-
Notifications
You must be signed in to change notification settings - Fork 319
/
lstm.py
126 lines (99 loc) · 3.93 KB
/
lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
""" This module prepares midi file data and feeds it to the neural
network for training """
import glob
import pickle
import numpy
from music21 import converter, instrument, note, chord
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import LSTM
from keras.layers import Activation
from keras.layers import BatchNormalization as BatchNorm
from keras.utils import np_utils
from keras.callbacks import ModelCheckpoint
def train_network():
""" Train a Neural Network to generate music """
notes = get_notes()
# get amount of pitch names
n_vocab = len(set(notes))
network_input, network_output = prepare_sequences(notes, n_vocab)
model = create_network(network_input, n_vocab)
train(model, network_input, network_output)
def get_notes():
""" Get all the notes and chords from the midi files in the ./midi_songs directory """
notes = []
for file in glob.glob("midi_songs/*.mid"):
midi = converter.parse(file)
print("Parsing %s" % file)
notes_to_parse = None
try: # file has instrument parts
s2 = instrument.partitionByInstrument(midi)
notes_to_parse = s2.parts[0].recurse()
except: # file has notes in a flat structure
notes_to_parse = midi.flat.notes
for element in notes_to_parse:
if isinstance(element, note.Note):
notes.append(str(element.pitch))
elif isinstance(element, chord.Chord):
notes.append('.'.join(str(n) for n in element.normalOrder))
with open('data/notes', 'wb') as filepath:
pickle.dump(notes, filepath)
return notes
def prepare_sequences(notes, n_vocab):
""" Prepare the sequences used by the Neural Network """
sequence_length = 100
# get all pitch names
pitchnames = sorted(set(item for item in notes))
# create a dictionary to map pitches to integers
note_to_int = dict((note, number) for number, note in enumerate(pitchnames))
network_input = []
network_output = []
# create input sequences and the corresponding outputs
for i in range(0, len(notes) - sequence_length, 1):
sequence_in = notes[i:i + sequence_length]
sequence_out = notes[i + sequence_length]
network_input.append([note_to_int[char] for char in sequence_in])
network_output.append(note_to_int[sequence_out])
n_patterns = len(network_input)
# reshape the input into a format compatible with LSTM layers
network_input = numpy.reshape(network_input, (n_patterns, sequence_length, 1))
# normalize input
network_input = network_input / float(n_vocab)
network_output = np_utils.to_categorical(network_output)
return (network_input, network_output)
def create_network(network_input, n_vocab):
""" create the structure of the neural network """
model = Sequential()
model.add(LSTM(
512,
input_shape=(network_input.shape[1], network_input.shape[2]),
recurrent_dropout=0.3,
return_sequences=True
))
model.add(LSTM(512, return_sequences=True, recurrent_dropout=0.3,))
model.add(LSTM(512))
model.add(BatchNorm())
model.add(Dropout(0.3))
model.add(Dense(256))
model.add(Activation('relu'))
model.add(BatchNorm())
model.add(Dropout(0.3))
model.add(Dense(n_vocab))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
return model
def train(model, network_input, network_output):
""" train the neural network """
filepath = "weights-improvement-{epoch:02d}-{loss:.4f}-bigger.hdf5"
checkpoint = ModelCheckpoint(
filepath,
monitor='loss',
verbose=0,
save_best_only=True,
mode='min'
)
callbacks_list = [checkpoint]
model.fit(network_input, network_output, epochs=200, batch_size=128, callbacks=callbacks_list)
if __name__ == '__main__':
train_network()