):
list_tem = lst
return " ".join(w2i[i] for i in list_tem).strip()
def processKG(filename):
kg = ""
kg = open('data/KG/incar/'+filename+".txt", 'r', encoding="utf-8")
kg_all = []
for line in kg:
kg_all.append(['_'.join(a_line.split(" ")) for a_line in line.strip().split("\t")])
return kg_all
def compute_prf(gold, pred, global_entity_list, kb_plain):
local_kb_word = [k[0] for k in kb_plain]
TP, FP, FN = 0, 0, 0
if len(gold) != 0:
count = 1
for g in gold:
if g in pred:
TP += 1
else:
FN += 1
for p in set(pred):
if p in global_entity_list or p in local_kb_word:
if p not in gold:
FP += 1
precision = TP / float(TP + FP) if (TP + FP) != 0 else 0
recall = TP / float(TP + FN) if (TP + FN) != 0 else 0
F1 = 2 * precision * recall / float(precision + recall) if (precision + recall) != 0 else 0
else:
precision, recall, F1, count = 0, 0, 0, 0
return F1, count
def compute_f1(gold,pred,entities,teams):
epsilon = 0.000000001
f1_score = 0.0
microF1_TRUE = 0.0
microF1_PRED = 0.0
for it in range(len(gold)):
f1_true, count = compute_prf(gold[it].split(),pred[it].split(),entities,processKG(teams[it]))
microF1_TRUE += f1_true
microF1_PRED += count
f1_score = microF1_TRUE / float(microF1_PRED + epsilon)
return f1_score
def train():
best_val_loss = 100.0
emb_val = -1000
global_entity_list = []
best_bleu = 0.0
f1_sc = 0.0
for epoch in range(args.epochs):
epsilon = 0.000000001
model.train()
print('\n\n-------------------------------------------')
print('Epoch-{}'.format(epoch))
print('-------------------------------------------')
train_iter = enumerate(chat_data.get_iter('train'))
if not args.no_tqdm:
train_iter = tqdm(train_iter)
train_iter.set_description_str('Training')
#print (chat_data.n_train)
#train_iter.total = chat_data.n_train // chat_data.batch_size
train_iter.total = chat_data.n_train // chat_data.batch_size
#print (train_iter.total)
for it, mb in train_iter:
q, q_c, a, q_m, a_m, kb, kb_m, sentient, v_m, teams = mb
model.train_batch(q, q_c, a, q_m, a_m, kb, kb_m, sentient)
train_iter.set_description(model.print_loss())
print('\n\n-------------------------------------------')
print('Validation')
print('-------------------------------------------')
val_iter = enumerate(chat_data.get_iter('valid'))
if not args.no_tqdm:
val_iter = tqdm(val_iter)
val_iter.set_description_str('Validation')
val_iter.total = chat_data.n_val // chat_data.batch_size
val_loss = 0.0
extrema = []
gm = []
emb_avg_all = []
predicted_s = []
orig_s = []
f1_score = 0.0
for it, mb in val_iter:
q, q_c, a, q_m, a_m, kb, kb_m, sentient, v_m, teams = mb
pred, loss = model.evaluate_batch(q, q_c, a, q_m, a_m, kb, kb_m, sentient)
pred = pred.transpose(0, 1).contiguous()
a = a.transpose(0, 1).contiguous()
s_g = get_sentences(a, teams)
s_p = get_sentences(pred, teams)
e_a, v_e, g_m = metrics.get_metrics_batch(s_g, s_p)
f1_score += compute_f1(s_g,s_p,global_entity_list,teams)
emb_avg_all.append(e_a)
extrema.append(v_e)
gm.append(g_m)
predicted_s.append(s_p)
orig_s.append(s_g)
val_loss += loss.item()
print('\n\n-------------------------------------------')
print ('Sample prediction')
print('-------------------------------------------')
print (str(a))
for k, o in enumerate(s_g):
print ('Original:' + o)
try:
print ('Predicted:' + s_p[k])
except UnicodeEncodeError:
print ('Predicted: '.format(s_p[k]))
print('-------------------------------------------')
#v_l = val_loss/val_iter.total
#ea = np.average(extrema)
print("Vector extrema:" + str(np.average(extrema)))
print("Greedy Matching:" + str(np.average(gm)))
print('Embedding Average for this epoch:{:.6f}'.format(np.average(emb_avg_all)))
