-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathq2l_infer.py
executable file
·378 lines (309 loc) · 14.7 KB
/
q2l_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import argparse
import os, sys
import random
import datetime
import time
from typing import List
import json
import numpy as np
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import _init_paths
from dataset.get_dataset import get_datasets
from utils.logger import setup_logger
import models
import models.aslloss
from models.query2label import build_q2l
from utils.metric import voc_mAP
from utils.misc import clean_state_dict
from utils.slconfig import get_raw_dict
def parser_args():
available_models = ['Q2L-R101-448', 'Q2L-R101-576', 'Q2L-TResL-448', 'Q2L-TResL_22k-448', 'Q2L-SwinL-384', 'Q2L-CvT_w24-384']
parser = argparse.ArgumentParser(description='Query2Label for multilabel classification')
parser.add_argument('--dataname', help='dataname', default='coco14', choices=['coco14'])
parser.add_argument('--dataset_dir', help='dir of dataset', default='/comp_robot/liushilong/data/COCO14/')
parser.add_argument('--img_size', default=448, type=int,
help='image size. default(448)')
parser.add_argument('-a', '--arch', metavar='ARCH', default='Q2L-R101-448',
choices=available_models,
help='model architecture: ' +
' | '.join(available_models) +
' (default: Q2L-R101-448)')
parser.add_argument('--config', type=str, help='config file')
parser.add_argument('--output', metavar='DIR',
help='path to output folder')
parser.add_argument('--loss', metavar='LOSS', default='asl',
choices=['asl'],
help='loss functin')
parser.add_argument('--num_class', default=80, type=int,
help="Number of classes.")
parser.add_argument('-j', '--workers', default=8, type=int, metavar='N',
help='number of data loading workers (default: 8)')
parser.add_argument('-b', '--batch-size', default=16, type=int,
metavar='N',
help='mini-batch size (default: 16), this is the total '
'batch size of all GPUs')
parser.add_argument('-p', '--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model. default is False. ')
parser.add_argument('--eps', default=1e-5, type=float,
help='eps for focal loss (default: 1e-5)')
# distribution training
parser.add_argument('--world-size', default=-1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://127.0.0.1:3451', type=str,
help='url used to set up distributed training')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument("--local_rank", type=int, help='local rank for DistributedDataParallel')
parser.add_argument('--amp', action='store_true',
help='use mixture precision.')
# data aug
parser.add_argument('--orid_norm', action='store_true', default=False,
help='using oridinary norm of [0,0,0] and [1,1,1] for mean and std.')
# * Transformer
parser.add_argument('--enc_layers', default=1, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=2, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=256, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=128, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.1, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=4, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--pre_norm', action='store_true')
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine'),
help="Type of positional embedding to use on top of the image features")
parser.add_argument('--backbone', default='resnet101', type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--keep_other_self_attn_dec', action='store_true',
help='keep the other self attention modules in transformer decoders, which will be removed default.')
parser.add_argument('--keep_first_self_attn_dec', action='store_true',
help='keep the first self attention module in transformer decoders, which will be removed default.')
parser.add_argument('--keep_input_proj', action='store_true',
help="keep the input projection layer. Needed when the channel of image features is different from hidden_dim of Transformer layers.")
args = parser.parse_args()
# update parameters with pre-defined config file
if args.config:
with open(args.config, 'r') as f:
cfg_dict = json.load(f)
for k,v in cfg_dict.items():
setattr(args, k, v)
return args
def get_args():
args = parser_args()
return args
best_mAP = 0
def main():
args = get_args()
if 'WORLD_SIZE' in os.environ:
assert args.world_size > 0, 'please set --world-size and --rank in the command line'
# launch by torch.distributed.launch
# Single node
# python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 1 --rank 0 ...
local_world_size = int(os.environ['WORLD_SIZE'])
args.world_size = args.world_size * local_world_size
args.rank = args.rank * local_world_size + args.local_rank
print('world size: {}, world rank: {}, local rank: {}'.format(args.world_size, args.rank, args.local_rank))
print('os.environ:', os.environ)
else:
