The pure JavaScript SmartCash library for node.js and browsers.
- Clean: Pure JavaScript, concise code, easy to read.
- Compatible: Works on Node.js and all modern browsers.
- Powerful: Support for advanced features, such as multi-sig, HD Wallets.
- Secure: Strong random number generation, trusted developers.
- Principled: No support for browsers with crap RNG (IE < 11)
- Standardized: Node community coding style, Browserify, Node's stdlib and Buffers.
- Fast: Optimized code, uses typed arrays instead of byte arrays for performance.
- Experiment-friendly: SmartCash Mainnet and Testnet support.
If you are thinking of using the master branch of this library in production, stop. Master is not stable; it is our development branch, and only tagged releases may be classified as stable.
npm install smartcashjs-lib
var smartcash = require('smartcashjs-lib')
If you're familiar with how to use browserify, ignore this and proceed normally. These steps are advisory only, and may not be suitable for your application.
Browserify is assumed to be installed for these steps.
For your project, create an index.js
file
let smartcash = require('smartcashjs-lib')
// your code here
function myFunction () {
return smartcash.ECPair.makeRandom().toWIF()
}
module.exports = {
myFunction
}
Now, to compile for the browser:
browserify index.js --standalone foo > app.js
You can now put <script src="app.js" />
in your web page, using foo.myFunction
to create a new SmartCash private key.
NOTE: If you uglify the javascript, you must exclude the following variable names from being mangled: BigInteger
, ECPair
, Point
.
This is because of the function-name-duck-typing used in typeforce.
Example:
uglifyjs ... --mangle --reserved 'BigInteger,ECPair,Point'
NOTE: This library tracks Node LTS features, if you need strict ES5, use --transform babelify
in conjunction with your browserify
step (using an es2015
preset).
NOTE: If you expect this library to run on an iOS 10 device, ensure that you are using [email protected] or greater.
The below examples are implemented as integration tests, they should be very easy to understand. Otherwise, pull requests are appreciated. Some examples interact (via HTTPS) with a 3rd Party Blockchain Provider (3PBP).
- Generate a random address
- Generate an address from a SHA256 hash
- Import an address via WIF
- Generate a 2-of-3 P2SH multisig address
- Support the retrieval of transactions for an address (3rd party blockchain)
- Generate a Testnet address
- Create a 1-to-1 Transaction
- Create a 2-to-2 Transaction
- Create (and broadcast via 3PBP) a typical Transaction
- Create (and broadcast via 3PBP) a Transaction with an OP_RETURN output
- Create (and broadcast via 3PBP) a Transaction with a 2-of-4 P2SH(multisig) input
- Import a BIP32 testnet xpriv and export to WIF
- Export a BIP32 xpriv, then import it
- Export a BIP32 xpub
- Create a BIP32, bitcoin, account 0, external address
- Create a BIP44, bitcoin, account 0, external address
- Create a BIP49, bitcoin testnet, account 0, external address
- Use BIP39 to generate BIP32 addresses
- Create (and broadcast via 3PBP) a Transaction where Alice can redeem the output after the expiry
- Create (and broadcast via 3PBP) a Transaction where Alice and Bob can redeem the output at any time
- Recover a private key from duplicate R values
- Recover a BIP32 parent private key from the parent public key, and a derived, non-hardened child private key
- Generate a single-key stealth address
- Generate a single-key stealth address (randomly)
- Recover parent recipient.d, if a derived private key is leaked (and nonce was revealed)
- Generate a dual-key stealth address
- Generate a dual-key stealth address (randomly)
If you have a use case that you feel could be listed here, please ask for it!
- BIP21 - A BIP21 compatible URL encoding utility library
- BIP38 - Passphrase-protected private keys
- BIP39 - Mnemonic generation for deterministic keys
- BIP32-Utils - A set of utilities for working with BIP32
- BIP66 - Strict DER signature decoding
- BIP69 - Lexicographical Indexing of Transaction Inputs and Outputs
- Base58 - Base58 encoding/decoding
- Base58 Check - Base58 check encoding/decoding
- Bech32 - A BIP173 compliant Bech32 encoding library
- coinselect - A fee-optimizing, transaction input selection module for bitcoinjs-lib.
- merkle-lib - A performance conscious library for merkle root and tree calculations.
- minimaldata - A module to check bitcoin policy: SCRIPT_VERIFY_MINIMALDATA