predicted_s = [q for ques in predicted_s for q in ques]
orig_s = [q for ques in orig_s for q in ques]
moses_bleu = get_moses_multi_bleu(predicted_s, orig_s, lowercase=True)
print ('Length of pred:' + str(len(orig_s)) + ' moses bleu: '+ str(moses_bleu))
f1 = f1_score/len(val_iter)
print("F1 score: ", f1)
#ea = moses_bleu
if moses_bleu is not None:
if moses_bleu>best_bleu:
best_bleu=moses_bleu
f1_sc = f1
print('Saving best model')
print('moses bleu:{:.4f}, F1:{:.4f}'.format(best_bleu,f1))
save_model(model, model_name)
else:
print ('Not saving the model. Best validation moses bleu so far:{:.4f} with f1:{:.4f}'.format(best_bleu,f1_sc))
print ('Validation Loss:{:.2f}'.format(val_loss/val_iter.total))
# sprint ('Embedding average:{:.6f}'.format(emb_val))
def test(model):
model = load_model(model, model_name, args.gpu)
print('\n\n-------------------------------------------')
print('Testing')
print('-------------------------------------------')
test_iter = enumerate(chat_data.get_iter('test'))
if not args.no_tqdm:
test_iter = tqdm(test_iter)
test_iter.set_description_str('Testing')
test_iter.total = chat_data.n_test // chat_data.batch_size
test_loss = 0.0
extrema = []
gm = []
emb_avg_all = []
predicted_s = []
orig_s = []
f1_score = 0.0
for it, mb in test_iter:
q, q_c, a, q_m, a_m, kb, kb_m, sentient, v_m, teams = mb
pred, loss = model.evaluate_batch(q, q_c, a, q_m, a_m, kb, kb_m, sentient)
# print('=================Predicted vectors================')
# print(pred[0])
pred = pred.transpose(0, 1).contiguous()
a = a.transpose(0, 1).contiguous()
s_g = get_sentences(a, teams)
s_p = get_sentences(pred, teams)
e_a, v_e, g_m = metrics.get_metrics_batch(s_g, s_p)
f1_score += compute_f1(s_g, s_p, global_entity_list, teams)
emb_avg_all.append(e_a)
extrema.append(v_e)
gm.append(g_m)
predicted_s.append(s_p)
orig_s.append(s_g)
test_loss += loss.item()
print ("Vector extrema:" + str(np.average(extrema)))
print ("Greedy Matching:" + str(np.average(gm)))
print ("Embedding Average on Test:{:.6f}".format(np.average(emb_avg_all)))
print('\n\n-------------------------------------------')
print ('Sample prediction Test')
print('-------------------------------------------')
print ('words:' + str(a))
for k, o in enumerate(s_g):
print ('Original:' + o)
try:
print ('Predicted:' + s_p[k])
except UnicodeEncodeError:
print ('Predicted: '.format(s_p[k]))
print('-------------------------------------------')
print('-------------------------------------------')
predicted_s = [q for ques in predicted_s for q in ques]
orig_s = [q for ques in orig_s for q in ques]
moses_bleu = get_moses_multi_bleu(predicted_s, orig_s, lowercase=True)
print ("Moses Bleu:" + str(moses_bleu))
print("F1 score: ", f1_score / len(test_iter))
test_out['original_response'] = orig_s
test_out['predicted_response'] = predicted_s
print ('Saving the test predictions......')
test_out.to_csv(test_results, index=False)
def get_sentences(sent_indexed, teams):
out_sents = [get_sent(sent_indexed[i], teams[i]) for i in range(len(sent_indexed))]
out_sents = [str(sent.split('<eos>')[0]) for sent, fetched in out_sents]
return out_sents
def get_sent(sent, team):
team_o = {}
fetched_from_kb = 0
number152 = ""
if team:
# print (team)
s, r, o = team_kg[team]
for i, obj in enumerate(o):
team_o['o' + str(i)] = obj
if i==152:
number152 = obj
out_sent = []
for idx in sent:
w = chat_data.geti2w(idx)
if team_o:
try:
out_sent.append(team_o[w])
print(team_o[w],w)
fetched_from_kb=1
except KeyError:
out_sent.append(w)
else:
out_sent.append(w)
return ' '.join(out_sent), fetched_from_kb
if __name__ == '__main__':
train()
test(model)