Skip to content

Latest commit

 

History

History
54 lines (40 loc) · 2.89 KB

README.md

File metadata and controls

54 lines (40 loc) · 2.89 KB

第二周:分类

学习内容

视频课程

全部视频已传至内部 FTP 服务器,下面提供的链接是 Bilibili 上的观看地址。

文字资料

作业

In this assignment you will practice putting together a simple image classification pipeline, based on the k-Nearest Neighbor, logistic regression and decision tree classifier. The goals of this assignment are as follows:

  • understand the basic Image Classification pipeline and the data-driven approach (train/predict stages)
  • understand the train/val/test splits and the use of validation data for hyperparameter tuning.
  • develop proficiency in writing efficient vectorized code with NumPy
  • implement and apply a k-Nearest Neighbor (kNN) classifier
  • implement and apply a Multiclass Logistic Regression classifier
  • understand the differences and tradeoffs between these classifiers
  • get a basic understanding of performance improvements from using higher-level representations than raw pixels (e.g. color histograms, Histogram of Gradient (HOG) features)

Ref: CS231n assignment 1

Kaggle 课内竞赛第一期:井字棋胜负判断

  • 比赛入口:https://inclass.kaggle.com/c/hdu-cama
  • 简介
    • 你需要使用提供的井字棋棋局数据训练一个 ID3 决策树模型,给定一个棋局,能判定 “X” 下棋人的胜负情况。
    • 不能使用额外的 Package(如 scikit-learn)
  • 时间
    • 07.28 - 07.31 11:59pm

作业提交

截止日期:7 月 29 日(星期六) 18:30 提交邮箱:[email protected] 邮件以及附件格式: 暑期研讨班作业-姓名-Week_1

其他说明:

  • 需要提交的文件
    • assignment 文件夹下的所有 .ipynb 文件以及他们生成的 .html 文件
  • 将这些文件压缩成一个 .zip 文件,并按上面说明的格式命名
  • 你提交的作业版本应与 Github 上的最新版本一致