-
Notifications
You must be signed in to change notification settings - Fork 240
/
Copy pathsegmentation_example.py
50 lines (39 loc) · 1.63 KB
/
segmentation_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torch
from PIL import Image
from torchvision.transforms import ToPILImage
from torchvision.models.segmentation import deeplabv3_resnet101
from torchvision import transforms, utils
def get_mask(model, batch, cid):
normalized_batch = transforms.functional.normalize(
batch, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
output = model(normalized_batch)['out']
# sem_classes = [
# '__background__', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus',
# 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike',
# 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'
# ]
# sem_class_to_idx = {cls: idx for (idx, cls) in enumerate(sem_classes)}
# cid = sem_class_to_idx['car']
normalized_masks = torch.nn.functional.softmax(output, dim=1)
boolean_car_masks = (normalized_masks.argmax(1) == cid)
return boolean_car_masks.float()
image = Image.open('image.jpg')
# Define the preprocessing transformation
preprocess = transforms.Compose([
transforms.Resize((512, 512)),
transforms.ToTensor()
])
# Apply the transformation to the image
input_tensor = preprocess(image)
input_batch = input_tensor.unsqueeze(0).to('cuda:0')
# load segmentation net
seg_net = deeplabv3_resnet101(pretrained=True, progress=False).to('cuda:0')
seg_net.requires_grad_(False)
seg_net.eval()
# 15 means human mask
mask0 = get_mask(seg_net, input_batch, 15).unsqueeze(1)
# Squeeze the tensor to remove unnecessary dimensions and convert to PIL Image
mask_squeezed = torch.squeeze(mask0)
mask_image = ToPILImage()(mask_squeezed)
# Save as PNG
mask_image.save("mask.png")