forked from husencd/DriverPostureClassification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
62 lines (49 loc) · 1.83 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import csv
import torch
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class Logger(object):
"""Outputs log files"""
def __init__(self, path, header):
self.log_file = open(path, 'w')
self.logger = csv.writer(self.log_file, delimiter='\t')
self.logger.writerow(header)
self.header = header
def __del(self):
self.log_file.close()
def log(self, values):
write_values = []
for col in self.header:
assert col in values
write_values.append(values[col])
self.logger.writerow(write_values)
self.log_file.flush()
def calculate_accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, dim=1, largest=True, sorted=True) # batch_size x maxk
pred = pred.t() # transpose, maxk x batch_size
# target.view(1, -1): convert (batch_size,) to 1 x batch_size
# expand_as: convert 1 x batch_size to maxk x batch_size
correct = pred.eq(target.view(1, -1).expand_as(pred)) # maxk x batch_size
res = []
for k in topk:
# correct[:k] converts "maxk x batch_size" to "k x batch_size"
# view(-1) converts "k x batch_size" to "(k x batch_size,)"
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res