# single process, useful for debugging
# python main.py ...
args.world_size = 1
args.rank = 0
args.local_rank = 0
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
torch.cuda.set_device(args.local_rank)
print('| distributed init (local_rank {}): {}'.format(
args.local_rank, args.dist_url), flush=True)
torch.distributed.init_process_group(backend='nccl', init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
cudnn.benchmark = True
# set output dir and logger
if not args.output:
args.output = (f"logs/{args.arch}-{datetime.datetime.now()}").replace(' ', '-')
os.makedirs(args.output, exist_ok=True)
logger = setup_logger(output=args.output, distributed_rank=dist.get_rank(), color=False, name="Q2L")
logger.info("Command: "+' '.join(sys.argv))
# save config to outputdir
if dist.get_rank() == 0:
path = os.path.join(args.output, "config.json")
with open(path, 'w') as f:
json.dump(get_raw_dict(args), f, indent=2)
logger.info("Full config saved to {}".format(path))
logger.info('world size: {}'.format(dist.get_world_size()))
logger.info('dist.get_rank(): {}'.format(dist.get_rank()))
logger.info('local_rank: {}'.format(args.local_rank))
return main_worker(args, logger)
def main_worker(args, logger):
global best_mAP
# build model
model = build_q2l(args)
model = model.cuda()
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], broadcast_buffers=False)
criterion = models.aslloss.AsymmetricLossOptimized(
gamma_neg=args.gamma_neg, gamma_pos=args.gamma_pos,
disable_torch_grad_focal_loss=True,
eps=args.eps,
)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
logger.info("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume, map_location=torch.device(dist.get_rank()))
state_dict = clean_state_dict(checkpoint['state_dict'])
model.module.load_state_dict(state_dict, strict=True)
del checkpoint
del state_dict
torch.cuda.empty_cache()
else:
logger.info("=> no checkpoint found at '{}'".format(args.resume))
# Data loading code
_, val_dataset = get_datasets(args)
assert args.batch_size // dist.get_world_size() == args.batch_size / dist.get_world_size(), 'Batch size is not divisible by num of gpus.'
val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset, shuffle=False)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size // dist.get_world_size(), shuffle=False,
num_workers=args.workers, pin_memory=True, sampler=val_sampler)
# for eval only
_, mAP = validate(val_loader, model, criterion, args, logger)
logger.info(' * mAP {mAP:.1f}'
.format(mAP=mAP))
return
@torch.no_grad()
def validate(val_loader, model, criterion, args, logger):
batch_time = AverageMeter('Time', ':5.3f')
losses = AverageMeter('Loss', ':5.3f')
mem = AverageMeter('Mem', ':.0f', val_only=True)
progress = ProgressMeter(
len(val_loader),
[batch_time, losses, mem],
prefix='Test: ')
# switch to evaluate mode
model.eval()
saved_data = []
with torch.no_grad():
end = time.time()
for i, (images, target) in enumerate(val_loader):
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# compute output
with torch.cuda.amp.autocast(enabled=args.amp):
output = model(images)
loss = criterion(output, target)
output_sm = nn.functional.sigmoid(output)
# record loss
losses.update(loss.item(), images.size(0))
mem.update(torch.cuda.max_memory_allocated() / 1024.0 / 1024.0)
# save some data
_item = torch.cat((output_sm.detach().cpu(), target.detach().cpu()), 1)
saved_data.append(_item)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0 and dist.get_rank() == 0:
progress.display(i, logger)
logger.info('=> synchronize...')
if dist.get_world_size() > 1:
dist.barrier()
loss_avg, = map(
_meter_reduce if dist.get_world_size() > 1 else lambda x: x.avg,
[losses]
)
# calculate mAP
saved_data = torch.cat(saved_data, 0).numpy()
saved_name = 'saved_data_tmp.{}.txt'.format(dist.get_rank())
np.savetxt(os.path.join(args.output, saved_name), saved_data)
if dist.get_world_size() > 1:
dist.barrier()
if dist.get_rank() == 0:
print("Calculating mAP:")
filenamelist = ['saved_data_tmp.{}.txt'.format(ii) for ii in range(dist.get_world_size())]
metric_func = voc_mAP
mAP, aps = metric_func([os.path.join(args.output, _filename) for _filename in filenamelist], args.num_class, return_each=True)
logger.info(" mAP: {}".format(mAP))
logger.info(" aps: {}".format(np.array2string(aps, precision=5)))
else:
mAP = 0
if dist.get_world_size() > 1:
dist.barrier()
return loss_avg, mAP
##################################################################################
def _meter_reduce(meter):
meter_sum = torch.FloatTensor([meter.sum]).cuda()
meter_count = torch.FloatTensor([meter.count]).cuda()
torch.distributed.reduce(meter_sum, 0)
torch.distributed.reduce(meter_count, 0)
meter_avg = meter_sum / meter_count
return meter_avg.item()
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
# torch.save(state, filename)
if is_best:
torch.save(state, os.path.split(filename)[0] + '/model_best.pth.tar')
# shutil.copyfile(filename, os.path.split(filename)[0] + '/model_best.pth.tar')
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f', val_only=False):
self.name = name
self.fmt = fmt
self.val_only = val_only
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
if self.val_only:
fmtstr = '{name} {val' + self.fmt + '}'
else:
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch, logger):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
logger.info(' '.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def kill_process(filename:str, holdpid:int) -> List[str]:
# used for training only.
import subprocess, signal
res = subprocess.check_output("ps aux | grep {} | grep -v grep | awk '{{print $2}}'".format(filename), shell=True, cwd="./")
res = res.decode('utf-8')
idlist = [i.strip() for i in res.split('\n') if i != '']
print("kill: {}".format(idlist))
for idname in idlist:
if idname != str(holdpid):
os.kill(int(idname), signal.SIGKILL)
return idlist
if __name__ == '__main__':
main()